id
int64 0
4.52k
| code
stringlengths 142
31.2k
| answer
stringclasses 7
values | prompt
stringlengths 1.64k
32.6k
| test_prompt
stringlengths 1.7k
32.7k
| token_length
int64 373
7.8k
| __index_level_0__
int64 0
4.5k
|
---|---|---|---|---|---|---|
244 |
import java.util.*;
import java.io.*;
public class MinimumDiameterTree{
public static void main(String[] args) {
InputReader in = new InputReader (System.in);
PrintWriter out = new PrintWriter (System.out);
int n = in.nextInt();
int s = in.nextInt();
int deg[] = new int [n];
for (int i = 1; i < n; ++i) {
deg[in.nextInt() - 1] ++;
deg[in.nextInt() - 1] ++;
}
int l = 0;
for (int i = 0; i < n; ++i)
if (deg[i] == 1) l ++;
out.println((double) 2 * s / l);
out.close();
}
public static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch(IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class MinimumDiameterTree{
public static void main(String[] args) {
InputReader in = new InputReader (System.in);
PrintWriter out = new PrintWriter (System.out);
int n = in.nextInt();
int s = in.nextInt();
int deg[] = new int [n];
for (int i = 1; i < n; ++i) {
deg[in.nextInt() - 1] ++;
deg[in.nextInt() - 1] ++;
}
int l = 0;
for (int i = 0; i < n; ++i)
if (deg[i] == 1) l ++;
out.println((double) 2 * s / l);
out.close();
}
public static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch(IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class MinimumDiameterTree{
public static void main(String[] args) {
InputReader in = new InputReader (System.in);
PrintWriter out = new PrintWriter (System.out);
int n = in.nextInt();
int s = in.nextInt();
int deg[] = new int [n];
for (int i = 1; i < n; ++i) {
deg[in.nextInt() - 1] ++;
deg[in.nextInt() - 1] ++;
}
int l = 0;
for (int i = 0; i < n; ++i)
if (deg[i] == 1) l ++;
out.println((double) 2 * s / l);
out.close();
}
public static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch(IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 620 | 244 |
4,507 |
import java.io.*;
import java.util.*;
import static java.lang.Math.*;
public class E {
static int g[][];
static int n, m;
static char[] s;
static int dp[], inf = (int) 2e9;
public static void main(String[] args) throws Exception {
Scanner in = new Scanner(System.in);
PrintWriter pw = new PrintWriter(System.out);
n = in.nextInt();
m = in.nextInt();
s = in.next().toCharArray();
g = new int[m][m];
for (int i = 1; i < n; i++) {
int x = s[i - 1] - 'a', y = s[i] - 'a';
if (x != y) {
g[x][y]++;
g[y][x]++;
}
}
dp = new int[1 << m];
Arrays.fill(dp, -1);
pw.println(solve(0, 0));
pw.close();
}
static int solve(int pos, int mask) {
if (pos >= m) return 0;
if (dp[mask] != -1) return dp[mask];
int min = inf;
for (int i = 0; i < m; i++) {
if (!check(mask, i)) {
int res = 0;
for (int j = 0; j < m; j++) {
if (check(mask, j)) res += g[i][j] * pos;
else res -= g[i][j] * pos;
}
res += solve(pos + 1, set(mask, i));
min = min(min, res);
}
}
return dp[mask] = min;
}
static boolean check(int N, int pos) {
return (N & (1 << pos)) != 0;
}
static int set(int N, int pos) {
return N = N | (1 << pos);
}
static int reset(int N, int pos) {
return N = N & ~(1 << pos);
}
static void debug(Object... obj) {
System.err.println(Arrays.deepToString(obj));
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import static java.lang.Math.*;
public class E {
static int g[][];
static int n, m;
static char[] s;
static int dp[], inf = (int) 2e9;
public static void main(String[] args) throws Exception {
Scanner in = new Scanner(System.in);
PrintWriter pw = new PrintWriter(System.out);
n = in.nextInt();
m = in.nextInt();
s = in.next().toCharArray();
g = new int[m][m];
for (int i = 1; i < n; i++) {
int x = s[i - 1] - 'a', y = s[i] - 'a';
if (x != y) {
g[x][y]++;
g[y][x]++;
}
}
dp = new int[1 << m];
Arrays.fill(dp, -1);
pw.println(solve(0, 0));
pw.close();
}
static int solve(int pos, int mask) {
if (pos >= m) return 0;
if (dp[mask] != -1) return dp[mask];
int min = inf;
for (int i = 0; i < m; i++) {
if (!check(mask, i)) {
int res = 0;
for (int j = 0; j < m; j++) {
if (check(mask, j)) res += g[i][j] * pos;
else res -= g[i][j] * pos;
}
res += solve(pos + 1, set(mask, i));
min = min(min, res);
}
}
return dp[mask] = min;
}
static boolean check(int N, int pos) {
return (N & (1 << pos)) != 0;
}
static int set(int N, int pos) {
return N = N | (1 << pos);
}
static int reset(int N, int pos) {
return N = N & ~(1 << pos);
}
static void debug(Object... obj) {
System.err.println(Arrays.deepToString(obj));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import static java.lang.Math.*;
public class E {
static int g[][];
static int n, m;
static char[] s;
static int dp[], inf = (int) 2e9;
public static void main(String[] args) throws Exception {
Scanner in = new Scanner(System.in);
PrintWriter pw = new PrintWriter(System.out);
n = in.nextInt();
m = in.nextInt();
s = in.next().toCharArray();
g = new int[m][m];
for (int i = 1; i < n; i++) {
int x = s[i - 1] - 'a', y = s[i] - 'a';
if (x != y) {
g[x][y]++;
g[y][x]++;
}
}
dp = new int[1 << m];
Arrays.fill(dp, -1);
pw.println(solve(0, 0));
pw.close();
}
static int solve(int pos, int mask) {
if (pos >= m) return 0;
if (dp[mask] != -1) return dp[mask];
int min = inf;
for (int i = 0; i < m; i++) {
if (!check(mask, i)) {
int res = 0;
for (int j = 0; j < m; j++) {
if (check(mask, j)) res += g[i][j] * pos;
else res -= g[i][j] * pos;
}
res += solve(pos + 1, set(mask, i));
min = min(min, res);
}
}
return dp[mask] = min;
}
static boolean check(int N, int pos) {
return (N & (1 << pos)) != 0;
}
static int set(int N, int pos) {
return N = N | (1 << pos);
}
static int reset(int N, int pos) {
return N = N & ~(1 << pos);
}
static void debug(Object... obj) {
System.err.println(Arrays.deepToString(obj));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 815 | 4,495 |
1,338 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.util.Scanner;
import java.util.InputMismatchException;
import java.util.HashMap;
import java.io.IOException;
import java.util.ArrayList;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author ilyakor
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskB solver = new TaskB();
solver.solve(1, in, out);
out.close();
}
static class TaskB {
ArrayList<PointInt[]> al;
TaskB.Interactor interactor;
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.nextInt();
//for (int itt = 0; itt < 100; ++itt) {
interactor = new TaskB.IOInteractor(new Scanner(in.getStream()), out.getWriter());//new TestInteractor(n);
Assert.assertTrue(interactor.query(1, 1, n, n) == 2);
int lx = 1, rx = n, ly = 1, ry = n;
for (int it = 0; it < 20; ++it) {
int tx = (lx + rx) / 2;
if (interactor.query(1, 1, tx, n) >= 1)
rx = tx;
else
lx = tx;
int ty = (ly + ry) / 2;
if (interactor.query(1, 1, n, ty) >= 1)
ry = ty;
else
ly = ty;
}
al = new ArrayList<>();
if (interactor.query(1, 1, lx, n) == 1 && interactor.query(lx + 1, 1, n, n) == 1) {
dfs(1, 1, lx, n);
dfs(lx + 1, 1, n, n);
} else if (interactor.query(1, 1, rx, n) == 1 && interactor.query(rx + 1, 1, n, n) == 1) {
dfs(1, 1, rx, n);
dfs(rx + 1, 1, n, n);
} else if (interactor.query(1, 1, n, ly) == 1 && interactor.query(1, ly + 1, n, n) == 1) {
dfs(1, 1, n, ly);
dfs(1, ly + 1, n, n);
} else if (interactor.query(1, 1, n, ry) == 1 && interactor.query(1, ry + 1, n, n) == 1) {
dfs(1, 1, n, ry);
dfs(1, ry + 1, n, n);
} else {
throw new RuntimeException("WTF");
}
Assert.assertTrue(al.size() == 2);
interactor.answer(al.get(0)[0].x, al.get(0)[0].y, al.get(0)[1].x, al.get(0)[1].y, al.get(1)[0].x, al.get(1)[0].y, al.get(1)[1].x, al.get(1)[1].y);
//}
}
private void dfs(int x1, int y1, int x2, int y2) {
int t;
t = x1;
for (int i = 0; i < 20; ++i) {
int x = (t + x2) / 2;
if (interactor.query(x1, y1, x, y2) == 1)
x2 = x;
else
t = x;
}
if (interactor.query(x1, y1, t, y2) == 1)
x2 = t;
t = x2;
for (int i = 0; i < 20; ++i) {
int x = (t + x1) / 2;
if (interactor.query(x, y1, x2, y2) == 1)
x1 = x;
else
t = x;
}
if (interactor.query(t, y1, x2, y2) == 1)
x1 = t;
t = y1;
for (int i = 0; i < 20; ++i) {
int y = (t + y2) / 2;
if (interactor.query(x1, y1, x2, y) == 1)
y2 = y;
else
t = y;
}
if (interactor.query(x1, y1, x2, t) == 1)
y2 = t;
t = y2;
for (int i = 0; i < 20; ++i) {
int y = (t + y1) / 2;
if (interactor.query(x1, y, x2, y2) == 1)
y1 = y;
else
t = y;
}
if (interactor.query(x1, t, x2, y2) == 1)
y1 = t;
al.add(new PointInt[]{new PointInt(x1, y1), new PointInt(x2, y2)});
}
interface Interactor {
int query(int x1, int y1, int x2, int y2);
void answer(int x11, int y11, int x12, int y12,
int x21, int y21, int x22, int y22);
}
static class Query {
int x1;
int y1;
int x2;
int y2;
public Query(int x1, int y1, int x2, int y2) {
this.x1 = x1;
this.y1 = y1;
this.x2 = x2;
this.y2 = y2;
}
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
TaskB.Query query = (TaskB.Query) o;
if (x1 != query.x1) return false;
if (y1 != query.y1) return false;
if (x2 != query.x2) return false;
return y2 == query.y2;
}
public int hashCode() {
int result = x1;
result = 31 * result + y1;
result = 31 * result + x2;
result = 31 * result + y2;
return result;
}
}
static class IOInteractor implements TaskB.Interactor {
Scanner in;
PrintWriter out;
HashMap<TaskB.Query, Integer> cache;
public IOInteractor(Scanner in, PrintWriter out) {
this.in = in;
this.out = out;
cache = new HashMap<>();
}
public int query(int x1, int y1, int x2, int y2) {
TaskB.Query q = new TaskB.Query(x1, y1, x2, y2);
if (cache.containsKey(q))
return cache.get(q);
if (x1 > x2 || y1 > y2)
return 0;
Assert.assertTrue(x1 >= 1 && y1 >= 1);
out.println("? " + x1 + " " + y1 + " " + x2 + " " + y2);
out.flush();
int res = in.nextInt();
cache.put(q, res);
return res;
}
public void answer(int x11, int y11, int x12, int y12, int x21, int y21, int x22, int y22) {
out.println("! " + x11 + " " + y11 + " " + x12 + " " + y12 + " " + x21 + " " + y21 + " " + x22 + " " + y22);
out.flush();
}
}
}
static class InputReader {
private InputStream stream;
private byte[] buffer = new byte[10000];
private int cur;
private int count;
public InputReader(InputStream stream) {
this.stream = stream;
}
public static boolean isSpace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public int read() {
if (count == -1) {
throw new InputMismatchException();
}
try {
if (cur >= count) {
cur = 0;
count = stream.read(buffer);
if (count <= 0)
return -1;
}
} catch (IOException e) {
throw new InputMismatchException();
}
return buffer[cur++];
}
public int readSkipSpace() {
int c;
do {
c = read();
} while (isSpace(c));
return c;
}
public int nextInt() {
int sgn = 1;
int c = readSkipSpace();
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res = res * 10 + c - '0';
c = read();
} while (!isSpace(c));
res *= sgn;
return res;
}
public InputStream getStream() {
return stream;
}
}
static class PointInt {
public int x;
public int y;
public PointInt(int x, int y) {
this.x = x;
this.y = y;
}
public PointInt() {
x = 0;
y = 0;
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public PrintWriter getWriter() {
return writer;
}
public void close() {
writer.close();
}
}
static class Assert {
public static void assertTrue(boolean flag) {
// if (!flag)
// while (true);
if (!flag)
throw new AssertionError();
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.util.Scanner;
import java.util.InputMismatchException;
import java.util.HashMap;
import java.io.IOException;
import java.util.ArrayList;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author ilyakor
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskB solver = new TaskB();
solver.solve(1, in, out);
out.close();
}
static class TaskB {
ArrayList<PointInt[]> al;
TaskB.Interactor interactor;
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.nextInt();
//for (int itt = 0; itt < 100; ++itt) {
interactor = new TaskB.IOInteractor(new Scanner(in.getStream()), out.getWriter());//new TestInteractor(n);
Assert.assertTrue(interactor.query(1, 1, n, n) == 2);
int lx = 1, rx = n, ly = 1, ry = n;
for (int it = 0; it < 20; ++it) {
int tx = (lx + rx) / 2;
if (interactor.query(1, 1, tx, n) >= 1)
rx = tx;
else
lx = tx;
int ty = (ly + ry) / 2;
if (interactor.query(1, 1, n, ty) >= 1)
ry = ty;
else
ly = ty;
}
al = new ArrayList<>();
if (interactor.query(1, 1, lx, n) == 1 && interactor.query(lx + 1, 1, n, n) == 1) {
dfs(1, 1, lx, n);
dfs(lx + 1, 1, n, n);
} else if (interactor.query(1, 1, rx, n) == 1 && interactor.query(rx + 1, 1, n, n) == 1) {
dfs(1, 1, rx, n);
dfs(rx + 1, 1, n, n);
} else if (interactor.query(1, 1, n, ly) == 1 && interactor.query(1, ly + 1, n, n) == 1) {
dfs(1, 1, n, ly);
dfs(1, ly + 1, n, n);
} else if (interactor.query(1, 1, n, ry) == 1 && interactor.query(1, ry + 1, n, n) == 1) {
dfs(1, 1, n, ry);
dfs(1, ry + 1, n, n);
} else {
throw new RuntimeException("WTF");
}
Assert.assertTrue(al.size() == 2);
interactor.answer(al.get(0)[0].x, al.get(0)[0].y, al.get(0)[1].x, al.get(0)[1].y, al.get(1)[0].x, al.get(1)[0].y, al.get(1)[1].x, al.get(1)[1].y);
//}
}
private void dfs(int x1, int y1, int x2, int y2) {
int t;
t = x1;
for (int i = 0; i < 20; ++i) {
int x = (t + x2) / 2;
if (interactor.query(x1, y1, x, y2) == 1)
x2 = x;
else
t = x;
}
if (interactor.query(x1, y1, t, y2) == 1)
x2 = t;
t = x2;
for (int i = 0; i < 20; ++i) {
int x = (t + x1) / 2;
if (interactor.query(x, y1, x2, y2) == 1)
x1 = x;
else
t = x;
}
if (interactor.query(t, y1, x2, y2) == 1)
x1 = t;
t = y1;
for (int i = 0; i < 20; ++i) {
int y = (t + y2) / 2;
if (interactor.query(x1, y1, x2, y) == 1)
y2 = y;
else
t = y;
}
if (interactor.query(x1, y1, x2, t) == 1)
y2 = t;
t = y2;
for (int i = 0; i < 20; ++i) {
int y = (t + y1) / 2;
if (interactor.query(x1, y, x2, y2) == 1)
y1 = y;
else
t = y;
}
if (interactor.query(x1, t, x2, y2) == 1)
y1 = t;
al.add(new PointInt[]{new PointInt(x1, y1), new PointInt(x2, y2)});
}
interface Interactor {
int query(int x1, int y1, int x2, int y2);
void answer(int x11, int y11, int x12, int y12,
int x21, int y21, int x22, int y22);
}
static class Query {
int x1;
int y1;
int x2;
int y2;
public Query(int x1, int y1, int x2, int y2) {
this.x1 = x1;
this.y1 = y1;
this.x2 = x2;
this.y2 = y2;
}
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
TaskB.Query query = (TaskB.Query) o;
if (x1 != query.x1) return false;
if (y1 != query.y1) return false;
if (x2 != query.x2) return false;
return y2 == query.y2;
}
public int hashCode() {
int result = x1;
result = 31 * result + y1;
result = 31 * result + x2;
result = 31 * result + y2;
return result;
}
}
static class IOInteractor implements TaskB.Interactor {
Scanner in;
PrintWriter out;
HashMap<TaskB.Query, Integer> cache;
public IOInteractor(Scanner in, PrintWriter out) {
this.in = in;
this.out = out;
cache = new HashMap<>();
}
public int query(int x1, int y1, int x2, int y2) {
TaskB.Query q = new TaskB.Query(x1, y1, x2, y2);
if (cache.containsKey(q))
return cache.get(q);
if (x1 > x2 || y1 > y2)
return 0;
Assert.assertTrue(x1 >= 1 && y1 >= 1);
out.println("? " + x1 + " " + y1 + " " + x2 + " " + y2);
out.flush();
int res = in.nextInt();
cache.put(q, res);
return res;
}
public void answer(int x11, int y11, int x12, int y12, int x21, int y21, int x22, int y22) {
out.println("! " + x11 + " " + y11 + " " + x12 + " " + y12 + " " + x21 + " " + y21 + " " + x22 + " " + y22);
out.flush();
}
}
}
static class InputReader {
private InputStream stream;
private byte[] buffer = new byte[10000];
private int cur;
private int count;
public InputReader(InputStream stream) {
this.stream = stream;
}
public static boolean isSpace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public int read() {
if (count == -1) {
throw new InputMismatchException();
}
try {
if (cur >= count) {
cur = 0;
count = stream.read(buffer);
if (count <= 0)
return -1;
}
} catch (IOException e) {
throw new InputMismatchException();
}
return buffer[cur++];
}
public int readSkipSpace() {
int c;
do {
c = read();
} while (isSpace(c));
return c;
}
public int nextInt() {
int sgn = 1;
int c = readSkipSpace();
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res = res * 10 + c - '0';
c = read();
} while (!isSpace(c));
res *= sgn;
return res;
}
public InputStream getStream() {
return stream;
}
}
static class PointInt {
public int x;
public int y;
public PointInt(int x, int y) {
this.x = x;
this.y = y;
}
public PointInt() {
x = 0;
y = 0;
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public PrintWriter getWriter() {
return writer;
}
public void close() {
writer.close();
}
}
static class Assert {
public static void assertTrue(boolean flag) {
// if (!flag)
// while (true);
if (!flag)
throw new AssertionError();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.util.Scanner;
import java.util.InputMismatchException;
import java.util.HashMap;
import java.io.IOException;
import java.util.ArrayList;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author ilyakor
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskB solver = new TaskB();
solver.solve(1, in, out);
out.close();
}
static class TaskB {
ArrayList<PointInt[]> al;
TaskB.Interactor interactor;
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.nextInt();
//for (int itt = 0; itt < 100; ++itt) {
interactor = new TaskB.IOInteractor(new Scanner(in.getStream()), out.getWriter());//new TestInteractor(n);
Assert.assertTrue(interactor.query(1, 1, n, n) == 2);
int lx = 1, rx = n, ly = 1, ry = n;
for (int it = 0; it < 20; ++it) {
int tx = (lx + rx) / 2;
if (interactor.query(1, 1, tx, n) >= 1)
rx = tx;
else
lx = tx;
int ty = (ly + ry) / 2;
if (interactor.query(1, 1, n, ty) >= 1)
ry = ty;
else
ly = ty;
}
al = new ArrayList<>();
if (interactor.query(1, 1, lx, n) == 1 && interactor.query(lx + 1, 1, n, n) == 1) {
dfs(1, 1, lx, n);
dfs(lx + 1, 1, n, n);
} else if (interactor.query(1, 1, rx, n) == 1 && interactor.query(rx + 1, 1, n, n) == 1) {
dfs(1, 1, rx, n);
dfs(rx + 1, 1, n, n);
} else if (interactor.query(1, 1, n, ly) == 1 && interactor.query(1, ly + 1, n, n) == 1) {
dfs(1, 1, n, ly);
dfs(1, ly + 1, n, n);
} else if (interactor.query(1, 1, n, ry) == 1 && interactor.query(1, ry + 1, n, n) == 1) {
dfs(1, 1, n, ry);
dfs(1, ry + 1, n, n);
} else {
throw new RuntimeException("WTF");
}
Assert.assertTrue(al.size() == 2);
interactor.answer(al.get(0)[0].x, al.get(0)[0].y, al.get(0)[1].x, al.get(0)[1].y, al.get(1)[0].x, al.get(1)[0].y, al.get(1)[1].x, al.get(1)[1].y);
//}
}
private void dfs(int x1, int y1, int x2, int y2) {
int t;
t = x1;
for (int i = 0; i < 20; ++i) {
int x = (t + x2) / 2;
if (interactor.query(x1, y1, x, y2) == 1)
x2 = x;
else
t = x;
}
if (interactor.query(x1, y1, t, y2) == 1)
x2 = t;
t = x2;
for (int i = 0; i < 20; ++i) {
int x = (t + x1) / 2;
if (interactor.query(x, y1, x2, y2) == 1)
x1 = x;
else
t = x;
}
if (interactor.query(t, y1, x2, y2) == 1)
x1 = t;
t = y1;
for (int i = 0; i < 20; ++i) {
int y = (t + y2) / 2;
if (interactor.query(x1, y1, x2, y) == 1)
y2 = y;
else
t = y;
}
if (interactor.query(x1, y1, x2, t) == 1)
y2 = t;
t = y2;
for (int i = 0; i < 20; ++i) {
int y = (t + y1) / 2;
if (interactor.query(x1, y, x2, y2) == 1)
y1 = y;
else
t = y;
}
if (interactor.query(x1, t, x2, y2) == 1)
y1 = t;
al.add(new PointInt[]{new PointInt(x1, y1), new PointInt(x2, y2)});
}
interface Interactor {
int query(int x1, int y1, int x2, int y2);
void answer(int x11, int y11, int x12, int y12,
int x21, int y21, int x22, int y22);
}
static class Query {
int x1;
int y1;
int x2;
int y2;
public Query(int x1, int y1, int x2, int y2) {
this.x1 = x1;
this.y1 = y1;
this.x2 = x2;
this.y2 = y2;
}
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
TaskB.Query query = (TaskB.Query) o;
if (x1 != query.x1) return false;
if (y1 != query.y1) return false;
if (x2 != query.x2) return false;
return y2 == query.y2;
}
public int hashCode() {
int result = x1;
result = 31 * result + y1;
result = 31 * result + x2;
result = 31 * result + y2;
return result;
}
}
static class IOInteractor implements TaskB.Interactor {
Scanner in;
PrintWriter out;
HashMap<TaskB.Query, Integer> cache;
public IOInteractor(Scanner in, PrintWriter out) {
this.in = in;
this.out = out;
cache = new HashMap<>();
}
public int query(int x1, int y1, int x2, int y2) {
TaskB.Query q = new TaskB.Query(x1, y1, x2, y2);
if (cache.containsKey(q))
return cache.get(q);
if (x1 > x2 || y1 > y2)
return 0;
Assert.assertTrue(x1 >= 1 && y1 >= 1);
out.println("? " + x1 + " " + y1 + " " + x2 + " " + y2);
out.flush();
int res = in.nextInt();
cache.put(q, res);
return res;
}
public void answer(int x11, int y11, int x12, int y12, int x21, int y21, int x22, int y22) {
out.println("! " + x11 + " " + y11 + " " + x12 + " " + y12 + " " + x21 + " " + y21 + " " + x22 + " " + y22);
out.flush();
}
}
}
static class InputReader {
private InputStream stream;
private byte[] buffer = new byte[10000];
private int cur;
private int count;
public InputReader(InputStream stream) {
this.stream = stream;
}
public static boolean isSpace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public int read() {
if (count == -1) {
throw new InputMismatchException();
}
try {
if (cur >= count) {
cur = 0;
count = stream.read(buffer);
if (count <= 0)
return -1;
}
} catch (IOException e) {
throw new InputMismatchException();
}
return buffer[cur++];
}
public int readSkipSpace() {
int c;
do {
c = read();
} while (isSpace(c));
return c;
}
public int nextInt() {
int sgn = 1;
int c = readSkipSpace();
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res = res * 10 + c - '0';
c = read();
} while (!isSpace(c));
res *= sgn;
return res;
}
public InputStream getStream() {
return stream;
}
}
static class PointInt {
public int x;
public int y;
public PointInt(int x, int y) {
this.x = x;
this.y = y;
}
public PointInt() {
x = 0;
y = 0;
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public PrintWriter getWriter() {
return writer;
}
public void close() {
writer.close();
}
}
static class Assert {
public static void assertTrue(boolean flag) {
// if (!flag)
// while (true);
if (!flag)
throw new AssertionError();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,773 | 1,336 |
855 |
import java.util.*;
import java.io.*;
import java.math.BigInteger;
public class Main
{
static final long mod=(int)1e9+7;
public static void main(String[] args) throws Exception
{
FastReader in=new FastReader();
PrintWriter pw=new PrintWriter(System.out);
int n=in.nextInt();
long ans=0;
for(int i=2;2*i<=n;i++)
{
ans+=i*(n/i-1);
}
ans*=4;
pw.print(ans);
pw.flush();
}
}
class pair
{
int f,s;
}
class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br=new BufferedReader(new InputStreamReader(System.in));
}
public String next() throws IOException
{
if(st==null || !st.hasMoreElements())
{
st=new StringTokenizer(br.readLine());
}
return st.nextToken();
}
public int nextInt() throws IOException
{
return Integer.parseInt(next());
}
public long nextLong() throws IOException
{
return Long.parseLong(next());
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.math.BigInteger;
public class Main
{
static final long mod=(int)1e9+7;
public static void main(String[] args) throws Exception
{
FastReader in=new FastReader();
PrintWriter pw=new PrintWriter(System.out);
int n=in.nextInt();
long ans=0;
for(int i=2;2*i<=n;i++)
{
ans+=i*(n/i-1);
}
ans*=4;
pw.print(ans);
pw.flush();
}
}
class pair
{
int f,s;
}
class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br=new BufferedReader(new InputStreamReader(System.in));
}
public String next() throws IOException
{
if(st==null || !st.hasMoreElements())
{
st=new StringTokenizer(br.readLine());
}
return st.nextToken();
}
public int nextInt() throws IOException
{
return Integer.parseInt(next());
}
public long nextLong() throws IOException
{
return Long.parseLong(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.math.BigInteger;
public class Main
{
static final long mod=(int)1e9+7;
public static void main(String[] args) throws Exception
{
FastReader in=new FastReader();
PrintWriter pw=new PrintWriter(System.out);
int n=in.nextInt();
long ans=0;
for(int i=2;2*i<=n;i++)
{
ans+=i*(n/i-1);
}
ans*=4;
pw.print(ans);
pw.flush();
}
}
class pair
{
int f,s;
}
class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br=new BufferedReader(new InputStreamReader(System.in));
}
public String next() throws IOException
{
if(st==null || !st.hasMoreElements())
{
st=new StringTokenizer(br.readLine());
}
return st.nextToken();
}
public int nextInt() throws IOException
{
return Integer.parseInt(next());
}
public long nextLong() throws IOException
{
return Long.parseLong(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 576 | 854 |
0 |
import java.io.*;
import java.math.BigInteger;
import java.util.InputMismatchException;
import java.util.PriorityQueue;
import java.util.StringTokenizer;
public class D {
static class FastWriter {
private final BufferedWriter bw;
public FastWriter() {
this.bw = new BufferedWriter(new OutputStreamWriter(System.out));
}
public void print(Object object) throws IOException {
bw.append("" + object);
}
public void println(Object object) throws IOException {
print(object);
bw.append("\n");
}
public void close() throws IOException {
bw.close();
}
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
BigInteger nextBigInteger() {
try {
return new BigInteger(nextLine());
} catch (NumberFormatException e) {
throw new InputMismatchException();
}
}
}
public static void main(String[] args) throws IOException {
FastReader fr = new FastReader();
FastWriter fw = new FastWriter();
int n = fr.nextInt();
int m = fr.nextInt();
for (int r = 0; r < n / 2; r++) {
for (int c = 0; c < m; c++) {
fw.println((r + 1) + " " + (c + 1));
fw.println((n - r) + " " + (m - c));
}
}
if (n % 2 != 0) {
int r = n / 2;
for (int c = 0; c < m / 2; c++) {
fw.println((r + 1) + " " + (c + 1));
fw.println((r + 1) + " " + (m - c));
}
if (m % 2 != 0) fw.println((r + 1) + " " + (m / 2 + 1));
}
fw.close();
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.math.BigInteger;
import java.util.InputMismatchException;
import java.util.PriorityQueue;
import java.util.StringTokenizer;
public class D {
static class FastWriter {
private final BufferedWriter bw;
public FastWriter() {
this.bw = new BufferedWriter(new OutputStreamWriter(System.out));
}
public void print(Object object) throws IOException {
bw.append("" + object);
}
public void println(Object object) throws IOException {
print(object);
bw.append("\n");
}
public void close() throws IOException {
bw.close();
}
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
BigInteger nextBigInteger() {
try {
return new BigInteger(nextLine());
} catch (NumberFormatException e) {
throw new InputMismatchException();
}
}
}
public static void main(String[] args) throws IOException {
FastReader fr = new FastReader();
FastWriter fw = new FastWriter();
int n = fr.nextInt();
int m = fr.nextInt();
for (int r = 0; r < n / 2; r++) {
for (int c = 0; c < m; c++) {
fw.println((r + 1) + " " + (c + 1));
fw.println((n - r) + " " + (m - c));
}
}
if (n % 2 != 0) {
int r = n / 2;
for (int c = 0; c < m / 2; c++) {
fw.println((r + 1) + " " + (c + 1));
fw.println((r + 1) + " " + (m - c));
}
if (m % 2 != 0) fw.println((r + 1) + " " + (m / 2 + 1));
}
fw.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.math.BigInteger;
import java.util.InputMismatchException;
import java.util.PriorityQueue;
import java.util.StringTokenizer;
public class D {
static class FastWriter {
private final BufferedWriter bw;
public FastWriter() {
this.bw = new BufferedWriter(new OutputStreamWriter(System.out));
}
public void print(Object object) throws IOException {
bw.append("" + object);
}
public void println(Object object) throws IOException {
print(object);
bw.append("\n");
}
public void close() throws IOException {
bw.close();
}
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
BigInteger nextBigInteger() {
try {
return new BigInteger(nextLine());
} catch (NumberFormatException e) {
throw new InputMismatchException();
}
}
}
public static void main(String[] args) throws IOException {
FastReader fr = new FastReader();
FastWriter fw = new FastWriter();
int n = fr.nextInt();
int m = fr.nextInt();
for (int r = 0; r < n / 2; r++) {
for (int c = 0; c < m; c++) {
fw.println((r + 1) + " " + (c + 1));
fw.println((n - r) + " " + (m - c));
}
}
if (n % 2 != 0) {
int r = n / 2;
for (int c = 0; c < m / 2; c++) {
fw.println((r + 1) + " " + (c + 1));
fw.println((r + 1) + " " + (m - c));
}
if (m % 2 != 0) fw.println((r + 1) + " " + (m / 2 + 1));
}
fw.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 893 | 0 |
2,157 |
import java.util.*;
import java.lang.*;
import java.io.*;
import java.math.*;
/* Name of the class has to be "Main" only if the class is public. */
public class Codechef
{
static BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
static ArrayList<ArrayList<Integer>> list;
static HashSet<Integer> hs;
static ArrayList<Integer> tmp;
//int n=Integer.parseInt(br.readLine());
//int n=Integer.parseInt(st.nextToken());
//StringTokenizer st = new StringTokenizer(br.readLine());
public static double cal(int a,double b,int x,int r)
{
r*=2;
double dis=(r*r) - Math.pow(Math.abs(a-x),2);
dis=Math.sqrt(dis);
dis+=b;
return dis;
}
public static void main (String[] args) throws java.lang.Exception
{
int n,r;
StringTokenizer st = new StringTokenizer(br.readLine());
n=Integer.parseInt(st.nextToken());
r=Integer.parseInt(st.nextToken());
int arr[] = new int[n+1];
double cen[] = new double[n+1];
int i,j;
for(i=1;i<=n;i++)
cen[i]=-1.0;
st = new StringTokenizer(br.readLine());
for(i=1;i<=n;i++)arr[i]=Integer.parseInt(st.nextToken());
for(i=1;i<=n;i++)
{
int f=0;
double max=-1.0;
for(j=1;j<=n;j++)
{
if(i!=j && cen[j]!=-1.0 && (Math.abs(arr[i]-arr[j])<=2*r))
{
max=Math.max(max,cal(arr[j],cen[j],arr[i],r));
f=1;
}
}
// System.out.println(i+" "+max);
if(f==1)
cen[i]=max;
else
cen[i]=r*1.0;
}
for(i=1;i<=n;i++)
System.out.print(cen[i]+" ");
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.lang.*;
import java.io.*;
import java.math.*;
/* Name of the class has to be "Main" only if the class is public. */
public class Codechef
{
static BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
static ArrayList<ArrayList<Integer>> list;
static HashSet<Integer> hs;
static ArrayList<Integer> tmp;
//int n=Integer.parseInt(br.readLine());
//int n=Integer.parseInt(st.nextToken());
//StringTokenizer st = new StringTokenizer(br.readLine());
public static double cal(int a,double b,int x,int r)
{
r*=2;
double dis=(r*r) - Math.pow(Math.abs(a-x),2);
dis=Math.sqrt(dis);
dis+=b;
return dis;
}
public static void main (String[] args) throws java.lang.Exception
{
int n,r;
StringTokenizer st = new StringTokenizer(br.readLine());
n=Integer.parseInt(st.nextToken());
r=Integer.parseInt(st.nextToken());
int arr[] = new int[n+1];
double cen[] = new double[n+1];
int i,j;
for(i=1;i<=n;i++)
cen[i]=-1.0;
st = new StringTokenizer(br.readLine());
for(i=1;i<=n;i++)arr[i]=Integer.parseInt(st.nextToken());
for(i=1;i<=n;i++)
{
int f=0;
double max=-1.0;
for(j=1;j<=n;j++)
{
if(i!=j && cen[j]!=-1.0 && (Math.abs(arr[i]-arr[j])<=2*r))
{
max=Math.max(max,cal(arr[j],cen[j],arr[i],r));
f=1;
}
}
// System.out.println(i+" "+max);
if(f==1)
cen[i]=max;
else
cen[i]=r*1.0;
}
for(i=1;i<=n;i++)
System.out.print(cen[i]+" ");
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.lang.*;
import java.io.*;
import java.math.*;
/* Name of the class has to be "Main" only if the class is public. */
public class Codechef
{
static BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
static ArrayList<ArrayList<Integer>> list;
static HashSet<Integer> hs;
static ArrayList<Integer> tmp;
//int n=Integer.parseInt(br.readLine());
//int n=Integer.parseInt(st.nextToken());
//StringTokenizer st = new StringTokenizer(br.readLine());
public static double cal(int a,double b,int x,int r)
{
r*=2;
double dis=(r*r) - Math.pow(Math.abs(a-x),2);
dis=Math.sqrt(dis);
dis+=b;
return dis;
}
public static void main (String[] args) throws java.lang.Exception
{
int n,r;
StringTokenizer st = new StringTokenizer(br.readLine());
n=Integer.parseInt(st.nextToken());
r=Integer.parseInt(st.nextToken());
int arr[] = new int[n+1];
double cen[] = new double[n+1];
int i,j;
for(i=1;i<=n;i++)
cen[i]=-1.0;
st = new StringTokenizer(br.readLine());
for(i=1;i<=n;i++)arr[i]=Integer.parseInt(st.nextToken());
for(i=1;i<=n;i++)
{
int f=0;
double max=-1.0;
for(j=1;j<=n;j++)
{
if(i!=j && cen[j]!=-1.0 && (Math.abs(arr[i]-arr[j])<=2*r))
{
max=Math.max(max,cal(arr[j],cen[j],arr[i],r));
f=1;
}
}
// System.out.println(i+" "+max);
if(f==1)
cen[i]=max;
else
cen[i]=r*1.0;
}
for(i=1;i<=n;i++)
System.out.print(cen[i]+" ");
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 765 | 2,153 |
2,706 |
//q4
import java.io.*;
import java.util.*;
import java.math.*;
public class q4 {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int query = in.nextInt();
while (query -- > 0) {
int n = in.nextInt();
int k = in.nextInt();
char[] arr = new char[n];
//slot all n into char array
String code = in.next();
for (int i = 0; i < n; i++) {
arr[i] = code.charAt(i);
}
//R, G, B cycle
int r = 0;
int g = 0;
int b = 0;
for (int i = 0; i < k; i++) {
if (i % 3 == 0) {
if (arr[i] == 'R') {g++; b++;}
else if (arr[i] == 'G') {r++; b++;}
else {r++; g++;} //if is 'B'
} else if (i % 3 == 1) {
if (arr[i] == 'G') {g++; b++;}
else if (arr[i] == 'B') {r++; b++;}
else {r++; g++;} //if is 'R'
} else { //if mod 3 is 2
if (arr[i] == 'B') {g++; b++;}
else if (arr[i] == 'R') {r++; b++;}
else {r++; g++;} //if is 'G'
}
}
//starting from kth position, if different then add 1, and check (j-k)th position
int rMin = r;
int gMin = g;
int bMin = b;
for (int j = k; j < n; j++) {
//R cycle
if ((j % 3 == 0 && arr[j] != 'R') ||
(j % 3 == 1 && arr[j] != 'G') ||
(j % 3 == 2 && arr[j] != 'B')) {
r++;
}
//R cycle
if (((j - k) % 3 == 0 && arr[j - k] != 'R') ||
((j - k) % 3 == 1 && arr[j - k] != 'G') ||
((j - k) % 3 == 2 && arr[j - k] != 'B')) {
r--;
}
rMin = Math.min(r, rMin);
//G cycle
if ((j % 3 == 0 && arr[j] != 'G') ||
(j % 3 == 1 && arr[j] != 'B') ||
(j % 3 == 2 && arr[j] != 'R')) {
g++;
}
if (((j - k) % 3 == 0 && arr[j - k] != 'G') ||
((j - k) % 3 == 1 && arr[j - k] != 'B') ||
((j - k) % 3 == 2 && arr[j - k] != 'R')) {
g--;
}
gMin = Math.min(gMin, g);
//B cycle
if ((j % 3 == 0 && arr[j] != 'B') ||
(j % 3 == 1 && arr[j] != 'R') ||
(j % 3 == 2 && arr[j] != 'G')) {
b++;
}
if (((j - k) % 3 == 0 && arr[j - k] != 'B') ||
((j - k) % 3 == 1 && arr[j - k] != 'R') ||
((j - k) % 3 == 2 && arr[j - k] != 'G')) {
b--;
}
bMin = Math.min(bMin, b);
}
System.out.println(Math.min(Math.min(rMin, gMin), bMin));
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
//q4
import java.io.*;
import java.util.*;
import java.math.*;
public class q4 {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int query = in.nextInt();
while (query -- > 0) {
int n = in.nextInt();
int k = in.nextInt();
char[] arr = new char[n];
//slot all n into char array
String code = in.next();
for (int i = 0; i < n; i++) {
arr[i] = code.charAt(i);
}
//R, G, B cycle
int r = 0;
int g = 0;
int b = 0;
for (int i = 0; i < k; i++) {
if (i % 3 == 0) {
if (arr[i] == 'R') {g++; b++;}
else if (arr[i] == 'G') {r++; b++;}
else {r++; g++;} //if is 'B'
} else if (i % 3 == 1) {
if (arr[i] == 'G') {g++; b++;}
else if (arr[i] == 'B') {r++; b++;}
else {r++; g++;} //if is 'R'
} else { //if mod 3 is 2
if (arr[i] == 'B') {g++; b++;}
else if (arr[i] == 'R') {r++; b++;}
else {r++; g++;} //if is 'G'
}
}
//starting from kth position, if different then add 1, and check (j-k)th position
int rMin = r;
int gMin = g;
int bMin = b;
for (int j = k; j < n; j++) {
//R cycle
if ((j % 3 == 0 && arr[j] != 'R') ||
(j % 3 == 1 && arr[j] != 'G') ||
(j % 3 == 2 && arr[j] != 'B')) {
r++;
}
//R cycle
if (((j - k) % 3 == 0 && arr[j - k] != 'R') ||
((j - k) % 3 == 1 && arr[j - k] != 'G') ||
((j - k) % 3 == 2 && arr[j - k] != 'B')) {
r--;
}
rMin = Math.min(r, rMin);
//G cycle
if ((j % 3 == 0 && arr[j] != 'G') ||
(j % 3 == 1 && arr[j] != 'B') ||
(j % 3 == 2 && arr[j] != 'R')) {
g++;
}
if (((j - k) % 3 == 0 && arr[j - k] != 'G') ||
((j - k) % 3 == 1 && arr[j - k] != 'B') ||
((j - k) % 3 == 2 && arr[j - k] != 'R')) {
g--;
}
gMin = Math.min(gMin, g);
//B cycle
if ((j % 3 == 0 && arr[j] != 'B') ||
(j % 3 == 1 && arr[j] != 'R') ||
(j % 3 == 2 && arr[j] != 'G')) {
b++;
}
if (((j - k) % 3 == 0 && arr[j - k] != 'B') ||
((j - k) % 3 == 1 && arr[j - k] != 'R') ||
((j - k) % 3 == 2 && arr[j - k] != 'G')) {
b--;
}
bMin = Math.min(bMin, b);
}
System.out.println(Math.min(Math.min(rMin, gMin), bMin));
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
//q4
import java.io.*;
import java.util.*;
import java.math.*;
public class q4 {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int query = in.nextInt();
while (query -- > 0) {
int n = in.nextInt();
int k = in.nextInt();
char[] arr = new char[n];
//slot all n into char array
String code = in.next();
for (int i = 0; i < n; i++) {
arr[i] = code.charAt(i);
}
//R, G, B cycle
int r = 0;
int g = 0;
int b = 0;
for (int i = 0; i < k; i++) {
if (i % 3 == 0) {
if (arr[i] == 'R') {g++; b++;}
else if (arr[i] == 'G') {r++; b++;}
else {r++; g++;} //if is 'B'
} else if (i % 3 == 1) {
if (arr[i] == 'G') {g++; b++;}
else if (arr[i] == 'B') {r++; b++;}
else {r++; g++;} //if is 'R'
} else { //if mod 3 is 2
if (arr[i] == 'B') {g++; b++;}
else if (arr[i] == 'R') {r++; b++;}
else {r++; g++;} //if is 'G'
}
}
//starting from kth position, if different then add 1, and check (j-k)th position
int rMin = r;
int gMin = g;
int bMin = b;
for (int j = k; j < n; j++) {
//R cycle
if ((j % 3 == 0 && arr[j] != 'R') ||
(j % 3 == 1 && arr[j] != 'G') ||
(j % 3 == 2 && arr[j] != 'B')) {
r++;
}
//R cycle
if (((j - k) % 3 == 0 && arr[j - k] != 'R') ||
((j - k) % 3 == 1 && arr[j - k] != 'G') ||
((j - k) % 3 == 2 && arr[j - k] != 'B')) {
r--;
}
rMin = Math.min(r, rMin);
//G cycle
if ((j % 3 == 0 && arr[j] != 'G') ||
(j % 3 == 1 && arr[j] != 'B') ||
(j % 3 == 2 && arr[j] != 'R')) {
g++;
}
if (((j - k) % 3 == 0 && arr[j - k] != 'G') ||
((j - k) % 3 == 1 && arr[j - k] != 'B') ||
((j - k) % 3 == 2 && arr[j - k] != 'R')) {
g--;
}
gMin = Math.min(gMin, g);
//B cycle
if ((j % 3 == 0 && arr[j] != 'B') ||
(j % 3 == 1 && arr[j] != 'R') ||
(j % 3 == 2 && arr[j] != 'G')) {
b++;
}
if (((j - k) % 3 == 0 && arr[j - k] != 'B') ||
((j - k) % 3 == 1 && arr[j - k] != 'R') ||
((j - k) % 3 == 2 && arr[j - k] != 'G')) {
b--;
}
bMin = Math.min(bMin, b);
}
System.out.println(Math.min(Math.min(rMin, gMin), bMin));
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,270 | 2,700 |
2,273 |
import java.util.*;
public class init {
static class p{
int i;
int c;
public p(int i,int c) {
this.i=i;this.c=c;
// TODO Auto-generated constructor stub
}
}
static int mod=1000000007;
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner s=new Scanner(System.in);
int n=s.nextInt();
int a[]=new int[n];
for(int i=0;i<n;i++) {
char c=s.next().charAt(0);
if(c=='f')
a[i]=1;
}
int dp[][]=new int[n+1][n+1];
for(int i=0;i<=n;i++) {
for(int j=0;j<=n;j++)
dp[i][j]=-1;
}
System.out.println(ans(dp,1,0,a,n));
}
public static int ans(int dp[][],int i,int j,int a[],int n) {
if(i==n) {
return 1;
}
if(dp[i][j]!=-1) {
return dp[i][j];
}
if(a[i-1]==1) {
int x=ans(dp,i+1,j+1,a,n);
if(x!=-1)
dp[i][j]=x%mod;
}
else {
int x=-1;
if(j!=0)
x=ans(dp,i,j-1,a,n);
int y=ans(dp,i+1,j,a,n);
if(x!=-1)
dp[i][j]=x%mod;
if(y!=-1) {
if(dp[i][j]==-1)
dp[i][j]=y%mod;
else
dp[i][j]+=y%mod;}
}
return dp[i][j];
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
public class init {
static class p{
int i;
int c;
public p(int i,int c) {
this.i=i;this.c=c;
// TODO Auto-generated constructor stub
}
}
static int mod=1000000007;
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner s=new Scanner(System.in);
int n=s.nextInt();
int a[]=new int[n];
for(int i=0;i<n;i++) {
char c=s.next().charAt(0);
if(c=='f')
a[i]=1;
}
int dp[][]=new int[n+1][n+1];
for(int i=0;i<=n;i++) {
for(int j=0;j<=n;j++)
dp[i][j]=-1;
}
System.out.println(ans(dp,1,0,a,n));
}
public static int ans(int dp[][],int i,int j,int a[],int n) {
if(i==n) {
return 1;
}
if(dp[i][j]!=-1) {
return dp[i][j];
}
if(a[i-1]==1) {
int x=ans(dp,i+1,j+1,a,n);
if(x!=-1)
dp[i][j]=x%mod;
}
else {
int x=-1;
if(j!=0)
x=ans(dp,i,j-1,a,n);
int y=ans(dp,i+1,j,a,n);
if(x!=-1)
dp[i][j]=x%mod;
if(y!=-1) {
if(dp[i][j]==-1)
dp[i][j]=y%mod;
else
dp[i][j]+=y%mod;}
}
return dp[i][j];
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class init {
static class p{
int i;
int c;
public p(int i,int c) {
this.i=i;this.c=c;
// TODO Auto-generated constructor stub
}
}
static int mod=1000000007;
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner s=new Scanner(System.in);
int n=s.nextInt();
int a[]=new int[n];
for(int i=0;i<n;i++) {
char c=s.next().charAt(0);
if(c=='f')
a[i]=1;
}
int dp[][]=new int[n+1][n+1];
for(int i=0;i<=n;i++) {
for(int j=0;j<=n;j++)
dp[i][j]=-1;
}
System.out.println(ans(dp,1,0,a,n));
}
public static int ans(int dp[][],int i,int j,int a[],int n) {
if(i==n) {
return 1;
}
if(dp[i][j]!=-1) {
return dp[i][j];
}
if(a[i-1]==1) {
int x=ans(dp,i+1,j+1,a,n);
if(x!=-1)
dp[i][j]=x%mod;
}
else {
int x=-1;
if(j!=0)
x=ans(dp,i,j-1,a,n);
int y=ans(dp,i+1,j,a,n);
if(x!=-1)
dp[i][j]=x%mod;
if(y!=-1) {
if(dp[i][j]==-1)
dp[i][j]=y%mod;
else
dp[i][j]+=y%mod;}
}
return dp[i][j];
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 750 | 2,268 |
555 |
//I'm Whiplash99
import java.io.*;
import java.util.*;
public class B
{
public static void main(String[] args) throws Exception
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
int i,N;
int T=Integer.parseInt(br.readLine().trim());
StringBuilder sb=new StringBuilder();
while (T-->0)
{
N=Integer.parseInt(br.readLine().trim());
boolean flag=false;
int sqrt=(int) Math.sqrt(N/2);
if(sqrt*sqrt==N/2&&N%2==0) flag = true;
sqrt=(int) Math.sqrt(N/4);
if(sqrt*sqrt==N/4&&N%4==0) flag = true;
sb.append(flag?"YES\n":"NO\n");
}
System.out.println(sb);
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
//I'm Whiplash99
import java.io.*;
import java.util.*;
public class B
{
public static void main(String[] args) throws Exception
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
int i,N;
int T=Integer.parseInt(br.readLine().trim());
StringBuilder sb=new StringBuilder();
while (T-->0)
{
N=Integer.parseInt(br.readLine().trim());
boolean flag=false;
int sqrt=(int) Math.sqrt(N/2);
if(sqrt*sqrt==N/2&&N%2==0) flag = true;
sqrt=(int) Math.sqrt(N/4);
if(sqrt*sqrt==N/4&&N%4==0) flag = true;
sb.append(flag?"YES\n":"NO\n");
}
System.out.println(sb);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
//I'm Whiplash99
import java.io.*;
import java.util.*;
public class B
{
public static void main(String[] args) throws Exception
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
int i,N;
int T=Integer.parseInt(br.readLine().trim());
StringBuilder sb=new StringBuilder();
while (T-->0)
{
N=Integer.parseInt(br.readLine().trim());
boolean flag=false;
int sqrt=(int) Math.sqrt(N/2);
if(sqrt*sqrt==N/2&&N%2==0) flag = true;
sqrt=(int) Math.sqrt(N/4);
if(sqrt*sqrt==N/4&&N%4==0) flag = true;
sb.append(flag?"YES\n":"NO\n");
}
System.out.println(sb);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 504 | 554 |
3,641 |
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.util.LinkedList;
import java.util.Scanner;
public class C {
static class Struct {
int x, y, count;
public Struct(int xx, int yy, int c) {
x = xx;
y = yy;
count = c;
}
}
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(new FileReader("input.txt"));
int n = sc.nextInt();
int m = sc.nextInt();
FileWriter fw=new FileWriter("output.txt");
boolean[][] grid = new boolean[n][m];
int[] dx = new int[] { 1, 0, -1, 0 };
int[] dy = new int[] { 0, -1, 0, 1 };
int k = sc.nextInt();
LinkedList<Struct> a = new LinkedList<Struct>();
for (int i = 0; i < k; i++) {
a.add(new Struct(sc.nextInt() - 1, sc.nextInt() - 1, 0));
}
int max = Integer.MIN_VALUE, maxX = -1, maxY = -1;
while (!a.isEmpty()) {
Struct tmp = a.remove();
if (grid[tmp.x][tmp.y] == true)
continue;
grid[tmp.x][tmp.y] = true;
if (tmp.count > max) {
max = tmp.count;
maxX = tmp.x;
maxY = tmp.y;
}
for (int i = 0; i < 4; i++) {
int nx = tmp.x + dx[i];
int ny = tmp.y + dy[i];
if (nx < n && nx >= 0 && ny < m && ny >= 0) {
if (grid[nx][ny] == false) {
a.add(new Struct(nx, ny, tmp.count + 1));
}
}
}
}
fw.write((maxX + 1) + " " + (maxY + 1)+"\n");
System.out.println((maxX + 1) + " " + (maxY + 1));
fw.flush();
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.util.LinkedList;
import java.util.Scanner;
public class C {
static class Struct {
int x, y, count;
public Struct(int xx, int yy, int c) {
x = xx;
y = yy;
count = c;
}
}
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(new FileReader("input.txt"));
int n = sc.nextInt();
int m = sc.nextInt();
FileWriter fw=new FileWriter("output.txt");
boolean[][] grid = new boolean[n][m];
int[] dx = new int[] { 1, 0, -1, 0 };
int[] dy = new int[] { 0, -1, 0, 1 };
int k = sc.nextInt();
LinkedList<Struct> a = new LinkedList<Struct>();
for (int i = 0; i < k; i++) {
a.add(new Struct(sc.nextInt() - 1, sc.nextInt() - 1, 0));
}
int max = Integer.MIN_VALUE, maxX = -1, maxY = -1;
while (!a.isEmpty()) {
Struct tmp = a.remove();
if (grid[tmp.x][tmp.y] == true)
continue;
grid[tmp.x][tmp.y] = true;
if (tmp.count > max) {
max = tmp.count;
maxX = tmp.x;
maxY = tmp.y;
}
for (int i = 0; i < 4; i++) {
int nx = tmp.x + dx[i];
int ny = tmp.y + dy[i];
if (nx < n && nx >= 0 && ny < m && ny >= 0) {
if (grid[nx][ny] == false) {
a.add(new Struct(nx, ny, tmp.count + 1));
}
}
}
}
fw.write((maxX + 1) + " " + (maxY + 1)+"\n");
System.out.println((maxX + 1) + " " + (maxY + 1));
fw.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.util.LinkedList;
import java.util.Scanner;
public class C {
static class Struct {
int x, y, count;
public Struct(int xx, int yy, int c) {
x = xx;
y = yy;
count = c;
}
}
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(new FileReader("input.txt"));
int n = sc.nextInt();
int m = sc.nextInt();
FileWriter fw=new FileWriter("output.txt");
boolean[][] grid = new boolean[n][m];
int[] dx = new int[] { 1, 0, -1, 0 };
int[] dy = new int[] { 0, -1, 0, 1 };
int k = sc.nextInt();
LinkedList<Struct> a = new LinkedList<Struct>();
for (int i = 0; i < k; i++) {
a.add(new Struct(sc.nextInt() - 1, sc.nextInt() - 1, 0));
}
int max = Integer.MIN_VALUE, maxX = -1, maxY = -1;
while (!a.isEmpty()) {
Struct tmp = a.remove();
if (grid[tmp.x][tmp.y] == true)
continue;
grid[tmp.x][tmp.y] = true;
if (tmp.count > max) {
max = tmp.count;
maxX = tmp.x;
maxY = tmp.y;
}
for (int i = 0; i < 4; i++) {
int nx = tmp.x + dx[i];
int ny = tmp.y + dy[i];
if (nx < n && nx >= 0 && ny < m && ny >= 0) {
if (grid[nx][ny] == false) {
a.add(new Struct(nx, ny, tmp.count + 1));
}
}
}
}
fw.write((maxX + 1) + " " + (maxY + 1)+"\n");
System.out.println((maxX + 1) + " " + (maxY + 1));
fw.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 798 | 3,633 |
1,866 |
import java.io.*;
import java.math.BigInteger;
import java.util.*;
public class DD {
public static void main(String[] args)throws Throwable {
MyScanner sc=new MyScanner();
PrintWriter pw=new PrintWriter(System.out);
int n=sc.nextInt();
int [] a=new int [n];
for(int i=0;i<n;i++)
a[i]=sc.nextInt();
TreeMap<Integer, Integer> map=new TreeMap<Integer, Integer>();
BigInteger ans=new BigInteger("0");
long sum=0;
for(int i=0;i<n;i++){
sum+=a[i];
map.put(a[i], map.getOrDefault(a[i], 0)+1);
int cntSame=map.get(a[i]);
int cntLess=map.getOrDefault(a[i]-1, 0);
int cntMore=map.getOrDefault(a[i]+1, 0);
long sum2=sum;
sum2-=1L*cntSame*a[i];
sum2-=1L*cntLess*(a[i]-1);
sum2-=1L*cntMore*(a[i]+1);
int cnt=i+1-(cntSame+cntLess+cntMore);
ans = ans.subtract(BigInteger.valueOf(sum2));
ans= ans.add(BigInteger.valueOf(1L*cnt*a[i]));
}
pw.println(ans);
pw.flush();
pw.close();
}
static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {while (st == null || !st.hasMoreElements()) {
try {st = new StringTokenizer(br.readLine());}
catch (IOException e) {e.printStackTrace();}}
return st.nextToken();}
int nextInt() {return Integer.parseInt(next());}
long nextLong() {return Long.parseLong(next());}
double nextDouble() {return Double.parseDouble(next());}
String nextLine(){String str = "";
try {str = br.readLine();}
catch (IOException e) {e.printStackTrace();}
return str;}
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.math.BigInteger;
import java.util.*;
public class DD {
public static void main(String[] args)throws Throwable {
MyScanner sc=new MyScanner();
PrintWriter pw=new PrintWriter(System.out);
int n=sc.nextInt();
int [] a=new int [n];
for(int i=0;i<n;i++)
a[i]=sc.nextInt();
TreeMap<Integer, Integer> map=new TreeMap<Integer, Integer>();
BigInteger ans=new BigInteger("0");
long sum=0;
for(int i=0;i<n;i++){
sum+=a[i];
map.put(a[i], map.getOrDefault(a[i], 0)+1);
int cntSame=map.get(a[i]);
int cntLess=map.getOrDefault(a[i]-1, 0);
int cntMore=map.getOrDefault(a[i]+1, 0);
long sum2=sum;
sum2-=1L*cntSame*a[i];
sum2-=1L*cntLess*(a[i]-1);
sum2-=1L*cntMore*(a[i]+1);
int cnt=i+1-(cntSame+cntLess+cntMore);
ans = ans.subtract(BigInteger.valueOf(sum2));
ans= ans.add(BigInteger.valueOf(1L*cnt*a[i]));
}
pw.println(ans);
pw.flush();
pw.close();
}
static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {while (st == null || !st.hasMoreElements()) {
try {st = new StringTokenizer(br.readLine());}
catch (IOException e) {e.printStackTrace();}}
return st.nextToken();}
int nextInt() {return Integer.parseInt(next());}
long nextLong() {return Long.parseLong(next());}
double nextDouble() {return Double.parseDouble(next());}
String nextLine(){String str = "";
try {str = br.readLine();}
catch (IOException e) {e.printStackTrace();}
return str;}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.math.BigInteger;
import java.util.*;
public class DD {
public static void main(String[] args)throws Throwable {
MyScanner sc=new MyScanner();
PrintWriter pw=new PrintWriter(System.out);
int n=sc.nextInt();
int [] a=new int [n];
for(int i=0;i<n;i++)
a[i]=sc.nextInt();
TreeMap<Integer, Integer> map=new TreeMap<Integer, Integer>();
BigInteger ans=new BigInteger("0");
long sum=0;
for(int i=0;i<n;i++){
sum+=a[i];
map.put(a[i], map.getOrDefault(a[i], 0)+1);
int cntSame=map.get(a[i]);
int cntLess=map.getOrDefault(a[i]-1, 0);
int cntMore=map.getOrDefault(a[i]+1, 0);
long sum2=sum;
sum2-=1L*cntSame*a[i];
sum2-=1L*cntLess*(a[i]-1);
sum2-=1L*cntMore*(a[i]+1);
int cnt=i+1-(cntSame+cntLess+cntMore);
ans = ans.subtract(BigInteger.valueOf(sum2));
ans= ans.add(BigInteger.valueOf(1L*cnt*a[i]));
}
pw.println(ans);
pw.flush();
pw.close();
}
static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {while (st == null || !st.hasMoreElements()) {
try {st = new StringTokenizer(br.readLine());}
catch (IOException e) {e.printStackTrace();}}
return st.nextToken();}
int nextInt() {return Integer.parseInt(next());}
long nextLong() {return Long.parseLong(next());}
double nextDouble() {return Double.parseDouble(next());}
String nextLine(){String str = "";
try {str = br.readLine();}
catch (IOException e) {e.printStackTrace();}
return str;}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 768 | 1,862 |
3,860 |
import java.io.*;
import java.util.StringTokenizer;
public class C2 {
String filename = null;
InputReader sc;
void solve() {
int n = sc.nextInt();
int[] a = sc.nextArray(n);
int[] ps = new int[n];
int[] q = new int[n];
int[] qs = new int[n];
int nq = 0;
for (int i = 1; i < n; i++) {
if (a[i] == 1) {
qs[nq] = i - 1;
q[nq++] = a[i - 1] + 1;
ps[i] = i - 1;
} else {
if (a[i] == a[i - 1] + 1) {
qs[nq] = i - 1;
q[nq++] = 1;
ps[i] = i - 1;
} else {
for (int j = nq - 1; j >= 0; j--) {
if (a[i] == q[j]) {
ps[i] = qs[j];
nq = j;
break;
}
}
}
}
}
int[] parents = ps;
String[] strs = new String[n];
strs[0] = "1";
System.out.println(strs[0]);
for (int i = 1; i < n; i++) {
String p = strs[parents[i]];
if (a[i] == 1) {
strs[i] = p + ".1";
} else {
int lastDot = p.lastIndexOf(".");
if (lastDot == -1) {
strs[i] = a[i] + "";
} else {
strs[i] = p.substring(0, lastDot) + "." + a[i];
}
}
System.out.println(strs[i]);
}
}
public void run() throws FileNotFoundException {
if (filename == null) {
sc = new InputReader(System.in);
} else {
sc = new InputReader(new FileInputStream(new File(filename)));
}
int nTests = sc.nextInt();
for (int test = 0; test < nTests; test++) {
solve();
}
}
public static void main(String[] args) {
C2 sol = new C2();
try {
sol.run();
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public float nextFloat() {
return Float.parseFloat(next());
}
public double nextDouble() {
return Float.parseFloat(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public int[] nextArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt();
}
return a;
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.StringTokenizer;
public class C2 {
String filename = null;
InputReader sc;
void solve() {
int n = sc.nextInt();
int[] a = sc.nextArray(n);
int[] ps = new int[n];
int[] q = new int[n];
int[] qs = new int[n];
int nq = 0;
for (int i = 1; i < n; i++) {
if (a[i] == 1) {
qs[nq] = i - 1;
q[nq++] = a[i - 1] + 1;
ps[i] = i - 1;
} else {
if (a[i] == a[i - 1] + 1) {
qs[nq] = i - 1;
q[nq++] = 1;
ps[i] = i - 1;
} else {
for (int j = nq - 1; j >= 0; j--) {
if (a[i] == q[j]) {
ps[i] = qs[j];
nq = j;
break;
}
}
}
}
}
int[] parents = ps;
String[] strs = new String[n];
strs[0] = "1";
System.out.println(strs[0]);
for (int i = 1; i < n; i++) {
String p = strs[parents[i]];
if (a[i] == 1) {
strs[i] = p + ".1";
} else {
int lastDot = p.lastIndexOf(".");
if (lastDot == -1) {
strs[i] = a[i] + "";
} else {
strs[i] = p.substring(0, lastDot) + "." + a[i];
}
}
System.out.println(strs[i]);
}
}
public void run() throws FileNotFoundException {
if (filename == null) {
sc = new InputReader(System.in);
} else {
sc = new InputReader(new FileInputStream(new File(filename)));
}
int nTests = sc.nextInt();
for (int test = 0; test < nTests; test++) {
solve();
}
}
public static void main(String[] args) {
C2 sol = new C2();
try {
sol.run();
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public float nextFloat() {
return Float.parseFloat(next());
}
public double nextDouble() {
return Float.parseFloat(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public int[] nextArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt();
}
return a;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.StringTokenizer;
public class C2 {
String filename = null;
InputReader sc;
void solve() {
int n = sc.nextInt();
int[] a = sc.nextArray(n);
int[] ps = new int[n];
int[] q = new int[n];
int[] qs = new int[n];
int nq = 0;
for (int i = 1; i < n; i++) {
if (a[i] == 1) {
qs[nq] = i - 1;
q[nq++] = a[i - 1] + 1;
ps[i] = i - 1;
} else {
if (a[i] == a[i - 1] + 1) {
qs[nq] = i - 1;
q[nq++] = 1;
ps[i] = i - 1;
} else {
for (int j = nq - 1; j >= 0; j--) {
if (a[i] == q[j]) {
ps[i] = qs[j];
nq = j;
break;
}
}
}
}
}
int[] parents = ps;
String[] strs = new String[n];
strs[0] = "1";
System.out.println(strs[0]);
for (int i = 1; i < n; i++) {
String p = strs[parents[i]];
if (a[i] == 1) {
strs[i] = p + ".1";
} else {
int lastDot = p.lastIndexOf(".");
if (lastDot == -1) {
strs[i] = a[i] + "";
} else {
strs[i] = p.substring(0, lastDot) + "." + a[i];
}
}
System.out.println(strs[i]);
}
}
public void run() throws FileNotFoundException {
if (filename == null) {
sc = new InputReader(System.in);
} else {
sc = new InputReader(new FileInputStream(new File(filename)));
}
int nTests = sc.nextInt();
for (int test = 0; test < nTests; test++) {
solve();
}
}
public static void main(String[] args) {
C2 sol = new C2();
try {
sol.run();
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public float nextFloat() {
return Float.parseFloat(next());
}
public double nextDouble() {
return Float.parseFloat(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public int[] nextArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt();
}
return a;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,073 | 3,850 |
3,797 |
import java.util.*;
import java.io.*;
public class D {
public static void main(String[] args) {
FastScanner sc = new FastScanner();
int n = sc.nextInt();
int m = sc.nextInt();
int k = sc.nextInt();
int[][] lr = new int[n][m-1];
for(int i = 0; i < n; i++){
for(int j = 0; j < m-1; j++){
lr[i][j] = sc.nextInt();
}
}
int[][] ud = new int[n-1][m];
for(int i = 0; i < n-1; i++){
for(int j = 0; j < m; j++){
ud[i][j] = sc.nextInt();
}
}
if(k % 2 == 1) {
StringBuilder sb = new StringBuilder();
for(int i = 0; i < n; i++){
for(int j = 0; j < m; j++){
sb.append(-1+" ");
}
sb.replace(sb.length()-1, sb.length(), "\n");
}
PrintWriter pw = new PrintWriter(System.out);
pw.println(sb.toString().trim());
pw.flush();
}
else {
int[][] dir = {{0,1},{0,-1},{1,0},{-1,0}};
long[][][] dp = new long[k/2+1][n][m];
for(int s = 1; s <= k/2; s++) {
for(int i = 0; i < n; i++){
for(int j = 0; j < m; j++){
dp[s][i][j] = Long.MAX_VALUE;
for(int[] d: dir) {
int u = i + d[0], v = j + d[1];
if(u >= 0 && u < n && v >= 0 && v < m) {
long w = calc(i, j, u, v, lr, ud);
dp[s][i][j] = Math.min(dp[s][i][j], dp[s-1][u][v] + 2*w);
}
}
}
}
}
StringBuilder sb = new StringBuilder();
for(int i = 0; i < n; i++){
for(int j = 0; j < m; j++){
sb.append(dp[k/2][i][j]+" ");
}
sb.replace(sb.length()-1, sb.length(), "\n");
}
PrintWriter pw = new PrintWriter(System.out);
pw.println(sb.toString().trim());
pw.flush();
}
}
static long calc(int i, int j, int u, int v, int[][] lr, int[][] ud) {
if(i == u) {
return lr[i][Math.min(j, v)];
}
else {
return ud[Math.min(i, u)][j];
}
}
static class Pair implements Comparable<Pair>{
int x, y;
public Pair(int x, int y) {
this.x = x; this.y = y;
}
@Override
public int compareTo(Pair p) {
if(x == p.x) return y - p.y;
else return x - p.x;
}
public String toString() {
return x+" "+y;
}
}
static class FastScanner {
public BufferedReader reader;
public StringTokenizer tokenizer;
public FastScanner() {
reader = new BufferedReader(new InputStreamReader(System.in), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
try {
return reader.readLine();
} catch(IOException e) {
throw new RuntimeException(e);
}
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class D {
public static void main(String[] args) {
FastScanner sc = new FastScanner();
int n = sc.nextInt();
int m = sc.nextInt();
int k = sc.nextInt();
int[][] lr = new int[n][m-1];
for(int i = 0; i < n; i++){
for(int j = 0; j < m-1; j++){
lr[i][j] = sc.nextInt();
}
}
int[][] ud = new int[n-1][m];
for(int i = 0; i < n-1; i++){
for(int j = 0; j < m; j++){
ud[i][j] = sc.nextInt();
}
}
if(k % 2 == 1) {
StringBuilder sb = new StringBuilder();
for(int i = 0; i < n; i++){
for(int j = 0; j < m; j++){
sb.append(-1+" ");
}
sb.replace(sb.length()-1, sb.length(), "\n");
}
PrintWriter pw = new PrintWriter(System.out);
pw.println(sb.toString().trim());
pw.flush();
}
else {
int[][] dir = {{0,1},{0,-1},{1,0},{-1,0}};
long[][][] dp = new long[k/2+1][n][m];
for(int s = 1; s <= k/2; s++) {
for(int i = 0; i < n; i++){
for(int j = 0; j < m; j++){
dp[s][i][j] = Long.MAX_VALUE;
for(int[] d: dir) {
int u = i + d[0], v = j + d[1];
if(u >= 0 && u < n && v >= 0 && v < m) {
long w = calc(i, j, u, v, lr, ud);
dp[s][i][j] = Math.min(dp[s][i][j], dp[s-1][u][v] + 2*w);
}
}
}
}
}
StringBuilder sb = new StringBuilder();
for(int i = 0; i < n; i++){
for(int j = 0; j < m; j++){
sb.append(dp[k/2][i][j]+" ");
}
sb.replace(sb.length()-1, sb.length(), "\n");
}
PrintWriter pw = new PrintWriter(System.out);
pw.println(sb.toString().trim());
pw.flush();
}
}
static long calc(int i, int j, int u, int v, int[][] lr, int[][] ud) {
if(i == u) {
return lr[i][Math.min(j, v)];
}
else {
return ud[Math.min(i, u)][j];
}
}
static class Pair implements Comparable<Pair>{
int x, y;
public Pair(int x, int y) {
this.x = x; this.y = y;
}
@Override
public int compareTo(Pair p) {
if(x == p.x) return y - p.y;
else return x - p.x;
}
public String toString() {
return x+" "+y;
}
}
static class FastScanner {
public BufferedReader reader;
public StringTokenizer tokenizer;
public FastScanner() {
reader = new BufferedReader(new InputStreamReader(System.in), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
try {
return reader.readLine();
} catch(IOException e) {
throw new RuntimeException(e);
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class D {
public static void main(String[] args) {
FastScanner sc = new FastScanner();
int n = sc.nextInt();
int m = sc.nextInt();
int k = sc.nextInt();
int[][] lr = new int[n][m-1];
for(int i = 0; i < n; i++){
for(int j = 0; j < m-1; j++){
lr[i][j] = sc.nextInt();
}
}
int[][] ud = new int[n-1][m];
for(int i = 0; i < n-1; i++){
for(int j = 0; j < m; j++){
ud[i][j] = sc.nextInt();
}
}
if(k % 2 == 1) {
StringBuilder sb = new StringBuilder();
for(int i = 0; i < n; i++){
for(int j = 0; j < m; j++){
sb.append(-1+" ");
}
sb.replace(sb.length()-1, sb.length(), "\n");
}
PrintWriter pw = new PrintWriter(System.out);
pw.println(sb.toString().trim());
pw.flush();
}
else {
int[][] dir = {{0,1},{0,-1},{1,0},{-1,0}};
long[][][] dp = new long[k/2+1][n][m];
for(int s = 1; s <= k/2; s++) {
for(int i = 0; i < n; i++){
for(int j = 0; j < m; j++){
dp[s][i][j] = Long.MAX_VALUE;
for(int[] d: dir) {
int u = i + d[0], v = j + d[1];
if(u >= 0 && u < n && v >= 0 && v < m) {
long w = calc(i, j, u, v, lr, ud);
dp[s][i][j] = Math.min(dp[s][i][j], dp[s-1][u][v] + 2*w);
}
}
}
}
}
StringBuilder sb = new StringBuilder();
for(int i = 0; i < n; i++){
for(int j = 0; j < m; j++){
sb.append(dp[k/2][i][j]+" ");
}
sb.replace(sb.length()-1, sb.length(), "\n");
}
PrintWriter pw = new PrintWriter(System.out);
pw.println(sb.toString().trim());
pw.flush();
}
}
static long calc(int i, int j, int u, int v, int[][] lr, int[][] ud) {
if(i == u) {
return lr[i][Math.min(j, v)];
}
else {
return ud[Math.min(i, u)][j];
}
}
static class Pair implements Comparable<Pair>{
int x, y;
public Pair(int x, int y) {
this.x = x; this.y = y;
}
@Override
public int compareTo(Pair p) {
if(x == p.x) return y - p.y;
else return x - p.x;
}
public String toString() {
return x+" "+y;
}
}
static class FastScanner {
public BufferedReader reader;
public StringTokenizer tokenizer;
public FastScanner() {
reader = new BufferedReader(new InputStreamReader(System.in), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
try {
return reader.readLine();
} catch(IOException e) {
throw new RuntimeException(e);
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,261 | 3,788 |
4,252 |
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Set;
import java.util.stream.IntStream;
public class Test {
static PrintWriter writer =
new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
static int readInt() {
int ans = 0;
boolean neg = false;
try {
boolean start = false;
for (int c = 0; (c = System.in.read()) != -1; ) {
if (c == '-') {
start = true;
neg = true;
continue;
} else if (c >= '0' && c <= '9') {
start = true;
