id
int64
0
4.52k
code
stringlengths
142
31.2k
answer
stringclasses
7 values
prompt
stringlengths
1.64k
32.6k
test_prompt
stringlengths
1.7k
32.7k
token_length
int64
373
7.8k
__index_level_0__
int64
0
4.5k
244
import java.util.*; import java.io.*; public class MinimumDiameterTree{ public static void main(String[] args) { InputReader in = new InputReader (System.in); PrintWriter out = new PrintWriter (System.out); int n = in.nextInt(); int s = in.nextInt(); int deg[] = new int [n]; for (int i = 1; i < n; ++i) { deg[in.nextInt() - 1] ++; deg[in.nextInt() - 1] ++; } int l = 0; for (int i = 0; i < n; ++i) if (deg[i] == 1) l ++; out.println((double) 2 * s / l); out.close(); } public static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch(IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class MinimumDiameterTree{ public static void main(String[] args) { InputReader in = new InputReader (System.in); PrintWriter out = new PrintWriter (System.out); int n = in.nextInt(); int s = in.nextInt(); int deg[] = new int [n]; for (int i = 1; i < n; ++i) { deg[in.nextInt() - 1] ++; deg[in.nextInt() - 1] ++; } int l = 0; for (int i = 0; i < n; ++i) if (deg[i] == 1) l ++; out.println((double) 2 * s / l); out.close(); } public static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch(IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class MinimumDiameterTree{ public static void main(String[] args) { InputReader in = new InputReader (System.in); PrintWriter out = new PrintWriter (System.out); int n = in.nextInt(); int s = in.nextInt(); int deg[] = new int [n]; for (int i = 1; i < n; ++i) { deg[in.nextInt() - 1] ++; deg[in.nextInt() - 1] ++; } int l = 0; for (int i = 0; i < n; ++i) if (deg[i] == 1) l ++; out.println((double) 2 * s / l); out.close(); } public static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch(IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
620
244
4,507
import java.io.*; import java.util.*; import static java.lang.Math.*; public class E { static int g[][]; static int n, m; static char[] s; static int dp[], inf = (int) 2e9; public static void main(String[] args) throws Exception { Scanner in = new Scanner(System.in); PrintWriter pw = new PrintWriter(System.out); n = in.nextInt(); m = in.nextInt(); s = in.next().toCharArray(); g = new int[m][m]; for (int i = 1; i < n; i++) { int x = s[i - 1] - 'a', y = s[i] - 'a'; if (x != y) { g[x][y]++; g[y][x]++; } } dp = new int[1 << m]; Arrays.fill(dp, -1); pw.println(solve(0, 0)); pw.close(); } static int solve(int pos, int mask) { if (pos >= m) return 0; if (dp[mask] != -1) return dp[mask]; int min = inf; for (int i = 0; i < m; i++) { if (!check(mask, i)) { int res = 0; for (int j = 0; j < m; j++) { if (check(mask, j)) res += g[i][j] * pos; else res -= g[i][j] * pos; } res += solve(pos + 1, set(mask, i)); min = min(min, res); } } return dp[mask] = min; } static boolean check(int N, int pos) { return (N & (1 << pos)) != 0; } static int set(int N, int pos) { return N = N | (1 << pos); } static int reset(int N, int pos) { return N = N & ~(1 << pos); } static void debug(Object... obj) { System.err.println(Arrays.deepToString(obj)); } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; import static java.lang.Math.*; public class E { static int g[][]; static int n, m; static char[] s; static int dp[], inf = (int) 2e9; public static void main(String[] args) throws Exception { Scanner in = new Scanner(System.in); PrintWriter pw = new PrintWriter(System.out); n = in.nextInt(); m = in.nextInt(); s = in.next().toCharArray(); g = new int[m][m]; for (int i = 1; i < n; i++) { int x = s[i - 1] - 'a', y = s[i] - 'a'; if (x != y) { g[x][y]++; g[y][x]++; } } dp = new int[1 << m]; Arrays.fill(dp, -1); pw.println(solve(0, 0)); pw.close(); } static int solve(int pos, int mask) { if (pos >= m) return 0; if (dp[mask] != -1) return dp[mask]; int min = inf; for (int i = 0; i < m; i++) { if (!check(mask, i)) { int res = 0; for (int j = 0; j < m; j++) { if (check(mask, j)) res += g[i][j] * pos; else res -= g[i][j] * pos; } res += solve(pos + 1, set(mask, i)); min = min(min, res); } } return dp[mask] = min; } static boolean check(int N, int pos) { return (N & (1 << pos)) != 0; } static int set(int N, int pos) { return N = N | (1 << pos); } static int reset(int N, int pos) { return N = N & ~(1 << pos); } static void debug(Object... obj) { System.err.println(Arrays.deepToString(obj)); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; import static java.lang.Math.*; public class E { static int g[][]; static int n, m; static char[] s; static int dp[], inf = (int) 2e9; public static void main(String[] args) throws Exception { Scanner in = new Scanner(System.in); PrintWriter pw = new PrintWriter(System.out); n = in.nextInt(); m = in.nextInt(); s = in.next().toCharArray(); g = new int[m][m]; for (int i = 1; i < n; i++) { int x = s[i - 1] - 'a', y = s[i] - 'a'; if (x != y) { g[x][y]++; g[y][x]++; } } dp = new int[1 << m]; Arrays.fill(dp, -1); pw.println(solve(0, 0)); pw.close(); } static int solve(int pos, int mask) { if (pos >= m) return 0; if (dp[mask] != -1) return dp[mask]; int min = inf; for (int i = 0; i < m; i++) { if (!check(mask, i)) { int res = 0; for (int j = 0; j < m; j++) { if (check(mask, j)) res += g[i][j] * pos; else res -= g[i][j] * pos; } res += solve(pos + 1, set(mask, i)); min = min(min, res); } } return dp[mask] = min; } static boolean check(int N, int pos) { return (N & (1 << pos)) != 0; } static int set(int N, int pos) { return N = N | (1 << pos); } static int reset(int N, int pos) { return N = N & ~(1 << pos); } static void debug(Object... obj) { System.err.println(Arrays.deepToString(obj)); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
815
4,495
1,338
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.util.Scanner; import java.util.InputMismatchException; import java.util.HashMap; import java.io.IOException; import java.util.ArrayList; import java.io.Writer; import java.io.OutputStreamWriter; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author ilyakor */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskB solver = new TaskB(); solver.solve(1, in, out); out.close(); } static class TaskB { ArrayList<PointInt[]> al; TaskB.Interactor interactor; public void solve(int testNumber, InputReader in, OutputWriter out) { int n = in.nextInt(); //for (int itt = 0; itt < 100; ++itt) { interactor = new TaskB.IOInteractor(new Scanner(in.getStream()), out.getWriter());//new TestInteractor(n); Assert.assertTrue(interactor.query(1, 1, n, n) == 2); int lx = 1, rx = n, ly = 1, ry = n; for (int it = 0; it < 20; ++it) { int tx = (lx + rx) / 2; if (interactor.query(1, 1, tx, n) >= 1) rx = tx; else lx = tx; int ty = (ly + ry) / 2; if (interactor.query(1, 1, n, ty) >= 1) ry = ty; else ly = ty; } al = new ArrayList<>(); if (interactor.query(1, 1, lx, n) == 1 && interactor.query(lx + 1, 1, n, n) == 1) { dfs(1, 1, lx, n); dfs(lx + 1, 1, n, n); } else if (interactor.query(1, 1, rx, n) == 1 && interactor.query(rx + 1, 1, n, n) == 1) { dfs(1, 1, rx, n); dfs(rx + 1, 1, n, n); } else if (interactor.query(1, 1, n, ly) == 1 && interactor.query(1, ly + 1, n, n) == 1) { dfs(1, 1, n, ly); dfs(1, ly + 1, n, n); } else if (interactor.query(1, 1, n, ry) == 1 && interactor.query(1, ry + 1, n, n) == 1) { dfs(1, 1, n, ry); dfs(1, ry + 1, n, n); } else { throw new RuntimeException("WTF"); } Assert.assertTrue(al.size() == 2); interactor.answer(al.get(0)[0].x, al.get(0)[0].y, al.get(0)[1].x, al.get(0)[1].y, al.get(1)[0].x, al.get(1)[0].y, al.get(1)[1].x, al.get(1)[1].y); //} } private void dfs(int x1, int y1, int x2, int y2) { int t; t = x1; for (int i = 0; i < 20; ++i) { int x = (t + x2) / 2; if (interactor.query(x1, y1, x, y2) == 1) x2 = x; else t = x; } if (interactor.query(x1, y1, t, y2) == 1) x2 = t; t = x2; for (int i = 0; i < 20; ++i) { int x = (t + x1) / 2; if (interactor.query(x, y1, x2, y2) == 1) x1 = x; else t = x; } if (interactor.query(t, y1, x2, y2) == 1) x1 = t; t = y1; for (int i = 0; i < 20; ++i) { int y = (t + y2) / 2; if (interactor.query(x1, y1, x2, y) == 1) y2 = y; else t = y; } if (interactor.query(x1, y1, x2, t) == 1) y2 = t; t = y2; for (int i = 0; i < 20; ++i) { int y = (t + y1) / 2; if (interactor.query(x1, y, x2, y2) == 1) y1 = y; else t = y; } if (interactor.query(x1, t, x2, y2) == 1) y1 = t; al.add(new PointInt[]{new PointInt(x1, y1), new PointInt(x2, y2)}); } interface Interactor { int query(int x1, int y1, int x2, int y2); void answer(int x11, int y11, int x12, int y12, int x21, int y21, int x22, int y22); } static class Query { int x1; int y1; int x2; int y2; public Query(int x1, int y1, int x2, int y2) { this.x1 = x1; this.y1 = y1; this.x2 = x2; this.y2 = y2; } public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; TaskB.Query query = (TaskB.Query) o; if (x1 != query.x1) return false; if (y1 != query.y1) return false; if (x2 != query.x2) return false; return y2 == query.y2; } public int hashCode() { int result = x1; result = 31 * result + y1; result = 31 * result + x2; result = 31 * result + y2; return result; } } static class IOInteractor implements TaskB.Interactor { Scanner in; PrintWriter out; HashMap<TaskB.Query, Integer> cache; public IOInteractor(Scanner in, PrintWriter out) { this.in = in; this.out = out; cache = new HashMap<>(); } public int query(int x1, int y1, int x2, int y2) { TaskB.Query q = new TaskB.Query(x1, y1, x2, y2); if (cache.containsKey(q)) return cache.get(q); if (x1 > x2 || y1 > y2) return 0; Assert.assertTrue(x1 >= 1 && y1 >= 1); out.println("? " + x1 + " " + y1 + " " + x2 + " " + y2); out.flush(); int res = in.nextInt(); cache.put(q, res); return res; } public void answer(int x11, int y11, int x12, int y12, int x21, int y21, int x22, int y22) { out.println("! " + x11 + " " + y11 + " " + x12 + " " + y12 + " " + x21 + " " + y21 + " " + x22 + " " + y22); out.flush(); } } } static class InputReader { private InputStream stream; private byte[] buffer = new byte[10000]; private int cur; private int count; public InputReader(InputStream stream) { this.stream = stream; } public static boolean isSpace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public int read() { if (count == -1) { throw new InputMismatchException(); } try { if (cur >= count) { cur = 0; count = stream.read(buffer); if (count <= 0) return -1; } } catch (IOException e) { throw new InputMismatchException(); } return buffer[cur++]; } public int readSkipSpace() { int c; do { c = read(); } while (isSpace(c)); return c; } public int nextInt() { int sgn = 1; int c = readSkipSpace(); if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res = res * 10 + c - '0'; c = read(); } while (!isSpace(c)); res *= sgn; return res; } public InputStream getStream() { return stream; } } static class PointInt { public int x; public int y; public PointInt(int x, int y) { this.x = x; this.y = y; } public PointInt() { x = 0; y = 0; } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public PrintWriter getWriter() { return writer; } public void close() { writer.close(); } } static class Assert { public static void assertTrue(boolean flag) { // if (!flag) // while (true); if (!flag) throw new AssertionError(); } } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.util.Scanner; import java.util.InputMismatchException; import java.util.HashMap; import java.io.IOException; import java.util.ArrayList; import java.io.Writer; import java.io.OutputStreamWriter; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author ilyakor */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskB solver = new TaskB(); solver.solve(1, in, out); out.close(); } static class TaskB { ArrayList<PointInt[]> al; TaskB.Interactor interactor; public void solve(int testNumber, InputReader in, OutputWriter out) { int n = in.nextInt(); //for (int itt = 0; itt < 100; ++itt) { interactor = new TaskB.IOInteractor(new Scanner(in.getStream()), out.getWriter());//new TestInteractor(n); Assert.assertTrue(interactor.query(1, 1, n, n) == 2); int lx = 1, rx = n, ly = 1, ry = n; for (int it = 0; it < 20; ++it) { int tx = (lx + rx) / 2; if (interactor.query(1, 1, tx, n) >= 1) rx = tx; else lx = tx; int ty = (ly + ry) / 2; if (interactor.query(1, 1, n, ty) >= 1) ry = ty; else ly = ty; } al = new ArrayList<>(); if (interactor.query(1, 1, lx, n) == 1 && interactor.query(lx + 1, 1, n, n) == 1) { dfs(1, 1, lx, n); dfs(lx + 1, 1, n, n); } else if (interactor.query(1, 1, rx, n) == 1 && interactor.query(rx + 1, 1, n, n) == 1) { dfs(1, 1, rx, n); dfs(rx + 1, 1, n, n); } else if (interactor.query(1, 1, n, ly) == 1 && interactor.query(1, ly + 1, n, n) == 1) { dfs(1, 1, n, ly); dfs(1, ly + 1, n, n); } else if (interactor.query(1, 1, n, ry) == 1 && interactor.query(1, ry + 1, n, n) == 1) { dfs(1, 1, n, ry); dfs(1, ry + 1, n, n); } else { throw new RuntimeException("WTF"); } Assert.assertTrue(al.size() == 2); interactor.answer(al.get(0)[0].x, al.get(0)[0].y, al.get(0)[1].x, al.get(0)[1].y, al.get(1)[0].x, al.get(1)[0].y, al.get(1)[1].x, al.get(1)[1].y); //} } private void dfs(int x1, int y1, int x2, int y2) { int t; t = x1; for (int i = 0; i < 20; ++i) { int x = (t + x2) / 2; if (interactor.query(x1, y1, x, y2) == 1) x2 = x; else t = x; } if (interactor.query(x1, y1, t, y2) == 1) x2 = t; t = x2; for (int i = 0; i < 20; ++i) { int x = (t + x1) / 2; if (interactor.query(x, y1, x2, y2) == 1) x1 = x; else t = x; } if (interactor.query(t, y1, x2, y2) == 1) x1 = t; t = y1; for (int i = 0; i < 20; ++i) { int y = (t + y2) / 2; if (interactor.query(x1, y1, x2, y) == 1) y2 = y; else t = y; } if (interactor.query(x1, y1, x2, t) == 1) y2 = t; t = y2; for (int i = 0; i < 20; ++i) { int y = (t + y1) / 2; if (interactor.query(x1, y, x2, y2) == 1) y1 = y; else t = y; } if (interactor.query(x1, t, x2, y2) == 1) y1 = t; al.add(new PointInt[]{new PointInt(x1, y1), new PointInt(x2, y2)}); } interface Interactor { int query(int x1, int y1, int x2, int y2); void answer(int x11, int y11, int x12, int y12, int x21, int y21, int x22, int y22); } static class Query { int x1; int y1; int x2; int y2; public Query(int x1, int y1, int x2, int y2) { this.x1 = x1; this.y1 = y1; this.x2 = x2; this.y2 = y2; } public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; TaskB.Query query = (TaskB.Query) o; if (x1 != query.x1) return false; if (y1 != query.y1) return false; if (x2 != query.x2) return false; return y2 == query.y2; } public int hashCode() { int result = x1; result = 31 * result + y1; result = 31 * result + x2; result = 31 * result + y2; return result; } } static class IOInteractor implements TaskB.Interactor { Scanner in; PrintWriter out; HashMap<TaskB.Query, Integer> cache; public IOInteractor(Scanner in, PrintWriter out) { this.in = in; this.out = out; cache = new HashMap<>(); } public int query(int x1, int y1, int x2, int y2) { TaskB.Query q = new TaskB.Query(x1, y1, x2, y2); if (cache.containsKey(q)) return cache.get(q); if (x1 > x2 || y1 > y2) return 0; Assert.assertTrue(x1 >= 1 && y1 >= 1); out.println("? " + x1 + " " + y1 + " " + x2 + " " + y2); out.flush(); int res = in.nextInt(); cache.put(q, res); return res; } public void answer(int x11, int y11, int x12, int y12, int x21, int y21, int x22, int y22) { out.println("! " + x11 + " " + y11 + " " + x12 + " " + y12 + " " + x21 + " " + y21 + " " + x22 + " " + y22); out.flush(); } } } static class InputReader { private InputStream stream; private byte[] buffer = new byte[10000]; private int cur; private int count; public InputReader(InputStream stream) { this.stream = stream; } public static boolean isSpace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public int read() { if (count == -1) { throw new InputMismatchException(); } try { if (cur >= count) { cur = 0; count = stream.read(buffer); if (count <= 0) return -1; } } catch (IOException e) { throw new InputMismatchException(); } return buffer[cur++]; } public int readSkipSpace() { int c; do { c = read(); } while (isSpace(c)); return c; } public int nextInt() { int sgn = 1; int c = readSkipSpace(); if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res = res * 10 + c - '0'; c = read(); } while (!isSpace(c)); res *= sgn; return res; } public InputStream getStream() { return stream; } } static class PointInt { public int x; public int y; public PointInt(int x, int y) { this.x = x; this.y = y; } public PointInt() { x = 0; y = 0; } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public PrintWriter getWriter() { return writer; } public void close() { writer.close(); } } static class Assert { public static void assertTrue(boolean flag) { // if (!flag) // while (true); if (!flag) throw new AssertionError(); } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.util.Scanner; import java.util.InputMismatchException; import java.util.HashMap; import java.io.IOException; import java.util.ArrayList; import java.io.Writer; import java.io.OutputStreamWriter; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author ilyakor */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskB solver = new TaskB(); solver.solve(1, in, out); out.close(); } static class TaskB { ArrayList<PointInt[]> al; TaskB.Interactor interactor; public void solve(int testNumber, InputReader in, OutputWriter out) { int n = in.nextInt(); //for (int itt = 0; itt < 100; ++itt) { interactor = new TaskB.IOInteractor(new Scanner(in.getStream()), out.getWriter());//new TestInteractor(n); Assert.assertTrue(interactor.query(1, 1, n, n) == 2); int lx = 1, rx = n, ly = 1, ry = n; for (int it = 0; it < 20; ++it) { int tx = (lx + rx) / 2; if (interactor.query(1, 1, tx, n) >= 1) rx = tx; else lx = tx; int ty = (ly + ry) / 2; if (interactor.query(1, 1, n, ty) >= 1) ry = ty; else ly = ty; } al = new ArrayList<>(); if (interactor.query(1, 1, lx, n) == 1 && interactor.query(lx + 1, 1, n, n) == 1) { dfs(1, 1, lx, n); dfs(lx + 1, 1, n, n); } else if (interactor.query(1, 1, rx, n) == 1 && interactor.query(rx + 1, 1, n, n) == 1) { dfs(1, 1, rx, n); dfs(rx + 1, 1, n, n); } else if (interactor.query(1, 1, n, ly) == 1 && interactor.query(1, ly + 1, n, n) == 1) { dfs(1, 1, n, ly); dfs(1, ly + 1, n, n); } else if (interactor.query(1, 1, n, ry) == 1 && interactor.query(1, ry + 1, n, n) == 1) { dfs(1, 1, n, ry); dfs(1, ry + 1, n, n); } else { throw new RuntimeException("WTF"); } Assert.assertTrue(al.size() == 2); interactor.answer(al.get(0)[0].x, al.get(0)[0].y, al.get(0)[1].x, al.get(0)[1].y, al.get(1)[0].x, al.get(1)[0].y, al.get(1)[1].x, al.get(1)[1].y); //} } private void dfs(int x1, int y1, int x2, int y2) { int t; t = x1; for (int i = 0; i < 20; ++i) { int x = (t + x2) / 2; if (interactor.query(x1, y1, x, y2) == 1) x2 = x; else t = x; } if (interactor.query(x1, y1, t, y2) == 1) x2 = t; t = x2; for (int i = 0; i < 20; ++i) { int x = (t + x1) / 2; if (interactor.query(x, y1, x2, y2) == 1) x1 = x; else t = x; } if (interactor.query(t, y1, x2, y2) == 1) x1 = t; t = y1; for (int i = 0; i < 20; ++i) { int y = (t + y2) / 2; if (interactor.query(x1, y1, x2, y) == 1) y2 = y; else t = y; } if (interactor.query(x1, y1, x2, t) == 1) y2 = t; t = y2; for (int i = 0; i < 20; ++i) { int y = (t + y1) / 2; if (interactor.query(x1, y, x2, y2) == 1) y1 = y; else t = y; } if (interactor.query(x1, t, x2, y2) == 1) y1 = t; al.add(new PointInt[]{new PointInt(x1, y1), new PointInt(x2, y2)}); } interface Interactor { int query(int x1, int y1, int x2, int y2); void answer(int x11, int y11, int x12, int y12, int x21, int y21, int x22, int y22); } static class Query { int x1; int y1; int x2; int y2; public Query(int x1, int y1, int x2, int y2) { this.x1 = x1; this.y1 = y1; this.x2 = x2; this.y2 = y2; } public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; TaskB.Query query = (TaskB.Query) o; if (x1 != query.x1) return false; if (y1 != query.y1) return false; if (x2 != query.x2) return false; return y2 == query.y2; } public int hashCode() { int result = x1; result = 31 * result + y1; result = 31 * result + x2; result = 31 * result + y2; return result; } } static class IOInteractor implements TaskB.Interactor { Scanner in; PrintWriter out; HashMap<TaskB.Query, Integer> cache; public IOInteractor(Scanner in, PrintWriter out) { this.in = in; this.out = out; cache = new HashMap<>(); } public int query(int x1, int y1, int x2, int y2) { TaskB.Query q = new TaskB.Query(x1, y1, x2, y2); if (cache.containsKey(q)) return cache.get(q); if (x1 > x2 || y1 > y2) return 0; Assert.assertTrue(x1 >= 1 && y1 >= 1); out.println("? " + x1 + " " + y1 + " " + x2 + " " + y2); out.flush(); int res = in.nextInt(); cache.put(q, res); return res; } public void answer(int x11, int y11, int x12, int y12, int x21, int y21, int x22, int y22) { out.println("! " + x11 + " " + y11 + " " + x12 + " " + y12 + " " + x21 + " " + y21 + " " + x22 + " " + y22); out.flush(); } } } static class InputReader { private InputStream stream; private byte[] buffer = new byte[10000]; private int cur; private int count; public InputReader(InputStream stream) { this.stream = stream; } public static boolean isSpace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public int read() { if (count == -1) { throw new InputMismatchException(); } try { if (cur >= count) { cur = 0; count = stream.read(buffer); if (count <= 0) return -1; } } catch (IOException e) { throw new InputMismatchException(); } return buffer[cur++]; } public int readSkipSpace() { int c; do { c = read(); } while (isSpace(c)); return c; } public int nextInt() { int sgn = 1; int c = readSkipSpace(); if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res = res * 10 + c - '0'; c = read(); } while (!isSpace(c)); res *= sgn; return res; } public InputStream getStream() { return stream; } } static class PointInt { public int x; public int y; public PointInt(int x, int y) { this.x = x; this.y = y; } public PointInt() { x = 0; y = 0; } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public PrintWriter getWriter() { return writer; } public void close() { writer.close(); } } static class Assert { public static void assertTrue(boolean flag) { // if (!flag) // while (true); if (!flag) throw new AssertionError(); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
2,773
1,336
855
import java.util.*; import java.io.*; import java.math.BigInteger; public class Main { static final long mod=(int)1e9+7; public static void main(String[] args) throws Exception { FastReader in=new FastReader(); PrintWriter pw=new PrintWriter(System.out); int n=in.nextInt(); long ans=0; for(int i=2;2*i<=n;i++) { ans+=i*(n/i-1); } ans*=4; pw.print(ans); pw.flush(); } } class pair { int f,s; } class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br=new BufferedReader(new InputStreamReader(System.in)); } public String next() throws IOException { if(st==null || !st.hasMoreElements()) { st=new StringTokenizer(br.readLine()); } return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; import java.math.BigInteger; public class Main { static final long mod=(int)1e9+7; public static void main(String[] args) throws Exception { FastReader in=new FastReader(); PrintWriter pw=new PrintWriter(System.out); int n=in.nextInt(); long ans=0; for(int i=2;2*i<=n;i++) { ans+=i*(n/i-1); } ans*=4; pw.print(ans); pw.flush(); } } class pair { int f,s; } class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br=new BufferedReader(new InputStreamReader(System.in)); } public String next() throws IOException { if(st==null || !st.hasMoreElements()) { st=new StringTokenizer(br.readLine()); } return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; import java.math.BigInteger; public class Main { static final long mod=(int)1e9+7; public static void main(String[] args) throws Exception { FastReader in=new FastReader(); PrintWriter pw=new PrintWriter(System.out); int n=in.nextInt(); long ans=0; for(int i=2;2*i<=n;i++) { ans+=i*(n/i-1); } ans*=4; pw.print(ans); pw.flush(); } } class pair { int f,s; } class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br=new BufferedReader(new InputStreamReader(System.in)); } public String next() throws IOException { if(st==null || !st.hasMoreElements()) { st=new StringTokenizer(br.readLine()); } return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
576
854
0
import java.io.*; import java.math.BigInteger; import java.util.InputMismatchException; import java.util.PriorityQueue; import java.util.StringTokenizer; public class D { static class FastWriter { private final BufferedWriter bw; public FastWriter() { this.bw = new BufferedWriter(new OutputStreamWriter(System.out)); } public void print(Object object) throws IOException { bw.append("" + object); } public void println(Object object) throws IOException { print(object); bw.append("\n"); } public void close() throws IOException { bw.close(); } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } BigInteger nextBigInteger() { try { return new BigInteger(nextLine()); } catch (NumberFormatException e) { throw new InputMismatchException(); } } } public static void main(String[] args) throws IOException { FastReader fr = new FastReader(); FastWriter fw = new FastWriter(); int n = fr.nextInt(); int m = fr.nextInt(); for (int r = 0; r < n / 2; r++) { for (int c = 0; c < m; c++) { fw.println((r + 1) + " " + (c + 1)); fw.println((n - r) + " " + (m - c)); } } if (n % 2 != 0) { int r = n / 2; for (int c = 0; c < m / 2; c++) { fw.println((r + 1) + " " + (c + 1)); fw.println((r + 1) + " " + (m - c)); } if (m % 2 != 0) fw.println((r + 1) + " " + (m / 2 + 1)); } fw.close(); } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.math.BigInteger; import java.util.InputMismatchException; import java.util.PriorityQueue; import java.util.StringTokenizer; public class D { static class FastWriter { private final BufferedWriter bw; public FastWriter() { this.bw = new BufferedWriter(new OutputStreamWriter(System.out)); } public void print(Object object) throws IOException { bw.append("" + object); } public void println(Object object) throws IOException { print(object); bw.append("\n"); } public void close() throws IOException { bw.close(); } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } BigInteger nextBigInteger() { try { return new BigInteger(nextLine()); } catch (NumberFormatException e) { throw new InputMismatchException(); } } } public static void main(String[] args) throws IOException { FastReader fr = new FastReader(); FastWriter fw = new FastWriter(); int n = fr.nextInt(); int m = fr.nextInt(); for (int r = 0; r < n / 2; r++) { for (int c = 0; c < m; c++) { fw.println((r + 1) + " " + (c + 1)); fw.println((n - r) + " " + (m - c)); } } if (n % 2 != 0) { int r = n / 2; for (int c = 0; c < m / 2; c++) { fw.println((r + 1) + " " + (c + 1)); fw.println((r + 1) + " " + (m - c)); } if (m % 2 != 0) fw.println((r + 1) + " " + (m / 2 + 1)); } fw.close(); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.math.BigInteger; import java.util.InputMismatchException; import java.util.PriorityQueue; import java.util.StringTokenizer; public class D { static class FastWriter { private final BufferedWriter bw; public FastWriter() { this.bw = new BufferedWriter(new OutputStreamWriter(System.out)); } public void print(Object object) throws IOException { bw.append("" + object); } public void println(Object object) throws IOException { print(object); bw.append("\n"); } public void close() throws IOException { bw.close(); } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } BigInteger nextBigInteger() { try { return new BigInteger(nextLine()); } catch (NumberFormatException e) { throw new InputMismatchException(); } } } public static void main(String[] args) throws IOException { FastReader fr = new FastReader(); FastWriter fw = new FastWriter(); int n = fr.nextInt(); int m = fr.nextInt(); for (int r = 0; r < n / 2; r++) { for (int c = 0; c < m; c++) { fw.println((r + 1) + " " + (c + 1)); fw.println((n - r) + " " + (m - c)); } } if (n % 2 != 0) { int r = n / 2; for (int c = 0; c < m / 2; c++) { fw.println((r + 1) + " " + (c + 1)); fw.println((r + 1) + " " + (m - c)); } if (m % 2 != 0) fw.println((r + 1) + " " + (m / 2 + 1)); } fw.close(); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
893
0
2,157
import java.util.*; import java.lang.*; import java.io.*; import java.math.*; /* Name of the class has to be "Main" only if the class is public. */ public class Codechef { static BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); static ArrayList<ArrayList<Integer>> list; static HashSet<Integer> hs; static ArrayList<Integer> tmp; //int n=Integer.parseInt(br.readLine()); //int n=Integer.parseInt(st.nextToken()); //StringTokenizer st = new StringTokenizer(br.readLine()); public static double cal(int a,double b,int x,int r) { r*=2; double dis=(r*r) - Math.pow(Math.abs(a-x),2); dis=Math.sqrt(dis); dis+=b; return dis; } public static void main (String[] args) throws java.lang.Exception { int n,r; StringTokenizer st = new StringTokenizer(br.readLine()); n=Integer.parseInt(st.nextToken()); r=Integer.parseInt(st.nextToken()); int arr[] = new int[n+1]; double cen[] = new double[n+1]; int i,j; for(i=1;i<=n;i++) cen[i]=-1.0; st = new StringTokenizer(br.readLine()); for(i=1;i<=n;i++)arr[i]=Integer.parseInt(st.nextToken()); for(i=1;i<=n;i++) { int f=0; double max=-1.0; for(j=1;j<=n;j++) { if(i!=j && cen[j]!=-1.0 && (Math.abs(arr[i]-arr[j])<=2*r)) { max=Math.max(max,cal(arr[j],cen[j],arr[i],r)); f=1; } } // System.out.println(i+" "+max); if(f==1) cen[i]=max; else cen[i]=r*1.0; } for(i=1;i<=n;i++) System.out.print(cen[i]+" "); } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.lang.*; import java.io.*; import java.math.*; /* Name of the class has to be "Main" only if the class is public. */ public class Codechef { static BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); static ArrayList<ArrayList<Integer>> list; static HashSet<Integer> hs; static ArrayList<Integer> tmp; //int n=Integer.parseInt(br.readLine()); //int n=Integer.parseInt(st.nextToken()); //StringTokenizer st = new StringTokenizer(br.readLine()); public static double cal(int a,double b,int x,int r) { r*=2; double dis=(r*r) - Math.pow(Math.abs(a-x),2); dis=Math.sqrt(dis); dis+=b; return dis; } public static void main (String[] args) throws java.lang.Exception { int n,r; StringTokenizer st = new StringTokenizer(br.readLine()); n=Integer.parseInt(st.nextToken()); r=Integer.parseInt(st.nextToken()); int arr[] = new int[n+1]; double cen[] = new double[n+1]; int i,j; for(i=1;i<=n;i++) cen[i]=-1.0; st = new StringTokenizer(br.readLine()); for(i=1;i<=n;i++)arr[i]=Integer.parseInt(st.nextToken()); for(i=1;i<=n;i++) { int f=0; double max=-1.0; for(j=1;j<=n;j++) { if(i!=j && cen[j]!=-1.0 && (Math.abs(arr[i]-arr[j])<=2*r)) { max=Math.max(max,cal(arr[j],cen[j],arr[i],r)); f=1; } } // System.out.println(i+" "+max); if(f==1) cen[i]=max; else cen[i]=r*1.0; } for(i=1;i<=n;i++) System.out.print(cen[i]+" "); } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.lang.*; import java.io.*; import java.math.*; /* Name of the class has to be "Main" only if the class is public. */ public class Codechef { static BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); static ArrayList<ArrayList<Integer>> list; static HashSet<Integer> hs; static ArrayList<Integer> tmp; //int n=Integer.parseInt(br.readLine()); //int n=Integer.parseInt(st.nextToken()); //StringTokenizer st = new StringTokenizer(br.readLine()); public static double cal(int a,double b,int x,int r) { r*=2; double dis=(r*r) - Math.pow(Math.abs(a-x),2); dis=Math.sqrt(dis); dis+=b; return dis; } public static void main (String[] args) throws java.lang.Exception { int n,r; StringTokenizer st = new StringTokenizer(br.readLine()); n=Integer.parseInt(st.nextToken()); r=Integer.parseInt(st.nextToken()); int arr[] = new int[n+1]; double cen[] = new double[n+1]; int i,j; for(i=1;i<=n;i++) cen[i]=-1.0; st = new StringTokenizer(br.readLine()); for(i=1;i<=n;i++)arr[i]=Integer.parseInt(st.nextToken()); for(i=1;i<=n;i++) { int f=0; double max=-1.0; for(j=1;j<=n;j++) { if(i!=j && cen[j]!=-1.0 && (Math.abs(arr[i]-arr[j])<=2*r)) { max=Math.max(max,cal(arr[j],cen[j],arr[i],r)); f=1; } } // System.out.println(i+" "+max); if(f==1) cen[i]=max; else cen[i]=r*1.0; } for(i=1;i<=n;i++) System.out.print(cen[i]+" "); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
765
2,153
2,706
//q4 import java.io.*; import java.util.*; import java.math.*; public class q4 { public static void main(String[] args) { Scanner in = new Scanner(System.in); int query = in.nextInt(); while (query -- > 0) { int n = in.nextInt(); int k = in.nextInt(); char[] arr = new char[n]; //slot all n into char array String code = in.next(); for (int i = 0; i < n; i++) { arr[i] = code.charAt(i); } //R, G, B cycle int r = 0; int g = 0; int b = 0; for (int i = 0; i < k; i++) { if (i % 3 == 0) { if (arr[i] == 'R') {g++; b++;} else if (arr[i] == 'G') {r++; b++;} else {r++; g++;} //if is 'B' } else if (i % 3 == 1) { if (arr[i] == 'G') {g++; b++;} else if (arr[i] == 'B') {r++; b++;} else {r++; g++;} //if is 'R' } else { //if mod 3 is 2 if (arr[i] == 'B') {g++; b++;} else if (arr[i] == 'R') {r++; b++;} else {r++; g++;} //if is 'G' } } //starting from kth position, if different then add 1, and check (j-k)th position int rMin = r; int gMin = g; int bMin = b; for (int j = k; j < n; j++) { //R cycle if ((j % 3 == 0 && arr[j] != 'R') || (j % 3 == 1 && arr[j] != 'G') || (j % 3 == 2 && arr[j] != 'B')) { r++; } //R cycle if (((j - k) % 3 == 0 && arr[j - k] != 'R') || ((j - k) % 3 == 1 && arr[j - k] != 'G') || ((j - k) % 3 == 2 && arr[j - k] != 'B')) { r--; } rMin = Math.min(r, rMin); //G cycle if ((j % 3 == 0 && arr[j] != 'G') || (j % 3 == 1 && arr[j] != 'B') || (j % 3 == 2 && arr[j] != 'R')) { g++; } if (((j - k) % 3 == 0 && arr[j - k] != 'G') || ((j - k) % 3 == 1 && arr[j - k] != 'B') || ((j - k) % 3 == 2 && arr[j - k] != 'R')) { g--; } gMin = Math.min(gMin, g); //B cycle if ((j % 3 == 0 && arr[j] != 'B') || (j % 3 == 1 && arr[j] != 'R') || (j % 3 == 2 && arr[j] != 'G')) { b++; } if (((j - k) % 3 == 0 && arr[j - k] != 'B') || ((j - k) % 3 == 1 && arr[j - k] != 'R') || ((j - k) % 3 == 2 && arr[j - k] != 'G')) { b--; } bMin = Math.min(bMin, b); } System.out.println(Math.min(Math.min(rMin, gMin), bMin)); } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> //q4 import java.io.*; import java.util.*; import java.math.*; public class q4 { public static void main(String[] args) { Scanner in = new Scanner(System.in); int query = in.nextInt(); while (query -- > 0) { int n = in.nextInt(); int k = in.nextInt(); char[] arr = new char[n]; //slot all n into char array String code = in.next(); for (int i = 0; i < n; i++) { arr[i] = code.charAt(i); } //R, G, B cycle int r = 0; int g = 0; int b = 0; for (int i = 0; i < k; i++) { if (i % 3 == 0) { if (arr[i] == 'R') {g++; b++;} else if (arr[i] == 'G') {r++; b++;} else {r++; g++;} //if is 'B' } else if (i % 3 == 1) { if (arr[i] == 'G') {g++; b++;} else if (arr[i] == 'B') {r++; b++;} else {r++; g++;} //if is 'R' } else { //if mod 3 is 2 if (arr[i] == 'B') {g++; b++;} else if (arr[i] == 'R') {r++; b++;} else {r++; g++;} //if is 'G' } } //starting from kth position, if different then add 1, and check (j-k)th position int rMin = r; int gMin = g; int bMin = b; for (int j = k; j < n; j++) { //R cycle if ((j % 3 == 0 && arr[j] != 'R') || (j % 3 == 1 && arr[j] != 'G') || (j % 3 == 2 && arr[j] != 'B')) { r++; } //R cycle if (((j - k) % 3 == 0 && arr[j - k] != 'R') || ((j - k) % 3 == 1 && arr[j - k] != 'G') || ((j - k) % 3 == 2 && arr[j - k] != 'B')) { r--; } rMin = Math.min(r, rMin); //G cycle if ((j % 3 == 0 && arr[j] != 'G') || (j % 3 == 1 && arr[j] != 'B') || (j % 3 == 2 && arr[j] != 'R')) { g++; } if (((j - k) % 3 == 0 && arr[j - k] != 'G') || ((j - k) % 3 == 1 && arr[j - k] != 'B') || ((j - k) % 3 == 2 && arr[j - k] != 'R')) { g--; } gMin = Math.min(gMin, g); //B cycle if ((j % 3 == 0 && arr[j] != 'B') || (j % 3 == 1 && arr[j] != 'R') || (j % 3 == 2 && arr[j] != 'G')) { b++; } if (((j - k) % 3 == 0 && arr[j - k] != 'B') || ((j - k) % 3 == 1 && arr[j - k] != 'R') || ((j - k) % 3 == 2 && arr[j - k] != 'G')) { b--; } bMin = Math.min(bMin, b); } System.out.println(Math.min(Math.min(rMin, gMin), bMin)); } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> //q4 import java.io.*; import java.util.*; import java.math.*; public class q4 { public static void main(String[] args) { Scanner in = new Scanner(System.in); int query = in.nextInt(); while (query -- > 0) { int n = in.nextInt(); int k = in.nextInt(); char[] arr = new char[n]; //slot all n into char array String code = in.next(); for (int i = 0; i < n; i++) { arr[i] = code.charAt(i); } //R, G, B cycle int r = 0; int g = 0; int b = 0; for (int i = 0; i < k; i++) { if (i % 3 == 0) { if (arr[i] == 'R') {g++; b++;} else if (arr[i] == 'G') {r++; b++;} else {r++; g++;} //if is 'B' } else if (i % 3 == 1) { if (arr[i] == 'G') {g++; b++;} else if (arr[i] == 'B') {r++; b++;} else {r++; g++;} //if is 'R' } else { //if mod 3 is 2 if (arr[i] == 'B') {g++; b++;} else if (arr[i] == 'R') {r++; b++;} else {r++; g++;} //if is 'G' } } //starting from kth position, if different then add 1, and check (j-k)th position int rMin = r; int gMin = g; int bMin = b; for (int j = k; j < n; j++) { //R cycle if ((j % 3 == 0 && arr[j] != 'R') || (j % 3 == 1 && arr[j] != 'G') || (j % 3 == 2 && arr[j] != 'B')) { r++; } //R cycle if (((j - k) % 3 == 0 && arr[j - k] != 'R') || ((j - k) % 3 == 1 && arr[j - k] != 'G') || ((j - k) % 3 == 2 && arr[j - k] != 'B')) { r--; } rMin = Math.min(r, rMin); //G cycle if ((j % 3 == 0 && arr[j] != 'G') || (j % 3 == 1 && arr[j] != 'B') || (j % 3 == 2 && arr[j] != 'R')) { g++; } if (((j - k) % 3 == 0 && arr[j - k] != 'G') || ((j - k) % 3 == 1 && arr[j - k] != 'B') || ((j - k) % 3 == 2 && arr[j - k] != 'R')) { g--; } gMin = Math.min(gMin, g); //B cycle if ((j % 3 == 0 && arr[j] != 'B') || (j % 3 == 1 && arr[j] != 'R') || (j % 3 == 2 && arr[j] != 'G')) { b++; } if (((j - k) % 3 == 0 && arr[j - k] != 'B') || ((j - k) % 3 == 1 && arr[j - k] != 'R') || ((j - k) % 3 == 2 && arr[j - k] != 'G')) { b--; } bMin = Math.min(bMin, b); } System.out.println(Math.min(Math.min(rMin, gMin), bMin)); } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,270