ans = ans * 10 + c - '0';
} else if (start) break;
}
} catch (IOException e) {
}
return neg ? -ans : ans;
}
static long readLong() {
long ans = 0;
boolean neg = false;
try {
boolean start = false;
for (int c = 0; (c = System.in.read()) != -1; ) {
if (c == '-') {
start = true;
neg = true;
continue;
} else if (c >= '0' && c <= '9') {
start = true;
ans = ans * 10 + c - '0';
} else if (start) break;
}
} catch (IOException e) {
}
return neg ? -ans : ans;
}
static String readLine() {
StringBuilder b = new StringBuilder();
try {
boolean start = false;
for (int c = 0; (c = System.in.read()) != -1; ) {
if (Character.isLetterOrDigit(c)) {
start = true;
b.append((char) c);
} else if (start) break;
}
} catch (IOException e) {
}
return b.toString();
}
public static void main(String[] args) {
Test te = new Test();
te.start();
writer.flush();
}
void start() {
int t = readInt();
while (t-- > 0) {
int n = readInt(), m = readInt();
int[][] a = new int[n][m];
int[][] e = new int[n*m][];
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) {
a[i][j] = readInt();
e[i*m+j] = new int[]{a[i][j], j};
}
Arrays.sort(e, (x, y) -> x[0] == y[0] ? Integer.compare(x[1], y[1])
: Integer.compare(y[0], x[0]));
Set<Integer> cols = new HashSet<>();
for (int[] x : e) {
cols.add(x[1]);
if (cols.size() >= n) break;
}
int[] dp = new int[1<<n];
Arrays.fill(dp, -1);
dp[0] = 0;
for (int c : cols) {
for (int i = (1 << n) - 1; i >= 0; i--) {
int u = (1 << n) - 1 - i;
int p = u;
if (dp[i] >= 0)
while (p > 0) {
for (int r = 0; r < n; r++) {
int sum = 0;
for (int j = 0; j < n; j++) if (((p >> j) & 1) != 0) sum += a[(j + r) % n][c];
dp[i | p] = Math.max(dp[i | p], dp[i] + sum);
}
p = (p - 1) & u;
}
}
}
writer.println(dp[(1<<n) - 1]);
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Set;
import java.util.stream.IntStream;
public class Test {
static PrintWriter writer =
new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
static int readInt() {
int ans = 0;
boolean neg = false;
try {
boolean start = false;
for (int c = 0; (c = System.in.read()) != -1; ) {
if (c == '-') {
start = true;
neg = true;
continue;
} else if (c >= '0' && c <= '9') {
start = true;
ans = ans * 10 + c - '0';
} else if (start) break;
}
} catch (IOException e) {
}
return neg ? -ans : ans;
}
static long readLong() {
long ans = 0;
boolean neg = false;
try {
boolean start = false;
for (int c = 0; (c = System.in.read()) != -1; ) {
if (c == '-') {
start = true;
neg = true;
continue;
} else if (c >= '0' && c <= '9') {
start = true;
ans = ans * 10 + c - '0';
} else if (start) break;
}
} catch (IOException e) {
}
return neg ? -ans : ans;
}
static String readLine() {
StringBuilder b = new StringBuilder();
try {
boolean start = false;
for (int c = 0; (c = System.in.read()) != -1; ) {
if (Character.isLetterOrDigit(c)) {
start = true;
b.append((char) c);
} else if (start) break;
}
} catch (IOException e) {
}
return b.toString();
}
public static void main(String[] args) {
Test te = new Test();
te.start();
writer.flush();
}
void start() {
int t = readInt();
while (t-- > 0) {
int n = readInt(), m = readInt();
int[][] a = new int[n][m];
int[][] e = new int[n*m][];
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) {
a[i][j] = readInt();
e[i*m+j] = new int[]{a[i][j], j};
}
Arrays.sort(e, (x, y) -> x[0] == y[0] ? Integer.compare(x[1], y[1])
: Integer.compare(y[0], x[0]));
Set<Integer> cols = new HashSet<>();
for (int[] x : e) {
cols.add(x[1]);
if (cols.size() >= n) break;
}
int[] dp = new int[1<<n];
Arrays.fill(dp, -1);
dp[0] = 0;
for (int c : cols) {
for (int i = (1 << n) - 1; i >= 0; i--) {
int u = (1 << n) - 1 - i;
int p = u;
if (dp[i] >= 0)
while (p > 0) {
for (int r = 0; r < n; r++) {
int sum = 0;
for (int j = 0; j < n; j++) if (((p >> j) & 1) != 0) sum += a[(j + r) % n][c];
dp[i | p] = Math.max(dp[i | p], dp[i] + sum);
}
p = (p - 1) & u;
}
}
}
writer.println(dp[(1<<n) - 1]);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Set;
import java.util.stream.IntStream;
public class Test {
static PrintWriter writer =
new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
static int readInt() {
int ans = 0;
boolean neg = false;
try {
boolean start = false;
for (int c = 0; (c = System.in.read()) != -1; ) {
if (c == '-') {
start = true;
neg = true;
continue;
} else if (c >= '0' && c <= '9') {
start = true;
ans = ans * 10 + c - '0';
} else if (start) break;
}
} catch (IOException e) {
}
return neg ? -ans : ans;
}
static long readLong() {
long ans = 0;
boolean neg = false;
try {
boolean start = false;
for (int c = 0; (c = System.in.read()) != -1; ) {
if (c == '-') {
start = true;
neg = true;
continue;
} else if (c >= '0' && c <= '9') {
start = true;
ans = ans * 10 + c - '0';
} else if (start) break;
}
} catch (IOException e) {
}
return neg ? -ans : ans;
}
static String readLine() {
StringBuilder b = new StringBuilder();
try {
boolean start = false;
for (int c = 0; (c = System.in.read()) != -1; ) {
if (Character.isLetterOrDigit(c)) {
start = true;
b.append((char) c);
} else if (start) break;
}
} catch (IOException e) {
}
return b.toString();
}
public static void main(String[] args) {
Test te = new Test();
te.start();
writer.flush();
}
void start() {
int t = readInt();
while (t-- > 0) {
int n = readInt(), m = readInt();
int[][] a = new int[n][m];
int[][] e = new int[n*m][];
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) {
a[i][j] = readInt();
e[i*m+j] = new int[]{a[i][j], j};
}
Arrays.sort(e, (x, y) -> x[0] == y[0] ? Integer.compare(x[1], y[1])
: Integer.compare(y[0], x[0]));
Set<Integer> cols = new HashSet<>();
for (int[] x : e) {
cols.add(x[1]);
if (cols.size() >= n) break;
}
int[] dp = new int[1<<n];
Arrays.fill(dp, -1);
dp[0] = 0;
for (int c : cols) {
for (int i = (1 << n) - 1; i >= 0; i--) {
int u = (1 << n) - 1 - i;
int p = u;
if (dp[i] >= 0)
while (p > 0) {
for (int r = 0; r < n; r++) {
int sum = 0;
for (int j = 0; j < n; j++) if (((p >> j) & 1) != 0) sum += a[(j + r) % n][c];
dp[i | p] = Math.max(dp[i | p], dp[i] + sum);
}
p = (p - 1) & u;
}
}
}
writer.println(dp[(1<<n) - 1]);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,220 | 4,241 |
2,718 |
import java.io.PrintWriter;
import java.util.*;
import java.util.Arrays ;
import java .lang.String.* ;
import java .lang.StringBuilder ;
public class Test{
static int pos = 0 ;
static int arr[] ;
static LinkedList l1 = new LinkedList() ;
static void find(int p ,char[]x,int put[],String s){
int c= 0 ;
for (int i = 0; i < s.length(); i++) {
if(x[p]==s.charAt(i)){
c++ ; }
}
put[p] = c ;
}
static int mode(int m ,int[]x ){
int temp = 0 ;
for (int i = x.length-1; i >=0; i--) {
if(x[i]<=m){
temp= x[i] ;
/// break ;
return m-temp ;
}
}
return m-temp ;
}
static int mode2(int m ,int[]x ){
int temp = 0 ;
for (int i = x.length-1; i >=0; i--) {
if(x[i]<=m){
temp= x[i] ;
/// break ;
return x[i] ;
}
}
return 0 ;
}
static int find(int x[],int temp){
int j = 0 ;
for (int i = x.length-1; i >=0; i--) {
if(x[i]==temp) return j+1 ;
j++ ;
}
return -1 ;
}
static String ch(long[]x,long b){
for (int i = 0; i < x.length; i++) {
if(x[i]==b)return "YES" ;
}
return "NO" ;
}
public static void main(String[] args) {
Scanner in = new Scanner(System.in) ;
PrintWriter pw = new PrintWriter(System.out);
int k=in.nextInt(), n=in.nextInt(), s=in.nextInt(), p=in.nextInt() ;
int paper =n/s;
if(n%s!=0) paper++ ;
paper*=k ;
int fin = paper/p ;
if(paper%p!=0) fin++ ;
System.out.println( fin );
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.PrintWriter;
import java.util.*;
import java.util.Arrays ;
import java .lang.String.* ;
import java .lang.StringBuilder ;
public class Test{
static int pos = 0 ;
static int arr[] ;
static LinkedList l1 = new LinkedList() ;
static void find(int p ,char[]x,int put[],String s){
int c= 0 ;
for (int i = 0; i < s.length(); i++) {
if(x[p]==s.charAt(i)){
c++ ; }
}
put[p] = c ;
}
static int mode(int m ,int[]x ){
int temp = 0 ;
for (int i = x.length-1; i >=0; i--) {
if(x[i]<=m){
temp= x[i] ;
/// break ;
return m-temp ;
}
}
return m-temp ;
}
static int mode2(int m ,int[]x ){
int temp = 0 ;
for (int i = x.length-1; i >=0; i--) {
if(x[i]<=m){
temp= x[i] ;
/// break ;
return x[i] ;
}
}
return 0 ;
}
static int find(int x[],int temp){
int j = 0 ;
for (int i = x.length-1; i >=0; i--) {
if(x[i]==temp) return j+1 ;
j++ ;
}
return -1 ;
}
static String ch(long[]x,long b){
for (int i = 0; i < x.length; i++) {
if(x[i]==b)return "YES" ;
}
return "NO" ;
}
public static void main(String[] args) {
Scanner in = new Scanner(System.in) ;
PrintWriter pw = new PrintWriter(System.out);
int k=in.nextInt(), n=in.nextInt(), s=in.nextInt(), p=in.nextInt() ;
int paper =n/s;
if(n%s!=0) paper++ ;
paper*=k ;
int fin = paper/p ;
if(paper%p!=0) fin++ ;
System.out.println( fin );
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.PrintWriter;
import java.util.*;
import java.util.Arrays ;
import java .lang.String.* ;
import java .lang.StringBuilder ;
public class Test{
static int pos = 0 ;
static int arr[] ;
static LinkedList l1 = new LinkedList() ;
static void find(int p ,char[]x,int put[],String s){
int c= 0 ;
for (int i = 0; i < s.length(); i++) {
if(x[p]==s.charAt(i)){
c++ ; }
}
put[p] = c ;
}
static int mode(int m ,int[]x ){
int temp = 0 ;
for (int i = x.length-1; i >=0; i--) {
if(x[i]<=m){
temp= x[i] ;
/// break ;
return m-temp ;
}
}
return m-temp ;
}
static int mode2(int m ,int[]x ){
int temp = 0 ;
for (int i = x.length-1; i >=0; i--) {
if(x[i]<=m){
temp= x[i] ;
/// break ;
return x[i] ;
}
}
return 0 ;
}
static int find(int x[],int temp){
int j = 0 ;
for (int i = x.length-1; i >=0; i--) {
if(x[i]==temp) return j+1 ;
j++ ;
}
return -1 ;
}
static String ch(long[]x,long b){
for (int i = 0; i < x.length; i++) {
if(x[i]==b)return "YES" ;
}
return "NO" ;
}
public static void main(String[] args) {
Scanner in = new Scanner(System.in) ;
PrintWriter pw = new PrintWriter(System.out);
int k=in.nextInt(), n=in.nextInt(), s=in.nextInt(), p=in.nextInt() ;
int paper =n/s;
if(n%s!=0) paper++ ;
paper*=k ;
int fin = paper/p ;
if(paper%p!=0) fin++ ;
System.out.println( fin );
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 822 | 2,712 |
2,866 |
import java.math.BigInteger;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
BigInteger l = new BigInteger(scanner.next());
BigInteger r = new BigInteger(scanner.next());
if(r.subtract(l).intValue() < 2) {
System.out.println(-1);
return;
}
BigInteger a = l.abs(),b,c;
BigInteger toothless = r.subtract(BigInteger.valueOf(1));
while(a.compareTo(toothless) == -1) {
b = l.add(BigInteger.valueOf(1));
while(b.compareTo(r) == -1) {
c = l.add(BigInteger.valueOf(2));
while(c.compareTo(r) == -1 || c.compareTo(r) == 0) {
if(gcd(a,b) == 1 && gcd(b,c) == 1 && gcd(a,c) != 1) {
System.out.println(a + " " + b + " " + c);
return;
}
c = c.add(BigInteger.valueOf(1));
}
b = b.add(BigInteger.valueOf(1));
}
a = a.add(BigInteger.valueOf(1));
}
System.out.println(-1);
}
private static int gcd(BigInteger a, BigInteger b) {
return a.gcd(b).intValue();
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.math.BigInteger;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
BigInteger l = new BigInteger(scanner.next());
BigInteger r = new BigInteger(scanner.next());
if(r.subtract(l).intValue() < 2) {
System.out.println(-1);
return;
}
BigInteger a = l.abs(),b,c;
BigInteger toothless = r.subtract(BigInteger.valueOf(1));
while(a.compareTo(toothless) == -1) {
b = l.add(BigInteger.valueOf(1));
while(b.compareTo(r) == -1) {
c = l.add(BigInteger.valueOf(2));
while(c.compareTo(r) == -1 || c.compareTo(r) == 0) {
if(gcd(a,b) == 1 && gcd(b,c) == 1 && gcd(a,c) != 1) {
System.out.println(a + " " + b + " " + c);
return;
}
c = c.add(BigInteger.valueOf(1));
}
b = b.add(BigInteger.valueOf(1));
}
a = a.add(BigInteger.valueOf(1));
}
System.out.println(-1);
}
private static int gcd(BigInteger a, BigInteger b) {
return a.gcd(b).intValue();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.math.BigInteger;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
BigInteger l = new BigInteger(scanner.next());
BigInteger r = new BigInteger(scanner.next());
if(r.subtract(l).intValue() < 2) {
System.out.println(-1);
return;
}
BigInteger a = l.abs(),b,c;
BigInteger toothless = r.subtract(BigInteger.valueOf(1));
while(a.compareTo(toothless) == -1) {
b = l.add(BigInteger.valueOf(1));
while(b.compareTo(r) == -1) {
c = l.add(BigInteger.valueOf(2));
while(c.compareTo(r) == -1 || c.compareTo(r) == 0) {
if(gcd(a,b) == 1 && gcd(b,c) == 1 && gcd(a,c) != 1) {
System.out.println(a + " " + b + " " + c);
return;
}
c = c.add(BigInteger.valueOf(1));
}
b = b.add(BigInteger.valueOf(1));
}
a = a.add(BigInteger.valueOf(1));
}
System.out.println(-1);
}
private static int gcd(BigInteger a, BigInteger b) {
return a.gcd(b).intValue();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 620 | 2,860 |
1,297 |
import java.util.Scanner;
public class Main {
public static long power(long a, long b, long c){
if(b == 0){
return 1;
}
a %= c;
if(b % 2 == 0){
return power((a % c * a % c) % c, b / 2, c);
}else{
return (a % c * power((a % c * a % c) % c, b / 2, c) % c) % c;
}
}
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
long x = s.nextLong(), k = s.nextLong() + 1, mod = (long)Math.pow(10, 9) + 7;
long ans;
if(x == 0){
System.out.println(0);
return;
}
// if(x != 0){
ans = ((power(2, k % (mod - 1), mod) % mod) * (x % mod)) % mod;
/* }else{
ans = 0;
}
*/ans = (ans - power(2, (k - 1) % (mod - 1), mod) % mod + 2 * mod) % mod;
System.out.println((ans + 1) % mod);
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class Main {
public static long power(long a, long b, long c){
if(b == 0){
return 1;
}
a %= c;
if(b % 2 == 0){
return power((a % c * a % c) % c, b / 2, c);
}else{
return (a % c * power((a % c * a % c) % c, b / 2, c) % c) % c;
}
}
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
long x = s.nextLong(), k = s.nextLong() + 1, mod = (long)Math.pow(10, 9) + 7;
long ans;
if(x == 0){
System.out.println(0);
return;
}
// if(x != 0){
ans = ((power(2, k % (mod - 1), mod) % mod) * (x % mod)) % mod;
/* }else{
ans = 0;
}
*/ans = (ans - power(2, (k - 1) % (mod - 1), mod) % mod + 2 * mod) % mod;
System.out.println((ans + 1) % mod);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class Main {
public static long power(long a, long b, long c){
if(b == 0){
return 1;
}
a %= c;
if(b % 2 == 0){
return power((a % c * a % c) % c, b / 2, c);
}else{
return (a % c * power((a % c * a % c) % c, b / 2, c) % c) % c;
}
}
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
long x = s.nextLong(), k = s.nextLong() + 1, mod = (long)Math.pow(10, 9) + 7;
long ans;
if(x == 0){
System.out.println(0);
return;
}
// if(x != 0){
ans = ((power(2, k % (mod - 1), mod) % mod) * (x % mod)) % mod;
/* }else{
ans = 0;
}
*/ans = (ans - power(2, (k - 1) % (mod - 1), mod) % mod + 2 * mod) % mod;
System.out.println((ans + 1) % mod);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 630 | 1,295 |
3,780 |
//created by Whiplash99
import java.io.*;
import java.util.*;
public class D
{
private static ArrayDeque<Integer>[][] edge;
private static long[][] dp[],w1,w2;
private static int N,M,K;
private static void answer()
{
StringBuilder sb=new StringBuilder();
for(int i=0;i<N;i++)
{
for (int j = 0; j < M; j++) sb.append(dp[i][j][K]).append(" ");
sb.append("\n");
}
System.out.println(sb);
}
private static long solve(int i, int j, int pos)
{
if(pos==0) return 0;
if(dp[i][j][pos]!=-1) return dp[i][j][pos];
long a=Long.MAX_VALUE/100;
if(i-1>=0) a=Math.min(a,solve(i-1,j,pos-1)+w2[i-1][j]);
if(i<N-1) a=Math.min(a,solve(i+1,j,pos-1)+w2[i][j]);
if(j-1>=0) a=Math.min(a,solve(i,j-1,pos-1)+w1[i][j-1]);
if(j<M-1) a=Math.min(a,solve(i,j+1,pos-1)+w1[i][j]);
return dp[i][j][pos]=a;
}
public static void main(String[] args) throws Exception
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
int i;
String[] s=br.readLine().trim().split(" ");
N=Integer.parseInt(s[0]);
M=Integer.parseInt(s[1]);
K=Integer.parseInt(s[2]);
edge=new ArrayDeque[N][M];
for(i=0;i<N;i++)
{
for(int j=0;j<M;j++)
edge[i][j]=new ArrayDeque<>();
}
w1=new long[N][M-1];
w2=new long[N-1][M];
dp=new long[N][M][K/2+1];
for(i=0;i<N;i++)
{
s=br.readLine().trim().split(" ");
for(int j=0;j<M-1;j++) w1[i][j]=Integer.parseInt(s[j])*2L;
}
for(i=0;i<N-1;i++)
{
s=br.readLine().trim().split(" ");
for(int j=0;j<M;j++) w2[i][j]=Integer.parseInt(s[j])*2L;
}
for(i=0;i<N;i++)
{
for(int j=0;j<M;j++)
Arrays.fill(dp[i][j],-1);
}
if(K%2==1)
{
K/=2;
answer();
System.exit(0);
}
K/=2;
for(i=0;i<N;i++)
{
for(int j=0;j<M;j++)
solve(i,j,K);
}
answer();
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
//created by Whiplash99
import java.io.*;
import java.util.*;
public class D
{
private static ArrayDeque<Integer>[][] edge;
private static long[][] dp[],w1,w2;
private static int N,M,K;
private static void answer()
{
StringBuilder sb=new StringBuilder();
for(int i=0;i<N;i++)
{
for (int j = 0; j < M; j++) sb.append(dp[i][j][K]).append(" ");
sb.append("\n");
}
System.out.println(sb);
}
private static long solve(int i, int j, int pos)
{
if(pos==0) return 0;
if(dp[i][j][pos]!=-1) return dp[i][j][pos];
long a=Long.MAX_VALUE/100;
if(i-1>=0) a=Math.min(a,solve(i-1,j,pos-1)+w2[i-1][j]);
if(i<N-1) a=Math.min(a,solve(i+1,j,pos-1)+w2[i][j]);
if(j-1>=0) a=Math.min(a,solve(i,j-1,pos-1)+w1[i][j-1]);
if(j<M-1) a=Math.min(a,solve(i,j+1,pos-1)+w1[i][j]);
return dp[i][j][pos]=a;
}
public static void main(String[] args) throws Exception
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
int i;
String[] s=br.readLine().trim().split(" ");
N=Integer.parseInt(s[0]);
M=Integer.parseInt(s[1]);
K=Integer.parseInt(s[2]);
edge=new ArrayDeque[N][M];
for(i=0;i<N;i++)
{
for(int j=0;j<M;j++)
edge[i][j]=new ArrayDeque<>();
}
w1=new long[N][M-1];
w2=new long[N-1][M];
dp=new long[N][M][K/2+1];
for(i=0;i<N;i++)
{
s=br.readLine().trim().split(" ");
for(int j=0;j<M-1;j++) w1[i][j]=Integer.parseInt(s[j])*2L;
}
for(i=0;i<N-1;i++)
{
s=br.readLine().trim().split(" ");
for(int j=0;j<M;j++) w2[i][j]=Integer.parseInt(s[j])*2L;
}
for(i=0;i<N;i++)
{
for(int j=0;j<M;j++)
Arrays.fill(dp[i][j],-1);
}
if(K%2==1)
{
K/=2;
answer();
System.exit(0);
}
K/=2;
for(i=0;i<N;i++)
{
for(int j=0;j<M;j++)
solve(i,j,K);
}
answer();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
//created by Whiplash99
import java.io.*;
import java.util.*;
public class D
{
private static ArrayDeque<Integer>[][] edge;
private static long[][] dp[],w1,w2;
private static int N,M,K;
private static void answer()
{
StringBuilder sb=new StringBuilder();
for(int i=0;i<N;i++)
{
for (int j = 0; j < M; j++) sb.append(dp[i][j][K]).append(" ");
sb.append("\n");
}
System.out.println(sb);
}
private static long solve(int i, int j, int pos)
{
if(pos==0) return 0;
if(dp[i][j][pos]!=-1) return dp[i][j][pos];
long a=Long.MAX_VALUE/100;
if(i-1>=0) a=Math.min(a,solve(i-1,j,pos-1)+w2[i-1][j]);
if(i<N-1) a=Math.min(a,solve(i+1,j,pos-1)+w2[i][j]);
if(j-1>=0) a=Math.min(a,solve(i,j-1,pos-1)+w1[i][j-1]);
if(j<M-1) a=Math.min(a,solve(i,j+1,pos-1)+w1[i][j]);
return dp[i][j][pos]=a;
}
public static void main(String[] args) throws Exception
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
int i;
String[] s=br.readLine().trim().split(" ");
N=Integer.parseInt(s[0]);
M=Integer.parseInt(s[1]);
K=Integer.parseInt(s[2]);
edge=new ArrayDeque[N][M];
for(i=0;i<N;i++)
{
for(int j=0;j<M;j++)
edge[i][j]=new ArrayDeque<>();
}
w1=new long[N][M-1];
w2=new long[N-1][M];
dp=new long[N][M][K/2+1];
for(i=0;i<N;i++)
{
s=br.readLine().trim().split(" ");
for(int j=0;j<M-1;j++) w1[i][j]=Integer.parseInt(s[j])*2L;
}
for(i=0;i<N-1;i++)
{
s=br.readLine().trim().split(" ");
for(int j=0;j<M;j++) w2[i][j]=Integer.parseInt(s[j])*2L;
}
for(i=0;i<N;i++)
{
for(int j=0;j<M;j++)
Arrays.fill(dp[i][j],-1);
}
if(K%2==1)
{
K/=2;
answer();
System.exit(0);
}
K/=2;
for(i=0;i<N;i++)
{
for(int j=0;j<M;j++)
solve(i,j,K);
}
answer();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,000 | 3,772 |
2,090 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
public class Main {
public static void main(String[] args) throws IOException {
BufferedReader r = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(r.readLine());
String[] line = r.readLine().split("[ ]+");
int[] a = new int[n];
for(int i = 0; i < n; i++)
a[i] = Integer.parseInt(line[i]);
Arrays.sort(a);
boolean found = false;
for(int i = 0; i < n && !found; i++)
if(a[i] != 1)found = true;
if(found){
System.out.println(1);
for(int i = 1; i < n; i++)
System.out.println(a[i-1]);
}else{
for(int i = 0; i < n-1; i++)
System.out.println(1);
System.out.println(2);
}
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
public class Main {
public static void main(String[] args) throws IOException {
BufferedReader r = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(r.readLine());
String[] line = r.readLine().split("[ ]+");
int[] a = new int[n];
for(int i = 0; i < n; i++)
a[i] = Integer.parseInt(line[i]);
Arrays.sort(a);
boolean found = false;
for(int i = 0; i < n && !found; i++)
if(a[i] != 1)found = true;
if(found){
System.out.println(1);
for(int i = 1; i < n; i++)
System.out.println(a[i-1]);
}else{
for(int i = 0; i < n-1; i++)
System.out.println(1);
System.out.println(2);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
public class Main {
public static void main(String[] args) throws IOException {
BufferedReader r = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(r.readLine());
String[] line = r.readLine().split("[ ]+");
int[] a = new int[n];
for(int i = 0; i < n; i++)
a[i] = Integer.parseInt(line[i]);
Arrays.sort(a);
boolean found = false;
for(int i = 0; i < n && !found; i++)
if(a[i] != 1)found = true;
if(found){
System.out.println(1);
for(int i = 1; i < n; i++)
System.out.println(a[i-1]);
}else{
for(int i = 0; i < n-1; i++)
System.out.println(1);
System.out.println(2);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 572 | 2,086 |
2,556 |
import java.io.BufferedWriter;
import java.io.DataInputStream;
import java.io.FileWriter;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.Arrays;
public class A {
public static void main(String[] args) throws Exception {
FastScanner sc = new FastScanner(System.in);
FastPrinter out = new FastPrinter(System.out);
new A().run(sc, out);
out.close();
}
public void run(FastScanner sc, FastPrinter out) throws Exception {
int N = sc.nextInt();
int[] arr = sc.nextIntArray(N);
Arrays.sort(arr);
boolean[] done = new boolean[N];
int ans = 0;
for (int i = 0; i < N; i++) {
if (done[i]) continue;
ans++;
for (int j = i; j < N; j++) {
if (arr[j] % arr[i] == 0) {
done[j] = true;
}
}
}
out.println(ans);
}
public void shuffle(int[] arr) {
for (int i = 0; i < arr.length; i++) {
int r = (int) (Math.random() * arr.length);
if (i != r) {
arr[i] ^= arr[r];
arr[r] ^= arr[i];
arr[i] ^= arr[r];
}
}
}
static class FastScanner {
final private int BUFFER_SIZE = 1 << 10;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public FastScanner() {
this(System.in);
}
public FastScanner(InputStream stream) {
din = new DataInputStream(stream);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public FastScanner(String fileName) throws IOException {
Path p = Paths.get(fileName);
buffer = Files.readAllBytes(p);
bytesRead = buffer.length;
}
int[] nextIntArray(int N) throws IOException {
int[] arr = new int[N];
for (int i = 0; i < N; i++) {
arr[i] = nextInt();
}
return arr;
}
String nextLine() throws IOException {
int c = read();
while (c != -1 && isEndline(c))
c = read();
if (c == -1) {
return null;
}
StringBuilder res = new StringBuilder();
do {
if (c >= 0) {
res.appendCodePoint(c);
}
c = read();
} while (!isEndline(c));
return res.toString();
}
boolean isEndline(int c) {
return c == '\n' || c == '\r' || c == -1;
}
String next() throws Exception {
int c = readOutSpaces();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public int nextInt() throws IOException {
int ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg) c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg) return -ret;
return ret;
}
public long nextLong() throws IOException {
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg) c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg) return -ret;
return ret;
}
public double nextDouble() throws IOException {
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg) c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (c == '.') {
while ((c = read()) >= '0' && c <= '9') {
ret += (c - '0') / (div *= 10);
}
}
if (neg) return -ret;
return ret;
}
private void fillBuffer() throws IOException {
if (din == null) {
bufferPointer = 0;
bytesRead = -1;
} else {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
}
if (bytesRead == -1) buffer[0] = -1;
}
private byte read() throws IOException {
if (bufferPointer == bytesRead) fillBuffer();
return buffer[bufferPointer++];
}
private int readOutSpaces() throws IOException {
while (true) {
if (bufferPointer == bytesRead) fillBuffer();
int c = buffer[bufferPointer++];
if (!isSpaceChar(c)) {
return c;
}
}
}
public void close() throws IOException {
if (din == null) return;
din.close();
}
public int[][] readGraph(int N, int M, boolean zeroIndexed, boolean bidirectional) throws Exception {
int[][] adj = new int[N][];
int[] numNodes = new int[N];
int[][] input = new int[M][2];
for (int i = 0; i < M; i++) {
int a = nextInt();
int b = nextInt();
if (zeroIndexed) {
a--;
b--;
}
input[i][0] = a;
input[i][1] = b;
numNodes[a]++;
if (bidirectional) numNodes[b]++;
}
for (int i = 0; i < N; i++) {
adj[i] = new int[numNodes[i]];
numNodes[i] = 0;
}
for (int i = 0; i < M; i++) {
int a = input[i][0];
int b = input[i][1];
adj[a][numNodes[a]++] = b;
if (bidirectional) adj[b][numNodes[b]++] = a;
}
return adj;
}
public int[][][] readWeightedGraph(int N, int M, boolean zeroIndexed, boolean bidirectional) throws Exception {
int[][][] adj = new int[N][][];
int[] numNodes = new int[N];
int[][] input = new int[M][3];
for (int i = 0; i < M; i++) {
int a = nextInt();
int b = nextInt();
if (zeroIndexed) {
a--;
b--;
}
int d = nextInt();
input[i][0] = a;
input[i][1] = b;
input[i][2] = d;
numNodes[a]++;
if (bidirectional) numNodes[b]++;
}
for (int i = 0; i < N; i++) {
adj[i] = new int[numNodes[i]][2];
numNodes[i] = 0;
}
for (int i = 0; i < M; i++) {
int a = input[i][0];
int b = input[i][1];
int d = input[i][2];
adj[a][numNodes[a]][0] = b;
adj[a][numNodes[a]][1] = d;
numNodes[a]++;
if (bidirectional) {
adj[b][numNodes[b]][0] = a;
adj[b][numNodes[b]][1] = d;
numNodes[b]++;
}
}
return adj;
}
}
static class FastPrinter {
static final char ENDL = '\n';
StringBuilder buf;
PrintWriter pw;
public FastPrinter(OutputStream stream) {
buf = new StringBuilder();
pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(stream)));
}
public FastPrinter(String fileName) throws Exception {
buf = new StringBuilder();
pw = new PrintWriter(new BufferedWriter(new FileWriter(fileName)));
}
public FastPrinter(StringBuilder buf) {
this.buf = buf;
}
public void print(int a) {
buf.append(a);
}
public void print(long a) {
buf.append(a);
}
public void print(char a) {
buf.append(a);
}
public void print(char[] a) {
buf.append(a);
}
public void print(double a) {
buf.append(a);
}
public void print(String a) {
buf.append(a);
}
public void print(Object a) {
buf.append(a.toString());
}
public void println() {
buf.append(ENDL);
}
public void println(int a) {
buf.append(a);
buf.append(ENDL);
}
public void println(long a) {
buf.append(a);
buf.append(ENDL);
}
public void println(char a) {
buf.append(a);
buf.append(ENDL);
}
public void println(char[] a) {
buf.append(a);
buf.append(ENDL);
}
public void println(double a) {
buf.append(a);
buf.append(ENDL);
}
public void println(String a) {
buf.append(a);
buf.append(ENDL);
}
public void println(Object a) {
buf.append(a.toString());
buf.append(ENDL);
}
public void printf(String format, Object... args) {
buf.append(String.format(format, args));
}
public void close() {
pw.print(buf);
pw.close();
}
public void flush() {
pw.print(buf);
pw.flush();
buf.setLength(0);
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedWriter;
import java.io.DataInputStream;
import java.io.FileWriter;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.Arrays;
public class A {
public static void main(String[] args) throws Exception {
FastScanner sc = new FastScanner(System.in);
FastPrinter out = new FastPrinter(System.out);
new A().run(sc, out);
out.close();
}
public void run(FastScanner sc, FastPrinter out) throws Exception {
int N = sc.nextInt();
int[] arr = sc.nextIntArray(N);
Arrays.sort(arr);
boolean[] done = new boolean[N];
int ans = 0;
for (int i = 0; i < N; i++) {
if (done[i]) continue;
ans++;
for (int j = i; j < N; j++) {
if (arr[j] % arr[i] == 0) {
done[j] = true;
}
}
}
out.println(ans);
}
public void shuffle(int[] arr) {
for (int i = 0; i < arr.length; i++) {
int r = (int) (Math.random() * arr.length);
if (i != r) {
arr[i] ^= arr[r];
arr[r] ^= arr[i];
arr[i] ^= arr[r];
}
}
}
static class FastScanner {
final private int BUFFER_SIZE = 1 << 10;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public FastScanner() {
this(System.in);
}
public FastScanner(InputStream stream) {
din = new DataInputStream(stream);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public FastScanner(String fileName) throws IOException {
Path p = Paths.get(fileName);
buffer = Files.readAllBytes(p);
bytesRead = buffer.length;
}
int[] nextIntArray(int N) throws IOException {
int[] arr = new int[N];
for (int i = 0; i < N; i++) {
arr[i] = nextInt();
}
return arr;
}
String nextLine() throws IOException {
int c = read();
while (c != -1 && isEndline(c))
c = read();
if (c == -1) {
return null;
}
StringBuilder res = new StringBuilder();
do {
if (c >= 0) {
res.appendCodePoint(c);
}
c = read();
} while (!isEndline(c));
return res.toString();
}
boolean isEndline(int c) {
return c == '\n' || c == '\r' || c == -1;
}
String next() throws Exception {
int c = readOutSpaces();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public int nextInt() throws IOException {
int ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg) c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg) return -ret;
return ret;
}
public long nextLong() throws IOException {
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg) c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg) return -ret;
return ret;
}
public double nextDouble() throws IOException {
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg) c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (c == '.') {
while ((c = read()) >= '0' && c <= '9') {
ret += (c - '0') / (div *= 10);
}
}
if (neg) return -ret;
return ret;
}
private void fillBuffer() throws IOException {
if (din == null) {
bufferPointer = 0;
bytesRead = -1;
} else {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
}
if (bytesRead == -1) buffer[0] = -1;
}
private byte read() throws IOException {
if (bufferPointer == bytesRead) fillBuffer();
return buffer[bufferPointer++];
}
private int readOutSpaces() throws IOException {
while (true) {
if (bufferPointer == bytesRead) fillBuffer();
int c = buffer[bufferPointer++];
if (!isSpaceChar(c)) {
return c;
}
}
}
public void close() throws IOException {
if (din == null) return;
din.close();
}
public int[][] readGraph(int N, int M, boolean zeroIndexed, boolean bidirectional) throws Exception {
int[][] adj = new int[N][];
int[] numNodes = new int[N];
int[][] input = new int[M][2];
for (int i = 0; i < M; i++) {
int a = nextInt();
int b = nextInt();
if (zeroIndexed) {
a--;
b--;
}
input[i][0] = a;
input[i][1] = b;
numNodes[a]++;
if (bidirectional) numNodes[b]++;
}
for (int i = 0; i < N; i++) {
adj[i] = new int[numNodes[i]];
numNodes[i] = 0;
}
for (int i = 0; i < M; i++) {
int a = input[i][0];
int b = input[i][1];
adj[a][numNodes[a]++] = b;
if (bidirectional) adj[b][numNodes[b]++] = a;
}
return adj;
}
public int[][][] readWeightedGraph(int N, int M, boolean zeroIndexed, boolean bidirectional) throws Exception {
int[][][] adj = new int[N][][];
int[] numNodes = new int[N];
int[][] input = new int[M][3];
for (int i = 0; i < M; i++) {
int a = nextInt();
int b = nextInt();
if (zeroIndexed) {
a--;
b--;
}
int d = nextInt();
input[i][0] = a;
input[i][1] = b;
input[i][2] = d;
numNodes[a]++;
if (bidirectional) numNodes[b]++;
}
for (int i = 0; i < N; i++) {
adj[i] = new int[numNodes[i]][2];
numNodes[i] = 0;
}
for (int i = 0; i < M; i++) {
int a = input[i][0];
int b = input[i][1];
int d = input[i][2];
adj[a][numNodes[a]][0] = b;
adj[a][numNodes[a]][1] = d;
numNodes[a]++;
if (bidirectional) {
adj[b][numNodes[b]][0] = a;
adj[b][numNodes[b]][1] = d;
numNodes[b]++;
}
}
return adj;
}
}
static class FastPrinter {
static final char ENDL = '\n';
StringBuilder buf;
PrintWriter pw;
public FastPrinter(OutputStream stream) {
buf = new StringBuilder();
pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(stream)));
}
public FastPrinter(String fileName) throws Exception {
buf = new StringBuilder();
pw = new PrintWriter(new BufferedWriter(new FileWriter(fileName)));
}
public FastPrinter(StringBuilder buf) {
this.buf = buf;
}
public void print(int a) {
buf.append(a);
}
public void print(long a) {
buf.append(a);
}
public void print(char a) {
buf.append(a);
}
public void print(char[] a) {
buf.append(a);
}
public void print(double a) {
buf.append(a);
}
public void print(String a) {
buf.append(a);
}
public void print(Object a) {
buf.append(a.toString());
}
public void println() {
buf.append(ENDL);
}
public void println(int a) {
buf.append(a);
buf.append(ENDL);
}
public void println(long a) {
buf.append(a);
buf.append(ENDL);
}
public void println(char a) {
buf.append(a);
buf.append(ENDL);
}
public void println(char[] a) {
buf.append(a);
buf.append(ENDL);
}
public void println(double a) {
buf.append(a);
buf.append(ENDL);
}
public void println(String a) {
buf.append(a);
buf.append(ENDL);
}
public void println(Object a) {
buf.append(a.toString());
buf.append(ENDL);
}
public void printf(String format, Object... args) {
buf.append(String.format(format, args));
}
public void close() {
pw.print(buf);
pw.close();
}
public void flush() {
pw.print(buf);
pw.flush();
buf.setLength(0);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedWriter;
import java.io.DataInputStream;
import java.io.FileWriter;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.Arrays;
public class A {
public static void main(String[] args) throws Exception {
FastScanner sc = new FastScanner(System.in);
FastPrinter out = new FastPrinter(System.out);
new A().run(sc, out);
out.close();
}
public void run(FastScanner sc, FastPrinter out) throws Exception {
int N = sc.nextInt();
int[] arr = sc.nextIntArray(N);
Arrays.sort(arr);
boolean[] done = new boolean[N];
int ans = 0;
for (int i = 0; i < N; i++) {
if (done[i]) continue;
ans++;
for (int j = i; j < N; j++) {
if (arr[j] % arr[i] == 0) {
done[j] = true;
}
}
}
out.println(ans);
}
public void shuffle(int[] arr) {
for (int i = 0; i < arr.length; i++) {
int r = (int) (Math.random() * arr.length);
if (i != r) {
arr[i] ^= arr[r];
arr[r] ^= arr[i];
arr[i] ^= arr[r];
}
}
}
static class FastScanner {
final private int BUFFER_SIZE = 1 << 10;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public FastScanner() {
this(System.in);
}
public FastScanner(InputStream stream) {
din = new DataInputStream(stream);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public FastScanner(String fileName) throws IOException {
Path p = Paths.get(fileName);
buffer = Files.readAllBytes(p);
bytesRead = buffer.length;
}
int[] nextIntArray(int N) throws IOException {
int[] arr = new int[N];
for (int i = 0; i < N; i++) {
arr[i] = nextInt();
}
return arr;
}
String nextLine() throws IOException {
int c = read();
while (c != -1 && isEndline(c))
c = read();
if (c == -1) {
return null;
}
StringBuilder res = new StringBuilder();
do {
if (c >= 0) {
res.appendCodePoint(c);
}
c = read();
} while (!isEndline(c));
return res.toString();
}
boolean isEndline(int c) {
return c == '\n' || c == '\r' || c == -1;
}
String next() throws Exception {
int c = readOutSpaces();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public int nextInt() throws IOException {
int ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg) c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg) return -ret;
return ret;
}
public long nextLong() throws IOException {
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg) c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg) return -ret;
return ret;
}
public double nextDouble() throws IOException {
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg) c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (c == '.') {
while ((c = read()) >= '0' && c <= '9') {
ret += (c - '0') / (div *= 10);
}
}
if (neg) return -ret;
return ret;
}
private void fillBuffer() throws IOException {
if (din == null) {
bufferPointer = 0;
bytesRead = -1;
} else {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
}
if (bytesRead == -1) buffer[0] = -1;
}
private byte read() throws IOException {
if (bufferPointer == bytesRead) fillBuffer();
return buffer[bufferPointer++];
}
private int readOutSpaces() throws IOException {
while (true) {
if (bufferPointer == bytesRead) fillBuffer();
int c = buffer[bufferPointer++];
if (!isSpaceChar(c)) {
return c;
}
}
}
public void close() throws IOException {
if (din == null) return;
din.close();
}
public int[][] readGraph(int N, int M, boolean zeroIndexed, boolean bidirectional) throws Exception {
int[][] adj = new int[N][];
int[] numNodes = new int[N];
int[][] input = new int[M][2];
for (int i = 0; i < M; i++) {
int a = nextInt();
int b = nextInt();
if (zeroIndexed) {
a--;
b--;
}
input[i][0] = a;
input[i][1] = b;
numNodes[a]++;
if (bidirectional) numNodes[b]++;
}
for (int i = 0; i < N; i++) {
adj[i] = new int[numNodes[i]];
numNodes[i] = 0;
}
for (int i = 0; i < M; i++) {
int a = input[i][0];
int b = input[i][1];
adj[a][numNodes[a]++] = b;
if (bidirectional) adj[b][numNodes[b]++] = a;
}
return adj;
}
public int[][][] readWeightedGraph(int N, int M, boolean zeroIndexed, boolean bidirectional) throws Exception {
int[][][] adj = new int[N][][];
int[] numNodes = new int[N];
int[][] input = new int[M][3];
for (int i = 0; i < M; i++) {
int a = nextInt();
int b = nextInt();
if (zeroIndexed) {
a--;
b--;
}
int d = nextInt();
input[i][0] = a;
input[i][1] = b;
input[i][2] = d;
numNodes[a]++;
if (bidirectional) numNodes[b]++;
}
for (int i = 0; i < N; i++) {
adj[i] = new int[numNodes[i]][2];
numNodes[i] = 0;
}
for (int i = 0; i < M; i++) {
int a = input[i][0];
int b = input[i][1];
int d = input[i][2];
adj[a][numNodes[a]][0] = b;
adj[a][numNodes[a]][1] = d;
numNodes[a]++;
if (bidirectional) {
adj[b][numNodes[b]][0] = a;
adj[b][numNodes[b]][1] = d;
numNodes[b]++;
}
}
return adj;
}
}
static class FastPrinter {
static final char ENDL = '\n';
StringBuilder buf;
PrintWriter pw;
public FastPrinter(OutputStream stream) {
buf = new StringBuilder();
pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(stream)));
}
public FastPrinter(String fileName) throws Exception {
buf = new StringBuilder();
pw = new PrintWriter(new BufferedWriter(new FileWriter(fileName)));
}
public FastPrinter(StringBuilder buf) {
this.buf = buf;
}
public void print(int a) {
buf.append(a);
}
public void print(long a) {
buf.append(a);
}
public void print(char a) {
buf.append(a);
}
public void print(char[] a) {
buf.append(a);
}
public void print(double a) {
buf.append(a);
}
public void print(String a) {
buf.append(a);
}
public void print(Object a) {
buf.append(a.toString());
}
public void println() {
buf.append(ENDL);
}
public void println(int a) {
buf.append(a);
buf.append(ENDL);
}
public void println(long a) {
buf.append(a);
buf.append(ENDL);
}
public void println(char a) {
buf.append(a);
buf.append(ENDL);
}
public void println(char[] a) {
buf.append(a);
buf.append(ENDL);
}
public void println(double a) {
buf.append(a);
buf.append(ENDL);
}
public void println(String a) {
buf.append(a);
buf.append(ENDL);
}
public void println(Object a) {
buf.append(a.toString());
buf.append(ENDL);
}
public void printf(String format, Object... args) {
buf.append(String.format(format, args));
}
public void close() {
pw.print(buf);
pw.close();
}
public void flush() {
pw.print(buf);
pw.flush();
buf.setLength(0);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,665 | 2,550 |
3,187 |
import java.util.Scanner;
public class A {
static Scanner scanner = new Scanner(System.in);
static int s;
public static void main(String[] args) {
s = scanner.nextInt();
if (s >= 0) {
System.out.println(s);
}
else {
if (s >= -10) {
System.out.println(0);
}
else {
int ss = -s;
int a, b;
a = ss % 10;
b = (ss % 100) / 10;
if (a > b) {
ss = ss / 10;
}
else {
ss = (ss / 100) * 10 + a;
}
if (ss == 0) {
System.out.println(0);
}
else {
System.out.println("-" + ss);
}
}
}
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class A {
static Scanner scanner = new Scanner(System.in);
static int s;
public static void main(String[] args) {
s = scanner.nextInt();
if (s >= 0) {
System.out.println(s);
}
else {
if (s >= -10) {
System.out.println(0);
}
else {
int ss = -s;
int a, b;
a = ss % 10;
b = (ss % 100) / 10;
if (a > b) {
ss = ss / 10;
}
else {
ss = (ss / 100) * 10 + a;
}
if (ss == 0) {
System.out.println(0);
}
else {
System.out.println("-" + ss);
}
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class A {
static Scanner scanner = new Scanner(System.in);
static int s;
public static void main(String[] args) {
s = scanner.nextInt();
if (s >= 0) {
System.out.println(s);
}
else {
if (s >= -10) {
System.out.println(0);
}
else {
int ss = -s;
int a, b;
a = ss % 10;
b = (ss % 100) / 10;
if (a > b) {
ss = ss / 10;
}
else {
ss = (ss / 100) * 10 + a;
}
if (ss == 0) {
System.out.println(0);
}
else {
System.out.println("-" + ss);
}
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 535 | 3,181 |
2,394 |
import java.util.*;
public class inversioncounting {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] permutation = new int[n];
for (int i = 0; i < n; i++) {
permutation[i] = sc.nextInt();
}
int m = sc.nextInt();
int[][] reverse = new int[m][2];
for (int i = 0; i < m; i++) {
reverse[i][0] = sc.nextInt();
reverse[i][1] = sc.nextInt();
}
int counter = 0;
for (int i = 0; i < n - 1; i++) {
for (int j = i + 1; j < n; j++) {
if (permutation[i] > permutation[j]) {
counter++;
}
}
}
boolean bayus = true;
if (counter % 2 == 1) {
bayus = false;
}
for (int i = 0; i < m; i++) {
int bobib = reverse[i][1] - reverse[i][0] + 1;
int bafry = nChoose2(bobib);
if (bafry%2 == 1) {
bayus = !bayus;
}
if (bayus) {
System.out.println("even");
}
else {
System.out.println("odd");
}
}
}
private static int nChoose2 (int n) {
return (n * (n-1)) / 2;
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
public class inversioncounting {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] permutation = new int[n];
for (int i = 0; i < n; i++) {
permutation[i] = sc.nextInt();
}
int m = sc.nextInt();
int[][] reverse = new int[m][2];
for (int i = 0; i < m; i++) {
reverse[i][0] = sc.nextInt();
reverse[i][1] = sc.nextInt();
}
int counter = 0;
for (int i = 0; i < n - 1; i++) {
for (int j = i + 1; j < n; j++) {
if (permutation[i] > permutation[j]) {
counter++;
}
}
}
boolean bayus = true;
if (counter % 2 == 1) {
bayus = false;
}
for (int i = 0; i < m; i++) {
int bobib = reverse[i][1] - reverse[i][0] + 1;
int bafry = nChoose2(bobib);
if (bafry%2 == 1) {
bayus = !bayus;
}
if (bayus) {
System.out.println("even");
}
else {
System.out.println("odd");
}
}
}
private static int nChoose2 (int n) {
return (n * (n-1)) / 2;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
public class inversioncounting {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] permutation = new int[n];
for (int i = 0; i < n; i++) {
permutation[i] = sc.nextInt();
}
int m = sc.nextInt();
int[][] reverse = new int[m][2];
for (int i = 0; i < m; i++) {
reverse[i][0] = sc.nextInt();
reverse[i][1] = sc.nextInt();
}
int counter = 0;
for (int i = 0; i < n - 1; i++) {
for (int j = i + 1; j < n; j++) {
if (permutation[i] > permutation[j]) {
counter++;
}
}
}
boolean bayus = true;
if (counter % 2 == 1) {
bayus = false;
}
for (int i = 0; i < m; i++) {
int bobib = reverse[i][1] - reverse[i][0] + 1;
int bafry = nChoose2(bobib);
if (bafry%2 == 1) {
bayus = !bayus;
}
if (bayus) {
System.out.println("even");
}
else {
System.out.println("odd");
}
}
}
private static int nChoose2 (int n) {
return (n * (n-1)) / 2;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 695 | 2,389 |
1,475 |
import java.util.Scanner;
public class Main3 {
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
long l = s.nextLong();
long r = s.nextLong();
String a = Long.toBinaryString(l);
String b = Long.toBinaryString(r);
while(a.length() < b.length()) a = "0" + a;
while(b.length() < a.length()) b = "0" + b;
String ans = "";
int ix = -1;
for (int i = 0; i < a.length(); i++) {
if(a.charAt(i) != b.charAt(i)){
break;
}
ans += a.charAt(i);
ix++;
}
// System.out.println(a);
// System.out.println(b);
for (int i = ix + 1; i < a.length(); i++) {
int c1 = a.charAt(i) - '0';
int c2 = b.charAt(i) - '0';
if(c1 == 0 && c2 == 0) ans += "1";
else if(c1 == 1 && c2 == 1) ans += "0";
else ans += (char)(c1 + '0');
}
long a1 = Long.parseLong(ans, 2);
long a2 = Long.parseLong(b,2);
// System.out.println(ans);
// System.out.println(b);
// System.out.println();
long xor = a1 ^ a2;
System.out.println(xor);
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class Main3 {
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
long l = s.nextLong();
long r = s.nextLong();
String a = Long.toBinaryString(l);
String b = Long.toBinaryString(r);
while(a.length() < b.length()) a = "0" + a;
while(b.length() < a.length()) b = "0" + b;
String ans = "";
int ix = -1;
for (int i = 0; i < a.length(); i++) {
if(a.charAt(i) != b.charAt(i)){
break;
}
ans += a.charAt(i);
ix++;
}
// System.out.println(a);
// System.out.println(b);
for (int i = ix + 1; i < a.length(); i++) {
int c1 = a.charAt(i) - '0';
int c2 = b.charAt(i) - '0';
if(c1 == 0 && c2 == 0) ans += "1";
else if(c1 == 1 && c2 == 1) ans += "0";
else ans += (char)(c1 + '0');
}
long a1 = Long.parseLong(ans, 2);
long a2 = Long.parseLong(b,2);
// System.out.println(ans);
// System.out.println(b);
// System.out.println();
long xor = a1 ^ a2;
System.out.println(xor);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class Main3 {
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
long l = s.nextLong();
long r = s.nextLong();
String a = Long.toBinaryString(l);
String b = Long.toBinaryString(r);
while(a.length() < b.length()) a = "0" + a;
while(b.length() < a.length()) b = "0" + b;
String ans = "";
int ix = -1;
for (int i = 0; i < a.length(); i++) {
if(a.charAt(i) != b.charAt(i)){
break;
}
ans += a.charAt(i);
ix++;
}
// System.out.println(a);
// System.out.println(b);
for (int i = ix + 1; i < a.length(); i++) {
int c1 = a.charAt(i) - '0';
int c2 = b.charAt(i) - '0';
if(c1 == 0 && c2 == 0) ans += "1";
else if(c1 == 1 && c2 == 1) ans += "0";
else ans += (char)(c1 + '0');
}
long a1 = Long.parseLong(ans, 2);
long a2 = Long.parseLong(b,2);
// System.out.println(ans);
// System.out.println(b);
// System.out.println();
long xor = a1 ^ a2;
System.out.println(xor);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 667 | 1,473 |
551 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastScanner in = new FastScanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskB solver = new TaskB();
solver.solve(1, in, out);
out.close();
}
static class TaskB {
public void solve(int testNumber, FastScanner in, PrintWriter out) {
int numTests = in.nextInt();
for (int test = 0; test < numTests; test++) {
int n = in.nextInt();
boolean can = false;
if (n % 2 == 0 && isSquare(n / 2)) {
can = true;
}
if (n % 4 == 0 && isSquare(n / 4)) {
can = true;
}
out.println(can ? "YES" : "NO");
}
}
private boolean isSquare(int n) {
int x = (int) Math.sqrt(n);
while (x * x > n) {
--x;
}
while (x * x < n) {
++x;
}
return x * x == n;
}
}
static class FastScanner {
private BufferedReader in;
private StringTokenizer st;
public FastScanner(InputStream stream) {
in = new BufferedReader(new InputStreamReader(stream));
}
public String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(in.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastScanner in = new FastScanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskB solver = new TaskB();
solver.solve(1, in, out);
out.close();
}
static class TaskB {
public void solve(int testNumber, FastScanner in, PrintWriter out) {
int numTests = in.nextInt();
for (int test = 0; test < numTests; test++) {
int n = in.nextInt();
boolean can = false;
if (n % 2 == 0 && isSquare(n / 2)) {
can = true;
}
if (n % 4 == 0 && isSquare(n / 4)) {
can = true;
}
out.println(can ? "YES" : "NO");
}
}
private boolean isSquare(int n) {
int x = (int) Math.sqrt(n);
while (x * x > n) {
--x;
}
while (x * x < n) {
++x;
}
return x * x == n;
}
}
static class FastScanner {
private BufferedReader in;
private StringTokenizer st;
public FastScanner(InputStream stream) {
in = new BufferedReader(new InputStreamReader(stream));
}
public String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(in.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastScanner in = new FastScanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskB solver = new TaskB();
solver.solve(1, in, out);
out.close();
}
static class TaskB {
public void solve(int testNumber, FastScanner in, PrintWriter out) {
int numTests = in.nextInt();
for (int test = 0; test < numTests; test++) {
int n = in.nextInt();
boolean can = false;
if (n % 2 == 0 && isSquare(n / 2)) {
can = true;
}
if (n % 4 == 0 && isSquare(n / 4)) {
can = true;
}
out.println(can ? "YES" : "NO");
}
}
private boolean isSquare(int n) {
int x = (int) Math.sqrt(n);
while (x * x > n) {
--x;
}
while (x * x < n) {
++x;
}
return x * x == n;
}
}
static class FastScanner {
private BufferedReader in;
private StringTokenizer st;
public FastScanner(InputStream stream) {
in = new BufferedReader(new InputStreamReader(stream));
}
public String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(in.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 765 | 550 |
1,207 |
import java.util.*;
import java.io.*;
public class Quiz
{
public static final int MOD = 1000000009;
public static void main(String[] args)
{
Scanner in = new Scanner(System.in);
long n = in.nextInt();
long m = in.nextInt();
long k = in.nextInt();
long low = Math.min(n - (k * (n - m)), m);
if(low < 0)
{
low = 0;
}
long result = 0;
if(low >= k)
{
long b = low / k;
result += fastExp(2, b + 1);
result -= 2;
if(result < 0)
{
result += MOD;
}
result *= k;
result %= MOD;
}
result += low % k;
result %= MOD;
result += m - low;
result %= MOD;
// System.out.println(low);
System.out.println(result);
}
public static long fastExp(int x, long pow)
{
if(pow == 0)
{
return 1;
}
long result = fastExp(x, pow / 2);
result *= result;
result %= MOD;
if(pow % 2 == 1)
{
result *= x;
result %= MOD;
}
return result;
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Quiz
{
public static final int MOD = 1000000009;
public static void main(String[] args)
{
Scanner in = new Scanner(System.in);
long n = in.nextInt();
long m = in.nextInt();
long k = in.nextInt();
long low = Math.min(n - (k * (n - m)), m);
if(low < 0)
{
low = 0;
}
long result = 0;
if(low >= k)
{
long b = low / k;
result += fastExp(2, b + 1);
result -= 2;
if(result < 0)
{
result += MOD;
}
result *= k;
result %= MOD;
}
result += low % k;
result %= MOD;
result += m - low;
result %= MOD;
// System.out.println(low);
System.out.println(result);
}
public static long fastExp(int x, long pow)
{
if(pow == 0)
{
return 1;
}
long result = fastExp(x, pow / 2);
result *= result;
result %= MOD;
if(pow % 2 == 1)
{
result *= x;
result %= MOD;
}
return result;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Quiz
{
public static final int MOD = 1000000009;
public static void main(String[] args)
{
Scanner in = new Scanner(System.in);
long n = in.nextInt();
long m = in.nextInt();
long k = in.nextInt();
long low = Math.min(n - (k * (n - m)), m);
if(low < 0)
{
low = 0;
}
long result = 0;
if(low >= k)
{
long b = low / k;
result += fastExp(2, b + 1);
result -= 2;
if(result < 0)
{
result += MOD;
}
result *= k;
result %= MOD;
}
result += low % k;
result %= MOD;
result += m - low;
result %= MOD;
// System.out.println(low);
System.out.println(result);
}
public static long fastExp(int x, long pow)
{
if(pow == 0)
{
return 1;
}
long result = fastExp(x, pow / 2);
result *= result;
result %= MOD;
if(pow % 2 == 1)
{
result *= x;
result %= MOD;
}
return result;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 653 | 1,206 |
2,375 |
//~~~~~~~~~~~~~~~~~~~~~~~@@@@@@@@@@@@@@@_____________K_____S_____J__________@@@@@@@@@@@@@@@@@@@@@@@@@@@@~~~~~~~~~~~~~~~~~~~~~~~~~~
//Date:00/00/17
//-------------
import java.util.*;
import java.io.*;
/*
[[[[[[[[[[[[[[[ ]]]]]]]]]]]]]]]
[:::::::::::::: ::::::::::::::]
[:::::::::::::: ::::::::::::::]
[::::::[[[[[[[: :]]]]]]]::::::]
[:::::[ ]:::::]
[:::::[ ]:::::]
[:::::[ ]:::::]
[:::::[ ]:::::]
[:::::[ CODE YOUR LIFE ]:::::]
[:::::[ Kripa Shankar jha ]:::::]
[:::::[ ]:::::]
[:::::[ ]:::::]
[:::::[ ]:::::]
[:::::[ ]:::::]
[::::::[[[[[[[: :]]]]]]]::::::]
[:::::::::::::: ::::::::::::::]
[:::::::::::::: ::::::::::::::]
[[[[[[[[[[[[[[[ ]]]]]]]]]]]]]]]
*/
public class prob3{
static Parser sc=new Parser(System.in);
static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out));
static int p[]=new int[100005];
public static void main(String[] args) throws IOException {
// use ((((((( sc ............... for input
int n=sc.nextInt();
int arr[]=new int[n];
for(int i=0;i<n;i++){
arr[i]=sc.nextInt();
}
int swap=0;
for(int i=0;i<n;i++){
for(int j=0;j<i;j++){
if(arr[i]<arr[j]){
swap++;
}
}
}
swap%=2;
int m=sc.nextInt();
for(int i=0;i<m;i++){
int a=sc.nextInt(),b=sc.nextInt();
swap+=((b-a)*((b-a)+1))/2;
swap%=2;
if(swap%2==0){System.out.println("even");}
else{System.out.println("odd");}
}
}
public static void union(int a,int b){
int i=find(a);
int j=find(b);
if(p[i]!=j){
p[i]=j;
}
}
public static int find(int a){
while(p[a]!=a){
a=p[a];
}
return a;
}
//___________________________Fast-Input_Output-------------------*******************
static class Parser {
final private int BUFFER_SIZE = 1 << 20; // 2^16, a good compromise for some problems
private InputStream din; // Underlying input stream
private byte[] buffer; // Self-maintained buffer
private int bufferPointer; // Current read position in the buffer
private int bytesRead; // Effective bytes in the buffer read from the input stream
private SpaceCharFilter filter;
public Parser(InputStream in) {
din = in;
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
/**
* Read the next integer from the input stream.
* @return The next integer.
* @throws IOException
*/
public int nextInt() throws IOException {
int result = 0;
byte c = read();
while (c <= ' ') c = read();
boolean neg = (c == '-');
if (neg) c = read();
while (c >= '0' && c <= '9') {
result = result * 10 + c - '0';
c = read();
}
if (neg) return -result;
return result;
}
public int nextLong() throws IOException {
int result = 0;
byte c = read();
while (c <= ' ') c = read();
boolean neg = (c == '-');
if (neg) c = read();
while (c >= '0' && c <= '9') {
result = result * 10 + c - '0';
c = read();
}
if (neg) return -result;
return result;
}
public String nextLine()throws IOException {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndOfLine(c)==true);
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c) {
return c == '\n' || c == '\r' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
/**
* Read the next byte of data from the input stream.
* @return the next byte of data, or -1 if the end of the stream is reached.
* @throws IOException if an I/O error occurs.
*/
public byte read() throws IOException {
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
/**
* Read data from the input stream into the buffer
* @throws IOException if an I/O error occurs.
*/
private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
//~~~~~~~~~~~~~~~~~~~~~~~@@@@@@@@@@@@@@@_____________K_____S_____J__________@@@@@@@@@@@@@@@@@@@@@@@@@@@@~~~~~~~~~~~~~~~~~~~~~~~~~~
//Date:00/00/17
//-------------
import java.util.*;
import java.io.*;
/*
[[[[[[[[[[[[[[[ ]]]]]]]]]]]]]]]
[:::::::::::::: ::::::::::::::]
[:::::::::::::: ::::::::::::::]
[::::::[[[[[[[: :]]]]]]]::::::]
[:::::[ ]:::::]
[:::::[ ]:::::]
[:::::[ ]:::::]
[:::::[ ]:::::]
[:::::[ CODE YOUR LIFE ]:::::]
[:::::[ Kripa Shankar jha ]:::::]
[:::::[ ]:::::]
[:::::[ ]:::::]
[:::::[ ]:::::]
[:::::[ ]:::::]
[::::::[[[[[[[: :]]]]]]]::::::]
[:::::::::::::: ::::::::::::::]
[:::::::::::::: ::::::::::::::]
[[[[[[[[[[[[[[[ ]]]]]]]]]]]]]]]
*/
public class prob3{
static Parser sc=new Parser(System.in);
static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out));
static int p[]=new int[100005];
public static void main(String[] args) throws IOException {
// use ((((((( sc ............... for input
int n=sc.nextInt();
int arr[]=new int[n];
for(int i=0;i<n;i++){
arr[i]=sc.nextInt();
}
int swap=0;
for(int i=0;i<n;i++){
for(int j=0;j<i;j++){
if(arr[i]<arr[j]){
swap++;
}
}
}
swap%=2;
int m=sc.nextInt();
for(int i=0;i<m;i++){
int a=sc.nextInt(),b=sc.nextInt();
swap+=((b-a)*((b-a)+1))/2;
swap%=2;
if(swap%2==0){System.out.println("even");}
else{System.out.println("odd");}
}
}
public static void union(int a,int b){
int i=find(a);
int j=find(b);
if(p[i]!=j){
p[i]=j;
}
}
public static int find(int a){
while(p[a]!=a){
a=p[a];
}
return a;
}
//___________________________Fast-Input_Output-------------------*******************
static class Parser {
final private int BUFFER_SIZE = 1 << 20; // 2^16, a good compromise for some problems
private InputStream din; // Underlying input stream
private byte[] buffer; // Self-maintained buffer
private int bufferPointer; // Current read position in the buffer
private int bytesRead; // Effective bytes in the buffer read from the input stream
private SpaceCharFilter filter;
public Parser(InputStream in) {
din = in;
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
/**
* Read the next integer from the input stream.
* @return The next integer.
* @throws IOException
*/
public int nextInt() throws IOException {
int result = 0;
byte c = read();
while (c <= ' ') c = read();
boolean neg = (c == '-');
if (neg) c = read();
while (c >= '0' && c <= '9') {
result = result * 10 + c - '0';
c = read();
}
if (neg) return -result;
return result;
}
public int nextLong() throws IOException {
int result = 0;
byte c = read();
while (c <= ' ') c = read();
boolean neg = (c == '-');
if (neg) c = read();
while (c >= '0' && c <= '9') {
result = result * 10 + c - '0';
c = read();
}
if (neg) return -result;
return result;
}
public String nextLine()throws IOException {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndOfLine(c)==true);
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c) {
return c == '\n' || c == '\r' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
/**
* Read the next byte of data from the input stream.
* @return the next byte of data, or -1 if the end of the stream is reached.
* @throws IOException if an I/O error occurs.
*/
public byte read() throws IOException {
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
/**
* Read data from the input stream into the buffer
* @throws IOException if an I/O error occurs.
*/
private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
//~~~~~~~~~~~~~~~~~~~~~~~@@@@@@@@@@@@@@@_____________K_____S_____J__________@@@@@@@@@@@@@@@@@@@@@@@@@@@@~~~~~~~~~~~~~~~~~~~~~~~~~~
//Date:00/00/17
//-------------
import java.util.*;
import java.io.*;
/*
[[[[[[[[[[[[[[[ ]]]]]]]]]]]]]]]
[:::::::::::::: ::::::::::::::]
[:::::::::::::: ::::::::::::::]
[::::::[[[[[[[: :]]]]]]]::::::]
[:::::[ ]:::::]
[:::::[ ]:::::]
[:::::[ ]:::::]
[:::::[ ]:::::]
[:::::[ CODE YOUR LIFE ]:::::]
[:::::[ Kripa Shankar jha ]:::::]
[:::::[ ]:::::]
[:::::[ ]:::::]
[:::::[ ]:::::]
[:::::[ ]:::::]
[::::::[[[[[[[: :]]]]]]]::::::]
[:::::::::::::: ::::::::::::::]
[:::::::::::::: ::::::::::::::]
[[[[[[[[[[[[[[[ ]]]]]]]]]]]]]]]
*/
public class prob3{
static Parser sc=new Parser(System.in);
static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out));
static int p[]=new int[100005];
public static void main(String[] args) throws IOException {
// use ((((((( sc ............... for input
int n=sc.nextInt();
int arr[]=new int[n];
for(int i=0;i<n;i++){
arr[i]=sc.nextInt();
}
int swap=0;
for(int i=0;i<n;i++){
for(int j=0;j<i;j++){
if(arr[i]<arr[j]){
swap++;
}
}
}
swap%=2;
int m=sc.nextInt();
for(int i=0;i<m;i++){
int a=sc.nextInt(),b=sc.nextInt();
swap+=((b-a)*((b-a)+1))/2;
swap%=2;
if(swap%2==0){System.out.println("even");}
else{System.out.println("odd");}
}
}
public static void union(int a,int b){
int i=find(a);
int j=find(b);
if(p[i]!=j){
p[i]=j;
}
}
public static int find(int a){
while(p[a]!=a){
a=p[a];
}
return a;
}
//___________________________Fast-Input_Output-------------------*******************
static class Parser {
final private int BUFFER_SIZE = 1 << 20; // 2^16, a good compromise for some problems
private InputStream din; // Underlying input stream
private byte[] buffer; // Self-maintained buffer
private int bufferPointer; // Current read position in the buffer
private int bytesRead; // Effective bytes in the buffer read from the input stream
private SpaceCharFilter filter;
public Parser(InputStream in) {
din = in;
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
/**
* Read the next integer from the input stream.
* @return The next integer.
* @throws IOException
*/
public int nextInt() throws IOException {
int result = 0;
byte c = read();
while (c <= ' ') c = read();
boolean neg = (c == '-');
if (neg) c = read();
while (c >= '0' && c <= '9') {
result = result * 10 + c - '0';
c = read();
}
if (neg) return -result;
return result;
}
public int nextLong() throws IOException {
int result = 0;
byte c = read();
while (c <= ' ') c = read();
boolean neg = (c == '-');
if (neg) c = read();
while (c >= '0' && c <= '9') {
result = result * 10 + c - '0';
c = read();
}
if (neg) return -result;
return result;
}
public String nextLine()throws IOException {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndOfLine(c)==true);
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c) {
return c == '\n' || c == '\r' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
/**
* Read the next byte of data from the input stream.
* @return the next byte of data, or -1 if the end of the stream is reached.
* @throws IOException if an I/O error occurs.
*/
public byte read() throws IOException {
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
/**
* Read data from the input stream into the buffer
* @throws IOException if an I/O error occurs.
*/
private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,609 | 2,370 |
2,070 |
import java.io.* ;
import java.util.*;
import static java.lang.Math.* ;
import static java.util.Arrays.* ;
public class A {
public static void main(String[] args) throws IOException {
new A().solveProblem();
out.close();
}
static Scanner in = new Scanner(new InputStreamReader(System.in));
//static BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
static PrintStream out = new PrintStream(new BufferedOutputStream(System.out));
public void solveProblem() {
int n = in.nextInt() ;
E[] get = new E[n] ;
for( int i = 0 ; i < n ; i++ ){
get[i] = new E(i,in.nextInt()) ;
}
sort(get) ;
if( get[n-1].g == 1){
get[n-1].g = 2 ;
}else{
get[n-1].g = 1 ;
}
sort(get) ;
for( int i = 0 ; i < n - 1 ; i++ )
out.print(get[i].g +" " ) ;
out.println(get[n-1].g) ;
}
class E implements Comparable<E>{
int g ;
int index ;
public E( int index, int g){
this.g = g ;
this.index = index ;
}
public int compareTo( E e){
return g - e.g ;
}
}
static int[] readGet( int n ){
int[] get = new int[n] ;
for( int i = 0 ; i < n ; i++ )
get[i] = in.nextInt();
return get ;
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.* ;
import java.util.*;
import static java.lang.Math.* ;
import static java.util.Arrays.* ;
public class A {
public static void main(String[] args) throws IOException {
new A().solveProblem();
out.close();
}
static Scanner in = new Scanner(new InputStreamReader(System.in));
//static BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
static PrintStream out = new PrintStream(new BufferedOutputStream(System.out));
public void solveProblem() {
int n = in.nextInt() ;
E[] get = new E[n] ;
for( int i = 0 ; i < n ; i++ ){
get[i] = new E(i,in.nextInt()) ;
}
sort(get) ;
if( get[n-1].g == 1){
get[n-1].g = 2 ;
}else{
get[n-1].g = 1 ;
}
sort(get) ;
for( int i = 0 ; i < n - 1 ; i++ )
out.print(get[i].g +" " ) ;
out.println(get[n-1].g) ;
}
class E implements Comparable<E>{
int g ;
int index ;
public E( int index, int g){
this.g = g ;
this.index = index ;
}
public int compareTo( E e){
return g - e.g ;
}
}
static int[] readGet( int n ){
int[] get = new int[n] ;
for( int i = 0 ; i < n ; i++ )
get[i] = in.nextInt();
return get ;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.* ;
import java.util.*;
import static java.lang.Math.* ;
import static java.util.Arrays.* ;
public class A {
public static void main(String[] args) throws IOException {
new A().solveProblem();
out.close();
}
static Scanner in = new Scanner(new InputStreamReader(System.in));
//static BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
static PrintStream out = new PrintStream(new BufferedOutputStream(System.out));
public void solveProblem() {
int n = in.nextInt() ;
E[] get = new E[n] ;
for( int i = 0 ; i < n ; i++ ){
get[i] = new E(i,in.nextInt()) ;
}
sort(get) ;
if( get[n-1].g == 1){
get[n-1].g = 2 ;
}else{
get[n-1].g = 1 ;
}
sort(get) ;
for( int i = 0 ; i < n - 1 ; i++ )
out.print(get[i].g +" " ) ;
out.println(get[n-1].g) ;
}
class E implements Comparable<E>{
int g ;
int index ;
public E( int index, int g){
this.g = g ;
this.index = index ;
}
public int compareTo( E e){
return g - e.g ;
}
}
static int[] readGet( int n ){
int[] get = new int[n] ;
for( int i = 0 ; i < n ; i++ )
get[i] = in.nextInt();
return get ;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 714 | 2,066 |
2,320 |
//package round455;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
public class C {
InputStream is;
PrintWriter out;
String INPUT = "";
void solve()
{
int n = ni();
int mod = 1000000007;
long[] dp = new long[5005];
dp[0] = 1;
for(int i = 0;i < n;i++){
char c = nc();
if(c == 's'){
if(i < n-1){
for(int j = 5003;j >= 0;j--){
dp[j] += dp[j+1];
if(dp[j] >= mod)dp[j] -= mod;
}
}
}else{
for(int j = 5003;j >= 0;j--){
dp[j+1] = dp[j];
}
dp[0] = 0;
}
}
long ans = 0;
for(int i = 0;i < 5005;i++)ans += dp[i];
out.println(ans % mod);
}
void run() throws Exception
{
is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception { new C().run(); }
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni()
{
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private boolean oj = System.getProperty("ONLINE_JUDGE") != null;
private void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); }
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
//package round455;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
public class C {
InputStream is;
PrintWriter out;
String INPUT = "";
void solve()
{
int n = ni();
int mod = 1000000007;
long[] dp = new long[5005];
dp[0] = 1;
for(int i = 0;i < n;i++){
char c = nc();
if(c == 's'){
if(i < n-1){
for(int j = 5003;j >= 0;j--){
dp[j] += dp[j+1];
if(dp[j] >= mod)dp[j] -= mod;
}
}
}else{
for(int j = 5003;j >= 0;j--){
dp[j+1] = dp[j];
}
dp[0] = 0;
}
}
long ans = 0;
for(int i = 0;i < 5005;i++)ans += dp[i];
out.println(ans % mod);
}
void run() throws Exception
{
is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception { new C().run(); }
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni()
{
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private boolean oj = System.getProperty("ONLINE_JUDGE") != null;
private void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); }
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
//package round455;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
public class C {
InputStream is;
PrintWriter out;
String INPUT = "";
void solve()
{
int n = ni();
int mod = 1000000007;
long[] dp = new long[5005];
dp[0] = 1;
for(int i = 0;i < n;i++){
char c = nc();
if(c == 's'){
if(i < n-1){
for(int j = 5003;j >= 0;j--){
dp[j] += dp[j+1];
if(dp[j] >= mod)dp[j] -= mod;
}
}
}else{
for(int j = 5003;j >= 0;j--){
dp[j+1] = dp[j];
}
dp[0] = 0;
}
}
long ans = 0;
for(int i = 0;i < 5005;i++)ans += dp[i];
out.println(ans % mod);
}
void run() throws Exception
{
is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception { new C().run(); }
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni()
{
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private boolean oj = System.getProperty("ONLINE_JUDGE") != null;
private void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); }
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,412 | 2,315 |
4,385 |
import java.util.*;
public class cf11d {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int m = in.nextInt();
boolean[][] g = new boolean[n][n];
boolean[] ok = new boolean[1<<n];
int[] f = new int[1<<n];
for(int i=1; i<(1<<n); i++) {
ok[i] = Integer.bitCount(i)>=3;
f[i] = first(i);
}
for(int i=0; i<m; i++) {
int a = in.nextInt()-1;
int b = in.nextInt()-1;
g[a][b] = g[b][a] = true;
}
long[][] dp = new long[n][1<<n];
for(int i=0; i<n; i++)
dp[i][1<<i] = 1;
for(int i=1; i<(1<<n); i++)
for(int j=0; j<n; j++)
for(int k=f[i]+1; k<n; k++)
if((i&(1<<k)) == 0 && g[j][k])
dp[k][i^(1<<k)] += dp[j][i];
long ret = 0;
for(int i=1; i<(1<<n); i++)
for(int j=0; j<n; j++)
if(ok[i] && j != f[i])
ret += g[j][f[i]]?dp[j][i]:0;
System.out.println(ret/2);
}
static int first(int x) {
int ret = 0;
while(x%2==0) {
x/=2;
ret++;
}
return ret;
}
}
/*
19 171
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10
1 11
1 12
1 13
1 14
1 15
1 16
1 17
1 18
1 19
2 3
2 4
2 5
2 6
2 7
2 8
2 9
2 10
2 11
2 12
2 13
2 14
2 15
2 16
2 17
2 18
2 19
3 4
3 5
3 6
3 7
3 8
3 9
3 10
3 11
3 12
3 13
3 14
3 15
3 16
3 17
3 18
3 19
4 5
4 6
4 7
4 8
4 9
4 10
4 11
4 12
4 13
4 14
4 15
4 16
4 17
4 18
4 19
5 6
5 7
5 8
5 9
5 10
5 11
5 12
5 13
5 14
5 15
5 16
5 17
5 18
5 19
6 7
6 8
6 9
6 10
6 11
6 12
6 13
6 14
6 15
6 16
6 17
6 18
6 19
7 8
7 9
7 10
7 11
7 12
7 13
7 14
7 15
7 16
7 17
7 18
7 19
8 9
8 10
8 11
8 12
8 13
8 14
8 15
8 16
8 17
8 18
8 19
9 10
9 11
9 12
9 13
9 14
9 15
9 16
9 17
9 18
9 19
10 11
10 12
10 13
10 14
10 15
10 16
10 17
10 18
10 19
11 12
11 13
11 14
11 15
11 16
11 17
11 18
11 19
12 13
12 14
12 15
12 16
12 17
12 18
12 19
13 14
13 15
13 16
13 17
13 18
13 19
14 15
14 16
14 17
14 18
14 19
15 16
15 17
15 18
15 19
16 17
16 18
16 19
17 18
17 19
18 19
*/
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
public class cf11d {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int m = in.nextInt();
boolean[][] g = new boolean[n][n];
boolean[] ok = new boolean[1<<n];
int[] f = new int[1<<n];
for(int i=1; i<(1<<n); i++) {
ok[i] = Integer.bitCount(i)>=3;
f[i] = first(i);
}
for(int i=0; i<m; i++) {
int a = in.nextInt()-1;
int b = in.nextInt()-1;
g[a][b] = g[b][a] = true;
}
long[][] dp = new long[n][1<<n];
for(int i=0; i<n; i++)
dp[i][1<<i] = 1;
for(int i=1; i<(1<<n); i++)
for(int j=0; j<n; j++)
for(int k=f[i]+1; k<n; k++)
if((i&(1<<k)) == 0 && g[j][k])
dp[k][i^(1<<k)] += dp[j][i];
long ret = 0;
for(int i=1; i<(1<<n); i++)
for(int j=0; j<n; j++)
if(ok[i] && j != f[i])
ret += g[j][f[i]]?dp[j][i]:0;
System.out.println(ret/2);
}
static int first(int x) {
int ret = 0;
while(x%2==0) {
x/=2;
ret++;
}
return ret;
}
}
/*
19 171
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10
1 11
1 12
1 13
1 14
1 15
1 16
1 17
1 18
1 19
2 3
2 4
2 5
2 6
2 7
2 8
2 9
2 10
2 11
2 12
2 13
2 14
2 15
2 16
2 17
2 18
2 19
3 4
3 5
3 6
3 7
3 8
3 9
3 10
3 11
3 12
3 13
3 14
3 15
3 16
3 17
3 18
3 19
4 5
4 6
4 7
4 8
4 9
4 10
4 11
4 12
4 13
4 14
4 15
4 16
4 17
4 18
4 19
5 6
5 7
5 8
5 9
5 10
5 11
5 12
5 13
5 14
5 15
5 16
5 17
5 18
5 19
6 7
6 8
6 9
6 10
6 11
6 12
6 13
6 14
6 15
6 16
6 17
6 18
6 19
7 8
7 9
7 10
7 11
7 12
7 13
7 14
7 15
7 16
7 17
7 18
7 19
8 9
8 10
8 11
8 12
8 13
8 14
8 15
8 16
8 17
8 18
8 19
9 10
9 11
9 12
9 13
9 14
9 15
9 16
9 17
9 18
9 19
10 11
10 12
10 13
10 14
10 15
10 16
10 17
10 18
10 19
11 12
11 13
11 14
11 15
11 16
11 17
11 18
11 19
12 13
12 14
12 15
12 16
12 17
12 18
12 19
13 14
13 15
13 16
13 17
13 18
13 19
14 15
14 16
14 17
14 18
14 19
15 16
15 17
15 18
15 19
16 17
16 18
16 19
17 18
17 19
18 19
*/
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
public class cf11d {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int m = in.nextInt();
boolean[][] g = new boolean[n][n];
boolean[] ok = new boolean[1<<n];
int[] f = new int[1<<n];
for(int i=1; i<(1<<n); i++) {
ok[i] = Integer.bitCount(i)>=3;
f[i] = first(i);
}
for(int i=0; i<m; i++) {
int a = in.nextInt()-1;
int b = in.nextInt()-1;
g[a][b] = g[b][a] = true;
}
long[][] dp = new long[n][1<<n];
for(int i=0; i<n; i++)
dp[i][1<<i] = 1;
for(int i=1; i<(1<<n); i++)
for(int j=0; j<n; j++)
for(int k=f[i]+1; k<n; k++)
if((i&(1<<k)) == 0 && g[j][k])
dp[k][i^(1<<k)] += dp[j][i];
long ret = 0;
for(int i=1; i<(1<<n); i++)
for(int j=0; j<n; j++)
if(ok[i] && j != f[i])
ret += g[j][f[i]]?dp[j][i]:0;
System.out.println(ret/2);
}
static int first(int x) {
int ret = 0;
while(x%2==0) {
x/=2;
ret++;
}
return ret;
}
}
/*
19 171
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10
1 11
1 12
1 13
1 14
1 15
1 16
1 17
1 18
1 19
2 3
2 4
2 5
2 6
2 7
2 8
2 9
2 10
2 11
2 12
2 13
2 14
2 15
2 16
2 17
2 18
2 19
3 4
3 5
3 6
3 7
3 8
3 9
3 10
3 11
3 12
3 13
3 14
3 15
3 16
3 17
3 18
3 19
4 5
4 6
4 7
4 8
4 9
4 10
4 11
4 12
4 13
4 14
4 15
4 16
4 17
4 18
4 19
5 6
5 7
5 8
5 9
5 10
5 11
5 12
5 13
5 14
5 15
5 16
5 17
5 18
5 19
6 7
6 8
6 9
6 10
6 11
6 12
6 13
6 14
6 15
6 16
6 17
6 18
6 19
7 8
7 9
7 10
7 11
7 12
7 13
7 14
7 15
7 16
7 17
7 18
7 19
8 9
8 10
8 11
8 12
8 13
8 14
8 15
8 16
8 17
8 18
8 19
9 10
9 11
9 12
9 13
9 14
9 15
9 16
9 17
9 18
9 19
10 11
10 12
10 13
10 14
10 15
10 16
10 17
10 18
10 19
11 12
11 13
11 14
11 15
11 16
11 17
11 18
11 19
12 13
12 14
12 15
12 16
12 17
12 18
12 19
13 14
13 15
13 16
13 17
13 18
13 19
14 15
14 16
14 17
14 18
14 19
15 16
15 17
15 18
15 19
16 17
16 18
16 19
17 18
17 19
18 19
*/
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,593 | 4,374 |
1,552 |
/* Codeforces Template */
import java.io.*;
import java.util.*;
import static java.lang.Math.*;
import static java.util.Arrays.fill;
import static java.util.Arrays.binarySearch;
import static java.util.Arrays.sort;
public class Main {
static long initTime;
static final Random rnd = new Random(7777L);
static boolean writeLog = false;
public static void main(String[] args) throws IOException {
initTime = System.currentTimeMillis();
try {
writeLog = "true".equals(System.getProperty("LOCAL_RUN_7777"));
} catch (SecurityException e) {}
new Thread(null, new Runnable() {
public void run() {
try {
try {
if (new File("input.txt").exists())
System.setIn(new FileInputStream("input.txt"));
} catch (SecurityException e) {}
long prevTime = System.currentTimeMillis();
new Main().run();
log("Total time: " + (System.currentTimeMillis() - prevTime) + " ms");
log("Memory status: " + memoryStatus());
} catch (IOException e) {
e.printStackTrace();
}
}
}, "1", 1L << 24).start();
}
void run() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.close();
in.close();
}
/***************************************************************
* Solution
**************************************************************/
void solve() throws IOException {
int n = nextInt();
long k = nextLong();
int[] a = nextIntArray(n);
Set<Long> bad = new TreeSet<Long>();
sort(a);
int ans = 0;
for (int x : a) {
if (!bad.contains((long) x)) {
bad.add(x * k);
ans++;
}
}
out.println(ans);
}
/***************************************************************
* Input
**************************************************************/
BufferedReader in;
PrintWriter out;
StringTokenizer st = new StringTokenizer("");
String nextToken() throws IOException {
while (!st.hasMoreTokens())
st = new StringTokenizer(in.readLine());
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
int[] nextIntArray(int size) throws IOException {
int[] ret = new int [size];
for (int i = 0; i < size; i++)
ret[i] = nextInt();
return ret;
}
long[] nextLongArray(int size) throws IOException {
long[] ret = new long [size];
for (int i = 0; i < size; i++)
ret[i] = nextLong();
return ret;
}
double[] nextDoubleArray(int size) throws IOException {
double[] ret = new double [size];
for (int i = 0; i < size; i++)
ret[i] = nextDouble();
return ret;
}
String nextLine() throws IOException {
st = new StringTokenizer("");
return in.readLine();
}
boolean EOF() throws IOException {
while (!st.hasMoreTokens()) {
String s = in.readLine();
if (s == null)
return true;
st = new StringTokenizer(s);
}
return false;
}
/***************************************************************
* Output
**************************************************************/
void printRepeat(String s, int count) {
for (int i = 0; i < count; i++)
out.print(s);
}
void printArray(int[] array) {
if (array == null || array.length == 0)
return;
for (int i = 0; i < array.length; i++) {
if (i > 0) out.print(' ');
out.print(array[i]);
}
out.println();
}
void printArray(long[] array) {
if (array == null || array.length == 0)
return;
for (int i = 0; i < array.length; i++) {
if (i > 0) out.print(' ');
out.print(array[i]);
}
out.println();
}
void printArray(double[] array) {
if (array == null || array.length == 0)
return;
for (int i = 0; i < array.length; i++) {
if (i > 0) out.print(' ');
out.print(array[i]);
}
out.println();
}
void printArray(double[] array, String spec) {
if (array == null || array.length == 0)
return;
for (int i = 0; i < array.length; i++) {
if (i > 0) out.print(' ');
out.printf(Locale.US, spec, array[i]);
}
out.println();
}
void printArray(Object[] array) {
if (array == null || array.length == 0)
return;
boolean blank = false;
for (Object x : array) {
if (blank) out.print(' '); else blank = true;
out.print(x);
}
out.println();
}
@SuppressWarnings("rawtypes")
void printCollection(Collection collection) {
if (collection == null || collection.isEmpty())
return;
boolean blank = false;
for (Object x : collection) {
if (blank) out.print(' '); else blank = true;
out.print(x);
}
out.println();
}
/***************************************************************
* Utility
**************************************************************/
static String memoryStatus() {
return (Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory() >> 20) + "/" + (Runtime.getRuntime().totalMemory() >> 20) + " MB";
}
static void checkMemory() {
System.err.println(memoryStatus());
}
static long prevTimeStamp = Long.MIN_VALUE;
static void updateTimer() {
prevTimeStamp = System.currentTimeMillis();
}
static long elapsedTime() {
return (System.currentTimeMillis() - prevTimeStamp);
}
static void checkTimer() {
System.err.println(elapsedTime() + " ms");
}
static void chk(boolean f) {
if (!f) throw new RuntimeException("Assert failed");
}
static void chk(boolean f, String format, Object ... args) {
if (!f) throw new RuntimeException(String.format(format, args));
}
static void log(String format, Object ... args) {
if (writeLog) System.err.println(String.format(Locale.US, format, args));
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
/* Codeforces Template */
import java.io.*;
import java.util.*;
import static java.lang.Math.*;
import static java.util.Arrays.fill;
import static java.util.Arrays.binarySearch;
import static java.util.Arrays.sort;
public class Main {
static long initTime;
static final Random rnd = new Random(7777L);
static boolean writeLog = false;
public static void main(String[] args) throws IOException {
initTime = System.currentTimeMillis();
try {
writeLog = "true".equals(System.getProperty("LOCAL_RUN_7777"));
} catch (SecurityException e) {}
new Thread(null, new Runnable() {
public void run() {
try {
try {
if (new File("input.txt").exists())
System.setIn(new FileInputStream("input.txt"));
} catch (SecurityException e) {}
long prevTime = System.currentTimeMillis();
new Main().run();
log("Total time: " + (System.currentTimeMillis() - prevTime) + " ms");
log("Memory status: " + memoryStatus());
} catch (IOException e) {
e.printStackTrace();
}
}
}, "1", 1L << 24).start();
}
void run() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.close();
in.close();
}
/***************************************************************
* Solution
**************************************************************/
void solve() throws IOException {
int n = nextInt();
long k = nextLong();
int[] a = nextIntArray(n);
Set<Long> bad = new TreeSet<Long>();
sort(a);
int ans = 0;
for (int x : a) {
if (!bad.contains((long) x)) {
bad.add(x * k);
ans++;
}
}
out.println(ans);
}
/***************************************************************
* Input
**************************************************************/
BufferedReader in;
PrintWriter out;
StringTokenizer st = new StringTokenizer("");
String nextToken() throws IOException {
while (!st.hasMoreTokens())
st = new StringTokenizer(in.readLine());
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
int[] nextIntArray(int size) throws IOException {
int[] ret = new int [size];
for (int i = 0; i < size; i++)
ret[i] = nextInt();
return ret;
}
long[] nextLongArray(int size) throws IOException {
long[] ret = new long [size];
for (int i = 0; i < size; i++)
ret[i] = nextLong();
return ret;
}
double[] nextDoubleArray(int size) throws IOException {
double[] ret = new double [size];
for (int i = 0; i < size; i++)
ret[i] = nextDouble();
return ret;
}
String nextLine() throws IOException {
st = new StringTokenizer("");
return in.readLine();
}
boolean EOF() throws IOException {
while (!st.hasMoreTokens()) {
String s = in.readLine();
if (s == null)
return true;
st = new StringTokenizer(s);
}
return false;
}
/***************************************************************
* Output
**************************************************************/
void printRepeat(String s, int count) {
for (int i = 0; i < count; i++)
out.print(s);
}
void printArray(int[] array) {
if (array == null || array.length == 0)
return;
for (int i = 0; i < array.length; i++) {
if (i > 0) out.print(' ');
out.print(array[i]);
}
out.println();
}
void printArray(long[] array) {
if (array == null || array.length == 0)
return;
for (int i = 0; i < array.length; i++) {
if (i > 0) out.print(' ');
out.print(array[i]);
}
out.println();
}
void printArray(double[] array) {
if (array == null || array.length == 0)
return;
for (int i = 0; i < array.length; i++) {
if (i > 0) out.print(' ');
out.print(array[i]);
}
out.println();
}
void printArray(double[] array, String spec) {
if (array == null || array.length == 0)
return;
for (int i = 0; i < array.length; i++) {
if (i > 0) out.print(' ');
out.printf(Locale.US, spec, array[i]);
}
out.println();
}
void printArray(Object[] array) {
if (array == null || array.length == 0)
return;
boolean blank = false;
for (Object x : array) {
if (blank) out.print(' '); else blank = true;
out.print(x);
}
out.println();
}
@SuppressWarnings("rawtypes")
void printCollection(Collection collection) {
if (collection == null || collection.isEmpty())
return;
boolean blank = false;
for (Object x : collection) {
if (blank) out.print(' '); else blank = true;
out.print(x);
}
out.println();
}
/***************************************************************
* Utility
**************************************************************/
static String memoryStatus() {
return (Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory() >> 20) + "/" + (Runtime.getRuntime().totalMemory() >> 20) + " MB";
}
static void checkMemory() {
System.err.println(memoryStatus());
}
static long prevTimeStamp = Long.MIN_VALUE;
static void updateTimer() {
prevTimeStamp = System.currentTimeMillis();
}
static long elapsedTime() {
return (System.currentTimeMillis() - prevTimeStamp);
}
static void checkTimer() {
System.err.println(elapsedTime() + " ms");
}
static void chk(boolean f) {
if (!f) throw new RuntimeException("Assert failed");
}
static void chk(boolean f, String format, Object ... args) {
if (!f) throw new RuntimeException(String.format(format, args));
}
static void log(String format, Object ... args) {
if (writeLog) System.err.println(String.format(Locale.US, format, args));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
/* Codeforces Template */
import java.io.*;
import java.util.*;
import static java.lang.Math.*;
import static java.util.Arrays.fill;
import static java.util.Arrays.binarySearch;
import static java.util.Arrays.sort;
public class Main {
static long initTime;
static final Random rnd = new Random(7777L);
static boolean writeLog = false;
public static void main(String[] args) throws IOException {
initTime = System.currentTimeMillis();
try {
writeLog = "true".equals(System.getProperty("LOCAL_RUN_7777"));
} catch (SecurityException e) {}
new Thread(null, new Runnable() {
public void run() {
try {
try {
if (new File("input.txt").exists())
System.setIn(new FileInputStream("input.txt"));
} catch (SecurityException e) {}
long prevTime = System.currentTimeMillis();
new Main().run();
log("Total time: " + (System.currentTimeMillis() - prevTime) + " ms");
log("Memory status: " + memoryStatus());
} catch (IOException e) {
e.printStackTrace();
}
}
}, "1", 1L << 24).start();
}
void run() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.close();
in.close();
}
/***************************************************************
* Solution
**************************************************************/
void solve() throws IOException {
int n = nextInt();
long k = nextLong();
int[] a = nextIntArray(n);
Set<Long> bad = new TreeSet<Long>();
sort(a);
int ans = 0;
for (int x : a) {
if (!bad.contains((long) x)) {
bad.add(x * k);
ans++;
}
}
out.println(ans);
}
/***************************************************************
* Input
**************************************************************/
BufferedReader in;
PrintWriter out;
StringTokenizer st = new StringTokenizer("");
String nextToken() throws IOException {
while (!st.hasMoreTokens())
st = new StringTokenizer(in.readLine());
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
int[] nextIntArray(int size) throws IOException {
int[] ret = new int [size];
for (int i = 0; i < size; i++)
ret[i] = nextInt();
return ret;
}
long[] nextLongArray(int size) throws IOException {
long[] ret = new long [size];
for (int i = 0; i < size; i++)
ret[i] = nextLong();
return ret;
}
double[] nextDoubleArray(int size) throws IOException {
double[] ret = new double [size];
for (int i = 0; i < size; i++)
ret[i] = nextDouble();
return ret;
}
String nextLine() throws IOException {
st = new StringTokenizer("");
return in.readLine();
}
boolean EOF() throws IOException {
while (!st.hasMoreTokens()) {
String s = in.readLine();
if (s == null)
return true;
st = new StringTokenizer(s);
}
return false;
}
/***************************************************************
* Output
**************************************************************/
void printRepeat(String s, int count) {
for (int i = 0; i < count; i++)
out.print(s);
}
void printArray(int[] array) {
if (array == null || array.length == 0)
return;
for (int i = 0; i < array.length; i++) {
if (i > 0) out.print(' ');
out.print(array[i]);
}
out.println();
}
void printArray(long[] array) {
if (array == null || array.length == 0)
return;
for (int i = 0; i < array.length; i++) {
if (i > 0) out.print(' ');
out.print(array[i]);
}
out.println();
}
void printArray(double[] array) {
if (array == null || array.length == 0)
return;
for (int i = 0; i < array.length; i++) {
if (i > 0) out.print(' ');
out.print(array[i]);
}
out.println();
}
void printArray(double[] array, String spec) {
if (array == null || array.length == 0)
return;
for (int i = 0; i < array.length; i++) {
if (i > 0) out.print(' ');
out.printf(Locale.US, spec, array[i]);
}
out.println();
}
void printArray(Object[] array) {
if (array == null || array.length == 0)
return;
boolean blank = false;
for (Object x : array) {
if (blank) out.print(' '); else blank = true;
out.print(x);
}
out.println();
}
@SuppressWarnings("rawtypes")
void printCollection(Collection collection) {
if (collection == null || collection.isEmpty())
return;
boolean blank = false;
for (Object x : collection) {
if (blank) out.print(' '); else blank = true;
out.print(x);
}
out.println();
}
/***************************************************************
* Utility
**************************************************************/
static String memoryStatus() {
return (Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory() >> 20) + "/" + (Runtime.getRuntime().totalMemory() >> 20) + " MB";
}
static void checkMemory() {
System.err.println(memoryStatus());
}
static long prevTimeStamp = Long.MIN_VALUE;
static void updateTimer() {
prevTimeStamp = System.currentTimeMillis();
}
static long elapsedTime() {
return (System.currentTimeMillis() - prevTimeStamp);
}
static void checkTimer() {
System.err.println(elapsedTime() + " ms");
}
static void chk(boolean f) {
if (!f) throw new RuntimeException("Assert failed");
}
static void chk(boolean f, String format, Object ... args) {
if (!f) throw new RuntimeException(String.format(format, args));
}
static void log(String format, Object ... args) {
if (writeLog) System.err.println(String.format(Locale.US, format, args));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,759 | 1,550 |
4,502 |
import java.util.*;
import java.io.*;
public class Main {
static long mod = 1000000007;
static int INF = 1000000000;
public static void main(String[] args){
FastScanner scanner = new FastScanner();
int n = scanner.nextInt();
int m = scanner.nextInt();
String s = scanner.next();
int[][] cnt = new int[20][20];
for(int i = 0; i < n-1; i++){
cnt[s.charAt(i)-'a'][s.charAt(i+1)-'a']++;
cnt[s.charAt(i+1)-'a'][s.charAt(i)-'a']++;
}
//dp[i]:= 文字列i(この中に同一文字は含まれない)を作った時のコストの最小値
int[] dp = new int[(1<<m)];
for(int i = 0; i < (1<<m); i++){
dp[i] = INF;
}
dp[0] = 0;
for(int i = 0; i < (1<<m); i++){
int cost = 0;
for(int j = 0; j < m; j++){
if((i>>j & 1) == 0){
for(int k = 0; k < m; k++){
if((~i>>k & 1) == 0){
cost += cnt[j][k];
}
}
}
}
for(int j = 0; j < m; j++){
dp[i|1<<j] = Math.min(dp[i|1<<j],dp[i]+cost);
}
}
System.out.println(dp[(1<<m)-1]);
}
static class BIT{
int n;
int[] bit;
public BIT(int n){
this.n = n;
bit = new int[n+1];
}
void add(int idx, int val){
for(int i = idx+1; i <= n; i += i&(-i)) bit[i-1] += val;
}
int sum(int idx){
int res = 0;
for(int i = idx+1; i > 0; i -= i&(-i)) res += bit[i-1];
return res;
}
int sum(int begin, int end){
if(begin == 0) return sum(end);
return sum(end)-sum(begin-1);
}
}
static class Pair implements Comparable<Pair>{
int first, second;
Pair(int a, int b){
first = a;
second = b;
}
@Override
public boolean equals(Object o){
if (this == o) return true;
if (!(o instanceof Pair)) return false;
Pair p = (Pair) o;
return first == p.first && second == p.second;
}
@Override
public int compareTo(Pair p){
return first == p.first ? second - p.second : first - p.first; //firstで昇順にソート
//return (first == p.first ? second - p.second : first - p.first) * -1; //firstで降順にソート
//return second == p.second ? first - p.first : second - p.second;//secondで昇順にソート
//return (second == p.second ? first - p.first : second - p.second)*-1;//secondで降順にソート
//return first * 1.0 / second > p.first * 1.0 / p.second ? 1 : -1; // first/secondの昇順にソート
//return first * 1.0 / second < p.first * 1.0 / p.second ? 1 : -1; // first/secondの降順にソート
//return second * 1.0 / first > p.second * 1.0 / p.first ? 1 : -1; // second/firstの昇順にソート
//return second * 1.0 / first < p.second * 1.0 / p.first ? 1 : -1; // second/firstの降順にソート
//return Math.atan2(second, first) > Math.atan2(p.second, p.first) ? 1 : -1; // second/firstの昇順にソート
//return first + second > p.first + p.second ? 1 : -1; //first+secondの昇順にソート
//return first + second < p.first + p.second ? 1 : -1; //first+secondの降順にソート
//return first - second < p.first - p.second ? 1 : -1; //first-secondの降順にソート
}
}
private static class FastScanner {
private final InputStream in = System.in;
private final byte[] buffer = new byte[1024];
private int ptr = 0;
private int buflen = 0;
private boolean hasNextByte() {
if (ptr < buflen) {
return true;
}else{
ptr = 0;
try {
buflen = in.read(buffer);
} catch (IOException e) {
e.printStackTrace();
}
if (buflen <= 0) {
return false;
}
}
return true;
}
private int readByte() { if (hasNextByte()) return buffer[ptr++]; else return -1;}
private static boolean isPrintableChar(int c) { return 33 <= c && c <= 126;}
public boolean hasNext() { while(hasNextByte() && !isPrintableChar(buffer[ptr])) ptr++; return hasNextByte();}
public String next() {
if (!hasNext()) throw new NoSuchElementException();
StringBuilder sb = new StringBuilder();
int b = readByte();
while(isPrintableChar(b)) {
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
public long nextLong() {
if (!hasNext()) throw new NoSuchElementException();
long n = 0;
boolean minus = false;
int b = readByte();
if (b == '-') {
minus = true;
b = readByte();
}
if (b < '0' || '9' < b) {
throw new NumberFormatException();
}
while(true){
if ('0' <= b && b <= '9') {
n *= 10;
n += b - '0';
}else if(b == -1 || !isPrintableChar(b)){
return minus ? -n : n;
}else{
throw new NumberFormatException();
}
b = readByte();
}
}
public int nextInt() {
long nl = nextLong();
if (nl < Integer.MIN_VALUE || nl > Integer.MAX_VALUE) throw new NumberFormatException();
return (int) nl;
}
public double nextDouble() { return Double.parseDouble(next());}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Main {
static long mod = 1000000007;
static int INF = 1000000000;
public static void main(String[] args){
FastScanner scanner = new FastScanner();
int n = scanner.nextInt();
int m = scanner.nextInt();
String s = scanner.next();
int[][] cnt = new int[20][20];
for(int i = 0; i < n-1; i++){
cnt[s.charAt(i)-'a'][s.charAt(i+1)-'a']++;
cnt[s.charAt(i+1)-'a'][s.charAt(i)-'a']++;
}
//dp[i]:= 文字列i(この中に同一文字は含まれない)を作った時のコストの最小値
int[] dp = new int[(1<<m)];
for(int i = 0; i < (1<<m); i++){
dp[i] = INF;
}
dp[0] = 0;
for(int i = 0; i < (1<<m); i++){
int cost = 0;
for(int j = 0; j < m; j++){
if((i>>j & 1) == 0){
for(int k = 0; k < m; k++){
if((~i>>k & 1) == 0){
cost += cnt[j][k];
}
}
}
}
for(int j = 0; j < m; j++){
dp[i|1<<j] = Math.min(dp[i|1<<j],dp[i]+cost);
}
}
System.out.println(dp[(1<<m)-1]);
}
static class BIT{
int n;
int[] bit;
public BIT(int n){
this.n = n;
bit = new int[n+1];
}
void add(int idx, int val){
for(int i = idx+1; i <= n; i += i&(-i)) bit[i-1] += val;
}
int sum(int idx){
int res = 0;
for(int i = idx+1; i > 0; i -= i&(-i)) res += bit[i-1];
return res;
}
int sum(int begin, int end){
if(begin == 0) return sum(end);
return sum(end)-sum(begin-1);
}
}
static class Pair implements Comparable<Pair>{
int first, second;
Pair(int a, int b){
first = a;
second = b;
}
@Override
public boolean equals(Object o){
if (this == o) return true;
if (!(o instanceof Pair)) return false;
Pair p = (Pair) o;
return first == p.first && second == p.second;
}
@Override
public int compareTo(Pair p){
return first == p.first ? second - p.second : first - p.first; //firstで昇順にソート
//return (first == p.first ? second - p.second : first - p.first) * -1; //firstで降順にソート
//return second == p.second ? first - p.first : second - p.second;//secondで昇順にソート
//return (second == p.second ? first - p.first : second - p.second)*-1;//secondで降順にソート
//return first * 1.0 / second > p.first * 1.0 / p.second ? 1 : -1; // first/secondの昇順にソート
//return first * 1.0 / second < p.first * 1.0 / p.second ? 1 : -1; // first/secondの降順にソート
//return second * 1.0 / first > p.second * 1.0 / p.first ? 1 : -1; // second/firstの昇順にソート
//return second * 1.0 / first < p.second * 1.0 / p.first ? 1 : -1; // second/firstの降順にソート
//return Math.atan2(second, first) > Math.atan2(p.second, p.first) ? 1 : -1; // second/firstの昇順にソート
//return first + second > p.first + p.second ? 1 : -1; //first+secondの昇順にソート
//return first + second < p.first + p.second ? 1 : -1; //first+secondの降順にソート
//return first - second < p.first - p.second ? 1 : -1; //first-secondの降順にソート
}
}
private static class FastScanner {
private final InputStream in = System.in;
private final byte[] buffer = new byte[1024];
private int ptr = 0;
private int buflen = 0;
private boolean hasNextByte() {
if (ptr < buflen) {
return true;
}else{
ptr = 0;
try {
buflen = in.read(buffer);
} catch (IOException e) {
e.printStackTrace();
}
if (buflen <= 0) {
return false;
}
}
return true;
}
private int readByte() { if (hasNextByte()) return buffer[ptr++]; else return -1;}
private static boolean isPrintableChar(int c) { return 33 <= c && c <= 126;}
public boolean hasNext() { while(hasNextByte() && !isPrintableChar(buffer[ptr])) ptr++; return hasNextByte();}
public String next() {
if (!hasNext()) throw new NoSuchElementException();
StringBuilder sb = new StringBuilder();
int b = readByte();
while(isPrintableChar(b)) {
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
public long nextLong() {
if (!hasNext()) throw new NoSuchElementException();
long n = 0;
boolean minus = false;
int b = readByte();
if (b == '-') {
minus = true;
b = readByte();
}
if (b < '0' || '9' < b) {
throw new NumberFormatException();
}
while(true){
if ('0' <= b && b <= '9') {
n *= 10;
n += b - '0';
}else if(b == -1 || !isPrintableChar(b)){
return minus ? -n : n;
}else{
throw new NumberFormatException();
}
b = readByte();
}
}
public int nextInt() {
long nl = nextLong();
if (nl < Integer.MIN_VALUE || nl > Integer.MAX_VALUE) throw new NumberFormatException();
return (int) nl;
}
public double nextDouble() { return Double.parseDouble(next());}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Main {
static long mod = 1000000007;
static int INF = 1000000000;
public static void main(String[] args){
FastScanner scanner = new FastScanner();
int n = scanner.nextInt();
int m = scanner.nextInt();
String s = scanner.next();
int[][] cnt = new int[20][20];
for(int i = 0; i < n-1; i++){
cnt[s.charAt(i)-'a'][s.charAt(i+1)-'a']++;
cnt[s.charAt(i+1)-'a'][s.charAt(i)-'a']++;
}
//dp[i]:= 文字列i(この中に同一文字は含まれない)を作った時のコストの最小値
int[] dp = new int[(1<<m)];
for(int i = 0; i < (1<<m); i++){
dp[i] = INF;
}
dp[0] = 0;
for(int i = 0; i < (1<<m); i++){
int cost = 0;
for(int j = 0; j < m; j++){
if((i>>j & 1) == 0){
for(int k = 0; k < m; k++){
if((~i>>k & 1) == 0){
cost += cnt[j][k];
}
}
}
}
for(int j = 0; j < m; j++){
dp[i|1<<j] = Math.min(dp[i|1<<j],dp[i]+cost);
}
}
System.out.println(dp[(1<<m)-1]);
}
static class BIT{
int n;
int[] bit;
public BIT(int n){
this.n = n;
bit = new int[n+1];
}
void add(int idx, int val){
for(int i = idx+1; i <= n; i += i&(-i)) bit[i-1] += val;
}
int sum(int idx){
int res = 0;
for(int i = idx+1; i > 0; i -= i&(-i)) res += bit[i-1];
return res;
}
int sum(int begin, int end){
if(begin == 0) return sum(end);
return sum(end)-sum(begin-1);
}
}
static class Pair implements Comparable<Pair>{
int first, second;
Pair(int a, int b){
first = a;
second = b;
}
@Override
public boolean equals(Object o){
if (this == o) return true;
if (!(o instanceof Pair)) return false;
Pair p = (Pair) o;
return first == p.first && second == p.second;
}
@Override
public int compareTo(Pair p){
return first == p.first ? second - p.second : first - p.first; //firstで昇順にソート
//return (first == p.first ? second - p.second : first - p.first) * -1; //firstで降順にソート
//return second == p.second ? first - p.first : second - p.second;//secondで昇順にソート
//return (second == p.second ? first - p.first : second - p.second)*-1;//secondで降順にソート
//return first * 1.0 / second > p.first * 1.0 / p.second ? 1 : -1; // first/secondの昇順にソート
//return first * 1.0 / second < p.first * 1.0 / p.second ? 1 : -1; // first/secondの降順にソート
//return second * 1.0 / first > p.second * 1.0 / p.first ? 1 : -1; // second/firstの昇順にソート
//return second * 1.0 / first < p.second * 1.0 / p.first ? 1 : -1; // second/firstの降順にソート
//return Math.atan2(second, first) > Math.atan2(p.second, p.first) ? 1 : -1; // second/firstの昇順にソート
//return first + second > p.first + p.second ? 1 : -1; //first+secondの昇順にソート
//return first + second < p.first + p.second ? 1 : -1; //first+secondの降順にソート
//return first - second < p.first - p.second ? 1 : -1; //first-secondの降順にソート
}
}
private static class FastScanner {
private final InputStream in = System.in;
private final byte[] buffer = new byte[1024];
private int ptr = 0;
private int buflen = 0;
private boolean hasNextByte() {
if (ptr < buflen) {
return true;
}else{
ptr = 0;
try {
buflen = in.read(buffer);
} catch (IOException e) {
e.printStackTrace();
}
if (buflen <= 0) {
return false;
}
}
return true;
}
private int readByte() { if (hasNextByte()) return buffer[ptr++]; else return -1;}
private static boolean isPrintableChar(int c) { return 33 <= c && c <= 126;}
public boolean hasNext() { while(hasNextByte() && !isPrintableChar(buffer[ptr])) ptr++; return hasNextByte();}
public String next() {
if (!hasNext()) throw new NoSuchElementException();
StringBuilder sb = new StringBuilder();
int b = readByte();
while(isPrintableChar(b)) {
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
public long nextLong() {
if (!hasNext()) throw new NoSuchElementException();
long n = 0;
boolean minus = false;
int b = readByte();
if (b == '-') {
minus = true;
b = readByte();
}
if (b < '0' || '9' < b) {
throw new NumberFormatException();
}
while(true){
if ('0' <= b && b <= '9') {
n *= 10;
n += b - '0';
}else if(b == -1 || !isPrintableChar(b)){
return minus ? -n : n;
}else{
throw new NumberFormatException();
}
b = readByte();
}
}
public int nextInt() {
long nl = nextLong();
if (nl < Integer.MIN_VALUE || nl > Integer.MAX_VALUE) throw new NumberFormatException();
return (int) nl;
}
public double nextDouble() { return Double.parseDouble(next());}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,886 | 4,491 |
1,160 |
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Random;
import java.util.StringTokenizer;
import java.util.TreeMap;
public class P {
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
long N = sc.nextLong(), S = sc.nextLong();
long lo = 0, hi = N;
long pivot = 0;
while (lo <= hi) {
long mid = lo + (hi - lo) / 2;
int sumOfDigits = 0;
long saveMid = mid;
while (saveMid > 0) {
sumOfDigits += saveMid % 10;
saveMid /= 10;
}
if (mid - sumOfDigits < S) {
pivot = mid;
lo = mid + 1;
} else
hi = mid - 1;
}
System.out.println(N - pivot);
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(String f) throws FileNotFoundException {
br = new BufferedReader(new FileReader(f));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public boolean ready() throws IOException {
return br.ready();
}
public int[] nextIntArray(int n) throws IOException {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public int[] nextIntArray1(int n) throws IOException {
int[] a = new int[n + 1];
for (int i = 1; i <= n; i++)
a[i] = nextInt();
return a;
}
public int[] shuffle(int[] a, int n) {
int[] b = new int[n];
for (int i = 0; i < n; i++)
b[i] = a[i];
Random r = new Random();
for (int i = 0; i < n; i++) {
int j = i + r.nextInt(n - i);
int t = b[i];
b[i] = b[j];
b[j] = t;
}
return b;
}
public int[] nextIntArraySorted(int n) throws IOException {
int[] a = nextIntArray(n);
a = shuffle(a, n);
Arrays.sort(a);
return a;
}
public long[] nextLongArray(int n) throws IOException {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public long[] nextLongArray1(int n) throws IOException {
long[] a = new long[n + 1];
for (int i = 1; i <= n; i++)
a[i] = nextLong();
return a;
}
public long[] nextLongArraySorted(int n) throws IOException {
long[] a = nextLongArray(n);
Random r = new Random();
for (int i = 0; i < n; i++) {
int j = i + r.nextInt(n - i);
long t = a[i];
a[i] = a[j];
a[j] = t;
}
Arrays.sort(a);
return a;
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Random;
import java.util.StringTokenizer;
import java.util.TreeMap;
public class P {
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
long N = sc.nextLong(), S = sc.nextLong();
long lo = 0, hi = N;
long pivot = 0;
while (lo <= hi) {
long mid = lo + (hi - lo) / 2;
int sumOfDigits = 0;
long saveMid = mid;
while (saveMid > 0) {
sumOfDigits += saveMid % 10;
saveMid /= 10;
}
if (mid - sumOfDigits < S) {
pivot = mid;
lo = mid + 1;
} else
hi = mid - 1;
}
System.out.println(N - pivot);
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(String f) throws FileNotFoundException {
br = new BufferedReader(new FileReader(f));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public boolean ready() throws IOException {
return br.ready();
}
public int[] nextIntArray(int n) throws IOException {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public int[] nextIntArray1(int n) throws IOException {
int[] a = new int[n + 1];
for (int i = 1; i <= n; i++)
a[i] = nextInt();
return a;
}
public int[] shuffle(int[] a, int n) {
int[] b = new int[n];
for (int i = 0; i < n; i++)
b[i] = a[i];
Random r = new Random();
for (int i = 0; i < n; i++) {
int j = i + r.nextInt(n - i);
int t = b[i];
b[i] = b[j];
b[j] = t;
}
return b;
}
public int[] nextIntArraySorted(int n) throws IOException {
int[] a = nextIntArray(n);
a = shuffle(a, n);
Arrays.sort(a);
return a;
}
public long[] nextLongArray(int n) throws IOException {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public long[] nextLongArray1(int n) throws IOException {
long[] a = new long[n + 1];
for (int i = 1; i <= n; i++)
a[i] = nextLong();
return a;
}
public long[] nextLongArraySorted(int n) throws IOException {
long[] a = nextLongArray(n);
Random r = new Random();
for (int i = 0; i < n; i++) {
int j = i + r.nextInt(n - i);
long t = a[i];
a[i] = a[j];
a[j] = t;
}
Arrays.sort(a);
return a;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Random;
import java.util.StringTokenizer;
import java.util.TreeMap;
public class P {
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
long N = sc.nextLong(), S = sc.nextLong();
long lo = 0, hi = N;
long pivot = 0;
while (lo <= hi) {
long mid = lo + (hi - lo) / 2;
int sumOfDigits = 0;
long saveMid = mid;
while (saveMid > 0) {
sumOfDigits += saveMid % 10;
saveMid /= 10;
}
if (mid - sumOfDigits < S) {
pivot = mid;
lo = mid + 1;
} else
hi = mid - 1;
}
System.out.println(N - pivot);
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(String f) throws FileNotFoundException {
br = new BufferedReader(new FileReader(f));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public boolean ready() throws IOException {
return br.ready();
}
public int[] nextIntArray(int n) throws IOException {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public int[] nextIntArray1(int n) throws IOException {
int[] a = new int[n + 1];
for (int i = 1; i <= n; i++)
a[i] = nextInt();
return a;
}
public int[] shuffle(int[] a, int n) {
int[] b = new int[n];
for (int i = 0; i < n; i++)
b[i] = a[i];
Random r = new Random();
for (int i = 0; i < n; i++) {
int j = i + r.nextInt(n - i);
int t = b[i];
b[i] = b[j];
b[j] = t;
}
return b;
}
public int[] nextIntArraySorted(int n) throws IOException {
int[] a = nextIntArray(n);
a = shuffle(a, n);
Arrays.sort(a);
return a;
}
public long[] nextLongArray(int n) throws IOException {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public long[] nextLongArray1(int n) throws IOException {
long[] a = new long[n + 1];
for (int i = 1; i <= n; i++)
a[i] = nextLong();
return a;
}
public long[] nextLongArraySorted(int n) throws IOException {
long[] a = nextLongArray(n);
Random r = new Random();
for (int i = 0; i < n; i++) {
int j = i + r.nextInt(n - i);
long t = a[i];
a[i] = a[j];
a[j] = t;
}
Arrays.sort(a);
return a;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,216 | 1,159 |
109 |
import java.io.*;
import java.util.*;
public class MainG {
static StdIn in = new StdIn();
static PrintWriter out = new PrintWriter(System.out);
static long M=(long)1e9+7;
public static void main(String[] args) {
char[] cs = in.next().toCharArray();
int n=cs.length;
int[] x = new int[n];
for(int i=0; i<n; ++i)
x[i]=cs[i]-'0';
long[] dp1 = new long[n+1];
for(int i=0; i<n; ++i)
dp1[i+1]=(x[i]+dp1[i]*10)%M;
long ans=0;
for(int d1=1; d1<=9; ++d1) {
long[][] dp2 = new long[2][n+1];
for(int i=0; i<n; ++i) {
dp2[0][i+1]=x[i]>=d1?(10*dp2[0][i]+1)%M:dp2[0][i];
for(int d2=0; d2<x[i]; ++d2)
dp2[1][i+1]=((d2>=d1?10*(dp2[0][i]+dp2[1][i])+dp1[i]+1:dp2[0][i]+dp2[1][i])+dp2[1][i+1])%M;
for(int d2=x[i]; d2<=9; ++d2)
dp2[1][i+1]=((d2>=d1?10*dp2[1][i]+dp1[i]:dp2[1][i])+dp2[1][i+1])%M;
}
ans+=dp2[0][n]+dp2[1][n];
}
out.println(ans%M);
out.close();
}
interface Input {
public String next();
public String nextLine();
public int nextInt();
public long nextLong();
public double nextDouble();
}
static class StdIn implements Input {
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public StdIn() {
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public StdIn(InputStream in) {
try{
din = new DataInputStream(in);
} catch(Exception e) {
throw new RuntimeException();
}
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String next() {
int c;
while((c=read())!=-1&&(c==' '||c=='\n'||c=='\r'));
StringBuilder s = new StringBuilder();
while (c != -1)
{
if (c == ' ' || c == '\n'||c=='\r')
break;
s.append((char)c);
c=read();
}
return s.toString();
}
public String nextLine() {
int c;
while((c=read())!=-1&&(c==' '||c=='\n'||c=='\r'));
StringBuilder s = new StringBuilder();
while (c != -1)
{
if (c == '\n'||c=='\r')
break;
s.append((char)c);
c = read();
}
return s.toString();
}
public int nextInt() {
int ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do
ret = ret * 10 + c - '0';
while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public int[] readIntArray(int n) {
int[] ar = new int[n];
for(int i=0; i<n; ++i)
ar[i]=nextInt();
return ar;
}
public long nextLong() {
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do
ret = ret * 10 + c - '0';
while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long[] readLongArray(int n) {
long[] ar = new long[n];
for(int i=0; i<n; ++i)
ar[i]=nextLong();
return ar;
}
public double nextDouble() {
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do
ret = ret * 10 + c - '0';
while ((c = read()) >= '0' && c <= '9');
if (c == '.')
while ((c = read()) >= '0' && c <= '9')
ret += (c - '0') / (div *= 10);
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() {
try{
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
} catch(IOException e) {
throw new RuntimeException();
}
}
public void close() throws IOException {
if (din == null)
return;
din.close();
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class MainG {
static StdIn in = new StdIn();
static PrintWriter out = new PrintWriter(System.out);
static long M=(long)1e9+7;
public static void main(String[] args) {
char[] cs = in.next().toCharArray();
int n=cs.length;
int[] x = new int[n];
for(int i=0; i<n; ++i)
x[i]=cs[i]-'0';
long[] dp1 = new long[n+1];
for(int i=0; i<n; ++i)
dp1[i+1]=(x[i]+dp1[i]*10)%M;
long ans=0;
for(int d1=1; d1<=9; ++d1) {
long[][] dp2 = new long[2][n+1];
for(int i=0; i<n; ++i) {
dp2[0][i+1]=x[i]>=d1?(10*dp2[0][i]+1)%M:dp2[0][i];
for(int d2=0; d2<x[i]; ++d2)
dp2[1][i+1]=((d2>=d1?10*(dp2[0][i]+dp2[1][i])+dp1[i]+1:dp2[0][i]+dp2[1][i])+dp2[1][i+1])%M;
for(int d2=x[i]; d2<=9; ++d2)
dp2[1][i+1]=((d2>=d1?10*dp2[1][i]+dp1[i]:dp2[1][i])+dp2[1][i+1])%M;
}
ans+=dp2[0][n]+dp2[1][n];
}
out.println(ans%M);
out.close();
}
interface Input {
public String next();
public String nextLine();
public int nextInt();
public long nextLong();
public double nextDouble();
}
static class StdIn implements Input {
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public StdIn() {
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public StdIn(InputStream in) {
try{
din = new DataInputStream(in);
} catch(Exception e) {
throw new RuntimeException();
}
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String next() {
int c;
while((c=read())!=-1&&(c==' '||c=='\n'||c=='\r'));
StringBuilder s = new StringBuilder();
while (c != -1)
{
if (c == ' ' || c == '\n'||c=='\r')
break;
s.append((char)c);
c=read();
}
return s.toString();
}
public String nextLine() {
int c;
while((c=read())!=-1&&(c==' '||c=='\n'||c=='\r'));
StringBuilder s = new StringBuilder();
while (c != -1)
{
if (c == '\n'||c=='\r')
break;
s.append((char)c);
c = read();
}
return s.toString();
}
public int nextInt() {
int ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do
ret = ret * 10 + c - '0';
while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public int[] readIntArray(int n) {
int[] ar = new int[n];
for(int i=0; i<n; ++i)
ar[i]=nextInt();
return ar;
}
public long nextLong() {
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do
ret = ret * 10 + c - '0';
while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long[] readLongArray(int n) {
long[] ar = new long[n];
for(int i=0; i<n; ++i)
ar[i]=nextLong();
return ar;
}
public double nextDouble() {
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do
ret = ret * 10 + c - '0';
while ((c = read()) >= '0' && c <= '9');
if (c == '.')
while ((c = read()) >= '0' && c <= '9')
ret += (c - '0') / (div *= 10);
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() {
try{
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
} catch(IOException e) {
throw new RuntimeException();
}
}
public void close() throws IOException {
if (din == null)
return;
din.close();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class MainG {
static StdIn in = new StdIn();
static PrintWriter out = new PrintWriter(System.out);
static long M=(long)1e9+7;
public static void main(String[] args) {
char[] cs = in.next().toCharArray();
int n=cs.length;
int[] x = new int[n];
for(int i=0; i<n; ++i)
x[i]=cs[i]-'0';
long[] dp1 = new long[n+1];
for(int i=0; i<n; ++i)
dp1[i+1]=(x[i]+dp1[i]*10)%M;
long ans=0;
for(int d1=1; d1<=9; ++d1) {
long[][] dp2 = new long[2][n+1];
for(int i=0; i<n; ++i) {
dp2[0][i+1]=x[i]>=d1?(10*dp2[0][i]+1)%M:dp2[0][i];
for(int d2=0; d2<x[i]; ++d2)
dp2[1][i+1]=((d2>=d1?10*(dp2[0][i]+dp2[1][i])+dp1[i]+1:dp2[0][i]+dp2[1][i])+dp2[1][i+1])%M;
for(int d2=x[i]; d2<=9; ++d2)
dp2[1][i+1]=((d2>=d1?10*dp2[1][i]+dp1[i]:dp2[1][i])+dp2[1][i+1])%M;
}
ans+=dp2[0][n]+dp2[1][n];
}
out.println(ans%M);
out.close();
}
interface Input {
public String next();
public String nextLine();
public int nextInt();
public long nextLong();
public double nextDouble();
}
static class StdIn implements Input {
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public StdIn() {
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public StdIn(InputStream in) {
try{
din = new DataInputStream(in);
} catch(Exception e) {
throw new RuntimeException();
}
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String next() {
int c;
while((c=read())!=-1&&(c==' '||c=='\n'||c=='\r'));
StringBuilder s = new StringBuilder();
while (c != -1)
{
if (c == ' ' || c == '\n'||c=='\r')
break;
s.append((char)c);
c=read();
}
return s.toString();
}
public String nextLine() {
int c;
while((c=read())!=-1&&(c==' '||c=='\n'||c=='\r'));
StringBuilder s = new StringBuilder();
while (c != -1)
{
if (c == '\n'||c=='\r')
break;
s.append((char)c);
c = read();
}
return s.toString();
}
public int nextInt() {
int ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do
ret = ret * 10 + c - '0';
while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public int[] readIntArray(int n) {
int[] ar = new int[n];
for(int i=0; i<n; ++i)
ar[i]=nextInt();
return ar;
}
public long nextLong() {
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do
ret = ret * 10 + c - '0';
while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long[] readLongArray(int n) {
long[] ar = new long[n];
for(int i=0; i<n; ++i)
ar[i]=nextLong();
return ar;
}
public double nextDouble() {
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do
ret = ret * 10 + c - '0';
while ((c = read()) >= '0' && c <= '9');
if (c == '.')
while ((c = read()) >= '0' && c <= '9')
ret += (c - '0') / (div *= 10);
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() {
try{
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
} catch(IOException e) {
throw new RuntimeException();
}
}
public void close() throws IOException {
if (din == null)
return;
din.close();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,674 | 109 |
2,438 |
import java.io.*;
import java.util.*;
import java.util.function.BinaryOperator;
import java.util.stream.IntStream;
public class Main {
private static InputReader reader = new InputReader(System.in);
private static PrintWriter writer = new PrintWriter(System.out);
public static void main(String[] args) {
int n = readInt();
long[] a = readLongArray(n);
HashMap<Long, List<Block>> blocks = new HashMap<>();
for (int j = 0; j < n; j++) {
long sum = 0;
for (int i = j; i >= 0; i--) {
sum += a[i];
if (!blocks.containsKey(sum))
blocks.put(sum, new LinkedList<>());
List<Block> blockList = blocks.get(sum);
if (blockList.size() > 0 && blockList.get(blockList.size() - 1).r == j) continue;
blockList.add(new Block(i, j));
}
}
List<Block> bestBlocks = new LinkedList<>();
for(long sum : blocks.keySet()) {
List<Block> blockList = blocks.get(sum);
List<Block> curBest = new LinkedList<>();
int lastR = -1;
for(Block block : blockList) {
if (block.l > lastR) {
curBest.add(block);
lastR = block.r;
}
}
if (curBest.size() > bestBlocks.size()) {
bestBlocks = curBest;
}
}
writer.println(bestBlocks.size());
for(Block block : bestBlocks) {
writer.printf("%d %d\n", block.l + 1, block.r + 1);
}
writer.flush();
}
private static int readInt() {
return reader.nextInt();
}
private static long readLong() {
return Long.parseLong(reader.next());
}
private static int[] readIntArray(int size) {
int[] array = new int[size];
for (int i = 0; i < size; i++) {
array[i] = readInt();
}
return array;
}
private static long[] readLongArray(int size) {
long[] array = new long[size];
for (int i = 0; i < size; i++) {
array[i] = readLong();
}
return array;
}
private static void reverseIntArray(int[] array) {
for (int i = 0; i < array.length / 2; i++) {
int temp = array[i];
array[i] = array[array.length - i - 1];
array[array.length - i - 1] = temp;
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
private static class Block {
int l, r;
Block(int l, int r) {
this.l = l;
this.r = r;
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.util.function.BinaryOperator;
import java.util.stream.IntStream;
public class Main {
private static InputReader reader = new InputReader(System.in);
private static PrintWriter writer = new PrintWriter(System.out);
public static void main(String[] args) {
int n = readInt();
long[] a = readLongArray(n);
HashMap<Long, List<Block>> blocks = new HashMap<>();
for (int j = 0; j < n; j++) {
long sum = 0;
for (int i = j; i >= 0; i--) {
sum += a[i];
if (!blocks.containsKey(sum))
blocks.put(sum, new LinkedList<>());
List<Block> blockList = blocks.get(sum);
if (blockList.size() > 0 && blockList.get(blockList.size() - 1).r == j) continue;
blockList.add(new Block(i, j));
}
}
List<Block> bestBlocks = new LinkedList<>();
for(long sum : blocks.keySet()) {
List<Block> blockList = blocks.get(sum);
List<Block> curBest = new LinkedList<>();
int lastR = -1;
for(Block block : blockList) {
if (block.l > lastR) {
curBest.add(block);
lastR = block.r;
}
}
if (curBest.size() > bestBlocks.size()) {
bestBlocks = curBest;
}
}
writer.println(bestBlocks.size());
for(Block block : bestBlocks) {
writer.printf("%d %d\n", block.l + 1, block.r + 1);
}
writer.flush();
}
private static int readInt() {
return reader.nextInt();
}
private static long readLong() {
return Long.parseLong(reader.next());
}
private static int[] readIntArray(int size) {
int[] array = new int[size];
for (int i = 0; i < size; i++) {
array[i] = readInt();
}
return array;
}
private static long[] readLongArray(int size) {
long[] array = new long[size];
for (int i = 0; i < size; i++) {
array[i] = readLong();
}
return array;
}
private static void reverseIntArray(int[] array) {
for (int i = 0; i < array.length / 2; i++) {
int temp = array[i];
array[i] = array[array.length - i - 1];
array[array.length - i - 1] = temp;
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
private static class Block {
int l, r;
Block(int l, int r) {
this.l = l;
this.r = r;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.util.function.BinaryOperator;
import java.util.stream.IntStream;
public class Main {
private static InputReader reader = new InputReader(System.in);
private static PrintWriter writer = new PrintWriter(System.out);
public static void main(String[] args) {
int n = readInt();
long[] a = readLongArray(n);
HashMap<Long, List<Block>> blocks = new HashMap<>();
for (int j = 0; j < n; j++) {
long sum = 0;
for (int i = j; i >= 0; i--) {
sum += a[i];
if (!blocks.containsKey(sum))
blocks.put(sum, new LinkedList<>());
List<Block> blockList = blocks.get(sum);
if (blockList.size() > 0 && blockList.get(blockList.size() - 1).r == j) continue;
blockList.add(new Block(i, j));
}
}
List<Block> bestBlocks = new LinkedList<>();
for(long sum : blocks.keySet()) {
List<Block> blockList = blocks.get(sum);
List<Block> curBest = new LinkedList<>();
int lastR = -1;
for(Block block : blockList) {
if (block.l > lastR) {
curBest.add(block);
lastR = block.r;
}
}
if (curBest.size() > bestBlocks.size()) {
bestBlocks = curBest;
}
}
writer.println(bestBlocks.size());
for(Block block : bestBlocks) {
writer.printf("%d %d\n", block.l + 1, block.r + 1);
}
writer.flush();
}
private static int readInt() {
return reader.nextInt();
}
private static long readLong() {
return Long.parseLong(reader.next());
}
private static int[] readIntArray(int size) {
int[] array = new int[size];
for (int i = 0; i < size; i++) {
array[i] = readInt();
}
return array;
}
private static long[] readLongArray(int size) {
long[] array = new long[size];
for (int i = 0; i < size; i++) {
array[i] = readLong();
}
return array;
}
private static void reverseIntArray(int[] array) {
for (int i = 0; i < array.length / 2; i++) {
int temp = array[i];
array[i] = array[array.length - i - 1];
array[array.length - i - 1] = temp;
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
private static class Block {
int l, r;
Block(int l, int r) {
this.l = l;
this.r = r;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,048 | 2,433 |
1,961 |
import java.util.*;
import java.io.*;
import java.math.BigInteger;
public class C113A{
static BufferedReader br;
public static void main(String args[])throws Exception{
br=new BufferedReader(new InputStreamReader(System.in));
int nm[]=toIntArray();
int n=nm[0];
int k=nm[1];
Pai p[]=new Pai[n];
for(int i=0;i<n;i++){
nm=toIntArray();
p[i]=new Pai(nm[0],nm[1]);
}
Arrays.sort(p);
int count=0;
for(int i=0;i<n;i++){
if(p[k-1].first==p[i].first && p[k-1].second==p[i].second){
count++;
}
}
System.out.println(count);
}
/****************************************************************/
public static int[] toIntArray()throws Exception{
String str[]=br.readLine().split(" ");
int k[]=new int[str.length];
for(int i=0;i<str.length;i++){
k[i]=Integer.parseInt(str[i]);
}
return k;
}
public static int toInt()throws Exception{
return Integer.parseInt(br.readLine());
}
public static long[] toLongArray()throws Exception{
String str[]=br.readLine().split(" ");
long k[]=new long[str.length];
for(int i=0;i<str.length;i++){
k[i]=Long.parseLong(str[i]);
}
return k;
}
public static long toLong()throws Exception{
return Long.parseLong(br.readLine());
}
public static double[] toDoubleArray()throws Exception{
String str[]=br.readLine().split(" ");
double k[]=new double[str.length];
for(int i=0;i<str.length;i++){
k[i]=Double.parseDouble(str[i]);
}
return k;
}
public static double toDouble()throws Exception{
return Double.parseDouble(br.readLine());
}
public static String toStr()throws Exception{
return br.readLine();
}
public static String[] toStrArray()throws Exception{
String str[]=br.readLine().split(" ");
return str;
}
/****************************************************************/
}
class Pai implements Comparable<Pai> {
int first;
int second;
public Pai(int f, int s) {
first = f;
second = s;
}
public int compareTo(Pai p) {
int ret = 0;
if (first < p.first) {
ret = 1;
} else if (first > p.first) {
ret = -1;
} else {
if(second<p.second){
ret=-1;
}
else if(second>p.second){
ret=1;
}
else ret=0;
}
return ret;
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.math.BigInteger;
public class C113A{
static BufferedReader br;
public static void main(String args[])throws Exception{
br=new BufferedReader(new InputStreamReader(System.in));
int nm[]=toIntArray();
int n=nm[0];
int k=nm[1];
Pai p[]=new Pai[n];
for(int i=0;i<n;i++){
nm=toIntArray();
p[i]=new Pai(nm[0],nm[1]);
}
Arrays.sort(p);
int count=0;
for(int i=0;i<n;i++){
if(p[k-1].first==p[i].first && p[k-1].second==p[i].second){
count++;
}
}
System.out.println(count);
}
/****************************************************************/
public static int[] toIntArray()throws Exception{
String str[]=br.readLine().split(" ");
int k[]=new int[str.length];
for(int i=0;i<str.length;i++){
k[i]=Integer.parseInt(str[i]);
}
return k;
}
public static int toInt()throws Exception{
return Integer.parseInt(br.readLine());
}
public static long[] toLongArray()throws Exception{
String str[]=br.readLine().split(" ");
long k[]=new long[str.length];
for(int i=0;i<str.length;i++){
k[i]=Long.parseLong(str[i]);
}
return k;
}
public static long toLong()throws Exception{
return Long.parseLong(br.readLine());
}
public static double[] toDoubleArray()throws Exception{
String str[]=br.readLine().split(" ");
double k[]=new double[str.length];
for(int i=0;i<str.length;i++){
k[i]=Double.parseDouble(str[i]);
}
return k;
}
public static double toDouble()throws Exception{
return Double.parseDouble(br.readLine());
}
public static String toStr()throws Exception{
return br.readLine();
}
public static String[] toStrArray()throws Exception{
String str[]=br.readLine().split(" ");
return str;
}
/****************************************************************/
}
class Pai implements Comparable<Pai> {
int first;
int second;
public Pai(int f, int s) {
first = f;
second = s;
}
public int compareTo(Pai p) {
int ret = 0;
if (first < p.first) {
ret = 1;
} else if (first > p.first) {
ret = -1;
} else {
if(second<p.second){
ret=-1;
}
else if(second>p.second){
ret=1;
}
else ret=0;
}
return ret;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.math.BigInteger;
public class C113A{
static BufferedReader br;
public static void main(String args[])throws Exception{
br=new BufferedReader(new InputStreamReader(System.in));
int nm[]=toIntArray();
int n=nm[0];
int k=nm[1];
Pai p[]=new Pai[n];
for(int i=0;i<n;i++){
nm=toIntArray();
p[i]=new Pai(nm[0],nm[1]);
}
Arrays.sort(p);
int count=0;
for(int i=0;i<n;i++){
if(p[k-1].first==p[i].first && p[k-1].second==p[i].second){
count++;
}
}
System.out.println(count);
}
/****************************************************************/
public static int[] toIntArray()throws Exception{
String str[]=br.readLine().split(" ");
int k[]=new int[str.length];
for(int i=0;i<str.length;i++){
k[i]=Integer.parseInt(str[i]);
}
return k;
}
public static int toInt()throws Exception{
return Integer.parseInt(br.readLine());
}
public static long[] toLongArray()throws Exception{
String str[]=br.readLine().split(" ");
long k[]=new long[str.length];
for(int i=0;i<str.length;i++){
k[i]=Long.parseLong(str[i]);
}
return k;
}
public static long toLong()throws Exception{
return Long.parseLong(br.readLine());
}
public static double[] toDoubleArray()throws Exception{
String str[]=br.readLine().split(" ");
double k[]=new double[str.length];
for(int i=0;i<str.length;i++){
k[i]=Double.parseDouble(str[i]);
}
return k;
}
public static double toDouble()throws Exception{
return Double.parseDouble(br.readLine());
}
public static String toStr()throws Exception{
return br.readLine();
}
public static String[] toStrArray()throws Exception{
String str[]=br.readLine().split(" ");
return str;
}
/****************************************************************/
}
class Pai implements Comparable<Pai> {
int first;
int second;
public Pai(int f, int s) {
first = f;
second = s;
}
public int compareTo(Pai p) {
int ret = 0;
if (first < p.first) {
ret = 1;
} else if (first > p.first) {
ret = -1;
} else {
if(second<p.second){
ret=-1;
}
else if(second>p.second){
ret=1;
}
else ret=0;
}
return ret;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 924 | 1,957 |
3,652 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.BufferedWriter;
import java.util.Collection;
import java.io.FileWriter;
import java.io.IOException;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.Objects;
import java.util.StringTokenizer;
import java.io.BufferedReader;
import java.util.Queue;
import java.util.LinkedList;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Nafiur Rahman Khadem Shafin 🙂
*/
public class Main {
public static void main (String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader (inputStream);
PrintWriter out = new PrintWriter (outputStream);
ProblemCFireAgain solver = new ProblemCFireAgain ();
solver.solve (1, in, out);
out.close ();
}
static class ProblemCFireAgain {
private static final byte[] dx = {-1, 0, 0, 1};
private static final byte[] dy = {0, -1, 1, 0};
private static int[][] lvl;
private static int max;
private static int n;
private static int m;
private static int k;
private static ProblemCFireAgain.Pair[] bgn;
private static ProblemCFireAgain.Pair res;
private static void bfs2d () {
Queue<ProblemCFireAgain.Pair> bfsq = new LinkedList<ProblemCFireAgain.Pair> ();
for (ProblemCFireAgain.Pair src : bgn) {
lvl[src.a][src.b] = 0;
bfsq.add (src);
}
while (!bfsq.isEmpty ()) {
ProblemCFireAgain.Pair op = bfsq.poll ();
int plvl = lvl[op.a][op.b];
// System.out.println ("ber hoise "+op+" "+plvl);
if (plvl>max) {
res = op;
max = plvl;
}
for (int i = 0; i<4; i++) {
int newX = op.a+dx[i];
int newY = op.b+dy[i];
// System.out.println (newX+" "+newY+" "+n+" "+m);
if (newX>0 && newX<=n && newY>0 && newY<=m && lvl[newX][newY] == -1) {
bfsq.add (new ProblemCFireAgain.Pair (newX, newY));
lvl[newX][newY] = (plvl+1);
// System.out.println ("dhukse "+newX+" "+newY);
}
}
}
}
public void solve (int testNumber, InputReader _in, PrintWriter _out) {
/*
* file input-output 😮. Multi source bfs. Same as snackdown problem.
* */
try (InputReader in = new InputReader (new FileInputStream ("input.txt"));
PrintWriter out = new PrintWriter (new BufferedWriter (new FileWriter ("output.txt")))) {
n = in.nextInt ();
m = in.nextInt ();
k = in.nextInt ();
bgn = new ProblemCFireAgain.Pair[k];
for (int i = 0; i<k; i++) {
bgn[i] = new ProblemCFireAgain.Pair (in.nextInt (), in.nextInt ());
}
max = Integer.MIN_VALUE;
lvl = new int[n+5][m+5];
for (int i = 0; i<n+4; i++) {
Arrays.fill (lvl[i], -1);
}
bfs2d ();
// System.out.println (max);
out.println (res);
} catch (Exception e) {
// e.printStackTrace ();
}
}
private static class Pair {
int a;
int b;
Pair (int a, int b) {
this.a = a;
this.b = b;
}
public String toString () {
return a+" "+b;
}
public boolean equals (Object o) {
if (this == o) return true;
if (!(o instanceof ProblemCFireAgain.Pair)) return false;
ProblemCFireAgain.Pair pair = (ProblemCFireAgain.Pair) o;
return a == pair.a && b == pair.b;
}
public int hashCode () {
return Objects.hash (a, b);
}
}
}
static class InputReader implements AutoCloseable {
private BufferedReader reader;
private StringTokenizer tokenizer;
public InputReader (InputStream stream) {
reader = new BufferedReader (new InputStreamReader (stream));
tokenizer = null;
}
public String next () {
while (tokenizer == null || !tokenizer.hasMoreTokens ()) {
try {
String str;
if ((str = reader.readLine ()) != null) tokenizer = new StringTokenizer (str);
else return null;//to detect eof
} catch (IOException e) {
throw new RuntimeException (e);
}
}
return tokenizer.nextToken ();
}
public int nextInt () {
return Integer.parseInt (next ());
}
public void close () throws Exception {
reader.close ();
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.BufferedWriter;
import java.util.Collection;
import java.io.FileWriter;
import java.io.IOException;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.Objects;
import java.util.StringTokenizer;
import java.io.BufferedReader;
import java.util.Queue;
import java.util.LinkedList;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Nafiur Rahman Khadem Shafin 🙂
*/
public class Main {
public static void main (String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader (inputStream);
PrintWriter out = new PrintWriter (outputStream);
ProblemCFireAgain solver = new ProblemCFireAgain ();
solver.solve (1, in, out);
out.close ();
}
static class ProblemCFireAgain {
private static final byte[] dx = {-1, 0, 0, 1};
private static final byte[] dy = {0, -1, 1, 0};
private static int[][] lvl;
private static int max;
private static int n;
private static int m;
private static int k;
private static ProblemCFireAgain.Pair[] bgn;
private static ProblemCFireAgain.Pair res;
private static void bfs2d () {
Queue<ProblemCFireAgain.Pair> bfsq = new LinkedList<ProblemCFireAgain.Pair> ();
for (ProblemCFireAgain.Pair src : bgn) {
lvl[src.a][src.b] = 0;
bfsq.add (src);
}
while (!bfsq.isEmpty ()) {
ProblemCFireAgain.Pair op = bfsq.poll ();
int plvl = lvl[op.a][op.b];
// System.out.println ("ber hoise "+op+" "+plvl);
if (plvl>max) {
res = op;
max = plvl;
}
for (int i = 0; i<4; i++) {
int newX = op.a+dx[i];
int newY = op.b+dy[i];
// System.out.println (newX+" "+newY+" "+n+" "+m);
if (newX>0 && newX<=n && newY>0 && newY<=m && lvl[newX][newY] == -1) {
bfsq.add (new ProblemCFireAgain.Pair (newX, newY));
lvl[newX][newY] = (plvl+1);
// System.out.println ("dhukse "+newX+" "+newY);
}
}
}
}
public void solve (int testNumber, InputReader _in, PrintWriter _out) {
/*
* file input-output 😮. Multi source bfs. Same as snackdown problem.
* */
try (InputReader in = new InputReader (new FileInputStream ("input.txt"));
PrintWriter out = new PrintWriter (new BufferedWriter (new FileWriter ("output.txt")))) {
n = in.nextInt ();
m = in.nextInt ();
k = in.nextInt ();
bgn = new ProblemCFireAgain.Pair[k];
for (int i = 0; i<k; i++) {
bgn[i] = new ProblemCFireAgain.Pair (in.nextInt (), in.nextInt ());
}
max = Integer.MIN_VALUE;
lvl = new int[n+5][m+5];
for (int i = 0; i<n+4; i++) {
Arrays.fill (lvl[i], -1);
}
bfs2d ();
// System.out.println (max);
out.println (res);
} catch (Exception e) {
// e.printStackTrace ();
}
}
private static class Pair {
int a;
int b;
Pair (int a, int b) {
this.a = a;
this.b = b;
}
public String toString () {
return a+" "+b;
}
public boolean equals (Object o) {
if (this == o) return true;
if (!(o instanceof ProblemCFireAgain.Pair)) return false;
ProblemCFireAgain.Pair pair = (ProblemCFireAgain.Pair) o;
return a == pair.a && b == pair.b;
}
public int hashCode () {
return Objects.hash (a, b);
}
}
}
static class InputReader implements AutoCloseable {
private BufferedReader reader;
private StringTokenizer tokenizer;
public InputReader (InputStream stream) {
reader = new BufferedReader (new InputStreamReader (stream));
tokenizer = null;
}
public String next () {
while (tokenizer == null || !tokenizer.hasMoreTokens ()) {
try {
String str;
if ((str = reader.readLine ()) != null) tokenizer = new StringTokenizer (str);
else return null;//to detect eof
} catch (IOException e) {
throw new RuntimeException (e);
}
}
return tokenizer.nextToken ();
}
public int nextInt () {
return Integer.parseInt (next ());
}
public void close () throws Exception {
reader.close ();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.BufferedWriter;
import java.util.Collection;
import java.io.FileWriter;
import java.io.IOException;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.Objects;
import java.util.StringTokenizer;
import java.io.BufferedReader;
import java.util.Queue;
import java.util.LinkedList;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Nafiur Rahman Khadem Shafin 🙂
*/
public class Main {
public static void main (String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader (inputStream);
PrintWriter out = new PrintWriter (outputStream);
ProblemCFireAgain solver = new ProblemCFireAgain ();
solver.solve (1, in, out);
out.close ();
}
static class ProblemCFireAgain {
private static final byte[] dx = {-1, 0, 0, 1};
private static final byte[] dy = {0, -1, 1, 0};
private static int[][] lvl;
private static int max;
private static int n;
private static int m;
private static int k;
private static ProblemCFireAgain.Pair[] bgn;
private static ProblemCFireAgain.Pair res;
private static void bfs2d () {
Queue<ProblemCFireAgain.Pair> bfsq = new LinkedList<ProblemCFireAgain.Pair> ();
for (ProblemCFireAgain.Pair src : bgn) {
lvl[src.a][src.b] = 0;
bfsq.add (src);
}
while (!bfsq.isEmpty ()) {
ProblemCFireAgain.Pair op = bfsq.poll ();
int plvl = lvl[op.a][op.b];
// System.out.println ("ber hoise "+op+" "+plvl);
if (plvl>max) {
res = op;
max = plvl;
}
for (int i = 0; i<4; i++) {
int newX = op.a+dx[i];
int newY = op.b+dy[i];
// System.out.println (newX+" "+newY+" "+n+" "+m);
if (newX>0 && newX<=n && newY>0 && newY<=m && lvl[newX][newY] == -1) {
bfsq.add (new ProblemCFireAgain.Pair (newX, newY));
lvl[newX][newY] = (plvl+1);
// System.out.println ("dhukse "+newX+" "+newY);
}
}
}
}
public void solve (int testNumber, InputReader _in, PrintWriter _out) {
/*
* file input-output 😮. Multi source bfs. Same as snackdown problem.