2,700
2,273
import java.util.*; public class init { static class p{ int i; int c; public p(int i,int c) { this.i=i;this.c=c; // TODO Auto-generated constructor stub } } static int mod=1000000007; public static void main(String[] args) { // TODO Auto-generated method stub Scanner s=new Scanner(System.in); int n=s.nextInt(); int a[]=new int[n]; for(int i=0;i<n;i++) { char c=s.next().charAt(0); if(c=='f') a[i]=1; } int dp[][]=new int[n+1][n+1]; for(int i=0;i<=n;i++) { for(int j=0;j<=n;j++) dp[i][j]=-1; } System.out.println(ans(dp,1,0,a,n)); } public static int ans(int dp[][],int i,int j,int a[],int n) { if(i==n) { return 1; } if(dp[i][j]!=-1) { return dp[i][j]; } if(a[i-1]==1) { int x=ans(dp,i+1,j+1,a,n); if(x!=-1) dp[i][j]=x%mod; } else { int x=-1; if(j!=0) x=ans(dp,i,j-1,a,n); int y=ans(dp,i+1,j,a,n); if(x!=-1) dp[i][j]=x%mod; if(y!=-1) { if(dp[i][j]==-1) dp[i][j]=y%mod; else dp[i][j]+=y%mod;} } return dp[i][j]; } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; public class init { static class p{ int i; int c; public p(int i,int c) { this.i=i;this.c=c; // TODO Auto-generated constructor stub } } static int mod=1000000007; public static void main(String[] args) { // TODO Auto-generated method stub Scanner s=new Scanner(System.in); int n=s.nextInt(); int a[]=new int[n]; for(int i=0;i<n;i++) { char c=s.next().charAt(0); if(c=='f') a[i]=1; } int dp[][]=new int[n+1][n+1]; for(int i=0;i<=n;i++) { for(int j=0;j<=n;j++) dp[i][j]=-1; } System.out.println(ans(dp,1,0,a,n)); } public static int ans(int dp[][],int i,int j,int a[],int n) { if(i==n) { return 1; } if(dp[i][j]!=-1) { return dp[i][j]; } if(a[i-1]==1) { int x=ans(dp,i+1,j+1,a,n); if(x!=-1) dp[i][j]=x%mod; } else { int x=-1; if(j!=0) x=ans(dp,i,j-1,a,n); int y=ans(dp,i+1,j,a,n); if(x!=-1) dp[i][j]=x%mod; if(y!=-1) { if(dp[i][j]==-1) dp[i][j]=y%mod; else dp[i][j]+=y%mod;} } return dp[i][j]; } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; public class init { static class p{ int i; int c; public p(int i,int c) { this.i=i;this.c=c; // TODO Auto-generated constructor stub } } static int mod=1000000007; public static void main(String[] args) { // TODO Auto-generated method stub Scanner s=new Scanner(System.in); int n=s.nextInt(); int a[]=new int[n]; for(int i=0;i<n;i++) { char c=s.next().charAt(0); if(c=='f') a[i]=1; } int dp[][]=new int[n+1][n+1]; for(int i=0;i<=n;i++) { for(int j=0;j<=n;j++) dp[i][j]=-1; } System.out.println(ans(dp,1,0,a,n)); } public static int ans(int dp[][],int i,int j,int a[],int n) { if(i==n) { return 1; } if(dp[i][j]!=-1) { return dp[i][j]; } if(a[i-1]==1) { int x=ans(dp,i+1,j+1,a,n); if(x!=-1) dp[i][j]=x%mod; } else { int x=-1; if(j!=0) x=ans(dp,i,j-1,a,n); int y=ans(dp,i+1,j,a,n); if(x!=-1) dp[i][j]=x%mod; if(y!=-1) { if(dp[i][j]==-1) dp[i][j]=y%mod; else dp[i][j]+=y%mod;} } return dp[i][j]; } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
750
2,268
555
//I'm Whiplash99 import java.io.*; import java.util.*; public class B { public static void main(String[] args) throws Exception { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); int i,N; int T=Integer.parseInt(br.readLine().trim()); StringBuilder sb=new StringBuilder(); while (T-->0) { N=Integer.parseInt(br.readLine().trim()); boolean flag=false; int sqrt=(int) Math.sqrt(N/2); if(sqrt*sqrt==N/2&&N%2==0) flag = true; sqrt=(int) Math.sqrt(N/4); if(sqrt*sqrt==N/4&&N%4==0) flag = true; sb.append(flag?"YES\n":"NO\n"); } System.out.println(sb); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> //I'm Whiplash99 import java.io.*; import java.util.*; public class B { public static void main(String[] args) throws Exception { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); int i,N; int T=Integer.parseInt(br.readLine().trim()); StringBuilder sb=new StringBuilder(); while (T-->0) { N=Integer.parseInt(br.readLine().trim()); boolean flag=false; int sqrt=(int) Math.sqrt(N/2); if(sqrt*sqrt==N/2&&N%2==0) flag = true; sqrt=(int) Math.sqrt(N/4); if(sqrt*sqrt==N/4&&N%4==0) flag = true; sb.append(flag?"YES\n":"NO\n"); } System.out.println(sb); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> //I'm Whiplash99 import java.io.*; import java.util.*; public class B { public static void main(String[] args) throws Exception { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); int i,N; int T=Integer.parseInt(br.readLine().trim()); StringBuilder sb=new StringBuilder(); while (T-->0) { N=Integer.parseInt(br.readLine().trim()); boolean flag=false; int sqrt=(int) Math.sqrt(N/2); if(sqrt*sqrt==N/2&&N%2==0) flag = true; sqrt=(int) Math.sqrt(N/4); if(sqrt*sqrt==N/4&&N%4==0) flag = true; sb.append(flag?"YES\n":"NO\n"); } System.out.println(sb); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
504
554
3,641
import java.io.FileReader; import java.io.FileWriter; import java.io.IOException; import java.util.LinkedList; import java.util.Scanner; public class C { static class Struct { int x, y, count; public Struct(int xx, int yy, int c) { x = xx; y = yy; count = c; } } public static void main(String[] args) throws IOException { Scanner sc = new Scanner(new FileReader("input.txt")); int n = sc.nextInt(); int m = sc.nextInt(); FileWriter fw=new FileWriter("output.txt"); boolean[][] grid = new boolean[n][m]; int[] dx = new int[] { 1, 0, -1, 0 }; int[] dy = new int[] { 0, -1, 0, 1 }; int k = sc.nextInt(); LinkedList<Struct> a = new LinkedList<Struct>(); for (int i = 0; i < k; i++) { a.add(new Struct(sc.nextInt() - 1, sc.nextInt() - 1, 0)); } int max = Integer.MIN_VALUE, maxX = -1, maxY = -1; while (!a.isEmpty()) { Struct tmp = a.remove(); if (grid[tmp.x][tmp.y] == true) continue; grid[tmp.x][tmp.y] = true; if (tmp.count > max) { max = tmp.count; maxX = tmp.x; maxY = tmp.y; } for (int i = 0; i < 4; i++) { int nx = tmp.x + dx[i]; int ny = tmp.y + dy[i]; if (nx < n && nx >= 0 && ny < m && ny >= 0) { if (grid[nx][ny] == false) { a.add(new Struct(nx, ny, tmp.count + 1)); } } } } fw.write((maxX + 1) + " " + (maxY + 1)+"\n"); System.out.println((maxX + 1) + " " + (maxY + 1)); fw.flush(); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.FileReader; import java.io.FileWriter; import java.io.IOException; import java.util.LinkedList; import java.util.Scanner; public class C { static class Struct { int x, y, count; public Struct(int xx, int yy, int c) { x = xx; y = yy; count = c; } } public static void main(String[] args) throws IOException { Scanner sc = new Scanner(new FileReader("input.txt")); int n = sc.nextInt(); int m = sc.nextInt(); FileWriter fw=new FileWriter("output.txt"); boolean[][] grid = new boolean[n][m]; int[] dx = new int[] { 1, 0, -1, 0 }; int[] dy = new int[] { 0, -1, 0, 1 }; int k = sc.nextInt(); LinkedList<Struct> a = new LinkedList<Struct>(); for (int i = 0; i < k; i++) { a.add(new Struct(sc.nextInt() - 1, sc.nextInt() - 1, 0)); } int max = Integer.MIN_VALUE, maxX = -1, maxY = -1; while (!a.isEmpty()) { Struct tmp = a.remove(); if (grid[tmp.x][tmp.y] == true) continue; grid[tmp.x][tmp.y] = true; if (tmp.count > max) { max = tmp.count; maxX = tmp.x; maxY = tmp.y; } for (int i = 0; i < 4; i++) { int nx = tmp.x + dx[i]; int ny = tmp.y + dy[i]; if (nx < n && nx >= 0 && ny < m && ny >= 0) { if (grid[nx][ny] == false) { a.add(new Struct(nx, ny, tmp.count + 1)); } } } } fw.write((maxX + 1) + " " + (maxY + 1)+"\n"); System.out.println((maxX + 1) + " " + (maxY + 1)); fw.flush(); } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.FileReader; import java.io.FileWriter; import java.io.IOException; import java.util.LinkedList; import java.util.Scanner; public class C { static class Struct { int x, y, count; public Struct(int xx, int yy, int c) { x = xx; y = yy; count = c; } } public static void main(String[] args) throws IOException { Scanner sc = new Scanner(new FileReader("input.txt")); int n = sc.nextInt(); int m = sc.nextInt(); FileWriter fw=new FileWriter("output.txt"); boolean[][] grid = new boolean[n][m]; int[] dx = new int[] { 1, 0, -1, 0 }; int[] dy = new int[] { 0, -1, 0, 1 }; int k = sc.nextInt(); LinkedList<Struct> a = new LinkedList<Struct>(); for (int i = 0; i < k; i++) { a.add(new Struct(sc.nextInt() - 1, sc.nextInt() - 1, 0)); } int max = Integer.MIN_VALUE, maxX = -1, maxY = -1; while (!a.isEmpty()) { Struct tmp = a.remove(); if (grid[tmp.x][tmp.y] == true) continue; grid[tmp.x][tmp.y] = true; if (tmp.count > max) { max = tmp.count; maxX = tmp.x; maxY = tmp.y; } for (int i = 0; i < 4; i++) { int nx = tmp.x + dx[i]; int ny = tmp.y + dy[i]; if (nx < n && nx >= 0 && ny < m && ny >= 0) { if (grid[nx][ny] == false) { a.add(new Struct(nx, ny, tmp.count + 1)); } } } } fw.write((maxX + 1) + " " + (maxY + 1)+"\n"); System.out.println((maxX + 1) + " " + (maxY + 1)); fw.flush(); } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
798
3,633
1,866
import java.io.*; import java.math.BigInteger; import java.util.*; public class DD { public static void main(String[] args)throws Throwable { MyScanner sc=new MyScanner(); PrintWriter pw=new PrintWriter(System.out); int n=sc.nextInt(); int [] a=new int [n]; for(int i=0;i<n;i++) a[i]=sc.nextInt(); TreeMap<Integer, Integer> map=new TreeMap<Integer, Integer>(); BigInteger ans=new BigInteger("0"); long sum=0; for(int i=0;i<n;i++){ sum+=a[i]; map.put(a[i], map.getOrDefault(a[i], 0)+1); int cntSame=map.get(a[i]); int cntLess=map.getOrDefault(a[i]-1, 0); int cntMore=map.getOrDefault(a[i]+1, 0); long sum2=sum; sum2-=1L*cntSame*a[i]; sum2-=1L*cntLess*(a[i]-1); sum2-=1L*cntMore*(a[i]+1); int cnt=i+1-(cntSame+cntLess+cntMore); ans = ans.subtract(BigInteger.valueOf(sum2)); ans= ans.add(BigInteger.valueOf(1L*cnt*a[i])); } pw.println(ans); pw.flush(); pw.close(); } static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() {while (st == null || !st.hasMoreElements()) { try {st = new StringTokenizer(br.readLine());} catch (IOException e) {e.printStackTrace();}} return st.nextToken();} int nextInt() {return Integer.parseInt(next());} long nextLong() {return Long.parseLong(next());} double nextDouble() {return Double.parseDouble(next());} String nextLine(){String str = ""; try {str = br.readLine();} catch (IOException e) {e.printStackTrace();} return str;} } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.math.BigInteger; import java.util.*; public class DD { public static void main(String[] args)throws Throwable { MyScanner sc=new MyScanner(); PrintWriter pw=new PrintWriter(System.out); int n=sc.nextInt(); int [] a=new int [n]; for(int i=0;i<n;i++) a[i]=sc.nextInt(); TreeMap<Integer, Integer> map=new TreeMap<Integer, Integer>(); BigInteger ans=new BigInteger("0"); long sum=0; for(int i=0;i<n;i++){ sum+=a[i]; map.put(a[i], map.getOrDefault(a[i], 0)+1); int cntSame=map.get(a[i]); int cntLess=map.getOrDefault(a[i]-1, 0); int cntMore=map.getOrDefault(a[i]+1, 0); long sum2=sum; sum2-=1L*cntSame*a[i]; sum2-=1L*cntLess*(a[i]-1); sum2-=1L*cntMore*(a[i]+1); int cnt=i+1-(cntSame+cntLess+cntMore); ans = ans.subtract(BigInteger.valueOf(sum2)); ans= ans.add(BigInteger.valueOf(1L*cnt*a[i])); } pw.println(ans); pw.flush(); pw.close(); } static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() {while (st == null || !st.hasMoreElements()) { try {st = new StringTokenizer(br.readLine());} catch (IOException e) {e.printStackTrace();}} return st.nextToken();} int nextInt() {return Integer.parseInt(next());} long nextLong() {return Long.parseLong(next());} double nextDouble() {return Double.parseDouble(next());} String nextLine(){String str = ""; try {str = br.readLine();} catch (IOException e) {e.printStackTrace();} return str;} } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.math.BigInteger; import java.util.*; public class DD { public static void main(String[] args)throws Throwable { MyScanner sc=new MyScanner(); PrintWriter pw=new PrintWriter(System.out); int n=sc.nextInt(); int [] a=new int [n]; for(int i=0;i<n;i++) a[i]=sc.nextInt(); TreeMap<Integer, Integer> map=new TreeMap<Integer, Integer>(); BigInteger ans=new BigInteger("0"); long sum=0; for(int i=0;i<n;i++){ sum+=a[i]; map.put(a[i], map.getOrDefault(a[i], 0)+1); int cntSame=map.get(a[i]); int cntLess=map.getOrDefault(a[i]-1, 0); int cntMore=map.getOrDefault(a[i]+1, 0); long sum2=sum; sum2-=1L*cntSame*a[i]; sum2-=1L*cntLess*(a[i]-1); sum2-=1L*cntMore*(a[i]+1); int cnt=i+1-(cntSame+cntLess+cntMore); ans = ans.subtract(BigInteger.valueOf(sum2)); ans= ans.add(BigInteger.valueOf(1L*cnt*a[i])); } pw.println(ans); pw.flush(); pw.close(); } static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() {while (st == null || !st.hasMoreElements()) { try {st = new StringTokenizer(br.readLine());} catch (IOException e) {e.printStackTrace();}} return st.nextToken();} int nextInt() {return Integer.parseInt(next());} long nextLong() {return Long.parseLong(next());} double nextDouble() {return Double.parseDouble(next());} String nextLine(){String str = ""; try {str = br.readLine();} catch (IOException e) {e.printStackTrace();} return str;} } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
768
1,862
3,860
import java.io.*; import java.util.StringTokenizer; public class C2 { String filename = null; InputReader sc; void solve() { int n = sc.nextInt(); int[] a = sc.nextArray(n); int[] ps = new int[n]; int[] q = new int[n]; int[] qs = new int[n]; int nq = 0; for (int i = 1; i < n; i++) { if (a[i] == 1) { qs[nq] = i - 1; q[nq++] = a[i - 1] + 1; ps[i] = i - 1; } else { if (a[i] == a[i - 1] + 1) { qs[nq] = i - 1; q[nq++] = 1; ps[i] = i - 1; } else { for (int j = nq - 1; j >= 0; j--) { if (a[i] == q[j]) { ps[i] = qs[j]; nq = j; break; } } } } } int[] parents = ps; String[] strs = new String[n]; strs[0] = "1"; System.out.println(strs[0]); for (int i = 1; i < n; i++) { String p = strs[parents[i]]; if (a[i] == 1) { strs[i] = p + ".1"; } else { int lastDot = p.lastIndexOf("."); if (lastDot == -1) { strs[i] = a[i] + ""; } else { strs[i] = p.substring(0, lastDot) + "." + a[i]; } } System.out.println(strs[i]); } } public void run() throws FileNotFoundException { if (filename == null) { sc = new InputReader(System.in); } else { sc = new InputReader(new FileInputStream(new File(filename))); } int nTests = sc.nextInt(); for (int test = 0; test < nTests; test++) { solve(); } } public static void main(String[] args) { C2 sol = new C2(); try { sol.run(); } catch (FileNotFoundException e) { e.printStackTrace(); } } class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public float nextFloat() { return Float.parseFloat(next()); } public double nextDouble() { return Float.parseFloat(next()); } public long nextLong() { return Long.parseLong(next()); } public int[] nextArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.StringTokenizer; public class C2 { String filename = null; InputReader sc; void solve() { int n = sc.nextInt(); int[] a = sc.nextArray(n); int[] ps = new int[n]; int[] q = new int[n]; int[] qs = new int[n]; int nq = 0; for (int i = 1; i < n; i++) { if (a[i] == 1) { qs[nq] = i - 1; q[nq++] = a[i - 1] + 1; ps[i] = i - 1; } else { if (a[i] == a[i - 1] + 1) { qs[nq] = i - 1; q[nq++] = 1; ps[i] = i - 1; } else { for (int j = nq - 1; j >= 0; j--) { if (a[i] == q[j]) { ps[i] = qs[j]; nq = j; break; } } } } } int[] parents = ps; String[] strs = new String[n]; strs[0] = "1"; System.out.println(strs[0]); for (int i = 1; i < n; i++) { String p = strs[parents[i]]; if (a[i] == 1) { strs[i] = p + ".1"; } else { int lastDot = p.lastIndexOf("."); if (lastDot == -1) { strs[i] = a[i] + ""; } else { strs[i] = p.substring(0, lastDot) + "." + a[i]; } } System.out.println(strs[i]); } } public void run() throws FileNotFoundException { if (filename == null) { sc = new InputReader(System.in); } else { sc = new InputReader(new FileInputStream(new File(filename))); } int nTests = sc.nextInt(); for (int test = 0; test < nTests; test++) { solve(); } } public static void main(String[] args) { C2 sol = new C2(); try { sol.run(); } catch (FileNotFoundException e) { e.printStackTrace(); } } class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public float nextFloat() { return Float.parseFloat(next()); } public double nextDouble() { return Float.parseFloat(next()); } public long nextLong() { return Long.parseLong(next()); } public int[] nextArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.StringTokenizer; public class C2 { String filename = null; InputReader sc; void solve() { int n = sc.nextInt(); int[] a = sc.nextArray(n); int[] ps = new int[n]; int[] q = new int[n]; int[] qs = new int[n]; int nq = 0; for (int i = 1; i < n; i++) { if (a[i] == 1) { qs[nq] = i - 1; q[nq++] = a[i - 1] + 1; ps[i] = i - 1; } else { if (a[i] == a[i - 1] + 1) { qs[nq] = i - 1; q[nq++] = 1; ps[i] = i - 1; } else { for (int j = nq - 1; j >= 0; j--) { if (a[i] == q[j]) { ps[i] = qs[j]; nq = j; break; } } } } } int[] parents = ps; String[] strs = new String[n]; strs[0] = "1"; System.out.println(strs[0]); for (int i = 1; i < n; i++) { String p = strs[parents[i]]; if (a[i] == 1) { strs[i] = p + ".1"; } else { int lastDot = p.lastIndexOf("."); if (lastDot == -1) { strs[i] = a[i] + ""; } else { strs[i] = p.substring(0, lastDot) + "." + a[i]; } } System.out.println(strs[i]); } } public void run() throws FileNotFoundException { if (filename == null) { sc = new InputReader(System.in); } else { sc = new InputReader(new FileInputStream(new File(filename))); } int nTests = sc.nextInt(); for (int test = 0; test < nTests; test++) { solve(); } } public static void main(String[] args) { C2 sol = new C2(); try { sol.run(); } catch (FileNotFoundException e) { e.printStackTrace(); } } class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public float nextFloat() { return Float.parseFloat(next()); } public double nextDouble() { return Float.parseFloat(next()); } public long nextLong() { return Long.parseLong(next()); } public int[] nextArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,073
3,850
3,797
import java.util.*; import java.io.*; public class D { public static void main(String[] args) { FastScanner sc = new FastScanner(); int n = sc.nextInt(); int m = sc.nextInt(); int k = sc.nextInt(); int[][] lr = new int[n][m-1]; for(int i = 0; i < n; i++){ for(int j = 0; j < m-1; j++){ lr[i][j] = sc.nextInt(); } } int[][] ud = new int[n-1][m]; for(int i = 0; i < n-1; i++){ for(int j = 0; j < m; j++){ ud[i][j] = sc.nextInt(); } } if(k % 2 == 1) { StringBuilder sb = new StringBuilder(); for(int i = 0; i < n; i++){ for(int j = 0; j < m; j++){ sb.append(-1+" "); } sb.replace(sb.length()-1, sb.length(), "\n"); } PrintWriter pw = new PrintWriter(System.out); pw.println(sb.toString().trim()); pw.flush(); } else { int[][] dir = {{0,1},{0,-1},{1,0},{-1,0}}; long[][][] dp = new long[k/2+1][n][m]; for(int s = 1; s <= k/2; s++) { for(int i = 0; i < n; i++){ for(int j = 0; j < m; j++){ dp[s][i][j] = Long.MAX_VALUE; for(int[] d: dir) { int u = i + d[0], v = j + d[1]; if(u >= 0 && u < n && v >= 0 && v < m) { long w = calc(i, j, u, v, lr, ud); dp[s][i][j] = Math.min(dp[s][i][j], dp[s-1][u][v] + 2*w); } } } } } StringBuilder sb = new StringBuilder(); for(int i = 0; i < n; i++){ for(int j = 0; j < m; j++){ sb.append(dp[k/2][i][j]+" "); } sb.replace(sb.length()-1, sb.length(), "\n"); } PrintWriter pw = new PrintWriter(System.out); pw.println(sb.toString().trim()); pw.flush(); } } static long calc(int i, int j, int u, int v, int[][] lr, int[][] ud) { if(i == u) { return lr[i][Math.min(j, v)]; } else { return ud[Math.min(i, u)][j]; } } static class Pair implements Comparable<Pair>{ int x, y; public Pair(int x, int y) { this.x = x; this.y = y; } @Override public int compareTo(Pair p) { if(x == p.x) return y - p.y; else return x - p.x; } public String toString() { return x+" "+y; } } static class FastScanner { public BufferedReader reader; public StringTokenizer tokenizer; public FastScanner() { reader = new BufferedReader(new InputStreamReader(System.in), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } public String nextLine() { try { return reader.readLine(); } catch(IOException e) { throw new RuntimeException(e); } } } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class D { public static void main(String[] args) { FastScanner sc = new FastScanner(); int n = sc.nextInt(); int m = sc.nextInt(); int k = sc.nextInt(); int[][] lr = new int[n][m-1]; for(int i = 0; i < n; i++){ for(int j = 0; j < m-1; j++){ lr[i][j] = sc.nextInt(); } } int[][] ud = new int[n-1][m]; for(int i = 0; i < n-1; i++){ for(int j = 0; j < m; j++){ ud[i][j] = sc.nextInt(); } } if(k % 2 == 1) { StringBuilder sb = new StringBuilder(); for(int i = 0; i < n; i++){ for(int j = 0; j < m; j++){ sb.append(-1+" "); } sb.replace(sb.length()-1, sb.length(), "\n"); } PrintWriter pw = new PrintWriter(System.out); pw.println(sb.toString().trim()); pw.flush(); } else { int[][] dir = {{0,1},{0,-1},{1,0},{-1,0}}; long[][][] dp = new long[k/2+1][n][m]; for(int s = 1; s <= k/2; s++) { for(int i = 0; i < n; i++){ for(int j = 0; j < m; j++){ dp[s][i][j] = Long.MAX_VALUE; for(int[] d: dir) { int u = i + d[0], v = j + d[1]; if(u >= 0 && u < n && v >= 0 && v < m) { long w = calc(i, j, u, v, lr, ud); dp[s][i][j] = Math.min(dp[s][i][j], dp[s-1][u][v] + 2*w); } } } } } StringBuilder sb = new StringBuilder(); for(int i = 0; i < n; i++){ for(int j = 0; j < m; j++){ sb.append(dp[k/2][i][j]+" "); } sb.replace(sb.length()-1, sb.length(), "\n"); } PrintWriter pw = new PrintWriter(System.out); pw.println(sb.toString().trim()); pw.flush(); } } static long calc(int i, int j, int u, int v, int[][] lr, int[][] ud) { if(i == u) { return lr[i][Math.min(j, v)]; } else { return ud[Math.min(i, u)][j]; } } static class Pair implements Comparable<Pair>{ int x, y; public Pair(int x, int y) { this.x = x; this.y = y; } @Override public int compareTo(Pair p) { if(x == p.x) return y - p.y; else return x - p.x; } public String toString() { return x+" "+y; } } static class FastScanner { public BufferedReader reader; public StringTokenizer tokenizer; public FastScanner() { reader = new BufferedReader(new InputStreamReader(System.in), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } public String nextLine() { try { return reader.readLine(); } catch(IOException e) { throw new RuntimeException(e); } } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class D { public static void main(String[] args) { FastScanner sc = new FastScanner(); int n = sc.nextInt(); int m = sc.nextInt(); int k = sc.nextInt(); int[][] lr = new int[n][m-1]; for(int i = 0; i < n; i++){ for(int j = 0; j < m-1; j++){ lr[i][j] = sc.nextInt(); } } int[][] ud = new int[n-1][m]; for(int i = 0; i < n-1; i++){ for(int j = 0; j < m; j++){ ud[i][j] = sc.nextInt(); } } if(k % 2 == 1) { StringBuilder sb = new StringBuilder(); for(int i = 0; i < n; i++){ for(int j = 0; j < m; j++){ sb.append(-1+" "); } sb.replace(sb.length()-1, sb.length(), "\n"); } PrintWriter pw = new PrintWriter(System.out); pw.println(sb.toString().trim()); pw.flush(); } else { int[][] dir = {{0,1},{0,-1},{1,0},{-1,0}}; long[][][] dp = new long[k/2+1][n][m]; for(int s = 1; s <= k/2; s++) { for(int i = 0; i < n; i++){ for(int j = 0; j < m; j++){ dp[s][i][j] = Long.MAX_VALUE; for(int[] d: dir) { int u = i + d[0], v = j + d[1]; if(u >= 0 && u < n && v >= 0 && v < m) { long w = calc(i, j, u, v, lr, ud); dp[s][i][j] = Math.min(dp[s][i][j], dp[s-1][u][v] + 2*w); } } } } } StringBuilder sb = new StringBuilder(); for(int i = 0; i < n; i++){ for(int j = 0; j < m; j++){ sb.append(dp[k/2][i][j]+" "); } sb.replace(sb.length()-1, sb.length(), "\n"); } PrintWriter pw = new PrintWriter(System.out); pw.println(sb.toString().trim()); pw.flush(); } } static long calc(int i, int j, int u, int v, int[][] lr, int[][] ud) { if(i == u) { return lr[i][Math.min(j, v)]; } else { return ud[Math.min(i, u)][j]; } } static class Pair implements Comparable<Pair>{ int x, y; public Pair(int x, int y) { this.x = x; this.y = y; } @Override public int compareTo(Pair p) { if(x == p.x) return y - p.y; else return x - p.x; } public String toString() { return x+" "+y; } } static class FastScanner { public BufferedReader reader; public StringTokenizer tokenizer; public FastScanner() { reader = new BufferedReader(new InputStreamReader(System.in), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } public String nextLine() { try { return reader.readLine(); } catch(IOException e) { throw new RuntimeException(e); } } } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,261
3,788
4,252
import java.io.BufferedWriter; import java.io.IOException; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.util.Arrays; import java.util.HashSet; import java.util.Set; import java.util.stream.IntStream; public class Test { static PrintWriter writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); static int readInt() { int ans = 0; boolean neg = false; try { boolean start = false; for (int c = 0; (c = System.in.read()) != -1; ) { if (c == '-') { start = true; neg = true; continue; } else if (c >= '0' && c <= '9') { start = true; ans = ans * 10 + c - '0'; } else if (start) break; } } catch (IOException e) { } return neg ? -ans : ans; } static long readLong() { long ans = 0; boolean neg = false; try { boolean start = false; for (int c = 0; (c = System.in.read()) != -1; ) { if (c == '-') { start = true; neg = true; continue; } else if (c >= '0' && c <= '9') { start = true; ans = ans * 10 + c - '0'; } else if (start) break; } } catch (IOException e) { } return neg ? -ans : ans; } static String readLine() { StringBuilder b = new StringBuilder(); try { boolean start = false; for (int c = 0; (c = System.in.read()) != -1; ) { if (Character.isLetterOrDigit(c)) { start = true; b.append((char) c); } else if (start) break; } } catch (IOException e) { } return b.toString(); } public static void main(String[] args) { Test te = new Test(); te.start(); writer.flush(); } void start() { int t = readInt(); while (t-- > 0) { int n = readInt(), m = readInt(); int[][] a = new int[n][m]; int[][] e = new int[n*m][]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) { a[i][j] = readInt(); e[i*m+j] = new int[]{a[i][j], j}; } Arrays.sort(e, (x, y) -> x[0] == y[0] ? Integer.compare(x[1], y[1]) : Integer.compare(y[0], x[0])); Set<Integer> cols = new HashSet<>(); for (int[] x : e) { cols.add(x[1]); if (cols.size() >= n) break; } int[] dp = new int[1<<n]; Arrays.fill(dp, -1); dp[0] = 0; for (int c : cols) { for (int i = (1 << n) - 1; i >= 0; i--) { int u = (1 << n) - 1 - i; int p = u; if (dp[i] >= 0) while (p > 0) { for (int r = 0; r < n; r++) { int sum = 0; for (int j = 0; j < n; j++) if (((p >> j) & 1) != 0) sum += a[(j + r) % n][c]; dp[i | p] = Math.max(dp[i | p], dp[i] + sum); } p = (p - 1) & u; } } } writer.println(dp[(1<<n) - 1]); } } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedWriter; import java.io.IOException; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.util.Arrays; import java.util.HashSet; import java.util.Set; import java.util.stream.IntStream; public class Test { static PrintWriter writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); static int readInt() { int ans = 0; boolean neg = false; try { boolean start = false; for (int c = 0; (c = System.in.read()) != -1; ) { if (c == '-') { start = true; neg = true; continue; } else if (c >= '0' && c <= '9') { start = true; ans = ans * 10 + c - '0'; } else if (start) break; } } catch (IOException e) { } return neg ? -ans : ans; } static long readLong() { long ans = 0; boolean neg = false; try { boolean start = false; for (int c = 0; (c = System.in.read()) != -1; ) { if (c == '-') { start = true; neg = true; continue; } else if (c >= '0' && c <= '9') { start = true; ans = ans * 10 + c - '0'; } else if (start) break; } } catch (IOException e) { } return neg ? -ans : ans; } static String readLine() { StringBuilder b = new StringBuilder(); try { boolean start = false; for (int c = 0; (c = System.in.read()) != -1; ) { if (Character.isLetterOrDigit(c)) { start = true; b.append((char) c); } else if (start) break; } } catch (IOException e) { } return b.toString(); } public static void main(String[] args) { Test te = new Test(); te.start(); writer.flush(); } void start() { int t = readInt(); while (t-- > 0) { int n = readInt(), m = readInt(); int[][] a = new int[n][m]; int[][] e = new int[n*m][]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) { a[i][j] = readInt(); e[i*m+j] = new int[]{a[i][j], j}; } Arrays.sort(e, (x, y) -> x[0] == y[0] ? Integer.compare(x[1], y[1]) : Integer.compare(y[0], x[0])); Set<Integer> cols = new HashSet<>(); for (int[] x : e) { cols.add(x[1]); if (cols.size() >= n) break; } int[] dp = new int[1<<n]; Arrays.fill(dp, -1); dp[0] = 0; for (int c : cols) { for (int i = (1 << n) - 1; i >= 0; i--) { int u = (1 << n) - 1 - i; int p = u; if (dp[i] >= 0) while (p > 0) { for (int r = 0; r < n; r++) { int sum = 0; for (int j = 0; j < n; j++) if (((p >> j) & 1) != 0) sum += a[(j + r) % n][c]; dp[i | p] = Math.max(dp[i | p], dp[i] + sum); } p = (p - 1) & u; } } } writer.println(dp[(1<<n) - 1]); } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedWriter; import java.io.IOException; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.util.Arrays; import java.util.HashSet; import java.util.Set; import java.util.stream.IntStream; public class Test { static PrintWriter writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); static int readInt() { int ans = 0; boolean neg = false; try { boolean start = false; for (int c = 0; (c = System.in.read()) != -1; ) { if (c == '-') { start = true; neg = true; continue; } else if (c >= '0' && c <= '9') { start = true; ans = ans * 10 + c - '0'; } else if (start) break; } } catch (IOException e) { } return neg ? -ans : ans; } static long readLong() { long ans = 0; boolean neg = false; try { boolean start = false; for (int c = 0; (c = System.in.read()) != -1; ) { if (c == '-') { start = true; neg = true; continue; } else if (c >= '0' && c <= '9') { start = true; ans = ans * 10 + c - '0'; } else if (start) break; } } catch (IOException e) { } return neg ? -ans : ans; } static String readLine() { StringBuilder b = new StringBuilder(); try { boolean start = false; for (int c = 0; (c = System.in.read()) != -1; ) { if (Character.isLetterOrDigit(c)) { start = true; b.append((char) c); } else if (start) break; } } catch (IOException e) { } return b.toString(); } public static void main(String[] args) { Test te = new Test(); te.start(); writer.flush(); } void start() { int t = readInt(); while (t-- > 0) { int n = readInt(), m = readInt(); int[][] a = new int[n][m]; int[][] e = new int[n*m][]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) { a[i][j] = readInt(); e[i*m+j] = new int[]{a[i][j], j}; } Arrays.sort(e, (x, y) -> x[0] == y[0] ? Integer.compare(x[1], y[1]) : Integer.compare(y[0], x[0])); Set<Integer> cols = new HashSet<>(); for (int[] x : e) { cols.add(x[1]); if (cols.size() >= n) break; } int[] dp = new int[1<<n]; Arrays.fill(dp, -1); dp[0] = 0; for (int c : cols) { for (int i = (1 << n) - 1; i >= 0; i--) { int u = (1 << n) - 1 - i; int p = u; if (dp[i] >= 0) while (p > 0) { for (int r = 0; r < n; r++) { int sum = 0; for (int j = 0; j < n; j++) if (((p >> j) & 1) != 0) sum += a[(j + r) % n][c]; dp[i | p] = Math.max(dp[i | p], dp[i] + sum); } p = (p - 1) & u; } } } writer.println(dp[(1<<n) - 1]); } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,220
4,241
2,718
import java.io.PrintWriter; import java.util.*; import java.util.Arrays ; import java .lang.String.* ; import java .lang.StringBuilder ; public class Test{ static int pos = 0 ; static int arr[] ; static LinkedList l1 = new LinkedList() ; static void find(int p ,char[]x,int put[],String s){ int c= 0 ; for (int i = 0; i < s.length(); i++) { if(x[p]==s.charAt(i)){ c++ ; } } put[p] = c ; } static int mode(int m ,int[]x ){ int temp = 0 ; for (int i = x.length-1; i >=0; i--) { if(x[i]<=m){ temp= x[i] ; /// break ; return m-temp ; } } return m-temp ; } static int mode2(int m ,int[]x ){ int temp = 0 ; for (int i = x.length-1; i >=0; i--) { if(x[i]<=m){ temp= x[i] ; /// break ; return x[i] ; } } return 0 ; } static int find(int x[],int temp){ int j = 0 ; for (int i = x.length-1; i >=0; i--) { if(x[i]==temp) return j+1 ; j++ ; } return -1 ; } static String ch(long[]x,long b){ for (int i = 0; i < x.length; i++) { if(x[i]==b)return "YES" ; } return "NO" ; } public static void main(String[] args) { Scanner in = new Scanner(System.in) ; PrintWriter pw = new PrintWriter(System.out); int k=in.nextInt(), n=in.nextInt(), s=in.nextInt(), p=in.nextInt() ; int paper =n/s; if(n%s!=0) paper++ ; paper*=k ; int fin = paper/p ; if(paper%p!=0) fin++ ; System.out.println( fin ); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.PrintWriter; import java.util.*; import java.util.Arrays ; import java .lang.String.* ; import java .lang.StringBuilder ; public class Test{ static int pos = 0 ; static int arr[] ; static LinkedList l1 = new LinkedList() ; static void find(int p ,char[]x,int put[],String s){ int c= 0 ; for (int i = 0; i < s.length(); i++) { if(x[p]==s.charAt(i)){ c++ ; } } put[p] = c ; } static int mode(int m ,int[]x ){ int temp = 0 ; for (int i = x.length-1; i >=0; i--) { if(x[i]<=m){ temp= x[i] ; /// break ; return m-temp ; } } return m-temp ; } static int mode2(int m ,int[]x ){ int temp = 0 ; for (int i = x.length-1; i >=0; i--) { if(x[i]<=m){ temp= x[i] ; /// break ; return x[i] ; } } return 0 ; } static int find(int x[],int temp){ int j = 0 ; for (int i = x.length-1; i >=0; i--) { if(x[i]==temp) return j+1 ; j++ ; } return -1 ; } static String ch(long[]x,long b){ for (int i = 0; i < x.length; i++) { if(x[i]==b)return "YES" ; } return "NO" ; } public static void main(String[] args) { Scanner in = new Scanner(System.in) ; PrintWriter pw = new PrintWriter(System.out); int k=in.nextInt(), n=in.nextInt(), s=in.nextInt(), p=in.nextInt() ; int paper =n/s; if(n%s!=0) paper++ ; paper*=k ; int fin = paper/p ; if(paper%p!=0) fin++ ; System.out.println( fin ); } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.PrintWriter; import java.util.*; import java.util.Arrays ; import java .lang.String.* ; import java .lang.StringBuilder ; public class Test{ static int pos = 0 ; static int arr[] ; static LinkedList l1 = new LinkedList() ; static void find(int p ,char[]x,int put[],String s){ int c= 0 ; for (int i = 0; i < s.length(); i++) { if(x[p]==s.charAt(i)){ c++ ; } } put[p] = c ; } static int mode(int m ,int[]x ){ int temp = 0 ; for (int i = x.length-1; i >=0; i--) { if(x[i]<=m){ temp= x[i] ; /// break ; return m-temp ; } } return m-temp ; } static int mode2(int m ,int[]x ){ int temp = 0 ; for (int i = x.length-1; i >=0; i--) { if(x[i]<=m){ temp= x[i] ; /// break ; return x[i] ; } } return 0 ; } static int find(int x[],int temp){ int j = 0 ; for (int i = x.length-1; i >=0; i--) { if(x[i]==temp) return j+1 ; j++ ; } return -1 ; } static String ch(long[]x,long b){ for (int i = 0; i < x.length; i++) { if(x[i]==b)return "YES" ; } return "NO" ; } public static void main(String[] args) { Scanner in = new Scanner(System.in) ; PrintWriter pw = new PrintWriter(System.out); int k=in.nextInt(), n=in.nextInt(), s=in.nextInt(), p=in.nextInt() ; int paper =n/s; if(n%s!=0) paper++ ; paper*=k ; int fin = paper/p ; if(paper%p!=0) fin++ ; System.out.println( fin ); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
822
2,712
2,866
import java.math.BigInteger; import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); BigInteger l = new BigInteger(scanner.next()); BigInteger r = new BigInteger(scanner.next()); if(r.subtract(l).intValue() < 2) { System.out.println(-1); return; } BigInteger a = l.abs(),b,c; BigInteger toothless = r.subtract(BigInteger.valueOf(1)); while(a.compareTo(toothless) == -1) { b = l.add(BigInteger.valueOf(1)); while(b.compareTo(r) == -1) { c = l.add(BigInteger.valueOf(2)); while(c.compareTo(r) == -1 || c.compareTo(r) == 0) { if(gcd(a,b) == 1 && gcd(b,c) == 1 && gcd(a,c) != 1) { System.out.println(a + " " + b + " " + c); return; } c = c.add(BigInteger.valueOf(1)); } b = b.add(BigInteger.valueOf(1)); } a = a.add(BigInteger.valueOf(1)); } System.out.println(-1); } private static int gcd(BigInteger a, BigInteger b) { return a.gcd(b).intValue(); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.math.BigInteger; import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); BigInteger l = new BigInteger(scanner.next()); BigInteger r = new BigInteger(scanner.next()); if(r.subtract(l).intValue() < 2) { System.out.println(-1); return; } BigInteger a = l.abs(),b,c; BigInteger toothless = r.subtract(BigInteger.valueOf(1)); while(a.compareTo(toothless) == -1) { b = l.add(BigInteger.valueOf(1)); while(b.compareTo(r) == -1) { c = l.add(BigInteger.valueOf(2)); while(c.compareTo(r) == -1 || c.compareTo(r) == 0) { if(gcd(a,b) == 1 && gcd(b,c) == 1 && gcd(a,c) != 1) { System.out.println(a + " " + b + " " + c); return; } c = c.add(BigInteger.valueOf(1)); } b = b.add(BigInteger.valueOf(1)); } a = a.add(BigInteger.valueOf(1)); } System.out.println(-1); } private static int gcd(BigInteger a, BigInteger b) { return a.gcd(b).intValue(); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.math.BigInteger; import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); BigInteger l = new BigInteger(scanner.next()); BigInteger r = new BigInteger(scanner.next()); if(r.subtract(l).intValue() < 2) { System.out.println(-1); return; } BigInteger a = l.abs(),b,c; BigInteger toothless = r.subtract(BigInteger.valueOf(1)); while(a.compareTo(toothless) == -1) { b = l.add(BigInteger.valueOf(1)); while(b.compareTo(r) == -1) { c = l.add(BigInteger.valueOf(2)); while(c.compareTo(r) == -1 || c.compareTo(r) == 0) { if(gcd(a,b) == 1 && gcd(b,c) == 1 && gcd(a,c) != 1) { System.out.println(a + " " + b + " " + c); return; } c = c.add(BigInteger.valueOf(1)); } b = b.add(BigInteger.valueOf(1)); } a = a.add(BigInteger.valueOf(1)); } System.out.println(-1); } private static int gcd(BigInteger a, BigInteger b) { return a.gcd(b).intValue(); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