* */
try (InputReader in = new InputReader (new FileInputStream ("input.txt"));
PrintWriter out = new PrintWriter (new BufferedWriter (new FileWriter ("output.txt")))) {
n = in.nextInt ();
m = in.nextInt ();
k = in.nextInt ();
bgn = new ProblemCFireAgain.Pair[k];
for (int i = 0; i<k; i++) {
bgn[i] = new ProblemCFireAgain.Pair (in.nextInt (), in.nextInt ());
}
max = Integer.MIN_VALUE;
lvl = new int[n+5][m+5];
for (int i = 0; i<n+4; i++) {
Arrays.fill (lvl[i], -1);
}
bfs2d ();
// System.out.println (max);
out.println (res);
} catch (Exception e) {
// e.printStackTrace ();
}
}
private static class Pair {
int a;
int b;
Pair (int a, int b) {
this.a = a;
this.b = b;
}
public String toString () {
return a+" "+b;
}
public boolean equals (Object o) {
if (this == o) return true;
if (!(o instanceof ProblemCFireAgain.Pair)) return false;
ProblemCFireAgain.Pair pair = (ProblemCFireAgain.Pair) o;
return a == pair.a && b == pair.b;
}
public int hashCode () {
return Objects.hash (a, b);
}
}
}
static class InputReader implements AutoCloseable {
private BufferedReader reader;
private StringTokenizer tokenizer;
public InputReader (InputStream stream) {
reader = new BufferedReader (new InputStreamReader (stream));
tokenizer = null;
}
public String next () {
while (tokenizer == null || !tokenizer.hasMoreTokens ()) {
try {
String str;
if ((str = reader.readLine ()) != null) tokenizer = new StringTokenizer (str);
else return null;//to detect eof
} catch (IOException e) {
throw new RuntimeException (e);
}
}
return tokenizer.nextToken ();
}
public int nextInt () {
return Integer.parseInt (next ());
}
public void close () throws Exception {
reader.close ();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,523 | 3,644 |
4,182 |
import java.awt.Point;
import java.io.*;
import java.math.BigInteger;
import java.util.*;
import static java.lang.Math.*;
public class ProblemE_16 {
final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE")!=null;
BufferedReader in;
PrintWriter out;
StringTokenizer tok = new StringTokenizer("");
void init() throws FileNotFoundException{
if (ONLINE_JUDGE){
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}else{
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
}
}
String readString() throws IOException{
while(!tok.hasMoreTokens()){
tok = new StringTokenizer(in.readLine());
}
return tok.nextToken();
}
int readInt() throws IOException{
return Integer.parseInt(readString());
}
long readLong() throws IOException{
return Long.parseLong(readString());
}
double readDouble() throws IOException{
return Double.parseDouble(readString());
}
public static void main(String[] args){
new ProblemE_16().run();
}
public void run(){
try{
long t1 = System.currentTimeMillis();
init();
solve();
out.close();
long t2 = System.currentTimeMillis();
System.err.println("Time = "+(t2-t1));
}catch (Exception e){
e.printStackTrace(System.err);
System.exit(-1);
}
}
void solve() throws IOException{
int n = readInt();
double[][] a = new double[n][n];
for (int i = 0; i < n; i++){
for (int j = 0; j < n; j++){
a[i][j] = readDouble();
}
}
double[] d = new double[1<<n];
d[(1 << n) - 1] = 1;
for (int i = (1 << n) - 1; i > 0; i--){
ArrayList<Integer> list = new ArrayList<Integer>();
for (int j = 0; j < n; j++){
if ((i & (1 << j)) != 0) list.add(j);
}
double s = 0;
for (int j = 0; j < list.size(); j++){
s = 0;
for (int k = 0; k < list.size(); k++){
s += a[list.get(k)][list.get(j)];
}
d[i ^ (1 << list.get(j))] += s * d[i] * 2 / list.size() / (list.size() - 1);
}
}
for (int i = 0; i < n; i++){
out.printf(Locale.US, "%.9f", d[1 << i]);
out.print(" ");
}
}
static int[][] step8 = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}, {-1, -1}, {1, -1}, {-1, 1}, {1, 1}};
static int[][] stepKnight = {{-2, -1}, {-2, 1}, {-1, -2}, {-1, 2}, {1, -2}, {1, 2}, {2, -1}, {2, 1}};
static long gcd(long a, long b){
if (a == 0) return b;
return gcd(b % a, a);
}
static long lcm(long a, long b){
return a / gcd(a, b)*b;
}
static long[] gcdPlus(long a, long b){
long[] d = new long[3];
if (a == 0){
d[0] = b;
d[1] = 0;
d[2] = 1;
}else{
d = gcdPlus(b % a, a);
long r = d[1];
d[1] = d[2] - b/a*d[1];
d[2] = r;
}
return d;
}
static long binpow(long a, int n){
if (n == 0) return 1;
if ((n & 1) == 0){
long b = binpow(a, n/2);
return b*b;
}else return binpow(a, n - 1)*a;
}
static long binpowmod(long a, int n, long m){
if (m == 1) return 0;
if (n == 0) return 1;
if ((n & 1) == 0){
long b = binpowmod(a, n/2, m);
return (b*b) % m;
}else return binpowmod(a, n - 1, m)*a % m;
}
static long phi(long n){
int[] p = Sieve((int)ceil(sqrt(n)) + 2);
long phi = 1;
for (int i = 0; i < p.length; i++){
long x = 1;
while (n % p[i] == 0){
n /= p[i];
x *= p[i];
}
phi *= x - x/p[i];
}
if (n != 1) phi *= n - 1;
return phi;
}
static long f(long n, int x, int k){ //Кол-во десятичных чисел (включая 0), содержащих в себе цифры от 0 до k-1
if (n == 0) return 1;
long b = binpow(10, x - 1);
long c = n / b;
return (c < k? c: k)*binpow(k, x - 1) + (c < k? 1: 0)*f(n % b, x - 1, k);
}
static long fib(int n){
if (n == 0) return 0;
if ((n & 1) == 0){
long f1 = fib(n/2 - 1);
long f2 = fib(n/2 + 1);
return f2*f2 - f1*f1;
}else{
long f1 = fib(n/2);
long f2 = fib(n/2 + 1);
return f1*f1 + f2*f2;
}
}
static BigInteger BigFib(int n){
if (n == 0) return BigInteger.ZERO;
if ((n & 1) == 0){
BigInteger f1 = BigFib(n/2 - 1);
f1 = f1.multiply(f1);
BigInteger f2 = BigFib(n/2 + 1);
f2 = f2.multiply(f2);
return f2.subtract(f1);
}else{
BigInteger f1 = BigFib(n/2);
f1 = f1.multiply(f1);
BigInteger f2 = BigFib(n/2 + 1);
f2 = f2.multiply(f2);
return f2.add(f1);
}
}
static public class PointD{
double x, y;
public PointD(double x, double y){
this.x = x;
this.y = y;
}
}
static double d(Point p1, Point p2){
return sqrt(d2(p1, p2));
}
static public double d(PointD p1, PointD p2){
return sqrt(d2(p1, p2));
}
static double d2(Point p1, Point p2){
return (p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y);
}
static public double d2(PointD p1, PointD p2){
return (p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y);
}
static boolean IsProbablyPrime(long n){
if (n == 1) return false;
if ((n & 1) == 0) return false;
for (int j = 3; j < sqrt(n) + 1; j += 2){
if (n % j == 0) return false;
}
return true;
}
static int[] Sieve(int n){
boolean[] b = new boolean[n+1];
Arrays.fill(b, true);
b[0] = false;
b[1] = false;
long nLong = n;
int j=0;
for (int i = 1; i <= n; i++) {
if (b[i]){
j++;
if (((long)i)*i <= nLong) {
for (int k = i*i; k <= n; k += i) {
b[k] = false;
}
}
}
}
int[] p = new int[j];
Arrays.fill(p, 0);
j=0;
for (int i = 2; i <= n; i++) {
if (b[i]){
p[j]=i;
j++;
}
}
return p;
}
static int[][] Palindromes(String s){
char[] c = s.toCharArray();
int n = c.length;
int[][] d = new int[2][n];
int l = 0, r = -1;
for (int i = 0; i < n; i++){
int j = (i > r? 0: min(d[0][l+r-i+1], r-i+1)) + 1;
for (; i - j >= 0 && i + j - 1< n && c[i-j] == c[i+j-1]; j++);
d[0][i] = --j;
if (i + d[0][i] - 1 > r){
r = i + d[0][i] - 1;
l = i - d[0][i];
}
}
l = 0;
r = -1;
for (int i = 0; i < n; i++){
int j = (i > r? 0: min(d[1][l+r-i], r-i)) + 1;
for (; i - j >= 0 && i + j < n && c[i-j] == c[i+j]; j++);
d[1][i] = --j;
if (i + d[1][i] > r){
r = i + d[1][i];
l = i - d[1][i];
}
}
return d;
}
static public class Permutation {
int[] a;
int n;
public Permutation(int n){
this.n=n;
a=new int[n];
for (int i=0; i<n; i++){
a[i]=i;
}
}
public boolean nextPermutation(){ //Пишется с do{}while(nextPermutation(a));
int i=n-1;
for (i=n-2; i>=0; i--){
if (a[i]<a[i+1]){
break;
}
}
if (i==-1){
return false;
}
int jMin=i+1;
for (int j=n-1; j>i; j--){
if (a[i]<a[j]&&a[j]<a[jMin]){
jMin=j;
}
}
swap(i, jMin);
for (int j=1; j<=(n-i)/2; j++){
swap(i+j, n-j);
}
return true;
}
public int get(int i){
return a[i];
}
void swap(int i, int j){
int r=a[i];
a[i]=a[j];
a[j]=r;
}
}
static public class Fraction implements Comparable<Fraction>, Cloneable{
public final Fraction FRACTION_ZERO = new Fraction();
public final Fraction FRACTION_ONE = new Fraction(1);
public long numerator = 0;
public long denominator = 1;
public Fraction(){
numerator = 0;
denominator = 1;
}
public Fraction(long numerator){
this.numerator = numerator;
denominator = 1;
}
public Fraction(long numerator, long denominator){
this.numerator = numerator;
this.denominator = denominator;
Cancellation();
}
public Fraction(double numerator, double denominator, int accuracy){
this.numerator = (long)(numerator*pow(10,accuracy));
this.denominator = (long)(denominator*pow(10,accuracy));
Cancellation();
}
public Fraction(String s){
if (s.charAt(0) == '-'){
denominator = -1;
s = s.substring(1);
}
if (s.indexOf("/") != -1){
denominator *= Integer.parseInt(s.substring(s.indexOf("/") + 1));
}
if (s.indexOf(" ") != -1){
numerator = Integer.parseInt(s.substring(0, s.indexOf(" "))) * abs(denominator) + Integer.parseInt(s.substring(s.indexOf(" ") + 1, s.indexOf("/")));
}else{
if (s.indexOf("/") != -1){
numerator = Integer.parseInt(s.substring(0, s.indexOf("/")));
}else{
numerator = Integer.parseInt(s)*abs(denominator);
}
}
this.Cancellation();
}
void Cancellation(){
long g = gcd(abs(numerator), abs(denominator));
numerator /= g;
denominator /= g;
if (denominator < 0){
numerator *= -1;
denominator *= -1;
}
}
public String toString(){
String s = "";
if (numerator == 0){
return "0";
}
if (numerator < 0){
s += "-";
}
if (abs(numerator) >= denominator){
s += Long.toString(abs(numerator) / denominator) + " ";
}
if (abs(numerator) % denominator != 0){
s += Long.toString(abs(numerator) % denominator);
}else{
s = s.substring(0, s.length()-1);
}
if (denominator != 1){
s += "/" + Long.toString(denominator);
}
return s;
}
public Fraction add(Fraction f){
Fraction fResult = new Fraction();
fResult.denominator = lcm(denominator, f.denominator);
fResult.numerator = numerator * fResult.denominator / denominator + f.numerator * fResult.denominator / f.denominator;
fResult.Cancellation();
return fResult;
}
public Fraction subtract(Fraction f){
Fraction fResult = new Fraction();
fResult.denominator = lcm(denominator, f.denominator);
fResult.numerator = numerator * fResult.denominator / denominator - f.numerator * fResult.denominator / f.denominator;
fResult.Cancellation();
return fResult;
}
public Fraction multiply(Fraction f){
Fraction fResult = new Fraction();
fResult.numerator = numerator * f.numerator;
fResult.denominator = denominator * f.denominator;
fResult.Cancellation();
return fResult;
}
public Fraction divide(Fraction f){
Fraction fResult = new Fraction();
fResult.numerator = numerator * f.denominator;
fResult.denominator = denominator * f.numerator;
fResult.Cancellation();
return fResult;
}
@Override
public int compareTo(Fraction f){
long g = gcd(denominator, f.denominator);
long res = numerator * (f.denominator / g) - f.numerator * (denominator / g);
if (res < 0){
return -1;
}
if (res > 0){
return 1;
}
return 0;
}
public Fraction clone(){
Fraction fResult = new Fraction(numerator, denominator);
return fResult;
}
public Fraction floor(){
Fraction fResult = this.clone();
fResult.numerator = (fResult.numerator / fResult.denominator) * fResult.denominator;
return fResult;
}
public Fraction ceil(){
Fraction fResult = this.clone();
fResult.numerator = (fResult.numerator/fResult.denominator + 1) * fResult.denominator;
return fResult;
}
public Fraction binpow(int n){
if (n==0) return FRACTION_ONE;
if ((n&1)==0){
Fraction f=this.binpow(n/2);
return f.multiply(f);
}else return binpow(n-1).multiply(this);
}
}
static public class FenwickTree_1{ //One-dimensional array
int n;
long[] t;
public FenwickTree_1(int n){
this.n = n;
t = new long[n];
}
public long sum(int xl, int xr){
return sum(xr) - sum(xl);
}
public long sum(int x){
long result = 0;
for (int i = x; i >= 0; i = (i & (i + 1)) - 1){
result += t[i];
}
return result;
}
public void update(int x, long delta){
for (int i = x; i < n; i = (i | (i + 1))){
t[i] += delta;
}
}
}
static public class FenwickTree_2{ //Two-dimensional array
int n, m;
long[][] t;
public FenwickTree_2(int n, int m){
this.n = n;
this.m = m;
t = new long[n][m];
}
public long sum(int xl, int yl, int xr, int yr){
return sum(xr, yr) - sum(xl - 1, yr) - sum(xr, yl - 1) + sum(xl - 1, yl - 1);
}
public long sum(int x, int y){
long result = 0;
for (int i = x; i >= 0; i = (i & (i + 1)) - 1){
for (int j = y; j >= 0; j = (j & (j + 1)) - 1){
result+=t[i][j];
}
}
return result;
}
public void update(int x, int y, long delta){
for (int i = x; i < n; i = (i | (i + 1))){
for (int j = y; j < m; j = (j | (j + 1))){
t[i][j] += delta;
}
}
}
}
static public class FenwickTree_3{ //Three-dimensional array
int n, m, l;
long[][][] t;
public FenwickTree_3(int n, int m, int l){
this.n = n;
this.m = m;
this.l = l;
t = new long[n][m][l];
}
public long sum(int xl, int yl, int zl, int xr, int yr, int zr){
return sum(xr, yr, zr) - sum(xl - 1, yr, zr)
+ sum(xl - 1, yr, zl - 1) - sum(xr, yr, zl - 1)
- sum(xr, yl - 1, zr) + sum(xl - 1, yl - 1, zr)
- sum(xl - 1, yl - 1, zl - 1) + sum(xr, yl - 1, zl - 1);
}
public long sum(int x, int y, int z){
long result = 0;
for (int i = x; i >= 0; i = (i & (i + 1)) - 1){
for (int j = y; j >= 0; j = (j & (j + 1)) - 1){
for (int k = z; k >= 0; k = (k & (k + 1)) - 1){
result += t[i][j][k];
}
}
}
return result;
}
public void update(int x, int y, int z, long delta){
for (int i = x; i < n; i = (i | (i + 1))){
for (int j = y; j < n; j = (j | (j + 1))){
for (int k = z; k < n; k = (k | (k + 1))){
t[i][j][k] += delta;
}
}
}
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.awt.Point;
import java.io.*;
import java.math.BigInteger;
import java.util.*;
import static java.lang.Math.*;
public class ProblemE_16 {
final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE")!=null;
BufferedReader in;
PrintWriter out;
StringTokenizer tok = new StringTokenizer("");
void init() throws FileNotFoundException{
if (ONLINE_JUDGE){
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}else{
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
}
}
String readString() throws IOException{
while(!tok.hasMoreTokens()){
tok = new StringTokenizer(in.readLine());
}
return tok.nextToken();
}
int readInt() throws IOException{
return Integer.parseInt(readString());
}
long readLong() throws IOException{
return Long.parseLong(readString());
}
double readDouble() throws IOException{
return Double.parseDouble(readString());
}
public static void main(String[] args){
new ProblemE_16().run();
}
public void run(){
try{
long t1 = System.currentTimeMillis();
init();
solve();
out.close();
long t2 = System.currentTimeMillis();
System.err.println("Time = "+(t2-t1));
}catch (Exception e){
e.printStackTrace(System.err);
System.exit(-1);
}
}
void solve() throws IOException{
int n = readInt();
double[][] a = new double[n][n];
for (int i = 0; i < n; i++){
for (int j = 0; j < n; j++){
a[i][j] = readDouble();
}
}
double[] d = new double[1<<n];
d[(1 << n) - 1] = 1;
for (int i = (1 << n) - 1; i > 0; i--){
ArrayList<Integer> list = new ArrayList<Integer>();
for (int j = 0; j < n; j++){
if ((i & (1 << j)) != 0) list.add(j);
}
double s = 0;
for (int j = 0; j < list.size(); j++){
s = 0;
for (int k = 0; k < list.size(); k++){
s += a[list.get(k)][list.get(j)];
}
d[i ^ (1 << list.get(j))] += s * d[i] * 2 / list.size() / (list.size() - 1);
}
}
for (int i = 0; i < n; i++){
out.printf(Locale.US, "%.9f", d[1 << i]);
out.print(" ");
}
}
static int[][] step8 = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}, {-1, -1}, {1, -1}, {-1, 1}, {1, 1}};
static int[][] stepKnight = {{-2, -1}, {-2, 1}, {-1, -2}, {-1, 2}, {1, -2}, {1, 2}, {2, -1}, {2, 1}};
static long gcd(long a, long b){
if (a == 0) return b;
return gcd(b % a, a);
}
static long lcm(long a, long b){
return a / gcd(a, b)*b;
}
static long[] gcdPlus(long a, long b){
long[] d = new long[3];
if (a == 0){
d[0] = b;
d[1] = 0;
d[2] = 1;
}else{
d = gcdPlus(b % a, a);
long r = d[1];
d[1] = d[2] - b/a*d[1];
d[2] = r;
}
return d;
}
static long binpow(long a, int n){
if (n == 0) return 1;
if ((n & 1) == 0){
long b = binpow(a, n/2);
return b*b;
}else return binpow(a, n - 1)*a;
}
static long binpowmod(long a, int n, long m){
if (m == 1) return 0;
if (n == 0) return 1;
if ((n & 1) == 0){
long b = binpowmod(a, n/2, m);
return (b*b) % m;
}else return binpowmod(a, n - 1, m)*a % m;
}
static long phi(long n){
int[] p = Sieve((int)ceil(sqrt(n)) + 2);
long phi = 1;
for (int i = 0; i < p.length; i++){
long x = 1;
while (n % p[i] == 0){
n /= p[i];
x *= p[i];
}
phi *= x - x/p[i];
}
if (n != 1) phi *= n - 1;
return phi;
}
static long f(long n, int x, int k){ //Кол-во десятичных чисел (включая 0), содержащих в себе цифры от 0 до k-1
if (n == 0) return 1;
long b = binpow(10, x - 1);
long c = n / b;
return (c < k? c: k)*binpow(k, x - 1) + (c < k? 1: 0)*f(n % b, x - 1, k);
}
static long fib(int n){
if (n == 0) return 0;
if ((n & 1) == 0){
long f1 = fib(n/2 - 1);
long f2 = fib(n/2 + 1);
return f2*f2 - f1*f1;
}else{
long f1 = fib(n/2);
long f2 = fib(n/2 + 1);
return f1*f1 + f2*f2;
}
}
static BigInteger BigFib(int n){
if (n == 0) return BigInteger.ZERO;
if ((n & 1) == 0){
BigInteger f1 = BigFib(n/2 - 1);
f1 = f1.multiply(f1);
BigInteger f2 = BigFib(n/2 + 1);
f2 = f2.multiply(f2);
return f2.subtract(f1);
}else{
BigInteger f1 = BigFib(n/2);
f1 = f1.multiply(f1);
BigInteger f2 = BigFib(n/2 + 1);
f2 = f2.multiply(f2);
return f2.add(f1);
}
}
static public class PointD{
double x, y;
public PointD(double x, double y){
this.x = x;
this.y = y;
}
}
static double d(Point p1, Point p2){
return sqrt(d2(p1, p2));
}
static public double d(PointD p1, PointD p2){
return sqrt(d2(p1, p2));
}
static double d2(Point p1, Point p2){
return (p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y);
}
static public double d2(PointD p1, PointD p2){
return (p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y);
}
static boolean IsProbablyPrime(long n){
if (n == 1) return false;
if ((n & 1) == 0) return false;
for (int j = 3; j < sqrt(n) + 1; j += 2){
if (n % j == 0) return false;
}
return true;
}
static int[] Sieve(int n){
boolean[] b = new boolean[n+1];
Arrays.fill(b, true);
b[0] = false;
b[1] = false;
long nLong = n;
int j=0;
for (int i = 1; i <= n; i++) {
if (b[i]){
j++;
if (((long)i)*i <= nLong) {
for (int k = i*i; k <= n; k += i) {
b[k] = false;
}
}
}
}
int[] p = new int[j];
Arrays.fill(p, 0);
j=0;
for (int i = 2; i <= n; i++) {
if (b[i]){
p[j]=i;
j++;
}
}
return p;
}
static int[][] Palindromes(String s){
char[] c = s.toCharArray();
int n = c.length;
int[][] d = new int[2][n];
int l = 0, r = -1;
for (int i = 0; i < n; i++){
int j = (i > r? 0: min(d[0][l+r-i+1], r-i+1)) + 1;
for (; i - j >= 0 && i + j - 1< n && c[i-j] == c[i+j-1]; j++);
d[0][i] = --j;
if (i + d[0][i] - 1 > r){
r = i + d[0][i] - 1;
l = i - d[0][i];
}
}
l = 0;
r = -1;
for (int i = 0; i < n; i++){
int j = (i > r? 0: min(d[1][l+r-i], r-i)) + 1;
for (; i - j >= 0 && i + j < n && c[i-j] == c[i+j]; j++);
d[1][i] = --j;
if (i + d[1][i] > r){
r = i + d[1][i];
l = i - d[1][i];
}
}
return d;
}
static public class Permutation {
int[] a;
int n;
public Permutation(int n){
this.n=n;
a=new int[n];
for (int i=0; i<n; i++){
a[i]=i;
}
}
public boolean nextPermutation(){ //Пишется с do{}while(nextPermutation(a));
int i=n-1;
for (i=n-2; i>=0; i--){
if (a[i]<a[i+1]){
break;
}
}
if (i==-1){
return false;
}
int jMin=i+1;
for (int j=n-1; j>i; j--){
if (a[i]<a[j]&&a[j]<a[jMin]){
jMin=j;
}
}
swap(i, jMin);
for (int j=1; j<=(n-i)/2; j++){
swap(i+j, n-j);
}
return true;
}
public int get(int i){
return a[i];
}
void swap(int i, int j){
int r=a[i];
a[i]=a[j];
a[j]=r;
}
}
static public class Fraction implements Comparable<Fraction>, Cloneable{
public final Fraction FRACTION_ZERO = new Fraction();
public final Fraction FRACTION_ONE = new Fraction(1);
public long numerator = 0;
public long denominator = 1;
public Fraction(){
numerator = 0;
denominator = 1;
}
public Fraction(long numerator){
this.numerator = numerator;
denominator = 1;
}
public Fraction(long numerator, long denominator){
this.numerator = numerator;
this.denominator = denominator;
Cancellation();
}
public Fraction(double numerator, double denominator, int accuracy){
this.numerator = (long)(numerator*pow(10,accuracy));
this.denominator = (long)(denominator*pow(10,accuracy));
Cancellation();
}
public Fraction(String s){
if (s.charAt(0) == '-'){
denominator = -1;
s = s.substring(1);
}
if (s.indexOf("/") != -1){
denominator *= Integer.parseInt(s.substring(s.indexOf("/") + 1));
}
if (s.indexOf(" ") != -1){
numerator = Integer.parseInt(s.substring(0, s.indexOf(" "))) * abs(denominator) + Integer.parseInt(s.substring(s.indexOf(" ") + 1, s.indexOf("/")));
}else{
if (s.indexOf("/") != -1){
numerator = Integer.parseInt(s.substring(0, s.indexOf("/")));
}else{
numerator = Integer.parseInt(s)*abs(denominator);
}
}
this.Cancellation();
}
void Cancellation(){
long g = gcd(abs(numerator), abs(denominator));
numerator /= g;
denominator /= g;
if (denominator < 0){
numerator *= -1;
denominator *= -1;
}
}
public String toString(){
String s = "";
if (numerator == 0){
return "0";
}
if (numerator < 0){
s += "-";
}
if (abs(numerator) >= denominator){
s += Long.toString(abs(numerator) / denominator) + " ";
}
if (abs(numerator) % denominator != 0){
s += Long.toString(abs(numerator) % denominator);
}else{
s = s.substring(0, s.length()-1);
}
if (denominator != 1){
s += "/" + Long.toString(denominator);
}
return s;
}
public Fraction add(Fraction f){
Fraction fResult = new Fraction();
fResult.denominator = lcm(denominator, f.denominator);
fResult.numerator = numerator * fResult.denominator / denominator + f.numerator * fResult.denominator / f.denominator;
fResult.Cancellation();
return fResult;
}
public Fraction subtract(Fraction f){
Fraction fResult = new Fraction();
fResult.denominator = lcm(denominator, f.denominator);
fResult.numerator = numerator * fResult.denominator / denominator - f.numerator * fResult.denominator / f.denominator;
fResult.Cancellation();
return fResult;
}
public Fraction multiply(Fraction f){
Fraction fResult = new Fraction();
fResult.numerator = numerator * f.numerator;
fResult.denominator = denominator * f.denominator;
fResult.Cancellation();
return fResult;
}
public Fraction divide(Fraction f){
Fraction fResult = new Fraction();
fResult.numerator = numerator * f.denominator;
fResult.denominator = denominator * f.numerator;
fResult.Cancellation();
return fResult;
}
@Override
public int compareTo(Fraction f){
long g = gcd(denominator, f.denominator);
long res = numerator * (f.denominator / g) - f.numerator * (denominator / g);
if (res < 0){
return -1;
}
if (res > 0){
return 1;
}
return 0;
}
public Fraction clone(){
Fraction fResult = new Fraction(numerator, denominator);
return fResult;
}
public Fraction floor(){
Fraction fResult = this.clone();
fResult.numerator = (fResult.numerator / fResult.denominator) * fResult.denominator;
return fResult;
}
public Fraction ceil(){
Fraction fResult = this.clone();
fResult.numerator = (fResult.numerator/fResult.denominator + 1) * fResult.denominator;
return fResult;
}
public Fraction binpow(int n){
if (n==0) return FRACTION_ONE;
if ((n&1)==0){
Fraction f=this.binpow(n/2);
return f.multiply(f);
}else return binpow(n-1).multiply(this);
}
}
static public class FenwickTree_1{ //One-dimensional array
int n;
long[] t;
public FenwickTree_1(int n){
this.n = n;
t = new long[n];
}
public long sum(int xl, int xr){
return sum(xr) - sum(xl);
}
public long sum(int x){
long result = 0;
for (int i = x; i >= 0; i = (i & (i + 1)) - 1){
result += t[i];
}
return result;
}
public void update(int x, long delta){
for (int i = x; i < n; i = (i | (i + 1))){
t[i] += delta;
}
}
}
static public class FenwickTree_2{ //Two-dimensional array
int n, m;
long[][] t;
public FenwickTree_2(int n, int m){
this.n = n;
this.m = m;
t = new long[n][m];
}
public long sum(int xl, int yl, int xr, int yr){
return sum(xr, yr) - sum(xl - 1, yr) - sum(xr, yl - 1) + sum(xl - 1, yl - 1);
}
public long sum(int x, int y){
long result = 0;
for (int i = x; i >= 0; i = (i & (i + 1)) - 1){
for (int j = y; j >= 0; j = (j & (j + 1)) - 1){
result+=t[i][j];
}
}
return result;
}
public void update(int x, int y, long delta){
for (int i = x; i < n; i = (i | (i + 1))){
for (int j = y; j < m; j = (j | (j + 1))){
t[i][j] += delta;
}
}
}
}
static public class FenwickTree_3{ //Three-dimensional array
int n, m, l;
long[][][] t;
public FenwickTree_3(int n, int m, int l){
this.n = n;
this.m = m;
this.l = l;
t = new long[n][m][l];
}
public long sum(int xl, int yl, int zl, int xr, int yr, int zr){
return sum(xr, yr, zr) - sum(xl - 1, yr, zr)
+ sum(xl - 1, yr, zl - 1) - sum(xr, yr, zl - 1)
- sum(xr, yl - 1, zr) + sum(xl - 1, yl - 1, zr)
- sum(xl - 1, yl - 1, zl - 1) + sum(xr, yl - 1, zl - 1);
}
public long sum(int x, int y, int z){
long result = 0;
for (int i = x; i >= 0; i = (i & (i + 1)) - 1){
for (int j = y; j >= 0; j = (j & (j + 1)) - 1){
for (int k = z; k >= 0; k = (k & (k + 1)) - 1){
result += t[i][j][k];
}
}
}
return result;
}
public void update(int x, int y, int z, long delta){
for (int i = x; i < n; i = (i | (i + 1))){
for (int j = y; j < n; j = (j | (j + 1))){
for (int k = z; k < n; k = (k | (k + 1))){
t[i][j][k] += delta;
}
}
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.awt.Point;
import java.io.*;
import java.math.BigInteger;
import java.util.*;
import static java.lang.Math.*;
public class ProblemE_16 {
final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE")!=null;
BufferedReader in;
PrintWriter out;
StringTokenizer tok = new StringTokenizer("");
void init() throws FileNotFoundException{
if (ONLINE_JUDGE){
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}else{
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
}
}
String readString() throws IOException{
while(!tok.hasMoreTokens()){
tok = new StringTokenizer(in.readLine());
}
return tok.nextToken();
}
int readInt() throws IOException{
return Integer.parseInt(readString());
}
long readLong() throws IOException{
return Long.parseLong(readString());
}
double readDouble() throws IOException{
return Double.parseDouble(readString());
}
public static void main(String[] args){
new ProblemE_16().run();
}
public void run(){
try{
long t1 = System.currentTimeMillis();
init();
solve();
out.close();
long t2 = System.currentTimeMillis();
System.err.println("Time = "+(t2-t1));
}catch (Exception e){
e.printStackTrace(System.err);
System.exit(-1);
}
}
void solve() throws IOException{
int n = readInt();
double[][] a = new double[n][n];
for (int i = 0; i < n; i++){
for (int j = 0; j < n; j++){
a[i][j] = readDouble();
}
}
double[] d = new double[1<<n];
d[(1 << n) - 1] = 1;
for (int i = (1 << n) - 1; i > 0; i--){
ArrayList<Integer> list = new ArrayList<Integer>();
for (int j = 0; j < n; j++){
if ((i & (1 << j)) != 0) list.add(j);
}
double s = 0;
for (int j = 0; j < list.size(); j++){
s = 0;
for (int k = 0; k < list.size(); k++){
s += a[list.get(k)][list.get(j)];
}
d[i ^ (1 << list.get(j))] += s * d[i] * 2 / list.size() / (list.size() - 1);
}
}
for (int i = 0; i < n; i++){
out.printf(Locale.US, "%.9f", d[1 << i]);
out.print(" ");
}
}
static int[][] step8 = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}, {-1, -1}, {1, -1}, {-1, 1}, {1, 1}};
static int[][] stepKnight = {{-2, -1}, {-2, 1}, {-1, -2}, {-1, 2}, {1, -2}, {1, 2}, {2, -1}, {2, 1}};
static long gcd(long a, long b){
if (a == 0) return b;
return gcd(b % a, a);
}
static long lcm(long a, long b){
return a / gcd(a, b)*b;
}
static long[] gcdPlus(long a, long b){
long[] d = new long[3];
if (a == 0){
d[0] = b;
d[1] = 0;
d[2] = 1;
}else{
d = gcdPlus(b % a, a);
long r = d[1];
d[1] = d[2] - b/a*d[1];
d[2] = r;
}
return d;
}
static long binpow(long a, int n){
if (n == 0) return 1;
if ((n & 1) == 0){
long b = binpow(a, n/2);
return b*b;
}else return binpow(a, n - 1)*a;
}
static long binpowmod(long a, int n, long m){
if (m == 1) return 0;
if (n == 0) return 1;
if ((n & 1) == 0){
long b = binpowmod(a, n/2, m);
return (b*b) % m;
}else return binpowmod(a, n - 1, m)*a % m;
}
static long phi(long n){
int[] p = Sieve((int)ceil(sqrt(n)) + 2);
long phi = 1;
for (int i = 0; i < p.length; i++){
long x = 1;
while (n % p[i] == 0){
n /= p[i];
x *= p[i];
}
phi *= x - x/p[i];
}
if (n != 1) phi *= n - 1;
return phi;
}
static long f(long n, int x, int k){ //Кол-во десятичных чисел (включая 0), содержащих в себе цифры от 0 до k-1
if (n == 0) return 1;
long b = binpow(10, x - 1);
long c = n / b;
return (c < k? c: k)*binpow(k, x - 1) + (c < k? 1: 0)*f(n % b, x - 1, k);
}
static long fib(int n){
if (n == 0) return 0;
if ((n & 1) == 0){
long f1 = fib(n/2 - 1);
long f2 = fib(n/2 + 1);
return f2*f2 - f1*f1;
}else{
long f1 = fib(n/2);
long f2 = fib(n/2 + 1);
return f1*f1 + f2*f2;
}
}
static BigInteger BigFib(int n){
if (n == 0) return BigInteger.ZERO;
if ((n & 1) == 0){
BigInteger f1 = BigFib(n/2 - 1);
f1 = f1.multiply(f1);
BigInteger f2 = BigFib(n/2 + 1);
f2 = f2.multiply(f2);
return f2.subtract(f1);
}else{
BigInteger f1 = BigFib(n/2);
f1 = f1.multiply(f1);
BigInteger f2 = BigFib(n/2 + 1);
f2 = f2.multiply(f2);
return f2.add(f1);
}
}
static public class PointD{
double x, y;
public PointD(double x, double y){
this.x = x;
this.y = y;
}
}
static double d(Point p1, Point p2){
return sqrt(d2(p1, p2));
}
static public double d(PointD p1, PointD p2){
return sqrt(d2(p1, p2));
}
static double d2(Point p1, Point p2){
return (p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y);
}
static public double d2(PointD p1, PointD p2){
return (p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y);
}
static boolean IsProbablyPrime(long n){
if (n == 1) return false;
if ((n & 1) == 0) return false;
for (int j = 3; j < sqrt(n) + 1; j += 2){
if (n % j == 0) return false;
}
return true;
}
static int[] Sieve(int n){
boolean[] b = new boolean[n+1];
Arrays.fill(b, true);
b[0] = false;
b[1] = false;
long nLong = n;
int j=0;
for (int i = 1; i <= n; i++) {
if (b[i]){
j++;
if (((long)i)*i <= nLong) {
for (int k = i*i; k <= n; k += i) {
b[k] = false;
}
}
}
}
int[] p = new int[j];
Arrays.fill(p, 0);
j=0;
for (int i = 2; i <= n; i++) {
if (b[i]){
p[j]=i;
j++;
}
}
return p;
}
static int[][] Palindromes(String s){
char[] c = s.toCharArray();
int n = c.length;
int[][] d = new int[2][n];
int l = 0, r = -1;
for (int i = 0; i < n; i++){
int j = (i > r? 0: min(d[0][l+r-i+1], r-i+1)) + 1;
for (; i - j >= 0 && i + j - 1< n && c[i-j] == c[i+j-1]; j++);
d[0][i] = --j;
if (i + d[0][i] - 1 > r){
r = i + d[0][i] - 1;
l = i - d[0][i];
}
}
l = 0;
r = -1;
for (int i = 0; i < n; i++){
int j = (i > r? 0: min(d[1][l+r-i], r-i)) + 1;
for (; i - j >= 0 && i + j < n && c[i-j] == c[i+j]; j++);
d[1][i] = --j;
if (i + d[1][i] > r){
r = i + d[1][i];
l = i - d[1][i];
}
}
return d;
}
static public class Permutation {
int[] a;
int n;
public Permutation(int n){
this.n=n;
a=new int[n];
for (int i=0; i<n; i++){
a[i]=i;
}
}
public boolean nextPermutation(){ //Пишется с do{}while(nextPermutation(a));
int i=n-1;
for (i=n-2; i>=0; i--){
if (a[i]<a[i+1]){
break;
}
}
if (i==-1){
return false;
}
int jMin=i+1;
for (int j=n-1; j>i; j--){
if (a[i]<a[j]&&a[j]<a[jMin]){
jMin=j;
}
}
swap(i, jMin);
for (int j=1; j<=(n-i)/2; j++){
swap(i+j, n-j);
}
return true;
}
public int get(int i){
return a[i];
}
void swap(int i, int j){
int r=a[i];
a[i]=a[j];
a[j]=r;
}
}
static public class Fraction implements Comparable<Fraction>, Cloneable{
public final Fraction FRACTION_ZERO = new Fraction();
public final Fraction FRACTION_ONE = new Fraction(1);
public long numerator = 0;
public long denominator = 1;
public Fraction(){
numerator = 0;
denominator = 1;
}
public Fraction(long numerator){
this.numerator = numerator;
denominator = 1;
}
public Fraction(long numerator, long denominator){
this.numerator = numerator;
this.denominator = denominator;
Cancellation();
}
public Fraction(double numerator, double denominator, int accuracy){
this.numerator = (long)(numerator*pow(10,accuracy));
this.denominator = (long)(denominator*pow(10,accuracy));
Cancellation();
}
public Fraction(String s){
if (s.charAt(0) == '-'){
denominator = -1;
s = s.substring(1);
}
if (s.indexOf("/") != -1){
denominator *= Integer.parseInt(s.substring(s.indexOf("/") + 1));
}
if (s.indexOf(" ") != -1){
numerator = Integer.parseInt(s.substring(0, s.indexOf(" "))) * abs(denominator) + Integer.parseInt(s.substring(s.indexOf(" ") + 1, s.indexOf("/")));
}else{
if (s.indexOf("/") != -1){
numerator = Integer.parseInt(s.substring(0, s.indexOf("/")));
}else{
numerator = Integer.parseInt(s)*abs(denominator);
}
}
this.Cancellation();
}
void Cancellation(){
long g = gcd(abs(numerator), abs(denominator));
numerator /= g;
denominator /= g;
if (denominator < 0){
numerator *= -1;
denominator *= -1;
}
}
public String toString(){
String s = "";
if (numerator == 0){
return "0";
}
if (numerator < 0){
s += "-";
}
if (abs(numerator) >= denominator){
s += Long.toString(abs(numerator) / denominator) + " ";
}
if (abs(numerator) % denominator != 0){
s += Long.toString(abs(numerator) % denominator);
}else{
s = s.substring(0, s.length()-1);
}
if (denominator != 1){
s += "/" + Long.toString(denominator);
}
return s;
}
public Fraction add(Fraction f){
Fraction fResult = new Fraction();
fResult.denominator = lcm(denominator, f.denominator);
fResult.numerator = numerator * fResult.denominator / denominator + f.numerator * fResult.denominator / f.denominator;
fResult.Cancellation();
return fResult;
}
public Fraction subtract(Fraction f){
Fraction fResult = new Fraction();
fResult.denominator = lcm(denominator, f.denominator);
fResult.numerator = numerator * fResult.denominator / denominator - f.numerator * fResult.denominator / f.denominator;
fResult.Cancellation();
return fResult;
}
public Fraction multiply(Fraction f){
Fraction fResult = new Fraction();
fResult.numerator = numerator * f.numerator;
fResult.denominator = denominator * f.denominator;
fResult.Cancellation();
return fResult;
}
public Fraction divide(Fraction f){
Fraction fResult = new Fraction();
fResult.numerator = numerator * f.denominator;
fResult.denominator = denominator * f.numerator;
fResult.Cancellation();
return fResult;
}
@Override
public int compareTo(Fraction f){
long g = gcd(denominator, f.denominator);
long res = numerator * (f.denominator / g) - f.numerator * (denominator / g);
if (res < 0){
return -1;
}
if (res > 0){
return 1;
}
return 0;
}
public Fraction clone(){
Fraction fResult = new Fraction(numerator, denominator);
return fResult;
}
public Fraction floor(){
Fraction fResult = this.clone();
fResult.numerator = (fResult.numerator / fResult.denominator) * fResult.denominator;
return fResult;
}
public Fraction ceil(){
Fraction fResult = this.clone();
fResult.numerator = (fResult.numerator/fResult.denominator + 1) * fResult.denominator;
return fResult;
}
public Fraction binpow(int n){
if (n==0) return FRACTION_ONE;
if ((n&1)==0){
Fraction f=this.binpow(n/2);
return f.multiply(f);
}else return binpow(n-1).multiply(this);
}
}
static public class FenwickTree_1{ //One-dimensional array
int n;
long[] t;
public FenwickTree_1(int n){
this.n = n;
t = new long[n];
}
public long sum(int xl, int xr){
return sum(xr) - sum(xl);
}
public long sum(int x){
long result = 0;
for (int i = x; i >= 0; i = (i & (i + 1)) - 1){
result += t[i];
}
return result;
}
public void update(int x, long delta){
for (int i = x; i < n; i = (i | (i + 1))){
t[i] += delta;
}
}
}
static public class FenwickTree_2{ //Two-dimensional array
int n, m;
long[][] t;
public FenwickTree_2(int n, int m){
this.n = n;
this.m = m;
t = new long[n][m];
}
public long sum(int xl, int yl, int xr, int yr){
return sum(xr, yr) - sum(xl - 1, yr) - sum(xr, yl - 1) + sum(xl - 1, yl - 1);
}
public long sum(int x, int y){
long result = 0;
for (int i = x; i >= 0; i = (i & (i + 1)) - 1){
for (int j = y; j >= 0; j = (j & (j + 1)) - 1){
result+=t[i][j];
}
}
return result;
}
public void update(int x, int y, long delta){
for (int i = x; i < n; i = (i | (i + 1))){
for (int j = y; j < m; j = (j | (j + 1))){
t[i][j] += delta;
}
}
}
}
static public class FenwickTree_3{ //Three-dimensional array
int n, m, l;
long[][][] t;
public FenwickTree_3(int n, int m, int l){
this.n = n;
this.m = m;
this.l = l;
t = new long[n][m][l];
}
public long sum(int xl, int yl, int zl, int xr, int yr, int zr){
return sum(xr, yr, zr) - sum(xl - 1, yr, zr)
+ sum(xl - 1, yr, zl - 1) - sum(xr, yr, zl - 1)
- sum(xr, yl - 1, zr) + sum(xl - 1, yl - 1, zr)
- sum(xl - 1, yl - 1, zl - 1) + sum(xr, yl - 1, zl - 1);
}
public long sum(int x, int y, int z){
long result = 0;
for (int i = x; i >= 0; i = (i & (i + 1)) - 1){
for (int j = y; j >= 0; j = (j & (j + 1)) - 1){
for (int k = z; k >= 0; k = (k & (k + 1)) - 1){
result += t[i][j][k];
}
}
}
return result;
}
public void update(int x, int y, int z, long delta){
for (int i = x; i < n; i = (i | (i + 1))){
for (int j = y; j < n; j = (j | (j + 1))){
for (int k = z; k < n; k = (k | (k + 1))){
t[i][j][k] += delta;
}
}
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 4,983 | 4,171 |
2,904 |
import java.io.*;
import java.util.*;
public class a
{
public static void main(String[] args)
{
Scanner sc=new Scanner(System.in);
int N=sc.nextInt();
solve(N);
}
static void solve(int a)
{
if((a-8)%3==0)
{
System.out.println(8+" "+(a-8));
return ;
}
if((a-4)%3==0)
{
System.out.println(4+" "+(a-4));
return ;
}
if((a-6)%3==0)
{
System.out.println(6+" "+(a-6));
return ;
}
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class a
{
public static void main(String[] args)
{
Scanner sc=new Scanner(System.in);
int N=sc.nextInt();
solve(N);
}
static void solve(int a)
{
if((a-8)%3==0)
{
System.out.println(8+" "+(a-8));
return ;
}
if((a-4)%3==0)
{
System.out.println(4+" "+(a-4));
return ;
}
if((a-6)%3==0)
{
System.out.println(6+" "+(a-6));
return ;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class a
{
public static void main(String[] args)
{
Scanner sc=new Scanner(System.in);
int N=sc.nextInt();
solve(N);
}
static void solve(int a)
{
if((a-8)%3==0)
{
System.out.println(8+" "+(a-8));
return ;
}
if((a-4)%3==0)
{
System.out.println(4+" "+(a-4));
return ;
}
if((a-6)%3==0)
{
System.out.println(6+" "+(a-6));
return ;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 492 | 2,898 |
2,831 |
import java.util.Scanner;
public class BB {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
long a=sc.nextLong();
long b=sc.nextLong();
if(b-a>(long)2){
if(a%(long)2==0){
System.out.print(a+" "+(a+1)+" "+(a+2));
return;
}else{
System.out.print(a+1+" "+(a+2)+" "+(a+3));
return;
}
}else{
if(b-a<=(long)1){
System.out.println(-1);
return;
}
if(b-a==(long)2){
if(a%(long)2==0){
System.out.print(a+" "+(a+1)+" "+(a+2));
return;
}else{
System.out.print(-1);
return;
}
}
}
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class BB {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
long a=sc.nextLong();
long b=sc.nextLong();
if(b-a>(long)2){
if(a%(long)2==0){
System.out.print(a+" "+(a+1)+" "+(a+2));
return;
}else{
System.out.print(a+1+" "+(a+2)+" "+(a+3));
return;
}
}else{
if(b-a<=(long)1){
System.out.println(-1);
return;
}
if(b-a==(long)2){
if(a%(long)2==0){
System.out.print(a+" "+(a+1)+" "+(a+2));
return;
}else{
System.out.print(-1);
return;
}
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class BB {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
long a=sc.nextLong();
long b=sc.nextLong();
if(b-a>(long)2){
if(a%(long)2==0){
System.out.print(a+" "+(a+1)+" "+(a+2));
return;
}else{
System.out.print(a+1+" "+(a+2)+" "+(a+3));
return;
}
}else{
if(b-a<=(long)1){
System.out.println(-1);
return;
}
if(b-a==(long)2){
if(a%(long)2==0){
System.out.print(a+" "+(a+1)+" "+(a+2));
return;
}else{
System.out.print(-1);
return;
}
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 531 | 2,825 |
4,219 |
import java.io.*;
import java.util.Arrays;
import java.util.StringTokenizer;
public class mainE {
public static PrintWriter out = new PrintWriter(System.out);
public static FastScanner enter = new FastScanner(System.in);
public static void main(String[] args) throws IOException {
int t=enter.nextInt();
for (int i = 0; i < t; i++) {
solve();
}
out.close();
}
public static int[][] arr=new int[13][2010];
public static pair[] par= new pair[2010];
private static void solve() throws IOException{
int n=enter.nextInt();
int m=enter.nextInt();
for (int i = 0; i <n ; i++) {
for (int j = 0; j <m ; j++) {
arr[i][j]=enter.nextInt();
}
}
for (int i = 0; i <n ; i++) {
for (int j = m; j <m+3 ; j++) {
arr[i][j]=0;
}
}
m=m+3;
for (int i = 0; i <m ; i++) {
int max=-1;
for (int j = 0; j <n ; j++) {
max=Math.max(arr[j][i], max);
}
par[i]=new pair(max,i);
}
Arrays.sort(par,0,m, pair::compareTo);
int i0=par[0].st;
int i1=par[1].st;
int i2=par[2].st;
int i3=par[3].st;
int ans=-1;
for (int i = 0; i <n ; i++) {
for (int j = 0; j <n ; j++) {
for (int k = 0; k <n ; k++) {
for (int l = 0; l <n ; l++) {
int first=Math.max(Math.max(arr[i][i0],arr[j][i1]), Math.max(arr[k][i2],arr[l][i3]));
int second=Math.max(Math.max(arr[(i+1)%n][i0],arr[(j+1)%n][i1]), Math.max(arr[(k+1)%n][i2],arr[(l+1)%n][i3]));
int third=Math.max(Math.max(arr[(i+2)%n][i0],arr[(j+2)%n][i1]), Math.max(arr[(k+2)%n][i2],arr[(l+2)%n][i3]));
int fourth=Math.max(Math.max(arr[(i+3)%n][i0],arr[(j+3)%n][i1]), Math.max(arr[(k+3)%n][i2],arr[(l+3)%n][i3]));
if(n==1) {
second=0;
third=0;
fourth=0;
}
else if(n==2){
third=0;
fourth=0;
}
else if(n==3){
fourth=0;
}
ans=Math.max(ans, first+second+fourth+third);
}
}
}
}
System.out.println(ans);
}
static class pair implements Comparable<pair>{
int max,st;
public pair(int max, int st) {
this.max = max;
this.st = st;
}
@Override
public int compareTo(pair o) {
return -Integer.compare(max, o.max);
}
}
static class FastScanner {
BufferedReader br;
StringTokenizer stok;
FastScanner(InputStream is) {
br = new BufferedReader(new InputStreamReader(is));
}
String next() throws IOException {
while (stok == null || !stok.hasMoreTokens()) {
String s = br.readLine();
if (s == null) {
return null;
}
stok = new StringTokenizer(s);
}
return stok.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(next());
}
long nextLong() throws IOException {
return Long.parseLong(next());
}
double nextDouble() throws IOException {
return Double.parseDouble(next());
}
char nextChar() throws IOException {
return (char) (br.read());
}
String nextLine() throws IOException {
return br.readLine();
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.Arrays;
import java.util.StringTokenizer;
public class mainE {
public static PrintWriter out = new PrintWriter(System.out);
public static FastScanner enter = new FastScanner(System.in);
public static void main(String[] args) throws IOException {
int t=enter.nextInt();
for (int i = 0; i < t; i++) {
solve();
}
out.close();
}
public static int[][] arr=new int[13][2010];
public static pair[] par= new pair[2010];
private static void solve() throws IOException{
int n=enter.nextInt();
int m=enter.nextInt();
for (int i = 0; i <n ; i++) {
for (int j = 0; j <m ; j++) {
arr[i][j]=enter.nextInt();
}
}
for (int i = 0; i <n ; i++) {
for (int j = m; j <m+3 ; j++) {
arr[i][j]=0;
}
}
m=m+3;
for (int i = 0; i <m ; i++) {
int max=-1;
for (int j = 0; j <n ; j++) {
max=Math.max(arr[j][i], max);
}
par[i]=new pair(max,i);
}
Arrays.sort(par,0,m, pair::compareTo);
int i0=par[0].st;
int i1=par[1].st;
int i2=par[2].st;
int i3=par[3].st;
int ans=-1;
for (int i = 0; i <n ; i++) {
for (int j = 0; j <n ; j++) {
for (int k = 0; k <n ; k++) {
for (int l = 0; l <n ; l++) {
int first=Math.max(Math.max(arr[i][i0],arr[j][i1]), Math.max(arr[k][i2],arr[l][i3]));
int second=Math.max(Math.max(arr[(i+1)%n][i0],arr[(j+1)%n][i1]), Math.max(arr[(k+1)%n][i2],arr[(l+1)%n][i3]));
int third=Math.max(Math.max(arr[(i+2)%n][i0],arr[(j+2)%n][i1]), Math.max(arr[(k+2)%n][i2],arr[(l+2)%n][i3]));
int fourth=Math.max(Math.max(arr[(i+3)%n][i0],arr[(j+3)%n][i1]), Math.max(arr[(k+3)%n][i2],arr[(l+3)%n][i3]));
if(n==1) {
second=0;
third=0;
fourth=0;
}
else if(n==2){
third=0;
fourth=0;
}
else if(n==3){
fourth=0;
}
ans=Math.max(ans, first+second+fourth+third);
}
}
}
}
System.out.println(ans);
}
static class pair implements Comparable<pair>{
int max,st;
public pair(int max, int st) {
this.max = max;
this.st = st;
}
@Override
public int compareTo(pair o) {
return -Integer.compare(max, o.max);
}
}
static class FastScanner {
BufferedReader br;
StringTokenizer stok;
FastScanner(InputStream is) {
br = new BufferedReader(new InputStreamReader(is));
}
String next() throws IOException {
while (stok == null || !stok.hasMoreTokens()) {
String s = br.readLine();
if (s == null) {
return null;
}
stok = new StringTokenizer(s);
}
return stok.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(next());
}
long nextLong() throws IOException {
return Long.parseLong(next());
}
double nextDouble() throws IOException {
return Double.parseDouble(next());
}
char nextChar() throws IOException {
return (char) (br.read());
}
String nextLine() throws IOException {
return br.readLine();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.Arrays;
import java.util.StringTokenizer;
public class mainE {
public static PrintWriter out = new PrintWriter(System.out);
public static FastScanner enter = new FastScanner(System.in);
public static void main(String[] args) throws IOException {
int t=enter.nextInt();
for (int i = 0; i < t; i++) {
solve();
}
out.close();
}
public static int[][] arr=new int[13][2010];
public static pair[] par= new pair[2010];
private static void solve() throws IOException{
int n=enter.nextInt();
int m=enter.nextInt();
for (int i = 0; i <n ; i++) {
for (int j = 0; j <m ; j++) {
arr[i][j]=enter.nextInt();
}
}
for (int i = 0; i <n ; i++) {
for (int j = m; j <m+3 ; j++) {
arr[i][j]=0;
}
}
m=m+3;
for (int i = 0; i <m ; i++) {
int max=-1;
for (int j = 0; j <n ; j++) {
max=Math.max(arr[j][i], max);
}
par[i]=new pair(max,i);
}
Arrays.sort(par,0,m, pair::compareTo);
int i0=par[0].st;
int i1=par[1].st;
int i2=par[2].st;
int i3=par[3].st;
int ans=-1;
for (int i = 0; i <n ; i++) {
for (int j = 0; j <n ; j++) {
for (int k = 0; k <n ; k++) {
for (int l = 0; l <n ; l++) {
int first=Math.max(Math.max(arr[i][i0],arr[j][i1]), Math.max(arr[k][i2],arr[l][i3]));
int second=Math.max(Math.max(arr[(i+1)%n][i0],arr[(j+1)%n][i1]), Math.max(arr[(k+1)%n][i2],arr[(l+1)%n][i3]));
int third=Math.max(Math.max(arr[(i+2)%n][i0],arr[(j+2)%n][i1]), Math.max(arr[(k+2)%n][i2],arr[(l+2)%n][i3]));
int fourth=Math.max(Math.max(arr[(i+3)%n][i0],arr[(j+3)%n][i1]), Math.max(arr[(k+3)%n][i2],arr[(l+3)%n][i3]));
if(n==1) {
second=0;
third=0;
fourth=0;
}
else if(n==2){
third=0;
fourth=0;
}
else if(n==3){
fourth=0;
}
ans=Math.max(ans, first+second+fourth+third);
}
}
}
}
System.out.println(ans);
}
static class pair implements Comparable<pair>{
int max,st;
public pair(int max, int st) {
this.max = max;
this.st = st;
}
@Override
public int compareTo(pair o) {
return -Integer.compare(max, o.max);
}
}
static class FastScanner {
BufferedReader br;
StringTokenizer stok;
FastScanner(InputStream is) {
br = new BufferedReader(new InputStreamReader(is));
}
String next() throws IOException {
while (stok == null || !stok.hasMoreTokens()) {
String s = br.readLine();
if (s == null) {
return null;
}
stok = new StringTokenizer(s);
}
return stok.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(next());
}
long nextLong() throws IOException {
return Long.parseLong(next());
}
double nextDouble() throws IOException {
return Double.parseDouble(next());
}
char nextChar() throws IOException {
return (char) (br.read());
}
String nextLine() throws IOException {
return br.readLine();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,283 | 4,208 |
3,518 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class Practice {
public static long mod = (long) Math.pow(10, 9) + 7;
public static long[][] dp;
public static void main(String[] args) throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
PrintWriter pw = new PrintWriter(System.out);
String[] s2 = br.readLine().split(" ");
int n = (int) Long.parseLong(s2[0]);
long m = Long.parseLong(s2[1]);
dp = new long[n + 2][n + 2];
long[] power = new long[n + 1];
mod = m;
long[][] choose = new long[n + 2][n + 2];
getPow(power, n + 1);
getChoose(choose, n + 2, n + 2);
dp[0][0] = 1;
for (int i = 0; i < n; i++) {
for (int j = 0; j <= i; j++) {
for (int k = 1; k + i <= n; k++) {
// System.out.println((j + k) + " " + k + " - " + choose[j + k][k]);
dp[i + k + 1][j
+ k] = (dp[i + k + 1][j + k] + (((dp[i][j] * power[k - 1]) % mod) * choose[j + k][k]) % mod)
% mod;
}
}
}
long ans = 0;
for (int i = 0; i <= n; i++) {
ans = (ans + dp[n + 1][i]) % mod;
}
pw.println(ans);
pw.close();
}
private static void getChoose(long[][] choose, int up, int dow) {
// TODO Auto-generated method stub
for (int i = 1; i < up; i++) {
for (int j = 1; j <= i; j++) {
if (j == 1 && i == 1) {
choose[i][j] = 1;
} else if (j == 1) {
choose[i][j] = i;
} else {
choose[i][j] = (choose[i - 1][j] + choose[i - 1][j - 1]) % mod;
}
}
}
}
private static void getPow(long[] power, int l) {
// TODO Auto-generated method stub
for (int i = 0; i < l; i++) {
if (i == 0) {
power[i] = 1;
} else {
power[i] = (power[i-1] * 2) % mod;
}
}
}
}
//private static long getGCD(long l, long m) {
//// TODO Auto-generated method stub
//
//long t1 = Math.min(l, m);
//long t2 = Math.max(l, m);
//while (true) {
// long temp = t2 % t1;
// if (temp == 0) {
// return t1;
// }
// t2 = t1;
// t1 = temp;
//}
//}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class Practice {
public static long mod = (long) Math.pow(10, 9) + 7;
public static long[][] dp;
public static void main(String[] args) throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
PrintWriter pw = new PrintWriter(System.out);
String[] s2 = br.readLine().split(" ");
int n = (int) Long.parseLong(s2[0]);
long m = Long.parseLong(s2[1]);
dp = new long[n + 2][n + 2];
long[] power = new long[n + 1];
mod = m;
long[][] choose = new long[n + 2][n + 2];
getPow(power, n + 1);
getChoose(choose, n + 2, n + 2);
dp[0][0] = 1;
for (int i = 0; i < n; i++) {
for (int j = 0; j <= i; j++) {
for (int k = 1; k + i <= n; k++) {
// System.out.println((j + k) + " " + k + " - " + choose[j + k][k]);
dp[i + k + 1][j
+ k] = (dp[i + k + 1][j + k] + (((dp[i][j] * power[k - 1]) % mod) * choose[j + k][k]) % mod)
% mod;
}
}
}
long ans = 0;
for (int i = 0; i <= n; i++) {
ans = (ans + dp[n + 1][i]) % mod;
}
pw.println(ans);
pw.close();
}
private static void getChoose(long[][] choose, int up, int dow) {
// TODO Auto-generated method stub
for (int i = 1; i < up; i++) {
for (int j = 1; j <= i; j++) {
if (j == 1 && i == 1) {
choose[i][j] = 1;
} else if (j == 1) {
choose[i][j] = i;
} else {
choose[i][j] = (choose[i - 1][j] + choose[i - 1][j - 1]) % mod;
}
}
}
}
private static void getPow(long[] power, int l) {
// TODO Auto-generated method stub
for (int i = 0; i < l; i++) {
if (i == 0) {
power[i] = 1;
} else {
power[i] = (power[i-1] * 2) % mod;
}
}
}
}
//private static long getGCD(long l, long m) {
//// TODO Auto-generated method stub
//
//long t1 = Math.min(l, m);
//long t2 = Math.max(l, m);
//while (true) {
// long temp = t2 % t1;
// if (temp == 0) {
// return t1;
// }
// t2 = t1;
// t1 = temp;
//}
//}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class Practice {
public static long mod = (long) Math.pow(10, 9) + 7;
public static long[][] dp;
public static void main(String[] args) throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
PrintWriter pw = new PrintWriter(System.out);
String[] s2 = br.readLine().split(" ");
int n = (int) Long.parseLong(s2[0]);
long m = Long.parseLong(s2[1]);
dp = new long[n + 2][n + 2];
long[] power = new long[n + 1];
mod = m;
long[][] choose = new long[n + 2][n + 2];
getPow(power, n + 1);
getChoose(choose, n + 2, n + 2);
dp[0][0] = 1;
for (int i = 0; i < n; i++) {
for (int j = 0; j <= i; j++) {
for (int k = 1; k + i <= n; k++) {
// System.out.println((j + k) + " " + k + " - " + choose[j + k][k]);
dp[i + k + 1][j
+ k] = (dp[i + k + 1][j + k] + (((dp[i][j] * power[k - 1]) % mod) * choose[j + k][k]) % mod)
% mod;
}
}
}
long ans = 0;
for (int i = 0; i <= n; i++) {
ans = (ans + dp[n + 1][i]) % mod;
}
pw.println(ans);
pw.close();
}
private static void getChoose(long[][] choose, int up, int dow) {
// TODO Auto-generated method stub
for (int i = 1; i < up; i++) {
for (int j = 1; j <= i; j++) {
if (j == 1 && i == 1) {
choose[i][j] = 1;
} else if (j == 1) {
choose[i][j] = i;
} else {
choose[i][j] = (choose[i - 1][j] + choose[i - 1][j - 1]) % mod;
}
}
}
}
private static void getPow(long[] power, int l) {
// TODO Auto-generated method stub
for (int i = 0; i < l; i++) {
if (i == 0) {
power[i] = 1;
} else {
power[i] = (power[i-1] * 2) % mod;
}
}
}
}
//private static long getGCD(long l, long m) {
//// TODO Auto-generated method stub
//
//long t1 = Math.min(l, m);
//long t2 = Math.max(l, m);
//while (true) {
// long temp = t2 % t1;
// if (temp == 0) {
// return t1;
// }
// t2 = t1;
// t1 = temp;
//}
//}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,080 | 3,512 |
3,828 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.PriorityQueue;
public class D_Rnd718_Explorer
{
static int row, col;
static int INF = 1_000_000_000;
static int[] dx = {0, 0, 1, -1};
static int[] dy = {1, -1, 0, 0};
public static void main(String[] args) throws NumberFormatException, IOException
{
BufferedReader scan = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out);
String[] in = scan.readLine().split(" ");
row = parse(in[0]);
col = parse(in[1]);
int k = parse(in[2]);
int[][] xMove = new int[row][col-1];
for(int i = 0; i < row; i++)
{
in = scan.readLine().split(" ");
for(int j = 0; j < col - 1; j++)
xMove[i][j] = parse(in[j]);
}
int[][] yMove = new int[row - 1][col];
for(int i = 0; i < row - 1; i++)
{
in = scan.readLine().split(" ");
for(int j = 0; j < col; j++)
yMove[i][j] = parse(in[j]);
}
int[][] output = new int[row][col];
if(k % 2 != 0)
fill(-1, output);
else
{
Point[][] grid = new Point[row][col];
for(int i = 0; i < row; i++)
for(int j = 0; j < col; j++)
grid[i][j] = new Point(i, j);
parseMoves(grid, xMove, yMove);
solve(grid, k, output);
}
print(output, out);
out.flush();
}
private static void solve(Point[][] grid, int k, int[][] output)
{
// try bfs (hoping it passes the time constraint)
/*int target = k / 2;
for(int i = 0; i < row; i++)
for(int j = 0; j < col; j++)
output[i][j] = bfs(j, i, target, grid) << 1;*/
int target = k / 2;
int[][][] dist = new int[row][col][k/2];
fill(dist, grid);
for(int steps = 1; steps < target; steps++ )
{
for(int i = 0; i < row; i++)
{
for(int j = 0; j < col;j ++)
{
dist[i][j][steps] = getDist(i, j, steps, dist, grid);
}
}
}
for(int i = 0; i < row; i++)
for(int j = 0; j < col;j ++)
output[i][j] = (dist[i][j][target - 1] << 1);
}
private static int getDist(int y, int x, int steps, int[][][] dist, Point[][] grid)
{
for(int d = 0; d < 4; d++)
{
int i = y + dy[d];
int j = x + dx[d];
if(valid(i, j))
{
dist[y][x][steps] = Math.min(dist[y][x][steps], dist[i][j][steps - 1] + grid[y][x].weight[d]);
}
}
return dist[y][x][steps];
}
private static void fill(int[][][] dist, Point[][] grid)
{
for(int i = 0; i < row; i++)
for(int j = 0; j < col;j ++)
for(int s = 0; s < dist[0][0].length; s++)
dist[i][j][s] = INF;
for(int i = 0; i < row; i++)
for(int j = 0; j < col; j++)
for(int d = 0; d < 4; d++)
dist[i][j][0] = Math.min(dist[i][j][0], grid[i][j].weight[d]);
}
private static boolean valid(int y, int x)
{
return y >= 0 && x >= 0 && y < row && x < col;
}
/*private static int bfs(int xStart, int yStart, int target, Point[][] grid)
{
PriorityQueue<Step> q = new PriorityQueue<Step>();
q.add(new Step(grid[yStart][xStart], 0, 0));
Step s;
int w;
while(!q.isEmpty())
{
s = q.poll();
if(s.numSteps == target)
return s.length;
// try to go in each of the four directions
for(int d = 0; d < 4; d++)
{
w = s.current.weight[d];
if(w != -1)
q.add(new Step(grid[s.current.y + s.current.dy[d]][s.current.x + s.current.dx[d]], s.length + w, s.numSteps + 1));
}
}
return -1;
}*/
private static void parseMoves(Point[][] grid, int[][] xMove, int[][] yMove)
{
for(int i = 0; i < xMove.length; i++)
{
for(int j = 0; j < xMove[i].length; j++)
{
grid[i][j].weight[2] = xMove[i][j]; // right
grid[i][j + 1].weight[3] = xMove[i][j]; // left
}
}
for(int i = 0; i < yMove.length; i++)
{
for(int j = 0; j < yMove[i].length; j++)
{
grid[i][j].weight[0] = yMove[i][j]; // down
grid[i + 1][j].weight[1] = yMove[i][j]; // up
}
}
}
private static void fill(int val, int[][] output)
{
for(int i = 0; i < output.length; i++)
Arrays.fill(output[i], val);
}
private static void print(int[][] ray, PrintWriter out)
{
for(int i = 0; i < ray.length; i++)
{
out.print(ray[i][0]);
for(int j = 1; j < ray[i].length; j++)
out.print(" " + ray[i][j]);
out.println();
}
}
public static int parse(String num)
{
return Integer.parseInt(num);
}
static class Point
{
int[] weight = new int[4]; // down, up, right, left
int x, y;
public Point(int i, int j)
{
y = i;
x = j;
Arrays.fill(weight, INF);
}
}
static class Step implements Comparable<Step>
{
int length, numSteps;
Point current;
public Step(Point p, int weight, int s)
{
current = p;
length = weight;
numSteps = s;
}
@Override
public int compareTo(Step s)
{
if(length == s.length) return numSteps - s.numSteps;
return length - s.length;
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.PriorityQueue;
public class D_Rnd718_Explorer
{
static int row, col;
static int INF = 1_000_000_000;
static int[] dx = {0, 0, 1, -1};
static int[] dy = {1, -1, 0, 0};
public static void main(String[] args) throws NumberFormatException, IOException
{
BufferedReader scan = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out);
String[] in = scan.readLine().split(" ");
row = parse(in[0]);
col = parse(in[1]);
int k = parse(in[2]);
int[][] xMove = new int[row][col-1];
for(int i = 0; i < row; i++)
{
in = scan.readLine().split(" ");
for(int j = 0; j < col - 1; j++)
xMove[i][j] = parse(in[j]);
}
int[][] yMove = new int[row - 1][col];
for(int i = 0; i < row - 1; i++)
{
in = scan.readLine().split(" ");
for(int j = 0; j < col; j++)
yMove[i][j] = parse(in[j]);
}
int[][] output = new int[row][col];
if(k % 2 != 0)
fill(-1, output);
else
{
Point[][] grid = new Point[row][col];
for(int i = 0; i < row; i++)
for(int j = 0; j < col; j++)
grid[i][j] = new Point(i, j);
parseMoves(grid, xMove, yMove);
solve(grid, k, output);
}
print(output, out);
out.flush();
}
private static void solve(Point[][] grid, int k, int[][] output)
{
// try bfs (hoping it passes the time constraint)
/*int target = k / 2;
for(int i = 0; i < row; i++)
for(int j = 0; j < col; j++)
output[i][j] = bfs(j, i, target, grid) << 1;*/
int target = k / 2;
int[][][] dist = new int[row][col][k/2];
fill(dist, grid);
for(int steps = 1; steps < target; steps++ )
{
for(int i = 0; i < row; i++)
{
for(int j = 0; j < col;j ++)
{
dist[i][j][steps] = getDist(i, j, steps, dist, grid);
}
}
}
for(int i = 0; i < row; i++)
for(int j = 0; j < col;j ++)
output[i][j] = (dist[i][j][target - 1] << 1);
}
private static int getDist(int y, int x, int steps, int[][][] dist, Point[][] grid)
{
for(int d = 0; d < 4; d++)
{
int i = y + dy[d];
int j = x + dx[d];
if(valid(i, j))
{
dist[y][x][steps] = Math.min(dist[y][x][steps], dist[i][j][steps - 1] + grid[y][x].weight[d]);
}
}
return dist[y][x][steps];
}
private static void fill(int[][][] dist, Point[][] grid)
{
for(int i = 0; i < row; i++)
for(int j = 0; j < col;j ++)
for(int s = 0; s < dist[0][0].length; s++)
dist[i][j][s] = INF;
for(int i = 0; i < row; i++)
for(int j = 0; j < col; j++)
for(int d = 0; d < 4; d++)
dist[i][j][0] = Math.min(dist[i][j][0], grid[i][j].weight[d]);
}
private static boolean valid(int y, int x)
{
return y >= 0 && x >= 0 && y < row && x < col;
}
/*private static int bfs(int xStart, int yStart, int target, Point[][] grid)
{
PriorityQueue<Step> q = new PriorityQueue<Step>();
q.add(new Step(grid[yStart][xStart], 0, 0));
Step s;
int w;
while(!q.isEmpty())
{
s = q.poll();
if(s.numSteps == target)
return s.length;
// try to go in each of the four directions
for(int d = 0; d < 4; d++)
{
w = s.current.weight[d];
if(w != -1)
q.add(new Step(grid[s.current.y + s.current.dy[d]][s.current.x + s.current.dx[d]], s.length + w, s.numSteps + 1));
}
}
return -1;
}*/
private static void parseMoves(Point[][] grid, int[][] xMove, int[][] yMove)
{
for(int i = 0; i < xMove.length; i++)
{
for(int j = 0; j < xMove[i].length; j++)
{
grid[i][j].weight[2] = xMove[i][j]; // right
grid[i][j + 1].weight[3] = xMove[i][j]; // left
}
}
for(int i = 0; i < yMove.length; i++)
{
for(int j = 0; j < yMove[i].length; j++)
{
grid[i][j].weight[0] = yMove[i][j]; // down
grid[i + 1][j].weight[1] = yMove[i][j]; // up
}
}
}
private static void fill(int val, int[][] output)
{
for(int i = 0; i < output.length; i++)
Arrays.fill(output[i], val);
}
private static void print(int[][] ray, PrintWriter out)
{
for(int i = 0; i < ray.length; i++)
{
out.print(ray[i][0]);
for(int j = 1; j < ray[i].length; j++)
out.print(" " + ray[i][j]);
out.println();
}
}
public static int parse(String num)
{
return Integer.parseInt(num);
}
static class Point
{
int[] weight = new int[4]; // down, up, right, left
int x, y;
public Point(int i, int j)
{
y = i;
x = j;
Arrays.fill(weight, INF);
}
}
static class Step implements Comparable<Step>
{
int length, numSteps;
Point current;
public Step(Point p, int weight, int s)
{
current = p;
length = weight;
numSteps = s;
}
@Override
public int compareTo(Step s)
{
if(length == s.length) return numSteps - s.numSteps;
return length - s.length;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.PriorityQueue;
public class D_Rnd718_Explorer
{
static int row, col;
static int INF = 1_000_000_000;
static int[] dx = {0, 0, 1, -1};
static int[] dy = {1, -1, 0, 0};
public static void main(String[] args) throws NumberFormatException, IOException
{
BufferedReader scan = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out);
String[] in = scan.readLine().split(" ");
row = parse(in[0]);
col = parse(in[1]);
int k = parse(in[2]);
int[][] xMove = new int[row][col-1];
for(int i = 0; i < row; i++)
{
in = scan.readLine().split(" ");
for(int j = 0; j < col - 1; j++)
xMove[i][j] = parse(in[j]);
}
int[][] yMove = new int[row - 1][col];
for(int i = 0; i < row - 1; i++)
{
in = scan.readLine().split(" ");
for(int j = 0; j < col; j++)
yMove[i][j] = parse(in[j]);
}
int[][] output = new int[row][col];
if(k % 2 != 0)
fill(-1, output);
else
{
Point[][] grid = new Point[row][col];
for(int i = 0; i < row; i++)
for(int j = 0; j < col; j++)
grid[i][j] = new Point(i, j);
parseMoves(grid, xMove, yMove);
solve(grid, k, output);
}
print(output, out);
out.flush();
}
private static void solve(Point[][] grid, int k, int[][] output)
{
// try bfs (hoping it passes the time constraint)
/*int target = k / 2;
for(int i = 0; i < row; i++)
for(int j = 0; j < col; j++)
output[i][j] = bfs(j, i, target, grid) << 1;*/
int target = k / 2;
int[][][] dist = new int[row][col][k/2];
fill(dist, grid);
for(int steps = 1; steps < target; steps++ )
{
for(int i = 0; i < row; i++)
{
for(int j = 0; j < col;j ++)
{
dist[i][j][steps] = getDist(i, j, steps, dist, grid);
}
}
}
for(int i = 0; i < row; i++)
for(int j = 0; j < col;j ++)
output[i][j] = (dist[i][j][target - 1] << 1);
}
private static int getDist(int y, int x, int steps, int[][][] dist, Point[][] grid)
{
for(int d = 0; d < 4; d++)
{
int i = y + dy[d];
int j = x + dx[d];
if(valid(i, j))
{
dist[y][x][steps] = Math.min(dist[y][x][steps], dist[i][j][steps - 1] + grid[y][x].weight[d]);
}
}
return dist[y][x][steps];
}
private static void fill(int[][][] dist, Point[][] grid)
{
for(int i = 0; i < row; i++)
for(int j = 0; j < col;j ++)
for(int s = 0; s < dist[0][0].length; s++)
dist[i][j][s] = INF;
for(int i = 0; i < row; i++)
for(int j = 0; j < col; j++)
for(int d = 0; d < 4; d++)
dist[i][j][0] = Math.min(dist[i][j][0], grid[i][j].weight[d]);
}
private static boolean valid(int y, int x)
{
return y >= 0 && x >= 0 && y < row && x < col;
}
/*private static int bfs(int xStart, int yStart, int target, Point[][] grid)
{
PriorityQueue<Step> q = new PriorityQueue<Step>();
q.add(new Step(grid[yStart][xStart], 0, 0));
Step s;
int w;
while(!q.isEmpty())
{
s = q.poll();
if(s.numSteps == target)
return s.length;
// try to go in each of the four directions
for(int d = 0; d < 4; d++)
{
w = s.current.weight[d];
if(w != -1)
q.add(new Step(grid[s.current.y + s.current.dy[d]][s.current.x + s.current.dx[d]], s.length + w, s.numSteps + 1));
}
}
return -1;
}*/
private static void parseMoves(Point[][] grid, int[][] xMove, int[][] yMove)
{
for(int i = 0; i < xMove.length; i++)
{
for(int j = 0; j < xMove[i].length; j++)
{
grid[i][j].weight[2] = xMove[i][j]; // right
grid[i][j + 1].weight[3] = xMove[i][j]; // left
}
}
for(int i = 0; i < yMove.length; i++)
{
for(int j = 0; j < yMove[i].length; j++)
{
grid[i][j].weight[0] = yMove[i][j]; // down
grid[i + 1][j].weight[1] = yMove[i][j]; // up
}
}
}
private static void fill(int val, int[][] output)
{
for(int i = 0; i < output.length; i++)
Arrays.fill(output[i], val);
}
private static void print(int[][] ray, PrintWriter out)
{
for(int i = 0; i < ray.length; i++)
{
out.print(ray[i][0]);
for(int j = 1; j < ray[i].length; j++)
out.print(" " + ray[i][j]);
out.println();
}
}
public static int parse(String num)
{
return Integer.parseInt(num);
}
static class Point
{
int[] weight = new int[4]; // down, up, right, left
int x, y;
public Point(int i, int j)
{
y = i;
x = j;
Arrays.fill(weight, INF);
}
}
static class Step implements Comparable<Step>
{
int length, numSteps;
Point current;
public Step(Point p, int weight, int s)
{
current = p;
length = weight;
numSteps = s;
}
@Override
public int compareTo(Step s)
{
if(length == s.length) return numSteps - s.numSteps;
return length - s.length;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,074 | 3,818 |
3,966 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
public class C {
static int[] nm;
static int ans = 0;
static int rows, cols;
static boolean[][] cae;
static int[][] ca;
public static void main(String[] args) throws IOException {
nm = readIntArray();
rows = Math.max(nm[0], nm[1]);
cols = Math.min(nm[0], nm[1]);
long s = System.currentTimeMillis();
cae = new boolean[1000][50];
ca = new int[1000][50];
StringBuilder sb = new StringBuilder();
for (int i = 0; i < cols; i++) {
sb.append('1');
}
int startingState = Integer.parseInt(sb.toString(), 3);
ans = solve(startingState, 0);
System.out.println(nm[0]*nm[1] - ans);
// System.out.println(System.currentTimeMillis() - s );
}
static int solve(int state, int row) {
if (row == rows) {
return 0;
}
if (cae[state][row]) {
return ca[state][row];
}
int ans = Integer.MAX_VALUE;
for (int i = 0; i < Math.pow(3, cols); i++) {
boolean isCover = covers(i, state);
if (isCover && (row < rows - 1 || coversTotally(i, state))) {
int p = placed(i);
int s = solve(i, row + 1);
ans = Math.min(ans, s + p);
}
}
cae[state][row] = true;
ca[state][row] = ans;
return ans;
}
private static boolean coversTotally(int i, int state) {
String bottom = decode(i);
for (int j = 0; j < bottom.length(); j++) {
if (bottom.charAt(j) == '0') {
return false;
}
}
return true;
}
private static boolean covers(int i, int state) {
String top = decode(state);
String bottom = decode(i);
for (int j = 0; j < top.length(); j++) {
if (top.charAt(j) == '0' && bottom.charAt(j) != '2') {
return false;
}
if (top.charAt(j) == '2' && bottom.charAt(j) == '0') {
return false;
}
}
for (int j = 0; j < top.length(); j++) {
if (bottom.charAt(j) == '1' && (top.charAt(j) != '2' && !(j > 0 && bottom.charAt(j-1) == '2') && !(j < top.length() - 1 && bottom.charAt(j+1) == '2'))) {
return false;
}
}
return true;
}
private static int placed(int i) {
String s = decode(i);
int cnt = 0;
for (int j = 0; j < s.length(); j++) {
if (s.charAt(j) == '2') {
cnt++;
}
}
return cnt;
}
private static String decode(int state) {
String tmp = Integer.toString(state, 3);
if (tmp.length() < cols) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < cols - tmp.length(); i++) {
sb.append('0');
}
sb.append(tmp);
return sb.toString();
} else {
return tmp;
}
}
static int countDispositionDivisors(int[] d) {
HashSet<Integer> div = new HashSet<Integer>();
for (int i = 1; i <= d.length; i++) {
for (int j = 0; j < d.length; j++) {
if ((j + 1) % i == 0 && d[j] % i == 0) {
div.add(j + 1);
break;
}
}
}
return div.size();
}
static InputStreamReader isr = new InputStreamReader(System.in);
static BufferedReader br = new BufferedReader(isr);
static int[] readIntArray() throws IOException {
String[] v = br.readLine().split(" ");
int[] ans = new int[v.length];
for (int i = 0; i < ans.length; i++) {
ans[i] = Integer.valueOf(v[i]);
}
return ans;
}
static long[] readLongArray() throws IOException {
String[] v = br.readLine().split(" ");
long[] ans = new long[v.length];
for (int i = 0; i < ans.length; i++) {
ans[i] = Long.valueOf(v[i]);
}
return ans;
}
static <T> void print(List<T> v) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < v.size(); i++) {
if (sb.length() > 0) {
sb.append(' ');
}
sb.append(v.get(i));
}
System.out.println(sb);
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
public class C {
static int[] nm;
static int ans = 0;
static int rows, cols;
static boolean[][] cae;
static int[][] ca;
public static void main(String[] args) throws IOException {
nm = readIntArray();
rows = Math.max(nm[0], nm[1]);
cols = Math.min(nm[0], nm[1]);
long s = System.currentTimeMillis();
cae = new boolean[1000][50];
ca = new int[1000][50];
StringBuilder sb = new StringBuilder();
for (int i = 0; i < cols; i++) {
sb.append('1');
}
int startingState = Integer.parseInt(sb.toString(), 3);
ans = solve(startingState, 0);
System.out.println(nm[0]*nm[1] - ans);
// System.out.println(System.currentTimeMillis() - s );
}
static int solve(int state, int row) {
if (row == rows) {
return 0;
}
if (cae[state][row]) {
return ca[state][row];
}
int ans = Integer.MAX_VALUE;
for (int i = 0; i < Math.pow(3, cols); i++) {
boolean isCover = covers(i, state);
if (isCover && (row < rows - 1 || coversTotally(i, state))) {
int p = placed(i);
int s = solve(i, row + 1);
ans = Math.min(ans, s + p);
}
}
cae[state][row] = true;
ca[state][row] = ans;
return ans;
}
private static boolean coversTotally(int i, int state) {
String bottom = decode(i);
for (int j = 0; j < bottom.length(); j++) {
if (bottom.charAt(j) == '0') {
return false;
}
}
return true;
}
private static boolean covers(int i, int state) {
String top = decode(state);
String bottom = decode(i);
for (int j = 0; j < top.length(); j++) {
if (top.charAt(j) == '0' && bottom.charAt(j) != '2') {
return false;
}
if (top.charAt(j) == '2' && bottom.charAt(j) == '0') {
return false;
}
}
for (int j = 0; j < top.length(); j++) {
if (bottom.charAt(j) == '1' && (top.charAt(j) != '2' && !(j > 0 && bottom.charAt(j-1) == '2') && !(j < top.length() - 1 && bottom.charAt(j+1) == '2'))) {
return false;
}
}
return true;
}
private static int placed(int i) {
String s = decode(i);
int cnt = 0;
for (int j = 0; j < s.length(); j++) {
if (s.charAt(j) == '2') {
cnt++;
}
}
return cnt;
}
private static String decode(int state) {
String tmp = Integer.toString(state, 3);
if (tmp.length() < cols) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < cols - tmp.length(); i++) {
sb.append('0');
}
sb.append(tmp);
return sb.toString();
} else {
return tmp;
}
}
static int countDispositionDivisors(int[] d) {
HashSet<Integer> div = new HashSet<Integer>();
for (int i = 1; i <= d.length; i++) {
for (int j = 0; j < d.length; j++) {
if ((j + 1) % i == 0 && d[j] % i == 0) {
div.add(j + 1);
break;
}
}
}
return div.size();
}
static InputStreamReader isr = new InputStreamReader(System.in);
static BufferedReader br = new BufferedReader(isr);
static int[] readIntArray() throws IOException {
String[] v = br.readLine().split(" ");
int[] ans = new int[v.length];
for (int i = 0; i < ans.length; i++) {
ans[i] = Integer.valueOf(v[i]);
}
return ans;
}
static long[] readLongArray() throws IOException {
String[] v = br.readLine().split(" ");
long[] ans = new long[v.length];
for (int i = 0; i < ans.length; i++) {
ans[i] = Long.valueOf(v[i]);
}
return ans;
}
static <T> void print(List<T> v) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < v.size(); i++) {
if (sb.length() > 0) {
sb.append(' ');
}
sb.append(v.get(i));
}
System.out.println(sb);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
public class C {
static int[] nm;
static int ans = 0;
static int rows, cols;
static boolean[][] cae;
static int[][] ca;
public static void main(String[] args) throws IOException {
nm = readIntArray();
rows = Math.max(nm[0], nm[1]);
cols = Math.min(nm[0], nm[1]);
long s = System.currentTimeMillis();
cae = new boolean[1000][50];
ca = new int[1000][50];
StringBuilder sb = new StringBuilder();
for (int i = 0; i < cols; i++) {
sb.append('1');
}
int startingState = Integer.parseInt(sb.toString(), 3);
ans = solve(startingState, 0);
System.out.println(nm[0]*nm[1] - ans);
// System.out.println(System.currentTimeMillis() - s );
}
static int solve(int state, int row) {
if (row == rows) {
return 0;
}
if (cae[state][row]) {
return ca[state][row];
}
int ans = Integer.MAX_VALUE;
for (int i = 0; i < Math.pow(3, cols); i++) {
boolean isCover = covers(i, state);
if (isCover && (row < rows - 1 || coversTotally(i, state))) {
int p = placed(i);
int s = solve(i, row + 1);
ans = Math.min(ans, s + p);
}
}
cae[state][row] = true;
ca[state][row] = ans;
return ans;
}
private static boolean coversTotally(int i, int state) {
String bottom = decode(i);
for (int j = 0; j < bottom.length(); j++) {
if (bottom.charAt(j) == '0') {
return false;
}
}
return true;
}
private static boolean covers(int i, int state) {
String top = decode(state);
String bottom = decode(i);
for (int j = 0; j < top.length(); j++) {
if (top.charAt(j) == '0' && bottom.charAt(j) != '2') {
return false;
}
if (top.charAt(j) == '2' && bottom.charAt(j) == '0') {
return false;
}
}
for (int j = 0; j < top.length(); j++) {
if (bottom.charAt(j) == '1' && (top.charAt(j) != '2' && !(j > 0 && bottom.charAt(j-1) == '2') && !(j < top.length() - 1 && bottom.charAt(j+1) == '2'))) {
return false;
}
}
return true;
}
private static int placed(int i) {
String s = decode(i);
int cnt = 0;
for (int j = 0; j < s.length(); j++) {
if (s.charAt(j) == '2') {
cnt++;
}
}
return cnt;
}
private static String decode(int state) {
String tmp = Integer.toString(state, 3);
if (tmp.length() < cols) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < cols - tmp.length(); i++) {
sb.append('0');
}
sb.append(tmp);
return sb.toString();
} else {
return tmp;
}
}
static int countDispositionDivisors(int[] d) {
HashSet<Integer> div = new HashSet<Integer>();
for (int i = 1; i <= d.length; i++) {
for (int j = 0; j < d.length; j++) {
if ((j + 1) % i == 0 && d[j] % i == 0) {
div.add(j + 1);
break;
}
}
}
return div.size();
}
static InputStreamReader isr = new InputStreamReader(System.in);
static BufferedReader br = new BufferedReader(isr);
static int[] readIntArray() throws IOException {
String[] v = br.readLine().split(" ");
int[] ans = new int[v.length];
for (int i = 0; i < ans.length; i++) {
ans[i] = Integer.valueOf(v[i]);
}
return ans;
}
static long[] readLongArray() throws IOException {
String[] v = br.readLine().split(" ");
long[] ans = new long[v.length];
for (int i = 0; i < ans.length; i++) {
ans[i] = Long.valueOf(v[i]);
}
return ans;
}
static <T> void print(List<T> v) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < v.size(); i++) {
if (sb.length() > 0) {
sb.append(' ');
}
sb.append(v.get(i));
}
System.out.println(sb);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,521 | 3,955 |
1,442 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Alex
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskB solver = new TaskB();
solver.solve(1, in, out);
out.close();
}
static class TaskB {
int n;
int startrow;
int startcol;
long want;
boolean check(long time) {
long max = (long) 2 * time * (time + 1) + 1;
long highest = startrow - time;
if(highest < 0) {
max -= Math.abs(highest) * Math.abs(highest);
}
long lowest = startrow + time;
if(lowest >= n) {
max -= Math.abs(lowest - n + 1) * Math.abs(lowest - n + 1);
}
long leftmost = startcol - time;
if(leftmost < 0) {
max -= Math.abs(leftmost) * Math.abs(leftmost);
}
long rightmost = startcol + time;
if(rightmost >= n) {
max -= Math.abs(rightmost - n + 1) * Math.abs(rightmost - n + 1);
}
long upperright = time - (startrow + 1) - (n - startcol);
if(upperright >= 0) {
max += (upperright + 1) * (upperright + 2) / 2;
}
long lowerright = time - (n - startrow) - (n - startcol);
if(lowerright >= 0) {
max += (lowerright + 1) * (lowerright + 2) / 2;
}
long upperleft = time - (startrow + 1) - (startcol + 1);
if(upperleft >= 0) {
max += (upperleft + 1) * (upperleft + 2) / 2;
}
long lowerleft = time - (n - startrow) - (startcol + 1);
if(lowerleft >= 0) {
max += (lowerleft + 1) * (lowerleft + 2) / 2;
}
return max >= want;
}
public void solve(int testNumber, InputReader in, OutputWriter out) {
n = in.readInt();
startrow = in.readInt() - 1;
startcol = in.readInt() - 1;
want = in.readLong();
long low = 0, high = 2 * n;
while(low < high) {
long mid = (low + high) / 2;
if(check(mid)) high = mid;
else low = mid + 1;
}
out.printLine(low);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if(numChars == -1)
throw new InputMismatchException();
if(curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch(IOException e) {
throw new InputMismatchException();
}
if(numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while(isSpaceChar(c))
c = read();
int sgn = 1;
if(c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if(c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while(!isSpaceChar(c));
return res * sgn;
}
public long readLong() {
int c = read();
while(isSpaceChar(c))
c = read();
int sgn = 1;
if(c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if(c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while(!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if(filter != null)
return filter.isSpaceChar(c);
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void printLine(long i) {
writer.println(i);
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Alex
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskB solver = new TaskB();
solver.solve(1, in, out);
out.close();
}
static class TaskB {
int n;
int startrow;
int startcol;
long want;
boolean check(long time) {
long max = (long) 2 * time * (time + 1) + 1;
long highest = startrow - time;
if(highest < 0) {
max -= Math.abs(highest) * Math.abs(highest);
}
long lowest = startrow + time;
if(lowest >= n) {
max -= Math.abs(lowest - n + 1) * Math.abs(lowest - n + 1);
}
long leftmost = startcol - time;
if(leftmost < 0) {
max -= Math.abs(leftmost) * Math.abs(leftmost);
}
long rightmost = startcol + time;
if(rightmost >= n) {
max -= Math.abs(rightmost - n + 1) * Math.abs(rightmost - n + 1);
}
long upperright = time - (startrow + 1) - (n - startcol);
if(upperright >= 0) {
max += (upperright + 1) * (upperright + 2) / 2;
}
long lowerright = time - (n - startrow) - (n - startcol);
if(lowerright >= 0) {
max += (lowerright + 1) * (lowerright + 2) / 2;
}
long upperleft = time - (startrow + 1) - (startcol + 1);
if(upperleft >= 0) {
max += (upperleft + 1) * (upperleft + 2) / 2;
}
long lowerleft = time - (n - startrow) - (startcol + 1);
if(lowerleft >= 0) {
max += (lowerleft + 1) * (lowerleft + 2) / 2;
}
return max >= want;
}
public void solve(int testNumber, InputReader in, OutputWriter out) {
n = in.readInt();
startrow = in.readInt() - 1;
startcol = in.readInt() - 1;
want = in.readLong();
long low = 0, high = 2 * n;
while(low < high) {
long mid = (low + high) / 2;
if(check(mid)) high = mid;
else low = mid + 1;
}
out.printLine(low);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if(numChars == -1)
throw new InputMismatchException();
if(curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch(IOException e) {
throw new InputMismatchException();
}
if(numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while(isSpaceChar(c))
c = read();
int sgn = 1;
if(c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if(c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while(!isSpaceChar(c));
return res * sgn;
}
public long readLong() {
int c = read();
while(isSpaceChar(c))
c = read();
int sgn = 1;
if(c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if(c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while(!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if(filter != null)
return filter.isSpaceChar(c);
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void printLine(long i) {
writer.println(i);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Alex
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskB solver = new TaskB();
solver.solve(1, in, out);
out.close();
}
static class TaskB {
int n;
int startrow;
int startcol;
long want;
boolean check(long time) {
long max = (long) 2 * time * (time + 1) + 1;
long highest = startrow - time;
if(highest < 0) {
max -= Math.abs(highest) * Math.abs(highest);
}
long lowest = startrow + time;
if(lowest >= n) {
max -= Math.abs(lowest - n + 1) * Math.abs(lowest - n + 1);
}
long leftmost = startcol - time;
if(leftmost < 0) {
max -= Math.abs(leftmost) * Math.abs(leftmost);
}
long rightmost = startcol + time;
if(rightmost >= n) {
max -= Math.abs(rightmost - n + 1) * Math.abs(rightmost - n + 1);
}
long upperright = time - (startrow + 1) - (n - startcol);
if(upperright >= 0) {
max += (upperright + 1) * (upperright + 2) / 2;
}
long lowerright = time - (n - startrow) - (n - startcol);
if(lowerright >= 0) {
max += (lowerright + 1) * (lowerright + 2) / 2;
}
long upperleft = time - (startrow + 1) - (startcol + 1);
if(upperleft >= 0) {
max += (upperleft + 1) * (upperleft + 2) / 2;
}
long lowerleft = time - (n - startrow) - (startcol + 1);
if(lowerleft >= 0) {
max += (lowerleft + 1) * (lowerleft + 2) / 2;
}
return max >= want;
}
public void solve(int testNumber, InputReader in, OutputWriter out) {
n = in.readInt();
startrow = in.readInt() - 1;
startcol = in.readInt() - 1;
want = in.readLong();
long low = 0, high = 2 * n;
while(low < high) {
long mid = (low + high) / 2;
if(check(mid)) high = mid;
else low = mid + 1;
}
out.printLine(low);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if(numChars == -1)
throw new InputMismatchException();
if(curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch(IOException e) {
throw new InputMismatchException();
}
if(numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while(isSpaceChar(c))
c = read();
int sgn = 1;
if(c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if(c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while(!isSpaceChar(c));
return res * sgn;
}
public long readLong() {
int c = read();
while(isSpaceChar(c))
c = read();
int sgn = 1;
if(c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if(c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while(!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if(filter != null)
return filter.isSpaceChar(c);
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void printLine(long i) {
writer.println(i);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,636 | 1,440 |
1,385 |
/*
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/
import java.util.Scanner;
/**
*
* @author 111
*/
public class JavaApplication4 {
/**
* @param args the command line arguments
*/
static long k, n, ans;
static private long binsearch(long l, long r)
{
if(l==r) return l;
long m=(l+r)/2;
long res=(m*(k+k-m+1)/2);
if(res>=n)
return binsearch(l, m);
else
return binsearch(m+1, r);
}
public static void main(String[] args) {
Scanner in=new Scanner(System.in);
n=in.nextLong();
k=in.nextLong();
n--;
k--;
if(k*(k+1)/2<n)
ans=-1;
else
ans=binsearch(0, k);
System.out.println(ans);
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
/*
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/
import java.util.Scanner;
/**
*
* @author 111
*/
public class JavaApplication4 {
/**
* @param args the command line arguments
*/
static long k, n, ans;
static private long binsearch(long l, long r)
{
if(l==r) return l;
long m=(l+r)/2;
long res=(m*(k+k-m+1)/2);
if(res>=n)
return binsearch(l, m);
else
return binsearch(m+1, r);
}
public static void main(String[] args) {
Scanner in=new Scanner(System.in);
n=in.nextLong();
k=in.nextLong();
n--;
k--;
if(k*(k+1)/2<n)
ans=-1;
else
ans=binsearch(0, k);
System.out.println(ans);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
/*
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/
import java.util.Scanner;
/**
*
* @author 111
*/
public class JavaApplication4 {
/**
* @param args the command line arguments
*/
static long k, n, ans;
static private long binsearch(long l, long r)
{
if(l==r) return l;
long m=(l+r)/2;
long res=(m*(k+k-m+1)/2);
if(res>=n)
return binsearch(l, m);
else
return binsearch(m+1, r);
}
public static void main(String[] args) {
Scanner in=new Scanner(System.in);
n=in.nextLong();
k=in.nextLong();
n--;
k--;
if(k*(k+1)/2<n)
ans=-1;
else
ans=binsearch(0, k);
System.out.println(ans);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 549 | 1,383 |
1,065 |
import java.util.Scanner;
public class Main {
public static Character solve(long a, long b, long c) {
long min = a;
long max;
long xth = 0;
long index;
for (index = String.valueOf(a).length() - 1;; index++) {
long numOfDigits = 0;
max = (long) Math.pow(10, index + 1) - 1;
long count = (max - min) / b + 1;
numOfDigits += count * (index + 1);
if (c - numOfDigits <= 0) {
break;
}
c -= numOfDigits;
min = min + count * b;
}
// find xth
if (c % (index + 1) == 0) {
xth = c / (index + 1);
} else {
xth = c / (index + 1) + 1;
}
long lastNum = min + b * (xth - 1);
int pos = (int) (c % (index + 1));
// here is the output
if (pos == 0) {
return String.valueOf(lastNum).charAt((int) index);
} else {
return String.valueOf(lastNum).charAt(pos - 1);
}
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
long tc;
tc = sc.nextLong();
System.out.println(solve(1, 1, tc));
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class Main {
public static Character solve(long a, long b, long c) {
long min = a;
long max;
long xth = 0;
long index;
for (index = String.valueOf(a).length() - 1;; index++) {
long numOfDigits = 0;
max = (long) Math.pow(10, index + 1) - 1;
long count = (max - min) / b + 1;
numOfDigits += count * (index + 1);
if (c - numOfDigits <= 0) {
break;
}
c -= numOfDigits;
min = min + count * b;
}
// find xth
if (c % (index + 1) == 0) {
xth = c / (index + 1);
} else {
xth = c / (index + 1) + 1;
}
long lastNum = min + b * (xth - 1);
int pos = (int) (c % (index + 1));
// here is the output
if (pos == 0) {
return String.valueOf(lastNum).charAt((int) index);
} else {
return String.valueOf(lastNum).charAt(pos - 1);
}
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
long tc;
tc = sc.nextLong();
System.out.println(solve(1, 1, tc));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class Main {
public static Character solve(long a, long b, long c) {
long min = a;
long max;
long xth = 0;
long index;
for (index = String.valueOf(a).length() - 1;; index++) {
long numOfDigits = 0;
max = (long) Math.pow(10, index + 1) - 1;
long count = (max - min) / b + 1;
numOfDigits += count * (index + 1);
if (c - numOfDigits <= 0) {
break;
}
c -= numOfDigits;
min = min + count * b;
}
// find xth
if (c % (index + 1) == 0) {
xth = c / (index + 1);
} else {
xth = c / (index + 1) + 1;
}
long lastNum = min + b * (xth - 1);
int pos = (int) (c % (index + 1));
// here is the output
if (pos == 0) {
return String.valueOf(lastNum).charAt((int) index);
} else {
return String.valueOf(lastNum).charAt(pos - 1);
}
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
long tc;
tc = sc.nextLong();
System.out.println(solve(1, 1, tc));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 708 | 1,064 |
460 |
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class Edu_46A {
public static void main(String[] args) throws IOException {
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
PrintWriter printer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
int nE = Integer.parseInt(reader.readLine());
int[][] cnt = new int[][] { { 0, 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 } };
for (int i = 0; i < nE; i++) {
String nxt = reader.readLine();
if (nxt.equals("S")) {
cnt[0][0]++;
}
if (nxt.equals("M")) {
cnt[0][1]++;
}
if (nxt.equals("L")) {
cnt[0][2]++;
}
if (nxt.equals("XS")) {
cnt[1][0]++;
}
if (nxt.equals("XL")) {
cnt[1][1]++;
}
if (nxt.equals("XXS")) {
cnt[2][0]++;
}
if (nxt.equals("XXL")) {
cnt[2][1]++;
}
if (nxt.equals("XXXS")) {
cnt[3][0]++;
}
if (nxt.equals("XXXL")) {
cnt[3][1]++;
}
}
for (int i = 0; i < nE; i++) {
String nxt = reader.readLine();
if (nxt.equals("S")) {
cnt[0][0]--;
}
if (nxt.equals("M")) {
cnt[0][1]--;
}
if (nxt.equals("L")) {
cnt[0][2]--;
}
if (nxt.equals("XS")) {
cnt[1][0]--;
}
if (nxt.equals("XL")) {
cnt[1][1]--;
}
if (nxt.equals("XXS")) {
cnt[2][0]--;
}
if (nxt.equals("XXL")) {
cnt[2][1]--;
}
if (nxt.equals("XXXS")) {
cnt[3][0]--;
}
if (nxt.equals("XXXL")) {
cnt[3][1]--;
}
}
int ans = 0;
for (int i = 1; i <= 3; i++) {
ans += Math.abs(cnt[i][0]);
}
int max = 0;
for (int i = 0; i < 3; i++) {
max = Math.max(max, Math.abs(cnt[0][i]));
}
ans += max;
printer.println(ans);
printer.close();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class Edu_46A {
public static void main(String[] args) throws IOException {
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
PrintWriter printer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
int nE = Integer.parseInt(reader.readLine());
int[][] cnt = new int[][] { { 0, 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 } };
for (int i = 0; i < nE; i++) {
String nxt = reader.readLine();
if (nxt.equals("S")) {
cnt[0][0]++;
}
if (nxt.equals("M")) {
cnt[0][1]++;
}
if (nxt.equals("L")) {
cnt[0][2]++;
}
if (nxt.equals("XS")) {
cnt[1][0]++;
}
if (nxt.equals("XL")) {
cnt[1][1]++;
}
if (nxt.equals("XXS")) {
cnt[2][0]++;
}
if (nxt.equals("XXL")) {
cnt[2][1]++;
}
if (nxt.equals("XXXS")) {
cnt[3][0]++;
}
if (nxt.equals("XXXL")) {
cnt[3][1]++;
}
}
for (int i = 0; i < nE; i++) {
String nxt = reader.readLine();
if (nxt.equals("S")) {
cnt[0][0]--;
}
if (nxt.equals("M")) {
cnt[0][1]--;
}
if (nxt.equals("L")) {
cnt[0][2]--;
}
if (nxt.equals("XS")) {
cnt[1][0]--;
}
if (nxt.equals("XL")) {
cnt[1][1]--;
}
if (nxt.equals("XXS")) {
cnt[2][0]--;
}
if (nxt.equals("XXL")) {
cnt[2][1]--;
}
if (nxt.equals("XXXS")) {
cnt[3][0]--;
}
if (nxt.equals("XXXL")) {
cnt[3][1]--;
}
}
int ans = 0;
for (int i = 1; i <= 3; i++) {
ans += Math.abs(cnt[i][0]);
}
int max = 0;
for (int i = 0; i < 3; i++) {
max = Math.max(max, Math.abs(cnt[0][i]));
}
ans += max;
printer.println(ans);
printer.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class Edu_46A {
public static void main(String[] args) throws IOException {
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
PrintWriter printer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
int nE = Integer.parseInt(reader.readLine());
int[][] cnt = new int[][] { { 0, 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 } };
for (int i = 0; i < nE; i++) {
String nxt = reader.readLine();
if (nxt.equals("S")) {
cnt[0][0]++;
}
if (nxt.equals("M")) {
cnt[0][1]++;
}
if (nxt.equals("L")) {
cnt[0][2]++;
}
if (nxt.equals("XS")) {
cnt[1][0]++;
}
if (nxt.equals("XL")) {
cnt[1][1]++;
}
if (nxt.equals("XXS")) {
cnt[2][0]++;
}
if (nxt.equals("XXL")) {
cnt[2][1]++;
}
if (nxt.equals("XXXS")) {
cnt[3][0]++;
}
if (nxt.equals("XXXL")) {
cnt[3][1]++;
}
}
for (int i = 0; i < nE; i++) {
String nxt = reader.readLine();
if (nxt.equals("S")) {
cnt[0][0]--;
}
if (nxt.equals("M")) {
cnt[0][1]--;
}
if (nxt.equals("L")) {
cnt[0][2]--;
}
if (nxt.equals("XS")) {
cnt[1][0]--;
}
if (nxt.equals("XL")) {
cnt[1][1]--;
}
if (nxt.equals("XXS")) {
cnt[2][0]--;
}
if (nxt.equals("XXL")) {
cnt[2][1]--;
}
if (nxt.equals("XXXS")) {
cnt[3][0]--;
}
if (nxt.equals("XXXL")) {
cnt[3][1]--;
}
}
int ans = 0;
for (int i = 1; i <= 3; i++) {
ans += Math.abs(cnt[i][0]);
}
int max = 0;
for (int i = 0; i < 3; i++) {
max = Math.max(max, Math.abs(cnt[0][i]));
}
ans += max;
printer.println(ans);
printer.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,005 | 459 |
291 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.lang.reflect.Array;
import java.util.Arrays;
import java.util.Comparator;
import java.util.StringTokenizer;
import java.util.function.Function;
public class P1196D2 {
static boolean multipleIndependent = true;
void run() {
int n = in.nextInt();
int k = in.nextInt();
char[] s = in.next().toCharArray();
int[] dp = new int[3];
char[] c = {'R', 'G', 'B'};
int min = Integer.MAX_VALUE;
for (int i = 0; i < k; i++) {
dp[0] += s[i] == c[(i + 0) % 3] ? 0 : 1;
dp[1] += s[i] == c[(i + 1) % 3] ? 0 : 1;
dp[2] += s[i] == c[(i + 2) % 3] ? 0 : 1;
}
min = Math.min(Math.min(Math.min(dp[0], dp[1]), dp[2]), min);
// System.out.println(Arrays.toString(dp));
for (int i = k; i < n; i++) {
dp[0] += (s[i] == c[(i + 0) % 3] ? 0 : 1) - (s[i - k] == c[(i - k + 0) % 3] ? 0 : 1);
dp[1] += (s[i] == c[(i + 1) % 3] ? 0 : 1) - (s[i - k] == c[(i - k + 1) % 3] ? 0 : 1);
dp[2] += (s[i] == c[(i + 2) % 3] ? 0 : 1) - (s[i - k] == c[(i - k + 2) % 3] ? 0 : 1);
min = Math.min(Math.min(Math.min(dp[0], dp[1]), dp[2]), min);
// System.out.println(Arrays.toString(dp));
}
System.out.println(min);
}
/* -----: Template :----- */
static InputReader in = new InputReader(System.in);
public static void main(String[] args) {
P1196D2 p = new P1196D2();
int q = multipleIndependent ? in.nextInt() : 1;
while (q-- > 0) {
p.run();
}
}
int numLength(long n) {
int l = 0;
while (n > 0) {
n /= 10;
l++;
}
return l;
}
<R> long binarySearch(long lowerBound, long upperBound,
R value, Function<Long, R> generatorFunction, Comparator<R> comparator) {
if (lowerBound <= upperBound) {
long mid = (lowerBound + upperBound) / 2;
int compare = comparator.compare(generatorFunction.apply(mid), value);
if (compare == 0) {
return mid;
} else if (compare < 0) {
return binarySearch(mid + 1, upperBound, value, generatorFunction, comparator);
} else {
return binarySearch(lowerBound, mid - 1, value, generatorFunction, comparator);
}
} else {
return -1;
}
}
<T> Integer[] sortSimultaneously(T[] key, Comparator<T> comparator,
Object[]... moreArrays) {
int n = key.length;
for (Object[] array : moreArrays) {
if (array.length != n) {
throw new RuntimeException("Arrays must have equals lengths");
}
}
Integer[] indices = new Integer[n];
for (int i = 0; i < n; i++) {
indices[i] = i;
}
Comparator<Integer> delegatingComparator = (a, b) -> {
return comparator.compare(key[a], key[b]);
};
Arrays.sort(indices, delegatingComparator);
reorder(indices, key);
for (Object[] array : moreArrays) {
reorder(indices, array);
}
return indices;
}
void reorder(Integer[] indices, Object[] arr) {
if (indices.length != arr.length) {
throw new RuntimeException("Arrays must have equals lengths");
}
int n = arr.length;
Object[] copy = new Object[n];
for (int i = 0; i < n; i++) {
copy[i] = arr[indices[i]];
}
System.arraycopy(copy, 0, arr, 0, n);
}
int prodMod(int a, int b, int mod) {
return (int) (((long) a) * b % mod);
}
long prodMod(long a, long b, long mod) {
long res = 0;
a %= mod;
b %= mod;
while (b > 0) {
if ((b & 1) > 0) {
res = (res + a) % mod;
}
a = (a << 1) % mod;
b >>= 1;
}
return res;
}
long sumMod(int[] b, long mod) {
long res = 0;
for (int i = 0; i < b.length; i++) {
res = (res + b[i] % mod) % mod;
}
return res;
}
long sumMod(long[] a, long mod) {
long res = 0;
for (int i = 0; i < a.length; i++) {
res = (res + a[i] % mod) % mod;
}
return res;
}
long sumProdMod(int[] a, long b, long mod) {
long res = sumMod(a, mod);
return prodMod(res, b, mod);
}
long sumProdMod(long[] a, long b, long mod) {
long res = sumMod(a, mod);
return prodMod(res, b, mod);
}
long sumProdMod(int[] a, int[] b, long mod) {
if (a.length != b.length) {
throw new RuntimeException("Arrays must have equals lengths");
}
long res = 0;
for (int i = 0; i < a.length; i++) {
res = (res + prodMod(a[i], b[i], mod)) % mod;
}
return res;
}
long sumProdMod(long[] a, long[] b, long mod) {
if (a.length != b.length) {
throw new RuntimeException("Arrays must have equals lengths");
}
long res = 0;
for (int i = 0; i < a.length; i++) {
res = (res + prodMod(a[i], b[i], mod)) % mod;
}
return res;
}
int[] toPrimitive(Integer[] arr) {
int[] res = new int[arr.length];
for (int i = 0; i < arr.length; i++) {
res[i] = arr[i];
}
return res;
}
int[][] toPrimitive(Integer[][] arr) {
int[][] res = new int[arr.length][];
for (int i = 0; i < arr.length; i++) {
res[i] = toPrimitive(arr[i]);
}
return res;
}
long[] toPrimitive(Long[] arr) {
long[] res = new long[arr.length];
for (int i = 0; i < arr.length; i++) {
res[i] = arr[i];
}
return res;
}
long[][] toPrimitive(Long[][] arr) {
long[][] res = new long[arr.length][];
for (int i = 0; i < arr.length; i++) {
res[i] = toPrimitive(arr[i]);
}
return res;
}
Integer[] toWrapper(int[] arr) {
Integer[] res = new Integer[arr.length];
for (int i = 0; i < arr.length; i++) {
res[i] = arr[i];
}
return res;
}
Integer[][] toWrapper(int[][] arr) {
Integer[][] res = new Integer[arr.length][];
for (int i = 0; i < arr.length; i++) {
res[i] = toWrapper(arr[i]);
}
return res;
}
Long[] toWrapper(long[] arr) {
Long[] res = new Long[arr.length];
for (int i = 0; i < arr.length; i++) {
res[i] = arr[i];
}
return res;
}
Long[][] toWrapper(long[][] arr) {
Long[][] res = new Long[arr.length][];
for (int i = 0; i < arr.length; i++) {
res[i] = toWrapper(arr[i]);
}
return res;
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public int[] nextIntArray(int n) {
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = nextInt();
}
return arr;
}
public <T> T[] nextIntArray(int n, Function<Integer, T> function, Class<T> c) {
T[] arr = (T[]) Array.newInstance(c, n);
for (int i = 0; i < n; i++) {
arr[i] = function.apply(nextInt());
}
return arr;
}
public long[] nextLongArray(int n) {
long[] arr = new long[n];
for (int i = 0; i < n; i++) {
arr[i] = nextLong();
}
return arr;
}
public <T> T[] nextLongArray(int n, Function<Long, T> function, Class<T> c) {
T[] arr = (T[]) Array.newInstance(c, n);
for (int i = 0; i < n; i++) {
arr[i] = function.apply(nextLong());
}
return arr;
}
public int[][] nextIntMap(int n, int m) {
int[][] map = new int[n][m];
for (int i = 0; i < n; i++) {
map[i] = nextIntArray(m);
}
return map;
}
public long[][] nextLongMap(int n, int m) {
long[][] map = new long[n][m];
for (int i = 0; i < n; i++) {
map[i] = nextLongArray(m);
}
return map;
}
public char[][] nextCharMap(int n) {
char[][] map = new char[n][];
for (int i = 0; i < n; i++) {
map[i] = next().toCharArray();
}
return map;
}
public void readColumns(Object[]... columns) {
int n = columns[0].length;
for (Object[] column : columns) {
if (column.length != n) {
throw new RuntimeException("Arrays must have equals lengths");
}
}
for (int i = 0; i < n; i++) {
for (Object[] column : columns) {
column[i] = read(column[i].getClass());
}
}
}
public <T> T read(Class<T> c) {
throw new UnsupportedOperationException("To be implemented");
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.lang.reflect.Array;
import java.util.Arrays;
import java.util.Comparator;
import java.util.StringTokenizer;
import java.util.function.Function;
public class P1196D2 {
static boolean multipleIndependent = true;
void run() {
int n = in.nextInt();
int k = in.nextInt();
char[] s = in.next().toCharArray();
int[] dp = new int[3];
char[] c = {'R', 'G', 'B'};
int min = Integer.MAX_VALUE;
for (int i = 0; i < k; i++) {
dp[0] += s[i] == c[(i + 0) % 3] ? 0 : 1;
dp[1] += s[i] == c[(i + 1) % 3] ? 0 : 1;
dp[2] += s[i] == c[(i + 2) % 3] ? 0 : 1;
}
min = Math.min(Math.min(Math.min(dp[0], dp[1]), dp[2]), min);
// System.out.println(Arrays.toString(dp));
for (int i = k; i < n; i++) {
dp[0] += (s[i] == c[(i + 0) % 3] ? 0 : 1) - (s[i - k] == c[(i - k + 0) % 3] ? 0 : 1);
dp[1] += (s[i] == c[(i + 1) % 3] ? 0 : 1) - (s[i - k] == c[(i - k + 1) % 3] ? 0 : 1);
dp[2] += (s[i] == c[(i + 2) % 3] ? 0 : 1) - (s[i - k] == c[(i - k + 2) % 3] ? 0 : 1);
min = Math.min(Math.min(Math.min(dp[0], dp[1]), dp[2]), min);
// System.out.println(Arrays.toString(dp));
}
System.out.println(min);
}
/* -----: Template :----- */
static InputReader in = new InputReader(System.in);
public static void main(String[] args) {
P1196D2 p = new P1196D2();
int q = multipleIndependent ? in.nextInt() : 1;
while (q-- > 0) {
p.run();
}
}
int numLength(long n) {
int l = 0;
while (n > 0) {
n /= 10;
l++;
}
return l;
}
<R> long binarySearch(long lowerBound, long upperBound,
R value, Function<Long, R> generatorFunction, Comparator<R> comparator) {
if (lowerBound <= upperBound) {
long mid = (lowerBound + upperBound) / 2;
int compare = comparator.compare(generatorFunction.apply(mid), value);
if (compare == 0) {
return mid;
} else if (compare < 0) {
return binarySearch(mid + 1, upperBound, value, generatorFunction, comparator);
} else {
return binarySearch(lowerBound, mid - 1, value, generatorFunction, comparator);
}
} else {
return -1;
}
}
<T> Integer[] sortSimultaneously(T[] key, Comparator<T> comparator,
Object[]... moreArrays) {
int n = key.length;
for (Object[] array : moreArrays) {
if (array.length != n) {
throw new RuntimeException("Arrays must have equals lengths");
}
}
Integer[] indices = new Integer[n];
for (int i = 0; i < n; i++) {
indices[i] = i;
}
Comparator<Integer> delegatingComparator = (a, b) -> {
return comparator.compare(key[a], key[b]);
};
Arrays.sort(indices, delegatingComparator);
reorder(indices, key);
for (Object[] array : moreArrays) {
reorder(indices, array);
}
return indices;
}
void reorder(Integer[] indices, Object[] arr) {
if (indices.length != arr.length) {
throw new RuntimeException("Arrays must have equals lengths");
}
int n = arr.length;
Object[] copy = new Object[n];
for (int i = 0; i < n; i++) {
copy[i] = arr[indices[i]];
}
System.arraycopy(copy, 0, arr, 0, n);
}
int prodMod(int a, int b, int mod) {
return (int) (((long) a) * b % mod);
}
long prodMod(long a, long b, long mod) {
long res = 0;
a %= mod;
b %= mod;
while (b > 0) {
if ((b & 1) > 0) {
res = (res + a) % mod;
}
a = (a << 1) % mod;
b >>= 1;
}
return res;
}
long sumMod(int[] b, long mod) {
long res = 0;
for (int i = 0; i < b.length; i++) {
res = (res + b[i] % mod) % mod;
}
return res;
}
long sumMod(long[] a, long mod) {
long res = 0;
for (int i = 0; i < a.length; i++) {
res = (res + a[i] % mod) % mod;
}
return res;
}
long sumProdMod(int[] a, long b, long mod) {
long res = sumMod(a, mod);
return prodMod(res, b, mod);
}
long sumProdMod(long[] a, long b, long mod) {
long res = sumMod(a, mod);
return prodMod(res, b, mod);
}
long sumProdMod(int[] a, int[] b, long mod) {
if (a.length != b.length) {
throw new RuntimeException("Arrays must have equals lengths");
}
long res = 0;
for (int i = 0; i < a.length; i++) {
res = (res + prodMod(a[i], b[i], mod)) % mod;
}
return res;
}
long sumProdMod(long[] a, long[] b, long mod) {
if (a.length != b.length) {
throw new RuntimeException("Arrays must have equals lengths");
}
long res = 0;
for (int i = 0; i < a.length; i++) {
res = (res + prodMod(a[i], b[i], mod)) % mod;
}
return res;
}
int[] toPrimitive(Integer[] arr) {
int[] res = new int[arr.length];
for (int i = 0; i < arr.length; i++) {
res[i] = arr[i];
}
return res;
}
int[][] toPrimitive(Integer[][] arr) {
int[][] res = new int[arr.length][];
for (int i = 0; i < arr.length; i++) {
res[i] = toPrimitive(arr[i]);
}
return res;
}
long[] toPrimitive(Long[] arr) {
long[] res = new long[arr.length];
for (int i = 0; i < arr.length; i++) {
res[i] = arr[i];
}
return res;
}
long[][] toPrimitive(Long[][] arr) {
long[][] res = new long[arr.length][];
for (int i = 0; i < arr.length; i++) {
res[i] = toPrimitive(arr[i]);
}
return res;
}
Integer[] toWrapper(int[] arr) {
Integer[] res = new Integer[arr.length];
for (int i = 0; i < arr.length; i++) {
res[i] = arr[i];
}
return res;
}
Integer[][] toWrapper(int[][] arr) {
Integer[][] res = new Integer[arr.length][];
for (int i = 0; i < arr.length; i++) {
res[i] = toWrapper(arr[i]);
}
return res;
}
Long[] toWrapper(long[] arr) {
Long[] res = new Long[arr.length];
for (int i = 0; i < arr.length; i++) {
res[i] = arr[i];
}
return res;
}
Long[][] toWrapper(long[][] arr) {
Long[][] res = new Long[arr.length][];
for (int i = 0; i < arr.length; i++) {
res[i] = toWrapper(arr[i]);
}
return res;
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public int[] nextIntArray(int n) {
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = nextInt();
}
return arr;
}
public <T> T[] nextIntArray(int n, Function<Integer, T> function, Class<T> c) {
T[] arr = (T[]) Array.newInstance(c, n);
for (int i = 0; i < n; i++) {
arr[i] = function.apply(nextInt());
}
return arr;
}
public long[] nextLongArray(int n) {
long[] arr = new long[n];
for (int i = 0; i < n; i++) {
arr[i] = nextLong();
}
return arr;
}
public <T> T[] nextLongArray(int n, Function<Long, T> function, Class<T> c) {
T[] arr = (T[]) Array.newInstance(c, n);
for (int i = 0; i < n; i++) {
arr[i] = function.apply(nextLong());
}
return arr;
}
public int[][] nextIntMap(int n, int m) {
int[][] map = new int[n][m];
for (int i = 0; i < n; i++) {
map[i] = nextIntArray(m);
}
return map;
}
public long[][] nextLongMap(int n, int m) {
long[][] map = new long[n][m];
for (int i = 0; i < n; i++) {
map[i] = nextLongArray(m);
}
return map;
}
public char[][] nextCharMap(int n) {
char[][] map = new char[n][];
for (int i = 0; i < n; i++) {
map[i] = next().toCharArray();
}
return map;
}
public void readColumns(Object[]... columns) {
int n = columns[0].length;
for (Object[] column : columns) {
if (column.length != n) {
throw new RuntimeException("Arrays must have equals lengths");
}
}
for (int i = 0; i < n; i++) {
for (Object[] column : columns) {
column[i] = read(column[i].getClass());
}
}
}
public <T> T read(Class<T> c) {
throw new UnsupportedOperationException("To be implemented");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.lang.reflect.Array;
import java.util.Arrays;
import java.util.Comparator;
import java.util.StringTokenizer;
import java.util.function.Function;
public class P1196D2 {
static boolean multipleIndependent = true;
void run() {
int n = in.nextInt();
int k = in.nextInt();
char[] s = in.next().toCharArray();
int[] dp = new int[3];
char[] c = {'R', 'G', 'B'};
int min = Integer.MAX_VALUE;
for (int i = 0; i < k; i++) {
dp[0] += s[i] == c[(i + 0) % 3] ? 0 : 1;
dp[1] += s[i] == c[(i + 1) % 3] ? 0 : 1;
dp[2] += s[i] == c[(i + 2) % 3] ? 0 : 1;
}
min = Math.min(Math.min(Math.min(dp[0], dp[1]), dp[2]), min);
// System.out.println(Arrays.toString(dp));
for (int i = k; i < n; i++) {
dp[0] += (s[i] == c[(i + 0) % 3] ? 0 : 1) - (s[i - k] == c[(i - k + 0) % 3] ? 0 : 1);
dp[1] += (s[i] == c[(i + 1) % 3] ? 0 : 1) - (s[i - k] == c[(i - k + 1) % 3] ? 0 : 1);
dp[2] += (s[i] == c[(i + 2) % 3] ? 0 : 1) - (s[i - k] == c[(i - k + 2) % 3] ? 0 : 1);
min = Math.min(Math.min(Math.min(dp[0], dp[1]), dp[2]), min);
// System.out.println(Arrays.toString(dp));
}
System.out.println(min);
}
/* -----: Template :----- */
static InputReader in = new InputReader(System.in);
public static void main(String[] args) {
P1196D2 p = new P1196D2();
int q = multipleIndependent ? in.nextInt() : 1;
while (q-- > 0) {
p.run();
}
}
int numLength(long n) {
int l = 0;
while (n > 0) {
n /= 10;
l++;
}
return l;
}
<R> long binarySearch(long lowerBound, long upperBound,
R value, Function<Long, R> generatorFunction, Comparator<R> comparator) {
if (lowerBound <= upperBound) {
long mid = (lowerBound + upperBound) / 2;
int compare = comparator.compare(generatorFunction.apply(mid), value);
if (compare == 0) {
return mid;
} else if (compare < 0) {
return binarySearch(mid + 1, upperBound, value, generatorFunction, comparator);
} else {
return binarySearch(lowerBound, mid - 1, value, generatorFunction, comparator);
}
} else {
return -1;
}
}
<T> Integer[] sortSimultaneously(T[] key, Comparator<T> comparator,
Object[]... moreArrays) {
int n = key.length;
for (Object[] array : moreArrays) {
if (array.length != n) {
throw new RuntimeException("Arrays must have equals lengths");
}
}
Integer[] indices = new Integer[n];
for (int i = 0; i < n; i++) {
indices[i] = i;
}
Comparator<Integer> delegatingComparator = (a, b) -> {
return comparator.compare(key[a], key[b]);
};
Arrays.sort(indices, delegatingComparator);
reorder(indices, key);
for (Object[] array : moreArrays) {
reorder(indices, array);
}
return indices;
}
void reorder(Integer[] indices, Object[] arr) {
if (indices.length != arr.length) {
throw new RuntimeException("Arrays must have equals lengths");
}
int n = arr.length;
Object[] copy = new Object[n];
for (int i = 0; i < n; i++) {
copy[i] = arr[indices[i]];
}
System.arraycopy(copy, 0, arr, 0, n);
}
int prodMod(int a, int b, int mod) {
return (int) (((long) a) * b % mod);
}
long prodMod(long a, long b, long mod) {
long res = 0;
a %= mod;
b %= mod;
while (b > 0) {
if ((b & 1) > 0) {
res = (res + a) % mod;
}
a = (a << 1) % mod;
b >>= 1;
}
return res;
}
long sumMod(int[] b, long mod) {
long res = 0;
for (int i = 0; i < b.length; i++) {
res = (res + b[i] % mod) % mod;
}
return res;
}
long sumMod(long[] a, long mod) {
long res = 0;
for (int i = 0; i < a.length; i++) {
res = (res + a[i] % mod) % mod;
}
return res;
}
long sumProdMod(int[] a, long b, long mod) {
long res = sumMod(a, mod);
return prodMod(res, b, mod);
}
long sumProdMod(long[] a, long b, long mod) {
long res = sumMod(a, mod);
return prodMod(res, b, mod);
}
long sumProdMod(int[] a, int[] b, long mod) {
if (a.length != b.length) {
throw new RuntimeException("Arrays must have equals lengths");
}
long res = 0;
for (int i = 0; i < a.length; i++) {
res = (res + prodMod(a[i], b[i], mod)) % mod;
}
return res;
}
long sumProdMod(long[] a, long[] b, long mod) {
if (a.length != b.length) {
throw new RuntimeException("Arrays must have equals lengths");
}
long res = 0;
for (int i = 0; i < a.length; i++) {
res = (res + prodMod(a[i], b[i], mod)) % mod;
}
return res;
}
int[] toPrimitive(Integer[] arr) {
int[] res = new int[arr.length];
for (int i = 0; i < arr.length; i++) {
res[i] = arr[i];
}
return res;
}
int[][] toPrimitive(Integer[][] arr) {
int[][] res = new int[arr.length][];
for (int i = 0; i < arr.length; i++) {
res[i] = toPrimitive(arr[i]);
}
return res;
}
long[] toPrimitive(Long[] arr) {
long[] res = new long[arr.length];
for (int i = 0; i < arr.length; i++) {
res[i] = arr[i];
}
return res;
}
long[][] toPrimitive(Long[][] arr) {
long[][] res = new long[arr.length][];
for (int i = 0; i < arr.length; i++) {
res[i] = toPrimitive(arr[i]);
}
return res;
}
Integer[] toWrapper(int[] arr) {
Integer[] res = new Integer[arr.length];
for (int i = 0; i < arr.length; i++) {
res[i] = arr[i];
}
return res;
}
Integer[][] toWrapper(int[][] arr) {
Integer[][] res = new Integer[arr.length][];
for (int i = 0; i < arr.length; i++) {
res[i] = toWrapper(arr[i]);
}
return res;
}
Long[] toWrapper(long[] arr) {
Long[] res = new Long[arr.length];
for (int i = 0; i < arr.length; i++) {
res[i] = arr[i];
}
return res;
}
Long[][] toWrapper(long[][] arr) {
Long[][] res = new Long[arr.length][];
for (int i = 0; i < arr.length; i++) {
res[i] = toWrapper(arr[i]);
}
return res;
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public int[] nextIntArray(int n) {
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = nextInt();
}
return arr;
}
public <T> T[] nextIntArray(int n, Function<Integer, T> function, Class<T> c) {
T[] arr = (T[]) Array.newInstance(c, n);
for (int i = 0; i < n; i++) {
arr[i] = function.apply(nextInt());
}
return arr;
}
public long[] nextLongArray(int n) {
long[] arr = new long[n];
for (int i = 0; i < n; i++) {
arr[i] = nextLong();
}
return arr;
}
public <T> T[] nextLongArray(int n, Function<Long, T> function, Class<T> c) {
T[] arr = (T[]) Array.newInstance(c, n);
for (int i = 0; i < n; i++) {
arr[i] = function.apply(nextLong());
}
return arr;
}
public int[][] nextIntMap(int n, int m) {
int[][] map = new int[n][m];
for (int i = 0; i < n; i++) {
map[i] = nextIntArray(m);
}
return map;
}
public long[][] nextLongMap(int n, int m) {
long[][] map = new long[n][m];
for (int i = 0; i < n; i++) {
map[i] = nextLongArray(m);
}
return map;
}
public char[][] nextCharMap(int n) {
char[][] map = new char[n][];
for (int i = 0; i < n; i++) {
map[i] = next().toCharArray();
}
return map;
}
public void readColumns(Object[]... columns) {
int n = columns[0].length;
for (Object[] column : columns) {
if (column.length != n) {
throw new RuntimeException("Arrays must have equals lengths");
}
}
for (int i = 0; i < n; i++) {
for (Object[] column : columns) {
column[i] = read(column[i].getClass());
}
}
}
public <T> T read(Class<T> c) {
throw new UnsupportedOperationException("To be implemented");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,996 | 291 |
878 |
import java.util.*;
public class B138 {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int a[] = new int[100004];
int b[] = new int[100004];
int n, m, ans = 0, dau, cuoi=-1;
n = sc.nextInt();
m = sc.nextInt();
for(int i=0;i<100004;i++) a[i] = 0;
for(int i=0;i<n;i++){
b[i] = sc.nextInt();
if(a[b[i]]==0){
a[b[i]] = 1;
ans++;
if(ans==m){
cuoi = i+1;
break;
}
}
}
for(int i=cuoi-1;i>=00;i--){
if(a[b[i]]==1){
a[b[i]] = 0;
ans--;
if(ans==0){
System.out.println((i+1)+" "+cuoi);
System.exit(0);
}
}
}
System.out.println("-1 -1");
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class B138 {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int a[] = new int[100004];
int b[] = new int[100004];
int n, m, ans = 0, dau, cuoi=-1;
n = sc.nextInt();
m = sc.nextInt();
for(int i=0;i<100004;i++) a[i] = 0;
for(int i=0;i<n;i++){
b[i] = sc.nextInt();
if(a[b[i]]==0){
a[b[i]] = 1;
ans++;
if(ans==m){
cuoi = i+1;
break;
}
}
}
for(int i=cuoi-1;i>=00;i--){
if(a[b[i]]==1){
a[b[i]] = 0;
ans--;
if(ans==0){
System.out.println((i+1)+" "+cuoi);
System.exit(0);
}
}
}
System.out.println("-1 -1");
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class B138 {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int a[] = new int[100004];
int b[] = new int[100004];
int n, m, ans = 0, dau, cuoi=-1;
n = sc.nextInt();
m = sc.nextInt();
for(int i=0;i<100004;i++) a[i] = 0;
for(int i=0;i<n;i++){
b[i] = sc.nextInt();
if(a[b[i]]==0){
a[b[i]] = 1;
ans++;
if(ans==m){
cuoi = i+1;
break;
}
}
}
for(int i=cuoi-1;i>=00;i--){
if(a[b[i]]==1){
a[b[i]] = 0;
ans--;
if(ans==0){
System.out.println((i+1)+" "+cuoi);
System.exit(0);
}
}
}
System.out.println("-1 -1");
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 586 | 877 |
175 |
/* package whatever; // don't place package name! */
import java.util.*;
import java.lang.*;
import java.io.*;
/* Name of the class has to be "Main" only if the class is public. */
public class Ideone
{
public static void main (String[] args) throws java.lang.Exception
{
// your code goes here
long n,s,p;
Scanner in=new Scanner(System.in);
n=in.nextLong();
s=in.nextLong();
if(n==1 && s<=1)
{
System.out.print(n-1);
}
else if(s<n)
{
if(s%2!=0)
{System.out.print(s/2);}
else
{System.out.print(s/2-1);}
}
else if(s==n)
{
if(s%2==0)
{System.out.println((n/2)-1);}
else
{System.out.println(n/2);}
}
else if(s<=(2*n-1))
{
System.out.print((2*n+1-s)/2);
}
else
{
System.out.print(0);
}
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
/* package whatever; // don't place package name! */
import java.util.*;
import java.lang.*;
import java.io.*;
/* Name of the class has to be "Main" only if the class is public. */
public class Ideone
{
public static void main (String[] args) throws java.lang.Exception
{
// your code goes here
long n,s,p;
Scanner in=new Scanner(System.in);
n=in.nextLong();
s=in.nextLong();
if(n==1 && s<=1)
{
System.out.print(n-1);
}
else if(s<n)
{
if(s%2!=0)
{System.out.print(s/2);}
else
{System.out.print(s/2-1);}
}
else if(s==n)
{
if(s%2==0)
{System.out.println((n/2)-1);}
else
{System.out.println(n/2);}
}
else if(s<=(2*n-1))
{
System.out.print((2*n+1-s)/2);
}
else
{
System.out.print(0);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
/* package whatever; // don't place package name! */
import java.util.*;
import java.lang.*;
import java.io.*;
/* Name of the class has to be "Main" only if the class is public. */
public class Ideone
{
public static void main (String[] args) throws java.lang.Exception
{
// your code goes here
long n,s,p;
Scanner in=new Scanner(System.in);
n=in.nextLong();
s=in.nextLong();
if(n==1 && s<=1)
{
System.out.print(n-1);
}
else if(s<n)
{
if(s%2!=0)
{System.out.print(s/2);}
else
{System.out.print(s/2-1);}
}
else if(s==n)
{
if(s%2==0)
{System.out.println((n/2)-1);}
else
{System.out.println(n/2);}
}
else if(s<=(2*n-1))
{
System.out.print((2*n+1-s)/2);
}
else
{
System.out.print(0);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 603 | 175 |
3,107 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.LinkedList;
import java.util.Scanner;
import java.util.Stack;
public class sample {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
System.out.println(n+n/2);
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.LinkedList;
import java.util.Scanner;
import java.util.Stack;
public class sample {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
System.out.println(n+n/2);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.LinkedList;
import java.util.Scanner;
import java.util.Stack;
public class sample {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
System.out.println(n+n/2);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 402 | 3,101 |
1,146 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class Main {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String[] in = br.readLine().split(" ");
long n = Long.parseLong(in[0]), s = Long.parseLong(in[1]);
Solver solver = new Solver(n, s);
System.out.println(solver.solve());
}
}
class Solver {
private long n, s;
Solver(long n, long s) {
this.n = n;
this.s = s;
}
public long solve() {
long low = 1, high = n;
for (int i = 0; i < 72; ++i) {
long x = low + (high - low) / 2;
if (check(x))
high = x - 1;
else
low = x + 1;
}
return n - high;
}
private boolean check(long x) {
long tmp = x;
int sum = 0;
while (tmp > 0) {
sum += tmp % 10;
tmp /= 10;
}
return x - sum >= s;
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class Main {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String[] in = br.readLine().split(" ");
long n = Long.parseLong(in[0]), s = Long.parseLong(in[1]);
Solver solver = new Solver(n, s);
System.out.println(solver.solve());
}
}
class Solver {
private long n, s;
Solver(long n, long s) {
this.n = n;
this.s = s;
}
public long solve() {
long low = 1, high = n;
for (int i = 0; i < 72; ++i) {
long x = low + (high - low) / 2;
if (check(x))
high = x - 1;
else
low = x + 1;
}
return n - high;
}
private boolean check(long x) {
long tmp = x;
int sum = 0;
while (tmp > 0) {
sum += tmp % 10;
tmp /= 10;
}
return x - sum >= s;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class Main {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String[] in = br.readLine().split(" ");
long n = Long.parseLong(in[0]), s = Long.parseLong(in[1]);
Solver solver = new Solver(n, s);
System.out.println(solver.solve());
}
}
class Solver {
private long n, s;
Solver(long n, long s) {
this.n = n;
this.s = s;
}
public long solve() {
long low = 1, high = n;
for (int i = 0; i < 72; ++i) {
long x = low + (high - low) / 2;
if (check(x))
high = x - 1;
else
low = x + 1;
}
return n - high;
}
private boolean check(long x) {
long tmp = x;
int sum = 0;
while (tmp > 0) {
sum += tmp % 10;
tmp /= 10;
}
return x - sum >= s;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 622 | 1,145 |
750 |
import java.io.*;
import java.util.*;
/*
* And now I wonder if I should delete these comments cause they might throw me off.
* Lol who cares though?
*/
public class R364C {
public static void main(String[] args) throws NumberFormatException, IOException {
Scanner s = new Scanner(System.in);
BufferedReader f = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out);
int n = Integer.parseInt(f.readLine());
char[] a = f.readLine().toCharArray();
int difTypes = 0;
TreeSet<Character> types = new TreeSet<Character>();
for(int i = 0; i < n; i++) {
if(!types.contains(a[i])) {
types.add(a[i]);
}
}
int i = 0, j = 0;
difTypes = types.size();
int curTypes = 0;
int min = Integer.MAX_VALUE;
TreeSet<Character> has = new TreeSet<Character>();
HashMap<Character, Integer> freq = new HashMap<Character, Integer>();
while(i < n && j < n) {
// System.out.println(i + " " + j);
has.add(a[j]);
if(!freq.containsKey(a[j])) {
freq.put(a[j], 1);
} else {
freq.put(a[j], freq.get(a[j])+1);
}
j++;
curTypes = has.size();
if(curTypes == difTypes) min = Math.min(min, j-i);
// System.out.println(freq.toString());
// System.out.println(curTypes);
// System.out.println();
while(i < n && has.size() == difTypes) {
int Freq = freq.get(a[i]);
// System.out.println(Freq);
if(Freq - 1 == 0) {
has.remove(a[i]);
freq.put(a[i], freq.get(a[i])-1);
i++;
break;
}
freq.put(a[i], freq.get(a[i])-1);
i++;
if(curTypes == difTypes) min = Math.min(min, j-i);
}
curTypes = has.size();
}
// if(curTypes == difTypes) min = Math.min(min, j-i);
System.out.println(min);
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
/*
* And now I wonder if I should delete these comments cause they might throw me off.
* Lol who cares though?
*/
public class R364C {
public static void main(String[] args) throws NumberFormatException, IOException {
Scanner s = new Scanner(System.in);
BufferedReader f = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out);
int n = Integer.parseInt(f.readLine());
char[] a = f.readLine().toCharArray();
int difTypes = 0;
TreeSet<Character> types = new TreeSet<Character>();
for(int i = 0; i < n; i++) {
if(!types.contains(a[i])) {
types.add(a[i]);
}
}
int i = 0, j = 0;
difTypes = types.size();
int curTypes = 0;
int min = Integer.MAX_VALUE;
TreeSet<Character> has = new TreeSet<Character>();
HashMap<Character, Integer> freq = new HashMap<Character, Integer>();
while(i < n && j < n) {
// System.out.println(i + " " + j);
has.add(a[j]);
if(!freq.containsKey(a[j])) {
freq.put(a[j], 1);
} else {
freq.put(a[j], freq.get(a[j])+1);
}
j++;
curTypes = has.size();
if(curTypes == difTypes) min = Math.min(min, j-i);
// System.out.println(freq.toString());
// System.out.println(curTypes);
// System.out.println();
while(i < n && has.size() == difTypes) {
int Freq = freq.get(a[i]);
// System.out.println(Freq);
if(Freq - 1 == 0) {
has.remove(a[i]);
freq.put(a[i], freq.get(a[i])-1);
i++;
break;
}
freq.put(a[i], freq.get(a[i])-1);
i++;
if(curTypes == difTypes) min = Math.min(min, j-i);
}
curTypes = has.size();
}
// if(curTypes == difTypes) min = Math.min(min, j-i);
System.out.println(min);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
/*
* And now I wonder if I should delete these comments cause they might throw me off.
* Lol who cares though?
*/
public class R364C {
public static void main(String[] args) throws NumberFormatException, IOException {
Scanner s = new Scanner(System.in);
BufferedReader f = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out);
int n = Integer.parseInt(f.readLine());
char[] a = f.readLine().toCharArray();
int difTypes = 0;
TreeSet<Character> types = new TreeSet<Character>();
for(int i = 0; i < n; i++) {
if(!types.contains(a[i])) {
types.add(a[i]);
}
}
int i = 0, j = 0;
difTypes = types.size();
int curTypes = 0;
int min = Integer.MAX_VALUE;
TreeSet<Character> has = new TreeSet<Character>();
HashMap<Character, Integer> freq = new HashMap<Character, Integer>();
while(i < n && j < n) {
// System.out.println(i + " " + j);
has.add(a[j]);
if(!freq.containsKey(a[j])) {
freq.put(a[j], 1);
} else {
freq.put(a[j], freq.get(a[j])+1);
}
j++;
curTypes = has.size();
if(curTypes == difTypes) min = Math.min(min, j-i);
// System.out.println(freq.toString());
// System.out.println(curTypes);
// System.out.println();
while(i < n && has.size() == difTypes) {
int Freq = freq.get(a[i]);
// System.out.println(Freq);
if(Freq - 1 == 0) {
has.remove(a[i]);
freq.put(a[i], freq.get(a[i])-1);
i++;
break;
}
freq.put(a[i], freq.get(a[i])-1);
i++;
if(curTypes == difTypes) min = Math.min(min, j-i);
}
curTypes = has.size();
}
// if(curTypes == difTypes) min = Math.min(min, j-i);
System.out.println(min);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 843 | 749 |
2,122 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastScanner in = new FastScanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
E solver = new E();
solver.solve(1, in, out);
out.close();
}
static class E {
public void solve(int testNumber, FastScanner in, PrintWriter out) {
int n = in.ni(), K = in.ni();
long mod = 998244353;
long[][] dp = new long[n + 1][n + 1];
for (int lim = 1; lim <= n; lim++) {
long sum = 1;
dp[0][lim] = 1;
for (int i = 1; i <= n; i++) {
dp[i][lim] = (dp[i][lim] + sum) % mod;
sum = (sum + dp[i][lim]) % mod;
if (i >= lim)
sum = (sum - dp[i - lim][lim] + mod) % mod;
}
}
long ans = 0;
for (int k = 1; k < Math.min(K, n + 1); k++) {
long h = dp[n][k] - dp[n][k - 1];
int lim = K / k;
if (K % k == 0)
lim--;
if (lim > n)
lim = n;
ans += dp[n][lim] * h % mod;
}
out.println(2 * ans % mod);
}
}
static class FastScanner {
private BufferedReader in;
private StringTokenizer st;
public FastScanner(InputStream stream) {
in = new BufferedReader(new InputStreamReader(stream));
}
public String ns() {
while (st == null || !st.hasMoreTokens()) {
try {
String rl = in.readLine();
if (rl == null) {
return null;
}
st = new StringTokenizer(rl);
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return st.nextToken();
}
public int ni() {
return Integer.parseInt(ns());
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastScanner in = new FastScanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
E solver = new E();
solver.solve(1, in, out);
out.close();
}
static class E {
public void solve(int testNumber, FastScanner in, PrintWriter out) {
int n = in.ni(), K = in.ni();
long mod = 998244353;
long[][] dp = new long[n + 1][n + 1];
for (int lim = 1; lim <= n; lim++) {
long sum = 1;
dp[0][lim] = 1;
for (int i = 1; i <= n; i++) {
dp[i][lim] = (dp[i][lim] + sum) % mod;
sum = (sum + dp[i][lim]) % mod;
if (i >= lim)
sum = (sum - dp[i - lim][lim] + mod) % mod;
}
}
long ans = 0;
for (int k = 1; k < Math.min(K, n + 1); k++) {
long h = dp[n][k] - dp[n][k - 1];
int lim = K / k;
if (K % k == 0)
lim--;
if (lim > n)
lim = n;
ans += dp[n][lim] * h % mod;
}
out.println(2 * ans % mod);
}
}
static class FastScanner {
private BufferedReader in;
private StringTokenizer st;
public FastScanner(InputStream stream) {
in = new BufferedReader(new InputStreamReader(stream));
}
public String ns() {
while (st == null || !st.hasMoreTokens()) {
try {
String rl = in.readLine();
if (rl == null) {
return null;
}
st = new StringTokenizer(rl);
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return st.nextToken();
}
public int ni() {
return Integer.parseInt(ns());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastScanner in = new FastScanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
E solver = new E();
solver.solve(1, in, out);
out.close();
}
static class E {
public void solve(int testNumber, FastScanner in, PrintWriter out) {
int n = in.ni(), K = in.ni();
long mod = 998244353;
long[][] dp = new long[n + 1][n + 1];
for (int lim = 1; lim <= n; lim++) {
long sum = 1;
dp[0][lim] = 1;
for (int i = 1; i <= n; i++) {
dp[i][lim] = (dp[i][lim] + sum) % mod;
sum = (sum + dp[i][lim]) % mod;
if (i >= lim)
sum = (sum - dp[i - lim][lim] + mod) % mod;
}
}
long ans = 0;
for (int k = 1; k < Math.min(K, n + 1); k++) {
long h = dp[n][k] - dp[n][k - 1];
int lim = K / k;
if (K % k == 0)
lim--;
if (lim > n)
lim = n;
ans += dp[n][lim] * h % mod;
}
out.println(2 * ans % mod);
}
}
static class FastScanner {
private BufferedReader in;
private StringTokenizer st;
public FastScanner(InputStream stream) {
in = new BufferedReader(new InputStreamReader(stream));
}
public String ns() {
while (st == null || !st.hasMoreTokens()) {
try {
String rl = in.readLine();
if (rl == null) {
return null;
}
st = new StringTokenizer(rl);
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return st.nextToken();
}
public int ni() {
return Integer.parseInt(ns());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 903 | 2,118 |
1,977 |
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
public class Solution {
static class Team implements Comparable<Team> {
int pr;
int time;
int id;
public Team(int P, int T, int I) {
pr = P;
time = T;
id = I;
}
@Override
public int compareTo(Team t) {
return pr != t.pr ? t.pr - pr : time != t.time ? time - t.time : id - t.id;
}
}
public static void main(String[] args) throws Exception {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out);
StringTokenizer st = new StringTokenizer(in.readLine());
int n = Integer.parseInt(st.nextToken());
int k = Integer.parseInt(st.nextToken());
Team[] a = new Team[n];
int[] c = new int[n + 1];
for (int i = 0; i < n; i++) {
st = new StringTokenizer(in.readLine());
int p = Integer.parseInt(st.nextToken());
int t = Integer.parseInt(st.nextToken());
a[i] = new Team(p, t, i);
}
Arrays.sort(a);
int prev = 1;
c[1]++;
for (int i = 1; i < n; i++) {
if (a[i].pr == a[i - 1].pr && a[i].time == a[i - 1].time)
for (int j = i + 1; j >= prev; j--)
c[j] = i + 2 - prev;
else {
prev = i + 1;
c[prev] = 1;
}
}
out.println(c[k]);
out.close();
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
public class Solution {
static class Team implements Comparable<Team> {
int pr;
int time;
int id;
public Team(int P, int T, int I) {
pr = P;
time = T;
id = I;
}
@Override
public int compareTo(Team t) {
return pr != t.pr ? t.pr - pr : time != t.time ? time - t.time : id - t.id;
}
}
public static void main(String[] args) throws Exception {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out);
StringTokenizer st = new StringTokenizer(in.readLine());
int n = Integer.parseInt(st.nextToken());
int k = Integer.parseInt(st.nextToken());
Team[] a = new Team[n];
int[] c = new int[n + 1];
for (int i = 0; i < n; i++) {
st = new StringTokenizer(in.readLine());
int p = Integer.parseInt(st.nextToken());
int t = Integer.parseInt(st.nextToken());
a[i] = new Team(p, t, i);
}
Arrays.sort(a);
int prev = 1;
c[1]++;
for (int i = 1; i < n; i++) {
if (a[i].pr == a[i - 1].pr && a[i].time == a[i - 1].time)
for (int j = i + 1; j >= prev; j--)
c[j] = i + 2 - prev;
else {
prev = i + 1;
c[prev] = 1;
}
}
out.println(c[k]);
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
public class Solution {
static class Team implements Comparable<Team> {
int pr;
int time;
int id;
public Team(int P, int T, int I) {
pr = P;
time = T;
id = I;
}
@Override
public int compareTo(Team t) {
return pr != t.pr ? t.pr - pr : time != t.time ? time - t.time : id - t.id;
}
}
public static void main(String[] args) throws Exception {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out);
StringTokenizer st = new StringTokenizer(in.readLine());
int n = Integer.parseInt(st.nextToken());
int k = Integer.parseInt(st.nextToken());
Team[] a = new Team[n];
int[] c = new int[n + 1];
for (int i = 0; i < n; i++) {
st = new StringTokenizer(in.readLine());
int p = Integer.parseInt(st.nextToken());
int t = Integer.parseInt(st.nextToken());
a[i] = new Team(p, t, i);
}
Arrays.sort(a);
int prev = 1;
c[1]++;
for (int i = 1; i < n; i++) {
if (a[i].pr == a[i - 1].pr && a[i].time == a[i - 1].time)
for (int j = i + 1; j >= prev; j--)
c[j] = i + 2 - prev;
else {
prev = i + 1;
c[prev] = 1;
}
}
out.println(c[k]);
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 721 | 1,973 |
2,334 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.readInt();
boolean[] isF = new boolean[n];
for (int i = 0; i < n; i++) {
isF[i] = in.readCharacter() == 'f';
}
long[][] mem = new long[n + 1][n + 1];
mem[n][0] = 1;
for (int idx = n - 1; idx >= 0; idx--) {
for (int indentLevel = 0; indentLevel < n; indentLevel++) {
mem[idx + 1][indentLevel + 1] += mem[idx + 1][indentLevel];
long res = isF[idx] ?
mem[idx + 1][indentLevel + 1] - mem[idx + 1][indentLevel] :
mem[idx + 1][indentLevel];
mem[idx][indentLevel] = res % MiscUtils.MOD7;
}
}
out.printLine(mem[0][0]);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public char readCharacter() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
return (char) c;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class MiscUtils {
public static final int MOD7 = (int) (1e9 + 7);
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void printLine(long i) {
writer.println(i);
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.readInt();
boolean[] isF = new boolean[n];
for (int i = 0; i < n; i++) {
isF[i] = in.readCharacter() == 'f';
}
long[][] mem = new long[n + 1][n + 1];
mem[n][0] = 1;
for (int idx = n - 1; idx >= 0; idx--) {
for (int indentLevel = 0; indentLevel < n; indentLevel++) {
mem[idx + 1][indentLevel + 1] += mem[idx + 1][indentLevel];
long res = isF[idx] ?
mem[idx + 1][indentLevel + 1] - mem[idx + 1][indentLevel] :
mem[idx + 1][indentLevel];
mem[idx][indentLevel] = res % MiscUtils.MOD7;
}
}
out.printLine(mem[0][0]);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public char readCharacter() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
return (char) c;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class MiscUtils {
public static final int MOD7 = (int) (1e9 + 7);
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void printLine(long i) {
writer.println(i);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.readInt();
boolean[] isF = new boolean[n];
for (int i = 0; i < n; i++) {
isF[i] = in.readCharacter() == 'f';
}
long[][] mem = new long[n + 1][n + 1];
mem[n][0] = 1;
for (int idx = n - 1; idx >= 0; idx--) {
for (int indentLevel = 0; indentLevel < n; indentLevel++) {
mem[idx + 1][indentLevel + 1] += mem[idx + 1][indentLevel];
long res = isF[idx] ?
mem[idx + 1][indentLevel + 1] - mem[idx + 1][indentLevel] :
mem[idx + 1][indentLevel];
mem[idx][indentLevel] = res % MiscUtils.MOD7;
}
}
out.printLine(mem[0][0]);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public char readCharacter() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
return (char) c;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class MiscUtils {
public static final int MOD7 = (int) (1e9 + 7);
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void printLine(long i) {
writer.println(i);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,276 | 2,329 |
2,452 |
import java.io.*;
import java.util.*;
import java.util.stream.*;
public class ProblemF {
private static boolean debug = false;
private static int N;
private static int[] A;
private static void solveProblem(InputStream instr) throws Exception {
InputReader sc = new InputReader(instr);
int testCount = 1;
if (debug) {
testCount = sc.nextInt();
}
for (int t = 1; t <= testCount; t++) {
printDebug("------ " + t + " ------");
N = sc.nextInt();
A = readInts(sc, N);
Object result = solveTestCase();
System.out.println(result);
}
}
private static Object solveTestCase() {
int sum[] = new int[N];
sum[0] = A[0];
for (int i = 1; i < N; i++) {
sum[i] = sum[i - 1] + A[i];
}
TreeMap<Integer, List<int[]>> map = new TreeMap<>();
for (int i = 0; i < N; i++) {
for (int j = i; j < N; j++) {
int groupSum = sum[j] - (i == 0 ? 0 : sum[i - 1]);
map.putIfAbsent(groupSum, new ArrayList<>());
map.get(groupSum).add(new int[]{i, j});
}
}
int max = -1;
List<int[]> maxAnswer = null;
for (Map.Entry<Integer, List<int[]>> entry : map.entrySet()) {
List<int[]> values = entry.getValue();
if (values.size() <= max) {
continue;
}
List<int[]> curr = findMax(values);
if (curr.size() > max) {
max = curr.size();
maxAnswer = curr;
}
}
List<String> answer = new ArrayList<>();
for (int[] value : maxAnswer) {
answer.add((value[0] + 1) + " " + (value[1] + 1));
}
return max + "\n" + joinValues(answer, "\n");
}
private static List<int[]> findMax(List<int[]> values) {
values.sort(new Comparator<int[]>() {
@Override
public int compare(int[] o1, int[] o2) {
return o1[1] - o2[1];
}
});
List<int[]> answer = new ArrayList<>();
int right = -1;
for (int i = 0; i < values.size(); i++) {
int[] value = values.get(i);
if (value[0] > right) {
answer.add(value);
right = value[1];
}
}
return answer;
}
private static int[] readInts(InputReader sc, int N) throws Exception {
int[] arr = new int[N];
for (int i = 0; i < N; i++) {
arr[i] = sc.nextInt();
}
return arr;
}
private static String joinValues(List<? extends Object> list, String delim) {
return list.stream().map(Object::toString).collect(Collectors.joining(delim));
}
private static String joinValues(int[] arr, String delim) {
List<Object> list = new ArrayList<>();
for (Object value : arr) {
list.add(value);
}
return list.stream().map(Object::toString).collect(Collectors.joining(delim));
}
public static void printDebug(Object str) {
if (debug) {
System.out.println("DEBUG: " + str);
}
}
private static final class InputReader {
private final InputStream stream;
private final byte[] buf = new byte[1024];
private int curChar;
private int Chars;
public InputReader(InputStream stream) {
this.stream = stream;
}
private int read() throws Exception {
if (curChar >= Chars) {
curChar = 0;
Chars = stream.read(buf);
if (Chars <= 0)
return -1;
}
return buf[curChar++];
}
public final int nextInt() throws Exception {
return (int)nextLong();
}
public final long nextLong() throws Exception {
int c = read();
while (isSpaceChar(c)) {
c = read();
if (c == -1)
throw new IOException();
}
boolean negative = false;
if (c == '-') {
negative = true;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += (c - '0');
c = read();
} while (!isSpaceChar(c));
return negative ? (-res) : (res);
}
public final int[] nextIntBrray(int size) throws Exception {
int[] arr = new int[size];
for (int i = 0; i < size; i++)
arr[i] = nextInt();
return arr;
}
public final String next() throws Exception {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.append((char)c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public final String nextLine() throws Exception {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.append((char)c);
c = read();
} while (c != '\n' && c != -1);
return res.toString();
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
public static void main(String[] args) throws Exception {
long currTime = System.currentTimeMillis();
if (debug) {
solveProblem(new FileInputStream(new File("input.in")));
System.out.println("Time: " + (System.currentTimeMillis() - currTime));
} else {
solveProblem(System.in);
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.util.stream.*;
public class ProblemF {
private static boolean debug = false;
private static int N;
private static int[] A;
private static void solveProblem(InputStream instr) throws Exception {
InputReader sc = new InputReader(instr);
int testCount = 1;
if (debug) {
testCount = sc.nextInt();
}
for (int t = 1; t <= testCount; t++) {
printDebug("------ " + t + " ------");
N = sc.nextInt();
A = readInts(sc, N);
Object result = solveTestCase();
System.out.println(result);
}
}
private static Object solveTestCase() {
int sum[] = new int[N];
sum[0] = A[0];
for (int i = 1; i < N; i++) {
sum[i] = sum[i - 1] + A[i];
}
TreeMap<Integer, List<int[]>> map = new TreeMap<>();
for (int i = 0; i < N; i++) {
for (int j = i; j < N; j++) {
int groupSum = sum[j] - (i == 0 ? 0 : sum[i - 1]);
map.putIfAbsent(groupSum, new ArrayList<>());
map.get(groupSum).add(new int[]{i, j});
}
}
int max = -1;
List<int[]> maxAnswer = null;
for (Map.Entry<Integer, List<int[]>> entry : map.entrySet()) {
List<int[]> values = entry.getValue();
if (values.size() <= max) {
continue;
}
List<int[]> curr = findMax(values);
if (curr.size() > max) {
max = curr.size();
maxAnswer = curr;
}
}
List<String> answer = new ArrayList<>();
for (int[] value : maxAnswer) {
answer.add((value[0] + 1) + " " + (value[1] + 1));
}
return max + "\n" + joinValues(answer, "\n");
}
private static List<int[]> findMax(List<int[]> values) {
values.sort(new Comparator<int[]>() {
@Override
public int compare(int[] o1, int[] o2) {
return o1[1] - o2[1];
}
});
List<int[]> answer = new ArrayList<>();
int right = -1;
for (int i = 0; i < values.size(); i++) {
int[] value = values.get(i);
if (value[0] > right) {
answer.add(value);
right = value[1];
}
}
return answer;
}
private static int[] readInts(InputReader sc, int N) throws Exception {
int[] arr = new int[N];
for (int i = 0; i < N; i++) {
arr[i] = sc.nextInt();
}
return arr;
}
private static String joinValues(List<? extends Object> list, String delim) {
return list.stream().map(Object::toString).collect(Collectors.joining(delim));
}
private static String joinValues(int[] arr, String delim) {
List<Object> list = new ArrayList<>();
for (Object value : arr) {
list.add(value);
}
return list.stream().map(Object::toString).collect(Collectors.joining(delim));
}
public static void printDebug(Object str) {
if (debug) {
System.out.println("DEBUG: " + str);
}
}
private static final class InputReader {
private final InputStream stream;
private final byte[] buf = new byte[1024];
private int curChar;
private int Chars;
public InputReader(InputStream stream) {
this.stream = stream;
}
private int read() throws Exception {
if (curChar >= Chars) {
curChar = 0;
Chars = stream.read(buf);
if (Chars <= 0)
return -1;
}
return buf[curChar++];
}
public final int nextInt() throws Exception {
return (int)nextLong();
}
public final long nextLong() throws Exception {
int c = read();
while (isSpaceChar(c)) {
c = read();
if (c == -1)
throw new IOException();
}
boolean negative = false;
if (c == '-') {
negative = true;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += (c - '0');
c = read();
} while (!isSpaceChar(c));
return negative ? (-res) : (res);
}
public final int[] nextIntBrray(int size) throws Exception {
int[] arr = new int[size];
for (int i = 0; i < size; i++)
arr[i] = nextInt();
return arr;
}
public final String next() throws Exception {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.append((char)c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public final String nextLine() throws Exception {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.append((char)c);
c = read();
} while (c != '\n' && c != -1);
return res.toString();
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
public static void main(String[] args) throws Exception {
long currTime = System.currentTimeMillis();
if (debug) {
solveProblem(new FileInputStream(new File("input.in")));
System.out.println("Time: " + (System.currentTimeMillis() - currTime));
} else {
solveProblem(System.in);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.util.stream.*;
public class ProblemF {
private static boolean debug = false;
private static int N;
private static int[] A;
private static void solveProblem(InputStream instr) throws Exception {
InputReader sc = new InputReader(instr);
int testCount = 1;
if (debug) {
testCount = sc.nextInt();
}
for (int t = 1; t <= testCount; t++) {
printDebug("------ " + t + " ------");
N = sc.nextInt();
A = readInts(sc, N);
Object result = solveTestCase();
System.out.println(result);
}
}
private static Object solveTestCase() {
int sum[] = new int[N];
sum[0] = A[0];
for (int i = 1; i < N; i++) {
sum[i] = sum[i - 1] + A[i];
}
TreeMap<Integer, List<int[]>> map = new TreeMap<>();
for (int i = 0; i < N; i++) {
for (int j = i; j < N; j++) {
int groupSum = sum[j] - (i == 0 ? 0 : sum[i - 1]);
map.putIfAbsent(groupSum, new ArrayList<>());
map.get(groupSum).add(new int[]{i, j});
}
}
int max = -1;
List<int[]> maxAnswer = null;
for (Map.Entry<Integer, List<int[]>> entry : map.entrySet()) {
List<int[]> values = entry.getValue();
if (values.size() <= max) {
continue;
}
List<int[]> curr = findMax(values);
if (curr.size() > max) {
max = curr.size();
maxAnswer = curr;
}
}
List<String> answer = new ArrayList<>();
for (int[] value : maxAnswer) {
answer.add((value[0] + 1) + " " + (value[1] + 1));
}
return max + "\n" + joinValues(answer, "\n");
}
private static List<int[]> findMax(List<int[]> values) {
values.sort(new Comparator<int[]>() {
@Override
public int compare(int[] o1, int[] o2) {
return o1[1] - o2[1];
}
});
List<int[]> answer = new ArrayList<>();
int right = -1;
for (int i = 0; i < values.size(); i++) {
int[] value = values.get(i);
if (value[0] > right) {
answer.add(value);
right = value[1];
}
}
return answer;
}
private static int[] readInts(InputReader sc, int N) throws Exception {
int[] arr = new int[N];
for (int i = 0; i < N; i++) {
arr[i] = sc.nextInt();
}
return arr;
}
private static String joinValues(List<? extends Object> list, String delim) {
return list.stream().map(Object::toString).collect(Collectors.joining(delim));
}
private static String joinValues(int[] arr, String delim) {
List<Object> list = new ArrayList<>();
for (Object value : arr) {
list.add(value);
}
return list.stream().map(Object::toString).collect(Collectors.joining(delim));
}
public static void printDebug(Object str) {
if (debug) {
System.out.println("DEBUG: " + str);
}
}
private static final class InputReader {
private final InputStream stream;
private final byte[] buf = new byte[1024];
private int curChar;
private int Chars;
public InputReader(InputStream stream) {
this.stream = stream;
}
private int read() throws Exception {
if (curChar >= Chars) {
curChar = 0;
Chars = stream.read(buf);
if (Chars <= 0)
return -1;
}
return buf[curChar++];
}
public final int nextInt() throws Exception {
return (int)nextLong();
}
public final long nextLong() throws Exception {
int c = read();
while (isSpaceChar(c)) {
c = read();
if (c == -1)
throw new IOException();
}
boolean negative = false;
if (c == '-') {
negative = true;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += (c - '0');
c = read();
} while (!isSpaceChar(c));
return negative ? (-res) : (res);
}
public final int[] nextIntBrray(int size) throws Exception {
int[] arr = new int[size];
for (int i = 0; i < size; i++)
arr[i] = nextInt();
return arr;
}
public final String next() throws Exception {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.append((char)c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public final String nextLine() throws Exception {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.append((char)c);
c = read();
} while (c != '\n' && c != -1);
return res.toString();
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
public static void main(String[] args) throws Exception {
long currTime = System.currentTimeMillis();
if (debug) {
solveProblem(new FileInputStream(new File("input.in")));
System.out.println("Time: " + (System.currentTimeMillis() - currTime));
} else {
solveProblem(System.in);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,693 | 2,447 |
2,200 |
import java.io.*;
import java.util.*;
public class CC {
public static void main(String[] args)throws Throwable {
MyScanner sc=new MyScanner();
PrintWriter pw=new PrintWriter(System.out);
int n=sc.nextInt();
int r=sc.nextInt();
int [] x=new int [n];
for(int i=0;i<n;i++)
x[i]=sc.nextInt();
double [] ans=new double [n];
ans[0]=r;
for(int i=1;i<n;i++){
ans[i]=r;
for(int j=0;j<i;j++){
double dx=Math.abs(x[i]-x[j]);
if(dx>2*r)
continue;
double y=Math.sqrt((4*r*r)-(dx*dx));
ans[i]=Math.max(ans[i], ans[j]+y);
}
}
for(double z : ans)
pw.print(z+" ");
pw.flush();
pw.close();
}
static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {while (st == null || !st.hasMoreElements()) {
try {st = new StringTokenizer(br.readLine());}
catch (IOException e) {e.printStackTrace();}}
return st.nextToken();}
int nextInt() {return Integer.parseInt(next());}
long nextLong() {return Long.parseLong(next());}
double nextDouble() {return Double.parseDouble(next());}
String nextLine(){String str = "";
try {str = br.readLine();}
catch (IOException e) {e.printStackTrace();}
return str;}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class CC {
public static void main(String[] args)throws Throwable {
MyScanner sc=new MyScanner();
PrintWriter pw=new PrintWriter(System.out);
int n=sc.nextInt();
int r=sc.nextInt();
int [] x=new int [n];
for(int i=0;i<n;i++)
x[i]=sc.nextInt();
double [] ans=new double [n];
ans[0]=r;
for(int i=1;i<n;i++){
ans[i]=r;
for(int j=0;j<i;j++){
double dx=Math.abs(x[i]-x[j]);
if(dx>2*r)
continue;
double y=Math.sqrt((4*r*r)-(dx*dx));
ans[i]=Math.max(ans[i], ans[j]+y);
}
}
for(double z : ans)
pw.print(z+" ");
pw.flush();
pw.close();
}
static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {while (st == null || !st.hasMoreElements()) {
try {st = new StringTokenizer(br.readLine());}
catch (IOException e) {e.printStackTrace();}}
return st.nextToken();}
int nextInt() {return Integer.parseInt(next());}
long nextLong() {return Long.parseLong(next());}
double nextDouble() {return Double.parseDouble(next());}
String nextLine(){String str = "";
try {str = br.readLine();}
catch (IOException e) {e.printStackTrace();}
return str;}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class CC {
public static void main(String[] args)throws Throwable {
MyScanner sc=new MyScanner();
PrintWriter pw=new PrintWriter(System.out);
int n=sc.nextInt();
int r=sc.nextInt();
int [] x=new int [n];
for(int i=0;i<n;i++)
x[i]=sc.nextInt();
double [] ans=new double [n];
ans[0]=r;
for(int i=1;i<n;i++){
ans[i]=r;
for(int j=0;j<i;j++){
double dx=Math.abs(x[i]-x[j]);
if(dx>2*r)
continue;
double y=Math.sqrt((4*r*r)-(dx*dx));
ans[i]=Math.max(ans[i], ans[j]+y);
}
}
for(double z : ans)
pw.print(z+" ");
pw.flush();
pw.close();
}
static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {while (st == null || !st.hasMoreElements()) {
try {st = new StringTokenizer(br.readLine());}
catch (IOException e) {e.printStackTrace();}}
return st.nextToken();}
int nextInt() {return Integer.parseInt(next());}
long nextLong() {return Long.parseLong(next());}
double nextDouble() {return Double.parseDouble(next());}
String nextLine(){String str = "";
try {str = br.readLine();}
catch (IOException e) {e.printStackTrace();}
return str;}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 697 | 2,196 |
2,969 |
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.io.BufferedWriter;
import java.util.InputMismatchException;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.NoSuchElementException;
import java.io.Writer;
import java.math.BigInteger;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author Alex
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public long recurse(long a, long b) {
if (b <= 1) return a;
return Math.max(a, b)/Math.min(a,b) + recurse(Math.max(a, b) - Math.min(a, b)*(Math.max(a,b)/Math.min(a, b)), Math.min(a, b));
}
public void solve(int testNumber, InputReader in, OutputWriter out) {
long a = in.readLong(), b = in.readLong(), i = 0;
// while(true) {
// if (b <= 1){
// i += a;
// out.print(i);
// return;
// }
// i++;
// long aa = Math.max(a, b);
// long bb = Math.min(a, b);
// aa -= bb;
// a = aa;
// b = bb;
// }
// out.print(i);
out.print(recurse(a, b));
}
}
class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public long readLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public void close() {
writer.close();
}
public void print(long i) {
writer.print(i);
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.io.BufferedWriter;
import java.util.InputMismatchException;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.NoSuchElementException;
import java.io.Writer;
import java.math.BigInteger;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author Alex
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public long recurse(long a, long b) {
if (b <= 1) return a;
return Math.max(a, b)/Math.min(a,b) + recurse(Math.max(a, b) - Math.min(a, b)*(Math.max(a,b)/Math.min(a, b)), Math.min(a, b));
}
public void solve(int testNumber, InputReader in, OutputWriter out) {
long a = in.readLong(), b = in.readLong(), i = 0;
// while(true) {
// if (b <= 1){
// i += a;
// out.print(i);
// return;
// }
// i++;
// long aa = Math.max(a, b);
// long bb = Math.min(a, b);
// aa -= bb;
// a = aa;
// b = bb;
// }
// out.print(i);
out.print(recurse(a, b));
}
}
class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public long readLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public void close() {
writer.close();
}
public void print(long i) {
writer.print(i);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.io.BufferedWriter;
import java.util.InputMismatchException;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.NoSuchElementException;
import java.io.Writer;
import java.math.BigInteger;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author Alex
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public long recurse(long a, long b) {
if (b <= 1) return a;
return Math.max(a, b)/Math.min(a,b) + recurse(Math.max(a, b) - Math.min(a, b)*(Math.max(a,b)/Math.min(a, b)), Math.min(a, b));
}
public void solve(int testNumber, InputReader in, OutputWriter out) {
long a = in.readLong(), b = in.readLong(), i = 0;
// while(true) {
// if (b <= 1){
// i += a;
// out.print(i);
// return;
// }
// i++;
// long aa = Math.max(a, b);
// long bb = Math.min(a, b);
// aa -= bb;
// a = aa;
// b = bb;
// }
// out.print(i);
out.print(recurse(a, b));
}
}
class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public long readLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public void close() {
writer.close();
}
public void print(long i) {
writer.print(i);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,114 | 2,963 |
1,651 |
import java.util.*;
import static java.lang.Math.*;
import static java.util.Arrays.*;
public class A {
int INF = 1 << 28;
void run() {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int a = sc.nextInt();
int b = sc.nextInt();
long[] chores = new long[n];
for(int i=0;i<n;i++) chores[i] = sc.nextLong();
sort(chores);
System.out.println(chores[b]-chores[b-1]);
}
public static void main(String[] args) {
new A().run();
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import static java.lang.Math.*;
import static java.util.Arrays.*;
public class A {
int INF = 1 << 28;
void run() {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int a = sc.nextInt();
int b = sc.nextInt();
long[] chores = new long[n];
for(int i=0;i<n;i++) chores[i] = sc.nextLong();
sort(chores);
System.out.println(chores[b]-chores[b-1]);
}
public static void main(String[] args) {
new A().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import static java.lang.Math.*;
import static java.util.Arrays.*;
public class A {
int INF = 1 << 28;
void run() {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int a = sc.nextInt();
int b = sc.nextInt();
long[] chores = new long[n];
for(int i=0;i<n;i++) chores[i] = sc.nextLong();
sort(chores);
System.out.println(chores[b]-chores[b-1]);
}
public static void main(String[] args) {
new A().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 486 | 1,648 |
845 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
import java.util.Arrays;
import java.util.HashSet;
public class E17 {
static StreamTokenizer in;
static PrintWriter out;
static int nextInt() throws IOException {
in.nextToken();
return (int)in.nval;
}
static String nextString() throws IOException {
in.nextToken();
return in.sval;
}
public static void main(String[] args) throws IOException {
in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
out = new PrintWriter(System.out);
int n = nextInt(), k = nextInt();
int MAX = n, nprimes = 0;
int[] primes = new int[MAX];
boolean[] isPrime = new boolean[MAX+1];
Arrays.fill(isPrime, true);
isPrime[0] = false;
isPrime[1] = false;
for (int i = 2; i <= MAX; i++) if (isPrime[i]) {
primes[nprimes++] = i;
for (int j = i + i; j <= MAX; j += i) isPrime[j] = false;
}
primes[nprimes] = Integer.MAX_VALUE;
HashSet<Integer> h = new HashSet<Integer>();
for (int i = 1; i < nprimes; i++) {
int x = primes[i-1] + primes[i] + 1;
if (x > n) break;
if (isPrime[x]) h.add(x);
}
out.println(h.size() >= k ? "YES" : "NO");
out.flush();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
import java.util.Arrays;
import java.util.HashSet;
public class E17 {
static StreamTokenizer in;
static PrintWriter out;
static int nextInt() throws IOException {
in.nextToken();
return (int)in.nval;
}
static String nextString() throws IOException {
in.nextToken();
return in.sval;
}
public static void main(String[] args) throws IOException {
in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
out = new PrintWriter(System.out);
int n = nextInt(), k = nextInt();
int MAX = n, nprimes = 0;
int[] primes = new int[MAX];
boolean[] isPrime = new boolean[MAX+1];
Arrays.fill(isPrime, true);
isPrime[0] = false;
isPrime[1] = false;
for (int i = 2; i <= MAX; i++) if (isPrime[i]) {
primes[nprimes++] = i;
for (int j = i + i; j <= MAX; j += i) isPrime[j] = false;
}
primes[nprimes] = Integer.MAX_VALUE;
HashSet<Integer> h = new HashSet<Integer>();
for (int i = 1; i < nprimes; i++) {
int x = primes[i-1] + primes[i] + 1;
if (x > n) break;
if (isPrime[x]) h.add(x);
}
out.println(h.size() >= k ? "YES" : "NO");
out.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
import java.util.Arrays;
import java.util.HashSet;
public class E17 {
static StreamTokenizer in;
static PrintWriter out;
static int nextInt() throws IOException {
in.nextToken();
return (int)in.nval;
}
static String nextString() throws IOException {
in.nextToken();
return in.sval;
}
public static void main(String[] args) throws IOException {
in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
out = new PrintWriter(System.out);
int n = nextInt(), k = nextInt();
int MAX = n, nprimes = 0;
int[] primes = new int[MAX];
boolean[] isPrime = new boolean[MAX+1];
Arrays.fill(isPrime, true);
isPrime[0] = false;
isPrime[1] = false;
for (int i = 2; i <= MAX; i++) if (isPrime[i]) {
primes[nprimes++] = i;
for (int j = i + i; j <= MAX; j += i) isPrime[j] = false;
}
primes[nprimes] = Integer.MAX_VALUE;
HashSet<Integer> h = new HashSet<Integer>();
for (int i = 1; i < nprimes; i++) {
int x = primes[i-1] + primes[i] + 1;
if (x > n) break;
if (isPrime[x]) h.add(x);
}
out.println(h.size() >= k ? "YES" : "NO");
out.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 720 | 844 |
2,535 |
import java.util.*;
import java.io.*;
import java.math.BigInteger;
import static java.lang.Math.*;
/* spar5h */
public class cf1 implements Runnable {
static void addMap(int curr, HashMap<Integer, Integer> map, HashMap<Integer, Integer>[] hm, int j) {
int prev = 0;
if(map.get(curr) != null)
prev = map.get(curr);
int val = 0;
if(hm[j].get(curr) != null)
val = hm[j].get(curr);
if(prev + 1 <= val)
return;
hm[j].put(curr, prev + 1);
}
public void run() {
InputReader s = new InputReader(System.in);
PrintWriter w = new PrintWriter(System.out);
int n = s.nextInt();
int[] a = new int[n];
HashMap<Integer, Integer>[] hm = new HashMap[n];
for(int i = 0; i < n; i++) {
a[i] = s.nextInt();
hm[i] = new HashMap<Integer, Integer>();
}
HashMap<Integer, Integer> map = new HashMap<Integer, Integer>();
for(int i = 0; i < n; i++) {
int curr = 0;
for(int j = i; j < n; j++) {
curr += a[j];
addMap(curr, map, hm, j);
}
for(Map.Entry<Integer, Integer> e : hm[i].entrySet()) {
if(map.get(e.getKey()) != null && map.get(e.getKey()) >= e.getValue())
continue;
map.put(e.getKey(), e.getValue());
}
}
int key = -1;
int value = 0;
for(Map.Entry<Integer, Integer> e : map.entrySet()) {
if(e.getValue() > value) {
key = e.getKey(); value = e.getValue();
}
}
w.println(value);
int prev = -1;
for(int i = 0; i < n; i++) {
int curr = 0;
for(int j = i; j > prev; j--) {
curr += a[j];
if(curr == key) {
w.println((j + 1) + " " + (i + 1));
prev = i;
break;
}
}
}
w.close();
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars==-1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
}
catch (IOException e) {
throw new InputMismatchException();
}
if(numChars <= 0)
return -1;
}
return buf[curChar++];
}
public String nextLine() {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
public int nextInt() {
int c = read();
while(isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if(c<'0'||c>'9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public double nextDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c))
{
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
}
while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next() {
return readString();
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
public static void main(String args[]) throws Exception {
new Thread(null, new cf1(),"cf1",1<<26).start();
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.math.BigInteger;
import static java.lang.Math.*;
/* spar5h */
public class cf1 implements Runnable {
static void addMap(int curr, HashMap<Integer, Integer> map, HashMap<Integer, Integer>[] hm, int j) {
int prev = 0;
if(map.get(curr) != null)
prev = map.get(curr);
int val = 0;
if(hm[j].get(curr) != null)
val = hm[j].get(curr);
if(prev + 1 <= val)
return;
hm[j].put(curr, prev + 1);
}
public void run() {
InputReader s = new InputReader(System.in);
PrintWriter w = new PrintWriter(System.out);
int n = s.nextInt();
int[] a = new int[n];
HashMap<Integer, Integer>[] hm = new HashMap[n];
for(int i = 0; i < n; i++) {
a[i] = s.nextInt();
hm[i] = new HashMap<Integer, Integer>();
}
HashMap<Integer, Integer> map = new HashMap<Integer, Integer>();
for(int i = 0; i < n; i++) {
int curr = 0;
for(int j = i; j < n; j++) {
curr += a[j];
addMap(curr, map, hm, j);
}
for(Map.Entry<Integer, Integer> e : hm[i].entrySet()) {
if(map.get(e.getKey()) != null && map.get(e.getKey()) >= e.getValue())
continue;
map.put(e.getKey(), e.getValue());
}
}
int key = -1;
int value = 0;
for(Map.Entry<Integer, Integer> e : map.entrySet()) {
if(e.getValue() > value) {
key = e.getKey(); value = e.getValue();
}
}
w.println(value);
int prev = -1;
for(int i = 0; i < n; i++) {
int curr = 0;
for(int j = i; j > prev; j--) {
curr += a[j];
if(curr == key) {
w.println((j + 1) + " " + (i + 1));
prev = i;
break;
}
}
}
w.close();
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars==-1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
}
catch (IOException e) {
throw new InputMismatchException();
}
if(numChars <= 0)
return -1;
}
return buf[curChar++];
}
public String nextLine() {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
public int nextInt() {
int c = read();
while(isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if(c<'0'||c>'9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public double nextDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c))
{
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
}
while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next() {
return readString();
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
public static void main(String args[]) throws Exception {
new Thread(null, new cf1(),"cf1",1<<26).start();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.math.BigInteger;
import static java.lang.Math.*;
/* spar5h */
public class cf1 implements Runnable {
static void addMap(int curr, HashMap<Integer, Integer> map, HashMap<Integer, Integer>[] hm, int j) {
int prev = 0;
if(map.get(curr) != null)
prev = map.get(curr);
int val = 0;
if(hm[j].get(curr) != null)
val = hm[j].get(curr);
if(prev + 1 <= val)
return;
hm[j].put(curr, prev + 1);
}
public void run() {
InputReader s = new InputReader(System.in);
PrintWriter w = new PrintWriter(System.out);
int n = s.nextInt();
int[] a = new int[n];
HashMap<Integer, Integer>[] hm = new HashMap[n];
for(int i = 0; i < n; i++) {
a[i] = s.nextInt();
hm[i] = new HashMap<Integer, Integer>();
}
HashMap<Integer, Integer> map = new HashMap<Integer, Integer>();
for(int i = 0; i < n; i++) {
int curr = 0;
for(int j = i; j < n; j++) {
curr += a[j];
addMap(curr, map, hm, j);
}
for(Map.Entry<Integer, Integer> e : hm[i].entrySet()) {
if(map.get(e.getKey()) != null && map.get(e.getKey()) >= e.getValue())
continue;
map.put(e.getKey(), e.getValue());
}
}
int key = -1;
int value = 0;
for(Map.Entry<Integer, Integer> e : map.entrySet()) {
if(e.getValue() > value) {
key = e.getKey(); value = e.getValue();
}
}
w.println(value);
int prev = -1;
for(int i = 0; i < n; i++) {
int curr = 0;
for(int j = i; j > prev; j--) {
curr += a[j];
if(curr == key) {
w.println((j + 1) + " " + (i + 1));
prev = i;
break;
}
}
}
w.close();
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars==-1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
}
catch (IOException e) {
throw new InputMismatchException();
}
if(numChars <= 0)
return -1;
}
return buf[curChar++];
}
public String nextLine() {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
public int nextInt() {
int c = read();
while(isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if(c<'0'||c>'9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public double nextDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c))
{
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
}
while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next() {
return readString();
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
public static void main(String args[]) throws Exception {
new Thread(null, new cf1(),"cf1",1<<26).start();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,851 | 2,529 |
541 |
import java.io.*;
import java.util.*;
import java.math.*;
import java.awt.Point;
public class Main {
//static final long MOD = 1000000007L;
//static final long MOD2 = 1000000009L;
static final long MOD = 998244353L;
//static final long INF = 500000000000L;
static final int INF = 1000000005;
static final int NINF = -1000000005;
//static final long NINF = -1000000000000000000L;
static FastScanner sc;
static PrintWriter pw;
static final int[][] dirs = {{-1,0},{1,0},{0,-1},{0,1}};
public static void main(String[] args) {
sc = new FastScanner();
pw = new PrintWriter(System.out);
int Q = sc.ni();
for (int q = 0; q < Q; q++) {
int N = sc.ni();
String ans = "NO";
if (N%2==0 && isSquare(N/2))
ans = "YES";
if (N%4==0 && isSquare(N/4))
ans = "YES";
pw.println(ans);
}
pw.close();
}
public static boolean isSquare(int x) {
int s = (int)Math.round(Math.sqrt(x));
return s*s==x;
}
public static void sort(int[] arr) {
Random rgen = new Random();
for (int i = 0; i < arr.length; i++) {
int r = rgen.nextInt(arr.length);
int temp = arr[i];
arr[i] = arr[r];
arr[r] = temp;
}
Arrays.sort(arr);
}
public static void sort(long[] arr) {
Random rgen = new Random();
for (int i = 0; i < arr.length; i++) {
int r = rgen.nextInt(arr.length);
long temp = arr[i];
arr[i] = arr[r];
arr[r] = temp;
}
Arrays.sort(arr);
}
//Sort an array (immune to quicksort TLE)
public static void sort(int[][] arr) {
Random rgen = new Random();
for (int i = 0; i < arr.length; i++) {
int r = rgen.nextInt(arr.length);
int[] temp = arr[i];
arr[i] = arr[r];
arr[r] = temp;
}
Arrays.sort(arr, new Comparator<int[]>() {
@Override
public int compare(int[] a, int[] b) {
return a[0]-b[0];
}
});
}
public static void sort(long[][] arr) {
Random rgen = new Random();
for (int i = 0; i < arr.length; i++) {
int r = rgen.nextInt(arr.length);
long[] temp = arr[i];
arr[i] = arr[r];
arr[r] = temp;
}
Arrays.sort(arr, new Comparator<long[]>() {
@Override
public int compare(long[] a, long[] b) {
if (a[0] > b[0])
return 1;
else if (a[0] < b[0])
return -1;
else
return 0;
//Ascending order.
}
});
}
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner() {
br = new BufferedReader(new InputStreamReader(System.in), 32768);
st = null;
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int ni() {
return Integer.parseInt(next());
}
int[][] graph(int N, int[][] edges) {
int[][] graph = new int[N][];
int[] sz = new int[N];
for (int[] e: edges) {
sz[e[0]] += 1;
sz[e[1]] += 1;
}
for (int i = 0; i < N; i++) {
graph[i] = new int[sz[i]];
}
int[] cur = new int[N];
for (int[] e: edges) {
graph[e[0]][cur[e[0]]] = e[1];
graph[e[1]][cur[e[1]]] = e[0];
cur[e[0]] += 1;
cur[e[1]] += 1;
}
return graph;
}
int[] intArray(int N, int mod) {
int[] ret = new int[N];
for (int i = 0; i < N; i++)
ret[i] = ni()+mod;
return ret;
}
long nl() {
return Long.parseLong(next());
}
long[] longArray(int N, long mod) {
long[] ret = new long[N];
for (int i = 0; i < N; i++)
ret[i] = nl()+mod;
return ret;
}
double nd() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.*;
import java.awt.Point;
public class Main {
//static final long MOD = 1000000007L;
//static final long MOD2 = 1000000009L;
static final long MOD = 998244353L;
//static final long INF = 500000000000L;
static final int INF = 1000000005;
static final int NINF = -1000000005;
//static final long NINF = -1000000000000000000L;
static FastScanner sc;
static PrintWriter pw;
static final int[][] dirs = {{-1,0},{1,0},{0,-1},{0,1}};
public static void main(String[] args) {
sc = new FastScanner();
pw = new PrintWriter(System.out);
int Q = sc.ni();
for (int q = 0; q < Q; q++) {
int N = sc.ni();
String ans = "NO";
if (N%2==0 && isSquare(N/2))
ans = "YES";
if (N%4==0 && isSquare(N/4))
ans = "YES";
pw.println(ans);
}
pw.close();
}
public static boolean isSquare(int x) {
int s = (int)Math.round(Math.sqrt(x));
return s*s==x;
}
public static void sort(int[] arr) {
Random rgen = new Random();
for (int i = 0; i < arr.length; i++) {
int r = rgen.nextInt(arr.length);
int temp = arr[i];
arr[i] = arr[r];
arr[r] = temp;
}
Arrays.sort(arr);
}
public static void sort(long[] arr) {
Random rgen = new Random();
for (int i = 0; i < arr.length; i++) {
int r = rgen.nextInt(arr.length);
long temp = arr[i];
arr[i] = arr[r];
arr[r] = temp;
}
Arrays.sort(arr);
}
//Sort an array (immune to quicksort TLE)
public static void sort(int[][] arr) {
Random rgen = new Random();
for (int i = 0; i < arr.length; i++) {
int r = rgen.nextInt(arr.length);
int[] temp = arr[i];
arr[i] = arr[r];
arr[r] = temp;
}
Arrays.sort(arr, new Comparator<int[]>() {
@Override
public int compare(int[] a, int[] b) {
return a[0]-b[0];
}
});
}
public static void sort(long[][] arr) {
Random rgen = new Random();
for (int i = 0; i < arr.length; i++) {
int r = rgen.nextInt(arr.length);
long[] temp = arr[i];
arr[i] = arr[r];
arr[r] = temp;
}
Arrays.sort(arr, new Comparator<long[]>() {
@Override
public int compare(long[] a, long[] b) {
if (a[0] > b[0])
return 1;
else if (a[0] < b[0])
return -1;
else
return 0;
//Ascending order.