620
2,860
1,297
import java.util.Scanner; public class Main { public static long power(long a, long b, long c){ if(b == 0){ return 1; } a %= c; if(b % 2 == 0){ return power((a % c * a % c) % c, b / 2, c); }else{ return (a % c * power((a % c * a % c) % c, b / 2, c) % c) % c; } } public static void main(String[] args) { Scanner s = new Scanner(System.in); long x = s.nextLong(), k = s.nextLong() + 1, mod = (long)Math.pow(10, 9) + 7; long ans; if(x == 0){ System.out.println(0); return; } // if(x != 0){ ans = ((power(2, k % (mod - 1), mod) % mod) * (x % mod)) % mod; /* }else{ ans = 0; } */ans = (ans - power(2, (k - 1) % (mod - 1), mod) % mod + 2 * mod) % mod; System.out.println((ans + 1) % mod); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; public class Main { public static long power(long a, long b, long c){ if(b == 0){ return 1; } a %= c; if(b % 2 == 0){ return power((a % c * a % c) % c, b / 2, c); }else{ return (a % c * power((a % c * a % c) % c, b / 2, c) % c) % c; } } public static void main(String[] args) { Scanner s = new Scanner(System.in); long x = s.nextLong(), k = s.nextLong() + 1, mod = (long)Math.pow(10, 9) + 7; long ans; if(x == 0){ System.out.println(0); return; } // if(x != 0){ ans = ((power(2, k % (mod - 1), mod) % mod) * (x % mod)) % mod; /* }else{ ans = 0; } */ans = (ans - power(2, (k - 1) % (mod - 1), mod) % mod + 2 * mod) % mod; System.out.println((ans + 1) % mod); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; public class Main { public static long power(long a, long b, long c){ if(b == 0){ return 1; } a %= c; if(b % 2 == 0){ return power((a % c * a % c) % c, b / 2, c); }else{ return (a % c * power((a % c * a % c) % c, b / 2, c) % c) % c; } } public static void main(String[] args) { Scanner s = new Scanner(System.in); long x = s.nextLong(), k = s.nextLong() + 1, mod = (long)Math.pow(10, 9) + 7; long ans; if(x == 0){ System.out.println(0); return; } // if(x != 0){ ans = ((power(2, k % (mod - 1), mod) % mod) * (x % mod)) % mod; /* }else{ ans = 0; } */ans = (ans - power(2, (k - 1) % (mod - 1), mod) % mod + 2 * mod) % mod; System.out.println((ans + 1) % mod); } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
630
1,295
3,780
//created by Whiplash99 import java.io.*; import java.util.*; public class D { private static ArrayDeque<Integer>[][] edge; private static long[][] dp[],w1,w2; private static int N,M,K; private static void answer() { StringBuilder sb=new StringBuilder(); for(int i=0;i<N;i++) { for (int j = 0; j < M; j++) sb.append(dp[i][j][K]).append(" "); sb.append("\n"); } System.out.println(sb); } private static long solve(int i, int j, int pos) { if(pos==0) return 0; if(dp[i][j][pos]!=-1) return dp[i][j][pos]; long a=Long.MAX_VALUE/100; if(i-1>=0) a=Math.min(a,solve(i-1,j,pos-1)+w2[i-1][j]); if(i<N-1) a=Math.min(a,solve(i+1,j,pos-1)+w2[i][j]); if(j-1>=0) a=Math.min(a,solve(i,j-1,pos-1)+w1[i][j-1]); if(j<M-1) a=Math.min(a,solve(i,j+1,pos-1)+w1[i][j]); return dp[i][j][pos]=a; } public static void main(String[] args) throws Exception { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); int i; String[] s=br.readLine().trim().split(" "); N=Integer.parseInt(s[0]); M=Integer.parseInt(s[1]); K=Integer.parseInt(s[2]); edge=new ArrayDeque[N][M]; for(i=0;i<N;i++) { for(int j=0;j<M;j++) edge[i][j]=new ArrayDeque<>(); } w1=new long[N][M-1]; w2=new long[N-1][M]; dp=new long[N][M][K/2+1]; for(i=0;i<N;i++) { s=br.readLine().trim().split(" "); for(int j=0;j<M-1;j++) w1[i][j]=Integer.parseInt(s[j])*2L; } for(i=0;i<N-1;i++) { s=br.readLine().trim().split(" "); for(int j=0;j<M;j++) w2[i][j]=Integer.parseInt(s[j])*2L; } for(i=0;i<N;i++) { for(int j=0;j<M;j++) Arrays.fill(dp[i][j],-1); } if(K%2==1) { K/=2; answer(); System.exit(0); } K/=2; for(i=0;i<N;i++) { for(int j=0;j<M;j++) solve(i,j,K); } answer(); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> //created by Whiplash99 import java.io.*; import java.util.*; public class D { private static ArrayDeque<Integer>[][] edge; private static long[][] dp[],w1,w2; private static int N,M,K; private static void answer() { StringBuilder sb=new StringBuilder(); for(int i=0;i<N;i++) { for (int j = 0; j < M; j++) sb.append(dp[i][j][K]).append(" "); sb.append("\n"); } System.out.println(sb); } private static long solve(int i, int j, int pos) { if(pos==0) return 0; if(dp[i][j][pos]!=-1) return dp[i][j][pos]; long a=Long.MAX_VALUE/100; if(i-1>=0) a=Math.min(a,solve(i-1,j,pos-1)+w2[i-1][j]); if(i<N-1) a=Math.min(a,solve(i+1,j,pos-1)+w2[i][j]); if(j-1>=0) a=Math.min(a,solve(i,j-1,pos-1)+w1[i][j-1]); if(j<M-1) a=Math.min(a,solve(i,j+1,pos-1)+w1[i][j]); return dp[i][j][pos]=a; } public static void main(String[] args) throws Exception { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); int i; String[] s=br.readLine().trim().split(" "); N=Integer.parseInt(s[0]); M=Integer.parseInt(s[1]); K=Integer.parseInt(s[2]); edge=new ArrayDeque[N][M]; for(i=0;i<N;i++) { for(int j=0;j<M;j++) edge[i][j]=new ArrayDeque<>(); } w1=new long[N][M-1]; w2=new long[N-1][M]; dp=new long[N][M][K/2+1]; for(i=0;i<N;i++) { s=br.readLine().trim().split(" "); for(int j=0;j<M-1;j++) w1[i][j]=Integer.parseInt(s[j])*2L; } for(i=0;i<N-1;i++) { s=br.readLine().trim().split(" "); for(int j=0;j<M;j++) w2[i][j]=Integer.parseInt(s[j])*2L; } for(i=0;i<N;i++) { for(int j=0;j<M;j++) Arrays.fill(dp[i][j],-1); } if(K%2==1) { K/=2; answer(); System.exit(0); } K/=2; for(i=0;i<N;i++) { for(int j=0;j<M;j++) solve(i,j,K); } answer(); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> //created by Whiplash99 import java.io.*; import java.util.*; public class D { private static ArrayDeque<Integer>[][] edge; private static long[][] dp[],w1,w2; private static int N,M,K; private static void answer() { StringBuilder sb=new StringBuilder(); for(int i=0;i<N;i++) { for (int j = 0; j < M; j++) sb.append(dp[i][j][K]).append(" "); sb.append("\n"); } System.out.println(sb); } private static long solve(int i, int j, int pos) { if(pos==0) return 0; if(dp[i][j][pos]!=-1) return dp[i][j][pos]; long a=Long.MAX_VALUE/100; if(i-1>=0) a=Math.min(a,solve(i-1,j,pos-1)+w2[i-1][j]); if(i<N-1) a=Math.min(a,solve(i+1,j,pos-1)+w2[i][j]); if(j-1>=0) a=Math.min(a,solve(i,j-1,pos-1)+w1[i][j-1]); if(j<M-1) a=Math.min(a,solve(i,j+1,pos-1)+w1[i][j]); return dp[i][j][pos]=a; } public static void main(String[] args) throws Exception { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); int i; String[] s=br.readLine().trim().split(" "); N=Integer.parseInt(s[0]); M=Integer.parseInt(s[1]); K=Integer.parseInt(s[2]); edge=new ArrayDeque[N][M]; for(i=0;i<N;i++) { for(int j=0;j<M;j++) edge[i][j]=new ArrayDeque<>(); } w1=new long[N][M-1]; w2=new long[N-1][M]; dp=new long[N][M][K/2+1]; for(i=0;i<N;i++) { s=br.readLine().trim().split(" "); for(int j=0;j<M-1;j++) w1[i][j]=Integer.parseInt(s[j])*2L; } for(i=0;i<N-1;i++) { s=br.readLine().trim().split(" "); for(int j=0;j<M;j++) w2[i][j]=Integer.parseInt(s[j])*2L; } for(i=0;i<N;i++) { for(int j=0;j<M;j++) Arrays.fill(dp[i][j],-1); } if(K%2==1) { K/=2; answer(); System.exit(0); } K/=2; for(i=0;i<N;i++) { for(int j=0;j<M;j++) solve(i,j,K); } answer(); } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,000
3,772
2,090
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Arrays; public class Main { public static void main(String[] args) throws IOException { BufferedReader r = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(r.readLine()); String[] line = r.readLine().split("[ ]+"); int[] a = new int[n]; for(int i = 0; i < n; i++) a[i] = Integer.parseInt(line[i]); Arrays.sort(a); boolean found = false; for(int i = 0; i < n && !found; i++) if(a[i] != 1)found = true; if(found){ System.out.println(1); for(int i = 1; i < n; i++) System.out.println(a[i-1]); }else{ for(int i = 0; i < n-1; i++) System.out.println(1); System.out.println(2); } } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Arrays; public class Main { public static void main(String[] args) throws IOException { BufferedReader r = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(r.readLine()); String[] line = r.readLine().split("[ ]+"); int[] a = new int[n]; for(int i = 0; i < n; i++) a[i] = Integer.parseInt(line[i]); Arrays.sort(a); boolean found = false; for(int i = 0; i < n && !found; i++) if(a[i] != 1)found = true; if(found){ System.out.println(1); for(int i = 1; i < n; i++) System.out.println(a[i-1]); }else{ for(int i = 0; i < n-1; i++) System.out.println(1); System.out.println(2); } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Arrays; public class Main { public static void main(String[] args) throws IOException { BufferedReader r = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(r.readLine()); String[] line = r.readLine().split("[ ]+"); int[] a = new int[n]; for(int i = 0; i < n; i++) a[i] = Integer.parseInt(line[i]); Arrays.sort(a); boolean found = false; for(int i = 0; i < n && !found; i++) if(a[i] != 1)found = true; if(found){ System.out.println(1); for(int i = 1; i < n; i++) System.out.println(a[i-1]); }else{ for(int i = 0; i < n-1; i++) System.out.println(1); System.out.println(2); } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - others: The time complexity does not fit to any of the given categories or is ambiguous. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
572
2,086
2,556
import java.io.BufferedWriter; import java.io.DataInputStream; import java.io.FileWriter; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.nio.file.Files; import java.nio.file.Path; import java.nio.file.Paths; import java.util.Arrays; public class A { public static void main(String[] args) throws Exception { FastScanner sc = new FastScanner(System.in); FastPrinter out = new FastPrinter(System.out); new A().run(sc, out); out.close(); } public void run(FastScanner sc, FastPrinter out) throws Exception { int N = sc.nextInt(); int[] arr = sc.nextIntArray(N); Arrays.sort(arr); boolean[] done = new boolean[N]; int ans = 0; for (int i = 0; i < N; i++) { if (done[i]) continue; ans++; for (int j = i; j < N; j++) { if (arr[j] % arr[i] == 0) { done[j] = true; } } } out.println(ans); } public void shuffle(int[] arr) { for (int i = 0; i < arr.length; i++) { int r = (int) (Math.random() * arr.length); if (i != r) { arr[i] ^= arr[r]; arr[r] ^= arr[i]; arr[i] ^= arr[r]; } } } static class FastScanner { final private int BUFFER_SIZE = 1 << 10; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public FastScanner() { this(System.in); } public FastScanner(InputStream stream) { din = new DataInputStream(stream); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public FastScanner(String fileName) throws IOException { Path p = Paths.get(fileName); buffer = Files.readAllBytes(p); bytesRead = buffer.length; } int[] nextIntArray(int N) throws IOException { int[] arr = new int[N]; for (int i = 0; i < N; i++) { arr[i] = nextInt(); } return arr; } String nextLine() throws IOException { int c = read(); while (c != -1 && isEndline(c)) c = read(); if (c == -1) { return null; } StringBuilder res = new StringBuilder(); do { if (c >= 0) { res.appendCodePoint(c); } c = read(); } while (!isEndline(c)); return res.toString(); } boolean isEndline(int c) { return c == '\n' || c == '\r' || c == -1; } String next() throws Exception { int c = readOutSpaces(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { if (din == null) { bufferPointer = 0; bytesRead = -1; } else { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); } if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } private int readOutSpaces() throws IOException { while (true) { if (bufferPointer == bytesRead) fillBuffer(); int c = buffer[bufferPointer++]; if (!isSpaceChar(c)) { return c; } } } public void close() throws IOException { if (din == null) return; din.close(); } public int[][] readGraph(int N, int M, boolean zeroIndexed, boolean bidirectional) throws Exception { int[][] adj = new int[N][]; int[] numNodes = new int[N]; int[][] input = new int[M][2]; for (int i = 0; i < M; i++) { int a = nextInt(); int b = nextInt(); if (zeroIndexed) { a--; b--; } input[i][0] = a; input[i][1] = b; numNodes[a]++; if (bidirectional) numNodes[b]++; } for (int i = 0; i < N; i++) { adj[i] = new int[numNodes[i]]; numNodes[i] = 0; } for (int i = 0; i < M; i++) { int a = input[i][0]; int b = input[i][1]; adj[a][numNodes[a]++] = b; if (bidirectional) adj[b][numNodes[b]++] = a; } return adj; } public int[][][] readWeightedGraph(int N, int M, boolean zeroIndexed, boolean bidirectional) throws Exception { int[][][] adj = new int[N][][]; int[] numNodes = new int[N]; int[][] input = new int[M][3]; for (int i = 0; i < M; i++) { int a = nextInt(); int b = nextInt(); if (zeroIndexed) { a--; b--; } int d = nextInt(); input[i][0] = a; input[i][1] = b; input[i][2] = d; numNodes[a]++; if (bidirectional) numNodes[b]++; } for (int i = 0; i < N; i++) { adj[i] = new int[numNodes[i]][2]; numNodes[i] = 0; } for (int i = 0; i < M; i++) { int a = input[i][0]; int b = input[i][1]; int d = input[i][2]; adj[a][numNodes[a]][0] = b; adj[a][numNodes[a]][1] = d; numNodes[a]++; if (bidirectional) { adj[b][numNodes[b]][0] = a; adj[b][numNodes[b]][1] = d; numNodes[b]++; } } return adj; } } static class FastPrinter { static final char ENDL = '\n'; StringBuilder buf; PrintWriter pw; public FastPrinter(OutputStream stream) { buf = new StringBuilder(); pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(stream))); } public FastPrinter(String fileName) throws Exception { buf = new StringBuilder(); pw = new PrintWriter(new BufferedWriter(new FileWriter(fileName))); } public FastPrinter(StringBuilder buf) { this.buf = buf; } public void print(int a) { buf.append(a); } public void print(long a) { buf.append(a); } public void print(char a) { buf.append(a); } public void print(char[] a) { buf.append(a); } public void print(double a) { buf.append(a); } public void print(String a) { buf.append(a); } public void print(Object a) { buf.append(a.toString()); } public void println() { buf.append(ENDL); } public void println(int a) { buf.append(a); buf.append(ENDL); } public void println(long a) { buf.append(a); buf.append(ENDL); } public void println(char a) { buf.append(a); buf.append(ENDL); } public void println(char[] a) { buf.append(a); buf.append(ENDL); } public void println(double a) { buf.append(a); buf.append(ENDL); } public void println(String a) { buf.append(a); buf.append(ENDL); } public void println(Object a) { buf.append(a.toString()); buf.append(ENDL); } public void printf(String format, Object... args) { buf.append(String.format(format, args)); } public void close() { pw.print(buf); pw.close(); } public void flush() { pw.print(buf); pw.flush(); buf.setLength(0); } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedWriter; import java.io.DataInputStream; import java.io.FileWriter; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.nio.file.Files; import java.nio.file.Path; import java.nio.file.Paths; import java.util.Arrays; public class A { public static void main(String[] args) throws Exception { FastScanner sc = new FastScanner(System.in); FastPrinter out = new FastPrinter(System.out); new A().run(sc, out); out.close(); } public void run(FastScanner sc, FastPrinter out) throws Exception { int N = sc.nextInt(); int[] arr = sc.nextIntArray(N); Arrays.sort(arr); boolean[] done = new boolean[N]; int ans = 0; for (int i = 0; i < N; i++) { if (done[i]) continue; ans++; for (int j = i; j < N; j++) { if (arr[j] % arr[i] == 0) { done[j] = true; } } } out.println(ans); } public void shuffle(int[] arr) { for (int i = 0; i < arr.length; i++) { int r = (int) (Math.random() * arr.length); if (i != r) { arr[i] ^= arr[r]; arr[r] ^= arr[i]; arr[i] ^= arr[r]; } } } static class FastScanner { final private int BUFFER_SIZE = 1 << 10; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public FastScanner() { this(System.in); } public FastScanner(InputStream stream) { din = new DataInputStream(stream); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public FastScanner(String fileName) throws IOException { Path p = Paths.get(fileName); buffer = Files.readAllBytes(p); bytesRead = buffer.length; } int[] nextIntArray(int N) throws IOException { int[] arr = new int[N]; for (int i = 0; i < N; i++) { arr[i] = nextInt(); } return arr; } String nextLine() throws IOException { int c = read(); while (c != -1 && isEndline(c)) c = read(); if (c == -1) { return null; } StringBuilder res = new StringBuilder(); do { if (c >= 0) { res.appendCodePoint(c); } c = read(); } while (!isEndline(c)); return res.toString(); } boolean isEndline(int c) { return c == '\n' || c == '\r' || c == -1; } String next() throws Exception { int c = readOutSpaces(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { if (din == null) { bufferPointer = 0; bytesRead = -1; } else { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); } if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } private int readOutSpaces() throws IOException { while (true) { if (bufferPointer == bytesRead) fillBuffer(); int c = buffer[bufferPointer++]; if (!isSpaceChar(c)) { return c; } } } public void close() throws IOException { if (din == null) return; din.close(); } public int[][] readGraph(int N, int M, boolean zeroIndexed, boolean bidirectional) throws Exception { int[][] adj = new int[N][]; int[] numNodes = new int[N]; int[][] input = new int[M][2]; for (int i = 0; i < M; i++) { int a = nextInt(); int b = nextInt(); if (zeroIndexed) { a--; b--; } input[i][0] = a; input[i][1] = b; numNodes[a]++; if (bidirectional) numNodes[b]++; } for (int i = 0; i < N; i++) { adj[i] = new int[numNodes[i]]; numNodes[i] = 0; } for (int i = 0; i < M; i++) { int a = input[i][0]; int b = input[i][1]; adj[a][numNodes[a]++] = b; if (bidirectional) adj[b][numNodes[b]++] = a; } return adj; } public int[][][] readWeightedGraph(int N, int M, boolean zeroIndexed, boolean bidirectional) throws Exception { int[][][] adj = new int[N][][]; int[] numNodes = new int[N]; int[][] input = new int[M][3]; for (int i = 0; i < M; i++) { int a = nextInt(); int b = nextInt(); if (zeroIndexed) { a--; b--; } int d = nextInt(); input[i][0] = a; input[i][1] = b; input[i][2] = d; numNodes[a]++; if (bidirectional) numNodes[b]++; } for (int i = 0; i < N; i++) { adj[i] = new int[numNodes[i]][2]; numNodes[i] = 0; } for (int i = 0; i < M; i++) { int a = input[i][0]; int b = input[i][1]; int d = input[i][2]; adj[a][numNodes[a]][0] = b; adj[a][numNodes[a]][1] = d; numNodes[a]++; if (bidirectional) { adj[b][numNodes[b]][0] = a; adj[b][numNodes[b]][1] = d; numNodes[b]++; } } return adj; } } static class FastPrinter { static final char ENDL = '\n'; StringBuilder buf; PrintWriter pw; public FastPrinter(OutputStream stream) { buf = new StringBuilder(); pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(stream))); } public FastPrinter(String fileName) throws Exception { buf = new StringBuilder(); pw = new PrintWriter(new BufferedWriter(new FileWriter(fileName))); } public FastPrinter(StringBuilder buf) { this.buf = buf; } public void print(int a) { buf.append(a); } public void print(long a) { buf.append(a); } public void print(char a) { buf.append(a); } public void print(char[] a) { buf.append(a); } public void print(double a) { buf.append(a); } public void print(String a) { buf.append(a); } public void print(Object a) { buf.append(a.toString()); } public void println() { buf.append(ENDL); } public void println(int a) { buf.append(a); buf.append(ENDL); } public void println(long a) { buf.append(a); buf.append(ENDL); } public void println(char a) { buf.append(a); buf.append(ENDL); } public void println(char[] a) { buf.append(a); buf.append(ENDL); } public void println(double a) { buf.append(a); buf.append(ENDL); } public void println(String a) { buf.append(a); buf.append(ENDL); } public void println(Object a) { buf.append(a.toString()); buf.append(ENDL); } public void printf(String format, Object... args) { buf.append(String.format(format, args)); } public void close() { pw.print(buf); pw.close(); } public void flush() { pw.print(buf); pw.flush(); buf.setLength(0); } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedWriter; import java.io.DataInputStream; import java.io.FileWriter; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.nio.file.Files; import java.nio.file.Path; import java.nio.file.Paths; import java.util.Arrays; public class A { public static void main(String[] args) throws Exception { FastScanner sc = new FastScanner(System.in); FastPrinter out = new FastPrinter(System.out); new A().run(sc, out); out.close(); } public void run(FastScanner sc, FastPrinter out) throws Exception { int N = sc.nextInt(); int[] arr = sc.nextIntArray(N); Arrays.sort(arr); boolean[] done = new boolean[N]; int ans = 0; for (int i = 0; i < N; i++) { if (done[i]) continue; ans++; for (int j = i; j < N; j++) { if (arr[j] % arr[i] == 0) { done[j] = true; } } } out.println(ans); } public void shuffle(int[] arr) { for (int i = 0; i < arr.length; i++) { int r = (int) (Math.random() * arr.length); if (i != r) { arr[i] ^= arr[r]; arr[r] ^= arr[i]; arr[i] ^= arr[r]; } } } static class FastScanner { final private int BUFFER_SIZE = 1 << 10; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public FastScanner() { this(System.in); } public FastScanner(InputStream stream) { din = new DataInputStream(stream); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public FastScanner(String fileName) throws IOException { Path p = Paths.get(fileName); buffer = Files.readAllBytes(p); bytesRead = buffer.length; } int[] nextIntArray(int N) throws IOException { int[] arr = new int[N]; for (int i = 0; i < N; i++) { arr[i] = nextInt(); } return arr; } String nextLine() throws IOException { int c = read(); while (c != -1 && isEndline(c)) c = read(); if (c == -1) { return null; } StringBuilder res = new StringBuilder(); do { if (c >= 0) { res.appendCodePoint(c); } c = read(); } while (!isEndline(c)); return res.toString(); } boolean isEndline(int c) { return c == '\n' || c == '\r' || c == -1; } String next() throws Exception { int c = readOutSpaces(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { if (din == null) { bufferPointer = 0; bytesRead = -1; } else { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); } if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } private int readOutSpaces() throws IOException { while (true) { if (bufferPointer == bytesRead) fillBuffer(); int c = buffer[bufferPointer++]; if (!isSpaceChar(c)) { return c; } } } public void close() throws IOException { if (din == null) return; din.close(); } public int[][] readGraph(int N, int M, boolean zeroIndexed, boolean bidirectional) throws Exception { int[][] adj = new int[N][]; int[] numNodes = new int[N]; int[][] input = new int[M][2]; for (int i = 0; i < M; i++) { int a = nextInt(); int b = nextInt(); if (zeroIndexed) { a--; b--; } input[i][0] = a; input[i][1] = b; numNodes[a]++; if (bidirectional) numNodes[b]++; } for (int i = 0; i < N; i++) { adj[i] = new int[numNodes[i]]; numNodes[i] = 0; } for (int i = 0; i < M; i++) { int a = input[i][0]; int b = input[i][1]; adj[a][numNodes[a]++] = b; if (bidirectional) adj[b][numNodes[b]++] = a; } return adj; } public int[][][] readWeightedGraph(int N, int M, boolean zeroIndexed, boolean bidirectional) throws Exception { int[][][] adj = new int[N][][]; int[] numNodes = new int[N]; int[][] input = new int[M][3]; for (int i = 0; i < M; i++) { int a = nextInt(); int b = nextInt(); if (zeroIndexed) { a--; b--; } int d = nextInt(); input[i][0] = a; input[i][1] = b; input[i][2] = d; numNodes[a]++; if (bidirectional) numNodes[b]++; } for (int i = 0; i < N; i++) { adj[i] = new int[numNodes[i]][2]; numNodes[i] = 0; } for (int i = 0; i < M; i++) { int a = input[i][0]; int b = input[i][1]; int d = input[i][2]; adj[a][numNodes[a]][0] = b; adj[a][numNodes[a]][1] = d; numNodes[a]++; if (bidirectional) { adj[b][numNodes[b]][0] = a; adj[b][numNodes[b]][1] = d; numNodes[b]++; } } return adj; } } static class FastPrinter { static final char ENDL = '\n'; StringBuilder buf; PrintWriter pw; public FastPrinter(OutputStream stream) { buf = new StringBuilder(); pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(stream))); } public FastPrinter(String fileName) throws Exception { buf = new StringBuilder(); pw = new PrintWriter(new BufferedWriter(new FileWriter(fileName))); } public FastPrinter(StringBuilder buf) { this.buf = buf; } public void print(int a) { buf.append(a); } public void print(long a) { buf.append(a); } public void print(char a) { buf.append(a); } public void print(char[] a) { buf.append(a); } public void print(double a) { buf.append(a); } public void print(String a) { buf.append(a); } public void print(Object a) { buf.append(a.toString()); } public void println() { buf.append(ENDL); } public void println(int a) { buf.append(a); buf.append(ENDL); } public void println(long a) { buf.append(a); buf.append(ENDL); } public void println(char a) { buf.append(a); buf.append(ENDL); } public void println(char[] a) { buf.append(a); buf.append(ENDL); } public void println(double a) { buf.append(a); buf.append(ENDL); } public void println(String a) { buf.append(a); buf.append(ENDL); } public void println(Object a) { buf.append(a.toString()); buf.append(ENDL); } public void printf(String format, Object... args) { buf.append(String.format(format, args)); } public void close() { pw.print(buf); pw.close(); } public void flush() { pw.print(buf); pw.flush(); buf.setLength(0); } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
2,665
2,550
3,187
import java.util.Scanner; public class A { static Scanner scanner = new Scanner(System.in); static int s; public static void main(String[] args) { s = scanner.nextInt(); if (s >= 0) { System.out.println(s); } else { if (s >= -10) { System.out.println(0); } else { int ss = -s; int a, b; a = ss % 10; b = (ss % 100) / 10; if (a > b) { ss = ss / 10; } else { ss = (ss / 100) * 10 + a; } if (ss == 0) { System.out.println(0); } else { System.out.println("-" + ss); } } } } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; public class A { static Scanner scanner = new Scanner(System.in); static int s; public static void main(String[] args) { s = scanner.nextInt(); if (s >= 0) { System.out.println(s); } else { if (s >= -10) { System.out.println(0); } else { int ss = -s; int a, b; a = ss % 10; b = (ss % 100) / 10; if (a > b) { ss = ss / 10; } else { ss = (ss / 100) * 10 + a; } if (ss == 0) { System.out.println(0); } else { System.out.println("-" + ss); } } } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; public class A { static Scanner scanner = new Scanner(System.in); static int s; public static void main(String[] args) { s = scanner.nextInt(); if (s >= 0) { System.out.println(s); } else { if (s >= -10) { System.out.println(0); } else { int ss = -s; int a, b; a = ss % 10; b = (ss % 100) / 10; if (a > b) { ss = ss / 10; } else { ss = (ss / 100) * 10 + a; } if (ss == 0) { System.out.println(0); } else { System.out.println("-" + ss); } } } } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
535
3,181
2,394
import java.util.*; public class inversioncounting { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int[] permutation = new int[n]; for (int i = 0; i < n; i++) { permutation[i] = sc.nextInt(); } int m = sc.nextInt(); int[][] reverse = new int[m][2]; for (int i = 0; i < m; i++) { reverse[i][0] = sc.nextInt(); reverse[i][1] = sc.nextInt(); } int counter = 0; for (int i = 0; i < n - 1; i++) { for (int j = i + 1; j < n; j++) { if (permutation[i] > permutation[j]) { counter++; } } } boolean bayus = true; if (counter % 2 == 1) { bayus = false; } for (int i = 0; i < m; i++) { int bobib = reverse[i][1] - reverse[i][0] + 1; int bafry = nChoose2(bobib); if (bafry%2 == 1) { bayus = !bayus; } if (bayus) { System.out.println("even"); } else { System.out.println("odd"); } } } private static int nChoose2 (int n) { return (n * (n-1)) / 2; } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; public class inversioncounting { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int[] permutation = new int[n]; for (int i = 0; i < n; i++) { permutation[i] = sc.nextInt(); } int m = sc.nextInt(); int[][] reverse = new int[m][2]; for (int i = 0; i < m; i++) { reverse[i][0] = sc.nextInt(); reverse[i][1] = sc.nextInt(); } int counter = 0; for (int i = 0; i < n - 1; i++) { for (int j = i + 1; j < n; j++) { if (permutation[i] > permutation[j]) { counter++; } } } boolean bayus = true; if (counter % 2 == 1) { bayus = false; } for (int i = 0; i < m; i++) { int bobib = reverse[i][1] - reverse[i][0] + 1; int bafry = nChoose2(bobib); if (bafry%2 == 1) { bayus = !bayus; } if (bayus) { System.out.println("even"); } else { System.out.println("odd"); } } } private static int nChoose2 (int n) { return (n * (n-1)) / 2; } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; public class inversioncounting { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int[] permutation = new int[n]; for (int i = 0; i < n; i++) { permutation[i] = sc.nextInt(); } int m = sc.nextInt(); int[][] reverse = new int[m][2]; for (int i = 0; i < m; i++) { reverse[i][0] = sc.nextInt(); reverse[i][1] = sc.nextInt(); } int counter = 0; for (int i = 0; i < n - 1; i++) { for (int j = i + 1; j < n; j++) { if (permutation[i] > permutation[j]) { counter++; } } } boolean bayus = true; if (counter % 2 == 1) { bayus = false; } for (int i = 0; i < m; i++) { int bobib = reverse[i][1] - reverse[i][0] + 1; int bafry = nChoose2(bobib); if (bafry%2 == 1) { bayus = !bayus; } if (bayus) { System.out.println("even"); } else { System.out.println("odd"); } } } private static int nChoose2 (int n) { return (n * (n-1)) / 2; } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
695
2,389
1,475
import java.util.Scanner; public class Main3 { public static void main(String[] args) { Scanner s = new Scanner(System.in); long l = s.nextLong(); long r = s.nextLong(); String a = Long.toBinaryString(l); String b = Long.toBinaryString(r); while(a.length() < b.length()) a = "0" + a; while(b.length() < a.length()) b = "0" + b; String ans = ""; int ix = -1; for (int i = 0; i < a.length(); i++) { if(a.charAt(i) != b.charAt(i)){ break; } ans += a.charAt(i); ix++; } // System.out.println(a); // System.out.println(b); for (int i = ix + 1; i < a.length(); i++) { int c1 = a.charAt(i) - '0'; int c2 = b.charAt(i) - '0'; if(c1 == 0 && c2 == 0) ans += "1"; else if(c1 == 1 && c2 == 1) ans += "0"; else ans += (char)(c1 + '0'); } long a1 = Long.parseLong(ans, 2); long a2 = Long.parseLong(b,2); // System.out.println(ans); // System.out.println(b); // System.out.println(); long xor = a1 ^ a2; System.out.println(xor); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; public class Main3 { public static void main(String[] args) { Scanner s = new Scanner(System.in); long l = s.nextLong(); long r = s.nextLong(); String a = Long.toBinaryString(l); String b = Long.toBinaryString(r); while(a.length() < b.length()) a = "0" + a; while(b.length() < a.length()) b = "0" + b; String ans = ""; int ix = -1; for (int i = 0; i < a.length(); i++) { if(a.charAt(i) != b.charAt(i)){ break; } ans += a.charAt(i); ix++; } // System.out.println(a); // System.out.println(b); for (int i = ix + 1; i < a.length(); i++) { int c1 = a.charAt(i) - '0'; int c2 = b.charAt(i) - '0'; if(c1 == 0 && c2 == 0) ans += "1"; else if(c1 == 1 && c2 == 1) ans += "0"; else ans += (char)(c1 + '0'); } long a1 = Long.parseLong(ans, 2); long a2 = Long.parseLong(b,2); // System.out.println(ans); // System.out.println(b); // System.out.println(); long xor = a1 ^ a2; System.out.println(xor); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; public class Main3 { public static void main(String[] args) { Scanner s = new Scanner(System.in); long l = s.nextLong(); long r = s.nextLong(); String a = Long.toBinaryString(l); String b = Long.toBinaryString(r); while(a.length() < b.length()) a = "0" + a; while(b.length() < a.length()) b = "0" + b; String ans = ""; int ix = -1; for (int i = 0; i < a.length(); i++) { if(a.charAt(i) != b.charAt(i)){ break; } ans += a.charAt(i); ix++; } // System.out.println(a); // System.out.println(b); for (int i = ix + 1; i < a.length(); i++) { int c1 = a.charAt(i) - '0'; int c2 = b.charAt(i) - '0'; if(c1 == 0 && c2 == 0) ans += "1"; else if(c1 == 1 && c2 == 1) ans += "0"; else ans += (char)(c1 + '0'); } long a1 = Long.parseLong(ans, 2); long a2 = Long.parseLong(b,2); // System.out.println(ans); // System.out.println(b); // System.out.println(); long xor = a1 ^ a2; System.out.println(xor); } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
667
1,473
551
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastScanner in = new FastScanner(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskB solver = new TaskB(); solver.solve(1, in, out); out.close(); } static class TaskB { public void solve(int testNumber, FastScanner in, PrintWriter out) { int numTests = in.nextInt(); for (int test = 0; test < numTests; test++) { int n = in.nextInt(); boolean can = false; if (n % 2 == 0 && isSquare(n / 2)) { can = true; } if (n % 4 == 0 && isSquare(n / 4)) { can = true; } out.println(can ? "YES" : "NO"); } } private boolean isSquare(int n) { int x = (int) Math.sqrt(n); while (x * x > n) { --x; } while (x * x < n) { ++x; } return x * x == n; } } static class FastScanner { private BufferedReader in; private StringTokenizer st; public FastScanner(InputStream stream) { in = new BufferedReader(new InputStreamReader(stream)); } public String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(in.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastScanner in = new FastScanner(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskB solver = new TaskB(); solver.solve(1, in, out); out.close(); } static class TaskB { public void solve(int testNumber, FastScanner in, PrintWriter out) { int numTests = in.nextInt(); for (int test = 0; test < numTests; test++) { int n = in.nextInt(); boolean can = false; if (n % 2 == 0 && isSquare(n / 2)) { can = true; } if (n % 4 == 0 && isSquare(n / 4)) { can = true; } out.println(can ? "YES" : "NO"); } } private boolean isSquare(int n) { int x = (int) Math.sqrt(n); while (x * x > n) { --x; } while (x * x < n) { ++x; } return x * x == n; } } static class FastScanner { private BufferedReader in; private StringTokenizer st; public FastScanner(InputStream stream) { in = new BufferedReader(new InputStreamReader(stream)); } public String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(in.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastScanner in = new FastScanner(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskB solver = new TaskB(); solver.solve(1, in, out); out.close(); } static class TaskB { public void solve(int testNumber, FastScanner in, PrintWriter out) { int numTests = in.nextInt(); for (int test = 0; test < numTests; test++) { int n = in.nextInt(); boolean can = false; if (n % 2 == 0 && isSquare(n / 2)) { can = true; } if (n % 4 == 0 && isSquare(n / 4)) { can = true; } out.println(can ? "YES" : "NO"); } } private boolean isSquare(int n) { int x = (int) Math.sqrt(n); while (x * x > n) { --x; } while (x * x < n) { ++x; } return x * x == n; } } static class FastScanner { private BufferedReader in; private StringTokenizer st; public FastScanner(InputStream stream) { in = new BufferedReader(new InputStreamReader(stream)); } public String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(in.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
765
550
1,207
import java.util.*; import java.io.*; public class Quiz { public static final int MOD = 1000000009; public static void main(String[] args) { Scanner in = new Scanner(System.in); long n = in.nextInt(); long m = in.nextInt(); long k = in.nextInt(); long low = Math.min(n - (k * (n - m)), m); if(low < 0) { low = 0; } long result = 0; if(low >= k) { long b = low / k; result += fastExp(2, b + 1); result -= 2; if(result < 0) { result += MOD; } result *= k; result %= MOD; } result += low % k; result %= MOD; result += m - low; result %= MOD; // System.out.println(low); System.out.println(result); } public static long fastExp(int x, long pow) { if(pow == 0) { return 1; } long result = fastExp(x, pow / 2); result *= result; result %= MOD; if(pow % 2 == 1) { result *= x; result %= MOD; } return result; } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class Quiz { public static final int MOD = 1000000009; public static void main(String[] args) { Scanner in = new Scanner(System.in); long n = in.nextInt(); long m = in.nextInt(); long k = in.nextInt(); long low = Math.min(n - (k * (n - m)), m); if(low < 0) { low = 0; } long result = 0; if(low >= k) { long b = low / k; result += fastExp(2, b + 1); result -= 2; if(result < 0) { result += MOD; } result *= k; result %= MOD; } result += low % k; result %= MOD; result += m - low; result %= MOD; // System.out.println(low); System.out.println(result); } public static long fastExp(int x, long pow) { if(pow == 0) { return 1; } long result = fastExp(x, pow / 2); result *= result; result %= MOD; if(pow % 2 == 1) { result *= x; result %= MOD; } return result; } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; public class Quiz { public static final int MOD = 1000000009; public static void main(String[] args) { Scanner in = new Scanner(System.in); long n = in.nextInt(); long m = in.nextInt(); long k = in.nextInt(); long low = Math.min(n - (k * (n - m)), m); if(low < 0) { low = 0; } long result = 0; if(low >= k) { long b = low / k; result += fastExp(2, b + 1); result -= 2; if(result < 0) { result += MOD; } result *= k; result %= MOD; } result += low % k; result %= MOD; result += m - low; result %= MOD; // System.out.println(low); System.out.println(result); } public static long fastExp(int x, long pow) { if(pow == 0) { return 1; } long result = fastExp(x, pow / 2); result *= result; result %= MOD; if(pow % 2 == 1) { result *= x; result %= MOD; } return result; } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