}
});
}
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner() {
br = new BufferedReader(new InputStreamReader(System.in), 32768);
st = null;
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int ni() {
return Integer.parseInt(next());
}
int[][] graph(int N, int[][] edges) {
int[][] graph = new int[N][];
int[] sz = new int[N];
for (int[] e: edges) {
sz[e[0]] += 1;
sz[e[1]] += 1;
}
for (int i = 0; i < N; i++) {
graph[i] = new int[sz[i]];
}
int[] cur = new int[N];
for (int[] e: edges) {
graph[e[0]][cur[e[0]]] = e[1];
graph[e[1]][cur[e[1]]] = e[0];
cur[e[0]] += 1;
cur[e[1]] += 1;
}
return graph;
}
int[] intArray(int N, int mod) {
int[] ret = new int[N];
for (int i = 0; i < N; i++)
ret[i] = ni()+mod;
return ret;
}
long nl() {
return Long.parseLong(next());
}
long[] longArray(int N, long mod) {
long[] ret = new long[N];
for (int i = 0; i < N; i++)
ret[i] = nl()+mod;
return ret;
}
double nd() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.*;
import java.awt.Point;
public class Main {
//static final long MOD = 1000000007L;
//static final long MOD2 = 1000000009L;
static final long MOD = 998244353L;
//static final long INF = 500000000000L;
static final int INF = 1000000005;
static final int NINF = -1000000005;
//static final long NINF = -1000000000000000000L;
static FastScanner sc;
static PrintWriter pw;
static final int[][] dirs = {{-1,0},{1,0},{0,-1},{0,1}};
public static void main(String[] args) {
sc = new FastScanner();
pw = new PrintWriter(System.out);
int Q = sc.ni();
for (int q = 0; q < Q; q++) {
int N = sc.ni();
String ans = "NO";
if (N%2==0 && isSquare(N/2))
ans = "YES";
if (N%4==0 && isSquare(N/4))
ans = "YES";
pw.println(ans);
}
pw.close();
}
public static boolean isSquare(int x) {
int s = (int)Math.round(Math.sqrt(x));
return s*s==x;
}
public static void sort(int[] arr) {
Random rgen = new Random();
for (int i = 0; i < arr.length; i++) {
int r = rgen.nextInt(arr.length);
int temp = arr[i];
arr[i] = arr[r];
arr[r] = temp;
}
Arrays.sort(arr);
}
public static void sort(long[] arr) {
Random rgen = new Random();
for (int i = 0; i < arr.length; i++) {
int r = rgen.nextInt(arr.length);
long temp = arr[i];
arr[i] = arr[r];
arr[r] = temp;
}
Arrays.sort(arr);
}
//Sort an array (immune to quicksort TLE)
public static void sort(int[][] arr) {
Random rgen = new Random();
for (int i = 0; i < arr.length; i++) {
int r = rgen.nextInt(arr.length);
int[] temp = arr[i];
arr[i] = arr[r];
arr[r] = temp;
}
Arrays.sort(arr, new Comparator<int[]>() {
@Override
public int compare(int[] a, int[] b) {
return a[0]-b[0];
}
});
}
public static void sort(long[][] arr) {
Random rgen = new Random();
for (int i = 0; i < arr.length; i++) {
int r = rgen.nextInt(arr.length);
long[] temp = arr[i];
arr[i] = arr[r];
arr[r] = temp;
}
Arrays.sort(arr, new Comparator<long[]>() {
@Override
public int compare(long[] a, long[] b) {
if (a[0] > b[0])
return 1;
else if (a[0] < b[0])
return -1;
else
return 0;
//Ascending order.
}
});
}
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner() {
br = new BufferedReader(new InputStreamReader(System.in), 32768);
st = null;
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int ni() {
return Integer.parseInt(next());
}
int[][] graph(int N, int[][] edges) {
int[][] graph = new int[N][];
int[] sz = new int[N];
for (int[] e: edges) {
sz[e[0]] += 1;
sz[e[1]] += 1;
}
for (int i = 0; i < N; i++) {
graph[i] = new int[sz[i]];
}
int[] cur = new int[N];
for (int[] e: edges) {
graph[e[0]][cur[e[0]]] = e[1];
graph[e[1]][cur[e[1]]] = e[0];
cur[e[0]] += 1;
cur[e[1]] += 1;
}
return graph;
}
int[] intArray(int N, int mod) {
int[] ret = new int[N];
for (int i = 0; i < N; i++)
ret[i] = ni()+mod;
return ret;
}
long nl() {
return Long.parseLong(next());
}
long[] longArray(int N, long mod) {
long[] ret = new long[N];
for (int i = 0; i < N; i++)
ret[i] = nl()+mod;
return ret;
}
double nd() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,591 | 540 |
515 |
import java.util.*;
import java.lang.*;
import java.math.*;
import java.io.*;
/* spar5h */
public class cf1 implements Runnable{
public void run() {
InputReader s = new InputReader(System.in);
PrintWriter w = new PrintWriter(System.out);
int t = 1;
while(t-- > 0) {
int n = s.nextInt(), m = s.nextInt();
int[] a = new int[n + 1];
for(int i = 1; i <= n; i++)
a[i] = s.nextInt();
int[] b = new int[n + 1];
for(int i = 1; i <= n; i++)
b[i] = s.nextInt();
ArrayList<Integer> list = new ArrayList<Integer>();
list.add(a[1]);
for(int i = 2; i <= n; i++) {
list.add(b[i]); list.add(a[i]);
}
list.add(b[1]);
double wt = m;
boolean check = true;
for(int i = list.size() - 1; i >= 0; i--) {
if(list.get(i) <= 1) {
check = false; break;
}
double x = wt / (list.get(i) - 1);
wt += x;
}
if(check)
w.println(wt - m);
else
w.println(-1);
}
w.close();
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream)
{
this.stream = stream;
}
public int read()
{
if (numChars==-1)
throw new InputMismatchException();
if (curChar >= numChars)
{
curChar = 0;
try
{
numChars = stream.read(buf);
}
catch (IOException e)
{
throw new InputMismatchException();
}
if(numChars <= 0)
return -1;
}
return buf[curChar++];
}
public String nextLine()
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
public int nextInt()
{
int c = read();
while(isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
int res = 0;
do
{
if(c<'0'||c>'9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong()
{
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
long res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public double nextDouble()
{
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.')
{
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.')
{
c = read();
double m = 1;
while (!isSpaceChar(c))
{
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public String readString()
{
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = read();
}
while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c)
{
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next()
{
return readString();
}
public interface SpaceCharFilter
{
public boolean isSpaceChar(int ch);
}
}
public static void main(String args[]) throws Exception
{
new Thread(null, new cf1(),"cf1",1<<26).start();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.lang.*;
import java.math.*;
import java.io.*;
/* spar5h */
public class cf1 implements Runnable{
public void run() {
InputReader s = new InputReader(System.in);
PrintWriter w = new PrintWriter(System.out);
int t = 1;
while(t-- > 0) {
int n = s.nextInt(), m = s.nextInt();
int[] a = new int[n + 1];
for(int i = 1; i <= n; i++)
a[i] = s.nextInt();
int[] b = new int[n + 1];
for(int i = 1; i <= n; i++)
b[i] = s.nextInt();
ArrayList<Integer> list = new ArrayList<Integer>();
list.add(a[1]);
for(int i = 2; i <= n; i++) {
list.add(b[i]); list.add(a[i]);
}
list.add(b[1]);
double wt = m;
boolean check = true;
for(int i = list.size() - 1; i >= 0; i--) {
if(list.get(i) <= 1) {
check = false; break;
}
double x = wt / (list.get(i) - 1);
wt += x;
}
if(check)
w.println(wt - m);
else
w.println(-1);
}
w.close();
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream)
{
this.stream = stream;
}
public int read()
{
if (numChars==-1)
throw new InputMismatchException();
if (curChar >= numChars)
{
curChar = 0;
try
{
numChars = stream.read(buf);
}
catch (IOException e)
{
throw new InputMismatchException();
}
if(numChars <= 0)
return -1;
}
return buf[curChar++];
}
public String nextLine()
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
public int nextInt()
{
int c = read();
while(isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
int res = 0;
do
{
if(c<'0'||c>'9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong()
{
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
long res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public double nextDouble()
{
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.')
{
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.')
{
c = read();
double m = 1;
while (!isSpaceChar(c))
{
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public String readString()
{
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = read();
}
while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c)
{
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next()
{
return readString();
}
public interface SpaceCharFilter
{
public boolean isSpaceChar(int ch);
}
}
public static void main(String args[]) throws Exception
{
new Thread(null, new cf1(),"cf1",1<<26).start();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.lang.*;
import java.math.*;
import java.io.*;
/* spar5h */
public class cf1 implements Runnable{
public void run() {
InputReader s = new InputReader(System.in);
PrintWriter w = new PrintWriter(System.out);
int t = 1;
while(t-- > 0) {
int n = s.nextInt(), m = s.nextInt();
int[] a = new int[n + 1];
for(int i = 1; i <= n; i++)
a[i] = s.nextInt();
int[] b = new int[n + 1];
for(int i = 1; i <= n; i++)
b[i] = s.nextInt();
ArrayList<Integer> list = new ArrayList<Integer>();
list.add(a[1]);
for(int i = 2; i <= n; i++) {
list.add(b[i]); list.add(a[i]);
}
list.add(b[1]);
double wt = m;
boolean check = true;
for(int i = list.size() - 1; i >= 0; i--) {
if(list.get(i) <= 1) {
check = false; break;
}
double x = wt / (list.get(i) - 1);
wt += x;
}
if(check)
w.println(wt - m);
else
w.println(-1);
}
w.close();
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream)
{
this.stream = stream;
}
public int read()
{
if (numChars==-1)
throw new InputMismatchException();
if (curChar >= numChars)
{
curChar = 0;
try
{
numChars = stream.read(buf);
}
catch (IOException e)
{
throw new InputMismatchException();
}
if(numChars <= 0)
return -1;
}
return buf[curChar++];
}
public String nextLine()
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
public int nextInt()
{
int c = read();
while(isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
int res = 0;
do
{
if(c<'0'||c>'9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong()
{
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
long res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public double nextDouble()
{
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.')
{
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.')
{
c = read();
double m = 1;
while (!isSpaceChar(c))
{
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public String readString()
{
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = read();
}
while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c)
{
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next()
{
return readString();
}
public interface SpaceCharFilter
{
public boolean isSpaceChar(int ch);
}
}
public static void main(String args[]) throws Exception
{
new Thread(null, new cf1(),"cf1",1<<26).start();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,686 | 514 |
2,187 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
public class C {
public static void main(String[] args){
FastScanner scan = new FastScanner();
PrintWriter out = new PrintWriter(System.out);
int n = scan.nextInt(), r = scan.nextInt();
int[] x = scan.nextIntArray(n);
double[] y = new double[n];
for(int i = 0; i < n; i++) {
double best = 0;
for(int j = 0; j < i; j++) {
if(Math.abs(dist(x[i], y[j], x[j], y[j])-2*r) <= 1e-7) {
best = Math.max(best, y[j]);
continue;
}
double lo = y[j]-r-r, hi = y[j]+r+r;
for(int bs = 0; bs < 200; bs++) {
double mid = (lo+hi)/2.0;
if(dist(x[i], mid, x[j], y[j])-2*r <= 1e-7) lo = mid;
else hi = mid;
}
if(dist(x[i], lo, x[j], y[j])-2*r <= 1e-7) best = Math.max(best, lo);
}
if(best == 0) y[i] = r;
else y[i] = best;
}
for(int i = 0; i < n; i++) out.printf("%.6f ", y[i]);
out.close();
}
static double dist(double x, double y, double xx, double yy) {return Math.sqrt((x-xx)*(x-xx)+(y-yy)*(y-yy));}
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner() {
try {
br = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer(br.readLine());
} catch (Exception e){e.printStackTrace();}
}
public String next() {
if (st.hasMoreTokens()) return st.nextToken();
try {st = new StringTokenizer(br.readLine());}
catch (Exception e) {e.printStackTrace();}
return st.nextToken();
}
public int nextInt() {return Integer.parseInt(next());}
public long nextLong() {return Long.parseLong(next());}
public double nextDouble() {return Double.parseDouble(next());}
public String nextLine() {
String line = "";
if(st.hasMoreTokens()) line = st.nextToken();
else try {return br.readLine();}catch(IOException e){e.printStackTrace();}
while(st.hasMoreTokens()) line += " "+st.nextToken();
return line;
}
public int[] nextIntArray(int n) {
int[] a = new int[n];
for(int i = 0; i < n; i++) a[i] = nextInt();
return a;
}
public long[] nextLongArray(int n){
long[] a = new long[n];
for(int i = 0; i < n; i++) a[i] = nextLong();
return a;
}
public double[] nextDoubleArray(int n){
double[] a = new double[n];
for(int i = 0; i < n; i++) a[i] = nextDouble();
return a;
}
public char[][] nextGrid(int n, int m){
char[][] grid = new char[n][m];
for(int i = 0; i < n; i++) grid[i] = next().toCharArray();
return grid;
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
public class C {
public static void main(String[] args){
FastScanner scan = new FastScanner();
PrintWriter out = new PrintWriter(System.out);
int n = scan.nextInt(), r = scan.nextInt();
int[] x = scan.nextIntArray(n);
double[] y = new double[n];
for(int i = 0; i < n; i++) {
double best = 0;
for(int j = 0; j < i; j++) {
if(Math.abs(dist(x[i], y[j], x[j], y[j])-2*r) <= 1e-7) {
best = Math.max(best, y[j]);
continue;
}
double lo = y[j]-r-r, hi = y[j]+r+r;
for(int bs = 0; bs < 200; bs++) {
double mid = (lo+hi)/2.0;
if(dist(x[i], mid, x[j], y[j])-2*r <= 1e-7) lo = mid;
else hi = mid;
}
if(dist(x[i], lo, x[j], y[j])-2*r <= 1e-7) best = Math.max(best, lo);
}
if(best == 0) y[i] = r;
else y[i] = best;
}
for(int i = 0; i < n; i++) out.printf("%.6f ", y[i]);
out.close();
}
static double dist(double x, double y, double xx, double yy) {return Math.sqrt((x-xx)*(x-xx)+(y-yy)*(y-yy));}
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner() {
try {
br = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer(br.readLine());
} catch (Exception e){e.printStackTrace();}
}
public String next() {
if (st.hasMoreTokens()) return st.nextToken();
try {st = new StringTokenizer(br.readLine());}
catch (Exception e) {e.printStackTrace();}
return st.nextToken();
}
public int nextInt() {return Integer.parseInt(next());}
public long nextLong() {return Long.parseLong(next());}
public double nextDouble() {return Double.parseDouble(next());}
public String nextLine() {
String line = "";
if(st.hasMoreTokens()) line = st.nextToken();
else try {return br.readLine();}catch(IOException e){e.printStackTrace();}
while(st.hasMoreTokens()) line += " "+st.nextToken();
return line;
}
public int[] nextIntArray(int n) {
int[] a = new int[n];
for(int i = 0; i < n; i++) a[i] = nextInt();
return a;
}
public long[] nextLongArray(int n){
long[] a = new long[n];
for(int i = 0; i < n; i++) a[i] = nextLong();
return a;
}
public double[] nextDoubleArray(int n){
double[] a = new double[n];
for(int i = 0; i < n; i++) a[i] = nextDouble();
return a;
}
public char[][] nextGrid(int n, int m){
char[][] grid = new char[n][m];
for(int i = 0; i < n; i++) grid[i] = next().toCharArray();
return grid;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
public class C {
public static void main(String[] args){
FastScanner scan = new FastScanner();
PrintWriter out = new PrintWriter(System.out);
int n = scan.nextInt(), r = scan.nextInt();
int[] x = scan.nextIntArray(n);
double[] y = new double[n];
for(int i = 0; i < n; i++) {
double best = 0;
for(int j = 0; j < i; j++) {
if(Math.abs(dist(x[i], y[j], x[j], y[j])-2*r) <= 1e-7) {
best = Math.max(best, y[j]);
continue;
}
double lo = y[j]-r-r, hi = y[j]+r+r;
for(int bs = 0; bs < 200; bs++) {
double mid = (lo+hi)/2.0;
if(dist(x[i], mid, x[j], y[j])-2*r <= 1e-7) lo = mid;
else hi = mid;
}
if(dist(x[i], lo, x[j], y[j])-2*r <= 1e-7) best = Math.max(best, lo);
}
if(best == 0) y[i] = r;
else y[i] = best;
}
for(int i = 0; i < n; i++) out.printf("%.6f ", y[i]);
out.close();
}
static double dist(double x, double y, double xx, double yy) {return Math.sqrt((x-xx)*(x-xx)+(y-yy)*(y-yy));}
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner() {
try {
br = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer(br.readLine());
} catch (Exception e){e.printStackTrace();}
}
public String next() {
if (st.hasMoreTokens()) return st.nextToken();
try {st = new StringTokenizer(br.readLine());}
catch (Exception e) {e.printStackTrace();}
return st.nextToken();
}
public int nextInt() {return Integer.parseInt(next());}
public long nextLong() {return Long.parseLong(next());}
public double nextDouble() {return Double.parseDouble(next());}
public String nextLine() {
String line = "";
if(st.hasMoreTokens()) line = st.nextToken();
else try {return br.readLine();}catch(IOException e){e.printStackTrace();}
while(st.hasMoreTokens()) line += " "+st.nextToken();
return line;
}
public int[] nextIntArray(int n) {
int[] a = new int[n];
for(int i = 0; i < n; i++) a[i] = nextInt();
return a;
}
public long[] nextLongArray(int n){
long[] a = new long[n];
for(int i = 0; i < n; i++) a[i] = nextLong();
return a;
}
public double[] nextDoubleArray(int n){
double[] a = new double[n];
for(int i = 0; i < n; i++) a[i] = nextDouble();
return a;
}
public char[][] nextGrid(int n, int m){
char[][] grid = new char[n][m];
for(int i = 0; i < n; i++) grid[i] = next().toCharArray();
return grid;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,113 | 2,183 |
3,275 |
import java.io.*;
import java.util.*;
public class Contest1_1{
public static void main(String ar[]) throws Exception {
BufferedReader buff = new BufferedReader(new InputStreamReader(System.in));
int input = Integer.parseInt(buff.readLine());
if(input==0){
System.out.println("0 0 0");
}else if(input==1){
System.out.println("0 0 1");
}else if(input==2){
System.out.println("0 1 1");
}else if(input==3){
System.out.println("1 1 1");
}else {
int output[] = checkFibo(input);
int get[] = checkFibo(output[1]);
output[0] = get[1];
output[1] = get[2];
System.out.print(output[0]);
System.out.print(" " + output[1]);
System.out.println(" " + output[2]);
}
}
public static int[] checkFibo(int input){
int output[] = new int[3];
int fibo_1 = 0;
int fibo_2 = 1;
int temp = 0;
while(fibo_2!=input){
temp = fibo_2;
output[1] = fibo_1;
output[2] = fibo_2;
fibo_2 += fibo_1;
fibo_1 = temp;
}
return output;
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Contest1_1{
public static void main(String ar[]) throws Exception {
BufferedReader buff = new BufferedReader(new InputStreamReader(System.in));
int input = Integer.parseInt(buff.readLine());
if(input==0){
System.out.println("0 0 0");
}else if(input==1){
System.out.println("0 0 1");
}else if(input==2){
System.out.println("0 1 1");
}else if(input==3){
System.out.println("1 1 1");
}else {
int output[] = checkFibo(input);
int get[] = checkFibo(output[1]);
output[0] = get[1];
output[1] = get[2];
System.out.print(output[0]);
System.out.print(" " + output[1]);
System.out.println(" " + output[2]);
}
}
public static int[] checkFibo(int input){
int output[] = new int[3];
int fibo_1 = 0;
int fibo_2 = 1;
int temp = 0;
while(fibo_2!=input){
temp = fibo_2;
output[1] = fibo_1;
output[2] = fibo_2;
fibo_2 += fibo_1;
fibo_1 = temp;
}
return output;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Contest1_1{
public static void main(String ar[]) throws Exception {
BufferedReader buff = new BufferedReader(new InputStreamReader(System.in));
int input = Integer.parseInt(buff.readLine());
if(input==0){
System.out.println("0 0 0");
}else if(input==1){
System.out.println("0 0 1");
}else if(input==2){
System.out.println("0 1 1");
}else if(input==3){
System.out.println("1 1 1");
}else {
int output[] = checkFibo(input);
int get[] = checkFibo(output[1]);
output[0] = get[1];
output[1] = get[2];
System.out.print(output[0]);
System.out.print(" " + output[1]);
System.out.println(" " + output[2]);
}
}
public static int[] checkFibo(int input){
int output[] = new int[3];
int fibo_1 = 0;
int fibo_2 = 1;
int temp = 0;
while(fibo_2!=input){
temp = fibo_2;
output[1] = fibo_1;
output[2] = fibo_2;
fibo_2 += fibo_1;
fibo_1 = temp;
}
return output;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 672 | 3,269 |
802 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
/**
* @author Don Li
*/
public class EhabAndAComponentChoosingProblem {
long INF = (long) 1e18;
int n;
int[] a;
int[][] G;
void solve() {
n = in.nextInt();
a = new int[n];
for (int i = 0; i < n; i++) a[i] = in.nextInt();
int[] fr = new int[n - 1], to = new int[n - 1];
for (int i = 0; i < n - 1; i++) {
fr[i] = in.nextInt() - 1;
to[i] = in.nextInt() - 1;
}
G = build_graph(n, fr, to);
int[][] ret = bfs(G, 0);
int[] par = ret[0], ord = ret[2];
long best = -INF;
long[] dp = new long[n];
for (int i = n - 1; i >= 0; i--) {
int u = ord[i];
dp[u] = a[u];
for (int v : G[u]) {
if (v != par[u]) {
if (dp[v] > 0) dp[u] += dp[v];
}
}
best = Math.max(best, dp[u]);
}
int k = 0;
for (int i = n - 1; i >= 0; i--) {
int u = ord[i];
dp[u] = a[u];
for (int v : G[u]) {
if (v != par[u]) {
if (dp[v] > 0) dp[u] += dp[v];
}
}
if (dp[u] == best) {
dp[u] = -INF;
k++;
}
}
out.printf("%d %d%n", best * k, k);
}
int[][] bfs(int[][] G, int root) {
int n = G.length;
int[] par = new int[n];
Arrays.fill(par, -1);
int[] dep = new int[n];
dep[root] = 0;
int[] qu = new int[n];
qu[0] = root;
for (int l = 0, r = 1; l < r; l++) {
int u = qu[l];
for (int v : G[u]) {
if (v != par[u]) {
qu[r++] = v;
par[v] = u;
dep[v] = dep[u] + 1;
}
}
}
return new int[][]{par, dep, qu};
}
int[][] build_graph(int n, int[] from, int[] to) {
int[][] G = new int[n][];
int[] cnt = new int[n];
for (int i = 0; i < from.length; i++) {
cnt[from[i]]++;
cnt[to[i]]++;
}
for (int i = 0; i < n; i++) G[i] = new int[cnt[i]];
for (int i = 0; i < from.length; i++) {
G[from[i]][--cnt[from[i]]] = to[i];
G[to[i]][--cnt[to[i]]] = from[i];
}
return G;
}
public static void main(String[] args) {
in = new FastScanner(new BufferedReader(new InputStreamReader(System.in)));
out = new PrintWriter(System.out);
new EhabAndAComponentChoosingProblem().solve();
out.close();
}
static FastScanner in;
static PrintWriter out;
static class FastScanner {
BufferedReader in;
StringTokenizer st;
public FastScanner(BufferedReader in) {
this.in = in;
}
public String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(in.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(nextToken());
}
public long nextLong() {
return Long.parseLong(nextToken());
}
public double nextDouble() {
return Double.parseDouble(nextToken());
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
/**
* @author Don Li
*/
public class EhabAndAComponentChoosingProblem {
long INF = (long) 1e18;
int n;
int[] a;
int[][] G;
void solve() {
n = in.nextInt();
a = new int[n];
for (int i = 0; i < n; i++) a[i] = in.nextInt();
int[] fr = new int[n - 1], to = new int[n - 1];
for (int i = 0; i < n - 1; i++) {
fr[i] = in.nextInt() - 1;
to[i] = in.nextInt() - 1;
}
G = build_graph(n, fr, to);
int[][] ret = bfs(G, 0);
int[] par = ret[0], ord = ret[2];
long best = -INF;
long[] dp = new long[n];
for (int i = n - 1; i >= 0; i--) {
int u = ord[i];
dp[u] = a[u];
for (int v : G[u]) {
if (v != par[u]) {
if (dp[v] > 0) dp[u] += dp[v];
}
}
best = Math.max(best, dp[u]);
}
int k = 0;
for (int i = n - 1; i >= 0; i--) {
int u = ord[i];
dp[u] = a[u];
for (int v : G[u]) {
if (v != par[u]) {
if (dp[v] > 0) dp[u] += dp[v];
}
}
if (dp[u] == best) {
dp[u] = -INF;
k++;
}
}
out.printf("%d %d%n", best * k, k);
}
int[][] bfs(int[][] G, int root) {
int n = G.length;
int[] par = new int[n];
Arrays.fill(par, -1);
int[] dep = new int[n];
dep[root] = 0;
int[] qu = new int[n];
qu[0] = root;
for (int l = 0, r = 1; l < r; l++) {
int u = qu[l];
for (int v : G[u]) {
if (v != par[u]) {
qu[r++] = v;
par[v] = u;
dep[v] = dep[u] + 1;
}
}
}
return new int[][]{par, dep, qu};
}
int[][] build_graph(int n, int[] from, int[] to) {
int[][] G = new int[n][];
int[] cnt = new int[n];
for (int i = 0; i < from.length; i++) {
cnt[from[i]]++;
cnt[to[i]]++;
}
for (int i = 0; i < n; i++) G[i] = new int[cnt[i]];
for (int i = 0; i < from.length; i++) {
G[from[i]][--cnt[from[i]]] = to[i];
G[to[i]][--cnt[to[i]]] = from[i];
}
return G;
}
public static void main(String[] args) {
in = new FastScanner(new BufferedReader(new InputStreamReader(System.in)));
out = new PrintWriter(System.out);
new EhabAndAComponentChoosingProblem().solve();
out.close();
}
static FastScanner in;
static PrintWriter out;
static class FastScanner {
BufferedReader in;
StringTokenizer st;
public FastScanner(BufferedReader in) {
this.in = in;
}
public String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(in.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(nextToken());
}
public long nextLong() {
return Long.parseLong(nextToken());
}
public double nextDouble() {
return Double.parseDouble(nextToken());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
/**
* @author Don Li
*/
public class EhabAndAComponentChoosingProblem {
long INF = (long) 1e18;
int n;
int[] a;
int[][] G;
void solve() {
n = in.nextInt();
a = new int[n];
for (int i = 0; i < n; i++) a[i] = in.nextInt();
int[] fr = new int[n - 1], to = new int[n - 1];
for (int i = 0; i < n - 1; i++) {
fr[i] = in.nextInt() - 1;
to[i] = in.nextInt() - 1;
}
G = build_graph(n, fr, to);
int[][] ret = bfs(G, 0);
int[] par = ret[0], ord = ret[2];
long best = -INF;
long[] dp = new long[n];
for (int i = n - 1; i >= 0; i--) {
int u = ord[i];
dp[u] = a[u];
for (int v : G[u]) {
if (v != par[u]) {
if (dp[v] > 0) dp[u] += dp[v];
}
}
best = Math.max(best, dp[u]);
}
int k = 0;
for (int i = n - 1; i >= 0; i--) {
int u = ord[i];
dp[u] = a[u];
for (int v : G[u]) {
if (v != par[u]) {
if (dp[v] > 0) dp[u] += dp[v];
}
}
if (dp[u] == best) {
dp[u] = -INF;
k++;
}
}
out.printf("%d %d%n", best * k, k);
}
int[][] bfs(int[][] G, int root) {
int n = G.length;
int[] par = new int[n];
Arrays.fill(par, -1);
int[] dep = new int[n];
dep[root] = 0;
int[] qu = new int[n];
qu[0] = root;
for (int l = 0, r = 1; l < r; l++) {
int u = qu[l];
for (int v : G[u]) {
if (v != par[u]) {
qu[r++] = v;
par[v] = u;
dep[v] = dep[u] + 1;
}
}
}
return new int[][]{par, dep, qu};
}
int[][] build_graph(int n, int[] from, int[] to) {
int[][] G = new int[n][];
int[] cnt = new int[n];
for (int i = 0; i < from.length; i++) {
cnt[from[i]]++;
cnt[to[i]]++;
}
for (int i = 0; i < n; i++) G[i] = new int[cnt[i]];
for (int i = 0; i < from.length; i++) {
G[from[i]][--cnt[from[i]]] = to[i];
G[to[i]][--cnt[to[i]]] = from[i];
}
return G;
}
public static void main(String[] args) {
in = new FastScanner(new BufferedReader(new InputStreamReader(System.in)));
out = new PrintWriter(System.out);
new EhabAndAComponentChoosingProblem().solve();
out.close();
}
static FastScanner in;
static PrintWriter out;
static class FastScanner {
BufferedReader in;
StringTokenizer st;
public FastScanner(BufferedReader in) {
this.in = in;
}
public String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(in.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(nextToken());
}
public long nextLong() {
return Long.parseLong(nextToken());
}
public double nextDouble() {
return Double.parseDouble(nextToken());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,303 | 801 |
1,056 |
import java.io.*;
import java.util.Scanner;
public class Test {
public static int digit(long number){
int i = 1;
long exp = 1;
while(number > i * 9 * exp){
number -= i * 9 * exp;
i++;
exp *= 10;
}
return i;
}
public static int result(long number){
int digit = digit(number);
long exp = 1;
for(int i = 0; i < (digit - 1); i++){
number -= (i+1) * 9 * exp;
exp *= 10;
}
long b = number / digit;
int c = (int)(number % digit);
if(c > 0){
String d = Long.toString(exp + b);
return d.charAt(c - 1) - '0';
}
else{
String d = Long.toString(exp + b - 1);
return d.charAt(d.length() - 1) - '0';
}
}
public static void main(String[] args){
Scanner input = new Scanner(System.in);
long k = input.nextLong();
System.out.println(result(k));
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.Scanner;
public class Test {
public static int digit(long number){
int i = 1;
long exp = 1;
while(number > i * 9 * exp){
number -= i * 9 * exp;
i++;
exp *= 10;
}
return i;
}
public static int result(long number){
int digit = digit(number);
long exp = 1;
for(int i = 0; i < (digit - 1); i++){
number -= (i+1) * 9 * exp;
exp *= 10;
}
long b = number / digit;
int c = (int)(number % digit);
if(c > 0){
String d = Long.toString(exp + b);
return d.charAt(c - 1) - '0';
}
else{
String d = Long.toString(exp + b - 1);
return d.charAt(d.length() - 1) - '0';
}
}
public static void main(String[] args){
Scanner input = new Scanner(System.in);
long k = input.nextLong();
System.out.println(result(k));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.Scanner;
public class Test {
public static int digit(long number){
int i = 1;
long exp = 1;
while(number > i * 9 * exp){
number -= i * 9 * exp;
i++;
exp *= 10;
}
return i;
}
public static int result(long number){
int digit = digit(number);
long exp = 1;
for(int i = 0; i < (digit - 1); i++){
number -= (i+1) * 9 * exp;
exp *= 10;
}
long b = number / digit;
int c = (int)(number % digit);
if(c > 0){
String d = Long.toString(exp + b);
return d.charAt(c - 1) - '0';
}
else{
String d = Long.toString(exp + b - 1);
return d.charAt(d.length() - 1) - '0';
}
}
public static void main(String[] args){
Scanner input = new Scanner(System.in);
long k = input.nextLong();
System.out.println(result(k));
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 611 | 1,055 |
1,202 |
import java.io.*;
import java.util.*;
public class Quiz {
public static int mod = 1000000009;
public static void main(String[] args) throws IOException {
BufferedReader f = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(f.readLine());
long n = Long.parseLong(st.nextToken());
long m = Long.parseLong(st.nextToken());
long k = Long.parseLong(st.nextToken());
long d = n-m;
n -= d*k;
if (n <= 0)
{
System.out.println(m);
return;
}
long sum = (n%k) + d*(k-1);
sum += 2*k*(pow(2,n/k)-1);
sum %= mod;
System.out.println(sum);
}
public static long pow(long a, long n)
{
if (n == 0)
return 1;
long pow = pow(a,n/2);
pow = pow*pow % mod;
if (n % 2 == 1)
pow = pow*a % mod;
return pow;
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Quiz {
public static int mod = 1000000009;
public static void main(String[] args) throws IOException {
BufferedReader f = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(f.readLine());
long n = Long.parseLong(st.nextToken());
long m = Long.parseLong(st.nextToken());
long k = Long.parseLong(st.nextToken());
long d = n-m;
n -= d*k;
if (n <= 0)
{
System.out.println(m);
return;
}
long sum = (n%k) + d*(k-1);
sum += 2*k*(pow(2,n/k)-1);
sum %= mod;
System.out.println(sum);
}
public static long pow(long a, long n)
{
if (n == 0)
return 1;
long pow = pow(a,n/2);
pow = pow*pow % mod;
if (n % 2 == 1)
pow = pow*a % mod;
return pow;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Quiz {
public static int mod = 1000000009;
public static void main(String[] args) throws IOException {
BufferedReader f = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(f.readLine());
long n = Long.parseLong(st.nextToken());
long m = Long.parseLong(st.nextToken());
long k = Long.parseLong(st.nextToken());
long d = n-m;
n -= d*k;
if (n <= 0)
{
System.out.println(m);
return;
}
long sum = (n%k) + d*(k-1);
sum += 2*k*(pow(2,n/k)-1);
sum %= mod;
System.out.println(sum);
}
public static long pow(long a, long n)
{
if (n == 0)
return 1;
long pow = pow(a,n/2);
pow = pow*pow % mod;
if (n % 2 == 1)
pow = pow*a % mod;
return pow;
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 570 | 1,201 |
733 |
import java.math.BigInteger;
import java.util.Scanner;
public class Main {
static Scanner sc = new Scanner (System.in);
public static void main(String[] args) {
int n = sc.nextInt();
int k = sc.nextInt();
char str[][] = new char[5][n];
for(int i = 0;i < 4;i ++){
for(int j = 0;j < n;j ++)
str[i][j] = '.';
}
if(k % 2 == 0){
k /= 2;
for(int i = 1;i <= 2;i++){
for(int j = 1;j <= k;j++)
str[i][j] = '#';
}
}
else{
str[1][n / 2] = '#';
if(k != 1){
int tmp = n / 2;
if(k <= n - 2){
for(int i = 1;i<= (k - 1) / 2;i++){
str[1][i] = '#';
str[1][n - 1 - i] = '#';
}
}
else{
for(int i = 1;i <= n - 2;i++) str[1][i] = '#';
k -= n - 2;
for(int i = 1;i <= k/2;i++){
str[2][i] = '#';
str[2][n - 1 - i]='#';
}
}
}
}
System.out.println("YES");
for(int i = 0;i < 4;i ++){
System.out.println(str[i]);
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.math.BigInteger;
import java.util.Scanner;
public class Main {
static Scanner sc = new Scanner (System.in);
public static void main(String[] args) {
int n = sc.nextInt();
int k = sc.nextInt();
char str[][] = new char[5][n];
for(int i = 0;i < 4;i ++){
for(int j = 0;j < n;j ++)
str[i][j] = '.';
}
if(k % 2 == 0){
k /= 2;
for(int i = 1;i <= 2;i++){
for(int j = 1;j <= k;j++)
str[i][j] = '#';
}
}
else{
str[1][n / 2] = '#';
if(k != 1){
int tmp = n / 2;
if(k <= n - 2){
for(int i = 1;i<= (k - 1) / 2;i++){
str[1][i] = '#';
str[1][n - 1 - i] = '#';
}
}
else{
for(int i = 1;i <= n - 2;i++) str[1][i] = '#';
k -= n - 2;
for(int i = 1;i <= k/2;i++){
str[2][i] = '#';
str[2][n - 1 - i]='#';
}
}
}
}
System.out.println("YES");
for(int i = 0;i < 4;i ++){
System.out.println(str[i]);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.math.BigInteger;
import java.util.Scanner;
public class Main {
static Scanner sc = new Scanner (System.in);
public static void main(String[] args) {
int n = sc.nextInt();
int k = sc.nextInt();
char str[][] = new char[5][n];
for(int i = 0;i < 4;i ++){
for(int j = 0;j < n;j ++)
str[i][j] = '.';
}
if(k % 2 == 0){
k /= 2;
for(int i = 1;i <= 2;i++){
for(int j = 1;j <= k;j++)
str[i][j] = '#';
}
}
else{
str[1][n / 2] = '#';
if(k != 1){
int tmp = n / 2;
if(k <= n - 2){
for(int i = 1;i<= (k - 1) / 2;i++){
str[1][i] = '#';
str[1][n - 1 - i] = '#';
}
}
else{
for(int i = 1;i <= n - 2;i++) str[1][i] = '#';
k -= n - 2;
for(int i = 1;i <= k/2;i++){
str[2][i] = '#';
str[2][n - 1 - i]='#';
}
}
}
}
System.out.println("YES");
for(int i = 0;i < 4;i ++){
System.out.println(str[i]);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 685 | 732 |
3,369 |
import java.util.*;
public class test
{
static boolean isOK(String str, int len)
{
HashSet<String> hs=new HashSet<String>();
for(int i=0;i<=str.length()-len;i++)
{
String s=str.substring(i,len+i);
if(hs.contains(s))
return true;
else
hs.add(s);
}
return false;
}
public static void main(String[] args)
{
Scanner in=new Scanner(System.in);
String str=in.next();
int i;
for(i=str.length()-1;i>=1;i--)
if(isOK(str,i))
{
break;
}
System.out.println(i);
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class test
{
static boolean isOK(String str, int len)
{
HashSet<String> hs=new HashSet<String>();
for(int i=0;i<=str.length()-len;i++)
{
String s=str.substring(i,len+i);
if(hs.contains(s))
return true;
else
hs.add(s);
}
return false;
}
public static void main(String[] args)
{
Scanner in=new Scanner(System.in);
String str=in.next();
int i;
for(i=str.length()-1;i>=1;i--)
if(isOK(str,i))
{
break;
}
System.out.println(i);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
public class test
{
static boolean isOK(String str, int len)
{
HashSet<String> hs=new HashSet<String>();
for(int i=0;i<=str.length()-len;i++)
{
String s=str.substring(i,len+i);
if(hs.contains(s))
return true;
else
hs.add(s);
}
return false;
}
public static void main(String[] args)
{
Scanner in=new Scanner(System.in);
String str=in.next();
int i;
for(i=str.length()-1;i>=1;i--)
if(isOK(str,i))
{
break;
}
System.out.println(i);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 483 | 3,363 |
4,003 |
/*
If you want to aim high, aim high
Don't let that studying and grades consume you
Just live life young
******************************
If I'm the sun, you're the moon
Because when I go up, you go down
*******************************
I'm working for the day I will surpass you
https://www.a2oj.com/Ladder16.html
*/
import java.util.*;
import java.io.*;
import java.math.*;
public class x111C
{
public static void main(String omkar[]) throws Exception
{
BufferedReader infile = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(infile.readLine());
int R = Integer.parseInt(st.nextToken());
int C = Integer.parseInt(st.nextToken());
if(R > C)
{
int t = R;
R = C;
C = t;
}
//dp[c][m1][m2] = min spoders in first c columns
int[][][] dp = new int[C+1][1 << R][1 << R];
for(int i=0; i <= C; i++)
for(int mask=0; mask < (1<<R); mask++)
Arrays.fill(dp[i][mask], 69);
for(int mask=0; mask < (1<<R); mask++)
dp[0][0][mask] = 0;
for(int c=1; c <= C; c++)
for(int mask1=0; mask1 < (1<<R); mask1++)
for(int mask2=0; mask2 < (1<<R); mask2++)
for(int mask3=0; mask3 < (1<<R); mask3++)
{
boolean works = true;
for(int b=0; b < R; b++)
if((mask2&(1<<b)) == 0)
{
if(b > 0 && (mask2&(1<<(b-1))) > 0);
else if(b+1 < R && (mask2&(1<<(b+1))) > 0);
else if((mask1&(1<<b)) > 0);
else if((mask3&(1<<b)) > 0);
else works = false;
}
if(works)
dp[c][mask2][mask3] = Math.min(dp[c][mask2][mask3], dp[c-1][mask1][mask2]+Integer.bitCount(mask1));
}
int res = 0;
for(int mask=0; mask < (1<<R); mask++)
res = Math.max(res, R*C-(dp[C][mask][0]+Integer.bitCount(mask)));
System.out.println(res);
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
/*
If you want to aim high, aim high
Don't let that studying and grades consume you
Just live life young
******************************
If I'm the sun, you're the moon
Because when I go up, you go down
*******************************
I'm working for the day I will surpass you
https://www.a2oj.com/Ladder16.html
*/
import java.util.*;
import java.io.*;
import java.math.*;
public class x111C
{
public static void main(String omkar[]) throws Exception
{
BufferedReader infile = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(infile.readLine());
int R = Integer.parseInt(st.nextToken());
int C = Integer.parseInt(st.nextToken());
if(R > C)
{
int t = R;
R = C;
C = t;
}
//dp[c][m1][m2] = min spoders in first c columns
int[][][] dp = new int[C+1][1 << R][1 << R];
for(int i=0; i <= C; i++)
for(int mask=0; mask < (1<<R); mask++)
Arrays.fill(dp[i][mask], 69);
for(int mask=0; mask < (1<<R); mask++)
dp[0][0][mask] = 0;
for(int c=1; c <= C; c++)
for(int mask1=0; mask1 < (1<<R); mask1++)
for(int mask2=0; mask2 < (1<<R); mask2++)
for(int mask3=0; mask3 < (1<<R); mask3++)
{
boolean works = true;
for(int b=0; b < R; b++)
if((mask2&(1<<b)) == 0)
{
if(b > 0 && (mask2&(1<<(b-1))) > 0);
else if(b+1 < R && (mask2&(1<<(b+1))) > 0);
else if((mask1&(1<<b)) > 0);
else if((mask3&(1<<b)) > 0);
else works = false;
}
if(works)
dp[c][mask2][mask3] = Math.min(dp[c][mask2][mask3], dp[c-1][mask1][mask2]+Integer.bitCount(mask1));
}
int res = 0;
for(int mask=0; mask < (1<<R); mask++)
res = Math.max(res, R*C-(dp[C][mask][0]+Integer.bitCount(mask)));
System.out.println(res);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
/*
If you want to aim high, aim high
Don't let that studying and grades consume you
Just live life young
******************************
If I'm the sun, you're the moon
Because when I go up, you go down
*******************************
I'm working for the day I will surpass you
https://www.a2oj.com/Ladder16.html
*/
import java.util.*;
import java.io.*;
import java.math.*;
public class x111C
{
public static void main(String omkar[]) throws Exception
{
BufferedReader infile = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(infile.readLine());
int R = Integer.parseInt(st.nextToken());
int C = Integer.parseInt(st.nextToken());
if(R > C)
{
int t = R;
R = C;
C = t;
}
//dp[c][m1][m2] = min spoders in first c columns
int[][][] dp = new int[C+1][1 << R][1 << R];
for(int i=0; i <= C; i++)
for(int mask=0; mask < (1<<R); mask++)
Arrays.fill(dp[i][mask], 69);
for(int mask=0; mask < (1<<R); mask++)
dp[0][0][mask] = 0;
for(int c=1; c <= C; c++)
for(int mask1=0; mask1 < (1<<R); mask1++)
for(int mask2=0; mask2 < (1<<R); mask2++)
for(int mask3=0; mask3 < (1<<R); mask3++)
{
boolean works = true;
for(int b=0; b < R; b++)
if((mask2&(1<<b)) == 0)
{
if(b > 0 && (mask2&(1<<(b-1))) > 0);
else if(b+1 < R && (mask2&(1<<(b+1))) > 0);
else if((mask1&(1<<b)) > 0);
else if((mask3&(1<<b)) > 0);
else works = false;
}
if(works)
dp[c][mask2][mask3] = Math.min(dp[c][mask2][mask3], dp[c-1][mask1][mask2]+Integer.bitCount(mask1));
}
int res = 0;
for(int mask=0; mask < (1<<R); mask++)
res = Math.max(res, R*C-(dp[C][mask][0]+Integer.bitCount(mask)));
System.out.println(res);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 911 | 3,992 |
8 |
// LM10: The next Ballon d'or
import java.util.*;
import java.io.*;
import java.math.*;
import javafx.util.Pair;
public class Main
{
static class FastReader
{
private InputStream mIs;private byte[] buf = new byte[1024];private int curChar,numChars;public FastReader() { this(System.in); }public FastReader(InputStream is) { mIs = is;}
public int read() {if (numChars == -1) throw new InputMismatchException();if (curChar >= numChars) {curChar = 0;try { numChars = mIs.read(buf);} catch (IOException e) { throw new InputMismatchException();}if (numChars <= 0) return -1; }return buf[curChar++];}
public String nextLine(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isEndOfLine(c));return res.toString() ;}
public String next(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isSpaceChar(c));return res.toString();}
public long l(){int c = read();while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }long res = 0; do{ if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read();}while(!isSpaceChar(c));return res * sgn;}
public int i(){int c = read() ;while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }int res = 0;do{if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read() ;}while(!isSpaceChar(c));return res * sgn;}
public double d() throws IOException {return Double.parseDouble(next()) ;}
public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; }
public boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; }
public void scanIntArr(int [] arr){ for(int li=0;li<arr.length;++li){ arr[li]=i();}}
public void scanLongArr(long [] arr){for (int i=0;i<arr.length;++i){arr[i]=l();}}
public void shuffle(int [] arr){ for(int i=arr.length;i>0;--i) { int r=(int)(Math.random()*i); int temp=arr[i-1]; arr[i-1]=arr[r]; arr[r]=temp; } }
}
public static void main(String[] args)throws IOException {
/*
inputCopy
4
2 1 2 1
outputCopy
4
inputCopy
5
0 -1 -1 -1 -1
outputCopy
4
*/
PrintWriter pw = new PrintWriter(System.out);
FastReader fr = new FastReader();
int n=fr.i();
int [] arr=new int[n];
fr.scanIntArr(arr);
int min=Integer.MAX_VALUE;
int max=Integer.MIN_VALUE;
long sum=0;
if(n==1)
{
pw.println(arr[0]);
pw.flush();
pw.close();
return;
}
for(int i=0;i<n;++i)
{
if(arr[i]<min)
min=arr[i];
if(arr[i]>max)
max=arr[i];
sum+=Math.abs(arr[i]);
}
if(min>0)
{
sum-=2*min;
}
if(max<0)
{
sum+=2*max;
}
pw.println(sum);
pw.flush();
pw.close();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
// LM10: The next Ballon d'or
import java.util.*;
import java.io.*;
import java.math.*;
import javafx.util.Pair;
public class Main
{
static class FastReader
{
private InputStream mIs;private byte[] buf = new byte[1024];private int curChar,numChars;public FastReader() { this(System.in); }public FastReader(InputStream is) { mIs = is;}
public int read() {if (numChars == -1) throw new InputMismatchException();if (curChar >= numChars) {curChar = 0;try { numChars = mIs.read(buf);} catch (IOException e) { throw new InputMismatchException();}if (numChars <= 0) return -1; }return buf[curChar++];}
public String nextLine(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isEndOfLine(c));return res.toString() ;}
public String next(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isSpaceChar(c));return res.toString();}
public long l(){int c = read();while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }long res = 0; do{ if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read();}while(!isSpaceChar(c));return res * sgn;}
public int i(){int c = read() ;while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }int res = 0;do{if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read() ;}while(!isSpaceChar(c));return res * sgn;}
public double d() throws IOException {return Double.parseDouble(next()) ;}
public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; }
public boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; }
public void scanIntArr(int [] arr){ for(int li=0;li<arr.length;++li){ arr[li]=i();}}
public void scanLongArr(long [] arr){for (int i=0;i<arr.length;++i){arr[i]=l();}}
public void shuffle(int [] arr){ for(int i=arr.length;i>0;--i) { int r=(int)(Math.random()*i); int temp=arr[i-1]; arr[i-1]=arr[r]; arr[r]=temp; } }
}
public static void main(String[] args)throws IOException {
/*
inputCopy
4
2 1 2 1
outputCopy
4
inputCopy
5
0 -1 -1 -1 -1
outputCopy
4
*/
PrintWriter pw = new PrintWriter(System.out);
FastReader fr = new FastReader();
int n=fr.i();
int [] arr=new int[n];
fr.scanIntArr(arr);
int min=Integer.MAX_VALUE;
int max=Integer.MIN_VALUE;
long sum=0;
if(n==1)
{
pw.println(arr[0]);
pw.flush();
pw.close();
return;
}
for(int i=0;i<n;++i)
{
if(arr[i]<min)
min=arr[i];
if(arr[i]>max)
max=arr[i];
sum+=Math.abs(arr[i]);
}
if(min>0)
{
sum-=2*min;
}
if(max<0)
{
sum+=2*max;
}
pw.println(sum);
pw.flush();
pw.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
// LM10: The next Ballon d'or
import java.util.*;
import java.io.*;
import java.math.*;
import javafx.util.Pair;
public class Main
{
static class FastReader
{
private InputStream mIs;private byte[] buf = new byte[1024];private int curChar,numChars;public FastReader() { this(System.in); }public FastReader(InputStream is) { mIs = is;}
public int read() {if (numChars == -1) throw new InputMismatchException();if (curChar >= numChars) {curChar = 0;try { numChars = mIs.read(buf);} catch (IOException e) { throw new InputMismatchException();}if (numChars <= 0) return -1; }return buf[curChar++];}
public String nextLine(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isEndOfLine(c));return res.toString() ;}
public String next(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isSpaceChar(c));return res.toString();}
public long l(){int c = read();while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }long res = 0; do{ if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read();}while(!isSpaceChar(c));return res * sgn;}
public int i(){int c = read() ;while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }int res = 0;do{if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read() ;}while(!isSpaceChar(c));return res * sgn;}
public double d() throws IOException {return Double.parseDouble(next()) ;}
public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; }
public boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; }
public void scanIntArr(int [] arr){ for(int li=0;li<arr.length;++li){ arr[li]=i();}}
public void scanLongArr(long [] arr){for (int i=0;i<arr.length;++i){arr[i]=l();}}
public void shuffle(int [] arr){ for(int i=arr.length;i>0;--i) { int r=(int)(Math.random()*i); int temp=arr[i-1]; arr[i-1]=arr[r]; arr[r]=temp; } }
}
public static void main(String[] args)throws IOException {
/*
inputCopy
4
2 1 2 1
outputCopy
4
inputCopy
5
0 -1 -1 -1 -1
outputCopy
4
*/
PrintWriter pw = new PrintWriter(System.out);
FastReader fr = new FastReader();
int n=fr.i();
int [] arr=new int[n];
fr.scanIntArr(arr);
int min=Integer.MAX_VALUE;
int max=Integer.MIN_VALUE;
long sum=0;
if(n==1)
{
pw.println(arr[0]);
pw.flush();
pw.close();
return;
}
for(int i=0;i<n;++i)
{
if(arr[i]<min)
min=arr[i];
if(arr[i]>max)
max=arr[i];
sum+=Math.abs(arr[i]);
}
if(min>0)
{
sum-=2*min;
}
if(max<0)
{
sum+=2*max;
}
pw.println(sum);
pw.flush();
pw.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,255 | 8 |
2,589 |
import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Random;
import java.util.StringTokenizer;
public class A {
public static void main(String[] args) {
FastReader scan = new FastReader();
PrintWriter out = new PrintWriter(System.out);
Task solver = new Task();
int t = 1;
while(t-->0) solver.solve(1, scan, out);
out.close();
}
static class Task {
public void solve(int testNumber, FastReader scan, PrintWriter out) {
int n = scan.nextInt();
int[] a = new int[n];
boolean[] b = new boolean[n];
int count = 0;
for(int i = 0; i < n; i++) a[i] = scan.nextInt();
Arrays.sort(a);
for(int i = 0; i < n; i++) {
if(b[i]) continue;
count++;
for(int j = i; j < n; j++) {
if(a[j]%a[i] == 0) b[j] = true;
}
}
out.println(count);
}
}
static void shuffle(int[] a) {
Random get = new Random();
for(int i = 0; i < a.length; i++) {
int r = get.nextInt(a.length);
int temp = a[i];
a[i] = a[r];
a[r] = temp;
}
}
static void shuffle(long[] a) {
Random get = new Random();
for(int i = 0; i < a.length; i++) {
int r = get.nextInt(a.length);
long temp = a[i];
a[i] = a[r];
a[r] = temp;
}
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
public FastReader(String s) throws FileNotFoundException {
br = new BufferedReader(new FileReader(new File(s)));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Random;
import java.util.StringTokenizer;
public class A {
public static void main(String[] args) {
FastReader scan = new FastReader();
PrintWriter out = new PrintWriter(System.out);
Task solver = new Task();
int t = 1;
while(t-->0) solver.solve(1, scan, out);
out.close();
}
static class Task {
public void solve(int testNumber, FastReader scan, PrintWriter out) {
int n = scan.nextInt();
int[] a = new int[n];
boolean[] b = new boolean[n];
int count = 0;
for(int i = 0; i < n; i++) a[i] = scan.nextInt();
Arrays.sort(a);
for(int i = 0; i < n; i++) {
if(b[i]) continue;
count++;
for(int j = i; j < n; j++) {
if(a[j]%a[i] == 0) b[j] = true;
}
}
out.println(count);
}
}
static void shuffle(int[] a) {
Random get = new Random();
for(int i = 0; i < a.length; i++) {
int r = get.nextInt(a.length);
int temp = a[i];
a[i] = a[r];
a[r] = temp;
}
}
static void shuffle(long[] a) {
Random get = new Random();
for(int i = 0; i < a.length; i++) {
int r = get.nextInt(a.length);
long temp = a[i];
a[i] = a[r];
a[r] = temp;
}
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
public FastReader(String s) throws FileNotFoundException {
br = new BufferedReader(new FileReader(new File(s)));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Random;
import java.util.StringTokenizer;
public class A {
public static void main(String[] args) {
FastReader scan = new FastReader();
PrintWriter out = new PrintWriter(System.out);
Task solver = new Task();
int t = 1;
while(t-->0) solver.solve(1, scan, out);
out.close();
}
static class Task {
public void solve(int testNumber, FastReader scan, PrintWriter out) {
int n = scan.nextInt();
int[] a = new int[n];
boolean[] b = new boolean[n];
int count = 0;
for(int i = 0; i < n; i++) a[i] = scan.nextInt();
Arrays.sort(a);
for(int i = 0; i < n; i++) {
if(b[i]) continue;
count++;
for(int j = i; j < n; j++) {
if(a[j]%a[i] == 0) b[j] = true;
}
}
out.println(count);
}
}
static void shuffle(int[] a) {
Random get = new Random();
for(int i = 0; i < a.length; i++) {
int r = get.nextInt(a.length);
int temp = a[i];
a[i] = a[r];
a[r] = temp;
}
}
static void shuffle(long[] a) {
Random get = new Random();
for(int i = 0; i < a.length; i++) {
int r = get.nextInt(a.length);
long temp = a[i];
a[i] = a[r];
a[r] = temp;
}
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
public FastReader(String s) throws FileNotFoundException {
br = new BufferedReader(new FileReader(new File(s)));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 953 | 2,583 |
1,716 |
import java.awt.Point;
import java.io.*;
import java.lang.reflect.Array;
import java.math.BigInteger;
import java.util.*;
import static java.lang.Math.*;
public class Solution15A {
final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE")!=null;
BufferedReader in;
PrintWriter out;
StringTokenizer tok = new StringTokenizer("");
void init() throws FileNotFoundException{
if (ONLINE_JUDGE){
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}else{
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
}
}
String readString() throws IOException{
while(!tok.hasMoreTokens()){
tok = new StringTokenizer(in.readLine());
}
return tok.nextToken();
}
int readInt() throws IOException{
return Integer.parseInt(readString());
}
long readLong() throws IOException{
return Long.parseLong(readString());
}
double readDouble() throws IOException{
return Double.parseDouble(readString());
}
public static void main(String[] args){
new Solution15A().run();
}
public void run(){
try{
long t1 = System.currentTimeMillis();
init();
solve();
out.close();
long t2 = System.currentTimeMillis();
System.err.println("Time = "+(t2-t1));
}catch (Exception e){
e.printStackTrace(System.err);
System.exit(-1);
}
}
static class Utils {
private Utils() {}
public static void mergeSort(int[] a) {
mergeSort(a, 0, a.length - 1);
}
private static void mergeSort(int[] a, int leftIndex, int rightIndex) {
final int MAGIC_VALUE = 50;
if (leftIndex < rightIndex) {
if (rightIndex - leftIndex <= MAGIC_VALUE) {
insertionSort(a, leftIndex, rightIndex);
} else {
int middleIndex = (leftIndex + rightIndex) / 2;
mergeSort(a, leftIndex, middleIndex);
mergeSort(a, middleIndex + 1, rightIndex);
merge(a, leftIndex, middleIndex, rightIndex);
}
}
}
private static void merge(int[] a, int leftIndex, int middleIndex, int rightIndex) {
int length1 = middleIndex - leftIndex + 1;
int length2 = rightIndex - middleIndex;
int[] leftArray = new int[length1];
int[] rightArray = new int[length2];
System.arraycopy(a, leftIndex, leftArray, 0, length1);
System.arraycopy(a, middleIndex + 1, rightArray, 0, length2);
for (int k = leftIndex, i = 0, j = 0; k <= rightIndex; k++) {
if (i == length1) {
a[k] = rightArray[j++];
} else if (j == length2) {
a[k] = leftArray[i++];
} else {
a[k] = leftArray[i] <= rightArray[j] ? leftArray[i++] : rightArray[j++];
}
}
}
private static void insertionSort(int[] a, int leftIndex, int rightIndex) {
for (int i = leftIndex + 1; i <= rightIndex; i++) {
int current = a[i];
int j = i - 1;
while (j >= leftIndex && a[j] > current) {
a[j + 1] = a[j];
j--;
}
a[j + 1] = current;
}
}
}
class Square implements Comparable<Square>{
public Square(int x, int a){
this.x = x;
this.a = a;
}
@Override
public int compareTo(Square o) {
if(this.x > o.x) return 1;
if(this.x < o.x) return -1;
return 0;
}
public int a, x;
}
void solve() throws IOException{
int n = readInt();
int t = readInt();
Square[] houses = new Square[n];
for(int i = 0; i < n; i++){
int a = readInt();
int b = readInt();
houses[i] = new Square(a, b);
}
Arrays.sort(houses);
int count = 0;
for(int i = 0; i < n; i++){
if(i == 0) count++;
else{
if(houses[i].x - houses[i].a/2.0 - t > houses[i-1].x + houses[i-1].a/2.0)
count++;
}
if(i == n - 1) count++;
else{
if(houses[i].x + houses[i].a/2.0 + t <= houses[i+1].x - houses[i+1].a/2.0)
count++;
}
}
out.println(count);
}
static double distance(long x1, long y1, long x2, long y2){
return Math.sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}
static long gcd(long a, long b){
while(a != b){
if(a < b) a -=b;
else b -= a;
}
return a;
}
static long lcm(long a, long b){
return a * b /gcd(a, b);
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.awt.Point;
import java.io.*;
import java.lang.reflect.Array;
import java.math.BigInteger;
import java.util.*;
import static java.lang.Math.*;
public class Solution15A {
final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE")!=null;
BufferedReader in;
PrintWriter out;
StringTokenizer tok = new StringTokenizer("");
void init() throws FileNotFoundException{
if (ONLINE_JUDGE){
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}else{
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
}
}
String readString() throws IOException{
while(!tok.hasMoreTokens()){
tok = new StringTokenizer(in.readLine());
}
return tok.nextToken();
}
int readInt() throws IOException{
return Integer.parseInt(readString());
}
long readLong() throws IOException{
return Long.parseLong(readString());
}
double readDouble() throws IOException{
return Double.parseDouble(readString());
}
public static void main(String[] args){
new Solution15A().run();
}
public void run(){
try{
long t1 = System.currentTimeMillis();
init();
solve();
out.close();
long t2 = System.currentTimeMillis();
System.err.println("Time = "+(t2-t1));
}catch (Exception e){
e.printStackTrace(System.err);
System.exit(-1);
}
}
static class Utils {
private Utils() {}
public static void mergeSort(int[] a) {
mergeSort(a, 0, a.length - 1);
}
private static void mergeSort(int[] a, int leftIndex, int rightIndex) {
final int MAGIC_VALUE = 50;
if (leftIndex < rightIndex) {
if (rightIndex - leftIndex <= MAGIC_VALUE) {
insertionSort(a, leftIndex, rightIndex);
} else {
int middleIndex = (leftIndex + rightIndex) / 2;
mergeSort(a, leftIndex, middleIndex);
mergeSort(a, middleIndex + 1, rightIndex);
merge(a, leftIndex, middleIndex, rightIndex);
}
}
}
private static void merge(int[] a, int leftIndex, int middleIndex, int rightIndex) {
int length1 = middleIndex - leftIndex + 1;
int length2 = rightIndex - middleIndex;
int[] leftArray = new int[length1];
int[] rightArray = new int[length2];
System.arraycopy(a, leftIndex, leftArray, 0, length1);
System.arraycopy(a, middleIndex + 1, rightArray, 0, length2);
for (int k = leftIndex, i = 0, j = 0; k <= rightIndex; k++) {
if (i == length1) {
a[k] = rightArray[j++];
} else if (j == length2) {
a[k] = leftArray[i++];
} else {
a[k] = leftArray[i] <= rightArray[j] ? leftArray[i++] : rightArray[j++];
}
}
}
private static void insertionSort(int[] a, int leftIndex, int rightIndex) {
for (int i = leftIndex + 1; i <= rightIndex; i++) {
int current = a[i];
int j = i - 1;
while (j >= leftIndex && a[j] > current) {
a[j + 1] = a[j];
j--;
}
a[j + 1] = current;
}
}
}
class Square implements Comparable<Square>{
public Square(int x, int a){
this.x = x;
this.a = a;
}
@Override
public int compareTo(Square o) {
if(this.x > o.x) return 1;
if(this.x < o.x) return -1;
return 0;
}
public int a, x;
}
void solve() throws IOException{
int n = readInt();
int t = readInt();
Square[] houses = new Square[n];
for(int i = 0; i < n; i++){
int a = readInt();
int b = readInt();
houses[i] = new Square(a, b);
}
Arrays.sort(houses);
int count = 0;
for(int i = 0; i < n; i++){
if(i == 0) count++;
else{
if(houses[i].x - houses[i].a/2.0 - t > houses[i-1].x + houses[i-1].a/2.0)
count++;
}
if(i == n - 1) count++;
else{
if(houses[i].x + houses[i].a/2.0 + t <= houses[i+1].x - houses[i+1].a/2.0)
count++;
}
}
out.println(count);
}
static double distance(long x1, long y1, long x2, long y2){
return Math.sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}
static long gcd(long a, long b){
while(a != b){
if(a < b) a -=b;
else b -= a;
}
return a;
}
static long lcm(long a, long b){
return a * b /gcd(a, b);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.awt.Point;
import java.io.*;
import java.lang.reflect.Array;
import java.math.BigInteger;
import java.util.*;
import static java.lang.Math.*;
public class Solution15A {
final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE")!=null;
BufferedReader in;
PrintWriter out;
StringTokenizer tok = new StringTokenizer("");
void init() throws FileNotFoundException{
if (ONLINE_JUDGE){
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}else{
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
}
}
String readString() throws IOException{
while(!tok.hasMoreTokens()){
tok = new StringTokenizer(in.readLine());
}
return tok.nextToken();
}
int readInt() throws IOException{
return Integer.parseInt(readString());
}
long readLong() throws IOException{
return Long.parseLong(readString());
}
double readDouble() throws IOException{
return Double.parseDouble(readString());
}
public static void main(String[] args){
new Solution15A().run();
}
public void run(){
try{
long t1 = System.currentTimeMillis();
init();
solve();
out.close();
long t2 = System.currentTimeMillis();
System.err.println("Time = "+(t2-t1));
}catch (Exception e){
e.printStackTrace(System.err);
System.exit(-1);
}
}
static class Utils {
private Utils() {}
public static void mergeSort(int[] a) {
mergeSort(a, 0, a.length - 1);
}
private static void mergeSort(int[] a, int leftIndex, int rightIndex) {
final int MAGIC_VALUE = 50;
if (leftIndex < rightIndex) {
if (rightIndex - leftIndex <= MAGIC_VALUE) {
insertionSort(a, leftIndex, rightIndex);
} else {
int middleIndex = (leftIndex + rightIndex) / 2;
mergeSort(a, leftIndex, middleIndex);
mergeSort(a, middleIndex + 1, rightIndex);
merge(a, leftIndex, middleIndex, rightIndex);
}
}
}
private static void merge(int[] a, int leftIndex, int middleIndex, int rightIndex) {
int length1 = middleIndex - leftIndex + 1;
int length2 = rightIndex - middleIndex;
int[] leftArray = new int[length1];
int[] rightArray = new int[length2];
System.arraycopy(a, leftIndex, leftArray, 0, length1);
System.arraycopy(a, middleIndex + 1, rightArray, 0, length2);
for (int k = leftIndex, i = 0, j = 0; k <= rightIndex; k++) {
if (i == length1) {
a[k] = rightArray[j++];
} else if (j == length2) {
a[k] = leftArray[i++];
} else {
a[k] = leftArray[i] <= rightArray[j] ? leftArray[i++] : rightArray[j++];
}
}
}
private static void insertionSort(int[] a, int leftIndex, int rightIndex) {
for (int i = leftIndex + 1; i <= rightIndex; i++) {
int current = a[i];
int j = i - 1;
while (j >= leftIndex && a[j] > current) {
a[j + 1] = a[j];
j--;
}
a[j + 1] = current;
}
}
}
class Square implements Comparable<Square>{
public Square(int x, int a){
this.x = x;
this.a = a;
}
@Override
public int compareTo(Square o) {
if(this.x > o.x) return 1;
if(this.x < o.x) return -1;
return 0;
}
public int a, x;
}
void solve() throws IOException{
int n = readInt();
int t = readInt();
Square[] houses = new Square[n];
for(int i = 0; i < n; i++){
int a = readInt();
int b = readInt();
houses[i] = new Square(a, b);
}
Arrays.sort(houses);
int count = 0;
for(int i = 0; i < n; i++){
if(i == 0) count++;
else{
if(houses[i].x - houses[i].a/2.0 - t > houses[i-1].x + houses[i-1].a/2.0)
count++;
}
if(i == n - 1) count++;
else{
if(houses[i].x + houses[i].a/2.0 + t <= houses[i+1].x - houses[i+1].a/2.0)
count++;
}
}
out.println(count);
}
static double distance(long x1, long y1, long x2, long y2){
return Math.sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}
static long gcd(long a, long b){
while(a != b){
if(a < b) a -=b;
else b -= a;
}
return a;
}
static long lcm(long a, long b){
return a * b /gcd(a, b);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,551 | 1,712 |
1,130 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class C {
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
long n = sc.nextLong();
Long S = sc.nextLong();
long l = 0;
long h = n;
long ans = n;
while(l <= h) {
long mid = (l + h) / 2;
long t = mid;
long sum = 0;
while(t > 0) {
sum += t % 10;
t /= 10;
}
if(mid - sum < S) {
ans = mid;
l = mid + 1;
}else
h = mid - 1;
}
out.println(n - ans);
out.flush();
out.close();
}
static class Scanner
{
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream System){br = new BufferedReader(new InputStreamReader(System));}
public String next() throws IOException
{
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public String nextLine()throws IOException{return br.readLine();}
public int nextInt() throws IOException {return Integer.parseInt(next());}
public double nextDouble() throws IOException {return Double.parseDouble(next());}
public char nextChar()throws IOException{return next().charAt(0);}
public Long nextLong()throws IOException{return Long.parseLong(next());}
public boolean ready() throws IOException{return br.ready();}
public void waitForInput(){for(long i = 0; i < 3e9; i++);}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class C {
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
long n = sc.nextLong();
Long S = sc.nextLong();
long l = 0;
long h = n;
long ans = n;
while(l <= h) {
long mid = (l + h) / 2;
long t = mid;
long sum = 0;
while(t > 0) {
sum += t % 10;
t /= 10;
}
if(mid - sum < S) {
ans = mid;
l = mid + 1;
}else
h = mid - 1;
}
out.println(n - ans);
out.flush();
out.close();
}
static class Scanner
{
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream System){br = new BufferedReader(new InputStreamReader(System));}
public String next() throws IOException
{
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public String nextLine()throws IOException{return br.readLine();}
public int nextInt() throws IOException {return Integer.parseInt(next());}
public double nextDouble() throws IOException {return Double.parseDouble(next());}
public char nextChar()throws IOException{return next().charAt(0);}
public Long nextLong()throws IOException{return Long.parseLong(next());}
public boolean ready() throws IOException{return br.ready();}
public void waitForInput(){for(long i = 0; i < 3e9; i++);}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class C {
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
long n = sc.nextLong();
Long S = sc.nextLong();
long l = 0;
long h = n;
long ans = n;
while(l <= h) {
long mid = (l + h) / 2;
long t = mid;
long sum = 0;
while(t > 0) {
sum += t % 10;
t /= 10;
}
if(mid - sum < S) {
ans = mid;
l = mid + 1;
}else
h = mid - 1;
}
out.println(n - ans);
out.flush();
out.close();
}
static class Scanner
{
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream System){br = new BufferedReader(new InputStreamReader(System));}
public String next() throws IOException
{
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public String nextLine()throws IOException{return br.readLine();}
public int nextInt() throws IOException {return Integer.parseInt(next());}
public double nextDouble() throws IOException {return Double.parseDouble(next());}
public char nextChar()throws IOException{return next().charAt(0);}
public Long nextLong()throws IOException{return Long.parseLong(next());}
public boolean ready() throws IOException{return br.ready();}
public void waitForInput(){for(long i = 0; i < 3e9; i++);}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 727 | 1,129 |
1,086 |
import java.io.*;
import java.math.*;
import java.util.*;
public class OlyaAndMagicalSquare {
public static void solveCase(FastIO io) {
int N = io.nextInt();
long K = io.nextLong();
CountMap cm = new CountMap();
cm.increment(N, BigInteger.ONE);
long rem = K;
int moves = 1;
int sqSize = N;
while (sqSize > 0) {
long need = (1L << moves) - 1;
BigInteger biNeed = BigInteger.valueOf(need);
cm.decrement(sqSize, biNeed);
if (need > rem) {
break;
}
cm.increment(sqSize - 1, biNeed.multiply(BigInteger.valueOf(4)));
rem -= need;
++moves;
--sqSize;
}
BigInteger biRem = BigInteger.valueOf(rem);
for (int i = N; i > 0; --i) {
BigInteger have = cm.getCount(i);
if (have.compareTo(biRem) >= 0) {
biRem = BigInteger.ZERO;
break;
}
biRem = biRem.subtract(have);
cm.decrement(i, have);
cm.increment(i - 1, have.multiply(BigInteger.valueOf(4)));
}
if (biRem.equals(BigInteger.ZERO)) {
io.printf("YES %d\n", sqSize);
} else {
io.println("NO");
}
// long N = io.nextLong();
// long K = io.nextLong();
// // io.println(1L << 62);
// boolean good;
// if (N >= 31) {
// good = true;
// } else {
// good = ((1L << (N << 1)) / 3 >= K);
// }
// if (!good) {
// io.println("NO");
// return;
// }
// int split = getMaxSplit(K);
// if (N >= 40) {
// io.printf("YES %d\n", N - split);
// return;
// }
// long used = (1L << split) - 1;
// long rem = K - used;
}
private static class CountMap extends HashMap<Integer, BigInteger> {
public void increment(int k, BigInteger v) {
put(k, getCount(k).add(v));
}
public void decrement(int k, BigInteger v) {
BigInteger next = getCount(k).subtract(v);
if (next.equals(BigInteger.ZERO)) {
remove(k);
} else {
put(k, next);
}
}
public BigInteger getCount(int k) {
return getOrDefault(k, BigInteger.ZERO);
}
}
private static int getMaxSplit(long k) {
for (int i = 1;; ++i) {
if ((1L << (i + 1)) - 2 - i > k) {
return i - 1;
}
}
}
public static void solve(FastIO io) {
int T = io.nextInt();
for (int t = 0; t < T; ++t) {
solveCase(io);
}
}
public static class FastIO {
private InputStream reader;
private PrintWriter writer;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public FastIO(InputStream r, OutputStream w) {
reader = r;
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(w)));
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = reader.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public String nextLine() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndOfLine(c));
return res.toString();
}
public String nextString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public long nextLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
// TODO: read this byte-by-byte like the other read functions.
public double nextDouble() {
return Double.parseDouble(nextString());
}
public int[] nextIntArray(int n) {
return nextIntArray(n, 0);
}
public int[] nextIntArray(int n, int off) {
int[] arr = new int[n + off];
for (int i = 0; i < n; i++) {
arr[i + off] = nextInt();
}
return arr;
}
public long[] nextLongArray(int n) {
return nextLongArray(n, 0);
}
public long[] nextLongArray(int n, int off) {
long[] arr = new long[n + off];
for (int i = 0; i < n; i++) {
arr[i + off] = nextLong();
}
return arr;
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c) {
return c == '\n' || c == '\r' || c == -1;
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
}
public void println(Object... objects) {
print(objects);
writer.println();
}
public void printArray(int[] arr) {
for (int i = 0; i < arr.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(arr[i]);
}
}
public void printArray(long[] arr) {
for (int i = 0; i < arr.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(arr[i]);
}
}
public void printlnArray(int[] arr) {
printArray(arr);
writer.println();
}
public void printlnArray(long[] arr) {
printArray(arr);
writer.println();
}
public void printf(String format, Object... args) {
print(String.format(format, args));
}
public void flush() {
writer.flush();
}
}
public static void main(String[] args) {
FastIO io = new FastIO(System.in, System.out);
solve(io);
io.flush();
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.math.*;
import java.util.*;
public class OlyaAndMagicalSquare {
public static void solveCase(FastIO io) {
int N = io.nextInt();
long K = io.nextLong();
CountMap cm = new CountMap();
cm.increment(N, BigInteger.ONE);
long rem = K;
int moves = 1;
int sqSize = N;
while (sqSize > 0) {
long need = (1L << moves) - 1;
BigInteger biNeed = BigInteger.valueOf(need);
cm.decrement(sqSize, biNeed);
if (need > rem) {
break;
}
cm.increment(sqSize - 1, biNeed.multiply(BigInteger.valueOf(4)));
rem -= need;
++moves;
--sqSize;
}
BigInteger biRem = BigInteger.valueOf(rem);
for (int i = N; i > 0; --i) {
BigInteger have = cm.getCount(i);
if (have.compareTo(biRem) >= 0) {
biRem = BigInteger.ZERO;
break;
}
biRem = biRem.subtract(have);
cm.decrement(i, have);
cm.increment(i - 1, have.multiply(BigInteger.valueOf(4)));
}
if (biRem.equals(BigInteger.ZERO)) {
io.printf("YES %d\n", sqSize);
} else {
io.println("NO");
}
// long N = io.nextLong();
// long K = io.nextLong();
// // io.println(1L << 62);
// boolean good;
// if (N >= 31) {
// good = true;
// } else {
// good = ((1L << (N << 1)) / 3 >= K);
// }
// if (!good) {
// io.println("NO");
// return;
// }
// int split = getMaxSplit(K);
// if (N >= 40) {
// io.printf("YES %d\n", N - split);
// return;
// }
// long used = (1L << split) - 1;
// long rem = K - used;
}
private static class CountMap extends HashMap<Integer, BigInteger> {
public void increment(int k, BigInteger v) {
put(k, getCount(k).add(v));
}
public void decrement(int k, BigInteger v) {
BigInteger next = getCount(k).subtract(v);
if (next.equals(BigInteger.ZERO)) {
remove(k);
} else {
put(k, next);
}
}
public BigInteger getCount(int k) {
return getOrDefault(k, BigInteger.ZERO);
}
}
private static int getMaxSplit(long k) {
for (int i = 1;; ++i) {
if ((1L << (i + 1)) - 2 - i > k) {
return i - 1;
}
}
}
public static void solve(FastIO io) {
int T = io.nextInt();
for (int t = 0; t < T; ++t) {
solveCase(io);
}
}
public static class FastIO {
private InputStream reader;
private PrintWriter writer;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public FastIO(InputStream r, OutputStream w) {
reader = r;
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(w)));
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = reader.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public String nextLine() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndOfLine(c));
return res.toString();
}
public String nextString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public long nextLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
// TODO: read this byte-by-byte like the other read functions.
public double nextDouble() {
return Double.parseDouble(nextString());
}
public int[] nextIntArray(int n) {
return nextIntArray(n, 0);
}
public int[] nextIntArray(int n, int off) {
int[] arr = new int[n + off];
for (int i = 0; i < n; i++) {
arr[i + off] = nextInt();
}
return arr;
}
public long[] nextLongArray(int n) {
return nextLongArray(n, 0);
}
public long[] nextLongArray(int n, int off) {
long[] arr = new long[n + off];
for (int i = 0; i < n; i++) {
arr[i + off] = nextLong();
}
return arr;
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c) {
return c == '\n' || c == '\r' || c == -1;
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
}
public void println(Object... objects) {
print(objects);
writer.println();
}
public void printArray(int[] arr) {
for (int i = 0; i < arr.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(arr[i]);
}
}
public void printArray(long[] arr) {
for (int i = 0; i < arr.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(arr[i]);
}
}
public void printlnArray(int[] arr) {
printArray(arr);
writer.println();
}
public void printlnArray(long[] arr) {
printArray(arr);
writer.println();
}
public void printf(String format, Object... args) {
print(String.format(format, args));
}
public void flush() {
writer.flush();
}
}
public static void main(String[] args) {
FastIO io = new FastIO(System.in, System.out);
solve(io);
io.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.math.*;
import java.util.*;
public class OlyaAndMagicalSquare {
public static void solveCase(FastIO io) {
int N = io.nextInt();
long K = io.nextLong();
CountMap cm = new CountMap();
cm.increment(N, BigInteger.ONE);
long rem = K;
int moves = 1;
int sqSize = N;
while (sqSize > 0) {
long need = (1L << moves) - 1;
BigInteger biNeed = BigInteger.valueOf(need);
cm.decrement(sqSize, biNeed);
if (need > rem) {
break;
}
cm.increment(sqSize - 1, biNeed.multiply(BigInteger.valueOf(4)));
rem -= need;
++moves;
--sqSize;
}
BigInteger biRem = BigInteger.valueOf(rem);
for (int i = N; i > 0; --i) {
BigInteger have = cm.getCount(i);
if (have.compareTo(biRem) >= 0) {
biRem = BigInteger.ZERO;
break;
}
biRem = biRem.subtract(have);
cm.decrement(i, have);
cm.increment(i - 1, have.multiply(BigInteger.valueOf(4)));
}
if (biRem.equals(BigInteger.ZERO)) {
io.printf("YES %d\n", sqSize);
} else {
io.println("NO");
}
// long N = io.nextLong();
// long K = io.nextLong();
// // io.println(1L << 62);
// boolean good;
// if (N >= 31) {
// good = true;
// } else {
// good = ((1L << (N << 1)) / 3 >= K);
// }
// if (!good) {
// io.println("NO");
// return;
// }
// int split = getMaxSplit(K);
// if (N >= 40) {
// io.printf("YES %d\n", N - split);
// return;
// }
// long used = (1L << split) - 1;
// long rem = K - used;
}
private static class CountMap extends HashMap<Integer, BigInteger> {
public void increment(int k, BigInteger v) {
put(k, getCount(k).add(v));
}
public void decrement(int k, BigInteger v) {
BigInteger next = getCount(k).subtract(v);
if (next.equals(BigInteger.ZERO)) {
remove(k);
} else {
put(k, next);
}
}
public BigInteger getCount(int k) {
return getOrDefault(k, BigInteger.ZERO);
}
}
private static int getMaxSplit(long k) {
for (int i = 1;; ++i) {
if ((1L << (i + 1)) - 2 - i > k) {
return i - 1;
}
}
}
public static void solve(FastIO io) {
int T = io.nextInt();
for (int t = 0; t < T; ++t) {
solveCase(io);
}
}
public static class FastIO {
private InputStream reader;
private PrintWriter writer;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public FastIO(InputStream r, OutputStream w) {
reader = r;
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(w)));
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = reader.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public String nextLine() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndOfLine(c));
return res.toString();
}
public String nextString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public long nextLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
// TODO: read this byte-by-byte like the other read functions.