653
1,206
2,375
//~~~~~~~~~~~~~~~~~~~~~~~@@@@@@@@@@@@@@@_____________K_____S_____J__________@@@@@@@@@@@@@@@@@@@@@@@@@@@@~~~~~~~~~~~~~~~~~~~~~~~~~~ //Date:00/00/17 //------------- import java.util.*; import java.io.*; /* [[[[[[[[[[[[[[[ ]]]]]]]]]]]]]]] [:::::::::::::: ::::::::::::::] [:::::::::::::: ::::::::::::::] [::::::[[[[[[[: :]]]]]]]::::::] [:::::[ ]:::::] [:::::[ ]:::::] [:::::[ ]:::::] [:::::[ ]:::::] [:::::[ CODE YOUR LIFE ]:::::] [:::::[ Kripa Shankar jha ]:::::] [:::::[ ]:::::] [:::::[ ]:::::] [:::::[ ]:::::] [:::::[ ]:::::] [::::::[[[[[[[: :]]]]]]]::::::] [:::::::::::::: ::::::::::::::] [:::::::::::::: ::::::::::::::] [[[[[[[[[[[[[[[ ]]]]]]]]]]]]]]] */ public class prob3{ static Parser sc=new Parser(System.in); static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out)); static int p[]=new int[100005]; public static void main(String[] args) throws IOException { // use ((((((( sc ............... for input int n=sc.nextInt(); int arr[]=new int[n]; for(int i=0;i<n;i++){ arr[i]=sc.nextInt(); } int swap=0; for(int i=0;i<n;i++){ for(int j=0;j<i;j++){ if(arr[i]<arr[j]){ swap++; } } } swap%=2; int m=sc.nextInt(); for(int i=0;i<m;i++){ int a=sc.nextInt(),b=sc.nextInt(); swap+=((b-a)*((b-a)+1))/2; swap%=2; if(swap%2==0){System.out.println("even");} else{System.out.println("odd");} } } public static void union(int a,int b){ int i=find(a); int j=find(b); if(p[i]!=j){ p[i]=j; } } public static int find(int a){ while(p[a]!=a){ a=p[a]; } return a; } //___________________________Fast-Input_Output-------------------******************* static class Parser { final private int BUFFER_SIZE = 1 << 20; // 2^16, a good compromise for some problems private InputStream din; // Underlying input stream private byte[] buffer; // Self-maintained buffer private int bufferPointer; // Current read position in the buffer private int bytesRead; // Effective bytes in the buffer read from the input stream private SpaceCharFilter filter; public Parser(InputStream in) { din = in; buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } /** * Read the next integer from the input stream. * @return The next integer. * @throws IOException */ public int nextInt() throws IOException { int result = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); while (c >= '0' && c <= '9') { result = result * 10 + c - '0'; c = read(); } if (neg) return -result; return result; } public int nextLong() throws IOException { int result = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); while (c >= '0' && c <= '9') { result = result * 10 + c - '0'; c = read(); } if (neg) return -result; return result; } public String nextLine()throws IOException { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndOfLine(c)==true); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } /** * Read the next byte of data from the input stream. * @return the next byte of data, or -1 if the end of the stream is reached. * @throws IOException if an I/O error occurs. */ public byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } /** * Read data from the input stream into the buffer * @throws IOException if an I/O error occurs. */ private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> //~~~~~~~~~~~~~~~~~~~~~~~@@@@@@@@@@@@@@@_____________K_____S_____J__________@@@@@@@@@@@@@@@@@@@@@@@@@@@@~~~~~~~~~~~~~~~~~~~~~~~~~~ //Date:00/00/17 //------------- import java.util.*; import java.io.*; /* [[[[[[[[[[[[[[[ ]]]]]]]]]]]]]]] [:::::::::::::: ::::::::::::::] [:::::::::::::: ::::::::::::::] [::::::[[[[[[[: :]]]]]]]::::::] [:::::[ ]:::::] [:::::[ ]:::::] [:::::[ ]:::::] [:::::[ ]:::::] [:::::[ CODE YOUR LIFE ]:::::] [:::::[ Kripa Shankar jha ]:::::] [:::::[ ]:::::] [:::::[ ]:::::] [:::::[ ]:::::] [:::::[ ]:::::] [::::::[[[[[[[: :]]]]]]]::::::] [:::::::::::::: ::::::::::::::] [:::::::::::::: ::::::::::::::] [[[[[[[[[[[[[[[ ]]]]]]]]]]]]]]] */ public class prob3{ static Parser sc=new Parser(System.in); static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out)); static int p[]=new int[100005]; public static void main(String[] args) throws IOException { // use ((((((( sc ............... for input int n=sc.nextInt(); int arr[]=new int[n]; for(int i=0;i<n;i++){ arr[i]=sc.nextInt(); } int swap=0; for(int i=0;i<n;i++){ for(int j=0;j<i;j++){ if(arr[i]<arr[j]){ swap++; } } } swap%=2; int m=sc.nextInt(); for(int i=0;i<m;i++){ int a=sc.nextInt(),b=sc.nextInt(); swap+=((b-a)*((b-a)+1))/2; swap%=2; if(swap%2==0){System.out.println("even");} else{System.out.println("odd");} } } public static void union(int a,int b){ int i=find(a); int j=find(b); if(p[i]!=j){ p[i]=j; } } public static int find(int a){ while(p[a]!=a){ a=p[a]; } return a; } //___________________________Fast-Input_Output-------------------******************* static class Parser { final private int BUFFER_SIZE = 1 << 20; // 2^16, a good compromise for some problems private InputStream din; // Underlying input stream private byte[] buffer; // Self-maintained buffer private int bufferPointer; // Current read position in the buffer private int bytesRead; // Effective bytes in the buffer read from the input stream private SpaceCharFilter filter; public Parser(InputStream in) { din = in; buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } /** * Read the next integer from the input stream. * @return The next integer. * @throws IOException */ public int nextInt() throws IOException { int result = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); while (c >= '0' && c <= '9') { result = result * 10 + c - '0'; c = read(); } if (neg) return -result; return result; } public int nextLong() throws IOException { int result = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); while (c >= '0' && c <= '9') { result = result * 10 + c - '0'; c = read(); } if (neg) return -result; return result; } public String nextLine()throws IOException { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndOfLine(c)==true); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } /** * Read the next byte of data from the input stream. * @return the next byte of data, or -1 if the end of the stream is reached. * @throws IOException if an I/O error occurs. */ public byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } /** * Read data from the input stream into the buffer * @throws IOException if an I/O error occurs. */ private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> //~~~~~~~~~~~~~~~~~~~~~~~@@@@@@@@@@@@@@@_____________K_____S_____J__________@@@@@@@@@@@@@@@@@@@@@@@@@@@@~~~~~~~~~~~~~~~~~~~~~~~~~~ //Date:00/00/17 //------------- import java.util.*; import java.io.*; /* [[[[[[[[[[[[[[[ ]]]]]]]]]]]]]]] [:::::::::::::: ::::::::::::::] [:::::::::::::: ::::::::::::::] [::::::[[[[[[[: :]]]]]]]::::::] [:::::[ ]:::::] [:::::[ ]:::::] [:::::[ ]:::::] [:::::[ ]:::::] [:::::[ CODE YOUR LIFE ]:::::] [:::::[ Kripa Shankar jha ]:::::] [:::::[ ]:::::] [:::::[ ]:::::] [:::::[ ]:::::] [:::::[ ]:::::] [::::::[[[[[[[: :]]]]]]]::::::] [:::::::::::::: ::::::::::::::] [:::::::::::::: ::::::::::::::] [[[[[[[[[[[[[[[ ]]]]]]]]]]]]]]] */ public class prob3{ static Parser sc=new Parser(System.in); static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out)); static int p[]=new int[100005]; public static void main(String[] args) throws IOException { // use ((((((( sc ............... for input int n=sc.nextInt(); int arr[]=new int[n]; for(int i=0;i<n;i++){ arr[i]=sc.nextInt(); } int swap=0; for(int i=0;i<n;i++){ for(int j=0;j<i;j++){ if(arr[i]<arr[j]){ swap++; } } } swap%=2; int m=sc.nextInt(); for(int i=0;i<m;i++){ int a=sc.nextInt(),b=sc.nextInt(); swap+=((b-a)*((b-a)+1))/2; swap%=2; if(swap%2==0){System.out.println("even");} else{System.out.println("odd");} } } public static void union(int a,int b){ int i=find(a); int j=find(b); if(p[i]!=j){ p[i]=j; } } public static int find(int a){ while(p[a]!=a){ a=p[a]; } return a; } //___________________________Fast-Input_Output-------------------******************* static class Parser { final private int BUFFER_SIZE = 1 << 20; // 2^16, a good compromise for some problems private InputStream din; // Underlying input stream private byte[] buffer; // Self-maintained buffer private int bufferPointer; // Current read position in the buffer private int bytesRead; // Effective bytes in the buffer read from the input stream private SpaceCharFilter filter; public Parser(InputStream in) { din = in; buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } /** * Read the next integer from the input stream. * @return The next integer. * @throws IOException */ public int nextInt() throws IOException { int result = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); while (c >= '0' && c <= '9') { result = result * 10 + c - '0'; c = read(); } if (neg) return -result; return result; } public int nextLong() throws IOException { int result = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); while (c >= '0' && c <= '9') { result = result * 10 + c - '0'; c = read(); } if (neg) return -result; return result; } public String nextLine()throws IOException { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndOfLine(c)==true); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } /** * Read the next byte of data from the input stream. * @return the next byte of data, or -1 if the end of the stream is reached. * @throws IOException if an I/O error occurs. */ public byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } /** * Read data from the input stream into the buffer * @throws IOException if an I/O error occurs. */ private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,609
2,370
2,070
import java.io.* ; import java.util.*; import static java.lang.Math.* ; import static java.util.Arrays.* ; public class A { public static void main(String[] args) throws IOException { new A().solveProblem(); out.close(); } static Scanner in = new Scanner(new InputStreamReader(System.in)); //static BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); static PrintStream out = new PrintStream(new BufferedOutputStream(System.out)); public void solveProblem() { int n = in.nextInt() ; E[] get = new E[n] ; for( int i = 0 ; i < n ; i++ ){ get[i] = new E(i,in.nextInt()) ; } sort(get) ; if( get[n-1].g == 1){ get[n-1].g = 2 ; }else{ get[n-1].g = 1 ; } sort(get) ; for( int i = 0 ; i < n - 1 ; i++ ) out.print(get[i].g +" " ) ; out.println(get[n-1].g) ; } class E implements Comparable<E>{ int g ; int index ; public E( int index, int g){ this.g = g ; this.index = index ; } public int compareTo( E e){ return g - e.g ; } } static int[] readGet( int n ){ int[] get = new int[n] ; for( int i = 0 ; i < n ; i++ ) get[i] = in.nextInt(); return get ; } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.* ; import java.util.*; import static java.lang.Math.* ; import static java.util.Arrays.* ; public class A { public static void main(String[] args) throws IOException { new A().solveProblem(); out.close(); } static Scanner in = new Scanner(new InputStreamReader(System.in)); //static BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); static PrintStream out = new PrintStream(new BufferedOutputStream(System.out)); public void solveProblem() { int n = in.nextInt() ; E[] get = new E[n] ; for( int i = 0 ; i < n ; i++ ){ get[i] = new E(i,in.nextInt()) ; } sort(get) ; if( get[n-1].g == 1){ get[n-1].g = 2 ; }else{ get[n-1].g = 1 ; } sort(get) ; for( int i = 0 ; i < n - 1 ; i++ ) out.print(get[i].g +" " ) ; out.println(get[n-1].g) ; } class E implements Comparable<E>{ int g ; int index ; public E( int index, int g){ this.g = g ; this.index = index ; } public int compareTo( E e){ return g - e.g ; } } static int[] readGet( int n ){ int[] get = new int[n] ; for( int i = 0 ; i < n ; i++ ) get[i] = in.nextInt(); return get ; } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.* ; import java.util.*; import static java.lang.Math.* ; import static java.util.Arrays.* ; public class A { public static void main(String[] args) throws IOException { new A().solveProblem(); out.close(); } static Scanner in = new Scanner(new InputStreamReader(System.in)); //static BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); static PrintStream out = new PrintStream(new BufferedOutputStream(System.out)); public void solveProblem() { int n = in.nextInt() ; E[] get = new E[n] ; for( int i = 0 ; i < n ; i++ ){ get[i] = new E(i,in.nextInt()) ; } sort(get) ; if( get[n-1].g == 1){ get[n-1].g = 2 ; }else{ get[n-1].g = 1 ; } sort(get) ; for( int i = 0 ; i < n - 1 ; i++ ) out.print(get[i].g +" " ) ; out.println(get[n-1].g) ; } class E implements Comparable<E>{ int g ; int index ; public E( int index, int g){ this.g = g ; this.index = index ; } public int compareTo( E e){ return g - e.g ; } } static int[] readGet( int n ){ int[] get = new int[n] ; for( int i = 0 ; i < n ; i++ ) get[i] = in.nextInt(); return get ; } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
714
2,066
2,320
//package round455; import java.io.ByteArrayInputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.InputMismatchException; public class C { InputStream is; PrintWriter out; String INPUT = ""; void solve() { int n = ni(); int mod = 1000000007; long[] dp = new long[5005]; dp[0] = 1; for(int i = 0;i < n;i++){ char c = nc(); if(c == 's'){ if(i < n-1){ for(int j = 5003;j >= 0;j--){ dp[j] += dp[j+1]; if(dp[j] >= mod)dp[j] -= mod; } } }else{ for(int j = 5003;j >= 0;j--){ dp[j+1] = dp[j]; } dp[0] = 0; } } long ans = 0; for(int i = 0;i < 5005;i++)ans += dp[i]; out.println(ans % mod); } void run() throws Exception { is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes()); out = new PrintWriter(System.out); long s = System.currentTimeMillis(); solve(); out.flush(); tr(System.currentTimeMillis()-s+"ms"); } public static void main(String[] args) throws Exception { new C().run(); } private byte[] inbuf = new byte[1024]; public int lenbuf = 0, ptrbuf = 0; private int readByte() { if(lenbuf == -1)throw new InputMismatchException(); if(ptrbuf >= lenbuf){ ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if(lenbuf <= 0)return -1; } return inbuf[ptrbuf++]; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; } private double nd() { return Double.parseDouble(ns()); } private char nc() { return (char)skip(); } private String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } private char[] ns(int n) { char[] buf = new char[n]; int b = skip(), p = 0; while(p < n && !(isSpaceChar(b))){ buf[p++] = (char)b; b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p); } private char[][] nm(int n, int m) { char[][] map = new char[n][]; for(int i = 0;i < n;i++)map[i] = ns(m); return map; } private int[] na(int n) { int[] a = new int[n]; for(int i = 0;i < n;i++)a[i] = ni(); return a; } private int ni() { int num = 0, b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private long nl() { long num = 0; int b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private boolean oj = System.getProperty("ONLINE_JUDGE") != null; private void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> //package round455; import java.io.ByteArrayInputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.InputMismatchException; public class C { InputStream is; PrintWriter out; String INPUT = ""; void solve() { int n = ni(); int mod = 1000000007; long[] dp = new long[5005]; dp[0] = 1; for(int i = 0;i < n;i++){ char c = nc(); if(c == 's'){ if(i < n-1){ for(int j = 5003;j >= 0;j--){ dp[j] += dp[j+1]; if(dp[j] >= mod)dp[j] -= mod; } } }else{ for(int j = 5003;j >= 0;j--){ dp[j+1] = dp[j]; } dp[0] = 0; } } long ans = 0; for(int i = 0;i < 5005;i++)ans += dp[i]; out.println(ans % mod); } void run() throws Exception { is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes()); out = new PrintWriter(System.out); long s = System.currentTimeMillis(); solve(); out.flush(); tr(System.currentTimeMillis()-s+"ms"); } public static void main(String[] args) throws Exception { new C().run(); } private byte[] inbuf = new byte[1024]; public int lenbuf = 0, ptrbuf = 0; private int readByte() { if(lenbuf == -1)throw new InputMismatchException(); if(ptrbuf >= lenbuf){ ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if(lenbuf <= 0)return -1; } return inbuf[ptrbuf++]; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; } private double nd() { return Double.parseDouble(ns()); } private char nc() { return (char)skip(); } private String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } private char[] ns(int n) { char[] buf = new char[n]; int b = skip(), p = 0; while(p < n && !(isSpaceChar(b))){ buf[p++] = (char)b; b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p); } private char[][] nm(int n, int m) { char[][] map = new char[n][]; for(int i = 0;i < n;i++)map[i] = ns(m); return map; } private int[] na(int n) { int[] a = new int[n]; for(int i = 0;i < n;i++)a[i] = ni(); return a; } private int ni() { int num = 0, b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private long nl() { long num = 0; int b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private boolean oj = System.getProperty("ONLINE_JUDGE") != null; private void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> //package round455; import java.io.ByteArrayInputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.InputMismatchException; public class C { InputStream is; PrintWriter out; String INPUT = ""; void solve() { int n = ni(); int mod = 1000000007; long[] dp = new long[5005]; dp[0] = 1; for(int i = 0;i < n;i++){ char c = nc(); if(c == 's'){ if(i < n-1){ for(int j = 5003;j >= 0;j--){ dp[j] += dp[j+1]; if(dp[j] >= mod)dp[j] -= mod; } } }else{ for(int j = 5003;j >= 0;j--){ dp[j+1] = dp[j]; } dp[0] = 0; } } long ans = 0; for(int i = 0;i < 5005;i++)ans += dp[i]; out.println(ans % mod); } void run() throws Exception { is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes()); out = new PrintWriter(System.out); long s = System.currentTimeMillis(); solve(); out.flush(); tr(System.currentTimeMillis()-s+"ms"); } public static void main(String[] args) throws Exception { new C().run(); } private byte[] inbuf = new byte[1024]; public int lenbuf = 0, ptrbuf = 0; private int readByte() { if(lenbuf == -1)throw new InputMismatchException(); if(ptrbuf >= lenbuf){ ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if(lenbuf <= 0)return -1; } return inbuf[ptrbuf++]; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; } private double nd() { return Double.parseDouble(ns()); } private char nc() { return (char)skip(); } private String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } private char[] ns(int n) { char[] buf = new char[n]; int b = skip(), p = 0; while(p < n && !(isSpaceChar(b))){ buf[p++] = (char)b; b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p); } private char[][] nm(int n, int m) { char[][] map = new char[n][]; for(int i = 0;i < n;i++)map[i] = ns(m); return map; } private int[] na(int n) { int[] a = new int[n]; for(int i = 0;i < n;i++)a[i] = ni(); return a; } private int ni() { int num = 0, b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private long nl() { long num = 0; int b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private boolean oj = System.getProperty("ONLINE_JUDGE") != null; private void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,412
2,315
4,385
import java.util.*; public class cf11d { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); int m = in.nextInt(); boolean[][] g = new boolean[n][n]; boolean[] ok = new boolean[1<<n]; int[] f = new int[1<<n]; for(int i=1; i<(1<<n); i++) { ok[i] = Integer.bitCount(i)>=3; f[i] = first(i); } for(int i=0; i<m; i++) { int a = in.nextInt()-1; int b = in.nextInt()-1; g[a][b] = g[b][a] = true; } long[][] dp = new long[n][1<<n]; for(int i=0; i<n; i++) dp[i][1<<i] = 1; for(int i=1; i<(1<<n); i++) for(int j=0; j<n; j++) for(int k=f[i]+1; k<n; k++) if((i&(1<<k)) == 0 && g[j][k]) dp[k][i^(1<<k)] += dp[j][i]; long ret = 0; for(int i=1; i<(1<<n); i++) for(int j=0; j<n; j++) if(ok[i] && j != f[i]) ret += g[j][f[i]]?dp[j][i]:0; System.out.println(ret/2); } static int first(int x) { int ret = 0; while(x%2==0) { x/=2; ret++; } return ret; } } /* 19 171 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 8 9 8 10 8 11 8 12 8 13 8 14 8 15 8 16 8 17 8 18 8 19 9 10 9 11 9 12 9 13 9 14 9 15 9 16 9 17 9 18 9 19 10 11 10 12 10 13 10 14 10 15 10 16 10 17 10 18 10 19 11 12 11 13 11 14 11 15 11 16 11 17 11 18 11 19 12 13 12 14 12 15 12 16 12 17 12 18 12 19 13 14 13 15 13 16 13 17 13 18 13 19 14 15 14 16 14 17 14 18 14 19 15 16 15 17 15 18 15 19 16 17 16 18 16 19 17 18 17 19 18 19 */
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; public class cf11d { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); int m = in.nextInt(); boolean[][] g = new boolean[n][n]; boolean[] ok = new boolean[1<<n]; int[] f = new int[1<<n]; for(int i=1; i<(1<<n); i++) { ok[i] = Integer.bitCount(i)>=3; f[i] = first(i); } for(int i=0; i<m; i++) { int a = in.nextInt()-1; int b = in.nextInt()-1; g[a][b] = g[b][a] = true; } long[][] dp = new long[n][1<<n]; for(int i=0; i<n; i++) dp[i][1<<i] = 1; for(int i=1; i<(1<<n); i++) for(int j=0; j<n; j++) for(int k=f[i]+1; k<n; k++) if((i&(1<<k)) == 0 && g[j][k]) dp[k][i^(1<<k)] += dp[j][i]; long ret = 0; for(int i=1; i<(1<<n); i++) for(int j=0; j<n; j++) if(ok[i] && j != f[i]) ret += g[j][f[i]]?dp[j][i]:0; System.out.println(ret/2); } static int first(int x) { int ret = 0; while(x%2==0) { x/=2; ret++; } return ret; } } /* 19 171 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 8 9 8 10 8 11 8 12 8 13 8 14 8 15 8 16 8 17 8 18 8 19 9 10 9 11 9 12 9 13 9 14 9 15 9 16 9 17 9 18 9 19 10 11 10 12 10 13 10 14 10 15 10 16 10 17 10 18 10 19 11 12 11 13 11 14 11 15 11 16 11 17 11 18 11 19 12 13 12 14 12 15 12 16 12 17 12 18 12 19 13 14 13 15 13 16 13 17 13 18 13 19 14 15 14 16 14 17 14 18 14 19 15 16 15 17 15 18 15 19 16 17 16 18 16 19 17 18 17 19 18 19 */ </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; public class cf11d { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); int m = in.nextInt(); boolean[][] g = new boolean[n][n]; boolean[] ok = new boolean[1<<n]; int[] f = new int[1<<n]; for(int i=1; i<(1<<n); i++) { ok[i] = Integer.bitCount(i)>=3; f[i] = first(i); } for(int i=0; i<m; i++) { int a = in.nextInt()-1; int b = in.nextInt()-1; g[a][b] = g[b][a] = true; } long[][] dp = new long[n][1<<n]; for(int i=0; i<n; i++) dp[i][1<<i] = 1; for(int i=1; i<(1<<n); i++) for(int j=0; j<n; j++) for(int k=f[i]+1; k<n; k++) if((i&(1<<k)) == 0 && g[j][k]) dp[k][i^(1<<k)] += dp[j][i]; long ret = 0; for(int i=1; i<(1<<n); i++) for(int j=0; j<n; j++) if(ok[i] && j != f[i]) ret += g[j][f[i]]?dp[j][i]:0; System.out.println(ret/2); } static int first(int x) { int ret = 0; while(x%2==0) { x/=2; ret++; } return ret; } } /* 19 171 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 8 9 8 10 8 11 8 12 8 13 8 14 8 15 8 16 8 17 8 18 8 19 9 10 9 11 9 12 9 13 9 14 9 15 9 16 9 17 9 18 9 19 10 11 10 12 10 13 10 14 10 15 10 16 10 17 10 18 10 19 11 12 11 13 11 14 11 15 11 16 11 17 11 18 11 19 12 13 12 14 12 15 12 16 12 17 12 18 12 19 13 14 13 15 13 16 13 17 13 18 13 19 14 15 14 16 14 17 14 18 14 19 15 16 15 17 15 18 15 19 16 17 16 18 16 19 17 18 17 19 18 19 */ </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,593
4,374
1,552
/* Codeforces Template */ import java.io.*; import java.util.*; import static java.lang.Math.*; import static java.util.Arrays.fill; import static java.util.Arrays.binarySearch; import static java.util.Arrays.sort; public class Main { static long initTime; static final Random rnd = new Random(7777L); static boolean writeLog = false; public static void main(String[] args) throws IOException { initTime = System.currentTimeMillis(); try { writeLog = "true".equals(System.getProperty("LOCAL_RUN_7777")); } catch (SecurityException e) {} new Thread(null, new Runnable() { public void run() { try { try { if (new File("input.txt").exists()) System.setIn(new FileInputStream("input.txt")); } catch (SecurityException e) {} long prevTime = System.currentTimeMillis(); new Main().run(); log("Total time: " + (System.currentTimeMillis() - prevTime) + " ms"); log("Memory status: " + memoryStatus()); } catch (IOException e) { e.printStackTrace(); } } }, "1", 1L << 24).start(); } void run() throws IOException { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); out.close(); in.close(); } /*************************************************************** * Solution **************************************************************/ void solve() throws IOException { int n = nextInt(); long k = nextLong(); int[] a = nextIntArray(n); Set<Long> bad = new TreeSet<Long>(); sort(a); int ans = 0; for (int x : a) { if (!bad.contains((long) x)) { bad.add(x * k); ans++; } } out.println(ans); } /*************************************************************** * Input **************************************************************/ BufferedReader in; PrintWriter out; StringTokenizer st = new StringTokenizer(""); String nextToken() throws IOException { while (!st.hasMoreTokens()) st = new StringTokenizer(in.readLine()); return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } int[] nextIntArray(int size) throws IOException { int[] ret = new int [size]; for (int i = 0; i < size; i++) ret[i] = nextInt(); return ret; } long[] nextLongArray(int size) throws IOException { long[] ret = new long [size]; for (int i = 0; i < size; i++) ret[i] = nextLong(); return ret; } double[] nextDoubleArray(int size) throws IOException { double[] ret = new double [size]; for (int i = 0; i < size; i++) ret[i] = nextDouble(); return ret; } String nextLine() throws IOException { st = new StringTokenizer(""); return in.readLine(); } boolean EOF() throws IOException { while (!st.hasMoreTokens()) { String s = in.readLine(); if (s == null) return true; st = new StringTokenizer(s); } return false; } /*************************************************************** * Output **************************************************************/ void printRepeat(String s, int count) { for (int i = 0; i < count; i++) out.print(s); } void printArray(int[] array) { if (array == null || array.length == 0) return; for (int i = 0; i < array.length; i++) { if (i > 0) out.print(' '); out.print(array[i]); } out.println(); } void printArray(long[] array) { if (array == null || array.length == 0) return; for (int i = 0; i < array.length; i++) { if (i > 0) out.print(' '); out.print(array[i]); } out.println(); } void printArray(double[] array) { if (array == null || array.length == 0) return; for (int i = 0; i < array.length; i++) { if (i > 0) out.print(' '); out.print(array[i]); } out.println(); } void printArray(double[] array, String spec) { if (array == null || array.length == 0) return; for (int i = 0; i < array.length; i++) { if (i > 0) out.print(' '); out.printf(Locale.US, spec, array[i]); } out.println(); } void printArray(Object[] array) { if (array == null || array.length == 0) return; boolean blank = false; for (Object x : array) { if (blank) out.print(' '); else blank = true; out.print(x); } out.println(); } @SuppressWarnings("rawtypes") void printCollection(Collection collection) { if (collection == null || collection.isEmpty()) return; boolean blank = false; for (Object x : collection) { if (blank) out.print(' '); else blank = true; out.print(x); } out.println(); } /*************************************************************** * Utility **************************************************************/ static String memoryStatus() { return (Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory() >> 20) + "/" + (Runtime.getRuntime().totalMemory() >> 20) + " MB"; } static void checkMemory() { System.err.println(memoryStatus()); } static long prevTimeStamp = Long.MIN_VALUE; static void updateTimer() { prevTimeStamp = System.currentTimeMillis(); } static long elapsedTime() { return (System.currentTimeMillis() - prevTimeStamp); } static void checkTimer() { System.err.println(elapsedTime() + " ms"); } static void chk(boolean f) { if (!f) throw new RuntimeException("Assert failed"); } static void chk(boolean f, String format, Object ... args) { if (!f) throw new RuntimeException(String.format(format, args)); } static void log(String format, Object ... args) { if (writeLog) System.err.println(String.format(Locale.US, format, args)); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> /* Codeforces Template */ import java.io.*; import java.util.*; import static java.lang.Math.*; import static java.util.Arrays.fill; import static java.util.Arrays.binarySearch; import static java.util.Arrays.sort; public class Main { static long initTime; static final Random rnd = new Random(7777L); static boolean writeLog = false; public static void main(String[] args) throws IOException { initTime = System.currentTimeMillis(); try { writeLog = "true".equals(System.getProperty("LOCAL_RUN_7777")); } catch (SecurityException e) {} new Thread(null, new Runnable() { public void run() { try { try { if (new File("input.txt").exists()) System.setIn(new FileInputStream("input.txt")); } catch (SecurityException e) {} long prevTime = System.currentTimeMillis(); new Main().run(); log("Total time: " + (System.currentTimeMillis() - prevTime) + " ms"); log("Memory status: " + memoryStatus()); } catch (IOException e) { e.printStackTrace(); } } }, "1", 1L << 24).start(); } void run() throws IOException { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); out.close(); in.close(); } /*************************************************************** * Solution **************************************************************/ void solve() throws IOException { int n = nextInt(); long k = nextLong(); int[] a = nextIntArray(n); Set<Long> bad = new TreeSet<Long>(); sort(a); int ans = 0; for (int x : a) { if (!bad.contains((long) x)) { bad.add(x * k); ans++; } } out.println(ans); } /*************************************************************** * Input **************************************************************/ BufferedReader in; PrintWriter out; StringTokenizer st = new StringTokenizer(""); String nextToken() throws IOException { while (!st.hasMoreTokens()) st = new StringTokenizer(in.readLine()); return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } int[] nextIntArray(int size) throws IOException { int[] ret = new int [size]; for (int i = 0; i < size; i++) ret[i] = nextInt(); return ret; } long[] nextLongArray(int size) throws IOException { long[] ret = new long [size]; for (int i = 0; i < size; i++) ret[i] = nextLong(); return ret; } double[] nextDoubleArray(int size) throws IOException { double[] ret = new double [size]; for (int i = 0; i < size; i++) ret[i] = nextDouble(); return ret; } String nextLine() throws IOException { st = new StringTokenizer(""); return in.readLine(); } boolean EOF() throws IOException { while (!st.hasMoreTokens()) { String s = in.readLine(); if (s == null) return true; st = new StringTokenizer(s); } return false; } /*************************************************************** * Output **************************************************************/ void printRepeat(String s, int count) { for (int i = 0; i < count; i++) out.print(s); } void printArray(int[] array) { if (array == null || array.length == 0) return; for (int i = 0; i < array.length; i++) { if (i > 0) out.print(' '); out.print(array[i]); } out.println(); } void printArray(long[] array) { if (array == null || array.length == 0) return; for (int i = 0; i < array.length; i++) { if (i > 0) out.print(' '); out.print(array[i]); } out.println(); } void printArray(double[] array) { if (array == null || array.length == 0) return; for (int i = 0; i < array.length; i++) { if (i > 0) out.print(' '); out.print(array[i]); } out.println(); } void printArray(double[] array, String spec) { if (array == null || array.length == 0) return; for (int i = 0; i < array.length; i++) { if (i > 0) out.print(' '); out.printf(Locale.US, spec, array[i]); } out.println(); } void printArray(Object[] array) { if (array == null || array.length == 0) return; boolean blank = false; for (Object x : array) { if (blank) out.print(' '); else blank = true; out.print(x); } out.println(); } @SuppressWarnings("rawtypes") void printCollection(Collection collection) { if (collection == null || collection.isEmpty()) return; boolean blank = false; for (Object x : collection) { if (blank) out.print(' '); else blank = true; out.print(x); } out.println(); } /*************************************************************** * Utility **************************************************************/ static String memoryStatus() { return (Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory() >> 20) + "/" + (Runtime.getRuntime().totalMemory() >> 20) + " MB"; } static void checkMemory() { System.err.println(memoryStatus()); } static long prevTimeStamp = Long.MIN_VALUE; static void updateTimer() { prevTimeStamp = System.currentTimeMillis(); } static long elapsedTime() { return (System.currentTimeMillis() - prevTimeStamp); } static void checkTimer() { System.err.println(elapsedTime() + " ms"); } static void chk(boolean f) { if (!f) throw new RuntimeException("Assert failed"); } static void chk(boolean f, String format, Object ... args) { if (!f) throw new RuntimeException(String.format(format, args)); } static void log(String format, Object ... args) { if (writeLog) System.err.println(String.format(Locale.US, format, args)); } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> /* Codeforces Template */ import java.io.*; import java.util.*; import static java.lang.Math.*; import static java.util.Arrays.fill; import static java.util.Arrays.binarySearch; import static java.util.Arrays.sort; public class Main { static long initTime; static final Random rnd = new Random(7777L); static boolean writeLog = false; public static void main(String[] args) throws IOException { initTime = System.currentTimeMillis(); try { writeLog = "true".equals(System.getProperty("LOCAL_RUN_7777")); } catch (SecurityException e) {} new Thread(null, new Runnable() { public void run() { try { try { if (new File("input.txt").exists()) System.setIn(new FileInputStream("input.txt")); } catch (SecurityException e) {} long prevTime = System.currentTimeMillis(); new Main().run(); log("Total time: " + (System.currentTimeMillis() - prevTime) + " ms"); log("Memory status: " + memoryStatus()); } catch (IOException e) { e.printStackTrace(); } } }, "1", 1L << 24).start(); } void run() throws IOException { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); out.close(); in.close(); } /*************************************************************** * Solution **************************************************************/ void solve() throws IOException { int n = nextInt(); long k = nextLong(); int[] a = nextIntArray(n); Set<Long> bad = new TreeSet<Long>(); sort(a); int ans = 0; for (int x : a) { if (!bad.contains((long) x)) { bad.add(x * k); ans++; } } out.println(ans); } /*************************************************************** * Input **************************************************************/ BufferedReader in; PrintWriter out; StringTokenizer st = new StringTokenizer(""); String nextToken() throws IOException { while (!st.hasMoreTokens()) st = new StringTokenizer(in.readLine()); return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } int[] nextIntArray(int size) throws IOException { int[] ret = new int [size]; for (int i = 0; i < size; i++) ret[i] = nextInt(); return ret; } long[] nextLongArray(int size) throws IOException { long[] ret = new long [size]; for (int i = 0; i < size; i++) ret[i] = nextLong(); return ret; } double[] nextDoubleArray(int size) throws IOException { double[] ret = new double [size]; for (int i = 0; i < size; i++) ret[i] = nextDouble(); return ret; } String nextLine() throws IOException { st = new StringTokenizer(""); return in.readLine(); } boolean EOF() throws IOException { while (!st.hasMoreTokens()) { String s = in.readLine(); if (s == null) return true; st = new StringTokenizer(s); } return false; } /*************************************************************** * Output **************************************************************/ void printRepeat(String s, int count) { for (int i = 0; i < count; i++) out.print(s); } void printArray(int[] array) { if (array == null || array.length == 0) return; for (int i = 0; i < array.length; i++) { if (i > 0) out.print(' '); out.print(array[i]); } out.println(); } void printArray(long[] array) { if (array == null || array.length == 0) return; for (int i = 0; i < array.length; i++) { if (i > 0) out.print(' '); out.print(array[i]); } out.println(); } void printArray(double[] array) { if (array == null || array.length == 0) return; for (int i = 0; i < array.length; i++) { if (i > 0) out.print(' '); out.print(array[i]); } out.println(); } void printArray(double[] array, String spec) { if (array == null || array.length == 0) return; for (int i = 0; i < array.length; i++) { if (i > 0) out.print(' '); out.printf(Locale.US, spec, array[i]); } out.println(); } void printArray(Object[] array) { if (array == null || array.length == 0) return; boolean blank = false; for (Object x : array) { if (blank) out.print(' '); else blank = true; out.print(x); } out.println(); } @SuppressWarnings("rawtypes") void printCollection(Collection collection) { if (collection == null || collection.isEmpty()) return; boolean blank = false; for (Object x : collection) { if (blank) out.print(' '); else blank = true; out.print(x); } out.println(); } /*************************************************************** * Utility **************************************************************/ static String memoryStatus() { return (Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory() >> 20) + "/" + (Runtime.getRuntime().totalMemory() >> 20) + " MB"; } static void checkMemory() { System.err.println(memoryStatus()); } static long prevTimeStamp = Long.MIN_VALUE; static void updateTimer() { prevTimeStamp = System.currentTimeMillis(); } static long elapsedTime() { return (System.currentTimeMillis() - prevTimeStamp); } static void checkTimer() { System.err.println(elapsedTime() + " ms"); } static void chk(boolean f) { if (!f) throw new RuntimeException("Assert failed"); } static void chk(boolean f, String format, Object ... args) { if (!f) throw new RuntimeException(String.format(format, args)); } static void log(String format, Object ... args) { if (writeLog) System.err.println(String.format(Locale.US, format, args)); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,759