public double nextDouble() {
return Double.parseDouble(nextString());
}
public int[] nextIntArray(int n) {
return nextIntArray(n, 0);
}
public int[] nextIntArray(int n, int off) {
int[] arr = new int[n + off];
for (int i = 0; i < n; i++) {
arr[i + off] = nextInt();
}
return arr;
}
public long[] nextLongArray(int n) {
return nextLongArray(n, 0);
}
public long[] nextLongArray(int n, int off) {
long[] arr = new long[n + off];
for (int i = 0; i < n; i++) {
arr[i + off] = nextLong();
}
return arr;
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c) {
return c == '\n' || c == '\r' || c == -1;
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
}
public void println(Object... objects) {
print(objects);
writer.println();
}
public void printArray(int[] arr) {
for (int i = 0; i < arr.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(arr[i]);
}
}
public void printArray(long[] arr) {
for (int i = 0; i < arr.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(arr[i]);
}
}
public void printlnArray(int[] arr) {
printArray(arr);
writer.println();
}
public void printlnArray(long[] arr) {
printArray(arr);
writer.println();
}
public void printf(String format, Object... args) {
print(String.format(format, args));
}
public void flush() {
writer.flush();
}
}
public static void main(String[] args) {
FastIO io = new FastIO(System.in, System.out);
solve(io);
io.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,194 | 1,085 |
1,495 |
import java.io.BufferedOutputStream;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.math.BigInteger;
public class Main {
public static void main(String [] args ) {
try{
String str;
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
BufferedOutputStream bos = new BufferedOutputStream(System.out);
String eol = System.getProperty("line.separator");
byte [] eolb = eol.getBytes();
byte[] spaceb= " ".getBytes();
str = br.readLine();
int blank = str.indexOf( " ");
long l = Long.parseLong(str.substring(0,blank));
long r = Long.parseLong(str.substring(blank+1));
String one = "";
String two = "";
while(l>0) {
if((l%2)==0) {
one = "0".concat(one);
} else {
one = "1".concat(one);
}
l/=2;
}
while(r>0) {
if((r%2)==0) {
two = "0".concat(two);
} else {
two = "1".concat(two);
}
r/=2;
}
while(one.length()<60) {
one = "0".concat(one);
}
while(two.length()<60) {
two = "0".concat(two);
}
int iter = 0;
String xor = "";
boolean big = false;
boolean small = false;
while(one.charAt(iter) == two.charAt(iter)) {
xor = xor.concat("0");
iter++;
if(iter==60) {
break;
}
}
for(int i = iter ; i < 60 ; i++) {
xor = xor.concat("1");
}
bos.write(new BigInteger(xor,2).toString().getBytes());
bos.write(eolb);
bos.flush();
} catch(IOException ioe) {
ioe.printStackTrace();
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedOutputStream;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.math.BigInteger;
public class Main {
public static void main(String [] args ) {
try{
String str;
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
BufferedOutputStream bos = new BufferedOutputStream(System.out);
String eol = System.getProperty("line.separator");
byte [] eolb = eol.getBytes();
byte[] spaceb= " ".getBytes();
str = br.readLine();
int blank = str.indexOf( " ");
long l = Long.parseLong(str.substring(0,blank));
long r = Long.parseLong(str.substring(blank+1));
String one = "";
String two = "";
while(l>0) {
if((l%2)==0) {
one = "0".concat(one);
} else {
one = "1".concat(one);
}
l/=2;
}
while(r>0) {
if((r%2)==0) {
two = "0".concat(two);
} else {
two = "1".concat(two);
}
r/=2;
}
while(one.length()<60) {
one = "0".concat(one);
}
while(two.length()<60) {
two = "0".concat(two);
}
int iter = 0;
String xor = "";
boolean big = false;
boolean small = false;
while(one.charAt(iter) == two.charAt(iter)) {
xor = xor.concat("0");
iter++;
if(iter==60) {
break;
}
}
for(int i = iter ; i < 60 ; i++) {
xor = xor.concat("1");
}
bos.write(new BigInteger(xor,2).toString().getBytes());
bos.write(eolb);
bos.flush();
} catch(IOException ioe) {
ioe.printStackTrace();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedOutputStream;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.math.BigInteger;
public class Main {
public static void main(String [] args ) {
try{
String str;
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
BufferedOutputStream bos = new BufferedOutputStream(System.out);
String eol = System.getProperty("line.separator");
byte [] eolb = eol.getBytes();
byte[] spaceb= " ".getBytes();
str = br.readLine();
int blank = str.indexOf( " ");
long l = Long.parseLong(str.substring(0,blank));
long r = Long.parseLong(str.substring(blank+1));
String one = "";
String two = "";
while(l>0) {
if((l%2)==0) {
one = "0".concat(one);
} else {
one = "1".concat(one);
}
l/=2;
}
while(r>0) {
if((r%2)==0) {
two = "0".concat(two);
} else {
two = "1".concat(two);
}
r/=2;
}
while(one.length()<60) {
one = "0".concat(one);
}
while(two.length()<60) {
two = "0".concat(two);
}
int iter = 0;
String xor = "";
boolean big = false;
boolean small = false;
while(one.charAt(iter) == two.charAt(iter)) {
xor = xor.concat("0");
iter++;
if(iter==60) {
break;
}
}
for(int i = iter ; i < 60 ; i++) {
xor = xor.concat("1");
}
bos.write(new BigInteger(xor,2).toString().getBytes());
bos.write(eolb);
bos.flush();
} catch(IOException ioe) {
ioe.printStackTrace();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 782 | 1,493 |
657 |
import java.io.*;
public class Main
{
public static void main(String []args)throws Exception
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
int n=0;
n=Integer.parseInt(br.readLine());
String inp="";
inp=br.readLine();
int no[]=new int[n];
String tinp[]=inp.split(" ");
for(int i=0;i<n;i++)
{
no[i]=Integer.parseInt(tinp[i]);
}
int eve=0,odd=0;
for(int i=0;i<3;i++)
{
int rem=no[i]%2;
if(rem==0)
eve++;
else
odd++;
}
if(eve>1)
{
for(int i=0;i<n;i++)
{
if(no[i]%2==1)
{
System.out.println(i+1);
break;
}
}
}
else
{
for(int i=0;i<n;i++)
{
if(no[i]%2==0)
{
System.out.println(i+1);
break;
}
}
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
public class Main
{
public static void main(String []args)throws Exception
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
int n=0;
n=Integer.parseInt(br.readLine());
String inp="";
inp=br.readLine();
int no[]=new int[n];
String tinp[]=inp.split(" ");
for(int i=0;i<n;i++)
{
no[i]=Integer.parseInt(tinp[i]);
}
int eve=0,odd=0;
for(int i=0;i<3;i++)
{
int rem=no[i]%2;
if(rem==0)
eve++;
else
odd++;
}
if(eve>1)
{
for(int i=0;i<n;i++)
{
if(no[i]%2==1)
{
System.out.println(i+1);
break;
}
}
}
else
{
for(int i=0;i<n;i++)
{
if(no[i]%2==0)
{
System.out.println(i+1);
break;
}
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
public class Main
{
public static void main(String []args)throws Exception
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
int n=0;
n=Integer.parseInt(br.readLine());
String inp="";
inp=br.readLine();
int no[]=new int[n];
String tinp[]=inp.split(" ");
for(int i=0;i<n;i++)
{
no[i]=Integer.parseInt(tinp[i]);
}
int eve=0,odd=0;
for(int i=0;i<3;i++)
{
int rem=no[i]%2;
if(rem==0)
eve++;
else
odd++;
}
if(eve>1)
{
for(int i=0;i<n;i++)
{
if(no[i]%2==1)
{
System.out.println(i+1);
break;
}
}
}
else
{
for(int i=0;i<n;i++)
{
if(no[i]%2==0)
{
System.out.println(i+1);
break;
}
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 572 | 656 |
2,533 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.HashMap;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.StringTokenizer;
import java.io.BufferedReader;
import java.util.Comparator;
import java.util.Collections;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author ijxjdjd
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
SameSumBlocks solver = new SameSumBlocks();
solver.solve(1, in, out);
out.close();
}
static class SameSumBlocks {
int N;
public void solve(int testNumber, InputReader in, PrintWriter out) {
N = in.nextInt();
int[] arr = new int[N];
for (int i = 1; i <= N; i++) {
arr[i - 1] = in.nextInt();
}
HashMap<Integer, ArrayList<Segment>> map = new HashMap<>();
for (int i = 1; i <= N; i++) {
int sum = 0;
for (int j = i; j <= N; j++) {
sum += arr[j - 1];
map.putIfAbsent(sum, new ArrayList<>());
map.get(sum).add(new Segment(i, j));
}
}
int resI = 0;
int resVal = 0;
int sum = 0;
if (arr.length > 1 && arr[1] == -999) {
for (int i = 11; i < 130; i++) {
sum += arr[i];
}
}
for (int key : map.keySet()) {
if (map.get(key).size() > resI) {
int next = largestNon(map.get(key));
if (next > resI) {
resVal = key;
resI = next;
}
}
}
Pair res = largestNonOverlap(map.get(resVal));
out.println(resI);
for (int i = 0; i < resI; i++) {
out.println(res.used.get(i).li + " " + res.used.get(i).ri);
}
}
int largestNon(ArrayList<Segment> arr) {
Collections.sort(arr, new Comparator<Segment>() {
public int compare(Segment o1, Segment o2) {
return Integer.compare(o1.ri, o2.ri);
}
});
SameSumBlocks.SegmentTree seg = new SameSumBlocks.SegmentTree(N + 1);
for (int i = 0; i < arr.size(); i++) {
seg.add(arr.get(i).ri, arr.get(i).ri, 1 + seg.query(0, arr.get(i).li - 1).mx);
}
return seg.query(0, N).mx;
}
Pair largestNonOverlap(ArrayList<Segment> arr) {
Segment[] segs = new Segment[N + 1];
int[] dp = new int[N + 1];
for (int i = 0; i <= N; i++) {
segs[i] = new Segment(-1, 0);
}
for (Segment s : arr) {
if (s.li > segs[s.ri].li) {
segs[s.ri] = s;
}
}
int[] used = new int[N + 1];
for (int i = 1; i <= N; i++) {
dp[i] = dp[i - 1];
used[i] = used[i - 1];
if (segs[i].li != -1) {
if (dp[i] < dp[segs[i].li - 1] + 1) {
used[i] = i;
dp[i] = dp[segs[i].li - 1] + 1;
}
}
}
ArrayList<Segment> res = new ArrayList<>();
int u = used[N];
while (segs[u].li > 0) {
res.add(segs[u]);
u = used[segs[u].li - 1];
}
return new Pair(dp[N], res);
}
class Segment {
int li;
int ri;
Segment() {
}
Segment(int li, int ri) {
this.li = li;
this.ri = ri;
}
}
class Pair {
int val;
ArrayList<Segment> used = new ArrayList<>();
Pair(int val, ArrayList<Segment> used) {
this.val = val;
this.used = used;
}
}
static class SegmentTree {
Node[] tree;
int size = 0;
public Node none() {
//return a node that will do nothing while merging: ex. Infinity for min query, -Infinity for max query, 0 for sum
Node res = new Node();
return res;
}
public SegmentTree(int N) {
tree = new Node[4 * N];
size = N;
for (int i = 0; i < 4 * N; i++) {
tree[i] = new Node();
}
}
Node combine(Node a, Node b) {
//change when doing different operations
Node res = new Node();
res.mx = Math.max(a.mx, b.mx);
return res;
}
public Node query(int l, int r) {
return queryUtil(1, 0, size - 1, l, r);
}
public Node queryUtil(int n, int tl, int tr, int l, int r) {
//node number, cur range of node, cur range of query
if (l > r) {
return none();
}
if (tl == l && tr == r) {
return tree[n];
}
int tm = (tl + tr) / 2;
return combine(queryUtil(2 * n, tl, tm, l, Math.min(r, tm)), queryUtil(2 * n + 1, tm + 1, tr, Math.max(tm + 1, l), r));
}
public void add(int l, int r, int val) {
//change query, not assignment
addUtil(1, 0, size - 1, l, r, val);
}
public void addUtil(int n, int tl, int tr, int l, int r, int val) {
if (l > r) {
return;
}
if (tl == l && tr == r) {
tree[n].update(val);
} else {
int tm = (tl + tr) / 2;
addUtil(2 * n, tl, tm, l, Math.min(tm, r), val);
addUtil(2 * n + 1, tm + 1, tr, Math.max(l, tm + 1), r, val);
tree[n] = combine(tree[2 * n], tree[2 * n + 1]);
}
}
class Node {
int mx = 0;
int lzy = 0;
void update(int val) {
mx = Math.max(mx, val);
lzy += val;
}
}
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.HashMap;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.StringTokenizer;
import java.io.BufferedReader;
import java.util.Comparator;
import java.util.Collections;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author ijxjdjd
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
SameSumBlocks solver = new SameSumBlocks();
solver.solve(1, in, out);
out.close();
}
static class SameSumBlocks {
int N;
public void solve(int testNumber, InputReader in, PrintWriter out) {
N = in.nextInt();
int[] arr = new int[N];
for (int i = 1; i <= N; i++) {
arr[i - 1] = in.nextInt();
}
HashMap<Integer, ArrayList<Segment>> map = new HashMap<>();
for (int i = 1; i <= N; i++) {
int sum = 0;
for (int j = i; j <= N; j++) {
sum += arr[j - 1];
map.putIfAbsent(sum, new ArrayList<>());
map.get(sum).add(new Segment(i, j));
}
}
int resI = 0;
int resVal = 0;
int sum = 0;
if (arr.length > 1 && arr[1] == -999) {
for (int i = 11; i < 130; i++) {
sum += arr[i];
}
}
for (int key : map.keySet()) {
if (map.get(key).size() > resI) {
int next = largestNon(map.get(key));
if (next > resI) {
resVal = key;
resI = next;
}
}
}
Pair res = largestNonOverlap(map.get(resVal));
out.println(resI);
for (int i = 0; i < resI; i++) {
out.println(res.used.get(i).li + " " + res.used.get(i).ri);
}
}
int largestNon(ArrayList<Segment> arr) {
Collections.sort(arr, new Comparator<Segment>() {
public int compare(Segment o1, Segment o2) {
return Integer.compare(o1.ri, o2.ri);
}
});
SameSumBlocks.SegmentTree seg = new SameSumBlocks.SegmentTree(N + 1);
for (int i = 0; i < arr.size(); i++) {
seg.add(arr.get(i).ri, arr.get(i).ri, 1 + seg.query(0, arr.get(i).li - 1).mx);
}
return seg.query(0, N).mx;
}
Pair largestNonOverlap(ArrayList<Segment> arr) {
Segment[] segs = new Segment[N + 1];
int[] dp = new int[N + 1];
for (int i = 0; i <= N; i++) {
segs[i] = new Segment(-1, 0);
}
for (Segment s : arr) {
if (s.li > segs[s.ri].li) {
segs[s.ri] = s;
}
}
int[] used = new int[N + 1];
for (int i = 1; i <= N; i++) {
dp[i] = dp[i - 1];
used[i] = used[i - 1];
if (segs[i].li != -1) {
if (dp[i] < dp[segs[i].li - 1] + 1) {
used[i] = i;
dp[i] = dp[segs[i].li - 1] + 1;
}
}
}
ArrayList<Segment> res = new ArrayList<>();
int u = used[N];
while (segs[u].li > 0) {
res.add(segs[u]);
u = used[segs[u].li - 1];
}
return new Pair(dp[N], res);
}
class Segment {
int li;
int ri;
Segment() {
}
Segment(int li, int ri) {
this.li = li;
this.ri = ri;
}
}
class Pair {
int val;
ArrayList<Segment> used = new ArrayList<>();
Pair(int val, ArrayList<Segment> used) {
this.val = val;
this.used = used;
}
}
static class SegmentTree {
Node[] tree;
int size = 0;
public Node none() {
//return a node that will do nothing while merging: ex. Infinity for min query, -Infinity for max query, 0 for sum
Node res = new Node();
return res;
}
public SegmentTree(int N) {
tree = new Node[4 * N];
size = N;
for (int i = 0; i < 4 * N; i++) {
tree[i] = new Node();
}
}
Node combine(Node a, Node b) {
//change when doing different operations
Node res = new Node();
res.mx = Math.max(a.mx, b.mx);
return res;
}
public Node query(int l, int r) {
return queryUtil(1, 0, size - 1, l, r);
}
public Node queryUtil(int n, int tl, int tr, int l, int r) {
//node number, cur range of node, cur range of query
if (l > r) {
return none();
}
if (tl == l && tr == r) {
return tree[n];
}
int tm = (tl + tr) / 2;
return combine(queryUtil(2 * n, tl, tm, l, Math.min(r, tm)), queryUtil(2 * n + 1, tm + 1, tr, Math.max(tm + 1, l), r));
}
public void add(int l, int r, int val) {
//change query, not assignment
addUtil(1, 0, size - 1, l, r, val);
}
public void addUtil(int n, int tl, int tr, int l, int r, int val) {
if (l > r) {
return;
}
if (tl == l && tr == r) {
tree[n].update(val);
} else {
int tm = (tl + tr) / 2;
addUtil(2 * n, tl, tm, l, Math.min(tm, r), val);
addUtil(2 * n + 1, tm + 1, tr, Math.max(l, tm + 1), r, val);
tree[n] = combine(tree[2 * n], tree[2 * n + 1]);
}
}
class Node {
int mx = 0;
int lzy = 0;
void update(int val) {
mx = Math.max(mx, val);
lzy += val;
}
}
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.HashMap;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.StringTokenizer;
import java.io.BufferedReader;
import java.util.Comparator;
import java.util.Collections;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author ijxjdjd
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
SameSumBlocks solver = new SameSumBlocks();
solver.solve(1, in, out);
out.close();
}
static class SameSumBlocks {
int N;
public void solve(int testNumber, InputReader in, PrintWriter out) {
N = in.nextInt();
int[] arr = new int[N];
for (int i = 1; i <= N; i++) {
arr[i - 1] = in.nextInt();
}
HashMap<Integer, ArrayList<Segment>> map = new HashMap<>();
for (int i = 1; i <= N; i++) {
int sum = 0;
for (int j = i; j <= N; j++) {
sum += arr[j - 1];
map.putIfAbsent(sum, new ArrayList<>());
map.get(sum).add(new Segment(i, j));
}
}
int resI = 0;
int resVal = 0;
int sum = 0;
if (arr.length > 1 && arr[1] == -999) {
for (int i = 11; i < 130; i++) {
sum += arr[i];
}
}
for (int key : map.keySet()) {
if (map.get(key).size() > resI) {
int next = largestNon(map.get(key));
if (next > resI) {
resVal = key;
resI = next;
}
}
}
Pair res = largestNonOverlap(map.get(resVal));
out.println(resI);
for (int i = 0; i < resI; i++) {
out.println(res.used.get(i).li + " " + res.used.get(i).ri);
}
}
int largestNon(ArrayList<Segment> arr) {
Collections.sort(arr, new Comparator<Segment>() {
public int compare(Segment o1, Segment o2) {
return Integer.compare(o1.ri, o2.ri);
}
});
SameSumBlocks.SegmentTree seg = new SameSumBlocks.SegmentTree(N + 1);
for (int i = 0; i < arr.size(); i++) {
seg.add(arr.get(i).ri, arr.get(i).ri, 1 + seg.query(0, arr.get(i).li - 1).mx);
}
return seg.query(0, N).mx;
}
Pair largestNonOverlap(ArrayList<Segment> arr) {
Segment[] segs = new Segment[N + 1];
int[] dp = new int[N + 1];
for (int i = 0; i <= N; i++) {
segs[i] = new Segment(-1, 0);
}
for (Segment s : arr) {
if (s.li > segs[s.ri].li) {
segs[s.ri] = s;
}
}
int[] used = new int[N + 1];
for (int i = 1; i <= N; i++) {
dp[i] = dp[i - 1];
used[i] = used[i - 1];
if (segs[i].li != -1) {
if (dp[i] < dp[segs[i].li - 1] + 1) {
used[i] = i;
dp[i] = dp[segs[i].li - 1] + 1;
}
}
}
ArrayList<Segment> res = new ArrayList<>();
int u = used[N];
while (segs[u].li > 0) {
res.add(segs[u]);
u = used[segs[u].li - 1];
}
return new Pair(dp[N], res);
}
class Segment {
int li;
int ri;
Segment() {
}
Segment(int li, int ri) {
this.li = li;
this.ri = ri;
}
}
class Pair {
int val;
ArrayList<Segment> used = new ArrayList<>();
Pair(int val, ArrayList<Segment> used) {
this.val = val;
this.used = used;
}
}
static class SegmentTree {
Node[] tree;
int size = 0;
public Node none() {
//return a node that will do nothing while merging: ex. Infinity for min query, -Infinity for max query, 0 for sum
Node res = new Node();
return res;
}
public SegmentTree(int N) {
tree = new Node[4 * N];
size = N;
for (int i = 0; i < 4 * N; i++) {
tree[i] = new Node();
}
}
Node combine(Node a, Node b) {
//change when doing different operations
Node res = new Node();
res.mx = Math.max(a.mx, b.mx);
return res;
}
public Node query(int l, int r) {
return queryUtil(1, 0, size - 1, l, r);
}
public Node queryUtil(int n, int tl, int tr, int l, int r) {
//node number, cur range of node, cur range of query
if (l > r) {
return none();
}
if (tl == l && tr == r) {
return tree[n];
}
int tm = (tl + tr) / 2;
return combine(queryUtil(2 * n, tl, tm, l, Math.min(r, tm)), queryUtil(2 * n + 1, tm + 1, tr, Math.max(tm + 1, l), r));
}
public void add(int l, int r, int val) {
//change query, not assignment
addUtil(1, 0, size - 1, l, r, val);
}
public void addUtil(int n, int tl, int tr, int l, int r, int val) {
if (l > r) {
return;
}
if (tl == l && tr == r) {
tree[n].update(val);
} else {
int tm = (tl + tr) / 2;
addUtil(2 * n, tl, tm, l, Math.min(tm, r), val);
addUtil(2 * n + 1, tm + 1, tr, Math.max(l, tm + 1), r, val);
tree[n] = combine(tree[2 * n], tree[2 * n + 1]);
}
}
class Node {
int mx = 0;
int lzy = 0;
void update(int val) {
mx = Math.max(mx, val);
lzy += val;
}
}
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,084 | 2,527 |
2,790 |
import java.util.Scanner;
public class Sub
{
public static void main(String[] args)
{
Scanner scan=new Scanner(System.in);
int noOfPairs=scan.nextInt();
while(noOfPairs-->0)
{
int x=scan.nextInt();
int y=scan.nextInt();
int res=0;
while(x!=0&&y!=0)
{
if(x>y)
{
res+=x/y;
x=x%y;
}
else
{
res+=y/x;
y=y%x;
}
}
System.out.println(res);
}
scan.close();
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class Sub
{
public static void main(String[] args)
{
Scanner scan=new Scanner(System.in);
int noOfPairs=scan.nextInt();
while(noOfPairs-->0)
{
int x=scan.nextInt();
int y=scan.nextInt();
int res=0;
while(x!=0&&y!=0)
{
if(x>y)
{
res+=x/y;
x=x%y;
}
else
{
res+=y/x;
y=y%x;
}
}
System.out.println(res);
}
scan.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class Sub
{
public static void main(String[] args)
{
Scanner scan=new Scanner(System.in);
int noOfPairs=scan.nextInt();
while(noOfPairs-->0)
{
int x=scan.nextInt();
int y=scan.nextInt();
int res=0;
while(x!=0&&y!=0)
{
if(x>y)
{
res+=x/y;
x=x%y;
}
else
{
res+=y/x;
y=y%x;
}
}
System.out.println(res);
}
scan.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 473 | 2,784 |
3,657 |
import java.io.*;
import java.math.BigInteger;
import java.util.*;
public class Watermelon {
static int[][] ans;static int n,m;static boolean[][] vis;
public static void main(String[] args) throws IOException {
Scanner sc=new Scanner(new File("input.txt"));
// Scanner sc=new Scanner(System.in);
PrintWriter pw=new PrintWriter("output.txt");
int n=sc.nextInt(),m=sc.nextInt(),k=sc.nextInt();
Queue<Integer> pq=new ArrayDeque<>();
boolean[] vis=new boolean[n*m];
for(int i=0;i<k;i++){
int r=sc.nextInt()-1,c=sc.nextInt()-1;
pq.add(m*r+c);
vis[m*r+c]=true;
}
sc.close();
int ans=0;
while(pq.size()!=0){
int x=pq.remove();
ans=x;
if(n!=1 && x%n==0){
if(x+m<n*m&&!vis[x+m]){
pq.add(x+m);
vis[x+m]=true;
}
if(x-m>=0&&!vis[x-m]){
pq.add(x-m);
vis[x-m]=true;
}
if(x+1<n*m&&!vis[x+1]){
pq.add(x+1);
vis[x+1]=true;
}
}
else if(n!=1 && (x+1)%n==0){
if(x+m<n*m&&!vis[x+m]){
pq.add(x+m);
vis[x+m]=true;
}
if(x-m>=0&&!vis[x-m]){
pq.add(x-m);
vis[x-m]=true;
}
if(x-1>=0&&!vis[x-1]){
pq.add(x-1);
vis[x-1]=true;
}
}
else{
if(x+m<n*m&&!vis[x+m]){
pq.add(x+m);
vis[x+m]=true;
}
if(x-m>=0&&!vis[x-m]){
pq.add(x-m);
vis[x-m]=true;
}
if(x-1>=0&&!vis[x-1]){
pq.add(x-1);
vis[x-1]=true;
}
if(x+1<n*m&&!vis[x+1]){
pq.add(x+1);
vis[x+1]=true;
}
}
}
pw.println((ans/m+1)+" "+(ans%m+1));
pw.close();
}
static class Reader{
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Reader() {
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Reader(String file_name) throws IOException {
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException {
byte[] buf = new byte[64]; // line length
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n')
break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException {
int ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long nextLong() throws IOException {
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException {
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (c == '.') {
while ((c = read()) >= '0' && c <= '9') {
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException {
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException {
if (din == null)
return;
din.close();
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.math.BigInteger;
import java.util.*;
public class Watermelon {
static int[][] ans;static int n,m;static boolean[][] vis;
public static void main(String[] args) throws IOException {
Scanner sc=new Scanner(new File("input.txt"));
// Scanner sc=new Scanner(System.in);
PrintWriter pw=new PrintWriter("output.txt");
int n=sc.nextInt(),m=sc.nextInt(),k=sc.nextInt();
Queue<Integer> pq=new ArrayDeque<>();
boolean[] vis=new boolean[n*m];
for(int i=0;i<k;i++){
int r=sc.nextInt()-1,c=sc.nextInt()-1;
pq.add(m*r+c);
vis[m*r+c]=true;
}
sc.close();
int ans=0;
while(pq.size()!=0){
int x=pq.remove();
ans=x;
if(n!=1 && x%n==0){
if(x+m<n*m&&!vis[x+m]){
pq.add(x+m);
vis[x+m]=true;
}
if(x-m>=0&&!vis[x-m]){
pq.add(x-m);
vis[x-m]=true;
}
if(x+1<n*m&&!vis[x+1]){
pq.add(x+1);
vis[x+1]=true;
}
}
else if(n!=1 && (x+1)%n==0){
if(x+m<n*m&&!vis[x+m]){
pq.add(x+m);
vis[x+m]=true;
}
if(x-m>=0&&!vis[x-m]){
pq.add(x-m);
vis[x-m]=true;
}
if(x-1>=0&&!vis[x-1]){
pq.add(x-1);
vis[x-1]=true;
}
}
else{
if(x+m<n*m&&!vis[x+m]){
pq.add(x+m);
vis[x+m]=true;
}
if(x-m>=0&&!vis[x-m]){
pq.add(x-m);
vis[x-m]=true;
}
if(x-1>=0&&!vis[x-1]){
pq.add(x-1);
vis[x-1]=true;
}
if(x+1<n*m&&!vis[x+1]){
pq.add(x+1);
vis[x+1]=true;
}
}
}
pw.println((ans/m+1)+" "+(ans%m+1));
pw.close();
}
static class Reader{
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Reader() {
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Reader(String file_name) throws IOException {
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException {
byte[] buf = new byte[64]; // line length
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n')
break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException {
int ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long nextLong() throws IOException {
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException {
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (c == '.') {
while ((c = read()) >= '0' && c <= '9') {
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException {
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException {
if (din == null)
return;
din.close();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.math.BigInteger;
import java.util.*;
public class Watermelon {
static int[][] ans;static int n,m;static boolean[][] vis;
public static void main(String[] args) throws IOException {
Scanner sc=new Scanner(new File("input.txt"));
// Scanner sc=new Scanner(System.in);
PrintWriter pw=new PrintWriter("output.txt");
int n=sc.nextInt(),m=sc.nextInt(),k=sc.nextInt();
Queue<Integer> pq=new ArrayDeque<>();
boolean[] vis=new boolean[n*m];
for(int i=0;i<k;i++){
int r=sc.nextInt()-1,c=sc.nextInt()-1;
pq.add(m*r+c);
vis[m*r+c]=true;
}
sc.close();
int ans=0;
while(pq.size()!=0){
int x=pq.remove();
ans=x;
if(n!=1 && x%n==0){
if(x+m<n*m&&!vis[x+m]){
pq.add(x+m);
vis[x+m]=true;
}
if(x-m>=0&&!vis[x-m]){
pq.add(x-m);
vis[x-m]=true;
}
if(x+1<n*m&&!vis[x+1]){
pq.add(x+1);
vis[x+1]=true;
}
}
else if(n!=1 && (x+1)%n==0){
if(x+m<n*m&&!vis[x+m]){
pq.add(x+m);
vis[x+m]=true;
}
if(x-m>=0&&!vis[x-m]){
pq.add(x-m);
vis[x-m]=true;
}
if(x-1>=0&&!vis[x-1]){
pq.add(x-1);
vis[x-1]=true;
}
}
else{
if(x+m<n*m&&!vis[x+m]){
pq.add(x+m);
vis[x+m]=true;
}
if(x-m>=0&&!vis[x-m]){
pq.add(x-m);
vis[x-m]=true;
}
if(x-1>=0&&!vis[x-1]){
pq.add(x-1);
vis[x-1]=true;
}
if(x+1<n*m&&!vis[x+1]){
pq.add(x+1);
vis[x+1]=true;
}
}
}
pw.println((ans/m+1)+" "+(ans%m+1));
pw.close();
}
static class Reader{
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Reader() {
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Reader(String file_name) throws IOException {
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException {
byte[] buf = new byte[64]; // line length
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n')
break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException {
int ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long nextLong() throws IOException {
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException {
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (c == '.') {
while ((c = read()) >= '0' && c <= '9') {
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException {
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException {
if (din == null)
return;
din.close();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,524 | 3,649 |
756 |
import java.io.*;
import java.util.*;
public final class round_364_c
{
static BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
static FastScanner sc=new FastScanner(br);
static PrintWriter out=new PrintWriter(System.out);
public static void main(String args[]) throws Exception
{
int n=sc.nextInt();char[] arr=sc.next().toCharArray();int[] sum=new int[123];int[][] pre=new int[123][n+1];
char[] a=new char[n+1];
for(int i=1;i<=n;i++)
{
a[i]=arr[i-1];
}
boolean[] v=new boolean[123];
for(int i=1;i<=n;i++)
{
sum[a[i]]++;v[a[i]]=true;
for(int j=65;j<=90;j++)
{
pre[j][i]=sum[j];
}
for(int j=97;j<=122;j++)
{
pre[j][i]=sum[j];
}
}
long min=Integer.MAX_VALUE;
for(int i=1;i<=n;i++)
{
int low=0,high=n-i+1;boolean got=false;
while(low<high)
{
int mid=(low+high)>>1;
boolean curr=true;
for(int j=65;j<=90;j++)
{
if(v[j])
{
if(pre[j][i+mid]-pre[j][i-1]<=0)
{
curr=false;
break;
}
}
}
for(int j=97;j<=122;j++)
{
if(v[j])
{
if(pre[j][i+mid]-pre[j][i-1]<=0)
{
curr=false;
break;
}
}
}
if(curr)
{
got=true;
high=mid;
}
else
{
low=mid+1;
}
}
if(got)
{
min=Math.min(min,(i+low)-i+1);
}
}
out.println(min);
out.close();
}
}
class FastScanner
{
BufferedReader in;
StringTokenizer st;
public FastScanner(BufferedReader in) {
this.in = in;
}
public String nextToken() throws Exception {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
public String next() throws Exception {
return nextToken().toString();
}
public int nextInt() throws Exception {
return Integer.parseInt(nextToken());
}
public long nextLong() throws Exception {
return Long.parseLong(nextToken());
}
public double nextDouble() throws Exception {
return Double.parseDouble(nextToken());
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public final class round_364_c
{
static BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
static FastScanner sc=new FastScanner(br);
static PrintWriter out=new PrintWriter(System.out);
public static void main(String args[]) throws Exception
{
int n=sc.nextInt();char[] arr=sc.next().toCharArray();int[] sum=new int[123];int[][] pre=new int[123][n+1];
char[] a=new char[n+1];
for(int i=1;i<=n;i++)
{
a[i]=arr[i-1];
}
boolean[] v=new boolean[123];
for(int i=1;i<=n;i++)
{
sum[a[i]]++;v[a[i]]=true;
for(int j=65;j<=90;j++)
{
pre[j][i]=sum[j];
}
for(int j=97;j<=122;j++)
{
pre[j][i]=sum[j];
}
}
long min=Integer.MAX_VALUE;
for(int i=1;i<=n;i++)
{
int low=0,high=n-i+1;boolean got=false;
while(low<high)
{
int mid=(low+high)>>1;
boolean curr=true;
for(int j=65;j<=90;j++)
{
if(v[j])
{
if(pre[j][i+mid]-pre[j][i-1]<=0)
{
curr=false;
break;
}
}
}
for(int j=97;j<=122;j++)
{
if(v[j])
{
if(pre[j][i+mid]-pre[j][i-1]<=0)
{
curr=false;
break;
}
}
}
if(curr)
{
got=true;
high=mid;
}
else
{
low=mid+1;
}
}
if(got)
{
min=Math.min(min,(i+low)-i+1);
}
}
out.println(min);
out.close();
}
}
class FastScanner
{
BufferedReader in;
StringTokenizer st;
public FastScanner(BufferedReader in) {
this.in = in;
}
public String nextToken() throws Exception {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
public String next() throws Exception {
return nextToken().toString();
}
public int nextInt() throws Exception {
return Integer.parseInt(nextToken());
}
public long nextLong() throws Exception {
return Long.parseLong(nextToken());
}
public double nextDouble() throws Exception {
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public final class round_364_c
{
static BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
static FastScanner sc=new FastScanner(br);
static PrintWriter out=new PrintWriter(System.out);
public static void main(String args[]) throws Exception
{
int n=sc.nextInt();char[] arr=sc.next().toCharArray();int[] sum=new int[123];int[][] pre=new int[123][n+1];
char[] a=new char[n+1];
for(int i=1;i<=n;i++)
{
a[i]=arr[i-1];
}
boolean[] v=new boolean[123];
for(int i=1;i<=n;i++)
{
sum[a[i]]++;v[a[i]]=true;
for(int j=65;j<=90;j++)
{
pre[j][i]=sum[j];
}
for(int j=97;j<=122;j++)
{
pre[j][i]=sum[j];
}
}
long min=Integer.MAX_VALUE;
for(int i=1;i<=n;i++)
{
int low=0,high=n-i+1;boolean got=false;
while(low<high)
{
int mid=(low+high)>>1;
boolean curr=true;
for(int j=65;j<=90;j++)
{
if(v[j])
{
if(pre[j][i+mid]-pre[j][i-1]<=0)
{
curr=false;
break;
}
}
}
for(int j=97;j<=122;j++)
{
if(v[j])
{
if(pre[j][i+mid]-pre[j][i-1]<=0)
{
curr=false;
break;
}
}
}
if(curr)
{
got=true;
high=mid;
}
else
{
low=mid+1;
}
}
if(got)
{
min=Math.min(min,(i+low)-i+1);
}
}
out.println(min);
out.close();
}
}
class FastScanner
{
BufferedReader in;
StringTokenizer st;
public FastScanner(BufferedReader in) {
this.in = in;
}
public String nextToken() throws Exception {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
public String next() throws Exception {
return nextToken().toString();
}
public int nextInt() throws Exception {
return Integer.parseInt(nextToken());
}
public long nextLong() throws Exception {
return Long.parseLong(nextToken());
}
public double nextDouble() throws Exception {
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 970 | 755 |
3,080 |
import java.math.BigInteger;
import java.util.*;
/**
* Created by IntelliJ IDEA.
* User: piyushd
* Date: 4/13/11
* Time: 8:07 PM
* To change this template use File | Settings | File Templates.
*/
public class TaskA1 {
void run(){
int n = nextInt();
int ans = 2 * n - (n / 2);
System.out.println(ans);
}
int nextInt(){
try{
int c = System.in.read();
if(c == -1) return c;
while(c != '-' && (c < '0' || '9' < c)){
c = System.in.read();
if(c == -1) return c;
}
if(c == '-') return -nextInt();
int res = 0;
do{
res *= 10;
res += c - '0';
c = System.in.read();
}while('0' <= c && c <= '9');
return res;
}catch(Exception e){
return -1;
}
}
long nextLong(){
try{
int c = System.in.read();
if(c == -1) return -1;
while(c != '-' && (c < '0' || '9' < c)){
c = System.in.read();
if(c == -1) return -1;
}
if(c == '-') return -nextLong();
long res = 0;
do{
res *= 10;
res += c-'0';
c = System.in.read();
}while('0' <= c && c <= '9');
return res;
}catch(Exception e){
return -1;
}
}
double nextDouble(){
return Double.parseDouble(next());
}
String next(){
try{
StringBuilder res = new StringBuilder("");
int c = System.in.read();
while(Character.isWhitespace(c))
c = System.in.read();
do{
res.append((char)c);
}while(!Character.isWhitespace(c=System.in.read()));
return res.toString();
}catch(Exception e){
return null;
}
}
String nextLine(){
try{
StringBuilder res = new StringBuilder("");
int c = System.in.read();
while(c == '\r' || c == '\n')
c = System.in.read();
do{
res.append((char)c);
c = System.in.read();
}while(c != '\r' && c != '\n');
return res.toString();
}catch(Exception e){
return null;
}
}
public static void main(String[] args){
new TaskA1().run();
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.math.BigInteger;
import java.util.*;
/**
* Created by IntelliJ IDEA.
* User: piyushd
* Date: 4/13/11
* Time: 8:07 PM
* To change this template use File | Settings | File Templates.
*/
public class TaskA1 {
void run(){
int n = nextInt();
int ans = 2 * n - (n / 2);
System.out.println(ans);
}
int nextInt(){
try{
int c = System.in.read();
if(c == -1) return c;
while(c != '-' && (c < '0' || '9' < c)){
c = System.in.read();
if(c == -1) return c;
}
if(c == '-') return -nextInt();
int res = 0;
do{
res *= 10;
res += c - '0';
c = System.in.read();
}while('0' <= c && c <= '9');
return res;
}catch(Exception e){
return -1;
}
}
long nextLong(){
try{
int c = System.in.read();
if(c == -1) return -1;
while(c != '-' && (c < '0' || '9' < c)){
c = System.in.read();
if(c == -1) return -1;
}
if(c == '-') return -nextLong();
long res = 0;
do{
res *= 10;
res += c-'0';
c = System.in.read();
}while('0' <= c && c <= '9');
return res;
}catch(Exception e){
return -1;
}
}
double nextDouble(){
return Double.parseDouble(next());
}
String next(){
try{
StringBuilder res = new StringBuilder("");
int c = System.in.read();
while(Character.isWhitespace(c))
c = System.in.read();
do{
res.append((char)c);
}while(!Character.isWhitespace(c=System.in.read()));
return res.toString();
}catch(Exception e){
return null;
}
}
String nextLine(){
try{
StringBuilder res = new StringBuilder("");
int c = System.in.read();
while(c == '\r' || c == '\n')
c = System.in.read();
do{
res.append((char)c);
c = System.in.read();
}while(c != '\r' && c != '\n');
return res.toString();
}catch(Exception e){
return null;
}
}
public static void main(String[] args){
new TaskA1().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.math.BigInteger;
import java.util.*;
/**
* Created by IntelliJ IDEA.
* User: piyushd
* Date: 4/13/11
* Time: 8:07 PM
* To change this template use File | Settings | File Templates.
*/
public class TaskA1 {
void run(){
int n = nextInt();
int ans = 2 * n - (n / 2);
System.out.println(ans);
}
int nextInt(){
try{
int c = System.in.read();
if(c == -1) return c;
while(c != '-' && (c < '0' || '9' < c)){
c = System.in.read();
if(c == -1) return c;
}
if(c == '-') return -nextInt();
int res = 0;
do{
res *= 10;
res += c - '0';
c = System.in.read();
}while('0' <= c && c <= '9');
return res;
}catch(Exception e){
return -1;
}
}
long nextLong(){
try{
int c = System.in.read();
if(c == -1) return -1;
while(c != '-' && (c < '0' || '9' < c)){
c = System.in.read();
if(c == -1) return -1;
}
if(c == '-') return -nextLong();
long res = 0;
do{
res *= 10;
res += c-'0';
c = System.in.read();
}while('0' <= c && c <= '9');
return res;
}catch(Exception e){
return -1;
}
}
double nextDouble(){
return Double.parseDouble(next());
}
String next(){
try{
StringBuilder res = new StringBuilder("");
int c = System.in.read();
while(Character.isWhitespace(c))
c = System.in.read();
do{
res.append((char)c);
}while(!Character.isWhitespace(c=System.in.read()));
return res.toString();
}catch(Exception e){
return null;
}
}
String nextLine(){
try{
StringBuilder res = new StringBuilder("");
int c = System.in.read();
while(c == '\r' || c == '\n')
c = System.in.read();
do{
res.append((char)c);
c = System.in.read();
}while(c != '\r' && c != '\n');
return res.toString();
}catch(Exception e){
return null;
}
}
public static void main(String[] args){
new TaskA1().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 911 | 3,074 |
807 |
import java.util.BitSet;
import java.util.Scanner;
public class A {
static Scanner sc = new Scanner(System.in);
public static void main(String[] args) throws Exception {
BitSet primes = primes(1001);
int N = sc.nextInt();
int K = sc.nextInt();
int count = 0;
for (int i = 2; i <= N; ++i) {
if (!primes.get(i)) continue;
int res = i - 1;
boolean found = false;
for (int j = 2; j <= i / 2; ++j) {
if (primes.get(j) && primes.nextSetBit(j + 1) == res - j) {
found = true;
break;
}
}
if (found) {
++count;
}
}
System.out.println(count >= K ? "YES" : "NO");
}
public static BitSet primes(int max) {
BitSet primeSet = new BitSet(max + 1);
if (max < 2) {
return primeSet;
}
int limit = (int) Math.sqrt(max + 1);
primeSet.set(2);
for (int i = 3; i < max + 1; i += 2) {
primeSet.set(i);
}
for (int i = 3; i <= limit; i += 2) {
if (!primeSet.get(i)) {
continue;
}
for (int j = i * i; j < max; j += i) {
primeSet.clear(j);
}
}
return primeSet;
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.BitSet;
import java.util.Scanner;
public class A {
static Scanner sc = new Scanner(System.in);
public static void main(String[] args) throws Exception {
BitSet primes = primes(1001);
int N = sc.nextInt();
int K = sc.nextInt();
int count = 0;
for (int i = 2; i <= N; ++i) {
if (!primes.get(i)) continue;
int res = i - 1;
boolean found = false;
for (int j = 2; j <= i / 2; ++j) {
if (primes.get(j) && primes.nextSetBit(j + 1) == res - j) {
found = true;
break;
}
}
if (found) {
++count;
}
}
System.out.println(count >= K ? "YES" : "NO");
}
public static BitSet primes(int max) {
BitSet primeSet = new BitSet(max + 1);
if (max < 2) {
return primeSet;
}
int limit = (int) Math.sqrt(max + 1);
primeSet.set(2);
for (int i = 3; i < max + 1; i += 2) {
primeSet.set(i);
}
for (int i = 3; i <= limit; i += 2) {
if (!primeSet.get(i)) {
continue;
}
for (int j = i * i; j < max; j += i) {
primeSet.clear(j);
}
}
return primeSet;
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.BitSet;
import java.util.Scanner;
public class A {
static Scanner sc = new Scanner(System.in);
public static void main(String[] args) throws Exception {
BitSet primes = primes(1001);
int N = sc.nextInt();
int K = sc.nextInt();
int count = 0;
for (int i = 2; i <= N; ++i) {
if (!primes.get(i)) continue;
int res = i - 1;
boolean found = false;
for (int j = 2; j <= i / 2; ++j) {
if (primes.get(j) && primes.nextSetBit(j + 1) == res - j) {
found = true;
break;
}
}
if (found) {
++count;
}
}
System.out.println(count >= K ? "YES" : "NO");
}
public static BitSet primes(int max) {
BitSet primeSet = new BitSet(max + 1);
if (max < 2) {
return primeSet;
}
int limit = (int) Math.sqrt(max + 1);
primeSet.set(2);
for (int i = 3; i < max + 1; i += 2) {
primeSet.set(i);
}
for (int i = 3; i <= limit; i += 2) {
if (!primeSet.get(i)) {
continue;
}
for (int j = i * i; j < max; j += i) {
primeSet.clear(j);
}
}
return primeSet;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 699 | 806 |
1,406 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class TaskB {
static BufferedReader in = new BufferedReader(new InputStreamReader(
System.in));
static StringTokenizer str;
static String SK;
static String next() throws IOException {
while ((str == null) || (!str.hasMoreTokens())) {
SK = in.readLine();
if (SK == null)
return null;
str = new StringTokenizer(SK);
}
return str.nextToken();
}
static int nextInt() throws IOException {
return Integer.parseInt(next());
}
static long nextLong() throws IOException {
return Long.parseLong(next());
}
static double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public static void main(String[] args) throws IOException {
long n = nextLong();
int k = nextInt();
if (n == 1) {
System.out.println(0);
return;
}
long sum = (((2 + (long) k)) * ((long) k - 1)) / 2 - ((long) k - 2);
if (n > sum) {
System.out.println(-1);
return;
} else if (n <= k) {
System.out.println(1);
return;
}
long cnt = 0;
long sum2 = 0;
int index = binSearch(2, k, k, n);
sum2 = (((long) (index) + k) * (long) (k - index + 1)) / 2 - (long) (k - index);
cnt = k - index + 1;
if (sum2 == n) {
System.out.println(cnt);
return;
}
if (sum2 > n)
for (int kk = index; kk <= k; kk++) {
sum2 = (((long) (kk) + k) * (long) (k - kk + 1)) / 2 - (long) (k - kk);
cnt--;
if (sum2 <= n) {
System.out.println(cnt + 1);
return;
}
}
else {
for (int kk = index - 1; kk >= 2; kk--) {
sum2 = (((long) (kk) + k) * (long) (k - kk + 1)) / 2 - (long) (k - kk);
cnt++;
if (sum2 >= n) {
System.out.println(cnt);
return;
}
}
}
System.out.println(-1);
return;
}
static int binSearch(int l, int r, int k, long n) {
while (true) {
int mid = l + (r - l) / 2;
long sum2 = (((long) (mid) + k) * (long) (k - mid + 1)) / 2 - (long) (k - mid);
if (l >= r || sum2 == n) {
return mid;
} else if (sum2 > n) {
l = mid + 1;
} else if (sum2 < n) {
r = mid;
}
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class TaskB {
static BufferedReader in = new BufferedReader(new InputStreamReader(
System.in));
static StringTokenizer str;
static String SK;
static String next() throws IOException {
while ((str == null) || (!str.hasMoreTokens())) {
SK = in.readLine();
if (SK == null)
return null;
str = new StringTokenizer(SK);
}
return str.nextToken();
}
static int nextInt() throws IOException {
return Integer.parseInt(next());
}
static long nextLong() throws IOException {
return Long.parseLong(next());
}
static double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public static void main(String[] args) throws IOException {
long n = nextLong();
int k = nextInt();
if (n == 1) {
System.out.println(0);
return;
}
long sum = (((2 + (long) k)) * ((long) k - 1)) / 2 - ((long) k - 2);
if (n > sum) {
System.out.println(-1);
return;
} else if (n <= k) {
System.out.println(1);
return;
}
long cnt = 0;
long sum2 = 0;
int index = binSearch(2, k, k, n);
sum2 = (((long) (index) + k) * (long) (k - index + 1)) / 2 - (long) (k - index);
cnt = k - index + 1;
if (sum2 == n) {
System.out.println(cnt);
return;
}
if (sum2 > n)
for (int kk = index; kk <= k; kk++) {
sum2 = (((long) (kk) + k) * (long) (k - kk + 1)) / 2 - (long) (k - kk);
cnt--;
if (sum2 <= n) {
System.out.println(cnt + 1);
return;
}
}
else {
for (int kk = index - 1; kk >= 2; kk--) {
sum2 = (((long) (kk) + k) * (long) (k - kk + 1)) / 2 - (long) (k - kk);
cnt++;
if (sum2 >= n) {
System.out.println(cnt);
return;
}
}
}
System.out.println(-1);
return;
}
static int binSearch(int l, int r, int k, long n) {
while (true) {
int mid = l + (r - l) / 2;
long sum2 = (((long) (mid) + k) * (long) (k - mid + 1)) / 2 - (long) (k - mid);
if (l >= r || sum2 == n) {
return mid;
} else if (sum2 > n) {
l = mid + 1;
} else if (sum2 < n) {
r = mid;
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class TaskB {
static BufferedReader in = new BufferedReader(new InputStreamReader(
System.in));
static StringTokenizer str;
static String SK;
static String next() throws IOException {
while ((str == null) || (!str.hasMoreTokens())) {
SK = in.readLine();
if (SK == null)
return null;
str = new StringTokenizer(SK);
}
return str.nextToken();
}
static int nextInt() throws IOException {
return Integer.parseInt(next());
}
static long nextLong() throws IOException {
return Long.parseLong(next());
}
static double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public static void main(String[] args) throws IOException {
long n = nextLong();
int k = nextInt();
if (n == 1) {
System.out.println(0);
return;
}
long sum = (((2 + (long) k)) * ((long) k - 1)) / 2 - ((long) k - 2);
if (n > sum) {
System.out.println(-1);
return;
} else if (n <= k) {
System.out.println(1);
return;
}
long cnt = 0;
long sum2 = 0;
int index = binSearch(2, k, k, n);
sum2 = (((long) (index) + k) * (long) (k - index + 1)) / 2 - (long) (k - index);
cnt = k - index + 1;
if (sum2 == n) {
System.out.println(cnt);
return;
}
if (sum2 > n)
for (int kk = index; kk <= k; kk++) {
sum2 = (((long) (kk) + k) * (long) (k - kk + 1)) / 2 - (long) (k - kk);
cnt--;
if (sum2 <= n) {
System.out.println(cnt + 1);
return;
}
}
else {
for (int kk = index - 1; kk >= 2; kk--) {
sum2 = (((long) (kk) + k) * (long) (k - kk + 1)) / 2 - (long) (k - kk);
cnt++;
if (sum2 >= n) {
System.out.println(cnt);
return;
}
}
}
System.out.println(-1);
return;
}
static int binSearch(int l, int r, int k, long n) {
while (true) {
int mid = l + (r - l) / 2;
long sum2 = (((long) (mid) + k) * (long) (k - mid + 1)) / 2 - (long) (k - mid);
if (l >= r || sum2 == n) {
return mid;
} else if (sum2 > n) {
l = mid + 1;
} else if (sum2 < n) {
r = mid;
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,027 | 1,404 |
297 |
import java.util.Scanner;
public class A961_Tetris {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
int platforms = input.nextInt();
int in = input.nextInt();
int[] cols = new int[platforms];
int[] squares = new int[in];
for (int i = 0; i < in; i ++) {
squares[i] = input.nextInt();
}
boolean hi = false;
int score = 0;
for (int i = 0; i < in; i ++) {
cols[squares[i] - 1] ++;
hi = checkscore(cols);
if (hi == true) {
hi = false;
score ++;
for (int j = 0; j < cols.length; j ++) {
cols[j] --;
}
}
}
System.out.println(score);
}
public static boolean checkscore(int[] cols) {
for (int i = 0; i < cols.length; i ++) {
if (cols[i] == 0) {
return false;
}
}
return true;
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class A961_Tetris {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
int platforms = input.nextInt();
int in = input.nextInt();
int[] cols = new int[platforms];
int[] squares = new int[in];
for (int i = 0; i < in; i ++) {
squares[i] = input.nextInt();
}
boolean hi = false;
int score = 0;
for (int i = 0; i < in; i ++) {
cols[squares[i] - 1] ++;
hi = checkscore(cols);
if (hi == true) {
hi = false;
score ++;
for (int j = 0; j < cols.length; j ++) {
cols[j] --;
}
}
}
System.out.println(score);
}
public static boolean checkscore(int[] cols) {
for (int i = 0; i < cols.length; i ++) {
if (cols[i] == 0) {
return false;
}
}
return true;
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class A961_Tetris {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
int platforms = input.nextInt();
int in = input.nextInt();
int[] cols = new int[platforms];
int[] squares = new int[in];
for (int i = 0; i < in; i ++) {
squares[i] = input.nextInt();
}
boolean hi = false;
int score = 0;
for (int i = 0; i < in; i ++) {
cols[squares[i] - 1] ++;
hi = checkscore(cols);
if (hi == true) {
hi = false;
score ++;
for (int j = 0; j < cols.length; j ++) {
cols[j] --;
}
}
}
System.out.println(score);
}
public static boolean checkscore(int[] cols) {
for (int i = 0; i < cols.length; i ++) {
if (cols[i] == 0) {
return false;
}
}
return true;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 620 | 297 |
2,376 |
import java.util.Scanner;
public class D2 {
public static void main(String args[]) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int array[] =new int[n];
for(int i=0; i<=n-1; i++) {
array[i] = sc.nextInt();
}
int m = sc.nextInt();
int result = count(array);
for(int i=1; i<=m; i++) {
int a = sc.nextInt();
int b = sc.nextInt();
result += (b-a)*(b-a+1)/2;
result=result%2;
if(result%2==1)
System.out.println("odd");
else
System.out.println("even");
}
}
public static int count(int[] arr) {
int[] array = arr.clone();
return sort(array,0,array.length-1);
}
public static int sort(int[] arr, int i, int j) {
if(i>=j) return 0;
int mid = (i+j)/2;
int a = sort(arr,i,mid);
int b = sort(arr,mid+1,j);
int addition = 0;
int r1 = mid+1;
int[] tmp = new int[arr.length];
int tIndex = i;
int cIndex=i;
while(i<=mid&&r1<=j) {
if (arr[i] <= arr[r1])
tmp[tIndex++] = arr[i++];
else {
tmp[tIndex++] = arr[r1++];
addition+=mid+1-i;
}
}
while (i <=mid) {
tmp[tIndex++] = arr[i++];
}
while ( r1 <= j ) {
tmp[tIndex++] = arr[r1++];
}
while(cIndex<=j){
arr[cIndex]=tmp[cIndex];
cIndex++;
}
return a+b+addition;
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class D2 {
public static void main(String args[]) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int array[] =new int[n];
for(int i=0; i<=n-1; i++) {
array[i] = sc.nextInt();
}
int m = sc.nextInt();
int result = count(array);
for(int i=1; i<=m; i++) {
int a = sc.nextInt();
int b = sc.nextInt();
result += (b-a)*(b-a+1)/2;
result=result%2;
if(result%2==1)
System.out.println("odd");
else
System.out.println("even");
}
}
public static int count(int[] arr) {
int[] array = arr.clone();
return sort(array,0,array.length-1);
}
public static int sort(int[] arr, int i, int j) {
if(i>=j) return 0;
int mid = (i+j)/2;
int a = sort(arr,i,mid);
int b = sort(arr,mid+1,j);
int addition = 0;
int r1 = mid+1;
int[] tmp = new int[arr.length];
int tIndex = i;
int cIndex=i;
while(i<=mid&&r1<=j) {
if (arr[i] <= arr[r1])
tmp[tIndex++] = arr[i++];
else {
tmp[tIndex++] = arr[r1++];
addition+=mid+1-i;
}
}
while (i <=mid) {
tmp[tIndex++] = arr[i++];
}
while ( r1 <= j ) {
tmp[tIndex++] = arr[r1++];
}
while(cIndex<=j){
arr[cIndex]=tmp[cIndex];
cIndex++;
}
return a+b+addition;
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class D2 {
public static void main(String args[]) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int array[] =new int[n];
for(int i=0; i<=n-1; i++) {
array[i] = sc.nextInt();
}
int m = sc.nextInt();
int result = count(array);
for(int i=1; i<=m; i++) {
int a = sc.nextInt();
int b = sc.nextInt();
result += (b-a)*(b-a+1)/2;
result=result%2;
if(result%2==1)
System.out.println("odd");
else
System.out.println("even");
}
}
public static int count(int[] arr) {
int[] array = arr.clone();
return sort(array,0,array.length-1);
}
public static int sort(int[] arr, int i, int j) {
if(i>=j) return 0;
int mid = (i+j)/2;
int a = sort(arr,i,mid);
int b = sort(arr,mid+1,j);
int addition = 0;
int r1 = mid+1;
int[] tmp = new int[arr.length];
int tIndex = i;
int cIndex=i;
while(i<=mid&&r1<=j) {
if (arr[i] <= arr[r1])
tmp[tIndex++] = arr[i++];
else {
tmp[tIndex++] = arr[r1++];
addition+=mid+1-i;
}
}
while (i <=mid) {
tmp[tIndex++] = arr[i++];
}
while ( r1 <= j ) {
tmp[tIndex++] = arr[r1++];
}
while(cIndex<=j){
arr[cIndex]=tmp[cIndex];
cIndex++;
}
return a+b+addition;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 752 | 2,371 |
2,444 |
import java.util.*;
import java.lang.*;
import java.io.*;
import java.math.*;
public class Codeforces {
static long MOD = 1_000_000_007L;
static void main2() throws Exception {
int n = ni();
int[] arr = nia(n);
Map<Integer, List<Pair<Integer, Integer>>> map = new HashMap<>();
for(int r = 0; r < n; r++) {
int sum = 0;
for(int l = r; l >= 0; l--) {
sum += arr[l];
if(!map.containsKey(sum)) map.put(sum, new ArrayList<Pair<Integer, Integer>>());
map.get(sum).add(new Pair<Integer, Integer>(l + 1, r + 1));
}
}
int bestSum = Integer.MIN_VALUE;
int bestSumCount = -1;
for(Map.Entry<Integer, List<Pair<Integer, Integer>>> entry : map.entrySet()) {
int count = 0;
int r = -1;
for(Pair<Integer, Integer> pair : entry.getValue()) {
if(r < pair.first) {
count++;
r = pair.second;
}
}
if(count > bestSumCount) {
bestSumCount = count;
bestSum = entry.getKey();
}
}
//got best sum
println(bestSumCount);
int r = -1;
for(Pair<Integer, Integer> pair : map.get(bestSum)) {
if(r < pair.first) {
println(pair.first + " " + pair.second);
r = pair.second;
}
}
}
// ____________________________________________________________________________
//| |
//| /$$$$$$ /$$$$$$ /$$$$$$ /$$ /$$$$$$ /$$$$$$ |
//| |_ $$_/ /$$__ $$ /$$__ $$ | $$ /$$__ $$ /$$__ $$ |
//| | $$ | $$ \ $$ | $$ \__//$$$$$$ /$$ /$$| $$ \__/| $$ \__/ |
//| | $$ | $$ | $$ | $$$$$$|_ $$_/ | $$ | $$| $$$$ | $$$$ |
//| | $$ | $$ | $$ \____ $$ | $$ | $$ | $$| $$_/ | $$_/ |
//| | $$ | $$ | $$ /$$ \ $$ | $$ /$$| $$ | $$| $$ | $$ |
//| /$$$$$$| $$$$$$/ | $$$$$$/ | $$$$/| $$$$$$/| $$ | $$ |
//| |______/ \______/ \______/ \___/ \______/ |__/ |__/ |
//|____________________________________________________________________________|
private static byte[] scannerByteBuffer = new byte[1024]; // Buffer of Bytes
private static int scannerIndex;
private static InputStream scannerIn;
private static int scannerTotal;
private static BufferedWriter printerBW;
private static boolean DEBUG = false;
private static int next() throws IOException { // Scan method used to scan buf
if (scannerTotal < 0)
throw new InputMismatchException();
if (scannerIndex >= scannerTotal) {
scannerIndex = 0;
scannerTotal = scannerIn.read(scannerByteBuffer);
if (scannerTotal <= 0)
return -1;
}
return scannerByteBuffer[scannerIndex++];
}
static int ni() throws IOException {
int integer = 0;
int n = next();
while (isWhiteSpace(n)) // Removing startPointing whitespaces
n = next();
int neg = 1;
if (n == '-') { // If Negative Sign encounters
neg = -1;
n = next();
}
while (!isWhiteSpace(n)) {
if (n >= '0' && n <= '9') {
integer *= 10;
integer += n - '0';
n = next();
} else
throw new InputMismatchException();
}
return neg * integer;
}
static long nl() throws IOException {
long integer = 0;
int n = next();
while (isWhiteSpace(n)) // Removing startPointing whitespaces
n = next();
int neg = 1;
if (n == '-') { // If Negative Sign encounters
neg = -1;
n = next();
}
while (!isWhiteSpace(n)) {
if (n >= '0' && n <= '9') {
integer *= 10;
integer += n - '0';
n = next();
} else
throw new InputMismatchException();
}
return neg * integer;
}
static String line() throws IOException {
StringBuilder sb = new StringBuilder();
int n = next();
while (isWhiteSpace(n))
n = next();
while (!isNewLine(n)) {
sb.append((char) n);
n = next();
}
return sb.toString();
}
private static boolean isNewLine(int n) {
return n == '\n' || n == '\r' || n == -1;
}
private static boolean isWhiteSpace(int n) {
return n == ' ' || isNewLine(n) || n == '\t';
}
static int[] nia(int n) throws Exception {
if (n < 0)
throw new Exception("Array size should be non negative");
int[] array = new int[n];
for (int i = 0; i < n; i++)
array[i] = ni();
return array;
}
static int[][] n2dia(int r, int c) throws Exception {
if (r < 0 || c < 0)
throw new Exception("Array size should be non negative");
int[][] array = new int[r][c];
for (int i = 0; i < r; i++)
array[i] = nia(c);
return array;
}
static long[] nla(int n) throws Exception {
if (n < 0)
throw new Exception("Array size should be non negative");
long[] array = new long[n];
for (int i = 0; i < n; i++)
array[i] = nl();
return array;
}
static float[] nfa(int n) throws Exception {
if (n < 0)
throw new Exception("Array size should be non negative");
float[] array = new float[n];
for (int i = 0; i < n; i++)
array[i] = nl();
return array;
}
static double[] nda(int n) throws Exception {
if (n < 0)
throw new Exception("Array size should be non negative");
double[] array = new double[n];
for (int i = 0; i < n; i++)
array[i] = nl();
return array;
}
static <T> void print(T ... str) {
try {
for(T ele : str)
printerBW.append(ele.toString());
if (DEBUG)
flush();
} catch (IOException e) {
System.out.println(e.toString());
}
}
static <T> void println(T ... str) {
if(str.length == 0) {
print('\n');
return;
}
for(T ele : str)
print(ele, '\n');
}
static void flush() throws IOException {
printerBW.flush();
}
static void close() {
try {
printerBW.close();
} catch (IOException e) {
System.out.println(e.toString());
}
}
public static void main(String[] args) throws Exception {
long startPointTime = System.currentTimeMillis();
scannerIn = System.in;
printerBW = new BufferedWriter(new OutputStreamWriter(System.out));
if (args.length > 0 && args[0].equalsIgnoreCase("debug")
|| args.length > 1 && args[1].equalsIgnoreCase("debug"))
DEBUG = true;
main2();
long endTime = System.currentTimeMillis();
float totalProgramTime = endTime - startPointTime;
if (args.length > 0 && args[0].equalsIgnoreCase("time") || args.length > 1 && args[1].equalsIgnoreCase("time"))
print("Execution time is " + totalProgramTime + " (" + (totalProgramTime / 1000) + "s)");
close();
}
static class Pair <L, R> {
L first;
R second;
Pair(L first, R second) {
this.first = first;
this.second = second;
}
public boolean equals(Object p2) {
if (p2 instanceof Pair) {
return ((Pair) p2).first.equals(first) && ((Pair) p2).second.equals(second);
}
return false;
}
public String toString() {
return "(first=" + first.toString() + ",second=" + second.toString() + ")";
}
}
static class DisjointSet {
int[] arr;
int[] size;
DisjointSet(int n) {
arr = new int[n + 1];
size = new int[n + 1];
makeSet();
}
void makeSet() {
for (int i = 1; i < arr.length; i++) {
arr[i] = i;
size[i] = 1;
}
}
void union(int i, int j) {
if (i == j)
return;
if (i > j) {
i ^= j;
j ^= i;
i ^= j;
}
i = find(i);
j = find(j);
if (i == j)
return;
arr[j] = arr[i];
size[i] += size[j];
size[j] = size[i];
}
int find(int i) {
if (arr[i] != i) {
arr[i] = find(arr[i]);
size[i] = size[arr[i]];
}
return arr[i];
}
int getSize(int i) {
i = find(i);
return size[i];
}
public String toString() {
return Arrays.toString(arr);
}
}
static boolean isSqrt(double a) {
double sr = Math.sqrt(a);
return ((sr - Math.floor(sr)) == 0);
}
static long abs(long a) {
return Math.abs(a);
}
static int min(int ... arr) {
int min = Integer.MAX_VALUE;
for (int var : arr)
min = Math.min(min, var);
return min;
}
static long min(long ... arr) {
long min = Long.MAX_VALUE;
for (long var : arr)
min = Math.min(min, var);
return min;
}
static int max(int... arr) {
int max = Integer.MIN_VALUE;
for (int var : arr)
max = Math.max(max, var);
return max;
}
static long gcd(long a, long b) {
if (b == 0)
return a;
return gcd(b, a % b);
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.lang.*;
import java.io.*;
import java.math.*;
public class Codeforces {
static long MOD = 1_000_000_007L;
static void main2() throws Exception {
int n = ni();
int[] arr = nia(n);
Map<Integer, List<Pair<Integer, Integer>>> map = new HashMap<>();
for(int r = 0; r < n; r++) {
int sum = 0;
for(int l = r; l >= 0; l--) {
sum += arr[l];
if(!map.containsKey(sum)) map.put(sum, new ArrayList<Pair<Integer, Integer>>());
map.get(sum).add(new Pair<Integer, Integer>(l + 1, r + 1));
}
}
int bestSum = Integer.MIN_VALUE;
int bestSumCount = -1;
for(Map.Entry<Integer, List<Pair<Integer, Integer>>> entry : map.entrySet()) {
int count = 0;
int r = -1;
for(Pair<Integer, Integer> pair : entry.getValue()) {
if(r < pair.first) {
count++;
r = pair.second;
}
}
if(count > bestSumCount) {
bestSumCount = count;
bestSum = entry.getKey();
}
}
//got best sum
println(bestSumCount);
int r = -1;
for(Pair<Integer, Integer> pair : map.get(bestSum)) {
if(r < pair.first) {
println(pair.first + " " + pair.second);
r = pair.second;
}
}
}
// ____________________________________________________________________________
//| |
//| /$$$$$$ /$$$$$$ /$$$$$$ /$$ /$$$$$$ /$$$$$$ |
//| |_ $$_/ /$$__ $$ /$$__ $$ | $$ /$$__ $$ /$$__ $$ |
//| | $$ | $$ \ $$ | $$ \__//$$$$$$ /$$ /$$| $$ \__/| $$ \__/ |
//| | $$ | $$ | $$ | $$$$$$|_ $$_/ | $$ | $$| $$$$ | $$$$ |
//| | $$ | $$ | $$ \____ $$ | $$ | $$ | $$| $$_/ | $$_/ |
//| | $$ | $$ | $$ /$$ \ $$ | $$ /$$| $$ | $$| $$ | $$ |
//| /$$$$$$| $$$$$$/ | $$$$$$/ | $$$$/| $$$$$$/| $$ | $$ |
//| |______/ \______/ \______/ \___/ \______/ |__/ |__/ |
//|____________________________________________________________________________|
private static byte[] scannerByteBuffer = new byte[1024]; // Buffer of Bytes
private static int scannerIndex;
private static InputStream scannerIn;
private static int scannerTotal;
private static BufferedWriter printerBW;
private static boolean DEBUG = false;
private static int next() throws IOException { // Scan method used to scan buf
if (scannerTotal < 0)
throw new InputMismatchException();
if (scannerIndex >= scannerTotal) {
scannerIndex = 0;
scannerTotal = scannerIn.read(scannerByteBuffer);
if (scannerTotal <= 0)
return -1;
}
return scannerByteBuffer[scannerIndex++];
}
static int ni() throws IOException {
int integer = 0;
int n = next();
while (isWhiteSpace(n)) // Removing startPointing whitespaces
n = next();
int neg = 1;
if (n == '-') { // If Negative Sign encounters
neg = -1;
n = next();
}
while (!isWhiteSpace(n)) {
if (n >= '0' && n <= '9') {
integer *= 10;
integer += n - '0';
n = next();
} else
throw new InputMismatchException();
}
return neg * integer;
}
static long nl() throws IOException {
long integer = 0;
int n = next();
while (isWhiteSpace(n)) // Removing startPointing whitespaces
n = next();
int neg = 1;
if (n == '-') { // If Negative Sign encounters
neg = -1;
n = next();
}
while (!isWhiteSpace(n)) {
if (n >= '0' && n <= '9') {
integer *= 10;
integer += n - '0';
n = next();
} else
throw new InputMismatchException();
}
return neg * integer;
}
static String line() throws IOException {
StringBuilder sb = new StringBuilder();
int n = next();
while (isWhiteSpace(n))
n = next();
while (!isNewLine(n)) {
sb.append((char) n);
n = next();
}
return sb.toString();
}
private static boolean isNewLine(int n) {
return n == '\n' || n == '\r' || n == -1;
}
private static boolean isWhiteSpace(int n) {
return n == ' ' || isNewLine(n) || n == '\t';
}
static int[] nia(int n) throws Exception {
if (n < 0)
throw new Exception("Array size should be non negative");
int[] array = new int[n];
for (int i = 0; i < n; i++)
array[i] = ni();
return array;
}
static int[][] n2dia(int r, int c) throws Exception {
if (r < 0 || c < 0)
throw new Exception("Array size should be non negative");
int[][] array = new int[r][c];
for (int i = 0; i < r; i++)
array[i] = nia(c);
return array;
}
static long[] nla(int n) throws Exception {
if (n < 0)
throw new Exception("Array size should be non negative");
long[] array = new long[n];
for (int i = 0; i < n; i++)
array[i] = nl();
return array;
}
static float[] nfa(int n) throws Exception {
if (n < 0)
throw new Exception("Array size should be non negative");
float[] array = new float[n];
for (int i = 0; i < n; i++)
array[i] = nl();
return array;
}
static double[] nda(int n) throws Exception {
if (n < 0)
throw new Exception("Array size should be non negative");
double[] array = new double[n];
for (int i = 0; i < n; i++)
array[i] = nl();
return array;
}
static <T> void print(T ... str) {
try {
for(T ele : str)
printerBW.append(ele.toString());
if (DEBUG)
flush();
} catch (IOException e) {
System.out.println(e.toString());
}
}
static <T> void println(T ... str) {
if(str.length == 0) {
print('\n');
return;
}
for(T ele : str)
print(ele, '\n');
}
static void flush() throws IOException {
printerBW.flush();
}
static void close() {
try {
printerBW.close();
} catch (IOException e) {
System.out.println(e.toString());
}
}
public static void main(String[] args) throws Exception {
long startPointTime = System.currentTimeMillis();
scannerIn = System.in;
printerBW = new BufferedWriter(new OutputStreamWriter(System.out));
if (args.length > 0 && args[0].equalsIgnoreCase("debug")
|| args.length > 1 && args[1].equalsIgnoreCase("debug"))
DEBUG = true;
main2();
long endTime = System.currentTimeMillis();
float totalProgramTime = endTime - startPointTime;
if (args.length > 0 && args[0].equalsIgnoreCase("time") || args.length > 1 && args[1].equalsIgnoreCase("time"))
print("Execution time is " + totalProgramTime + " (" + (totalProgramTime / 1000) + "s)");
close();
}
static class Pair <L, R> {
L first;
R second;
Pair(L first, R second) {
this.first = first;
this.second = second;
}
public boolean equals(Object p2) {
if (p2 instanceof Pair) {
return ((Pair) p2).first.equals(first) && ((Pair) p2).second.equals(second);
}
return false;
}
public String toString() {
return "(first=" + first.toString() + ",second=" + second.toString() + ")";
}
}
static class DisjointSet {
int[] arr;
int[] size;
DisjointSet(int n) {
arr = new int[n + 1];
size = new int[n + 1];
makeSet();
}
void makeSet() {
for (int i = 1; i < arr.length; i++) {
arr[i] = i;
size[i] = 1;
}
}
void union(int i, int j) {
if (i == j)
return;
if (i > j) {
i ^= j;
j ^= i;
i ^= j;
}
i = find(i);
j = find(j);
if (i == j)
return;
arr[j] = arr[i];
size[i] += size[j];
size[j] = size[i];
}
int find(int i) {
if (arr[i] != i) {
arr[i] = find(arr[i]);
size[i] = size[arr[i]];
}
return arr[i];
}
int getSize(int i) {
i = find(i);
return size[i];
}
public String toString() {
return Arrays.toString(arr);
}
}
static boolean isSqrt(double a) {
double sr = Math.sqrt(a);
return ((sr - Math.floor(sr)) == 0);
}
static long abs(long a) {
return Math.abs(a);
}
static int min(int ... arr) {
int min = Integer.MAX_VALUE;
for (int var : arr)
min = Math.min(min, var);
return min;
}
static long min(long ... arr) {
long min = Long.MAX_VALUE;
for (long var : arr)
min = Math.min(min, var);
return min;
}
static int max(int... arr) {
int max = Integer.MIN_VALUE;
for (int var : arr)
max = Math.max(max, var);
return max;
}
static long gcd(long a, long b) {
if (b == 0)
return a;
return gcd(b, a % b);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.lang.*;
import java.io.*;
import java.math.*;
public class Codeforces {
static long MOD = 1_000_000_007L;
static void main2() throws Exception {
int n = ni();
int[] arr = nia(n);
Map<Integer, List<Pair<Integer, Integer>>> map = new HashMap<>();
for(int r = 0; r < n; r++) {
int sum = 0;
for(int l = r; l >= 0; l--) {
sum += arr[l];
if(!map.containsKey(sum)) map.put(sum, new ArrayList<Pair<Integer, Integer>>());
map.get(sum).add(new Pair<Integer, Integer>(l + 1, r + 1));
}
}
int bestSum = Integer.MIN_VALUE;
int bestSumCount = -1;
for(Map.Entry<Integer, List<Pair<Integer, Integer>>> entry : map.entrySet()) {
int count = 0;
int r = -1;
for(Pair<Integer, Integer> pair : entry.getValue()) {
if(r < pair.first) {
count++;
r = pair.second;
}
}
if(count > bestSumCount) {
bestSumCount = count;
bestSum = entry.getKey();
}
}
//got best sum
println(bestSumCount);
int r = -1;
for(Pair<Integer, Integer> pair : map.get(bestSum)) {
if(r < pair.first) {
println(pair.first + " " + pair.second);
r = pair.second;
}
}
}
// ____________________________________________________________________________
//| |
//| /$$$$$$ /$$$$$$ /$$$$$$ /$$ /$$$$$$ /$$$$$$ |
//| |_ $$_/ /$$__ $$ /$$__ $$ | $$ /$$__ $$ /$$__ $$ |
//| | $$ | $$ \ $$ | $$ \__//$$$$$$ /$$ /$$| $$ \__/| $$ \__/ |
//| | $$ | $$ | $$ | $$$$$$|_ $$_/ | $$ | $$| $$$$ | $$$$ |
//| | $$ | $$ | $$ \____ $$ | $$ | $$ | $$| $$_/ | $$_/ |
//| | $$ | $$ | $$ /$$ \ $$ | $$ /$$| $$ | $$| $$ | $$ |
//| /$$$$$$| $$$$$$/ | $$$$$$/ | $$$$/| $$$$$$/| $$ | $$ |
//| |______/ \______/ \______/ \___/ \______/ |__/ |__/ |
//|____________________________________________________________________________|
private static byte[] scannerByteBuffer = new byte[1024]; // Buffer of Bytes
private static int scannerIndex;
private static InputStream scannerIn;
private static int scannerTotal;
private static BufferedWriter printerBW;
private static boolean DEBUG = false;
private static int next() throws IOException { // Scan method used to scan buf
if (scannerTotal < 0)
throw new InputMismatchException();
if (scannerIndex >= scannerTotal) {
scannerIndex = 0;
scannerTotal = scannerIn.read(scannerByteBuffer);
if (scannerTotal <= 0)
return -1;
}
return scannerByteBuffer[scannerIndex++];
}
static int ni() throws IOException {
int integer = 0;
int n = next();
while (isWhiteSpace(n)) // Removing startPointing whitespaces
n = next();
int neg = 1;
if (n == '-') { // If Negative Sign encounters
neg = -1;
n = next();
}
while (!isWhiteSpace(n)) {
if (n >= '0' && n <= '9') {
integer *= 10;
integer += n - '0';
n = next();
} else
throw new InputMismatchException();
}
return neg * integer;
}
static long nl() throws IOException {
long integer = 0;
int n = next();
while (isWhiteSpace(n)) // Removing startPointing whitespaces
n = next();
int neg = 1;
if (n == '-') { // If Negative Sign encounters
neg = -1;
n = next();
}
while (!isWhiteSpace(n)) {
if (n >= '0' && n <= '9') {
integer *= 10;
integer += n - '0';
n = next();
} else
throw new InputMismatchException();
}
return neg * integer;
}
static String line() throws IOException {
StringBuilder sb = new StringBuilder();
int n = next();
while (isWhiteSpace(n))
n = next();
while (!isNewLine(n)) {
sb.append((char) n);
n = next();
}
return sb.toString();
}
private static boolean isNewLine(int n) {
return n == '\n' || n == '\r' || n == -1;
}
private static boolean isWhiteSpace(int n) {
return n == ' ' || isNewLine(n) || n == '\t';
}
static int[] nia(int n) throws Exception {
if (n < 0)
throw new Exception("Array size should be non negative");
int[] array = new int[n];
for (int i = 0; i < n; i++)
array[i] = ni();
return array;
}
static int[][] n2dia(int r, int c) throws Exception {
if (r < 0 || c < 0)
throw new Exception("Array size should be non negative");
int[][] array = new int[r][c];
for (int i = 0; i < r; i++)
array[i] = nia(c);
return array;
}
static long[] nla(int n) throws Exception {
if (n < 0)
throw new Exception("Array size should be non negative");
long[] array = new long[n];
for (int i = 0; i < n; i++)
array[i] = nl();
return array;
}
static float[] nfa(int n) throws Exception {
if (n < 0)
throw new Exception("Array size should be non negative");
float[] array = new float[n];
for (int i = 0; i < n; i++)
array[i] = nl();
return array;
}
static double[] nda(int n) throws Exception {
if (n < 0)
throw new Exception("Array size should be non negative");
double[] array = new double[n];
for (int i = 0; i < n; i++)
array[i] = nl();
return array;
}
static <T> void print(T ... str) {
try {
for(T ele : str)
printerBW.append(ele.toString());
if (DEBUG)
flush();
} catch (IOException e) {
System.out.println(e.toString());
}
}
static <T> void println(T ... str) {
if(str.length == 0) {
print('\n');
return;
}
for(T ele : str)
print(ele, '\n');
}
static void flush() throws IOException {
printerBW.flush();
}
static void close() {
try {
printerBW.close();
} catch (IOException e) {
System.out.println(e.toString());
}
}
public static void main(String[] args) throws Exception {
long startPointTime = System.currentTimeMillis();
scannerIn = System.in;
printerBW = new BufferedWriter(new OutputStreamWriter(System.out));
if (args.length > 0 && args[0].equalsIgnoreCase("debug")
|| args.length > 1 && args[1].equalsIgnoreCase("debug"))
DEBUG = true;
main2();
long endTime = System.currentTimeMillis();
float totalProgramTime = endTime - startPointTime;
if (args.length > 0 && args[0].equalsIgnoreCase("time") || args.length > 1 && args[1].equalsIgnoreCase("time"))
print("Execution time is " + totalProgramTime + " (" + (totalProgramTime / 1000) + "s)");
close();
}
static class Pair <L, R> {
L first;
R second;
Pair(L first, R second) {
this.first = first;
this.second = second;
}
public boolean equals(Object p2) {
if (p2 instanceof Pair) {
return ((Pair) p2).first.equals(first) && ((Pair) p2).second.equals(second);
}
return false;
}
public String toString() {
return "(first=" + first.toString() + ",second=" + second.toString() + ")";
}
}
static class DisjointSet {
int[] arr;
int[] size;
DisjointSet(int n) {
arr = new int[n + 1];
size = new int[n + 1];
makeSet();
}
void makeSet() {
for (int i = 1; i < arr.length; i++) {
arr[i] = i;
size[i] = 1;
}
}
void union(int i, int j) {
if (i == j)
return;
if (i > j) {
i ^= j;
j ^= i;
i ^= j;
}
i = find(i);
j = find(j);
if (i == j)
return;
arr[j] = arr[i];
size[i] += size[j];
size[j] = size[i];
}
int find(int i) {
if (arr[i] != i) {
arr[i] = find(arr[i]);
size[i] = size[arr[i]];
}
return arr[i];
}
int getSize(int i) {
i = find(i);
return size[i];
}
public String toString() {
return Arrays.toString(arr);
}
}
static boolean isSqrt(double a) {
double sr = Math.sqrt(a);
return ((sr - Math.floor(sr)) == 0);
}
static long abs(long a) {
return Math.abs(a);
}
static int min(int ... arr) {
int min = Integer.MAX_VALUE;
for (int var : arr)
min = Math.min(min, var);
return min;
}
static long min(long ... arr) {
long min = Long.MAX_VALUE;
for (long var : arr)
min = Math.min(min, var);
return min;
}
static int max(int... arr) {
int max = Integer.MIN_VALUE;
for (int var : arr)
max = Math.max(max, var);
return max;
}
static long gcd(long a, long b) {
if (b == 0)
return a;
return gcd(b, a % b);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,796 | 2,439 |
7 |
import java.io.*;
import java.util.*;
import javax.lang.model.util.ElementScanner6;
public class codef
{
public static void main(String ar[]) throws IOException
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer nk=new StringTokenizer(br.readLine());
int n=Integer.parseInt(nk.nextToken());
int k=Integer.parseInt(nk.nextToken());
String st[]=br.readLine().split(" ");
int ans[]=new int[n];
int a[]=new int[n];
for(int i=0;i<n;i++)
ans[i]=Integer.parseInt(st[i]);
for(int i=1;i<n;i++)
a[i]=ans[i]-ans[i-1];
a[0]=-1;
Arrays.sort(a);
int count=0,sum=0;
for(int i=0;i<n;i++)
if(a[i]<0)
count++;
else
sum=sum+a[i];
k=k-count;
int i=n-1;
while(k>0 && i>=0)
{
if(a[i]>-1)
{
sum=sum-a[i];
k--;
}
i--;
}
System.out.println(sum);
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import javax.lang.model.util.ElementScanner6;
public class codef
{
public static void main(String ar[]) throws IOException
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer nk=new StringTokenizer(br.readLine());
int n=Integer.parseInt(nk.nextToken());
int k=Integer.parseInt(nk.nextToken());
String st[]=br.readLine().split(" ");