1,550
4,502
import java.util.*; import java.io.*; public class Main { static long mod = 1000000007; static int INF = 1000000000; public static void main(String[] args){ FastScanner scanner = new FastScanner(); int n = scanner.nextInt(); int m = scanner.nextInt(); String s = scanner.next(); int[][] cnt = new int[20][20]; for(int i = 0; i < n-1; i++){ cnt[s.charAt(i)-'a'][s.charAt(i+1)-'a']++; cnt[s.charAt(i+1)-'a'][s.charAt(i)-'a']++; } //dp[i]:= 文字列i(この中に同一文字は含まれない)を作った時のコストの最小値 int[] dp = new int[(1<<m)]; for(int i = 0; i < (1<<m); i++){ dp[i] = INF; } dp[0] = 0; for(int i = 0; i < (1<<m); i++){ int cost = 0; for(int j = 0; j < m; j++){ if((i>>j & 1) == 0){ for(int k = 0; k < m; k++){ if((~i>>k & 1) == 0){ cost += cnt[j][k]; } } } } for(int j = 0; j < m; j++){ dp[i|1<<j] = Math.min(dp[i|1<<j],dp[i]+cost); } } System.out.println(dp[(1<<m)-1]); } static class BIT{ int n; int[] bit; public BIT(int n){ this.n = n; bit = new int[n+1]; } void add(int idx, int val){ for(int i = idx+1; i <= n; i += i&(-i)) bit[i-1] += val; } int sum(int idx){ int res = 0; for(int i = idx+1; i > 0; i -= i&(-i)) res += bit[i-1]; return res; } int sum(int begin, int end){ if(begin == 0) return sum(end); return sum(end)-sum(begin-1); } } static class Pair implements Comparable<Pair>{ int first, second; Pair(int a, int b){ first = a; second = b; } @Override public boolean equals(Object o){ if (this == o) return true; if (!(o instanceof Pair)) return false; Pair p = (Pair) o; return first == p.first && second == p.second; } @Override public int compareTo(Pair p){ return first == p.first ? second - p.second : first - p.first; //firstで昇順にソート //return (first == p.first ? second - p.second : first - p.first) * -1; //firstで降順にソート //return second == p.second ? first - p.first : second - p.second;//secondで昇順にソート //return (second == p.second ? first - p.first : second - p.second)*-1;//secondで降順にソート //return first * 1.0 / second > p.first * 1.0 / p.second ? 1 : -1; // first/secondの昇順にソート //return first * 1.0 / second < p.first * 1.0 / p.second ? 1 : -1; // first/secondの降順にソート //return second * 1.0 / first > p.second * 1.0 / p.first ? 1 : -1; // second/firstの昇順にソート //return second * 1.0 / first < p.second * 1.0 / p.first ? 1 : -1; // second/firstの降順にソート //return Math.atan2(second, first) > Math.atan2(p.second, p.first) ? 1 : -1; // second/firstの昇順にソート //return first + second > p.first + p.second ? 1 : -1; //first+secondの昇順にソート //return first + second < p.first + p.second ? 1 : -1; //first+secondの降順にソート //return first - second < p.first - p.second ? 1 : -1; //first-secondの降順にソート } } private static class FastScanner { private final InputStream in = System.in; private final byte[] buffer = new byte[1024]; private int ptr = 0; private int buflen = 0; private boolean hasNextByte() { if (ptr < buflen) { return true; }else{ ptr = 0; try { buflen = in.read(buffer); } catch (IOException e) { e.printStackTrace(); } if (buflen <= 0) { return false; } } return true; } private int readByte() { if (hasNextByte()) return buffer[ptr++]; else return -1;} private static boolean isPrintableChar(int c) { return 33 <= c && c <= 126;} public boolean hasNext() { while(hasNextByte() && !isPrintableChar(buffer[ptr])) ptr++; return hasNextByte();} public String next() { if (!hasNext()) throw new NoSuchElementException(); StringBuilder sb = new StringBuilder(); int b = readByte(); while(isPrintableChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } public long nextLong() { if (!hasNext()) throw new NoSuchElementException(); long n = 0; boolean minus = false; int b = readByte(); if (b == '-') { minus = true; b = readByte(); } if (b < '0' || '9' < b) { throw new NumberFormatException(); } while(true){ if ('0' <= b && b <= '9') { n *= 10; n += b - '0'; }else if(b == -1 || !isPrintableChar(b)){ return minus ? -n : n; }else{ throw new NumberFormatException(); } b = readByte(); } } public int nextInt() { long nl = nextLong(); if (nl < Integer.MIN_VALUE || nl > Integer.MAX_VALUE) throw new NumberFormatException(); return (int) nl; } public double nextDouble() { return Double.parseDouble(next());} } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class Main { static long mod = 1000000007; static int INF = 1000000000; public static void main(String[] args){ FastScanner scanner = new FastScanner(); int n = scanner.nextInt(); int m = scanner.nextInt(); String s = scanner.next(); int[][] cnt = new int[20][20]; for(int i = 0; i < n-1; i++){ cnt[s.charAt(i)-'a'][s.charAt(i+1)-'a']++; cnt[s.charAt(i+1)-'a'][s.charAt(i)-'a']++; } //dp[i]:= 文字列i(この中に同一文字は含まれない)を作った時のコストの最小値 int[] dp = new int[(1<<m)]; for(int i = 0; i < (1<<m); i++){ dp[i] = INF; } dp[0] = 0; for(int i = 0; i < (1<<m); i++){ int cost = 0; for(int j = 0; j < m; j++){ if((i>>j & 1) == 0){ for(int k = 0; k < m; k++){ if((~i>>k & 1) == 0){ cost += cnt[j][k]; } } } } for(int j = 0; j < m; j++){ dp[i|1<<j] = Math.min(dp[i|1<<j],dp[i]+cost); } } System.out.println(dp[(1<<m)-1]); } static class BIT{ int n; int[] bit; public BIT(int n){ this.n = n; bit = new int[n+1]; } void add(int idx, int val){ for(int i = idx+1; i <= n; i += i&(-i)) bit[i-1] += val; } int sum(int idx){ int res = 0; for(int i = idx+1; i > 0; i -= i&(-i)) res += bit[i-1]; return res; } int sum(int begin, int end){ if(begin == 0) return sum(end); return sum(end)-sum(begin-1); } } static class Pair implements Comparable<Pair>{ int first, second; Pair(int a, int b){ first = a; second = b; } @Override public boolean equals(Object o){ if (this == o) return true; if (!(o instanceof Pair)) return false; Pair p = (Pair) o; return first == p.first && second == p.second; } @Override public int compareTo(Pair p){ return first == p.first ? second - p.second : first - p.first; //firstで昇順にソート //return (first == p.first ? second - p.second : first - p.first) * -1; //firstで降順にソート //return second == p.second ? first - p.first : second - p.second;//secondで昇順にソート //return (second == p.second ? first - p.first : second - p.second)*-1;//secondで降順にソート //return first * 1.0 / second > p.first * 1.0 / p.second ? 1 : -1; // first/secondの昇順にソート //return first * 1.0 / second < p.first * 1.0 / p.second ? 1 : -1; // first/secondの降順にソート //return second * 1.0 / first > p.second * 1.0 / p.first ? 1 : -1; // second/firstの昇順にソート //return second * 1.0 / first < p.second * 1.0 / p.first ? 1 : -1; // second/firstの降順にソート //return Math.atan2(second, first) > Math.atan2(p.second, p.first) ? 1 : -1; // second/firstの昇順にソート //return first + second > p.first + p.second ? 1 : -1; //first+secondの昇順にソート //return first + second < p.first + p.second ? 1 : -1; //first+secondの降順にソート //return first - second < p.first - p.second ? 1 : -1; //first-secondの降順にソート } } private static class FastScanner { private final InputStream in = System.in; private final byte[] buffer = new byte[1024]; private int ptr = 0; private int buflen = 0; private boolean hasNextByte() { if (ptr < buflen) { return true; }else{ ptr = 0; try { buflen = in.read(buffer); } catch (IOException e) { e.printStackTrace(); } if (buflen <= 0) { return false; } } return true; } private int readByte() { if (hasNextByte()) return buffer[ptr++]; else return -1;} private static boolean isPrintableChar(int c) { return 33 <= c && c <= 126;} public boolean hasNext() { while(hasNextByte() && !isPrintableChar(buffer[ptr])) ptr++; return hasNextByte();} public String next() { if (!hasNext()) throw new NoSuchElementException(); StringBuilder sb = new StringBuilder(); int b = readByte(); while(isPrintableChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } public long nextLong() { if (!hasNext()) throw new NoSuchElementException(); long n = 0; boolean minus = false; int b = readByte(); if (b == '-') { minus = true; b = readByte(); } if (b < '0' || '9' < b) { throw new NumberFormatException(); } while(true){ if ('0' <= b && b <= '9') { n *= 10; n += b - '0'; }else if(b == -1 || !isPrintableChar(b)){ return minus ? -n : n; }else{ throw new NumberFormatException(); } b = readByte(); } } public int nextInt() { long nl = nextLong(); if (nl < Integer.MIN_VALUE || nl > Integer.MAX_VALUE) throw new NumberFormatException(); return (int) nl; } public double nextDouble() { return Double.parseDouble(next());} } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; public class Main { static long mod = 1000000007; static int INF = 1000000000; public static void main(String[] args){ FastScanner scanner = new FastScanner(); int n = scanner.nextInt(); int m = scanner.nextInt(); String s = scanner.next(); int[][] cnt = new int[20][20]; for(int i = 0; i < n-1; i++){ cnt[s.charAt(i)-'a'][s.charAt(i+1)-'a']++; cnt[s.charAt(i+1)-'a'][s.charAt(i)-'a']++; } //dp[i]:= 文字列i(この中に同一文字は含まれない)を作った時のコストの最小値 int[] dp = new int[(1<<m)]; for(int i = 0; i < (1<<m); i++){ dp[i] = INF; } dp[0] = 0; for(int i = 0; i < (1<<m); i++){ int cost = 0; for(int j = 0; j < m; j++){ if((i>>j & 1) == 0){ for(int k = 0; k < m; k++){ if((~i>>k & 1) == 0){ cost += cnt[j][k]; } } } } for(int j = 0; j < m; j++){ dp[i|1<<j] = Math.min(dp[i|1<<j],dp[i]+cost); } } System.out.println(dp[(1<<m)-1]); } static class BIT{ int n; int[] bit; public BIT(int n){ this.n = n; bit = new int[n+1]; } void add(int idx, int val){ for(int i = idx+1; i <= n; i += i&(-i)) bit[i-1] += val; } int sum(int idx){ int res = 0; for(int i = idx+1; i > 0; i -= i&(-i)) res += bit[i-1]; return res; } int sum(int begin, int end){ if(begin == 0) return sum(end); return sum(end)-sum(begin-1); } } static class Pair implements Comparable<Pair>{ int first, second; Pair(int a, int b){ first = a; second = b; } @Override public boolean equals(Object o){ if (this == o) return true; if (!(o instanceof Pair)) return false; Pair p = (Pair) o; return first == p.first && second == p.second; } @Override public int compareTo(Pair p){ return first == p.first ? second - p.second : first - p.first; //firstで昇順にソート //return (first == p.first ? second - p.second : first - p.first) * -1; //firstで降順にソート //return second == p.second ? first - p.first : second - p.second;//secondで昇順にソート //return (second == p.second ? first - p.first : second - p.second)*-1;//secondで降順にソート //return first * 1.0 / second > p.first * 1.0 / p.second ? 1 : -1; // first/secondの昇順にソート //return first * 1.0 / second < p.first * 1.0 / p.second ? 1 : -1; // first/secondの降順にソート //return second * 1.0 / first > p.second * 1.0 / p.first ? 1 : -1; // second/firstの昇順にソート //return second * 1.0 / first < p.second * 1.0 / p.first ? 1 : -1; // second/firstの降順にソート //return Math.atan2(second, first) > Math.atan2(p.second, p.first) ? 1 : -1; // second/firstの昇順にソート //return first + second > p.first + p.second ? 1 : -1; //first+secondの昇順にソート //return first + second < p.first + p.second ? 1 : -1; //first+secondの降順にソート //return first - second < p.first - p.second ? 1 : -1; //first-secondの降順にソート } } private static class FastScanner { private final InputStream in = System.in; private final byte[] buffer = new byte[1024]; private int ptr = 0; private int buflen = 0; private boolean hasNextByte() { if (ptr < buflen) { return true; }else{ ptr = 0; try { buflen = in.read(buffer); } catch (IOException e) { e.printStackTrace(); } if (buflen <= 0) { return false; } } return true; } private int readByte() { if (hasNextByte()) return buffer[ptr++]; else return -1;} private static boolean isPrintableChar(int c) { return 33 <= c && c <= 126;} public boolean hasNext() { while(hasNextByte() && !isPrintableChar(buffer[ptr])) ptr++; return hasNextByte();} public String next() { if (!hasNext()) throw new NoSuchElementException(); StringBuilder sb = new StringBuilder(); int b = readByte(); while(isPrintableChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } public long nextLong() { if (!hasNext()) throw new NoSuchElementException(); long n = 0; boolean minus = false; int b = readByte(); if (b == '-') { minus = true; b = readByte(); } if (b < '0' || '9' < b) { throw new NumberFormatException(); } while(true){ if ('0' <= b && b <= '9') { n *= 10; n += b - '0'; }else if(b == -1 || !isPrintableChar(b)){ return minus ? -n : n; }else{ throw new NumberFormatException(); } b = readByte(); } } public int nextInt() { long nl = nextLong(); if (nl < Integer.MIN_VALUE || nl > Integer.MAX_VALUE) throw new NumberFormatException(); return (int) nl; } public double nextDouble() { return Double.parseDouble(next());} } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,886
4,491
1,160
import java.io.BufferedReader; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.Random; import java.util.StringTokenizer; import java.util.TreeMap; public class P { public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); long N = sc.nextLong(), S = sc.nextLong(); long lo = 0, hi = N; long pivot = 0; while (lo <= hi) { long mid = lo + (hi - lo) / 2; int sumOfDigits = 0; long saveMid = mid; while (saveMid > 0) { sumOfDigits += saveMid % 10; saveMid /= 10; } if (mid - sumOfDigits < S) { pivot = mid; lo = mid + 1; } else hi = mid - 1; } System.out.println(N - pivot); } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(String f) throws FileNotFoundException { br = new BufferedReader(new FileReader(f)); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } public boolean ready() throws IOException { return br.ready(); } public int[] nextIntArray(int n) throws IOException { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public int[] nextIntArray1(int n) throws IOException { int[] a = new int[n + 1]; for (int i = 1; i <= n; i++) a[i] = nextInt(); return a; } public int[] shuffle(int[] a, int n) { int[] b = new int[n]; for (int i = 0; i < n; i++) b[i] = a[i]; Random r = new Random(); for (int i = 0; i < n; i++) { int j = i + r.nextInt(n - i); int t = b[i]; b[i] = b[j]; b[j] = t; } return b; } public int[] nextIntArraySorted(int n) throws IOException { int[] a = nextIntArray(n); a = shuffle(a, n); Arrays.sort(a); return a; } public long[] nextLongArray(int n) throws IOException { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public long[] nextLongArray1(int n) throws IOException { long[] a = new long[n + 1]; for (int i = 1; i <= n; i++) a[i] = nextLong(); return a; } public long[] nextLongArraySorted(int n) throws IOException { long[] a = nextLongArray(n); Random r = new Random(); for (int i = 0; i < n; i++) { int j = i + r.nextInt(n - i); long t = a[i]; a[i] = a[j]; a[j] = t; } Arrays.sort(a); return a; } } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.Random; import java.util.StringTokenizer; import java.util.TreeMap; public class P { public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); long N = sc.nextLong(), S = sc.nextLong(); long lo = 0, hi = N; long pivot = 0; while (lo <= hi) { long mid = lo + (hi - lo) / 2; int sumOfDigits = 0; long saveMid = mid; while (saveMid > 0) { sumOfDigits += saveMid % 10; saveMid /= 10; } if (mid - sumOfDigits < S) { pivot = mid; lo = mid + 1; } else hi = mid - 1; } System.out.println(N - pivot); } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(String f) throws FileNotFoundException { br = new BufferedReader(new FileReader(f)); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } public boolean ready() throws IOException { return br.ready(); } public int[] nextIntArray(int n) throws IOException { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public int[] nextIntArray1(int n) throws IOException { int[] a = new int[n + 1]; for (int i = 1; i <= n; i++) a[i] = nextInt(); return a; } public int[] shuffle(int[] a, int n) { int[] b = new int[n]; for (int i = 0; i < n; i++) b[i] = a[i]; Random r = new Random(); for (int i = 0; i < n; i++) { int j = i + r.nextInt(n - i); int t = b[i]; b[i] = b[j]; b[j] = t; } return b; } public int[] nextIntArraySorted(int n) throws IOException { int[] a = nextIntArray(n); a = shuffle(a, n); Arrays.sort(a); return a; } public long[] nextLongArray(int n) throws IOException { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public long[] nextLongArray1(int n) throws IOException { long[] a = new long[n + 1]; for (int i = 1; i <= n; i++) a[i] = nextLong(); return a; } public long[] nextLongArraySorted(int n) throws IOException { long[] a = nextLongArray(n); Random r = new Random(); for (int i = 0; i < n; i++) { int j = i + r.nextInt(n - i); long t = a[i]; a[i] = a[j]; a[j] = t; } Arrays.sort(a); return a; } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.Random; import java.util.StringTokenizer; import java.util.TreeMap; public class P { public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); long N = sc.nextLong(), S = sc.nextLong(); long lo = 0, hi = N; long pivot = 0; while (lo <= hi) { long mid = lo + (hi - lo) / 2; int sumOfDigits = 0; long saveMid = mid; while (saveMid > 0) { sumOfDigits += saveMid % 10; saveMid /= 10; } if (mid - sumOfDigits < S) { pivot = mid; lo = mid + 1; } else hi = mid - 1; } System.out.println(N - pivot); } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(String f) throws FileNotFoundException { br = new BufferedReader(new FileReader(f)); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } public boolean ready() throws IOException { return br.ready(); } public int[] nextIntArray(int n) throws IOException { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public int[] nextIntArray1(int n) throws IOException { int[] a = new int[n + 1]; for (int i = 1; i <= n; i++) a[i] = nextInt(); return a; } public int[] shuffle(int[] a, int n) { int[] b = new int[n]; for (int i = 0; i < n; i++) b[i] = a[i]; Random r = new Random(); for (int i = 0; i < n; i++) { int j = i + r.nextInt(n - i); int t = b[i]; b[i] = b[j]; b[j] = t; } return b; } public int[] nextIntArraySorted(int n) throws IOException { int[] a = nextIntArray(n); a = shuffle(a, n); Arrays.sort(a); return a; } public long[] nextLongArray(int n) throws IOException { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public long[] nextLongArray1(int n) throws IOException { long[] a = new long[n + 1]; for (int i = 1; i <= n; i++) a[i] = nextLong(); return a; } public long[] nextLongArraySorted(int n) throws IOException { long[] a = nextLongArray(n); Random r = new Random(); for (int i = 0; i < n; i++) { int j = i + r.nextInt(n - i); long t = a[i]; a[i] = a[j]; a[j] = t; } Arrays.sort(a); return a; } } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,216
1,159
109
import java.io.*; import java.util.*; public class MainG { static StdIn in = new StdIn(); static PrintWriter out = new PrintWriter(System.out); static long M=(long)1e9+7; public static void main(String[] args) { char[] cs = in.next().toCharArray(); int n=cs.length; int[] x = new int[n]; for(int i=0; i<n; ++i) x[i]=cs[i]-'0'; long[] dp1 = new long[n+1]; for(int i=0; i<n; ++i) dp1[i+1]=(x[i]+dp1[i]*10)%M; long ans=0; for(int d1=1; d1<=9; ++d1) { long[][] dp2 = new long[2][n+1]; for(int i=0; i<n; ++i) { dp2[0][i+1]=x[i]>=d1?(10*dp2[0][i]+1)%M:dp2[0][i]; for(int d2=0; d2<x[i]; ++d2) dp2[1][i+1]=((d2>=d1?10*(dp2[0][i]+dp2[1][i])+dp1[i]+1:dp2[0][i]+dp2[1][i])+dp2[1][i+1])%M; for(int d2=x[i]; d2<=9; ++d2) dp2[1][i+1]=((d2>=d1?10*dp2[1][i]+dp1[i]:dp2[1][i])+dp2[1][i+1])%M; } ans+=dp2[0][n]+dp2[1][n]; } out.println(ans%M); out.close(); } interface Input { public String next(); public String nextLine(); public int nextInt(); public long nextLong(); public double nextDouble(); } static class StdIn implements Input { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public StdIn() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public StdIn(InputStream in) { try{ din = new DataInputStream(in); } catch(Exception e) { throw new RuntimeException(); } buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String next() { int c; while((c=read())!=-1&&(c==' '||c=='\n'||c=='\r')); StringBuilder s = new StringBuilder(); while (c != -1) { if (c == ' ' || c == '\n'||c=='\r') break; s.append((char)c); c=read(); } return s.toString(); } public String nextLine() { int c; while((c=read())!=-1&&(c==' '||c=='\n'||c=='\r')); StringBuilder s = new StringBuilder(); while (c != -1) { if (c == '\n'||c=='\r') break; s.append((char)c); c = read(); } return s.toString(); } public int nextInt() { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do ret = ret * 10 + c - '0'; while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public int[] readIntArray(int n) { int[] ar = new int[n]; for(int i=0; i<n; ++i) ar[i]=nextInt(); return ar; } public long nextLong() { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do ret = ret * 10 + c - '0'; while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long[] readLongArray(int n) { long[] ar = new long[n]; for(int i=0; i<n; ++i) ar[i]=nextLong(); return ar; } public double nextDouble() { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do ret = ret * 10 + c - '0'; while ((c = read()) >= '0' && c <= '9'); if (c == '.') while ((c = read()) >= '0' && c <= '9') ret += (c - '0') / (div *= 10); if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() { try{ if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } catch(IOException e) { throw new RuntimeException(); } } public void close() throws IOException { if (din == null) return; din.close(); } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class MainG { static StdIn in = new StdIn(); static PrintWriter out = new PrintWriter(System.out); static long M=(long)1e9+7; public static void main(String[] args) { char[] cs = in.next().toCharArray(); int n=cs.length; int[] x = new int[n]; for(int i=0; i<n; ++i) x[i]=cs[i]-'0'; long[] dp1 = new long[n+1]; for(int i=0; i<n; ++i) dp1[i+1]=(x[i]+dp1[i]*10)%M; long ans=0; for(int d1=1; d1<=9; ++d1) { long[][] dp2 = new long[2][n+1]; for(int i=0; i<n; ++i) { dp2[0][i+1]=x[i]>=d1?(10*dp2[0][i]+1)%M:dp2[0][i]; for(int d2=0; d2<x[i]; ++d2) dp2[1][i+1]=((d2>=d1?10*(dp2[0][i]+dp2[1][i])+dp1[i]+1:dp2[0][i]+dp2[1][i])+dp2[1][i+1])%M; for(int d2=x[i]; d2<=9; ++d2) dp2[1][i+1]=((d2>=d1?10*dp2[1][i]+dp1[i]:dp2[1][i])+dp2[1][i+1])%M; } ans+=dp2[0][n]+dp2[1][n]; } out.println(ans%M); out.close(); } interface Input { public String next(); public String nextLine(); public int nextInt(); public long nextLong(); public double nextDouble(); } static class StdIn implements Input { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public StdIn() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public StdIn(InputStream in) { try{ din = new DataInputStream(in); } catch(Exception e) { throw new RuntimeException(); } buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String next() { int c; while((c=read())!=-1&&(c==' '||c=='\n'||c=='\r')); StringBuilder s = new StringBuilder(); while (c != -1) { if (c == ' ' || c == '\n'||c=='\r') break; s.append((char)c); c=read(); } return s.toString(); } public String nextLine() { int c; while((c=read())!=-1&&(c==' '||c=='\n'||c=='\r')); StringBuilder s = new StringBuilder(); while (c != -1) { if (c == '\n'||c=='\r') break; s.append((char)c); c = read(); } return s.toString(); } public int nextInt() { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do ret = ret * 10 + c - '0'; while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public int[] readIntArray(int n) { int[] ar = new int[n]; for(int i=0; i<n; ++i) ar[i]=nextInt(); return ar; } public long nextLong() { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do ret = ret * 10 + c - '0'; while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long[] readLongArray(int n) { long[] ar = new long[n]; for(int i=0; i<n; ++i) ar[i]=nextLong(); return ar; } public double nextDouble() { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do ret = ret * 10 + c - '0'; while ((c = read()) >= '0' && c <= '9'); if (c == '.') while ((c = read()) >= '0' && c <= '9') ret += (c - '0') / (div *= 10); if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() { try{ if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } catch(IOException e) { throw new RuntimeException(); } } public void close() throws IOException { if (din == null) return; din.close(); } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class MainG { static StdIn in = new StdIn(); static PrintWriter out = new PrintWriter(System.out); static long M=(long)1e9+7; public static void main(String[] args) { char[] cs = in.next().toCharArray(); int n=cs.length; int[] x = new int[n]; for(int i=0; i<n; ++i) x[i]=cs[i]-'0'; long[] dp1 = new long[n+1]; for(int i=0; i<n; ++i) dp1[i+1]=(x[i]+dp1[i]*10)%M; long ans=0; for(int d1=1; d1<=9; ++d1) { long[][] dp2 = new long[2][n+1]; for(int i=0; i<n; ++i) { dp2[0][i+1]=x[i]>=d1?(10*dp2[0][i]+1)%M:dp2[0][i]; for(int d2=0; d2<x[i]; ++d2) dp2[1][i+1]=((d2>=d1?10*(dp2[0][i]+dp2[1][i])+dp1[i]+1:dp2[0][i]+dp2[1][i])+dp2[1][i+1])%M; for(int d2=x[i]; d2<=9; ++d2) dp2[1][i+1]=((d2>=d1?10*dp2[1][i]+dp1[i]:dp2[1][i])+dp2[1][i+1])%M; } ans+=dp2[0][n]+dp2[1][n]; } out.println(ans%M); out.close(); } interface Input { public String next(); public String nextLine(); public int nextInt(); public long nextLong(); public double nextDouble(); } static class StdIn implements Input { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public StdIn() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public StdIn(InputStream in) { try{ din = new DataInputStream(in); } catch(Exception e) { throw new RuntimeException(); } buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String next() { int c; while((c=read())!=-1&&(c==' '||c=='\n'||c=='\r')); StringBuilder s = new StringBuilder(); while (c != -1) { if (c == ' ' || c == '\n'||c=='\r') break; s.append((char)c); c=read(); } return s.toString(); } public String nextLine() { int c; while((c=read())!=-1&&(c==' '||c=='\n'||c=='\r')); StringBuilder s = new StringBuilder(); while (c != -1) { if (c == '\n'||c=='\r') break; s.append((char)c); c = read(); } return s.toString(); } public int nextInt() { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do ret = ret * 10 + c - '0'; while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public int[] readIntArray(int n) { int[] ar = new int[n]; for(int i=0; i<n; ++i) ar[i]=nextInt(); return ar; } public long nextLong() { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do ret = ret * 10 + c - '0'; while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long[] readLongArray(int n) { long[] ar = new long[n]; for(int i=0; i<n; ++i) ar[i]=nextLong(); return ar; } public double nextDouble() { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do ret = ret * 10 + c - '0'; while ((c = read()) >= '0' && c <= '9'); if (c == '.') while ((c = read()) >= '0' && c <= '9') ret += (c - '0') / (div *= 10); if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() { try{ if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } catch(IOException e) { throw new RuntimeException(); } } public void close() throws IOException { if (din == null) return; din.close(); } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,674
109
2,438
import java.io.*; import java.util.*; import java.util.function.BinaryOperator; import java.util.stream.IntStream; public class Main { private static InputReader reader = new InputReader(System.in); private static PrintWriter writer = new PrintWriter(System.out); public static void main(String[] args) { int n = readInt(); long[] a = readLongArray(n); HashMap<Long, List<Block>> blocks = new HashMap<>(); for (int j = 0; j < n; j++) { long sum = 0; for (int i = j; i >= 0; i--) { sum += a[i]; if (!blocks.containsKey(sum)) blocks.put(sum, new LinkedList<>()); List<Block> blockList = blocks.get(sum); if (blockList.size() > 0 && blockList.get(blockList.size() - 1).r == j) continue; blockList.add(new Block(i, j)); } } List<Block> bestBlocks = new LinkedList<>(); for(long sum : blocks.keySet()) { List<Block> blockList = blocks.get(sum); List<Block> curBest = new LinkedList<>(); int lastR = -1; for(Block block : blockList) { if (block.l > lastR) { curBest.add(block); lastR = block.r; } } if (curBest.size() > bestBlocks.size()) { bestBlocks = curBest; } } writer.println(bestBlocks.size()); for(Block block : bestBlocks) { writer.printf("%d %d\n", block.l + 1, block.r + 1); } writer.flush(); } private static int readInt() { return reader.nextInt(); } private static long readLong() { return Long.parseLong(reader.next()); } private static int[] readIntArray(int size) { int[] array = new int[size]; for (int i = 0; i < size; i++) { array[i] = readInt(); } return array; } private static long[] readLongArray(int size) { long[] array = new long[size]; for (int i = 0; i < size; i++) { array[i] = readLong(); } return array; } private static void reverseIntArray(int[] array) { for (int i = 0; i < array.length / 2; i++) { int temp = array[i]; array[i] = array[array.length - i - 1]; array[array.length - i - 1] = temp; } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } private static class Block { int l, r; Block(int l, int r) { this.l = l; this.r = r; } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; import java.util.function.BinaryOperator; import java.util.stream.IntStream; public class Main { private static InputReader reader = new InputReader(System.in); private static PrintWriter writer = new PrintWriter(System.out); public static void main(String[] args) { int n = readInt(); long[] a = readLongArray(n); HashMap<Long, List<Block>> blocks = new HashMap<>(); for (int j = 0; j < n; j++) { long sum = 0; for (int i = j; i >= 0; i--) { sum += a[i]; if (!blocks.containsKey(sum)) blocks.put(sum, new LinkedList<>()); List<Block> blockList = blocks.get(sum); if (blockList.size() > 0 && blockList.get(blockList.size() - 1).r == j) continue; blockList.add(new Block(i, j)); } } List<Block> bestBlocks = new LinkedList<>(); for(long sum : blocks.keySet()) { List<Block> blockList = blocks.get(sum); List<Block> curBest = new LinkedList<>(); int lastR = -1; for(Block block : blockList) { if (block.l > lastR) { curBest.add(block); lastR = block.r; } } if (curBest.size() > bestBlocks.size()) { bestBlocks = curBest; } } writer.println(bestBlocks.size()); for(Block block : bestBlocks) { writer.printf("%d %d\n", block.l + 1, block.r + 1); } writer.flush(); } private static int readInt() { return reader.nextInt(); } private static long readLong() { return Long.parseLong(reader.next()); } private static int[] readIntArray(int size) { int[] array = new int[size]; for (int i = 0; i < size; i++) { array[i] = readInt(); } return array; } private static long[] readLongArray(int size) { long[] array = new long[size]; for (int i = 0; i < size; i++) { array[i] = readLong(); } return array; } private static void reverseIntArray(int[] array) { for (int i = 0; i < array.length / 2; i++) { int temp = array[i]; array[i] = array[array.length - i - 1]; array[array.length - i - 1] = temp; } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } private static class Block { int l, r; Block(int l, int r) { this.l = l; this.r = r; } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; import java.util.function.BinaryOperator; import java.util.stream.IntStream; public class Main { private static InputReader reader = new InputReader(System.in); private static PrintWriter writer = new PrintWriter(System.out); public static void main(String[] args) { int n = readInt(); long[] a = readLongArray(n); HashMap<Long, List<Block>> blocks = new HashMap<>(); for (int j = 0; j < n; j++) { long sum = 0; for (int i = j; i >= 0; i--) { sum += a[i]; if (!blocks.containsKey(sum)) blocks.put(sum, new LinkedList<>()); List<Block> blockList = blocks.get(sum); if (blockList.size() > 0 && blockList.get(blockList.size() - 1).r == j) continue; blockList.add(new Block(i, j)); } } List<Block> bestBlocks = new LinkedList<>(); for(long sum : blocks.keySet()) { List<Block> blockList = blocks.get(sum); List<Block> curBest = new LinkedList<>(); int lastR = -1; for(Block block : blockList) { if (block.l > lastR) { curBest.add(block); lastR = block.r; } } if (curBest.size() > bestBlocks.size()) { bestBlocks = curBest; } } writer.println(bestBlocks.size()); for(Block block : bestBlocks) { writer.printf("%d %d\n", block.l + 1, block.r + 1); } writer.flush(); } private static int readInt() { return reader.nextInt(); } private static long readLong() { return Long.parseLong(reader.next()); } private static int[] readIntArray(int size) { int[] array = new int[size]; for (int i = 0; i < size; i++) { array[i] = readInt(); } return array; } private static long[] readLongArray(int size) { long[] array = new long[size]; for (int i = 0; i < size; i++) { array[i] = readLong(); } return array; } private static void reverseIntArray(int[] array) { for (int i = 0; i < array.length / 2; i++) { int temp = array[i]; array[i] = array[array.length - i - 1]; array[array.length - i - 1] = temp; } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } private static class Block { int l, r; Block(int l, int r) { this.l = l; this.r = r; } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,048
2,433
1,961
import java.util.*; import java.io.*; import java.math.BigInteger; public class C113A{ static BufferedReader br; public static void main(String args[])throws Exception{ br=new BufferedReader(new InputStreamReader(System.in)); int nm[]=toIntArray(); int n=nm[0]; int k=nm[1]; Pai p[]=new Pai[n]; for(int i=0;i<n;i++){ nm=toIntArray(); p[i]=new Pai(nm[0],nm[1]); } Arrays.sort(p); int count=0; for(int i=0;i<n;i++){ if(p[k-1].first==p[i].first && p[k-1].second==p[i].second){ count++; } } System.out.println(count); } /****************************************************************/ public static int[] toIntArray()throws Exception{ String str[]=br.readLine().split(" "); int k[]=new int[str.length]; for(int i=0;i<str.length;i++){ k[i]=Integer.parseInt(str[i]); } return k; } public static int toInt()throws Exception{ return Integer.parseInt(br.readLine()); } public static long[] toLongArray()throws Exception{ String str[]=br.readLine().split(" "); long k[]=new long[str.length]; for(int i=0;i<str.length;i++){ k[i]=Long.parseLong(str[i]); } return k; } public static long toLong()throws Exception{ return Long.parseLong(br.readLine()); } public static double[] toDoubleArray()throws Exception{ String str[]=br.readLine().split(" "); double k[]=new double[str.length]; for(int i=0;i<str.length;i++){ k[i]=Double.parseDouble(str[i]); } return k; } public static double toDouble()throws Exception{ return Double.parseDouble(br.readLine()); } public static String toStr()throws Exception{ return br.readLine(); } public static String[] toStrArray()throws Exception{ String str[]=br.readLine().split(" "); return str; } /****************************************************************/ } class Pai implements Comparable<Pai> { int first; int second; public Pai(int f, int s) { first = f; second = s; } public int compareTo(Pai p) { int ret = 0; if (first < p.first) { ret = 1; } else if (first > p.first) { ret = -1; } else { if(second<p.second){ ret=-1; } else if(second>p.second){ ret=1; } else ret=0; } return ret; } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; import java.math.BigInteger; public class C113A{ static BufferedReader br; public static void main(String args[])throws Exception{ br=new BufferedReader(new InputStreamReader(System.in)); int nm[]=toIntArray(); int n=nm[0]; int k=nm[1]; Pai p[]=new Pai[n]; for(int i=0;i<n;i++){ nm=toIntArray(); p[i]=new Pai(nm[0],nm[1]); } Arrays.sort(p); int count=0; for(int i=0;i<n;i++){ if(p[k-1].first==p[i].first && p[k-1].second==p[i].second){ count++; } } System.out.println(count); } /****************************************************************/ public static int[] toIntArray()throws Exception{ String str[]=br.readLine().split(" "); int k[]=new int[str.length]; for(int i=0;i<str.length;i++){ k[i]=Integer.parseInt(str[i]); } return k; } public static int toInt()throws Exception{ return Integer.parseInt(br.readLine()); } public static long[] toLongArray()throws Exception{ String str[]=br.readLine().split(" "); long k[]=new long[str.length]; for(int i=0;i<str.length;i++){ k[i]=Long.parseLong(str[i]); } return k; } public static long toLong()throws Exception{ return Long.parseLong(br.readLine()); } public static double[] toDoubleArray()throws Exception{ String str[]=br.readLine().split(" "); double k[]=new double[str.length]; for(int i=0;i<str.length;i++){ k[i]=Double.parseDouble(str[i]); } return k; } public static double toDouble()throws Exception{ return Double.parseDouble(br.readLine()); } public static String toStr()throws Exception{ return br.readLine(); } public static String[] toStrArray()throws Exception{ String str[]=br.readLine().split(" "); return str; } /****************************************************************/ } class Pai implements Comparable<Pai> { int first; int second; public Pai(int f, int s) { first = f; second = s; } public int compareTo(Pai p) { int ret = 0; if (first < p.first) { ret = 1; } else if (first > p.first) { ret = -1; } else { if(second<p.second){ ret=-1; } else if(second>p.second){ ret=1; } else ret=0; } return ret; } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; import java.math.BigInteger; public class C113A{ static BufferedReader br; public static void main(String args[])throws Exception{ br=new BufferedReader(new InputStreamReader(System.in)); int nm[]=toIntArray(); int n=nm[0]; int k=nm[1]; Pai p[]=new Pai[n]; for(int i=0;i<n;i++){ nm=toIntArray(); p[i]=new Pai(nm[0],nm[1]); } Arrays.sort(p); int count=0; for(int i=0;i<n;i++){ if(p[k-1].first==p[i].first && p[k-1].second==p[i].second){ count++; } } System.out.println(count); } /****************************************************************/ public static int[] toIntArray()throws Exception{ String str[]=br.readLine().split(" "); int k[]=new int[str.length]; for(int i=0;i<str.length;i++){ k[i]=Integer.parseInt(str[i]); } return k; } public static int toInt()throws Exception{ return Integer.parseInt(br.readLine()); } public static long[] toLongArray()throws Exception{ String str[]=br.readLine().split(" "); long k[]=new long[str.length]; for(int i=0;i<str.length;i++){ k[i]=Long.parseLong(str[i]); } return k; } public static long toLong()throws Exception{ return Long.parseLong(br.readLine()); } public static double[] toDoubleArray()throws Exception{ String str[]=br.readLine().split(" "); double k[]=new double[str.length]; for(int i=0;i<str.length;i++){ k[i]=Double.parseDouble(str[i]); } return k; } public static double toDouble()throws Exception{ return Double.parseDouble(br.readLine()); } public static String toStr()throws Exception{ return br.readLine(); } public static String[] toStrArray()throws Exception{ String str[]=br.readLine().split(" "); return str; } /****************************************************************/ } class Pai implements Comparable<Pai> { int first; int second; public Pai(int f, int s) { first = f; second = s; } public int compareTo(Pai p) { int ret = 0; if (first < p.first) { ret = 1; } else if (first > p.first) { ret = -1; } else { if(second<p.second){ ret=-1; } else if(second>p.second){ ret=1; } else ret=0; } return ret; } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
924
1,957
3,652
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.io.BufferedWriter; import java.util.Collection; import java.io.FileWriter; import java.io.IOException; import java.io.FileInputStream; import java.io.InputStreamReader; import java.util.Objects; import java.util.StringTokenizer; import java.io.BufferedReader; import java.util.Queue; import java.util.LinkedList; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Nafiur Rahman Khadem Shafin 🙂 */ public class Main { public static void main (String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader (inputStream); PrintWriter out = new PrintWriter (outputStream); ProblemCFireAgain solver = new ProblemCFireAgain (); solver.solve (1, in, out); out.close (); } static class ProblemCFireAgain { private static final byte[] dx = {-1, 0, 0, 1}; private static final byte[] dy = {0, -1, 1, 0}; private static int[][] lvl; private static int max; private static int n; private static int m; private static int k; private static ProblemCFireAgain.Pair[] bgn; private static ProblemCFireAgain.Pair res; private static void bfs2d () { Queue<ProblemCFireAgain.Pair> bfsq = new LinkedList<ProblemCFireAgain.Pair> (); for (ProblemCFireAgain.Pair src : bgn) { lvl[src.a][src.b] = 0; bfsq.add (src); } while (!bfsq.isEmpty ()) { ProblemCFireAgain.Pair op = bfsq.poll (); int plvl = lvl[op.a][op.b]; // System.out.println ("ber hoise "+op+" "+plvl); if (plvl>max) { res = op; max = plvl; } for (int i = 0; i<4; i++) { int newX = op.a+dx[i]; int newY = op.b+dy[i]; // System.out.println (newX+" "+newY+" "+n+" "+m); if (newX>0 && newX<=n && newY>0 && newY<=m && lvl[newX][newY] == -1) { bfsq.add (new ProblemCFireAgain.Pair (newX, newY)); lvl[newX][newY] = (plvl+1); // System.out.println ("dhukse "+newX+" "+newY); } } } } public void solve (int testNumber, InputReader _in, PrintWriter _out) { /* * file input-output 😮. Multi source bfs. Same as snackdown problem. * */ try (InputReader in = new InputReader (new FileInputStream ("input.txt")); PrintWriter out = new PrintWriter (new BufferedWriter (new FileWriter ("output.txt")))) { n = in.nextInt (); m = in.nextInt (); k = in.nextInt (); bgn = new ProblemCFireAgain.Pair[k]; for (int i = 0; i<k; i++) { bgn[i] = new ProblemCFireAgain.Pair (in.nextInt (), in.nextInt ()); } max = Integer.MIN_VALUE; lvl = new int[n+5][m+5]; for (int i = 0; i<n+4; i++) { Arrays.fill (lvl[i], -1); } bfs2d (); // System.out.println (max); out.println (res); } catch (Exception e) { // e.printStackTrace (); } } private static class Pair { int a; int b; Pair (int a, int b) { this.a = a; this.b = b; } public String toString () { return a+" "+b; } public boolean equals (Object o) { if (this == o) return true; if (!(o instanceof ProblemCFireAgain.Pair)) return false; ProblemCFireAgain.Pair pair = (ProblemCFireAgain.Pair) o; return a == pair.a && b == pair.b; } public int hashCode () { return Objects.hash (a, b); } } } static class InputReader implements AutoCloseable { private BufferedReader reader; private StringTokenizer tokenizer; public InputReader (InputStream stream) { reader = new BufferedReader (new InputStreamReader (stream)); tokenizer = null; } public String next () { while (tokenizer == null || !tokenizer.hasMoreTokens ()) { try { String str; if ((str = reader.readLine ()) != null) tokenizer = new StringTokenizer (str); else return null;//to detect eof } catch (IOException e) { throw new RuntimeException (e); } } return tokenizer.nextToken (); } public int nextInt () { return Integer.parseInt (next ()); } public void close () throws Exception { reader.close (); } } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.io.BufferedWriter; import java.util.Collection; import java.io.FileWriter; import java.io.IOException; import java.io.FileInputStream; import java.io.InputStreamReader; import java.util.Objects; import java.util.StringTokenizer; import java.io.BufferedReader; import java.util.Queue; import java.util.LinkedList; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Nafiur Rahman Khadem Shafin 🙂 */ public class Main { public static void main (String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader (inputStream); PrintWriter out = new PrintWriter (outputStream); ProblemCFireAgain solver = new ProblemCFireAgain (); solver.solve (1, in, out); out.close (); } static class ProblemCFireAgain { private static final byte[] dx = {-1, 0, 0, 1}; private static final byte[] dy = {0, -1, 1, 0}; private static int[][] lvl; private static int max; private static int n; private static int m; private static int k; private static ProblemCFireAgain.Pair[] bgn; private static ProblemCFireAgain.Pair res; private static void bfs2d () { Queue<ProblemCFireAgain.Pair> bfsq = new LinkedList<ProblemCFireAgain.Pair> (); for (ProblemCFireAgain.Pair src : bgn) { lvl[src.a][src.b] = 0; bfsq.add (src); } while (!bfsq.isEmpty ()) { ProblemCFireAgain.Pair op = bfsq.poll (); int plvl = lvl[op.a][op.b]; // System.out.println ("ber hoise "+op+" "+plvl); if (plvl>max) { res = op; max = plvl; } for (int i = 0; i<4; i++) { int newX = op.a+dx[i]; int newY = op.b+dy[i]; // System.out.println (newX+" "+newY+" "+n+" "+m); if (newX>0 && newX<=n && newY>0 && newY<=m && lvl[newX][newY] == -1) { bfsq.add (new ProblemCFireAgain.Pair (newX, newY)); lvl[newX][newY] = (plvl+1); // System.out.println ("dhukse "+newX+" "+newY); } } } } public void solve (int testNumber, InputReader _in, PrintWriter _out) { /* * file input-output 😮. Multi source bfs. Same as snackdown problem. * */ try (InputReader in = new InputReader (new FileInputStream ("input.txt")); PrintWriter out = new PrintWriter (new BufferedWriter (new FileWriter ("output.txt")))) { n = in.nextInt (); m = in.nextInt (); k = in.nextInt (); bgn = new ProblemCFireAgain.Pair[k]; for (int i = 0; i<k; i++) { bgn[i] = new ProblemCFireAgain.Pair (in.nextInt (), in.nextInt ()); } max = Integer.MIN_VALUE; lvl = new int[n+5][m+5]; for (int i = 0; i<n+4; i++) { Arrays.fill (lvl[i], -1); } bfs2d (); // System.out.println (max); out.println (res); } catch (Exception e) { // e.printStackTrace (); } } private static class Pair { int a; int b; Pair (int a, int b) { this.a = a; this.b = b; } public String toString () { return a+" "+b; } public boolean equals (Object o) { if (this == o) return true; if (!(o instanceof ProblemCFireAgain.Pair)) return false; ProblemCFireAgain.Pair pair = (ProblemCFireAgain.Pair) o; return a == pair.a && b == pair.b; } public int hashCode () { return Objects.hash (a, b); } } } static class InputReader implements AutoCloseable { private BufferedReader reader; private StringTokenizer tokenizer; public InputReader (InputStream stream) { reader = new BufferedReader (new InputStreamReader (stream)); tokenizer = null; } public String next () { while (tokenizer == null || !tokenizer.hasMoreTokens ()) { try { String str; if ((str = reader.readLine ()) != null) tokenizer = new StringTokenizer (str); else return null;//to detect eof } catch (IOException e) { throw new RuntimeException (e); } } return tokenizer.nextToken (); } public int nextInt () { return Integer.parseInt (next ()); } public void close () throws Exception { reader.close (); } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.io.BufferedWriter; import java.util.Collection; import java.io.FileWriter; import java.io.IOException; import java.io.FileInputStream; import java.io.InputStreamReader; import java.util.Objects; import java.util.StringTokenizer; import java.io.BufferedReader; import java.util.Queue; import java.util.LinkedList; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Nafiur Rahman Khadem Shafin 🙂 */ public class Main { public static void main (String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader (inputStream); PrintWriter out = new PrintWriter (outputStream); ProblemCFireAgain solver = new ProblemCFireAgain (); solver.solve (1, in, out); out.close (); } static class ProblemCFireAgain { private static final byte[] dx = {-1, 0, 0, 1}; private static final byte[] dy = {0, -1, 1, 0}; private static int[][] lvl; private static int max; private static int n; private static int m; private static int k; private static ProblemCFireAgain.Pair[] bgn; private static ProblemCFireAgain.Pair res; private static void bfs2d () { Queue<ProblemCFireAgain.Pair> bfsq = new LinkedList<ProblemCFireAgain.Pair> (); for (ProblemCFireAgain.Pair src : bgn) { lvl[src.a][src.b] = 0; bfsq.add (src); } while (!bfsq.isEmpty ()) { ProblemCFireAgain.Pair op = bfsq.poll (); int plvl = lvl[op.a][op.b]; // System.out.println ("ber hoise "+op+" "+plvl); if (plvl>max) { res = op; max = plvl; } for (int i = 0; i<4; i++) { int newX = op.a+dx[i]; int newY = op.b+dy[i]; // System.out.println (newX+" "+newY+" "+n+" "+m); if (newX>0 && newX<=n && newY>0 && newY<=m && lvl[newX][newY] == -1) { bfsq.add (new ProblemCFireAgain.Pair (newX, newY)); lvl[newX][newY] = (plvl+1); // System.out.println ("dhukse "+newX+" "+newY); } } } } public void solve (int testNumber, InputReader _in, PrintWriter _out) { /* * file input-output 😮. Multi source bfs. Same as snackdown problem. * */ try (InputReader in = new InputReader (new FileInputStream ("input.txt")); PrintWriter out = new PrintWriter (new BufferedWriter (new FileWriter ("output.txt")))) { n = in.nextInt (); m = in.nextInt (); k = in.nextInt (); bgn = new ProblemCFireAgain.Pair[k]; for (int i = 0; i<k; i++) { bgn[i] = new ProblemCFireAgain.Pair (in.nextInt (), in.nextInt ()); } max = Integer.MIN_VALUE; lvl = new int[n+5][m+5]; for (int i = 0; i<n+4; i++) { Arrays.fill (lvl[i], -1); } bfs2d (); // System.out.println (max); out.println (res); } catch (Exception e) { // e.printStackTrace (); } } private static class Pair { int a; int b; Pair (int a, int b) { this.a = a; this.b = b; } public String toString () { return a+" "+b; } public boolean equals (Object o) { if (this == o) return true; if (!(o instanceof ProblemCFireAgain.Pair)) return false; ProblemCFireAgain.Pair pair = (ProblemCFireAgain.Pair) o; return a == pair.a && b == pair.b; } public int hashCode () { return Objects.hash (a, b); } } } static class InputReader implements AutoCloseable { private BufferedReader reader; private StringTokenizer tokenizer; public InputReader (InputStream stream) { reader = new BufferedReader (new InputStreamReader (stream)); tokenizer = null; } public String next () { while (tokenizer == null || !tokenizer.hasMoreTokens ()) { try { String str; if ((str = reader.readLine ()) != null) tokenizer = new StringTokenizer (str); else return null;//to detect eof } catch (IOException e) { throw new RuntimeException (e); } } return tokenizer.nextToken (); } public int nextInt () { return Integer.parseInt (next ()); } public void close () throws Exception { reader.close (); } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,523
3,644
4,182
import java.awt.Point; import java.io.*; import java.math.BigInteger; import java.util.*; import static java.lang.Math.*; public class ProblemE_16 { final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE")!=null; BufferedReader in; PrintWriter out; StringTokenizer tok = new StringTokenizer(""); void init() throws FileNotFoundException{ if (ONLINE_JUDGE){ in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); }else{ in = new BufferedReader(new FileReader("input.txt")); out = new PrintWriter("output.txt"); } } String readString() throws IOException{ while(!tok.hasMoreTokens()){ tok = new StringTokenizer(in.readLine()); } return tok.nextToken(); } int readInt() throws IOException{ return Integer.parseInt(readString()); } long readLong() throws IOException{ return Long.parseLong(readString()); } double readDouble() throws IOException{ return Double.parseDouble(readString()); } public static void main(String[] args){ new ProblemE_16().run(); } public void run(){ try{ long t1 = System.currentTimeMillis(); init(); solve(); out.close(); long t2 = System.currentTimeMillis(); System.err.println("Time = "+(t2-t1)); }catch (Exception e){ e.printStackTrace(System.err); System.exit(-1); } } void solve() throws IOException{ int n = readInt(); double[][] a = new double[n][n]; for (int i = 0; i < n; i++){ for (int j = 0; j < n; j++){ a[i][j] = readDouble(); } } double[] d = new double[1<<n]; d[(1 << n) - 1] = 1; for (int i = (1 << n) - 1; i > 0; i--){ ArrayList<Integer> list = new ArrayList<Integer>(); for (int j = 0; j < n; j++){ if ((i & (1 << j)) != 0) list.add(j); } double s = 0; for (int j = 0; j < list.size(); j++){ s = 0; for (int k = 0; k < list.size(); k++){ s += a[list.get(k)][list.get(j)]; } d[i ^ (1 << list.get(j))] += s * d[i] * 2 / list.size() / (list.size() - 1); } } for (int i = 0; i < n; i++){ out.printf(Locale.US, "%.9f", d[1 << i]); out.print(" "); } } static int[][] step8 = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}, {-1, -1}, {1, -1}, {-1, 1}, {1, 1}}; static int[][] stepKnight = {{-2, -1}, {-2, 1}, {-1, -2}, {-1, 2}, {1, -2}, {1, 2}, {2, -1}, {2, 1}}; static long gcd(long a, long b){ if (a == 0) return b; return gcd(b % a, a); } static long lcm(long a, long b){ return a / gcd(a, b)*b; } static long[] gcdPlus(long a, long b){ long[] d = new long[3]; if (a == 0){ d[0] = b; d[1] = 0; d[2] = 1; }else{ d = gcdPlus(b % a, a); long r = d[1]; d[1] = d[2] - b/a*d[1]; d[2] = r; } return d; } static long binpow(long a, int n){ if (n == 0) return 1; if ((n & 1) == 0){ long b = binpow(a, n/2); return b*b; }else return binpow(a, n - 1)*a; } static long binpowmod(long a, int n, long m){ if (m == 1) return 0; if (n == 0) return 1; if ((n & 1) == 0){ long b = binpowmod(a, n/2, m); return (b*b) % m; }else return binpowmod(a, n - 1, m)*a % m; } static long phi(long n){ int[] p = Sieve((int)ceil(sqrt(n)) + 2); long phi = 1; for (int i = 0; i < p.length; i++){ long x = 1; while (n % p[i] == 0){ n /= p[i]; x *= p[i]; } phi *= x - x/p[i]; } if (n != 1) phi *= n - 1; return phi; } static long f(long n, int x, int k){ //Кол-во десятичных чисел (включая 0), содержащих в себе цифры от 0 до k-1 if (n == 0) return 1; long b = binpow(10, x - 1); long c = n / b; return (c < k? c: k)*binpow(k, x - 1) + (c < k? 1: 0)*f(n % b, x - 1, k); } static long fib(int n){ if (n == 0) return 0; if ((n & 1) == 0){ long f1 = fib(n/2 - 1); long f2 = fib(n/2 + 1); return f2*f2 - f1*f1; }else{ long f1 = fib(n/2); long f2 = fib(n/2 + 1); return f1*f1 + f2*f2; } } static BigInteger BigFib(int n){ if (n == 0) return BigInteger.ZERO; if ((n & 1) == 0){ BigInteger f1 = BigFib(n/2 - 1); f1 = f1.multiply(f1); BigInteger f2 = BigFib(n/2 + 1); f2 = f2.multiply(f2); return f2.subtract(f1); }else{ BigInteger f1 = BigFib(n/2); f1 = f1.multiply(f1); BigInteger f2 = BigFib(n/2 + 1); f2 = f2.multiply(f2); return f2.add(f1); } } static public class PointD{ double x, y; public PointD(double x, double y){ this.x = x; this.y = y; } } static double d(Point p1, Point p2){ return sqrt(d2(p1, p2)); } static public double d(PointD p1, PointD p2){ return sqrt(d2(p1, p2)); } static double d2(Point p1, Point p2){ return (p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y); } static public double d2(PointD p1, PointD p2){ return (p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y); } static boolean IsProbablyPrime(long n){ if (n == 1) return false; if ((n & 1) == 0) return false; for (int j = 3; j < sqrt(n) + 1; j += 2){ if (n % j == 0) return false; } return true; } static int[] Sieve(int n){ boolean[] b = new boolean[n+1]; Arrays.fill(b, true); b[0] = false; b[1] = false; long nLong = n; int j=0; for (int i = 1; i <= n; i++) { if (b[i]){ j++; if (((long)i)*i <= nLong) { for (int k = i*i; k <= n; k += i) { b[k] = false; } } } } int[] p = new int[j]; Arrays.fill(p, 0); j=0; for (int i = 2; i <= n; i++) { if (b[i]){ p[j]=i; j++; } } return p; } static int[][] Palindromes(String s){ char[] c = s.toCharArray(); int n = c.length; int[][] d = new int[2][n]; int l = 0, r = -1; for (int i = 0; i < n; i++){ int j = (i > r? 0: min(d[0][l+r-i+1], r-i+1)) + 1; for (; i - j >= 0 && i + j - 1< n && c[i-j] == c[i+j-1]; j++); d[0][i] = --j; if (i + d[0][i] - 1 > r){ r = i + d[0][i] - 1; l = i - d[0][i]; } } l = 0; r = -1; for (int i = 0; i < n; i++){ int j = (i > r? 0: min(d[1][l+r-i], r-i)) + 1; for (; i - j >= 0 && i + j < n && c[i-j] == c[i+j]; j++); d[1][i] = --j; if (i + d[1][i] > r){ r = i + d[1][i]; l = i - d[1][i]; } } return d; } static public class Permutation { int[] a; int n; public Permutation(int n){ this.n=n; a=new int[n]; for (int i=0; i<n; i++){ a[i]=i; } } public boolean nextPermutation(){ //Пишется с do{}while(nextPermutation(a)); int i=n-1; for (i=n-2; i>=0; i--){ if (a[i]<a[i+1]){ break; } } if (i==-1){ return false; } int jMin=i+1; for (int j=n-1; j>i; j--){ if (a[i]<a[j]&&a[j]<a[jMin]){ jMin=j; } } swap(i, jMin); for (int j=1; j<=(n-i)/2; j++){ swap(i+j, n-j); } return true; } public int get(int i){ return a[i]; } void swap(int i, int j){ int r=a[i]; a[i]=a[j]; a[j]=r; } } static public class Fraction implements Comparable<Fraction>, Cloneable{ public final Fraction FRACTION_ZERO = new Fraction(); public final Fraction FRACTION_ONE = new Fraction(1); public long numerator = 0; public long denominator = 1; public Fraction(){ numerator = 0; denominator = 1; } public Fraction(long numerator){ this.numerator = numerator; denominator = 1; } public Fraction(long numerator, long denominator){ this.numerator = numerator; this.denominator = denominator; Cancellation(); } public Fraction(double numerator, double denominator, int accuracy){ this.numerator = (long)(numerator*pow(10,accuracy)); this.denominator = (long)(denominator*pow(10,accuracy)); Cancellation(); } public Fraction(String s){ if (s.charAt(0) == '-'){ denominator = -1; s = s.substring(1); } if (s.indexOf("/") != -1){ denominator *= Integer.parseInt(s.substring(s.indexOf("/") + 1)); } if (s.indexOf(" ") != -1){ numerator = Integer.parseInt(s.substring(0, s.indexOf(" "))) * abs(denominator) + Integer.parseInt(s.substring(s.indexOf(" ") + 1, s.indexOf("/"))); }else{ if (s.indexOf("/") != -1){ numerator = Integer.parseInt(s.substring(0, s.indexOf("/"))); }else{ numerator = Integer.parseInt(s)*abs(denominator); } } this.Cancellation(); } void Cancellation(){ long g = gcd(abs(numerator), abs(denominator)); numerator /= g; denominator /= g; if (denominator < 0){ numerator *= -1; denominator *= -1; } } public String toString(){ String s = ""; if (numerator == 0){ return "0"; } if (numerator < 0){ s += "-"; } if (abs(numerator) >= denominator){ s += Long.toString(abs(numerator) / denominator) + " "; } if (abs(numerator) % denominator != 0){ s += Long.toString(abs(numerator) % denominator); }else{ s = s.substring(0, s.length()-1); } if (denominator != 1){ s += "/" + Long.toString(denominator); } return s; } public Fraction add(Fraction f){ Fraction fResult = new Fraction(); fResult.denominator = lcm(denominator, f.denominator); fResult.numerator = numerator * fResult.denominator / denominator + f.numerator * fResult.denominator / f.denominator; fResult.Cancellation(); return fResult; } public Fraction subtract(Fraction f){ Fraction fResult = new Fraction(); fResult.denominator = lcm(denominator, f.denominator); fResult.numerator = numerator * fResult.denominator / denominator - f.numerator * fResult.denominator / f.denominator; fResult.Cancellation(); return fResult; } public Fraction multiply(Fraction f){ Fraction fResult = new Fraction(); fResult.numerator = numerator * f.numerator; fResult.denominator = denominator * f.denominator; fResult.Cancellation(); return fResult; } public Fraction divide(Fraction f){ Fraction fResult = new Fraction(); fResult.numerator = numerator * f.denominator; fResult.denominator = denominator * f.numerator; fResult.Cancellation(); return fResult; } @Override public int compareTo(Fraction f){ long g = gcd(denominator, f.denominator); long res = numerator * (f.denominator / g) - f.numerator * (denominator / g); if (res < 0){ return -1; } if (res > 0){ return 1; } return 0; } public Fraction clone(){ Fraction fResult = new Fraction(numerator, denominator); return fResult; } public Fraction floor(){ Fraction fResult = this.clone(); fResult.numerator = (fResult.numerator / fResult.denominator) * fResult.denominator; return fResult; } public Fraction ceil(){ Fraction fResult = this.clone(); fResult.numerator = (fResult.numerator/fResult.denominator + 1) * fResult.denominator; return fResult; } public Fraction binpow(int n){ if (n==0) return FRACTION_ONE; if ((n&1)==0){ Fraction f=this.binpow(n/2); return f.multiply(f); }else return binpow(n-1).multiply(this); } } static public class FenwickTree_1{ //One-dimensional array int n; long[] t; public FenwickTree_1(int n){ this.n = n; t = new long[n]; } public long sum(int xl, int xr){ return sum(xr) - sum(xl); } public long sum(int x){ long result = 0; for (int i = x; i >= 0; i = (i & (i + 1)) - 1){ result += t[i]; } return result; } public void update(int x, long delta){ for (int i = x; i < n; i = (i | (i + 1))){ t[i] += delta; } } } static public class FenwickTree_2{ //Two-dimensional array int n, m; long[][] t; public FenwickTree_2(int n, int m){ this.n = n; this.m = m; t = new long[n][m]; } public long sum(int xl, int yl, int xr, int yr){ return sum(xr, yr) - sum(xl - 1, yr) - sum(xr, yl - 1) + sum(xl - 1, yl - 1); } public long sum(int x, int y){ long result = 0; for (int i = x; i >= 0; i = (i & (i + 1)) - 1){ for (int j = y; j >= 0; j = (j & (j + 1)) - 1){ result+=t[i][j]; } } return result; } public void update(int x, int y, long delta){ for (int i = x; i < n; i = (i | (i + 1))){ for (int j = y; j < m; j = (j | (j + 1))){ t[i][j] += delta; } } } } static public class FenwickTree_3{ //Three-dimensional array int n, m, l; long[][][] t; public FenwickTree_3(int n, int m, int l){ this.n = n; this.m = m; this.l = l; t = new long[n][m][l]; } public long sum(int xl, int yl, int zl, int xr, int yr, int zr){ return sum(xr, yr, zr) - sum(xl - 1, yr, zr) + sum(xl - 1, yr, zl - 1) - sum(xr, yr, zl - 1) - sum(xr, yl - 1, zr) + sum(xl - 1, yl - 1, zr) - sum(xl - 1, yl - 1, zl - 1) + sum(xr, yl - 1, zl - 1); } public long sum(int x, int y, int z){ long result = 0; for (int i = x; i >= 0; i = (i & (i + 1)) - 1){ for (int j = y; j >= 0; j = (j & (j + 1)) - 1){ for (int k = z; k >= 0; k = (k & (k + 1)) - 1){ result += t[i][j][k]; } } } return result; } public void update(int x, int y, int z, long delta){ for (int i = x; i < n; i = (i | (i + 1))){ for (int j = y; j < n; j = (j | (j + 1))){ for (int k = z; k < n; k = (k | (k + 1))){ t[i][j][k] += delta; } } } } } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.awt.Point; import java.io.*; import java.math.BigInteger; import java.util.*; import static java.lang.Math.*; public class ProblemE_16 { final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE")!=null; BufferedReader in; PrintWriter out; StringTokenizer tok = new StringTokenizer(""); void init() throws FileNotFoundException{ if (ONLINE_JUDGE){ in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); }else{ in = new BufferedReader(new FileReader("input.txt")); out = new PrintWriter("output.txt"); } } String readString() throws IOException{ while(!tok.hasMoreTokens()){ tok = new StringTokenizer(in.readLine()); } return tok.nextToken(); } int readInt() throws IOException{ return Integer.parseInt(readString()); } long readLong() throws IOException{ return Long.parseLong(readString()); } double readDouble() throws IOException{ return Double.parseDouble(readString()); } public static void main(String[] args){ new ProblemE_16().run(); } public void run(){ try{ long t1 = System.currentTimeMillis(); init(); solve(); out.close(); long t2 = System.currentTimeMillis(); System.err.println("Time = "+(t2-t1)); }catch (Exception e){ e.printStackTrace(System.err); System.exit(-1); } } void solve() throws IOException{ int n = readInt(); double[][] a = new double[n][n]; for (int i = 0; i < n; i++){ for (int j = 0; j < n; j++){ a[i][j] = readDouble(); } } double[] d = new double[1<<n]; d[(1 << n) - 1] = 1; for (int i = (1 << n) - 1; i > 0; i--){ ArrayList<Integer> list = new ArrayList<Integer>(); for (int j = 0; j < n; j++){ if ((i & (1 << j)) != 0) list.add(j); } double s = 0; for (int j = 0; j < list.size(); j++){ s = 0; for (int k = 0; k < list.size(); k++){ s += a[list.get(k)][list.get(j)]; } d[i ^ (1 << list.get(j))] += s * d[i] * 2 / list.size() / (list.size() - 1); } } for (int i = 0; i < n; i++){ out.printf(Locale.US, "%.9f", d[1 << i]); out.print(" "); } } static int[][] step8 = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}, {-1, -1}, {1, -1}, {-1, 1}, {1, 1}}; static int[][] stepKnight = {{-2, -1}, {-2, 1}, {-1, -2}, {-1, 2}, {1, -2}, {1, 2}, {2, -1}, {2, 1}}; static long gcd(long a, long b){ if (a == 0) return b; return gcd(b % a, a); } static long lcm(long a, long b){ return a / gcd(a, b)*b; } static long[] gcdPlus(long a, long b){ long[] d = new long[3]; if (a == 0){ d[0] = b; d[1] = 0; d[2] = 1; }else{ d = gcdPlus(b % a, a); long r = d[1]; d[1] = d[2] - b/a*d[1]; d[2] = r; } return d; } static long binpow(long a, int n){ if (n == 0) return 1; if ((n & 1) == 0){ long b = binpow(a, n/2); return b*b; }else return binpow(a, n - 1)*a; } static long binpowmod(long a, int n, long m){ if (m == 1) return 0; if (n == 0) return 1; if ((n & 1) == 0){ long b = binpowmod(a, n/2, m); return (b*b) % m; }else return binpowmod(a, n - 1, m)*a % m; } static long phi(long n){ int[] p = Sieve((int)ceil(sqrt(n)) + 2); long phi = 1; for (int i = 0; i < p.length; i++){ long x = 1; while (n % p[i] == 0){ n /= p[i]; x *= p[i]; } phi *= x - x/p[i]; } if (n != 1) phi *= n - 1; return phi; } static long f(long n, int x, int k){ //Кол-во десятичных чисел (включая 0), содержащих в себе цифры от 0 до k-1 if (n == 0) return 1; long b = binpow(10, x - 1); long c = n / b; return (c < k? c: k)*binpow(k, x - 1) + (c < k? 1: 0)*f(n % b, x - 1, k); } static long fib(int n){ if (n == 0) return 0; if ((n & 1) == 0){ long f1 = fib(n/2 - 1); long f2 = fib(n/2 + 1); return f2*f2 - f1*f1; }else{ long f1 = fib(n/2); long f2 = fib(n/2 + 1); return f1*f1 + f2*f2; } } static BigInteger BigFib(int n){ if (n == 0) return BigInteger.ZERO; if ((n & 1) == 0){ BigInteger f1 = BigFib(n/2 - 1); f1 = f1.multiply(f1); BigInteger f2 = BigFib(n/2 + 1); f2 = f2.multiply(f2); return f2.subtract(f1); }else{ BigInteger f1 = BigFib(n/2); f1 = f1.multiply(f1); BigInteger f2 = BigFib(n/2 + 1); f2 = f2.multiply(f2); return f2.add(f1); } } static public class PointD{ double x, y; public PointD(double x, double y){ this.x = x; this.y = y; } } static double d(Point p1, Point p2){ return sqrt(d2(p1, p2)); } static public double d(PointD p1, PointD p2){ return sqrt(d2(p1, p2)); } static double d2(Point p1, Point p2){ return (p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y); } static public double d2(PointD p1, PointD p2){ return (p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y); } static boolean IsProbablyPrime(long n){ if (n == 1) return false; if ((n & 1) == 0) return false; for (int j = 3; j < sqrt(n) + 1; j += 2){ if (n % j == 0) return false; } return true; } static int[] Sieve(int n){ boolean[] b = new boolean[n+1]; Arrays.fill(b, true); b[0] = false; b[1] = false; long nLong = n; int j=0; for (int i = 1; i <= n; i++) { if (b[i]){ j++; if (((long)i)*i <= nLong) { for (int k = i*i; k <= n; k += i) { b[k] = false; } } } } int[] p = new int[j]; Arrays.fill(p, 0); j=0; for (int i = 2; i <= n; i++) { if (b[i]){ p[j]=i; j++; } } return p; } static int[][] Palindromes(String s){ char[] c = s.toCharArray(); int n = c.length; int[][] d = new int[2][n]; int l = 0, r = -1; for (int i = 0; i < n; i++){ int j = (i > r? 0: min(d[0][l+r-i+1], r-i+1)) + 1; for (; i - j >= 0 && i + j - 1< n && c[i-j] == c[i+j-1]; j++); d[0][i] = --j; if (i + d[0][i] - 1 > r){ r = i + d[0][i] - 1; l = i - d[0][i]; } } l = 0; r = -1; for (int i = 0; i < n; i++){ int j = (i > r? 0: min(d[1][l+r-i], r-i)) + 1; for (; i - j >= 0 && i + j < n && c[i-j] == c[i+j]; j++); d[1][i] = --j; if (i + d[1][i] > r){ r = i + d[1][i]; l = i - d[1][i]; } } return d; } static public class Permutation { int[] a; int n; public Permutation(int n){ this.n=n; a=new int[n]; for (int i=0; i<n; i++){ a[i]=i; } } public boolean nextPermutation(){ //Пишется с do{}while(nextPermutation(a)); int i=n-1; for (i=n-2; i>=0; i--){ if (a[i]<a[i+1]){ break; } } if (i==-1){ return false; } int jMin=i+1; for (int j=n-1; j>i; j--){ if (a[i]<a[j]&&a[j]<a[jMin]){ jMin=j; } } swap(i, jMin); for (int j=1; j<=(n-i)/2; j++){ swap(i+j, n-j); } return true; } public int get(int i){ return a[i]; } void swap(int i, int j){ int r=a[i]; a[i]=a[j]; a[j]=r; } } static public class Fraction implements Comparable<Fraction>, Cloneable{ public final Fraction FRACTION_ZERO = new Fraction(); public final Fraction FRACTION_ONE = new Fraction(1); public long numerator = 0; public long denominator = 1; public Fraction(){ numerator = 0; denominator = 1; } public Fraction(long numerator){ this.numerator = numerator; denominator = 1; } public Fraction(long numerator, long denominator){ this.numerator = numerator; this.denominator = denominator; Cancellation(); } public Fraction(double numerator, double denominator, int accuracy){ this.numerator = (long)(numerator*pow(10,accuracy)); this.denominator = (long)(denominator*pow(10,accuracy)); Cancellation(); } public Fraction(String s){ if (s.charAt(0) == '-'){ denominator = -1; s = s.substring(1); } if (s.indexOf("/") != -1){ denominator *= Integer.parseInt(s.substring(s.indexOf("/") + 1)); } if (s.indexOf(" ") != -1){ numerator = Integer.parseInt(s.substring(0, s.indexOf(" "))) * abs(denominator) + Integer.parseInt(s.substring(s.indexOf(" ") + 1, s.indexOf("/"))); }else{ if (s.indexOf("/") != -1){ numerator = Integer.parseInt(s.substring(0, s.indexOf("/"))); }else{ numerator = Integer.parseInt(s)*abs(denominator); } } this.Cancellation(); } void Cancellation(){ long g = gcd(abs(numerator), abs(denominator)); numerator /= g; denominator /= g; if (denominator < 0){ numerator *= -1; denominator *= -1; } } public String toString(){ String s = ""; if (numerator == 0){ return "0"; } if (numerator < 0){ s += "-"; } if (abs(numerator) >= denominator){ s += Long.toString(abs(numerator) / denominator) + " "; } if (abs(numerator) % denominator != 0){ s += Long.toString(abs(numerator) % denominator); }else{ s = s.substring(0, s.length()-1); } if (denominator != 1){ s += "/" + Long.toString(denominator); } return s; } public Fraction add(Fraction f){ Fraction fResult = new Fraction(); fResult.denominator = lcm(denominator, f.denominator); fResult.numerator = numerator * fResult.denominator / denominator + f.numerator * fResult.denominator / f.denominator; fResult.Cancellation(); return fResult; } public Fraction subtract(Fraction f){ Fraction fResult = new Fraction(); fResult.denominator = lcm(denominator, f.denominator); fResult.numerator = numerator * fResult.denominator / denominator - f.numerator * fResult.denominator / f.denominator; fResult.Cancellation(); return fResult; } public Fraction multiply(Fraction f){ Fraction fResult = new Fraction(); fResult.numerator = numerator * f.numerator; fResult.denominator = denominator * f.denominator; fResult.Cancellation(); return fResult; } public Fraction divide(Fraction f){ Fraction fResult = new Fraction(); fResult.numerator = numerator * f.denominator; fResult.denominator = denominator * f.numerator; fResult.Cancellation(); return fResult; } @Override public int compareTo(Fraction f){ long g = gcd(denominator, f.denominator); long res = numerator * (f.denominator / g) - f.numerator * (denominator / g); if (res < 0){ return -1; } if (res > 0){ return 1; } return 0; } public Fraction clone(){ Fraction fResult = new Fraction(numerator, denominator); return fResult; } public Fraction floor(){ Fraction fResult = this.clone(); fResult.numerator = (fResult.numerator / fResult.denominator) * fResult.denominator; return fResult; } public Fraction ceil(){ Fraction fResult = this.clone(); fResult.numerator = (fResult.numerator/fResult.denominator + 1) * fResult.denominator; return fResult; } public Fraction binpow(int n){ if (n==0) return FRACTION_ONE; if ((n&1)==0){ Fraction f=this.binpow(n/2); return f.multiply(f); }else return binpow(n-1).multiply(this); } } static public class FenwickTree_1{ //One-dimensional array int n; long[] t; public FenwickTree_1(int n){ this.n = n; t = new long[n]; } public long sum(int xl, int xr){ return sum(xr) - sum(xl); } public long sum(int x){ long result = 0; for (int i = x; i >= 0; i = (i & (i + 1)) - 1){ result += t[i]; } return result; } public void update(int x, long delta){ for (int i = x; i < n; i = (i | (i + 1))){ t[i] += delta; } } } static public class FenwickTree_2{ //Two-dimensional array int n, m; long[][] t; public FenwickTree_2(int n, int m){ this.n = n; this.m = m; t = new long[n][m]; } public long sum(int xl, int yl, int xr, int yr){ return sum(xr, yr) - sum(xl - 1, yr) - sum(xr, yl - 1) + sum(xl - 1, yl - 1); } public long sum(int x, int y){ long result = 0; for (int i = x; i >= 0; i = (i & (i + 1)) - 1){ for (int j = y; j >= 0; j = (j & (j + 1)) - 1){ result+=t[i][j]; } } return result; } public void update(int x, int y, long delta){ for (int i = x; i < n; i = (i | (i + 1))){ for (int j = y; j < m; j = (j | (j + 1))){ t[i][j] += delta; } } } } static public class FenwickTree_3{ //Three-dimensional array int n, m, l; long[][][] t; public FenwickTree_3(int n, int m, int l){ this.n = n; this.m = m; this.l = l; t = new long[n][m][l]; } public long sum(int xl, int yl, int zl, int xr, int yr, int zr){ return sum(xr, yr, zr) - sum(xl - 1, yr, zr) + sum(xl - 1, yr, zl - 1) - sum(xr, yr, zl - 1) - sum(xr, yl - 1, zr) + sum(xl - 1, yl - 1, zr) - sum(xl - 1, yl - 1, zl - 1) + sum(xr, yl - 1, zl - 1); } public long sum(int x, int y, int z){ long result = 0; for (int i = x; i >= 0; i = (i & (i + 1)) - 1){ for (int j = y; j >= 0; j = (j & (j + 1)) - 1){ for (int k = z; k >= 0; k = (k & (k + 1)) - 1){ result += t[i][j][k]; } } } return result; } public void update(int x, int y, int z, long delta){ for (int i = x; i < n; i = (i | (i + 1))){ for (int j = y; j < n; j = (j | (j + 1))){ for (int k = z; k < n; k = (k | (k + 1))){ t[i][j][k] += delta; } } } } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.awt.Point; import java.io.*; import java.math.BigInteger; import java.util.*; import static java.lang.Math.*; public class ProblemE_16 { final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE")!