int ans[]=new int[n];
int a[]=new int[n];
for(int i=0;i<n;i++)
ans[i]=Integer.parseInt(st[i]);
for(int i=1;i<n;i++)
a[i]=ans[i]-ans[i-1];
a[0]=-1;
Arrays.sort(a);
int count=0,sum=0;
for(int i=0;i<n;i++)
if(a[i]<0)
count++;
else
sum=sum+a[i];
k=k-count;
int i=n-1;
while(k>0 && i>=0)
{
if(a[i]>-1)
{
sum=sum-a[i];
k--;
}
i--;
}
System.out.println(sum);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import javax.lang.model.util.ElementScanner6;
public class codef
{
public static void main(String ar[]) throws IOException
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer nk=new StringTokenizer(br.readLine());
int n=Integer.parseInt(nk.nextToken());
int k=Integer.parseInt(nk.nextToken());
String st[]=br.readLine().split(" ");
int ans[]=new int[n];
int a[]=new int[n];
for(int i=0;i<n;i++)
ans[i]=Integer.parseInt(st[i]);
for(int i=1;i<n;i++)
a[i]=ans[i]-ans[i-1];
a[0]=-1;
Arrays.sort(a);
int count=0,sum=0;
for(int i=0;i<n;i++)
if(a[i]<0)
count++;
else
sum=sum+a[i];
k=k-count;
int i=n-1;
while(k>0 && i>=0)
{
if(a[i]>-1)
{
sum=sum-a[i];
k--;
}
i--;
}
System.out.println(sum);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 580 | 7 |
1,763 |
//~ 22:04:48
import java.io.*;
import java.util.*;
public class Main{
public static void main(String[] args) throws Exception{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out));
String out = "";
String[] p = br.readLine().split("[ ]");
int n = Integer.valueOf(p[0]);
double t = Double.valueOf(p[1]);
int offset = 5000;
boolean[] flags = new boolean[offset+5000];
for(int i=0;i<n;i++){
int[] q = toIntArray(br.readLine());
int c = 2*q[0];
for(int j=-q[1];j<q[1];j++){
flags[c+offset+j] = true;
//~ System.out.println(c+offset+j);
}
}
int buf = 0;
int last = -1;
int index = 0;
for(;index<flags.length;index++){
if(flags[index]){
if(last==-1){
buf++;
}else{
//~ System.out.println(last);
//~ System.out.println(index);
if(Math.abs(index-last-(2*t+1))<1e-10) buf++;
else if(index-last>2*t+1) buf+=2;
}
last = index;
}
}
buf ++;
out = ""+buf+"\r\n";
bw.write(out,0,out.length());
br.close();
bw.close();
}
static int[] toIntArray(String line){
String[] p = line.trim().split("\\s+");
int[] out = new int[p.length];
for(int i=0;i<out.length;i++) out[i] = Integer.valueOf(p[i]);
return out;
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
//~ 22:04:48
import java.io.*;
import java.util.*;
public class Main{
public static void main(String[] args) throws Exception{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out));
String out = "";
String[] p = br.readLine().split("[ ]");
int n = Integer.valueOf(p[0]);
double t = Double.valueOf(p[1]);
int offset = 5000;
boolean[] flags = new boolean[offset+5000];
for(int i=0;i<n;i++){
int[] q = toIntArray(br.readLine());
int c = 2*q[0];
for(int j=-q[1];j<q[1];j++){
flags[c+offset+j] = true;
//~ System.out.println(c+offset+j);
}
}
int buf = 0;
int last = -1;
int index = 0;
for(;index<flags.length;index++){
if(flags[index]){
if(last==-1){
buf++;
}else{
//~ System.out.println(last);
//~ System.out.println(index);
if(Math.abs(index-last-(2*t+1))<1e-10) buf++;
else if(index-last>2*t+1) buf+=2;
}
last = index;
}
}
buf ++;
out = ""+buf+"\r\n";
bw.write(out,0,out.length());
br.close();
bw.close();
}
static int[] toIntArray(String line){
String[] p = line.trim().split("\\s+");
int[] out = new int[p.length];
for(int i=0;i<out.length;i++) out[i] = Integer.valueOf(p[i]);
return out;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
//~ 22:04:48
import java.io.*;
import java.util.*;
public class Main{
public static void main(String[] args) throws Exception{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out));
String out = "";
String[] p = br.readLine().split("[ ]");
int n = Integer.valueOf(p[0]);
double t = Double.valueOf(p[1]);
int offset = 5000;
boolean[] flags = new boolean[offset+5000];
for(int i=0;i<n;i++){
int[] q = toIntArray(br.readLine());
int c = 2*q[0];
for(int j=-q[1];j<q[1];j++){
flags[c+offset+j] = true;
//~ System.out.println(c+offset+j);
}
}
int buf = 0;
int last = -1;
int index = 0;
for(;index<flags.length;index++){
if(flags[index]){
if(last==-1){
buf++;
}else{
//~ System.out.println(last);
//~ System.out.println(index);
if(Math.abs(index-last-(2*t+1))<1e-10) buf++;
else if(index-last>2*t+1) buf+=2;
}
last = index;
}
}
buf ++;
out = ""+buf+"\r\n";
bw.write(out,0,out.length());
br.close();
bw.close();
}
static int[] toIntArray(String line){
String[] p = line.trim().split("\\s+");
int[] out = new int[p.length];
for(int i=0;i<out.length;i++) out[i] = Integer.valueOf(p[i]);
return out;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 755 | 1,759 |
4,047 |
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.util.NoSuchElementException;
public class Main {
static PrintWriter out;
static InputReader ir;
static void solve() {
int n = ir.nextInt();
int t = ir.nextInt();
int[][] a = new int[n][];
for (int i = 0; i < n; i++)
a[i] = ir.nextIntArray(2);
long[] f = fact(15);
long res = 0;
for (int i = 0; i < 1 << n; i++) {
int[] ct = new int[4];
int tot = 0;
for (int j = 0; j < n; j++) {
if (((1 << j) & i) != 0) {
tot += a[j][0];
ct[a[j][1]]++;
}
}
if (tot != t)
continue;
long[][][][] dp = new long[ct[1] + 1][ct[2] + 1][ct[3] + 1][4];
dp[0][0][0][0] = 1;
for (int j = 0; j < ct[1] + ct[2] + ct[3]; j++) {
for (int k = 0; k <= ct[1]; k++) {
for (int l = 0; l <= ct[2]; l++) {
if (k + l > j || j - k - l > ct[3])
continue;
for (int m = 0; m <= 3; m++) {
for (int o = 0; o <= 3; o++) {
if (m == o)
continue;
if (o == 1 && k == ct[1])
continue;
if (o == 2 && l == ct[2])
continue;
if (o == 3 && j - k - l == ct[3])
continue;
if (o == 1) {
dp[k + 1][l][j - k - l][1] = add(dp[k + 1][l][j - k - l][1],
dp[k][l][j - k - l][m]);
}
if (o == 2) {
dp[k][l + 1][j - k - l][2] = add(dp[k][l + 1][j - k - l][2],
dp[k][l][j - k - l][m]);
}
if (o == 3) {
dp[k][l][j - k - l + 1][3] = add(dp[k][l][j - k - l + 1][3],
dp[k][l][j - k - l][m]);
}
}
}
}
}
}
for (int m = 0; m <= 3; m++)
res = add(res, mul(mul(f[ct[1]], f[ct[2]]), mul(f[ct[3]], dp[ct[1]][ct[2]][ct[3]][m])));
}
out.println(res);
}
static long mod = (long) 1e9 + 7;
static long add(long a, long b) {
return (a + b) % mod;
}
static long sub(long a, long b) {
long d = a - b;
while (d < 0)
d += mod;
return d;
}
static long mul(long a, long b) {
return a * b % mod;
}
static long div(long a, long b) {
return a * mod_inverse(b) % mod;
}
private static long[] fact(int n) {
long[] ret = new long[n + 1];
ret[0] = 1 % mod;
for (int i = 1; i <= n; i++) {
ret[i] = mul(ret[i - 1], i);
}
return ret;
}
private static long[] factInv(int n) {
long[] ret = new long[n + 1];
ret[0] = 1;
for (int i = 1; i <= n; i++) {
ret[i] = div(ret[i - 1], i);
}
return ret;
}
public static long comb(int n, int m, long[] fact, long[] factInv) {
long ret = fact[n];
ret = mul(ret, factInv[m]);
ret = mul(ret, factInv[n - m]);
return ret;
}
public static long[][] stirling(int n) {
long[][] ret = new long[n + 1][n + 1];
ret[0][0] = 1;
for (int i = 1; i <= n; i++)
for (int j = 1; j <= i; j++)
ret[i][j] = add(ret[i - 1][j - 1], mul(ret[i - 1][j], j));
return ret;
}
public static long mod_inverse(long a) {
long[] ret = extgcd(a, mod);
return add(mod, ret[0] % mod);
}
public static long[] extgcd(long a, long b) {
long[] ret = new long[3];
ret[2] = _extgcd(a, b, ret);
return ret;
}
private static long _extgcd(long a, long b, long[] x) {
long g = a;
x[0] = 1;
x[1] = 0;
if (b != 0) {
g = _extgcd(b, a % b, x);
long temp = x[0];
x[0] = x[1];
x[1] = temp;
x[1] -= (a / b) * x[0];
}
return g;
}
static long modpow(long a, long n) {
long res = 1;
while (n > 0) {
if ((n & 1) != 0)
res = res * a % mod;
a = a * a % mod;
n >>= 1;
}
return res;
}
public static void main(String[] args) {
ir = new InputReader(System.in);
out = new PrintWriter(System.out);
solve();
out.flush();
}
static class InputReader {
private InputStream in;
private byte[] buffer = new byte[1024];
private int curbuf;
private int lenbuf;
public InputReader(InputStream in) {
this.in = in;
this.curbuf = this.lenbuf = 0;
}
public boolean hasNextByte() {
if (curbuf >= lenbuf) {
curbuf = 0;
try {
lenbuf = in.read(buffer);
} catch (IOException e) {
throw new InputMismatchException();
}
if (lenbuf <= 0)
return false;
}
return true;
}
private int readByte() {
if (hasNextByte())
return buffer[curbuf++];
else
return -1;
}
private boolean isSpaceChar(int c) {
return !(c >= 33 && c <= 126);
}
private void skip() {
while (hasNextByte() && isSpaceChar(buffer[curbuf]))
curbuf++;
}
public boolean hasNext() {
skip();
return hasNextByte();
}
public String next() {
if (!hasNext())
throw new NoSuchElementException();
StringBuilder sb = new StringBuilder();
int b = readByte();
while (!isSpaceChar(b)) {
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
public int nextInt() {
if (!hasNext())
throw new NoSuchElementException();
int c = readByte();
while (isSpaceChar(c))
c = readByte();
boolean minus = false;
if (c == '-') {
minus = true;
c = readByte();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res = res * 10 + c - '0';
c = readByte();
} while (!isSpaceChar(c));
return (minus) ? -res : res;
}
public long nextLong() {
if (!hasNext())
throw new NoSuchElementException();
int c = readByte();
while (isSpaceChar(c))
c = readByte();
boolean minus = false;
if (c == '-') {
minus = true;
c = readByte();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res = res * 10 + c - '0';
c = readByte();
} while (!isSpaceChar(c));
return (minus) ? -res : res;
}
public double nextDouble() {
return Double.parseDouble(next());
}
public int[] nextIntArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public long[] nextLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public char[][] nextCharMap(int n, int m) {
char[][] map = new char[n][m];
for (int i = 0; i < n; i++)
map[i] = next().toCharArray();
return map;
}
}
static void tr(Object... o) {
out.println(Arrays.deepToString(o));
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.util.NoSuchElementException;
public class Main {
static PrintWriter out;
static InputReader ir;
static void solve() {
int n = ir.nextInt();
int t = ir.nextInt();
int[][] a = new int[n][];
for (int i = 0; i < n; i++)
a[i] = ir.nextIntArray(2);
long[] f = fact(15);
long res = 0;
for (int i = 0; i < 1 << n; i++) {
int[] ct = new int[4];
int tot = 0;
for (int j = 0; j < n; j++) {
if (((1 << j) & i) != 0) {
tot += a[j][0];
ct[a[j][1]]++;
}
}
if (tot != t)
continue;
long[][][][] dp = new long[ct[1] + 1][ct[2] + 1][ct[3] + 1][4];
dp[0][0][0][0] = 1;
for (int j = 0; j < ct[1] + ct[2] + ct[3]; j++) {
for (int k = 0; k <= ct[1]; k++) {
for (int l = 0; l <= ct[2]; l++) {
if (k + l > j || j - k - l > ct[3])
continue;
for (int m = 0; m <= 3; m++) {
for (int o = 0; o <= 3; o++) {
if (m == o)
continue;
if (o == 1 && k == ct[1])
continue;
if (o == 2 && l == ct[2])
continue;
if (o == 3 && j - k - l == ct[3])
continue;
if (o == 1) {
dp[k + 1][l][j - k - l][1] = add(dp[k + 1][l][j - k - l][1],
dp[k][l][j - k - l][m]);
}
if (o == 2) {
dp[k][l + 1][j - k - l][2] = add(dp[k][l + 1][j - k - l][2],
dp[k][l][j - k - l][m]);
}
if (o == 3) {
dp[k][l][j - k - l + 1][3] = add(dp[k][l][j - k - l + 1][3],
dp[k][l][j - k - l][m]);
}
}
}
}
}
}
for (int m = 0; m <= 3; m++)
res = add(res, mul(mul(f[ct[1]], f[ct[2]]), mul(f[ct[3]], dp[ct[1]][ct[2]][ct[3]][m])));
}
out.println(res);
}
static long mod = (long) 1e9 + 7;
static long add(long a, long b) {
return (a + b) % mod;
}
static long sub(long a, long b) {
long d = a - b;
while (d < 0)
d += mod;
return d;
}
static long mul(long a, long b) {
return a * b % mod;
}
static long div(long a, long b) {
return a * mod_inverse(b) % mod;
}
private static long[] fact(int n) {
long[] ret = new long[n + 1];
ret[0] = 1 % mod;
for (int i = 1; i <= n; i++) {
ret[i] = mul(ret[i - 1], i);
}
return ret;
}
private static long[] factInv(int n) {
long[] ret = new long[n + 1];
ret[0] = 1;
for (int i = 1; i <= n; i++) {
ret[i] = div(ret[i - 1], i);
}
return ret;
}
public static long comb(int n, int m, long[] fact, long[] factInv) {
long ret = fact[n];
ret = mul(ret, factInv[m]);
ret = mul(ret, factInv[n - m]);
return ret;
}
public static long[][] stirling(int n) {
long[][] ret = new long[n + 1][n + 1];
ret[0][0] = 1;
for (int i = 1; i <= n; i++)
for (int j = 1; j <= i; j++)
ret[i][j] = add(ret[i - 1][j - 1], mul(ret[i - 1][j], j));
return ret;
}
public static long mod_inverse(long a) {
long[] ret = extgcd(a, mod);
return add(mod, ret[0] % mod);
}
public static long[] extgcd(long a, long b) {
long[] ret = new long[3];
ret[2] = _extgcd(a, b, ret);
return ret;
}
private static long _extgcd(long a, long b, long[] x) {
long g = a;
x[0] = 1;
x[1] = 0;
if (b != 0) {
g = _extgcd(b, a % b, x);
long temp = x[0];
x[0] = x[1];
x[1] = temp;
x[1] -= (a / b) * x[0];
}
return g;
}
static long modpow(long a, long n) {
long res = 1;
while (n > 0) {
if ((n & 1) != 0)
res = res * a % mod;
a = a * a % mod;
n >>= 1;
}
return res;
}
public static void main(String[] args) {
ir = new InputReader(System.in);
out = new PrintWriter(System.out);
solve();
out.flush();
}
static class InputReader {
private InputStream in;
private byte[] buffer = new byte[1024];
private int curbuf;
private int lenbuf;
public InputReader(InputStream in) {
this.in = in;
this.curbuf = this.lenbuf = 0;
}
public boolean hasNextByte() {
if (curbuf >= lenbuf) {
curbuf = 0;
try {
lenbuf = in.read(buffer);
} catch (IOException e) {
throw new InputMismatchException();
}
if (lenbuf <= 0)
return false;
}
return true;
}
private int readByte() {
if (hasNextByte())
return buffer[curbuf++];
else
return -1;
}
private boolean isSpaceChar(int c) {
return !(c >= 33 && c <= 126);
}
private void skip() {
while (hasNextByte() && isSpaceChar(buffer[curbuf]))
curbuf++;
}
public boolean hasNext() {
skip();
return hasNextByte();
}
public String next() {
if (!hasNext())
throw new NoSuchElementException();
StringBuilder sb = new StringBuilder();
int b = readByte();
while (!isSpaceChar(b)) {
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
public int nextInt() {
if (!hasNext())
throw new NoSuchElementException();
int c = readByte();
while (isSpaceChar(c))
c = readByte();
boolean minus = false;
if (c == '-') {
minus = true;
c = readByte();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res = res * 10 + c - '0';
c = readByte();
} while (!isSpaceChar(c));
return (minus) ? -res : res;
}
public long nextLong() {
if (!hasNext())
throw new NoSuchElementException();
int c = readByte();
while (isSpaceChar(c))
c = readByte();
boolean minus = false;
if (c == '-') {
minus = true;
c = readByte();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res = res * 10 + c - '0';
c = readByte();
} while (!isSpaceChar(c));
return (minus) ? -res : res;
}
public double nextDouble() {
return Double.parseDouble(next());
}
public int[] nextIntArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public long[] nextLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public char[][] nextCharMap(int n, int m) {
char[][] map = new char[n][m];
for (int i = 0; i < n; i++)
map[i] = next().toCharArray();
return map;
}
}
static void tr(Object... o) {
out.println(Arrays.deepToString(o));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.util.NoSuchElementException;
public class Main {
static PrintWriter out;
static InputReader ir;
static void solve() {
int n = ir.nextInt();
int t = ir.nextInt();
int[][] a = new int[n][];
for (int i = 0; i < n; i++)
a[i] = ir.nextIntArray(2);
long[] f = fact(15);
long res = 0;
for (int i = 0; i < 1 << n; i++) {
int[] ct = new int[4];
int tot = 0;
for (int j = 0; j < n; j++) {
if (((1 << j) & i) != 0) {
tot += a[j][0];
ct[a[j][1]]++;
}
}
if (tot != t)
continue;
long[][][][] dp = new long[ct[1] + 1][ct[2] + 1][ct[3] + 1][4];
dp[0][0][0][0] = 1;
for (int j = 0; j < ct[1] + ct[2] + ct[3]; j++) {
for (int k = 0; k <= ct[1]; k++) {
for (int l = 0; l <= ct[2]; l++) {
if (k + l > j || j - k - l > ct[3])
continue;
for (int m = 0; m <= 3; m++) {
for (int o = 0; o <= 3; o++) {
if (m == o)
continue;
if (o == 1 && k == ct[1])
continue;
if (o == 2 && l == ct[2])
continue;
if (o == 3 && j - k - l == ct[3])
continue;
if (o == 1) {
dp[k + 1][l][j - k - l][1] = add(dp[k + 1][l][j - k - l][1],
dp[k][l][j - k - l][m]);
}
if (o == 2) {
dp[k][l + 1][j - k - l][2] = add(dp[k][l + 1][j - k - l][2],
dp[k][l][j - k - l][m]);
}
if (o == 3) {
dp[k][l][j - k - l + 1][3] = add(dp[k][l][j - k - l + 1][3],
dp[k][l][j - k - l][m]);
}
}
}
}
}
}
for (int m = 0; m <= 3; m++)
res = add(res, mul(mul(f[ct[1]], f[ct[2]]), mul(f[ct[3]], dp[ct[1]][ct[2]][ct[3]][m])));
}
out.println(res);
}
static long mod = (long) 1e9 + 7;
static long add(long a, long b) {
return (a + b) % mod;
}
static long sub(long a, long b) {
long d = a - b;
while (d < 0)
d += mod;
return d;
}
static long mul(long a, long b) {
return a * b % mod;
}
static long div(long a, long b) {
return a * mod_inverse(b) % mod;
}
private static long[] fact(int n) {
long[] ret = new long[n + 1];
ret[0] = 1 % mod;
for (int i = 1; i <= n; i++) {
ret[i] = mul(ret[i - 1], i);
}
return ret;
}
private static long[] factInv(int n) {
long[] ret = new long[n + 1];
ret[0] = 1;
for (int i = 1; i <= n; i++) {
ret[i] = div(ret[i - 1], i);
}
return ret;
}
public static long comb(int n, int m, long[] fact, long[] factInv) {
long ret = fact[n];
ret = mul(ret, factInv[m]);
ret = mul(ret, factInv[n - m]);
return ret;
}
public static long[][] stirling(int n) {
long[][] ret = new long[n + 1][n + 1];
ret[0][0] = 1;
for (int i = 1; i <= n; i++)
for (int j = 1; j <= i; j++)
ret[i][j] = add(ret[i - 1][j - 1], mul(ret[i - 1][j], j));
return ret;
}
public static long mod_inverse(long a) {
long[] ret = extgcd(a, mod);
return add(mod, ret[0] % mod);
}
public static long[] extgcd(long a, long b) {
long[] ret = new long[3];
ret[2] = _extgcd(a, b, ret);
return ret;
}
private static long _extgcd(long a, long b, long[] x) {
long g = a;
x[0] = 1;
x[1] = 0;
if (b != 0) {
g = _extgcd(b, a % b, x);
long temp = x[0];
x[0] = x[1];
x[1] = temp;
x[1] -= (a / b) * x[0];
}
return g;
}
static long modpow(long a, long n) {
long res = 1;
while (n > 0) {
if ((n & 1) != 0)
res = res * a % mod;
a = a * a % mod;
n >>= 1;
}
return res;
}
public static void main(String[] args) {
ir = new InputReader(System.in);
out = new PrintWriter(System.out);
solve();
out.flush();
}
static class InputReader {
private InputStream in;
private byte[] buffer = new byte[1024];
private int curbuf;
private int lenbuf;
public InputReader(InputStream in) {
this.in = in;
this.curbuf = this.lenbuf = 0;
}
public boolean hasNextByte() {
if (curbuf >= lenbuf) {
curbuf = 0;
try {
lenbuf = in.read(buffer);
} catch (IOException e) {
throw new InputMismatchException();
}
if (lenbuf <= 0)
return false;
}
return true;
}
private int readByte() {
if (hasNextByte())
return buffer[curbuf++];
else
return -1;
}
private boolean isSpaceChar(int c) {
return !(c >= 33 && c <= 126);
}
private void skip() {
while (hasNextByte() && isSpaceChar(buffer[curbuf]))
curbuf++;
}
public boolean hasNext() {
skip();
return hasNextByte();
}
public String next() {
if (!hasNext())
throw new NoSuchElementException();
StringBuilder sb = new StringBuilder();
int b = readByte();
while (!isSpaceChar(b)) {
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
public int nextInt() {
if (!hasNext())
throw new NoSuchElementException();
int c = readByte();
while (isSpaceChar(c))
c = readByte();
boolean minus = false;
if (c == '-') {
minus = true;
c = readByte();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res = res * 10 + c - '0';
c = readByte();
} while (!isSpaceChar(c));
return (minus) ? -res : res;
}
public long nextLong() {
if (!hasNext())
throw new NoSuchElementException();
int c = readByte();
while (isSpaceChar(c))
c = readByte();
boolean minus = false;
if (c == '-') {
minus = true;
c = readByte();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res = res * 10 + c - '0';
c = readByte();
} while (!isSpaceChar(c));
return (minus) ? -res : res;
}
public double nextDouble() {
return Double.parseDouble(next());
}
public int[] nextIntArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public long[] nextLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public char[][] nextCharMap(int n, int m) {
char[][] map = new char[n][m];
for (int i = 0; i < n; i++)
map[i] = next().toCharArray();
return map;
}
}
static void tr(Object... o) {
out.println(Arrays.deepToString(o));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,581 | 4,036 |
772 |
import java.util.*;
import java.io.*;
public class C{
public static void main(String[] args) {
InputReader in = new InputReader(System.in);
PrintWriter out = new PrintWriter(System.out);
Solver solver = new Solver();
solver.solve(in, out);
out.close();
}
static class Solver{
public void solve(InputReader in, PrintWriter out) {
int n = in.nextInt();
String s = in.next();
HashMap<Character, Integer> map = new HashMap<>();
for (int i = 0; i < n; ++ i) {
map.put(s.charAt(i), 0);
}
int l = 0, r = 0, cnt = 0, ans = n;
char c;
while (l < n) {
while (r < n && cnt < map.size()) {
c = s.charAt(r);
map.put(c, map.get(c) + 1);
if (map.get(c) == 1) ++cnt;
++r;
}
if (cnt == map.size() && r-l < ans)
ans = r-l;
c = s.charAt(l);
map.put(c, map.get(c)-1);
if (map.get(c) == 0) --cnt;
++l;
}
out.println(ans);
}
}
static class InputReader {
BufferedReader reader;
StringTokenizer tokenizer;
public InputReader (InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
}
public String next() {
while (tokenizer == null || ! tokenizer.hasMoreTokens()) {
try{
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class C{
public static void main(String[] args) {
InputReader in = new InputReader(System.in);
PrintWriter out = new PrintWriter(System.out);
Solver solver = new Solver();
solver.solve(in, out);
out.close();
}
static class Solver{
public void solve(InputReader in, PrintWriter out) {
int n = in.nextInt();
String s = in.next();
HashMap<Character, Integer> map = new HashMap<>();
for (int i = 0; i < n; ++ i) {
map.put(s.charAt(i), 0);
}
int l = 0, r = 0, cnt = 0, ans = n;
char c;
while (l < n) {
while (r < n && cnt < map.size()) {
c = s.charAt(r);
map.put(c, map.get(c) + 1);
if (map.get(c) == 1) ++cnt;
++r;
}
if (cnt == map.size() && r-l < ans)
ans = r-l;
c = s.charAt(l);
map.put(c, map.get(c)-1);
if (map.get(c) == 0) --cnt;
++l;
}
out.println(ans);
}
}
static class InputReader {
BufferedReader reader;
StringTokenizer tokenizer;
public InputReader (InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
}
public String next() {
while (tokenizer == null || ! tokenizer.hasMoreTokens()) {
try{
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class C{
public static void main(String[] args) {
InputReader in = new InputReader(System.in);
PrintWriter out = new PrintWriter(System.out);
Solver solver = new Solver();
solver.solve(in, out);
out.close();
}
static class Solver{
public void solve(InputReader in, PrintWriter out) {
int n = in.nextInt();
String s = in.next();
HashMap<Character, Integer> map = new HashMap<>();
for (int i = 0; i < n; ++ i) {
map.put(s.charAt(i), 0);
}
int l = 0, r = 0, cnt = 0, ans = n;
char c;
while (l < n) {
while (r < n && cnt < map.size()) {
c = s.charAt(r);
map.put(c, map.get(c) + 1);
if (map.get(c) == 1) ++cnt;
++r;
}
if (cnt == map.size() && r-l < ans)
ans = r-l;
c = s.charAt(l);
map.put(c, map.get(c)-1);
if (map.get(c) == 0) --cnt;
++l;
}
out.println(ans);
}
}
static class InputReader {
BufferedReader reader;
StringTokenizer tokenizer;
public InputReader (InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
}
public String next() {
while (tokenizer == null || ! tokenizer.hasMoreTokens()) {
try{
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 760 | 771 |
2,386 |
import java.awt.Checkbox;
import java.awt.Point;
import java.io.*;
import java.math.*;
import java.util.*;
import java.util.Map.Entry;
import javax.print.attribute.SetOfIntegerSyntax;
import javax.swing.plaf.FontUIResource;
public class CODE2{
private static InputStream stream;
private static byte[] buf = new byte[1024];
private static int curChar,MAX;
private static int numChars;
private static SpaceCharFilter filter;
private static PrintWriter pw;
private static long count = 0,mod=1000000007;
static int BIT[];
private static boolean primer[];
// private static TreeSet<Integer> ts=new TreeSet[200000];
public final static int INF = (int) 1E9;
public static void main(String args[]) {
InputReader(System.in);
pw = new PrintWriter(System.out);
new Thread(null ,new Runnable(){
public void run(){
try{
solve();
pw.close();
} catch(Exception e){
e.printStackTrace();
}
}
},"1",1<<26).start();
}
static StringBuilder sb;
public static void test(){
sb=new StringBuilder();
int t=nextInt();
while(t-->0){
solve();
}
pw.println(sb);
}
public static long pow(long n, long p,long mod) {
if(p==0)
return 1;
if(p==1)
return n%mod;
if(p%2==0){
long temp=pow(n, p/2,mod);
return (temp*temp)%mod;
}else{
long temp=pow(n,p/2,mod);
temp=(temp*temp)%mod;
return(temp*n)%mod;
}
}
public static long pow(long n, long p) {
if(p==0)
return 1;
if(p==1)
return n;
if(p%2==0){
long temp=pow(n, p/2);
return (temp*temp);
}else{
long temp=pow(n,p/2);
temp=(temp*temp);
return(temp*n);
}
}
public static void Merge(long a[],int p,int r){
if(p<r){
int q = (p+r)/2;
Merge(a,p,q);
Merge(a,q+1,r);
Merge_Array(a,p,q,r);
}
}
public static void Merge_Array(long a[],int p,int q,int r){
long b[] = new long[q-p+1];
long c[] = new long[r-q];
for(int i=0;i<b.length;i++)
b[i] = a[p+i];
for(int i=0;i<c.length;i++)
c[i] = a[q+i+1];
int i = 0,j = 0;
for(int k=p;k<=r;k++){
if(i==b.length){
a[k] = c[j];
j++;
}
else if(j==c.length){
a[k] = b[i];
i++;
}
else if(b[i]<c[j]){
a[k] = b[i];
i++;
}
else{
a[k] = c[j];
j++;
}
}
}
public static long gcd(long x, long y) {
if (x == 0)
return y;
else
return gcd( y % x,x);
}
public static boolean isPrime(int n) {
if (n <= 1)
return false;
if (n <= 3)
return true;
if (n % 2 == 0 || n % 3 == 0)
return false;
for (int i = 5; i * i <= n; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0)
return false;
return true;
}
static LinkedList<Integer> adj[];
static boolean Visited[];
static HashSet<Integer> exc;
static long oddsum[]=new long[1000001];
static long co=0,ans=0;
static int parent[];
static int size[],color[],res[],k;
static ArrayList<Integer> al[];
static long MOD = (long)1e9 + 7;
private static void buildgraph(int n){
adj=new LinkedList[n+1];
Visited=new boolean[n+1];
levl=new int[n+1];
for(int i=0;i<=n;i++){
adj[i]=new LinkedList<Integer>();
}
}
static int[] levl;
static int[] eat;
// static int n,m;
static int price[];
//ind frog crab
static boolean check(char c)
{
if(c!='a' && c!='e' && c!='i' && c!='o' && c!='u' )
return true;
else
return false;
}
public static void solve(){
int n= nextInt();
int a[]=new int[n];
a=nextIntArray(n);
int invcount=0;
for(int i=0;i<n;i++)
{
for(int j=i+1;j<n;j++)
{
if(a[i]>a[j])
invcount++;
}
}
int m=nextInt();
int initial = invcount%2;
while(m--!=0)
{
int l=nextInt();
int r=nextInt();
int diff = r-l+1;
int totalpair = (diff*(diff-1))/2;
if(((totalpair%2)+initial)%2==1)
{
pw.println("odd");
initial=1;
}
else
{
pw.println("even");
initial=0;
}
}
}
static void seive2(int n)
{
primer=new boolean[n+1];
Arrays.fill(primer,true);
primer[0]=false;
primer[1]=false;
primer[2]=true;
for(int i=2;i*i<=n;i++)
{
if(primer[i])
{
for(int j=2*i;j<=n;j=j+i)
{
primer[j]=false;
}
}
}
}
/* static void BITupdate(int x,int val)
{
while(x<=n)
{
BIT[x]+=val;
x+= x & -x;
}
}*/
/* static void update(int x,long val)
{
val=val%MOD;
while(x<=n)
{
// System.out.println(x);
BIT[x]=(BIT[x]+val)%MOD;
x+=(x & -x);
}
// System.out.println("dfd");
}*/
static int BITsum(int x)
{
int sum=0;
while(x>0)
{
sum+=BIT[x];
x-= (x & -x);
}
return sum;
}
/* static long sum(int x)
{
long sum=0;
while(x>0)
{
sum=(sum+BIT[x])%MOD;
x-=x & -x;
}
return sum;
}*/
static boolean union(int x,int y)
{
int xr=find(x);
int yr=find(y);
if(xr==yr)
return false;
if(size[xr]<size[yr])
{
size[yr]+=size[xr];
parent[xr]=yr;
}
else
{
size[xr]+=size[yr];
parent[yr]=xr;
}
return true;
}
static int find(int x)
{
if(parent[x]==x)
return x;
else
{
parent[x]=find(parent[x]);
return parent[x];
}
}
public static class Edge implements Comparable<Edge>
{
int u, v,s;
public Edge(int u, int v)
{
this.u = u;
this.v = v;
//this.s = s;
}
public int hashCode()
{
return Objects.hash();
}
public int compareTo(Edge other)
{
return (Integer.compare(u, other.u) != 0 ? (Integer.compare(u, other.u)):(Integer.compare(v, other.v)));
// &((Long.compare(s, other.s) != 0 ? (Long.compare(s, other.s)):(Long.compare(u, other.v)!=0?Long.compare(u, other.v):Long.compare(v, other.u))));
//return this.u-other.u;
}
public String toString()
{
return this.u + " " + this.v;
}
}
static int col[];
public static boolean isVowel(char c){
if(c=='a' || c=='e'||c=='i' || c=='o' || c=='u')
return true;
return false;
}
static int no_vert=0;
private static void dfs(int start){
Visited[start]=true;
if(al[color[start]].size()>=k)
{
res[start]=al[color[start]].get(al[color[start]].size()-k);
}
al[color[start]].add(start);
for(int i:adj[start]){
if(!Visited[i])
{
dfs(i);
}
}
(al[color[start]]).remove(al[color[start]].size()-1);
}
public static String reverseString(String s) {
StringBuilder sb = new StringBuilder(s);
sb.reverse();
return (sb.toString());
}
/*
private static void BFS(int sou){
Queue<Integer> q=new LinkedList<Integer>();
q.add(sou);
Visited[sou]=true;
levl[sou]=0;
while(!q.isEmpty()){
int top=q.poll();
for(int i:adj[top]){
//pw.println(i+" "+top);
if(!Visited[i])
{
q.add(i);
levl[i]=levl[top]+1;
}
Visited[i]=true;
}
}
}*/
static int indeg[];
/* private static void kahn(int n){
PriorityQueue<Integer> q=new PriorityQueue<Integer>();
for(int i=1;i<=n;i++){
if(indeg[i]==0){
q.add(i);
}
}
while(!q.isEmpty()){
int top=q.poll();
st.push(top);
for(Node i:adj[top]){
indeg[i.to]--;
if(indeg[i.to]==0){
q.add(i.to);
}
}
}
}
static int state=1;
static long no_exc=0,no_vert=0;
static Stack<Integer> st;
static HashSet<Integer> inset;
/* private static void topo(int curr){
Visited[curr]=true;
inset.add(curr);
for(int x:adj[curr]){
if(adj[x].contains(curr) || inset.contains(x)){
state=0;
return;
}
if(state==0)
return;
}
st.push(curr);
inset.remove(curr);
}*/
static HashSet<Integer> hs;
static boolean prime[];
static int spf[];
public static void sieve(int n){
prime=new boolean[n+1];
spf=new int[n+1];
Arrays.fill(spf, 1);
Arrays.fill(prime, true);
prime[1]=false;
spf[2]=2;
for(int i=4;i<=n;i+=2){
spf[i]=2;
}
for(int i=3;i<=n;i+=2){
if(prime[i]){
spf[i]=i;
for(int j=2*i;j<=n;j+=i){
prime[j]=false;
if(spf[j]==1){
spf[j]=i;
}
}
}
}
}
// To Get Input
// Some Buffer Methods
public static void sort(long a[]){
Merge(a, 0, a.length-1);
}
public static void InputReader(InputStream stream1) {
stream = stream1;
}
private static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private static boolean isEndOfLine(int c) {
return c == '\n' || c == '\r' || c == -1;
}
private static int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
private static int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
private static long nextLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
private static String nextToken() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
private static String nextLine() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndOfLine(c));
return res.toString();
}
private static int[] nextIntArray(int n) {
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = nextInt();
}
return arr;
}
private static long[][] next2dArray(int n, int m) {
long[][] arr = new long[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
arr[i][j] = nextLong();
}
}
return arr;
}
private static char[][] nextCharArray(int n,int m){
char [][]c=new char[n][m];
for(int i=0;i<n;i++){
String s=nextLine();
for(int j=0;j<s.length();j++){
c[i][j]=s.charAt(j);
}
}
return c;
}
private static long[] nextLongArray(int n) {
long[] arr = new long[n];
for (int i = 0; i < n; i++) {
arr[i] = nextLong();
}
return arr;
}
private static void pArray(int[] arr) {
for (int i = 0; i < arr.length; i++) {
pw.print(arr[i] + " ");
}
pw.println();
return;
}
private static void pArray(long[] arr) {
for (int i = 0; i < arr.length; i++) {
pw.print(arr[i] + " ");
}
pw.println();
return;
}
private static void pArray(boolean[] arr) {
for (int i = 0; i < arr.length; i++) {
pw.print(arr[i] + " ");
}
pw.println();
return;
}
private static boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return isWhitespace(c);
}
private interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.awt.Checkbox;
import java.awt.Point;
import java.io.*;
import java.math.*;
import java.util.*;
import java.util.Map.Entry;
import javax.print.attribute.SetOfIntegerSyntax;
import javax.swing.plaf.FontUIResource;
public class CODE2{
private static InputStream stream;
private static byte[] buf = new byte[1024];
private static int curChar,MAX;
private static int numChars;
private static SpaceCharFilter filter;
private static PrintWriter pw;
private static long count = 0,mod=1000000007;
static int BIT[];
private static boolean primer[];
// private static TreeSet<Integer> ts=new TreeSet[200000];
public final static int INF = (int) 1E9;
public static void main(String args[]) {
InputReader(System.in);
pw = new PrintWriter(System.out);
new Thread(null ,new Runnable(){
public void run(){
try{
solve();
pw.close();
} catch(Exception e){
e.printStackTrace();
}
}
},"1",1<<26).start();
}
static StringBuilder sb;
public static void test(){
sb=new StringBuilder();
int t=nextInt();
while(t-->0){
solve();
}
pw.println(sb);
}
public static long pow(long n, long p,long mod) {
if(p==0)
return 1;
if(p==1)
return n%mod;
if(p%2==0){
long temp=pow(n, p/2,mod);
return (temp*temp)%mod;
}else{
long temp=pow(n,p/2,mod);
temp=(temp*temp)%mod;
return(temp*n)%mod;
}
}
public static long pow(long n, long p) {
if(p==0)
return 1;
if(p==1)
return n;
if(p%2==0){
long temp=pow(n, p/2);
return (temp*temp);
}else{
long temp=pow(n,p/2);
temp=(temp*temp);
return(temp*n);
}
}
public static void Merge(long a[],int p,int r){
if(p<r){
int q = (p+r)/2;
Merge(a,p,q);
Merge(a,q+1,r);
Merge_Array(a,p,q,r);
}
}
public static void Merge_Array(long a[],int p,int q,int r){
long b[] = new long[q-p+1];
long c[] = new long[r-q];
for(int i=0;i<b.length;i++)
b[i] = a[p+i];
for(int i=0;i<c.length;i++)
c[i] = a[q+i+1];
int i = 0,j = 0;
for(int k=p;k<=r;k++){
if(i==b.length){
a[k] = c[j];
j++;
}
else if(j==c.length){
a[k] = b[i];
i++;
}
else if(b[i]<c[j]){
a[k] = b[i];
i++;
}
else{
a[k] = c[j];
j++;
}
}
}
public static long gcd(long x, long y) {
if (x == 0)
return y;
else
return gcd( y % x,x);
}
public static boolean isPrime(int n) {
if (n <= 1)
return false;
if (n <= 3)
return true;
if (n % 2 == 0 || n % 3 == 0)
return false;
for (int i = 5; i * i <= n; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0)
return false;
return true;
}
static LinkedList<Integer> adj[];
static boolean Visited[];
static HashSet<Integer> exc;
static long oddsum[]=new long[1000001];
static long co=0,ans=0;
static int parent[];
static int size[],color[],res[],k;
static ArrayList<Integer> al[];
static long MOD = (long)1e9 + 7;
private static void buildgraph(int n){
adj=new LinkedList[n+1];
Visited=new boolean[n+1];
levl=new int[n+1];
for(int i=0;i<=n;i++){
adj[i]=new LinkedList<Integer>();
}
}
static int[] levl;
static int[] eat;
// static int n,m;
static int price[];
//ind frog crab
static boolean check(char c)
{
if(c!='a' && c!='e' && c!='i' && c!='o' && c!='u' )
return true;
else
return false;
}
public static void solve(){
int n= nextInt();
int a[]=new int[n];
a=nextIntArray(n);
int invcount=0;
for(int i=0;i<n;i++)
{
for(int j=i+1;j<n;j++)
{
if(a[i]>a[j])
invcount++;
}
}
int m=nextInt();
int initial = invcount%2;
while(m--!=0)
{
int l=nextInt();
int r=nextInt();
int diff = r-l+1;
int totalpair = (diff*(diff-1))/2;
if(((totalpair%2)+initial)%2==1)
{
pw.println("odd");
initial=1;
}
else
{
pw.println("even");
initial=0;
}
}
}
static void seive2(int n)
{
primer=new boolean[n+1];
Arrays.fill(primer,true);
primer[0]=false;
primer[1]=false;
primer[2]=true;
for(int i=2;i*i<=n;i++)
{
if(primer[i])
{
for(int j=2*i;j<=n;j=j+i)
{
primer[j]=false;
}
}
}
}
/* static void BITupdate(int x,int val)
{
while(x<=n)
{
BIT[x]+=val;
x+= x & -x;
}
}*/
/* static void update(int x,long val)
{
val=val%MOD;
while(x<=n)
{
// System.out.println(x);
BIT[x]=(BIT[x]+val)%MOD;
x+=(x & -x);
}
// System.out.println("dfd");
}*/
static int BITsum(int x)
{
int sum=0;
while(x>0)
{
sum+=BIT[x];
x-= (x & -x);
}
return sum;
}
/* static long sum(int x)
{
long sum=0;
while(x>0)
{
sum=(sum+BIT[x])%MOD;
x-=x & -x;
}
return sum;
}*/
static boolean union(int x,int y)
{
int xr=find(x);
int yr=find(y);
if(xr==yr)
return false;
if(size[xr]<size[yr])
{
size[yr]+=size[xr];
parent[xr]=yr;
}
else
{
size[xr]+=size[yr];
parent[yr]=xr;
}
return true;
}
static int find(int x)
{
if(parent[x]==x)
return x;
else
{
parent[x]=find(parent[x]);
return parent[x];
}
}
public static class Edge implements Comparable<Edge>
{
int u, v,s;
public Edge(int u, int v)
{
this.u = u;
this.v = v;
//this.s = s;
}
public int hashCode()
{
return Objects.hash();
}
public int compareTo(Edge other)
{
return (Integer.compare(u, other.u) != 0 ? (Integer.compare(u, other.u)):(Integer.compare(v, other.v)));
// &((Long.compare(s, other.s) != 0 ? (Long.compare(s, other.s)):(Long.compare(u, other.v)!=0?Long.compare(u, other.v):Long.compare(v, other.u))));
//return this.u-other.u;
}
public String toString()
{
return this.u + " " + this.v;
}
}
static int col[];
public static boolean isVowel(char c){
if(c=='a' || c=='e'||c=='i' || c=='o' || c=='u')
return true;
return false;
}
static int no_vert=0;
private static void dfs(int start){
Visited[start]=true;
if(al[color[start]].size()>=k)
{
res[start]=al[color[start]].get(al[color[start]].size()-k);
}
al[color[start]].add(start);
for(int i:adj[start]){
if(!Visited[i])
{
dfs(i);
}
}
(al[color[start]]).remove(al[color[start]].size()-1);
}
public static String reverseString(String s) {
StringBuilder sb = new StringBuilder(s);
sb.reverse();
return (sb.toString());
}
/*
private static void BFS(int sou){
Queue<Integer> q=new LinkedList<Integer>();
q.add(sou);
Visited[sou]=true;
levl[sou]=0;
while(!q.isEmpty()){
int top=q.poll();
for(int i:adj[top]){
//pw.println(i+" "+top);
if(!Visited[i])
{
q.add(i);
levl[i]=levl[top]+1;
}
Visited[i]=true;
}
}
}*/
static int indeg[];
/* private static void kahn(int n){
PriorityQueue<Integer> q=new PriorityQueue<Integer>();
for(int i=1;i<=n;i++){
if(indeg[i]==0){
q.add(i);
}
}
while(!q.isEmpty()){
int top=q.poll();
st.push(top);
for(Node i:adj[top]){
indeg[i.to]--;
if(indeg[i.to]==0){
q.add(i.to);
}
}
}
}
static int state=1;
static long no_exc=0,no_vert=0;
static Stack<Integer> st;
static HashSet<Integer> inset;
/* private static void topo(int curr){
Visited[curr]=true;
inset.add(curr);
for(int x:adj[curr]){
if(adj[x].contains(curr) || inset.contains(x)){
state=0;
return;
}
if(state==0)
return;
}
st.push(curr);
inset.remove(curr);
}*/
static HashSet<Integer> hs;
static boolean prime[];
static int spf[];
public static void sieve(int n){
prime=new boolean[n+1];
spf=new int[n+1];
Arrays.fill(spf, 1);
Arrays.fill(prime, true);
prime[1]=false;
spf[2]=2;
for(int i=4;i<=n;i+=2){
spf[i]=2;
}
for(int i=3;i<=n;i+=2){
if(prime[i]){
spf[i]=i;
for(int j=2*i;j<=n;j+=i){
prime[j]=false;
if(spf[j]==1){
spf[j]=i;
}
}
}
}
}
// To Get Input
// Some Buffer Methods
public static void sort(long a[]){
Merge(a, 0, a.length-1);
}
public static void InputReader(InputStream stream1) {
stream = stream1;
}
private static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private static boolean isEndOfLine(int c) {
return c == '\n' || c == '\r' || c == -1;
}
private static int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
private static int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
private static long nextLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
private static String nextToken() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
private static String nextLine() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndOfLine(c));
return res.toString();
}
private static int[] nextIntArray(int n) {
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = nextInt();
}
return arr;
}
private static long[][] next2dArray(int n, int m) {
long[][] arr = new long[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
arr[i][j] = nextLong();
}
}
return arr;
}
private static char[][] nextCharArray(int n,int m){
char [][]c=new char[n][m];
for(int i=0;i<n;i++){
String s=nextLine();
for(int j=0;j<s.length();j++){
c[i][j]=s.charAt(j);
}
}
return c;
}
private static long[] nextLongArray(int n) {
long[] arr = new long[n];
for (int i = 0; i < n; i++) {
arr[i] = nextLong();
}
return arr;
}
private static void pArray(int[] arr) {
for (int i = 0; i < arr.length; i++) {
pw.print(arr[i] + " ");
}
pw.println();
return;
}
private static void pArray(long[] arr) {
for (int i = 0; i < arr.length; i++) {
pw.print(arr[i] + " ");
}
pw.println();
return;
}
private static void pArray(boolean[] arr) {
for (int i = 0; i < arr.length; i++) {
pw.print(arr[i] + " ");
}
pw.println();
return;
}
private static boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return isWhitespace(c);
}
private interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.awt.Checkbox;
import java.awt.Point;
import java.io.*;
import java.math.*;
import java.util.*;
import java.util.Map.Entry;
import javax.print.attribute.SetOfIntegerSyntax;
import javax.swing.plaf.FontUIResource;
public class CODE2{
private static InputStream stream;
private static byte[] buf = new byte[1024];
private static int curChar,MAX;
private static int numChars;
private static SpaceCharFilter filter;
private static PrintWriter pw;
private static long count = 0,mod=1000000007;
static int BIT[];
private static boolean primer[];
// private static TreeSet<Integer> ts=new TreeSet[200000];
public final static int INF = (int) 1E9;
public static void main(String args[]) {
InputReader(System.in);
pw = new PrintWriter(System.out);
new Thread(null ,new Runnable(){
public void run(){
try{
solve();
pw.close();
} catch(Exception e){
e.printStackTrace();
}
}
},"1",1<<26).start();
}
static StringBuilder sb;
public static void test(){
sb=new StringBuilder();
int t=nextInt();
while(t-->0){
solve();
}
pw.println(sb);
}
public static long pow(long n, long p,long mod) {
if(p==0)
return 1;
if(p==1)
return n%mod;
if(p%2==0){
long temp=pow(n, p/2,mod);
return (temp*temp)%mod;
}else{
long temp=pow(n,p/2,mod);
temp=(temp*temp)%mod;
return(temp*n)%mod;
}
}
public static long pow(long n, long p) {
if(p==0)
return 1;
if(p==1)
return n;
if(p%2==0){
long temp=pow(n, p/2);
return (temp*temp);
}else{
long temp=pow(n,p/2);
temp=(temp*temp);
return(temp*n);
}
}
public static void Merge(long a[],int p,int r){
if(p<r){
int q = (p+r)/2;
Merge(a,p,q);
Merge(a,q+1,r);
Merge_Array(a,p,q,r);
}
}
public static void Merge_Array(long a[],int p,int q,int r){
long b[] = new long[q-p+1];
long c[] = new long[r-q];
for(int i=0;i<b.length;i++)
b[i] = a[p+i];
for(int i=0;i<c.length;i++)
c[i] = a[q+i+1];
int i = 0,j = 0;
for(int k=p;k<=r;k++){
if(i==b.length){
a[k] = c[j];
j++;
}
else if(j==c.length){
a[k] = b[i];
i++;
}
else if(b[i]<c[j]){
a[k] = b[i];
i++;
}
else{
a[k] = c[j];
j++;
}
}
}
public static long gcd(long x, long y) {
if (x == 0)
return y;
else
return gcd( y % x,x);
}
public static boolean isPrime(int n) {
if (n <= 1)
return false;
if (n <= 3)
return true;
if (n % 2 == 0 || n % 3 == 0)
return false;
for (int i = 5; i * i <= n; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0)
return false;
return true;
}
static LinkedList<Integer> adj[];
static boolean Visited[];
static HashSet<Integer> exc;
static long oddsum[]=new long[1000001];
static long co=0,ans=0;
static int parent[];
static int size[],color[],res[],k;
static ArrayList<Integer> al[];
static long MOD = (long)1e9 + 7;
private static void buildgraph(int n){
adj=new LinkedList[n+1];
Visited=new boolean[n+1];
levl=new int[n+1];
for(int i=0;i<=n;i++){
adj[i]=new LinkedList<Integer>();
}
}
static int[] levl;
static int[] eat;
// static int n,m;
static int price[];
//ind frog crab
static boolean check(char c)
{
if(c!='a' && c!='e' && c!='i' && c!='o' && c!='u' )
return true;
else
return false;
}
public static void solve(){
int n= nextInt();
int a[]=new int[n];
a=nextIntArray(n);
int invcount=0;
for(int i=0;i<n;i++)
{
for(int j=i+1;j<n;j++)
{
if(a[i]>a[j])
invcount++;
}
}
int m=nextInt();
int initial = invcount%2;
while(m--!=0)
{
int l=nextInt();
int r=nextInt();
int diff = r-l+1;
int totalpair = (diff*(diff-1))/2;
if(((totalpair%2)+initial)%2==1)
{
pw.println("odd");
initial=1;
}
else
{
pw.println("even");
initial=0;
}
}
}
static void seive2(int n)
{
primer=new boolean[n+1];
Arrays.fill(primer,true);
primer[0]=false;
primer[1]=false;
primer[2]=true;
for(int i=2;i*i<=n;i++)
{
if(primer[i])
{
for(int j=2*i;j<=n;j=j+i)
{
primer[j]=false;
}
}
}
}
/* static void BITupdate(int x,int val)
{
while(x<=n)
{
BIT[x]+=val;
x+= x & -x;
}
}*/
/* static void update(int x,long val)
{
val=val%MOD;
while(x<=n)
{
// System.out.println(x);
BIT[x]=(BIT[x]+val)%MOD;
x+=(x & -x);
}
// System.out.println("dfd");
}*/
static int BITsum(int x)
{
int sum=0;
while(x>0)
{
sum+=BIT[x];
x-= (x & -x);
}
return sum;
}
/* static long sum(int x)
{
long sum=0;
while(x>0)
{
sum=(sum+BIT[x])%MOD;
x-=x & -x;
}
return sum;
}*/
static boolean union(int x,int y)
{
int xr=find(x);
int yr=find(y);
if(xr==yr)
return false;
if(size[xr]<size[yr])
{
size[yr]+=size[xr];
parent[xr]=yr;
}
else
{
size[xr]+=size[yr];
parent[yr]=xr;
}
return true;
}
static int find(int x)
{
if(parent[x]==x)
return x;
else
{
parent[x]=find(parent[x]);
return parent[x];
}
}
public static class Edge implements Comparable<Edge>
{
int u, v,s;
public Edge(int u, int v)
{
this.u = u;
this.v = v;
//this.s = s;
}
public int hashCode()
{
return Objects.hash();
}
public int compareTo(Edge other)
{
return (Integer.compare(u, other.u) != 0 ? (Integer.compare(u, other.u)):(Integer.compare(v, other.v)));
// &((Long.compare(s, other.s) != 0 ? (Long.compare(s, other.s)):(Long.compare(u, other.v)!=0?Long.compare(u, other.v):Long.compare(v, other.u))));
//return this.u-other.u;
}
public String toString()
{
return this.u + " " + this.v;
}
}
static int col[];
public static boolean isVowel(char c){
if(c=='a' || c=='e'||c=='i' || c=='o' || c=='u')
return true;
return false;
}
static int no_vert=0;
private static void dfs(int start){
Visited[start]=true;
if(al[color[start]].size()>=k)
{
res[start]=al[color[start]].get(al[color[start]].size()-k);
}
al[color[start]].add(start);
for(int i:adj[start]){
if(!Visited[i])
{
dfs(i);
}
}
(al[color[start]]).remove(al[color[start]].size()-1);
}
public static String reverseString(String s) {
StringBuilder sb = new StringBuilder(s);
sb.reverse();
return (sb.toString());
}
/*
private static void BFS(int sou){
Queue<Integer> q=new LinkedList<Integer>();
q.add(sou);
Visited[sou]=true;
levl[sou]=0;
while(!q.isEmpty()){
int top=q.poll();
for(int i:adj[top]){
//pw.println(i+" "+top);
if(!Visited[i])
{
q.add(i);
levl[i]=levl[top]+1;
}
Visited[i]=true;
}
}
}*/
static int indeg[];
/* private static void kahn(int n){
PriorityQueue<Integer> q=new PriorityQueue<Integer>();
for(int i=1;i<=n;i++){
if(indeg[i]==0){
q.add(i);
}
}
while(!q.isEmpty()){
int top=q.poll();
st.push(top);
for(Node i:adj[top]){
indeg[i.to]--;
if(indeg[i.to]==0){
q.add(i.to);
}
}
}
}
static int state=1;
static long no_exc=0,no_vert=0;
static Stack<Integer> st;
static HashSet<Integer> inset;
/* private static void topo(int curr){
Visited[curr]=true;
inset.add(curr);
for(int x:adj[curr]){
if(adj[x].contains(curr) || inset.contains(x)){
state=0;
return;
}
if(state==0)
return;
}
st.push(curr);
inset.remove(curr);
}*/
static HashSet<Integer> hs;
static boolean prime[];
static int spf[];
public static void sieve(int n){
prime=new boolean[n+1];
spf=new int[n+1];
Arrays.fill(spf, 1);
Arrays.fill(prime, true);
prime[1]=false;
spf[2]=2;
for(int i=4;i<=n;i+=2){
spf[i]=2;
}
for(int i=3;i<=n;i+=2){
if(prime[i]){
spf[i]=i;
for(int j=2*i;j<=n;j+=i){
prime[j]=false;
if(spf[j]==1){
spf[j]=i;
}
}
}
}
}
// To Get Input
// Some Buffer Methods
public static void sort(long a[]){
Merge(a, 0, a.length-1);
}
public static void InputReader(InputStream stream1) {
stream = stream1;
}
private static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private static boolean isEndOfLine(int c) {
return c == '\n' || c == '\r' || c == -1;
}
private static int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
private static int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
private static long nextLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
private static String nextToken() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
private static String nextLine() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndOfLine(c));
return res.toString();
}
private static int[] nextIntArray(int n) {
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = nextInt();
}
return arr;
}
private static long[][] next2dArray(int n, int m) {
long[][] arr = new long[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
arr[i][j] = nextLong();
}
}
return arr;
}
private static char[][] nextCharArray(int n,int m){
char [][]c=new char[n][m];
for(int i=0;i<n;i++){
String s=nextLine();
for(int j=0;j<s.length();j++){
c[i][j]=s.charAt(j);
}
}
return c;
}
private static long[] nextLongArray(int n) {
long[] arr = new long[n];
for (int i = 0; i < n; i++) {
arr[i] = nextLong();
}
return arr;
}
private static void pArray(int[] arr) {
for (int i = 0; i < arr.length; i++) {
pw.print(arr[i] + " ");
}
pw.println();
return;
}
private static void pArray(long[] arr) {
for (int i = 0; i < arr.length; i++) {
pw.print(arr[i] + " ");
}
pw.println();
return;
}
private static void pArray(boolean[] arr) {
for (int i = 0; i < arr.length; i++) {
pw.print(arr[i] + " ");
}
pw.println();
return;
}
private static boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return isWhitespace(c);
}
private interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 4,087 | 2,381 |
1,372 |
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.Scanner;
import java.util.Vector;
/**
* Created with IntelliJ IDEA.
* User: horikawa
* Date: 3/23/13
* Time: 1:29 AM
* To change this template use File | Settings | File Templates.
*/
public class B {
public static void main (String[] argv) {
Scanner in = new Scanner(System.in);
long n = in.nextLong();
long k = in.nextLong();
long max = ((k*(k-1))/2L)+1L;
long ans = -1;
if (n == 1) {
System.out.println(0);
return;
}
if (max < n) {
ans = -1;
} else if (max == n) {
ans = k-1;
} else {
if (k >= n) {
ans = 1;
} else {
long low = 1;
long high = k-1;
while (high > low+1) {
long mid = (low+high)/2;
long sum = (((mid+(k-1)) * (k-mid)) / 2) + 1;
if (sum >= n) {
low = mid;
} else {
high = mid;
}
}
ans = (k - low);
}
}
System.out.println(ans);
return;
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.Scanner;
import java.util.Vector;
/**
* Created with IntelliJ IDEA.
* User: horikawa
* Date: 3/23/13
* Time: 1:29 AM
* To change this template use File | Settings | File Templates.
*/
public class B {
public static void main (String[] argv) {
Scanner in = new Scanner(System.in);
long n = in.nextLong();
long k = in.nextLong();
long max = ((k*(k-1))/2L)+1L;
long ans = -1;
if (n == 1) {
System.out.println(0);
return;
}
if (max < n) {
ans = -1;
} else if (max == n) {
ans = k-1;
} else {
if (k >= n) {
ans = 1;
} else {
long low = 1;
long high = k-1;
while (high > low+1) {
long mid = (low+high)/2;
long sum = (((mid+(k-1)) * (k-mid)) / 2) + 1;
if (sum >= n) {
low = mid;
} else {
high = mid;
}
}
ans = (k - low);
}
}
System.out.println(ans);
return;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.Scanner;
import java.util.Vector;
/**
* Created with IntelliJ IDEA.
* User: horikawa
* Date: 3/23/13
* Time: 1:29 AM
* To change this template use File | Settings | File Templates.
*/
public class B {
public static void main (String[] argv) {
Scanner in = new Scanner(System.in);
long n = in.nextLong();
long k = in.nextLong();
long max = ((k*(k-1))/2L)+1L;
long ans = -1;
if (n == 1) {
System.out.println(0);
return;
}
if (max < n) {
ans = -1;
} else if (max == n) {
ans = k-1;
} else {
if (k >= n) {
ans = 1;
} else {
long low = 1;
long high = k-1;
while (high > low+1) {
long mid = (low+high)/2;
long sum = (((mid+(k-1)) * (k-mid)) / 2) + 1;
if (sum >= n) {
low = mid;
} else {
high = mid;
}
}
ans = (k - low);
}
}
System.out.println(ans);
return;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 670 | 1,370 |
1,185 |
import java.io.*;
import java.util.*;
public class TestClass {
static PrintWriter out = new PrintWriter(System.out);
public static void main(String args[] ) throws Exception {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
String s[] = in.readLine().split(" ");
long n = Long.parseLong(s[0]);
long k = Long.parseLong(s[1]);
long x = bs(n,k);
out.println(n-x+1);
out.close();
}
public static long bs(long n,long k)
{
long l=0,h=n;
while(l<=h)
{
long mid = l + (h-l)/2;
long x = mid - sum(mid);
if(x>=k)
{
h = mid-1;
}
else
{
l = mid+1;
}
}
return l;
}
public static long sum(long x)
{
long ans=0;
while(x>0)
{
ans += x%10;
x=x/10;
}
return ans;
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class TestClass {
static PrintWriter out = new PrintWriter(System.out);
public static void main(String args[] ) throws Exception {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
String s[] = in.readLine().split(" ");
long n = Long.parseLong(s[0]);
long k = Long.parseLong(s[1]);
long x = bs(n,k);
out.println(n-x+1);
out.close();
}
public static long bs(long n,long k)
{
long l=0,h=n;
while(l<=h)
{
long mid = l + (h-l)/2;
long x = mid - sum(mid);
if(x>=k)
{
h = mid-1;
}
else
{
l = mid+1;
}
}
return l;
}
public static long sum(long x)
{
long ans=0;
while(x>0)
{
ans += x%10;
x=x/10;
}
return ans;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class TestClass {
static PrintWriter out = new PrintWriter(System.out);
public static void main(String args[] ) throws Exception {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
String s[] = in.readLine().split(" ");
long n = Long.parseLong(s[0]);
long k = Long.parseLong(s[1]);
long x = bs(n,k);
out.println(n-x+1);
out.close();
}
public static long bs(long n,long k)
{
long l=0,h=n;
while(l<=h)
{
long mid = l + (h-l)/2;
long x = mid - sum(mid);
if(x>=k)
{
h = mid-1;
}
else
{
l = mid+1;
}
}
return l;
}
public static long sum(long x)
{
long ans=0;
while(x>0)
{
ans += x%10;
x=x/10;
}
return ans;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 575 | 1,184 |
2,637 |
import java.util.Arrays;
import java.util.Scanner;
public class Main {
public static void main(String[] args)
{
Scanner s=new Scanner(System.in);
int n=s.nextInt();
int[] arr=new int[n];
for(int i=0;i<n;i++)
{
arr[i]=s.nextInt();
}
Arrays.sort(arr);
int[] visited=new int[n];
int ans=0;
for(int i=0;i<n;i++)
{
if(visited[i]==0)
{
ans++;
for(int j=i+1;j<n;j++)
{
if(arr[j]%arr[i]==0&&visited[j]==0)
{
visited[j]=1;
}
}
}
}
System.out.println(ans);
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
public class Main {
public static void main(String[] args)
{
Scanner s=new Scanner(System.in);
int n=s.nextInt();
int[] arr=new int[n];
for(int i=0;i<n;i++)
{
arr[i]=s.nextInt();
}
Arrays.sort(arr);
int[] visited=new int[n];
int ans=0;
for(int i=0;i<n;i++)
{
if(visited[i]==0)
{
ans++;
for(int j=i+1;j<n;j++)
{
if(arr[j]%arr[i]==0&&visited[j]==0)
{
visited[j]=1;
}
}
}
}
System.out.println(ans);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
public class Main {
public static void main(String[] args)
{
Scanner s=new Scanner(System.in);
int n=s.nextInt();
int[] arr=new int[n];
for(int i=0;i<n;i++)
{
arr[i]=s.nextInt();
}
Arrays.sort(arr);
int[] visited=new int[n];
int ans=0;
for(int i=0;i<n;i++)
{
if(visited[i]==0)
{
ans++;
for(int j=i+1;j<n;j++)
{
if(arr[j]%arr[i]==0&&visited[j]==0)
{
visited[j]=1;
}
}
}
}
System.out.println(ans);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 521 | 2,631 |
3,267 |
import java.io.*;
import java.math.BigInteger;
import java.util.*;
import java.util.Map.Entry;
public class Main {
public static void main(String[] args) throws IOException {
(new Main()).solve();
}
public void Main() {
}
void solve() throws IOException {
// BufferedReader in = new BufferedReader(new
// InputStreamReader(System.in));
// Scanner in = new Scanner(System.in);
MyReader in = new MyReader();
PrintWriter out = new PrintWriter(System.out);
// Scanner in = new Scanner(new FileReader("input.txt"));
// PrintWriter out = new PrintWriter("output.txt");
int n = in.nextInt();
out.print("0 0 ");
out.print(n);
out.close();
}
};
class MyReader {
private BufferedReader in;
String[] parsed;
int index = 0;
public MyReader() {
in = new BufferedReader(new InputStreamReader(System.in));
}
public int nextInt() throws NumberFormatException, IOException {
if (parsed == null || parsed.length == index) {
read();
}
return Integer.parseInt(parsed[index++]);
}
public long nextLong() throws NumberFormatException, IOException {
if (parsed == null || parsed.length == index) {
read();
}
return Long.parseLong(parsed[index++]);
}
public String nextString() throws IOException {
if (parsed == null || parsed.length == index) {
read();
}
return parsed[index++];
}
private void read() throws IOException {
parsed = in.readLine().split(" ");
index = 0;
}
public String readLine() throws IOException {
return in.readLine();
}
};
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.math.BigInteger;
import java.util.*;
import java.util.Map.Entry;
public class Main {
public static void main(String[] args) throws IOException {
(new Main()).solve();
}
public void Main() {
}
void solve() throws IOException {
// BufferedReader in = new BufferedReader(new
// InputStreamReader(System.in));
// Scanner in = new Scanner(System.in);
MyReader in = new MyReader();
PrintWriter out = new PrintWriter(System.out);
// Scanner in = new Scanner(new FileReader("input.txt"));
// PrintWriter out = new PrintWriter("output.txt");
int n = in.nextInt();
out.print("0 0 ");
out.print(n);
out.close();
}
};
class MyReader {
private BufferedReader in;
String[] parsed;
int index = 0;
public MyReader() {
in = new BufferedReader(new InputStreamReader(System.in));
}
public int nextInt() throws NumberFormatException, IOException {
if (parsed == null || parsed.length == index) {
read();
}
return Integer.parseInt(parsed[index++]);
}
public long nextLong() throws NumberFormatException, IOException {
if (parsed == null || parsed.length == index) {
read();
}
return Long.parseLong(parsed[index++]);
}
public String nextString() throws IOException {
if (parsed == null || parsed.length == index) {
read();
}
return parsed[index++];
}
private void read() throws IOException {
parsed = in.readLine().split(" ");
index = 0;
}
public String readLine() throws IOException {
return in.readLine();
}
};
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.math.BigInteger;
import java.util.*;
import java.util.Map.Entry;
public class Main {
public static void main(String[] args) throws IOException {
(new Main()).solve();
}
public void Main() {
}
void solve() throws IOException {
// BufferedReader in = new BufferedReader(new
// InputStreamReader(System.in));
// Scanner in = new Scanner(System.in);
MyReader in = new MyReader();
PrintWriter out = new PrintWriter(System.out);
// Scanner in = new Scanner(new FileReader("input.txt"));
// PrintWriter out = new PrintWriter("output.txt");
int n = in.nextInt();
out.print("0 0 ");
out.print(n);
out.close();
}
};
class MyReader {
private BufferedReader in;
String[] parsed;
int index = 0;
public MyReader() {
in = new BufferedReader(new InputStreamReader(System.in));
}
public int nextInt() throws NumberFormatException, IOException {
if (parsed == null || parsed.length == index) {
read();
}
return Integer.parseInt(parsed[index++]);
}
public long nextLong() throws NumberFormatException, IOException {
if (parsed == null || parsed.length == index) {
read();
}
return Long.parseLong(parsed[index++]);
}
public String nextString() throws IOException {
if (parsed == null || parsed.length == index) {
read();
}
return parsed[index++];
}
private void read() throws IOException {
parsed = in.readLine().split(" ");
index = 0;
}
public String readLine() throws IOException {
return in.readLine();
}
};
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 697 | 3,261 |
1,029 |
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.*;
public class CodeForces {
class Pair<K, V> {
K first;
V second;
public Pair(K k, V v) {
first = k;
second = v;
}
}
private boolean contain(int set, int i) {
return (set & (1<<i)) > 0;
}
private static int gcd(int a, int b) {
if (b == 0) return a;
return gcd(b, a%b);
}
private long pow(long a, long p) {
if (p == 0) return 1;
long b = pow(a, p/2);
b = b * b;
if (p % 2 == 1) b *= a;
return b % mod;
}
private static boolean isSame(double a, double b) {
return Math.abs(a - b) < 1e-10;
}
private static void swapBoolean(boolean[] p, int i, int j) {
boolean tmp = p[i];
p[i] = p[j];
p[j] = tmp;
}
private static void swap(int[] p, int i, int j) {
int tmp = p[i];
p[i] = p[j];
p[j] = tmp;
}
private static int countOne(int a) {
if (a == 0) return 0;
return countOne(a & (a-1)) + 1;
}
private static int sdiv(int a, int b) {
return (a +b -1) / b;
}
private int[] retran(int index) {
int[] res = new int[2];
res[0] = index / M;
res[1] = index % M;
return res;
}
private int tran(int x, int y) {
return x * M + y;
}
private boolean inTable(int x, int y) {
return x>=0 && x< N && y >= 0 && y < M;
}
int N;
int R;
int[][] C = new int[10][10];
int M;
int mod = 1_000_000_007;
long IMPO;
int ans;
int[] dx = new int[]{1,0, -1, 0};
int[] dy = new int[]{0, -1, 0, 1};
Map<String, Boolean> dp = new HashMap<>();
class Edge {
int u;
int v;
int start;
int duration;
public Edge(int u, int v, int l, int d) {
this.u = u;
this.v = v;
this.start = l;
this.duration = d;
}
}
List<List<Integer>> graph = new ArrayList<>();
List<Edge> edges = new ArrayList<>();
int[] parent;
boolean[] visited;
public void run(Scanner scanner) throws IOException {
long k = scanner.nextLong();
int len = 1;
long number = 9;
for (int i = 0; true; i++) {
if (len * number < k) {
k -= len * number;
len ++;
number *= 10;
} else {
break;
}
}
number /= 9;
StringBuilder sb = new StringBuilder();
for (int i = 1; i <= 9; i++) {
if (len * number < k) {
k -= len * number;
} else {
sb.append(i);
break;
}
}
for (int i = 1; i < len; i++) {
number /= 10;
for (int j = 0; j <= 9; j++) {
if (len * number < k) {
k -= len * number;
} else {
sb.append(j);
break;
}
}
}
System.out.println(sb.charAt((int) k - 1));
}
public static void main(String[] args) throws NumberFormatException, IOException {
// String fileName = "C://Users/user/eclipse-workspace/algo/example.txt";
// String outFile = "C://Users/user/eclipse-workspace/algo/example-out.txt";
// String fileName = "C://Users/user/eclipse-workspace/algo/A-small-practice.in";
// String outFile = "C://Users/user/eclipse-workspace/algo/A-small-out.txt";
// String fileName = "C://Users/user/eclipse-workspace/algo/A-large-practice.in";
// String outFile = "C://Users/user/eclipse-workspace/algo/A-large-out.txt";
// String fileName = "/Users/mobike/IdeaProjects/algo/B-small-practice.in";
// String outFile = "/Users/mobike/IdeaProjects/algo/B-small-out.txt";
// String fileName = "/Users/mobike/IdeaProjects/algo/B-large-practice.in";
// String outFile = "/Users/mobike/IdeaProjects/algo/B-large-out.txt";
// String fileName = "C://Users/user/eclipse-workspace/algo/C-small-practice.in";
// String outFile = "C://Users/user/eclipse-workspace/algo/C-small-out.txt";
// String fileName = "C://Users/user/eclipse-workspace/algo/D-small-practice.in";
// String outFile = "C://Users/user/eclipse-workspace/algo/D-small-out.txt";
// String fileName = "C://Users/user/eclipse-workspace/algo/D-large-practice.in";
// String outFile = "C://Users/user/eclipse-workspace/algo/D-large-out.txt";
Scanner scanner = new Scanner(System.in);
// int T = scanner.nextInt();
// for (int i = 1; i <= T; i++) {
CodeForces jam = new CodeForces();
jam.run(scanner);
// }
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.*;
public class CodeForces {
class Pair<K, V> {
K first;
V second;
public Pair(K k, V v) {
first = k;
second = v;
}
}
private boolean contain(int set, int i) {
return (set & (1<<i)) > 0;
}
private static int gcd(int a, int b) {
if (b == 0) return a;
return gcd(b, a%b);
}
private long pow(long a, long p) {
if (p == 0) return 1;
long b = pow(a, p/2);
b = b * b;
if (p % 2 == 1) b *= a;
return b % mod;
}
private static boolean isSame(double a, double b) {
return Math.abs(a - b) < 1e-10;
}
private static void swapBoolean(boolean[] p, int i, int j) {
boolean tmp = p[i];
p[i] = p[j];
p[j] = tmp;
}
private static void swap(int[] p, int i, int j) {
int tmp = p[i];
p[i] = p[j];
p[j] = tmp;
}
private static int countOne(int a) {
if (a == 0) return 0;
return countOne(a & (a-1)) + 1;
}
private static int sdiv(int a, int b) {
return (a +b -1) / b;
}
private int[] retran(int index) {
int[] res = new int[2];
res[0] = index / M;
res[1] = index % M;
return res;
}
private int tran(int x, int y) {
return x * M + y;
}
private boolean inTable(int x, int y) {
return x>=0 && x< N && y >= 0 && y < M;
}
int N;
int R;
int[][] C = new int[10][10];
int M;
int mod = 1_000_000_007;
long IMPO;
int ans;
int[] dx = new int[]{1,0, -1, 0};
int[] dy = new int[]{0, -1, 0, 1};
Map<String, Boolean> dp = new HashMap<>();
class Edge {
int u;
int v;
int start;
int duration;
public Edge(int u, int v, int l, int d) {
this.u = u;
this.v = v;
this.start = l;
this.duration = d;
}
}
List<List<Integer>> graph = new ArrayList<>();
List<Edge> edges = new ArrayList<>();
int[] parent;
boolean[] visited;
public void run(Scanner scanner) throws IOException {
long k = scanner.nextLong();
int len = 1;
long number = 9;
for (int i = 0; true; i++) {
if (len * number < k) {
k -= len * number;
len ++;
number *= 10;
} else {
break;
}
}
number /= 9;
StringBuilder sb = new StringBuilder();
for (int i = 1; i <= 9; i++) {
if (len * number < k) {
k -= len * number;
} else {
sb.append(i);
break;
}
}
for (int i = 1; i < len; i++) {
number /= 10;
for (int j = 0; j <= 9; j++) {
if (len * number < k) {
k -= len * number;
} else {
sb.append(j);
break;
}
}
}
System.out.println(sb.charAt((int) k - 1));
}
public static void main(String[] args) throws NumberFormatException, IOException {
// String fileName = "C://Users/user/eclipse-workspace/algo/example.txt";
// String outFile = "C://Users/user/eclipse-workspace/algo/example-out.txt";
// String fileName = "C://Users/user/eclipse-workspace/algo/A-small-practice.in";
// String outFile = "C://Users/user/eclipse-workspace/algo/A-small-out.txt";
// String fileName = "C://Users/user/eclipse-workspace/algo/A-large-practice.in";
// String outFile = "C://Users/user/eclipse-workspace/algo/A-large-out.txt";
// String fileName = "/Users/mobike/IdeaProjects/algo/B-small-practice.in";
// String outFile = "/Users/mobike/IdeaProjects/algo/B-small-out.txt";
// String fileName = "/Users/mobike/IdeaProjects/algo/B-large-practice.in";
// String outFile = "/Users/mobike/IdeaProjects/algo/B-large-out.txt";
// String fileName = "C://Users/user/eclipse-workspace/algo/C-small-practice.in";
// String outFile = "C://Users/user/eclipse-workspace/algo/C-small-out.txt";
// String fileName = "C://Users/user/eclipse-workspace/algo/D-small-practice.in";
// String outFile = "C://Users/user/eclipse-workspace/algo/D-small-out.txt";
// String fileName = "C://Users/user/eclipse-workspace/algo/D-large-practice.in";
// String outFile = "C://Users/user/eclipse-workspace/algo/D-large-out.txt";
Scanner scanner = new Scanner(System.in);
// int T = scanner.nextInt();
// for (int i = 1; i <= T; i++) {
CodeForces jam = new CodeForces();
jam.run(scanner);
// }
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.*;
public class CodeForces {
class Pair<K, V> {
K first;
V second;
public Pair(K k, V v) {
first = k;
second = v;
}
}
private boolean contain(int set, int i) {
return (set & (1<<i)) > 0;
}
private static int gcd(int a, int b) {
if (b == 0) return a;
return gcd(b, a%b);
}
private long pow(long a, long p) {
if (p == 0) return 1;
long b = pow(a, p/2);
b = b * b;
if (p % 2 == 1) b *= a;
return b % mod;
}
private static boolean isSame(double a, double b) {
return Math.abs(a - b) < 1e-10;
}
private static void swapBoolean(boolean[] p, int i, int j) {
boolean tmp = p[i];
p[i] = p[j];
p[j] = tmp;
}
private static void swap(int[] p, int i, int j) {
int tmp = p[i];
p[i] = p[j];
p[j] = tmp;
}
private static int countOne(int a) {
if (a == 0) return 0;
return countOne(a & (a-1)) + 1;
}
private static int sdiv(int a, int b) {
return (a +b -1) / b;
}
private int[] retran(int index) {
int[] res = new int[2];
res[0] = index / M;
res[1] = index % M;
return res;
}
private int tran(int x, int y) {
return x * M + y;
}
private boolean inTable(int x, int y) {
return x>=0 && x< N && y >= 0 && y < M;
}
int N;
int R;
int[][] C = new int[10][10];
int M;
int mod = 1_000_000_007;
long IMPO;
int ans;
int[] dx = new int[]{1,0, -1, 0};
int[] dy = new int[]{0, -1, 0, 1};
Map<String, Boolean> dp = new HashMap<>();
class Edge {
int u;
int v;
int start;
int duration;
public Edge(int u, int v, int l, int d) {
this.u = u;
this.v = v;
this.start = l;
this.duration = d;
}
}
List<List<Integer>> graph = new ArrayList<>();
List<Edge> edges = new ArrayList<>();
int[] parent;
boolean[] visited;
public void run(Scanner scanner) throws IOException {
long k = scanner.nextLong();
int len = 1;
long number = 9;
for (int i = 0; true; i++) {
if (len * number < k) {
k -= len * number;
len ++;
number *= 10;
} else {
break;
}
}
number /= 9;
StringBuilder sb = new StringBuilder();
for (int i = 1; i <= 9; i++) {
if (len * number < k) {
k -= len * number;
} else {
sb.append(i);
break;
}
}
for (int i = 1; i < len; i++) {
number /= 10;
for (int j = 0; j <= 9; j++) {
if (len * number < k) {
k -= len * number;
} else {
sb.append(j);
break;
}
}
}
System.out.println(sb.charAt((int) k - 1));
}
public static void main(String[] args) throws NumberFormatException, IOException {
// String fileName = "C://Users/user/eclipse-workspace/algo/example.txt";
// String outFile = "C://Users/user/eclipse-workspace/algo/example-out.txt";
// String fileName = "C://Users/user/eclipse-workspace/algo/A-small-practice.in";
// String outFile = "C://Users/user/eclipse-workspace/algo/A-small-out.txt";
// String fileName = "C://Users/user/eclipse-workspace/algo/A-large-practice.in";
// String outFile = "C://Users/user/eclipse-workspace/algo/A-large-out.txt";
// String fileName = "/Users/mobike/IdeaProjects/algo/B-small-practice.in";
// String outFile = "/Users/mobike/IdeaProjects/algo/B-small-out.txt";
// String fileName = "/Users/mobike/IdeaProjects/algo/B-large-practice.in";
// String outFile = "/Users/mobike/IdeaProjects/algo/B-large-out.txt";
// String fileName = "C://Users/user/eclipse-workspace/algo/C-small-practice.in";
// String outFile = "C://Users/user/eclipse-workspace/algo/C-small-out.txt";
// String fileName = "C://Users/user/eclipse-workspace/algo/D-small-practice.in";
// String outFile = "C://Users/user/eclipse-workspace/algo/D-small-out.txt";
// String fileName = "C://Users/user/eclipse-workspace/algo/D-large-practice.in";
// String outFile = "C://Users/user/eclipse-workspace/algo/D-large-out.txt";
Scanner scanner = new Scanner(System.in);
// int T = scanner.nextInt();
// for (int i = 1; i <= T; i++) {
CodeForces jam = new CodeForces();
jam.run(scanner);
// }
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,649 | 1,028 |
212 |
//package fourninetysixDiv3;
import java.util.HashMap;
import java.util.Scanner;
public class Median_Segments_general {
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
int n = s.nextInt();
int m = s.nextInt();
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = s.nextInt();
}
System.out.println(func(n, m, arr)-func(n, m+1, arr));
}
public static long func(int n,int m,int[] arr) {
HashMap<Long, Integer> map = new HashMap<>();
map.put((long) 0, 1);
long sum = 0;
long res = 0;
long add=0;
for(int i=0;i<n;i++) {
if(arr[i]<m) {
sum--;
if(map.containsKey(sum)) {
add-=map.get(sum);
}
}
else {
if(map.containsKey(sum)) {
add+=map.get(sum);
}
sum++;
}
res+=add;
if(map.containsKey(sum)) {
map.put(sum, map.get(sum)+1);
}
else {
map.put(sum,1);
}
}
return res;
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
//package fourninetysixDiv3;
import java.util.HashMap;
import java.util.Scanner;
public class Median_Segments_general {
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
int n = s.nextInt();
int m = s.nextInt();
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = s.nextInt();
}
System.out.println(func(n, m, arr)-func(n, m+1, arr));
}
public static long func(int n,int m,int[] arr) {
HashMap<Long, Integer> map = new HashMap<>();
map.put((long) 0, 1);
long sum = 0;
long res = 0;
long add=0;
for(int i=0;i<n;i++) {
if(arr[i]<m) {
sum--;
if(map.containsKey(sum)) {
add-=map.get(sum);
}
}
else {
if(map.containsKey(sum)) {
add+=map.get(sum);
}
sum++;
}
res+=add;
if(map.containsKey(sum)) {
map.put(sum, map.get(sum)+1);
}
else {
map.put(sum,1);
}
}
return res;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
//package fourninetysixDiv3;
import java.util.HashMap;
import java.util.Scanner;
public class Median_Segments_general {
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
int n = s.nextInt();
int m = s.nextInt();
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = s.nextInt();
}
System.out.println(func(n, m, arr)-func(n, m+1, arr));
}
public static long func(int n,int m,int[] arr) {
HashMap<Long, Integer> map = new HashMap<>();
map.put((long) 0, 1);
long sum = 0;
long res = 0;
long add=0;
for(int i=0;i<n;i++) {
if(arr[i]<m) {
sum--;
if(map.containsKey(sum)) {
add-=map.get(sum);
}
}
else {
if(map.containsKey(sum)) {
add+=map.get(sum);
}
sum++;
}
res+=add;
if(map.containsKey(sum)) {
map.put(sum, map.get(sum)+1);
}
else {
map.put(sum,1);
}
}
return res;
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 619 | 212 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.