=null; BufferedReader in; PrintWriter out; StringTokenizer tok = new StringTokenizer(""); void init() throws FileNotFoundException{ if (ONLINE_JUDGE){ in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); }else{ in = new BufferedReader(new FileReader("input.txt")); out = new PrintWriter("output.txt"); } } String readString() throws IOException{ while(!tok.hasMoreTokens()){ tok = new StringTokenizer(in.readLine()); } return tok.nextToken(); } int readInt() throws IOException{ return Integer.parseInt(readString()); } long readLong() throws IOException{ return Long.parseLong(readString()); } double readDouble() throws IOException{ return Double.parseDouble(readString()); } public static void main(String[] args){ new ProblemE_16().run(); } public void run(){ try{ long t1 = System.currentTimeMillis(); init(); solve(); out.close(); long t2 = System.currentTimeMillis(); System.err.println("Time = "+(t2-t1)); }catch (Exception e){ e.printStackTrace(System.err); System.exit(-1); } } void solve() throws IOException{ int n = readInt(); double[][] a = new double[n][n]; for (int i = 0; i < n; i++){ for (int j = 0; j < n; j++){ a[i][j] = readDouble(); } } double[] d = new double[1<<n]; d[(1 << n) - 1] = 1; for (int i = (1 << n) - 1; i > 0; i--){ ArrayList<Integer> list = new ArrayList<Integer>(); for (int j = 0; j < n; j++){ if ((i & (1 << j)) != 0) list.add(j); } double s = 0; for (int j = 0; j < list.size(); j++){ s = 0; for (int k = 0; k < list.size(); k++){ s += a[list.get(k)][list.get(j)]; } d[i ^ (1 << list.get(j))] += s * d[i] * 2 / list.size() / (list.size() - 1); } } for (int i = 0; i < n; i++){ out.printf(Locale.US, "%.9f", d[1 << i]); out.print(" "); } } static int[][] step8 = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}, {-1, -1}, {1, -1}, {-1, 1}, {1, 1}}; static int[][] stepKnight = {{-2, -1}, {-2, 1}, {-1, -2}, {-1, 2}, {1, -2}, {1, 2}, {2, -1}, {2, 1}}; static long gcd(long a, long b){ if (a == 0) return b; return gcd(b % a, a); } static long lcm(long a, long b){ return a / gcd(a, b)*b; } static long[] gcdPlus(long a, long b){ long[] d = new long[3]; if (a == 0){ d[0] = b; d[1] = 0; d[2] = 1; }else{ d = gcdPlus(b % a, a); long r = d[1]; d[1] = d[2] - b/a*d[1]; d[2] = r; } return d; } static long binpow(long a, int n){ if (n == 0) return 1; if ((n & 1) == 0){ long b = binpow(a, n/2); return b*b; }else return binpow(a, n - 1)*a; } static long binpowmod(long a, int n, long m){ if (m == 1) return 0; if (n == 0) return 1; if ((n & 1) == 0){ long b = binpowmod(a, n/2, m); return (b*b) % m; }else return binpowmod(a, n - 1, m)*a % m; } static long phi(long n){ int[] p = Sieve((int)ceil(sqrt(n)) + 2); long phi = 1; for (int i = 0; i < p.length; i++){ long x = 1; while (n % p[i] == 0){ n /= p[i]; x *= p[i]; } phi *= x - x/p[i]; } if (n != 1) phi *= n - 1; return phi; } static long f(long n, int x, int k){ //Кол-во десятичных чисел (включая 0), содержащих в себе цифры от 0 до k-1 if (n == 0) return 1; long b = binpow(10, x - 1); long c = n / b; return (c < k? c: k)*binpow(k, x - 1) + (c < k? 1: 0)*f(n % b, x - 1, k); } static long fib(int n){ if (n == 0) return 0; if ((n & 1) == 0){ long f1 = fib(n/2 - 1); long f2 = fib(n/2 + 1); return f2*f2 - f1*f1; }else{ long f1 = fib(n/2); long f2 = fib(n/2 + 1); return f1*f1 + f2*f2; } } static BigInteger BigFib(int n){ if (n == 0) return BigInteger.ZERO; if ((n & 1) == 0){ BigInteger f1 = BigFib(n/2 - 1); f1 = f1.multiply(f1); BigInteger f2 = BigFib(n/2 + 1); f2 = f2.multiply(f2); return f2.subtract(f1); }else{ BigInteger f1 = BigFib(n/2); f1 = f1.multiply(f1); BigInteger f2 = BigFib(n/2 + 1); f2 = f2.multiply(f2); return f2.add(f1); } } static public class PointD{ double x, y; public PointD(double x, double y){ this.x = x; this.y = y; } } static double d(Point p1, Point p2){ return sqrt(d2(p1, p2)); } static public double d(PointD p1, PointD p2){ return sqrt(d2(p1, p2)); } static double d2(Point p1, Point p2){ return (p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y); } static public double d2(PointD p1, PointD p2){ return (p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y); } static boolean IsProbablyPrime(long n){ if (n == 1) return false; if ((n & 1) == 0) return false; for (int j = 3; j < sqrt(n) + 1; j += 2){ if (n % j == 0) return false; } return true; } static int[] Sieve(int n){ boolean[] b = new boolean[n+1]; Arrays.fill(b, true); b[0] = false; b[1] = false; long nLong = n; int j=0; for (int i = 1; i <= n; i++) { if (b[i]){ j++; if (((long)i)*i <= nLong) { for (int k = i*i; k <= n; k += i) { b[k] = false; } } } } int[] p = new int[j]; Arrays.fill(p, 0); j=0; for (int i = 2; i <= n; i++) { if (b[i]){ p[j]=i; j++; } } return p; } static int[][] Palindromes(String s){ char[] c = s.toCharArray(); int n = c.length; int[][] d = new int[2][n]; int l = 0, r = -1; for (int i = 0; i < n; i++){ int j = (i > r? 0: min(d[0][l+r-i+1], r-i+1)) + 1; for (; i - j >= 0 && i + j - 1< n && c[i-j] == c[i+j-1]; j++); d[0][i] = --j; if (i + d[0][i] - 1 > r){ r = i + d[0][i] - 1; l = i - d[0][i]; } } l = 0; r = -1; for (int i = 0; i < n; i++){ int j = (i > r? 0: min(d[1][l+r-i], r-i)) + 1; for (; i - j >= 0 && i + j < n && c[i-j] == c[i+j]; j++); d[1][i] = --j; if (i + d[1][i] > r){ r = i + d[1][i]; l = i - d[1][i]; } } return d; } static public class Permutation { int[] a; int n; public Permutation(int n){ this.n=n; a=new int[n]; for (int i=0; i<n; i++){ a[i]=i; } } public boolean nextPermutation(){ //Пишется с do{}while(nextPermutation(a)); int i=n-1; for (i=n-2; i>=0; i--){ if (a[i]<a[i+1]){ break; } } if (i==-1){ return false; } int jMin=i+1; for (int j=n-1; j>i; j--){ if (a[i]<a[j]&&a[j]<a[jMin]){ jMin=j; } } swap(i, jMin); for (int j=1; j<=(n-i)/2; j++){ swap(i+j, n-j); } return true; } public int get(int i){ return a[i]; } void swap(int i, int j){ int r=a[i]; a[i]=a[j]; a[j]=r; } } static public class Fraction implements Comparable<Fraction>, Cloneable{ public final Fraction FRACTION_ZERO = new Fraction(); public final Fraction FRACTION_ONE = new Fraction(1); public long numerator = 0; public long denominator = 1; public Fraction(){ numerator = 0; denominator = 1; } public Fraction(long numerator){ this.numerator = numerator; denominator = 1; } public Fraction(long numerator, long denominator){ this.numerator = numerator; this.denominator = denominator; Cancellation(); } public Fraction(double numerator, double denominator, int accuracy){ this.numerator = (long)(numerator*pow(10,accuracy)); this.denominator = (long)(denominator*pow(10,accuracy)); Cancellation(); } public Fraction(String s){ if (s.charAt(0) == '-'){ denominator = -1; s = s.substring(1); } if (s.indexOf("/") != -1){ denominator *= Integer.parseInt(s.substring(s.indexOf("/") + 1)); } if (s.indexOf(" ") != -1){ numerator = Integer.parseInt(s.substring(0, s.indexOf(" "))) * abs(denominator) + Integer.parseInt(s.substring(s.indexOf(" ") + 1, s.indexOf("/"))); }else{ if (s.indexOf("/") != -1){ numerator = Integer.parseInt(s.substring(0, s.indexOf("/"))); }else{ numerator = Integer.parseInt(s)*abs(denominator); } } this.Cancellation(); } void Cancellation(){ long g = gcd(abs(numerator), abs(denominator)); numerator /= g; denominator /= g; if (denominator < 0){ numerator *= -1; denominator *= -1; } } public String toString(){ String s = ""; if (numerator == 0){ return "0"; } if (numerator < 0){ s += "-"; } if (abs(numerator) >= denominator){ s += Long.toString(abs(numerator) / denominator) + " "; } if (abs(numerator) % denominator != 0){ s += Long.toString(abs(numerator) % denominator); }else{ s = s.substring(0, s.length()-1); } if (denominator != 1){ s += "/" + Long.toString(denominator); } return s; } public Fraction add(Fraction f){ Fraction fResult = new Fraction(); fResult.denominator = lcm(denominator, f.denominator); fResult.numerator = numerator * fResult.denominator / denominator + f.numerator * fResult.denominator / f.denominator; fResult.Cancellation(); return fResult; } public Fraction subtract(Fraction f){ Fraction fResult = new Fraction(); fResult.denominator = lcm(denominator, f.denominator); fResult.numerator = numerator * fResult.denominator / denominator - f.numerator * fResult.denominator / f.denominator; fResult.Cancellation(); return fResult; } public Fraction multiply(Fraction f){ Fraction fResult = new Fraction(); fResult.numerator = numerator * f.numerator; fResult.denominator = denominator * f.denominator; fResult.Cancellation(); return fResult; } public Fraction divide(Fraction f){ Fraction fResult = new Fraction(); fResult.numerator = numerator * f.denominator; fResult.denominator = denominator * f.numerator; fResult.Cancellation(); return fResult; } @Override public int compareTo(Fraction f){ long g = gcd(denominator, f.denominator); long res = numerator * (f.denominator / g) - f.numerator * (denominator / g); if (res < 0){ return -1; } if (res > 0){ return 1; } return 0; } public Fraction clone(){ Fraction fResult = new Fraction(numerator, denominator); return fResult; } public Fraction floor(){ Fraction fResult = this.clone(); fResult.numerator = (fResult.numerator / fResult.denominator) * fResult.denominator; return fResult; } public Fraction ceil(){ Fraction fResult = this.clone(); fResult.numerator = (fResult.numerator/fResult.denominator + 1) * fResult.denominator; return fResult; } public Fraction binpow(int n){ if (n==0) return FRACTION_ONE; if ((n&1)==0){ Fraction f=this.binpow(n/2); return f.multiply(f); }else return binpow(n-1).multiply(this); } } static public class FenwickTree_1{ //One-dimensional array int n; long[] t; public FenwickTree_1(int n){ this.n = n; t = new long[n]; } public long sum(int xl, int xr){ return sum(xr) - sum(xl); } public long sum(int x){ long result = 0; for (int i = x; i >= 0; i = (i & (i + 1)) - 1){ result += t[i]; } return result; } public void update(int x, long delta){ for (int i = x; i < n; i = (i | (i + 1))){ t[i] += delta; } } } static public class FenwickTree_2{ //Two-dimensional array int n, m; long[][] t; public FenwickTree_2(int n, int m){ this.n = n; this.m = m; t = new long[n][m]; } public long sum(int xl, int yl, int xr, int yr){ return sum(xr, yr) - sum(xl - 1, yr) - sum(xr, yl - 1) + sum(xl - 1, yl - 1); } public long sum(int x, int y){ long result = 0; for (int i = x; i >= 0; i = (i & (i + 1)) - 1){ for (int j = y; j >= 0; j = (j & (j + 1)) - 1){ result+=t[i][j]; } } return result; } public void update(int x, int y, long delta){ for (int i = x; i < n; i = (i | (i + 1))){ for (int j = y; j < m; j = (j | (j + 1))){ t[i][j] += delta; } } } } static public class FenwickTree_3{ //Three-dimensional array int n, m, l; long[][][] t; public FenwickTree_3(int n, int m, int l){ this.n = n; this.m = m; this.l = l; t = new long[n][m][l]; } public long sum(int xl, int yl, int zl, int xr, int yr, int zr){ return sum(xr, yr, zr) - sum(xl - 1, yr, zr) + sum(xl - 1, yr, zl - 1) - sum(xr, yr, zl - 1) - sum(xr, yl - 1, zr) + sum(xl - 1, yl - 1, zr) - sum(xl - 1, yl - 1, zl - 1) + sum(xr, yl - 1, zl - 1); } public long sum(int x, int y, int z){ long result = 0; for (int i = x; i >= 0; i = (i & (i + 1)) - 1){ for (int j = y; j >= 0; j = (j & (j + 1)) - 1){ for (int k = z; k >= 0; k = (k & (k + 1)) - 1){ result += t[i][j][k]; } } } return result; } public void update(int x, int y, int z, long delta){ for (int i = x; i < n; i = (i | (i + 1))){ for (int j = y; j < n; j = (j | (j + 1))){ for (int k = z; k < n; k = (k | (k + 1))){ t[i][j][k] += delta; } } } } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
4,983
4,171
2,904
import java.io.*; import java.util.*; public class a { public static void main(String[] args) { Scanner sc=new Scanner(System.in); int N=sc.nextInt(); solve(N); } static void solve(int a) { if((a-8)%3==0) { System.out.println(8+" "+(a-8)); return ; } if((a-4)%3==0) { System.out.println(4+" "+(a-4)); return ; } if((a-6)%3==0) { System.out.println(6+" "+(a-6)); return ; } } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class a { public static void main(String[] args) { Scanner sc=new Scanner(System.in); int N=sc.nextInt(); solve(N); } static void solve(int a) { if((a-8)%3==0) { System.out.println(8+" "+(a-8)); return ; } if((a-4)%3==0) { System.out.println(4+" "+(a-4)); return ; } if((a-6)%3==0) { System.out.println(6+" "+(a-6)); return ; } } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class a { public static void main(String[] args) { Scanner sc=new Scanner(System.in); int N=sc.nextInt(); solve(N); } static void solve(int a) { if((a-8)%3==0) { System.out.println(8+" "+(a-8)); return ; } if((a-4)%3==0) { System.out.println(4+" "+(a-4)); return ; } if((a-6)%3==0) { System.out.println(6+" "+(a-6)); return ; } } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
492
2,898
2,831
import java.util.Scanner; public class BB { public static void main(String[] args) { Scanner sc=new Scanner(System.in); long a=sc.nextLong(); long b=sc.nextLong(); if(b-a>(long)2){ if(a%(long)2==0){ System.out.print(a+" "+(a+1)+" "+(a+2)); return; }else{ System.out.print(a+1+" "+(a+2)+" "+(a+3)); return; } }else{ if(b-a<=(long)1){ System.out.println(-1); return; } if(b-a==(long)2){ if(a%(long)2==0){ System.out.print(a+" "+(a+1)+" "+(a+2)); return; }else{ System.out.print(-1); return; } } } } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Scanner; public class BB { public static void main(String[] args) { Scanner sc=new Scanner(System.in); long a=sc.nextLong(); long b=sc.nextLong(); if(b-a>(long)2){ if(a%(long)2==0){ System.out.print(a+" "+(a+1)+" "+(a+2)); return; }else{ System.out.print(a+1+" "+(a+2)+" "+(a+3)); return; } }else{ if(b-a<=(long)1){ System.out.println(-1); return; } if(b-a==(long)2){ if(a%(long)2==0){ System.out.print(a+" "+(a+1)+" "+(a+2)); return; }else{ System.out.print(-1); return; } } } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; public class BB { public static void main(String[] args) { Scanner sc=new Scanner(System.in); long a=sc.nextLong(); long b=sc.nextLong(); if(b-a>(long)2){ if(a%(long)2==0){ System.out.print(a+" "+(a+1)+" "+(a+2)); return; }else{ System.out.print(a+1+" "+(a+2)+" "+(a+3)); return; } }else{ if(b-a<=(long)1){ System.out.println(-1); return; } if(b-a==(long)2){ if(a%(long)2==0){ System.out.print(a+" "+(a+1)+" "+(a+2)); return; }else{ System.out.print(-1); return; } } } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
531
2,825
4,219
import java.io.*; import java.util.Arrays; import java.util.StringTokenizer; public class mainE { public static PrintWriter out = new PrintWriter(System.out); public static FastScanner enter = new FastScanner(System.in); public static void main(String[] args) throws IOException { int t=enter.nextInt(); for (int i = 0; i < t; i++) { solve(); } out.close(); } public static int[][] arr=new int[13][2010]; public static pair[] par= new pair[2010]; private static void solve() throws IOException{ int n=enter.nextInt(); int m=enter.nextInt(); for (int i = 0; i <n ; i++) { for (int j = 0; j <m ; j++) { arr[i][j]=enter.nextInt(); } } for (int i = 0; i <n ; i++) { for (int j = m; j <m+3 ; j++) { arr[i][j]=0; } } m=m+3; for (int i = 0; i <m ; i++) { int max=-1; for (int j = 0; j <n ; j++) { max=Math.max(arr[j][i], max); } par[i]=new pair(max,i); } Arrays.sort(par,0,m, pair::compareTo); int i0=par[0].st; int i1=par[1].st; int i2=par[2].st; int i3=par[3].st; int ans=-1; for (int i = 0; i <n ; i++) { for (int j = 0; j <n ; j++) { for (int k = 0; k <n ; k++) { for (int l = 0; l <n ; l++) { int first=Math.max(Math.max(arr[i][i0],arr[j][i1]), Math.max(arr[k][i2],arr[l][i3])); int second=Math.max(Math.max(arr[(i+1)%n][i0],arr[(j+1)%n][i1]), Math.max(arr[(k+1)%n][i2],arr[(l+1)%n][i3])); int third=Math.max(Math.max(arr[(i+2)%n][i0],arr[(j+2)%n][i1]), Math.max(arr[(k+2)%n][i2],arr[(l+2)%n][i3])); int fourth=Math.max(Math.max(arr[(i+3)%n][i0],arr[(j+3)%n][i1]), Math.max(arr[(k+3)%n][i2],arr[(l+3)%n][i3])); if(n==1) { second=0; third=0; fourth=0; } else if(n==2){ third=0; fourth=0; } else if(n==3){ fourth=0; } ans=Math.max(ans, first+second+fourth+third); } } } } System.out.println(ans); } static class pair implements Comparable<pair>{ int max,st; public pair(int max, int st) { this.max = max; this.st = st; } @Override public int compareTo(pair o) { return -Integer.compare(max, o.max); } } static class FastScanner { BufferedReader br; StringTokenizer stok; FastScanner(InputStream is) { br = new BufferedReader(new InputStreamReader(is)); } String next() throws IOException { while (stok == null || !stok.hasMoreTokens()) { String s = br.readLine(); if (s == null) { return null; } stok = new StringTokenizer(s); } return stok.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(next()); } long nextLong() throws IOException { return Long.parseLong(next()); } double nextDouble() throws IOException { return Double.parseDouble(next()); } char nextChar() throws IOException { return (char) (br.read()); } String nextLine() throws IOException { return br.readLine(); } } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.Arrays; import java.util.StringTokenizer; public class mainE { public static PrintWriter out = new PrintWriter(System.out); public static FastScanner enter = new FastScanner(System.in); public static void main(String[] args) throws IOException { int t=enter.nextInt(); for (int i = 0; i < t; i++) { solve(); } out.close(); } public static int[][] arr=new int[13][2010]; public static pair[] par= new pair[2010]; private static void solve() throws IOException{ int n=enter.nextInt(); int m=enter.nextInt(); for (int i = 0; i <n ; i++) { for (int j = 0; j <m ; j++) { arr[i][j]=enter.nextInt(); } } for (int i = 0; i <n ; i++) { for (int j = m; j <m+3 ; j++) { arr[i][j]=0; } } m=m+3; for (int i = 0; i <m ; i++) { int max=-1; for (int j = 0; j <n ; j++) { max=Math.max(arr[j][i], max); } par[i]=new pair(max,i); } Arrays.sort(par,0,m, pair::compareTo); int i0=par[0].st; int i1=par[1].st; int i2=par[2].st; int i3=par[3].st; int ans=-1; for (int i = 0; i <n ; i++) { for (int j = 0; j <n ; j++) { for (int k = 0; k <n ; k++) { for (int l = 0; l <n ; l++) { int first=Math.max(Math.max(arr[i][i0],arr[j][i1]), Math.max(arr[k][i2],arr[l][i3])); int second=Math.max(Math.max(arr[(i+1)%n][i0],arr[(j+1)%n][i1]), Math.max(arr[(k+1)%n][i2],arr[(l+1)%n][i3])); int third=Math.max(Math.max(arr[(i+2)%n][i0],arr[(j+2)%n][i1]), Math.max(arr[(k+2)%n][i2],arr[(l+2)%n][i3])); int fourth=Math.max(Math.max(arr[(i+3)%n][i0],arr[(j+3)%n][i1]), Math.max(arr[(k+3)%n][i2],arr[(l+3)%n][i3])); if(n==1) { second=0; third=0; fourth=0; } else if(n==2){ third=0; fourth=0; } else if(n==3){ fourth=0; } ans=Math.max(ans, first+second+fourth+third); } } } } System.out.println(ans); } static class pair implements Comparable<pair>{ int max,st; public pair(int max, int st) { this.max = max; this.st = st; } @Override public int compareTo(pair o) { return -Integer.compare(max, o.max); } } static class FastScanner { BufferedReader br; StringTokenizer stok; FastScanner(InputStream is) { br = new BufferedReader(new InputStreamReader(is)); } String next() throws IOException { while (stok == null || !stok.hasMoreTokens()) { String s = br.readLine(); if (s == null) { return null; } stok = new StringTokenizer(s); } return stok.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(next()); } long nextLong() throws IOException { return Long.parseLong(next()); } double nextDouble() throws IOException { return Double.parseDouble(next()); } char nextChar() throws IOException { return (char) (br.read()); } String nextLine() throws IOException { return br.readLine(); } } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.Arrays; import java.util.StringTokenizer; public class mainE { public static PrintWriter out = new PrintWriter(System.out); public static FastScanner enter = new FastScanner(System.in); public static void main(String[] args) throws IOException { int t=enter.nextInt(); for (int i = 0; i < t; i++) { solve(); } out.close(); } public static int[][] arr=new int[13][2010]; public static pair[] par= new pair[2010]; private static void solve() throws IOException{ int n=enter.nextInt(); int m=enter.nextInt(); for (int i = 0; i <n ; i++) { for (int j = 0; j <m ; j++) { arr[i][j]=enter.nextInt(); } } for (int i = 0; i <n ; i++) { for (int j = m; j <m+3 ; j++) { arr[i][j]=0; } } m=m+3; for (int i = 0; i <m ; i++) { int max=-1; for (int j = 0; j <n ; j++) { max=Math.max(arr[j][i], max); } par[i]=new pair(max,i); } Arrays.sort(par,0,m, pair::compareTo); int i0=par[0].st; int i1=par[1].st; int i2=par[2].st; int i3=par[3].st; int ans=-1; for (int i = 0; i <n ; i++) { for (int j = 0; j <n ; j++) { for (int k = 0; k <n ; k++) { for (int l = 0; l <n ; l++) { int first=Math.max(Math.max(arr[i][i0],arr[j][i1]), Math.max(arr[k][i2],arr[l][i3])); int second=Math.max(Math.max(arr[(i+1)%n][i0],arr[(j+1)%n][i1]), Math.max(arr[(k+1)%n][i2],arr[(l+1)%n][i3])); int third=Math.max(Math.max(arr[(i+2)%n][i0],arr[(j+2)%n][i1]), Math.max(arr[(k+2)%n][i2],arr[(l+2)%n][i3])); int fourth=Math.max(Math.max(arr[(i+3)%n][i0],arr[(j+3)%n][i1]), Math.max(arr[(k+3)%n][i2],arr[(l+3)%n][i3])); if(n==1) { second=0; third=0; fourth=0; } else if(n==2){ third=0; fourth=0; } else if(n==3){ fourth=0; } ans=Math.max(ans, first+second+fourth+third); } } } } System.out.println(ans); } static class pair implements Comparable<pair>{ int max,st; public pair(int max, int st) { this.max = max; this.st = st; } @Override public int compareTo(pair o) { return -Integer.compare(max, o.max); } } static class FastScanner { BufferedReader br; StringTokenizer stok; FastScanner(InputStream is) { br = new BufferedReader(new InputStreamReader(is)); } String next() throws IOException { while (stok == null || !stok.hasMoreTokens()) { String s = br.readLine(); if (s == null) { return null; } stok = new StringTokenizer(s); } return stok.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(next()); } long nextLong() throws IOException { return Long.parseLong(next()); } double nextDouble() throws IOException { return Double.parseDouble(next()); } char nextChar() throws IOException { return (char) (br.read()); } String nextLine() throws IOException { return br.readLine(); } } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,283
4,208
3,518
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; public class Practice { public static long mod = (long) Math.pow(10, 9) + 7; public static long[][] dp; public static void main(String[] args) throws Exception { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); PrintWriter pw = new PrintWriter(System.out); String[] s2 = br.readLine().split(" "); int n = (int) Long.parseLong(s2[0]); long m = Long.parseLong(s2[1]); dp = new long[n + 2][n + 2]; long[] power = new long[n + 1]; mod = m; long[][] choose = new long[n + 2][n + 2]; getPow(power, n + 1); getChoose(choose, n + 2, n + 2); dp[0][0] = 1; for (int i = 0; i < n; i++) { for (int j = 0; j <= i; j++) { for (int k = 1; k + i <= n; k++) { // System.out.println((j + k) + " " + k + " - " + choose[j + k][k]); dp[i + k + 1][j + k] = (dp[i + k + 1][j + k] + (((dp[i][j] * power[k - 1]) % mod) * choose[j + k][k]) % mod) % mod; } } } long ans = 0; for (int i = 0; i <= n; i++) { ans = (ans + dp[n + 1][i]) % mod; } pw.println(ans); pw.close(); } private static void getChoose(long[][] choose, int up, int dow) { // TODO Auto-generated method stub for (int i = 1; i < up; i++) { for (int j = 1; j <= i; j++) { if (j == 1 && i == 1) { choose[i][j] = 1; } else if (j == 1) { choose[i][j] = i; } else { choose[i][j] = (choose[i - 1][j] + choose[i - 1][j - 1]) % mod; } } } } private static void getPow(long[] power, int l) { // TODO Auto-generated method stub for (int i = 0; i < l; i++) { if (i == 0) { power[i] = 1; } else { power[i] = (power[i-1] * 2) % mod; } } } } //private static long getGCD(long l, long m) { //// TODO Auto-generated method stub // //long t1 = Math.min(l, m); //long t2 = Math.max(l, m); //while (true) { // long temp = t2 % t1; // if (temp == 0) { // return t1; // } // t2 = t1; // t1 = temp; //} //}
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; public class Practice { public static long mod = (long) Math.pow(10, 9) + 7; public static long[][] dp; public static void main(String[] args) throws Exception { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); PrintWriter pw = new PrintWriter(System.out); String[] s2 = br.readLine().split(" "); int n = (int) Long.parseLong(s2[0]); long m = Long.parseLong(s2[1]); dp = new long[n + 2][n + 2]; long[] power = new long[n + 1]; mod = m; long[][] choose = new long[n + 2][n + 2]; getPow(power, n + 1); getChoose(choose, n + 2, n + 2); dp[0][0] = 1; for (int i = 0; i < n; i++) { for (int j = 0; j <= i; j++) { for (int k = 1; k + i <= n; k++) { // System.out.println((j + k) + " " + k + " - " + choose[j + k][k]); dp[i + k + 1][j + k] = (dp[i + k + 1][j + k] + (((dp[i][j] * power[k - 1]) % mod) * choose[j + k][k]) % mod) % mod; } } } long ans = 0; for (int i = 0; i <= n; i++) { ans = (ans + dp[n + 1][i]) % mod; } pw.println(ans); pw.close(); } private static void getChoose(long[][] choose, int up, int dow) { // TODO Auto-generated method stub for (int i = 1; i < up; i++) { for (int j = 1; j <= i; j++) { if (j == 1 && i == 1) { choose[i][j] = 1; } else if (j == 1) { choose[i][j] = i; } else { choose[i][j] = (choose[i - 1][j] + choose[i - 1][j - 1]) % mod; } } } } private static void getPow(long[] power, int l) { // TODO Auto-generated method stub for (int i = 0; i < l; i++) { if (i == 0) { power[i] = 1; } else { power[i] = (power[i-1] * 2) % mod; } } } } //private static long getGCD(long l, long m) { //// TODO Auto-generated method stub // //long t1 = Math.min(l, m); //long t2 = Math.max(l, m); //while (true) { // long temp = t2 % t1; // if (temp == 0) { // return t1; // } // t2 = t1; // t1 = temp; //} //} </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; public class Practice { public static long mod = (long) Math.pow(10, 9) + 7; public static long[][] dp; public static void main(String[] args) throws Exception { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); PrintWriter pw = new PrintWriter(System.out); String[] s2 = br.readLine().split(" "); int n = (int) Long.parseLong(s2[0]); long m = Long.parseLong(s2[1]); dp = new long[n + 2][n + 2]; long[] power = new long[n + 1]; mod = m; long[][] choose = new long[n + 2][n + 2]; getPow(power, n + 1); getChoose(choose, n + 2, n + 2); dp[0][0] = 1; for (int i = 0; i < n; i++) { for (int j = 0; j <= i; j++) { for (int k = 1; k + i <= n; k++) { // System.out.println((j + k) + " " + k + " - " + choose[j + k][k]); dp[i + k + 1][j + k] = (dp[i + k + 1][j + k] + (((dp[i][j] * power[k - 1]) % mod) * choose[j + k][k]) % mod) % mod; } } } long ans = 0; for (int i = 0; i <= n; i++) { ans = (ans + dp[n + 1][i]) % mod; } pw.println(ans); pw.close(); } private static void getChoose(long[][] choose, int up, int dow) { // TODO Auto-generated method stub for (int i = 1; i < up; i++) { for (int j = 1; j <= i; j++) { if (j == 1 && i == 1) { choose[i][j] = 1; } else if (j == 1) { choose[i][j] = i; } else { choose[i][j] = (choose[i - 1][j] + choose[i - 1][j - 1]) % mod; } } } } private static void getPow(long[] power, int l) { // TODO Auto-generated method stub for (int i = 0; i < l; i++) { if (i == 0) { power[i] = 1; } else { power[i] = (power[i-1] * 2) % mod; } } } } //private static long getGCD(long l, long m) { //// TODO Auto-generated method stub // //long t1 = Math.min(l, m); //long t2 = Math.max(l, m); //while (true) { // long temp = t2 % t1; // if (temp == 0) { // return t1; // } // t2 = t1; // t1 = temp; //} //} </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,080
3,512
3,828
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.PriorityQueue; public class D_Rnd718_Explorer { static int row, col; static int INF = 1_000_000_000; static int[] dx = {0, 0, 1, -1}; static int[] dy = {1, -1, 0, 0}; public static void main(String[] args) throws NumberFormatException, IOException { BufferedReader scan = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(System.out); String[] in = scan.readLine().split(" "); row = parse(in[0]); col = parse(in[1]); int k = parse(in[2]); int[][] xMove = new int[row][col-1]; for(int i = 0; i < row; i++) { in = scan.readLine().split(" "); for(int j = 0; j < col - 1; j++) xMove[i][j] = parse(in[j]); } int[][] yMove = new int[row - 1][col]; for(int i = 0; i < row - 1; i++) { in = scan.readLine().split(" "); for(int j = 0; j < col; j++) yMove[i][j] = parse(in[j]); } int[][] output = new int[row][col]; if(k % 2 != 0) fill(-1, output); else { Point[][] grid = new Point[row][col]; for(int i = 0; i < row; i++) for(int j = 0; j < col; j++) grid[i][j] = new Point(i, j); parseMoves(grid, xMove, yMove); solve(grid, k, output); } print(output, out); out.flush(); } private static void solve(Point[][] grid, int k, int[][] output) { // try bfs (hoping it passes the time constraint) /*int target = k / 2; for(int i = 0; i < row; i++) for(int j = 0; j < col; j++) output[i][j] = bfs(j, i, target, grid) << 1;*/ int target = k / 2; int[][][] dist = new int[row][col][k/2]; fill(dist, grid); for(int steps = 1; steps < target; steps++ ) { for(int i = 0; i < row; i++) { for(int j = 0; j < col;j ++) { dist[i][j][steps] = getDist(i, j, steps, dist, grid); } } } for(int i = 0; i < row; i++) for(int j = 0; j < col;j ++) output[i][j] = (dist[i][j][target - 1] << 1); } private static int getDist(int y, int x, int steps, int[][][] dist, Point[][] grid) { for(int d = 0; d < 4; d++) { int i = y + dy[d]; int j = x + dx[d]; if(valid(i, j)) { dist[y][x][steps] = Math.min(dist[y][x][steps], dist[i][j][steps - 1] + grid[y][x].weight[d]); } } return dist[y][x][steps]; } private static void fill(int[][][] dist, Point[][] grid) { for(int i = 0; i < row; i++) for(int j = 0; j < col;j ++) for(int s = 0; s < dist[0][0].length; s++) dist[i][j][s] = INF; for(int i = 0; i < row; i++) for(int j = 0; j < col; j++) for(int d = 0; d < 4; d++) dist[i][j][0] = Math.min(dist[i][j][0], grid[i][j].weight[d]); } private static boolean valid(int y, int x) { return y >= 0 && x >= 0 && y < row && x < col; } /*private static int bfs(int xStart, int yStart, int target, Point[][] grid) { PriorityQueue<Step> q = new PriorityQueue<Step>(); q.add(new Step(grid[yStart][xStart], 0, 0)); Step s; int w; while(!q.isEmpty()) { s = q.poll(); if(s.numSteps == target) return s.length; // try to go in each of the four directions for(int d = 0; d < 4; d++) { w = s.current.weight[d]; if(w != -1) q.add(new Step(grid[s.current.y + s.current.dy[d]][s.current.x + s.current.dx[d]], s.length + w, s.numSteps + 1)); } } return -1; }*/ private static void parseMoves(Point[][] grid, int[][] xMove, int[][] yMove) { for(int i = 0; i < xMove.length; i++) { for(int j = 0; j < xMove[i].length; j++) { grid[i][j].weight[2] = xMove[i][j]; // right grid[i][j + 1].weight[3] = xMove[i][j]; // left } } for(int i = 0; i < yMove.length; i++) { for(int j = 0; j < yMove[i].length; j++) { grid[i][j].weight[0] = yMove[i][j]; // down grid[i + 1][j].weight[1] = yMove[i][j]; // up } } } private static void fill(int val, int[][] output) { for(int i = 0; i < output.length; i++) Arrays.fill(output[i], val); } private static void print(int[][] ray, PrintWriter out) { for(int i = 0; i < ray.length; i++) { out.print(ray[i][0]); for(int j = 1; j < ray[i].length; j++) out.print(" " + ray[i][j]); out.println(); } } public static int parse(String num) { return Integer.parseInt(num); } static class Point { int[] weight = new int[4]; // down, up, right, left int x, y; public Point(int i, int j) { y = i; x = j; Arrays.fill(weight, INF); } } static class Step implements Comparable<Step> { int length, numSteps; Point current; public Step(Point p, int weight, int s) { current = p; length = weight; numSteps = s; } @Override public int compareTo(Step s) { if(length == s.length) return numSteps - s.numSteps; return length - s.length; } } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.PriorityQueue; public class D_Rnd718_Explorer { static int row, col; static int INF = 1_000_000_000; static int[] dx = {0, 0, 1, -1}; static int[] dy = {1, -1, 0, 0}; public static void main(String[] args) throws NumberFormatException, IOException { BufferedReader scan = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(System.out); String[] in = scan.readLine().split(" "); row = parse(in[0]); col = parse(in[1]); int k = parse(in[2]); int[][] xMove = new int[row][col-1]; for(int i = 0; i < row; i++) { in = scan.readLine().split(" "); for(int j = 0; j < col - 1; j++) xMove[i][j] = parse(in[j]); } int[][] yMove = new int[row - 1][col]; for(int i = 0; i < row - 1; i++) { in = scan.readLine().split(" "); for(int j = 0; j < col; j++) yMove[i][j] = parse(in[j]); } int[][] output = new int[row][col]; if(k % 2 != 0) fill(-1, output); else { Point[][] grid = new Point[row][col]; for(int i = 0; i < row; i++) for(int j = 0; j < col; j++) grid[i][j] = new Point(i, j); parseMoves(grid, xMove, yMove); solve(grid, k, output); } print(output, out); out.flush(); } private static void solve(Point[][] grid, int k, int[][] output) { // try bfs (hoping it passes the time constraint) /*int target = k / 2; for(int i = 0; i < row; i++) for(int j = 0; j < col; j++) output[i][j] = bfs(j, i, target, grid) << 1;*/ int target = k / 2; int[][][] dist = new int[row][col][k/2]; fill(dist, grid); for(int steps = 1; steps < target; steps++ ) { for(int i = 0; i < row; i++) { for(int j = 0; j < col;j ++) { dist[i][j][steps] = getDist(i, j, steps, dist, grid); } } } for(int i = 0; i < row; i++) for(int j = 0; j < col;j ++) output[i][j] = (dist[i][j][target - 1] << 1); } private static int getDist(int y, int x, int steps, int[][][] dist, Point[][] grid) { for(int d = 0; d < 4; d++) { int i = y + dy[d]; int j = x + dx[d]; if(valid(i, j)) { dist[y][x][steps] = Math.min(dist[y][x][steps], dist[i][j][steps - 1] + grid[y][x].weight[d]); } } return dist[y][x][steps]; } private static void fill(int[][][] dist, Point[][] grid) { for(int i = 0; i < row; i++) for(int j = 0; j < col;j ++) for(int s = 0; s < dist[0][0].length; s++) dist[i][j][s] = INF; for(int i = 0; i < row; i++) for(int j = 0; j < col; j++) for(int d = 0; d < 4; d++) dist[i][j][0] = Math.min(dist[i][j][0], grid[i][j].weight[d]); } private static boolean valid(int y, int x) { return y >= 0 && x >= 0 && y < row && x < col; } /*private static int bfs(int xStart, int yStart, int target, Point[][] grid) { PriorityQueue<Step> q = new PriorityQueue<Step>(); q.add(new Step(grid[yStart][xStart], 0, 0)); Step s; int w; while(!q.isEmpty()) { s = q.poll(); if(s.numSteps == target) return s.length; // try to go in each of the four directions for(int d = 0; d < 4; d++) { w = s.current.weight[d]; if(w != -1) q.add(new Step(grid[s.current.y + s.current.dy[d]][s.current.x + s.current.dx[d]], s.length + w, s.numSteps + 1)); } } return -1; }*/ private static void parseMoves(Point[][] grid, int[][] xMove, int[][] yMove) { for(int i = 0; i < xMove.length; i++) { for(int j = 0; j < xMove[i].length; j++) { grid[i][j].weight[2] = xMove[i][j]; // right grid[i][j + 1].weight[3] = xMove[i][j]; // left } } for(int i = 0; i < yMove.length; i++) { for(int j = 0; j < yMove[i].length; j++) { grid[i][j].weight[0] = yMove[i][j]; // down grid[i + 1][j].weight[1] = yMove[i][j]; // up } } } private static void fill(int val, int[][] output) { for(int i = 0; i < output.length; i++) Arrays.fill(output[i], val); } private static void print(int[][] ray, PrintWriter out) { for(int i = 0; i < ray.length; i++) { out.print(ray[i][0]); for(int j = 1; j < ray[i].length; j++) out.print(" " + ray[i][j]); out.println(); } } public static int parse(String num) { return Integer.parseInt(num); } static class Point { int[] weight = new int[4]; // down, up, right, left int x, y; public Point(int i, int j) { y = i; x = j; Arrays.fill(weight, INF); } } static class Step implements Comparable<Step> { int length, numSteps; Point current; public Step(Point p, int weight, int s) { current = p; length = weight; numSteps = s; } @Override public int compareTo(Step s) { if(length == s.length) return numSteps - s.numSteps; return length - s.length; } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.PriorityQueue; public class D_Rnd718_Explorer { static int row, col; static int INF = 1_000_000_000; static int[] dx = {0, 0, 1, -1}; static int[] dy = {1, -1, 0, 0}; public static void main(String[] args) throws NumberFormatException, IOException { BufferedReader scan = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(System.out); String[] in = scan.readLine().split(" "); row = parse(in[0]); col = parse(in[1]); int k = parse(in[2]); int[][] xMove = new int[row][col-1]; for(int i = 0; i < row; i++) { in = scan.readLine().split(" "); for(int j = 0; j < col - 1; j++) xMove[i][j] = parse(in[j]); } int[][] yMove = new int[row - 1][col]; for(int i = 0; i < row - 1; i++) { in = scan.readLine().split(" "); for(int j = 0; j < col; j++) yMove[i][j] = parse(in[j]); } int[][] output = new int[row][col]; if(k % 2 != 0) fill(-1, output); else { Point[][] grid = new Point[row][col]; for(int i = 0; i < row; i++) for(int j = 0; j < col; j++) grid[i][j] = new Point(i, j); parseMoves(grid, xMove, yMove); solve(grid, k, output); } print(output, out); out.flush(); } private static void solve(Point[][] grid, int k, int[][] output) { // try bfs (hoping it passes the time constraint) /*int target = k / 2; for(int i = 0; i < row; i++) for(int j = 0; j < col; j++) output[i][j] = bfs(j, i, target, grid) << 1;*/ int target = k / 2; int[][][] dist = new int[row][col][k/2]; fill(dist, grid); for(int steps = 1; steps < target; steps++ ) { for(int i = 0; i < row; i++) { for(int j = 0; j < col;j ++) { dist[i][j][steps] = getDist(i, j, steps, dist, grid); } } } for(int i = 0; i < row; i++) for(int j = 0; j < col;j ++) output[i][j] = (dist[i][j][target - 1] << 1); } private static int getDist(int y, int x, int steps, int[][][] dist, Point[][] grid) { for(int d = 0; d < 4; d++) { int i = y + dy[d]; int j = x + dx[d]; if(valid(i, j)) { dist[y][x][steps] = Math.min(dist[y][x][steps], dist[i][j][steps - 1] + grid[y][x].weight[d]); } } return dist[y][x][steps]; } private static void fill(int[][][] dist, Point[][] grid) { for(int i = 0; i < row; i++) for(int j = 0; j < col;j ++) for(int s = 0; s < dist[0][0].length; s++) dist[i][j][s] = INF; for(int i = 0; i < row; i++) for(int j = 0; j < col; j++) for(int d = 0; d < 4; d++) dist[i][j][0] = Math.min(dist[i][j][0], grid[i][j].weight[d]); } private static boolean valid(int y, int x) { return y >= 0 && x >= 0 && y < row && x < col; } /*private static int bfs(int xStart, int yStart, int target, Point[][] grid) { PriorityQueue<Step> q = new PriorityQueue<Step>(); q.add(new Step(grid[yStart][xStart], 0, 0)); Step s; int w; while(!q.isEmpty()) { s = q.poll(); if(s.numSteps == target) return s.length; // try to go in each of the four directions for(int d = 0; d < 4; d++) { w = s.current.weight[d]; if(w != -1) q.add(new Step(grid[s.current.y + s.current.dy[d]][s.current.x + s.current.dx[d]], s.length + w, s.numSteps + 1)); } } return -1; }*/ private static void parseMoves(Point[][] grid, int[][] xMove, int[][] yMove) { for(int i = 0; i < xMove.length; i++) { for(int j = 0; j < xMove[i].length; j++) { grid[i][j].weight[2] = xMove[i][j]; // right grid[i][j + 1].weight[3] = xMove[i][j]; // left } } for(int i = 0; i < yMove.length; i++) { for(int j = 0; j < yMove[i].length; j++) { grid[i][j].weight[0] = yMove[i][j]; // down grid[i + 1][j].weight[1] = yMove[i][j]; // up } } } private static void fill(int val, int[][] output) { for(int i = 0; i < output.length; i++) Arrays.fill(output[i], val); } private static void print(int[][] ray, PrintWriter out) { for(int i = 0; i < ray.length; i++) { out.print(ray[i][0]); for(int j = 1; j < ray[i].length; j++) out.print(" " + ray[i][j]); out.println(); } } public static int parse(String num) { return Integer.parseInt(num); } static class Point { int[] weight = new int[4]; // down, up, right, left int x, y; public Point(int i, int j) { y = i; x = j; Arrays.fill(weight, INF); } } static class Step implements Comparable<Step> { int length, numSteps; Point current; public Step(Point p, int weight, int s) { current = p; length = weight; numSteps = s; } @Override public int compareTo(Step s) { if(length == s.length) return numSteps - s.numSteps; return length - s.length; } } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
2,074
3,818
3,966
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.HashSet; import java.util.Iterator; import java.util.LinkedList; import java.util.List; public class C { static int[] nm; static int ans = 0; static int rows, cols; static boolean[][] cae; static int[][] ca; public static void main(String[] args) throws IOException { nm = readIntArray(); rows = Math.max(nm[0], nm[1]); cols = Math.min(nm[0], nm[1]); long s = System.currentTimeMillis(); cae = new boolean[1000][50]; ca = new int[1000][50]; StringBuilder sb = new StringBuilder(); for (int i = 0; i < cols; i++) { sb.append('1'); } int startingState = Integer.parseInt(sb.toString(), 3); ans = solve(startingState, 0); System.out.println(nm[0]*nm[1] - ans); // System.out.println(System.currentTimeMillis() - s ); } static int solve(int state, int row) { if (row == rows) { return 0; } if (cae[state][row]) { return ca[state][row]; } int ans = Integer.MAX_VALUE; for (int i = 0; i < Math.pow(3, cols); i++) { boolean isCover = covers(i, state); if (isCover && (row < rows - 1 || coversTotally(i, state))) { int p = placed(i); int s = solve(i, row + 1); ans = Math.min(ans, s + p); } } cae[state][row] = true; ca[state][row] = ans; return ans; } private static boolean coversTotally(int i, int state) { String bottom = decode(i); for (int j = 0; j < bottom.length(); j++) { if (bottom.charAt(j) == '0') { return false; } } return true; } private static boolean covers(int i, int state) { String top = decode(state); String bottom = decode(i); for (int j = 0; j < top.length(); j++) { if (top.charAt(j) == '0' && bottom.charAt(j) != '2') { return false; } if (top.charAt(j) == '2' && bottom.charAt(j) == '0') { return false; } } for (int j = 0; j < top.length(); j++) { if (bottom.charAt(j) == '1' && (top.charAt(j) != '2' && !(j > 0 && bottom.charAt(j-1) == '2') && !(j < top.length() - 1 && bottom.charAt(j+1) == '2'))) { return false; } } return true; } private static int placed(int i) { String s = decode(i); int cnt = 0; for (int j = 0; j < s.length(); j++) { if (s.charAt(j) == '2') { cnt++; } } return cnt; } private static String decode(int state) { String tmp = Integer.toString(state, 3); if (tmp.length() < cols) { StringBuilder sb = new StringBuilder(); for (int i = 0; i < cols - tmp.length(); i++) { sb.append('0'); } sb.append(tmp); return sb.toString(); } else { return tmp; } } static int countDispositionDivisors(int[] d) { HashSet<Integer> div = new HashSet<Integer>(); for (int i = 1; i <= d.length; i++) { for (int j = 0; j < d.length; j++) { if ((j + 1) % i == 0 && d[j] % i == 0) { div.add(j + 1); break; } } } return div.size(); } static InputStreamReader isr = new InputStreamReader(System.in); static BufferedReader br = new BufferedReader(isr); static int[] readIntArray() throws IOException { String[] v = br.readLine().split(" "); int[] ans = new int[v.length]; for (int i = 0; i < ans.length; i++) { ans[i] = Integer.valueOf(v[i]); } return ans; } static long[] readLongArray() throws IOException { String[] v = br.readLine().split(" "); long[] ans = new long[v.length]; for (int i = 0; i < ans.length; i++) { ans[i] = Long.valueOf(v[i]); } return ans; } static <T> void print(List<T> v) { StringBuilder sb = new StringBuilder(); for (int i = 0; i < v.size(); i++) { if (sb.length() > 0) { sb.append(' '); } sb.append(v.get(i)); } System.out.println(sb); } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.HashSet; import java.util.Iterator; import java.util.LinkedList; import java.util.List; public class C { static int[] nm; static int ans = 0; static int rows, cols; static boolean[][] cae; static int[][] ca; public static void main(String[] args) throws IOException { nm = readIntArray(); rows = Math.max(nm[0], nm[1]); cols = Math.min(nm[0], nm[1]); long s = System.currentTimeMillis(); cae = new boolean[1000][50]; ca = new int[1000][50]; StringBuilder sb = new StringBuilder(); for (int i = 0; i < cols; i++) { sb.append('1'); } int startingState = Integer.parseInt(sb.toString(), 3); ans = solve(startingState, 0); System.out.println(nm[0]*nm[1] - ans); // System.out.println(System.currentTimeMillis() - s ); } static int solve(int state, int row) { if (row == rows) { return 0; } if (cae[state][row]) { return ca[state][row]; } int ans = Integer.MAX_VALUE; for (int i = 0; i < Math.pow(3, cols); i++) { boolean isCover = covers(i, state); if (isCover && (row < rows - 1 || coversTotally(i, state))) { int p = placed(i); int s = solve(i, row + 1); ans = Math.min(ans, s + p); } } cae[state][row] = true; ca[state][row] = ans; return ans; } private static boolean coversTotally(int i, int state) { String bottom = decode(i); for (int j = 0; j < bottom.length(); j++) { if (bottom.charAt(j) == '0') { return false; } } return true; } private static boolean covers(int i, int state) { String top = decode(state); String bottom = decode(i); for (int j = 0; j < top.length(); j++) { if (top.charAt(j) == '0' && bottom.charAt(j) != '2') { return false; } if (top.charAt(j) == '2' && bottom.charAt(j) == '0') { return false; } } for (int j = 0; j < top.length(); j++) { if (bottom.charAt(j) == '1' && (top.charAt(j) != '2' && !(j > 0 && bottom.charAt(j-1) == '2') && !(j < top.length() - 1 && bottom.charAt(j+1) == '2'))) { return false; } } return true; } private static int placed(int i) { String s = decode(i); int cnt = 0; for (int j = 0; j < s.length(); j++) { if (s.charAt(j) == '2') { cnt++; } } return cnt; } private static String decode(int state) { String tmp = Integer.toString(state, 3); if (tmp.length() < cols) { StringBuilder sb = new StringBuilder(); for (int i = 0; i < cols - tmp.length(); i++) { sb.append('0'); } sb.append(tmp); return sb.toString(); } else { return tmp; } } static int countDispositionDivisors(int[] d) { HashSet<Integer> div = new HashSet<Integer>(); for (int i = 1; i <= d.length; i++) { for (int j = 0; j < d.length; j++) { if ((j + 1) % i == 0 && d[j] % i == 0) { div.add(j + 1); break; } } } return div.size(); } static InputStreamReader isr = new InputStreamReader(System.in); static BufferedReader br = new BufferedReader(isr); static int[] readIntArray() throws IOException { String[] v = br.readLine().split(" "); int[] ans = new int[v.length]; for (int i = 0; i < ans.length; i++) { ans[i] = Integer.valueOf(v[i]); } return ans; } static long[] readLongArray() throws IOException { String[] v = br.readLine().split(" "); long[] ans = new long[v.length]; for (int i = 0; i < ans.length; i++) { ans[i] = Long.valueOf(v[i]); } return ans; } static <T> void print(List<T> v) { StringBuilder sb = new StringBuilder(); for (int i = 0; i < v.size(); i++) { if (sb.length() > 0) { sb.append(' '); } sb.append(v.get(i)); } System.out.println(sb); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.HashSet; import java.util.Iterator; import java.util.LinkedList; import java.util.List; public class C { static int[] nm; static int ans = 0; static int rows, cols; static boolean[][] cae; static int[][] ca; public static void main(String[] args) throws IOException { nm = readIntArray(); rows = Math.max(nm[0], nm[1]); cols = Math.min(nm[0], nm[1]); long s = System.currentTimeMillis(); cae = new boolean[1000][50]; ca = new int[1000][50]; StringBuilder sb = new StringBuilder(); for (int i = 0; i < cols; i++) { sb.append('1'); } int startingState = Integer.parseInt(sb.toString(), 3); ans = solve(startingState, 0); System.out.println(nm[0]*nm[1] - ans); // System.out.println(System.currentTimeMillis() - s ); } static int solve(int state, int row) { if (row == rows) { return 0; } if (cae[state][row]) { return ca[state][row]; } int ans = Integer.MAX_VALUE; for (int i = 0; i < Math.pow(3, cols); i++) { boolean isCover = covers(i, state); if (isCover && (row < rows - 1 || coversTotally(i, state))) { int p = placed(i); int s = solve(i, row + 1); ans = Math.min(ans, s + p); } } cae[state][row] = true; ca[state][row] = ans; return ans; } private static boolean coversTotally(int i, int state) { String bottom = decode(i); for (int j = 0; j < bottom.length(); j++) { if (bottom.charAt(j) == '0') { return false; } } return true; } private static boolean covers(int i, int state) { String top = decode(state); String bottom = decode(i); for (int j = 0; j < top.length(); j++) { if (top.charAt(j) == '0' && bottom.charAt(j) != '2') { return false; } if (top.charAt(j) == '2' && bottom.charAt(j) == '0') { return false; } } for (int j = 0; j < top.length(); j++) { if (bottom.charAt(j) == '1' && (top.charAt(j) != '2' && !(j > 0 && bottom.charAt(j-1) == '2') && !(j < top.length() - 1 && bottom.charAt(j+1) == '2'))) { return false; } } return true; } private static int placed(int i) { String s = decode(i); int cnt = 0; for (int j = 0; j < s.length(); j++) { if (s.charAt(j) == '2') { cnt++; } } return cnt; } private static String decode(int state) { String tmp = Integer.toString(state, 3); if (tmp.length() < cols) { StringBuilder sb = new StringBuilder(); for (int i = 0; i < cols - tmp.length(); i++) { sb.append('0'); } sb.append(tmp); return sb.toString(); } else { return tmp; } } static int countDispositionDivisors(int[] d) { HashSet<Integer> div = new HashSet<Integer>(); for (int i = 1; i <= d.length; i++) { for (int j = 0; j < d.length; j++) { if ((j + 1) % i == 0 && d[j] % i == 0) { div.add(j + 1); break; } } } return div.size(); } static InputStreamReader isr = new InputStreamReader(System.in); static BufferedReader br = new BufferedReader(isr); static int[] readIntArray() throws IOException { String[] v = br.readLine().split(" "); int[] ans = new int[v.length]; for (int i = 0; i < ans.length; i++) { ans[i] = Integer.valueOf(v[i]); } return ans; } static long[] readLongArray() throws IOException { String[] v = br.readLine().split(" "); long[] ans = new long[v.length]; for (int i = 0; i < ans.length; i++) { ans[i] = Long.valueOf(v[i]); } return ans; } static <T> void print(List<T> v) { StringBuilder sb = new StringBuilder(); for (int i = 0; i < v.size(); i++) { if (sb.length() > 0) { sb.append(' '); } sb.append(v.get(i)); } System.out.println(sb); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,521
3,955
1,442
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Alex */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskB solver = new TaskB(); solver.solve(1, in, out); out.close(); } static class TaskB { int n; int startrow; int startcol; long want; boolean check(long time) { long max = (long) 2 * time * (time + 1) + 1; long highest = startrow - time; if(highest < 0) { max -= Math.abs(highest) * Math.abs(highest); } long lowest = startrow + time; if(lowest >= n) { max -= Math.abs(lowest - n + 1) * Math.abs(lowest - n + 1); } long leftmost = startcol - time; if(leftmost < 0) { max -= Math.abs(leftmost) * Math.abs(leftmost); } long rightmost = startcol + time; if(rightmost >= n) { max -= Math.abs(rightmost - n + 1) * Math.abs(rightmost - n + 1); } long upperright = time - (startrow + 1) - (n - startcol); if(upperright >= 0) { max += (upperright + 1) * (upperright + 2) / 2; } long lowerright = time - (n - startrow) - (n - startcol); if(lowerright >= 0) { max += (lowerright + 1) * (lowerright + 2) / 2; } long upperleft = time - (startrow + 1) - (startcol + 1); if(upperleft >= 0) { max += (upperleft + 1) * (upperleft + 2) / 2; } long lowerleft = time - (n - startrow) - (startcol + 1); if(lowerleft >= 0) { max += (lowerleft + 1) * (lowerleft + 2) / 2; } return max >= want; } public void solve(int testNumber, InputReader in, OutputWriter out) { n = in.readInt(); startrow = in.readInt() - 1; startcol = in.readInt() - 1; want = in.readLong(); long low = 0, high = 2 * n; while(low < high) { long mid = (low + high) / 2; if(check(mid)) high = mid; else low = mid + 1; } out.printLine(low); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if(numChars == -1) throw new InputMismatchException(); if(curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch(IOException e) { throw new InputMismatchException(); } if(numChars <= 0) return -1; } return buf[curChar++]; } public int readInt() { int c = read(); while(isSpaceChar(c)) c = read(); int sgn = 1; if(c == '-') { sgn = -1; c = read(); } int res = 0; do { if(c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while(!isSpaceChar(c)); return res * sgn; } public long readLong() { int c = read(); while(isSpaceChar(c)) c = read(); int sgn = 1; if(c == '-') { sgn = -1; c = read(); } long res = 0; do { if(c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while(!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if(filter != null) return filter.isSpaceChar(c); return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void close() { writer.close(); } public void printLine(long i) { writer.println(i); } } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Alex */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskB solver = new TaskB(); solver.solve(1, in, out); out.close(); } static class TaskB { int n; int startrow; int startcol; long want; boolean check(long time) { long max = (long) 2 * time * (time + 1) + 1; long highest = startrow - time; if(highest < 0) { max -= Math.abs(highest) * Math.abs(highest); } long lowest = startrow + time; if(lowest >= n) { max -= Math.abs(lowest - n + 1) * Math.abs(lowest - n + 1); } long leftmost = startcol - time; if(leftmost < 0) { max -= Math.abs(leftmost) * Math.abs(leftmost); } long rightmost = startcol + time; if(rightmost >= n) { max -= Math.abs(rightmost - n + 1) * Math.abs(rightmost - n + 1); } long upperright = time - (startrow + 1) - (n - startcol); if(upperright >= 0) { max += (upperright + 1) * (upperright + 2) / 2; } long lowerright = time - (n - startrow) - (n - startcol); if(lowerright >= 0) { max += (lowerright + 1) * (lowerright + 2) / 2; } long upperleft = time - (startrow + 1) - (startcol + 1); if(upperleft >= 0) { max += (upperleft + 1) * (upperleft + 2) / 2; } long lowerleft = time - (n - startrow) - (startcol + 1); if(lowerleft >= 0) { max += (lowerleft + 1) * (lowerleft + 2) / 2; } return max >= want; } public void solve(int testNumber, InputReader in, OutputWriter out) { n = in.readInt(); startrow = in.readInt() - 1; startcol = in.readInt() - 1; want = in.readLong(); long low = 0, high = 2 * n; while(low < high) { long mid = (low + high) / 2; if(check(mid)) high = mid; else low = mid + 1; } out.printLine(low); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if(numChars == -1) throw new InputMismatchException(); if(curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch(IOException e) { throw new InputMismatchException(); } if(numChars <= 0) return -1; } return buf[curChar++]; } public int readInt() { int c = read(); while(isSpaceChar(c)) c = read(); int sgn = 1; if(c == '-') { sgn = -1; c = read(); } int res = 0; do { if(c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while(!isSpaceChar(c)); return res * sgn; } public long readLong() { int c = read(); while(isSpaceChar(c)) c = read(); int sgn = 1; if(c == '-') { sgn = -1; c = read(); } long res = 0; do { if(c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while(!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if(filter != null) return filter.isSpaceChar(c); return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void close() { writer.close(); } public void printLine(long i) { writer.println(i); } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Alex */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskB solver = new TaskB(); solver.solve(1, in, out); out.close(); } static class TaskB { int n; int startrow; int startcol; long want; boolean check(long time) { long max = (long) 2 * time * (time + 1) + 1; long highest = startrow - time; if(highest < 0) { max -= Math.abs(highest) * Math.abs(highest); } long lowest = startrow + time; if(lowest >= n) { max -= Math.abs(lowest - n + 1) * Math.abs(lowest - n + 1); } long leftmost = startcol - time; if(leftmost < 0) { max -= Math.abs(leftmost) * Math.abs(leftmost); } long rightmost = startcol + time; if(rightmost >= n) { max -= Math.abs(rightmost - n + 1) * Math.abs(rightmost - n + 1); } long upperright = time - (startrow + 1) - (n - startcol); if(upperright >= 0) { max += (upperright + 1) * (upperright + 2) / 2; } long lowerright = time - (n - startrow) - (n - startcol); if(lowerright >= 0) { max += (lowerright + 1) * (lowerright + 2) / 2; } long upperleft = time - (startrow + 1) - (startcol + 1); if(upperleft >= 0) { max += (upperleft + 1) * (upperleft + 2) / 2; } long lowerleft = time - (n - startrow) - (startcol + 1); if(lowerleft >= 0) { max += (lowerleft + 1) * (lowerleft + 2) / 2; } return max >= want; } public void solve(int testNumber, InputReader in, OutputWriter out) { n = in.readInt(); startrow = in.readInt() - 1; startcol = in.readInt() - 1; want = in.readLong(); long low = 0, high = 2 * n; while(low < high) { long mid = (low + high) / 2; if(check(mid)) high = mid; else low = mid + 1; } out.printLine(low); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if(numChars == -1) throw new InputMismatchException(); if(curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch(IOException e) { throw new InputMismatchException(); } if(numChars <= 0) return -1; } return buf[curChar++]; } public int readInt() { int c = read(); while(isSpaceChar(c)) c = read(); int sgn = 1; if(c == '-') { sgn = -1; c = read(); } int res = 0; do { if(c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while(!isSpaceChar(c)); return res * sgn; } public long readLong() { int c = read(); while(isSpaceChar(c)) c = read(); int sgn = 1; if(c == '-') { sgn = -1; c = read(); } long res = 0; do { if(c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while(!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if(filter != null) return filter.isSpaceChar(c); return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void close() { writer.close(); } public void printLine(long i) { writer.println(i); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,636
1,440
1,385
/* * To change this template, choose Tools | Templates * and open the template in the editor. */ import java.util.Scanner; /** * * @author 111 */ public class JavaApplication4 { /** * @param args the command line arguments */ static long k, n, ans; static private long binsearch(long l, long r) { if(l==r) return l; long m=(l+r)/2; long res=(m*(k+k-m+1)/2); if(res>=n) return binsearch(l, m); else return binsearch(m+1, r); } public static void main(String[] args) { Scanner in=new Scanner(System.in); n=in.nextLong(); k=in.nextLong(); n--; k--; if(k*(k+1)/2<n) ans=-1; else ans=binsearch(0, k); System.out.println(ans); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> /* * To change this template, choose Tools | Templates * and open the template in the editor. */ import java.util.Scanner; /** * * @author 111 */ public class JavaApplication4 { /** * @param args the command line arguments */ static long k, n, ans; static private long binsearch(long l, long r) { if(l==r) return l; long m=(l+r)/2; long res=(m*(k+k-m+1)/2); if(res>=n) return binsearch(l, m); else return binsearch(m+1, r); } public static void main(String[] args) { Scanner in=new Scanner(System.in); n=in.nextLong(); k=in.nextLong(); n--; k--; if(k*(k+1)/2<n) ans=-1; else ans=binsearch(0, k); System.out.println(ans); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> /* * To change this template, choose Tools | Templates * and open the template in the editor. */ import java.util.Scanner; /** * * @author 111 */ public class JavaApplication4 { /** * @param args the command line arguments */ static long k, n, ans; static private long binsearch(long l, long r) { if(l==r) return l; long m=(l+r)/2; long res=(m*(k+k-m+1)/2); if(res>=n) return binsearch(l, m); else return binsearch(m+1, r); } public static void main(String[] args) { Scanner in=new Scanner(System.in); n=in.nextLong(); k=in.nextLong(); n--; k--; if(k*(k+1)/2<n) ans=-1; else ans=binsearch(0, k); System.out.println(ans); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
549
1,383
1,065
import java.util.Scanner; public class Main { public static Character solve(long a, long b, long c) { long min = a; long max; long xth = 0; long index; for (index = String.valueOf(a).length() - 1;; index++) { long numOfDigits = 0; max = (long) Math.pow(10, index + 1) - 1; long count = (max - min) / b + 1; numOfDigits += count * (index + 1); if (c - numOfDigits <= 0) { break; } c -= numOfDigits; min = min + count * b; } // find xth if (c % (index + 1) == 0) { xth = c / (index + 1); } else { xth = c / (index + 1) + 1; } long lastNum = min + b * (xth - 1); int pos = (int) (c % (index + 1)); // here is the output if (pos == 0) { return String.valueOf(lastNum).charAt((int) index); } else { return String.valueOf(lastNum).charAt(pos - 1); } } public static void main(String[] args) { Scanner sc = new Scanner(System.in); long tc; tc = sc.nextLong(); System.out.println(solve(1, 1, tc)); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; public class Main { public static Character solve(long a, long b, long c) { long min = a; long max; long xth = 0; long index; for (index = String.valueOf(a).length() - 1;; index++) { long numOfDigits = 0; max = (long) Math.pow(10, index + 1) - 1; long count = (max - min) / b + 1; numOfDigits += count * (index + 1); if (c - numOfDigits <= 0) { break; } c -= numOfDigits; min = min + count * b; } // find xth if (c % (index + 1) == 0) { xth = c / (index + 1); } else { xth = c / (index + 1) + 1; } long lastNum = min + b * (xth - 1); int pos = (int) (c % (index + 1)); // here is the output if (pos == 0) { return String.valueOf(lastNum).charAt((int) index); } else { return String.valueOf(lastNum).charAt(pos - 1); } } public static void main(String[] args) { Scanner sc = new Scanner(System.in); long tc; tc = sc.nextLong(); System.out.println(solve(1, 1, tc)); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Scanner; public class Main { public static Character solve(long a, long b, long c) { long min = a; long max; long xth = 0; long index; for (index = String.valueOf(a).length() - 1;; index++) { long numOfDigits = 0; max = (long) Math.pow(10, index + 1) - 1; long count = (max - min) / b + 1; numOfDigits += count * (index + 1); if (c - numOfDigits <= 0) { break; } c -= numOfDigits; min = min + count * b; } // find xth if (c % (index + 1) == 0) { xth = c / (index + 1); } else { xth = c / (index + 1) + 1; } long lastNum = min + b * (xth - 1); int pos = (int) (c % (index + 1)); // here is the output if (pos == 0) { return String.valueOf(lastNum).charAt((int) index); } else { return String.valueOf(lastNum).charAt(pos - 1); } } public static void main(String[] args) { Scanner sc = new Scanner(System.in); long tc; tc = sc.nextLong(); System.out.println(solve(1, 1, tc)); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
708
1,064
460
import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.util.StringTokenizer; public class Edu_46A { public static void main(String[] args) throws IOException { BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); PrintWriter printer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); int nE = Integer.parseInt(reader.readLine()); int[][] cnt = new int[][] { { 0, 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 } }; for (int i = 0; i < nE; i++) { String nxt = reader.readLine(); if (nxt.equals("S")) { cnt[0][0]++; } if (nxt.equals("M")) { cnt[0][1]++; } if (nxt.equals("L")) { cnt[0][2]++; } if (nxt.equals("XS")) { cnt[1][0]++; } if (nxt.equals("XL")) { cnt[1][1]++; } if (nxt.equals("XXS")) { cnt[2][0]++; } if (nxt.equals("XXL")) { cnt[2][1]++; } if (nxt.equals("XXXS")) { cnt[3][0]++; } if (nxt.equals("XXXL")) { cnt[3][1]++; } } for (int i = 0; i < nE; i++) { String nxt = reader.readLine(); if (nxt.equals("S")) { cnt[0][0]--; } if (nxt.equals("M")) { cnt[0][1]--; } if (nxt.equals("L")) { cnt[0][2]--; } if (nxt.equals("XS")) { cnt[1][0]--; } if (nxt.equals("XL")) { cnt[1][1]--; } if (nxt.equals("XXS")) { cnt[2][0]--; } if (nxt.equals("XXL")) { cnt[2][1]--; } if (nxt.equals("XXXS")) { cnt[3][0]--; } if (nxt.equals("XXXL")) { cnt[3][1]--; } } int ans = 0; for (int i = 1; i <= 3; i++) { ans += Math.abs(cnt[i][0]); } int max = 0; for (int i = 0; i < 3; i++) { max = Math.max(max, Math.abs(cnt[0][i])); } ans += max; printer.println(ans); printer.close(); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.util.StringTokenizer; public class Edu_46A { public static void main(String[] args) throws IOException { BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); PrintWriter printer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); int nE = Integer.parseInt(reader.readLine()); int[][] cnt = new int[][] { { 0, 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 } }; for (int i = 0; i < nE; i++) { String nxt = reader.readLine(); if (nxt.equals("S")) { cnt[0][0]++; } if (nxt.equals("M")) { cnt[0][1]++; } if (nxt.equals("L")) { cnt[0][2]++; } if (nxt.equals("XS")) { cnt[1][0]++; } if (nxt.equals("XL")) { cnt[1][1]++; } if (nxt.equals("XXS")) { cnt[2][0]++; } if (nxt.equals("XXL")) { cnt[2][1]++; } if (nxt.equals("XXXS")) { cnt[3][0]++; } if (nxt.equals("XXXL")) { cnt[3][1]++; } } for (int i = 0; i < nE; i++) { String nxt = reader.readLine(); if (nxt.equals("S")) { cnt[0][0]--; } if (nxt.equals("M")) { cnt[0][1]--; } if (nxt.equals("L")) { cnt[0][2]--; } if (nxt.equals("XS")) { cnt[1][0]--; } if (nxt.equals("XL")) { cnt[1][1]--; } if (nxt.equals("XXS")) { cnt[2][0]--; } if (nxt.equals("XXL")) { cnt[2][1]--; } if (nxt.equals("XXXS")) { cnt[3][0]--; } if (nxt.equals("XXXL")) { cnt[3][1]--; } } int ans = 0; for (int i = 1; i <= 3; i++) { ans += Math.abs(cnt[i][0]); } int max = 0; for (int i = 0; i < 3; i++) { max = Math.max(max, Math.abs(cnt[0][i])); } ans += max; printer.println(ans); printer.close(); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.util.StringTokenizer; public class Edu_46A { public static void main(String[] args) throws IOException { BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); PrintWriter printer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); int nE = Integer.parseInt(reader.readLine()); int[][] cnt = new int[][] { { 0, 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 } }; for (int i = 0; i < nE; i++) { String nxt = reader.readLine(); if (nxt.equals("S")) { cnt[0][0]++; } if (nxt.equals("M")) { cnt[0][1]++; } if (nxt.equals("L")) { cnt[0][2]++; } if (nxt.equals("XS")) { cnt[1][0]++; } if (nxt.equals("XL")) { cnt[1][1]++; } if (nxt.equals("XXS")) { cnt[2][0]++; } if (nxt.equals("XXL")) { cnt[2][1]++; } if (nxt.equals("XXXS")) { cnt[3][0]++; } if (nxt.equals("XXXL")) { cnt[3][1]++; } } for (int i = 0; i < nE; i++) { String nxt = reader.readLine(); if (nxt.equals("S")) { cnt[0][0]--; } if (nxt.equals("M")) { cnt[0][1]--; } if (nxt.equals("L")) { cnt[0][2]--; } if (nxt.equals("XS")) { cnt[1][0]--; } if (nxt.equals("XL")) { cnt[1][1]--; } if (nxt.equals("XXS")) { cnt[2][0]--; } if (nxt.equals("XXL")) { cnt[2][1]--; } if (nxt.equals("XXXS")) { cnt[3][0]--; } if (nxt.equals("XXXL")) { cnt[3][1]--; } } int ans = 0; for (int i = 1; i <= 3; i++) { ans += Math.abs(cnt[i][0]); } int max = 0; for (int i = 0; i < 3; i++) { max = Math.max(max, Math.abs(cnt[0][i])); } ans += max; printer.println(ans); printer.close(); } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,005
459
291
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.lang.reflect.Array; import java.util.Arrays; import java.util.Comparator; import java.util.StringTokenizer; import java.util.function.Function; public class P1196D2 { static boolean multipleIndependent = true; void run() { int n = in.nextInt(); int k = in.nextInt(); char[] s = in.next().toCharArray(); int[] dp = new int[3]; char[] c = {'R', 'G', 'B'}; int min = Integer.MAX_VALUE; for (int i = 0; i < k; i++) { dp[0] += s[i] == c[(i + 0) % 3] ? 0 : 1; dp[1] += s[i] == c[(i + 1) % 3] ? 0 : 1; dp[2] += s[i] == c[(i + 2) % 3] ? 0 : 1; } min = Math.min(Math.min(Math.min(dp[0], dp[1]), dp[2]), min); // System.out.println(Arrays.toString(dp)); for (int i = k; i < n; i++) { dp[0] += (s[i] == c[(i + 0) % 3] ? 0 : 1) - (s[i - k] == c[(i - k + 0) % 3] ? 0 : 1); dp[1] += (s[i] == c[(i + 1) % 3] ? 0 : 1) - (s[i - k] == c[(i - k + 1) % 3] ? 0 : 1); dp[2] += (s[i] == c[(i + 2) % 3] ? 0 : 1) - (s[i - k] == c[(i - k + 2) % 3] ? 0 : 1); min = Math.min(Math.min(Math.min(dp[0], dp[1]), dp[2]), min); // System.out.println(Arrays.toString(dp)); } System.out.println(min); } /* -----: Template :----- */ static InputReader in = new InputReader(System.in); public static void main(String[] args) { P1196D2 p = new P1196D2(); int q = multipleIndependent ? in.nextInt() : 1; while (q-- > 0) { p.run(); } } int numLength(long n) { int l = 0; while (n > 0) { n /= 10; l++; } return l; } <R> long binarySearch(long lowerBound, long upperBound, R value, Function<Long, R> generatorFunction, Comparator<R> comparator) { if (lowerBound <= upperBound) { long mid = (lowerBound + upperBound) / 2; int compare = comparator.compare(generatorFunction.apply(mid), value); if (compare == 0) { return mid; } else if (compare < 0) { return binarySearch(mid + 1, upperBound, value, generatorFunction, comparator); } else { return binarySearch(lowerBound, mid - 1, value, generatorFunction, comparator); } } else { return -1; } } <T> Integer[] sortSimultaneously(T[] key, Comparator<T> comparator, Object[]... moreArrays) { int n = key.length; for (Object[] array : moreArrays) { if (array.length != n) { throw new RuntimeException("Arrays must have equals lengths"); } } Integer[] indices = new Integer[n]; for (int i = 0; i < n; i++) { indices[i] = i; } Comparator<Integer> delegatingComparator = (a, b) -> { return comparator.compare(key[a], key[b]); }; Arrays.sort(indices, delegatingComparator); reorder(indices, key); for (Object[] array : moreArrays) { reorder(indices, array); } return indices; } void reorder(Integer[] indices, Object[] arr) { if (indices.length != arr.length) { throw new RuntimeException("Arrays must have equals lengths"); } int n = arr.length; Object[] copy = new Object[n]; for (int i = 0; i < n; i++) { copy[i] = arr[indices[i]]; } System.arraycopy(copy, 0, arr, 0, n); } int prodMod(int a, int b, int mod) { return (int) (((long) a) * b % mod); } long prodMod(long a, long b, long mod) { long res = 0; a %= mod; b %= mod; while (b > 0) { if ((b & 1) > 0) { res = (res + a) % mod; } a = (a << 1) % mod; b >>= 1; } return res; } long sumMod(int[] b, long mod) { long res = 0; for (int i = 0; i < b.length; i++) { res = (res + b[i] % mod) % mod; } return res; } long sumMod(long[] a, long mod) { long res = 0; for (int i = 0; i < a.length; i++) { res = (res + a[i] % mod) % mod; } return res; } long sumProdMod(int[] a, long b, long mod) { long res = sumMod(a, mod); return prodMod(res, b, mod); } long sumProdMod(long[] a, long b, long mod) { long res = sumMod(a, mod); return prodMod(res, b, mod); } long sumProdMod(int[] a, int[] b, long mod) { if (a.length != b.length) { throw new RuntimeException("Arrays must have equals lengths"); } long res = 0; for (int i = 0; i < a.length; i++) { res = (res + prodMod(a[i], b[i], mod)) % mod; } return res; } long sumProdMod(long[] a, long[] b, long mod) { if (a.length != b.length) { throw new RuntimeException("Arrays must have equals lengths"); } long res = 0; for (int i = 0; i < a.length; i++) { res = (res + prodMod(a[i], b[i], mod)) % mod; } return res; } int[] toPrimitive(Integer[] arr) { int[] res = new int[arr.length]; for (int i = 0; i < arr.length; i++) { res[i] = arr[i]; } return res; } int[][] toPrimitive(Integer[][] arr) { int[][] res = new int[arr.length][]; for (int i = 0; i < arr.length; i++) { res[i] = toPrimitive(arr[i]); } return res; } long[] toPrimitive(Long[] arr) { long[] res = new long[arr.length]; for (int i = 0; i < arr.length; i++) { res[i] = arr[i]; } return res; } long[][] toPrimitive(Long[][] arr) { long[][] res = new long[arr.length][]; for (int i = 0; i < arr.length; i++) { res[i] = toPrimitive(arr[i]); } return res; } Integer[] toWrapper(int[] arr) { Integer[] res = new Integer[arr.length]; for (int i = 0; i < arr.length; i++) { res[i] = arr[i]; } return res; } Integer[][] toWrapper(int[][] arr) { Integer[][] res = new Integer[arr.length][]; for (int i = 0; i < arr.length; i++) { res[i] = toWrapper(arr[i]); } return res; } Long[] toWrapper(long[] arr) { Long[] res = new Long[arr.length]; for (int i = 0; i < arr.length; i++) { res[i] = arr[i]; } return res; } Long[][] toWrapper(long[][] arr) { Long[][] res = new Long[arr.length][]; for (int i = 0; i < arr.length; i++) { res[i] = toWrapper(arr[i]); } return res; } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public int[] nextIntArray(int n) { int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = nextInt(); } return arr; } public <T> T[] nextIntArray(int n, Function<Integer, T> function, Class<T> c) { T[] arr = (T[]) Array.newInstance(c, n); for (int i = 0; i < n; i++) { arr[i] = function.apply(nextInt()); } return arr; } public long[] nextLongArray(int n) { long[] arr = new long[n]; for (int i = 0; i < n; i++) { arr[i] = nextLong(); } return arr; } public <T> T[] nextLongArray(int n, Function<Long, T> function, Class<T> c) { T[] arr = (T[]) Array.newInstance(c, n); for (int i = 0; i < n; i++) { arr[i] = function.apply(nextLong()); } return arr; } public int[][] nextIntMap(int n, int m) { int[][] map = new int[n][m]; for (int i = 0; i < n; i++) { map[i] = nextIntArray(m); } return map; } public long[][] nextLongMap(int n, int m) { long[][] map = new long[n][m]; for (int i = 0; i < n; i++) { map[i] = nextLongArray(m); } return map; } public char[][] nextCharMap(int n) { char[][] map = new char[n][]; for (int i = 0; i < n; i++) { map[i] = next().toCharArray(); } return map; } public void readColumns(Object[]... columns) { int n = columns[0].length; for (Object[] column : columns) { if (column.length != n) { throw new RuntimeException("Arrays must have equals lengths"); } } for (int i = 0; i < n; i++) { for (Object[] column : columns) { column[i] = read(column[i].getClass()); } } } public <T> T read(Class<T> c) { throw new UnsupportedOperationException("To be implemented"); } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.lang.reflect.Array; import java.util.Arrays; import java.util.Comparator; import java.util.StringTokenizer; import java.util.function.Function; public class P1196D2 { static boolean multipleIndependent = true; void run() { int n = in.nextInt(); int k = in.nextInt(); char[] s = in.next().toCharArray(); int[] dp = new int[3]; char[] c = {'R', 'G', 'B'}; int min = Integer.MAX_VALUE; for (int i = 0; i < k; i++) { dp[0] += s[i] == c[(i + 0) % 3] ? 0 : 1; dp[1] += s[i] == c[(i + 1) % 3] ? 0 : 1; dp[2] += s[i] == c[(i + 2) % 3] ? 0 : 1; } min = Math.min(Math.min(Math.min(dp[0], dp[1]), dp[2]), min); // System.out.println(Arrays.toString(dp)); for (int i = k; i < n; i++) { dp[0] += (s[i] == c[(i + 0) % 3] ? 0 : 1) - (s[i - k] == c[(i - k + 0) % 3] ? 0 : 1); dp[1] += (s[i] == c[(i + 1) % 3] ? 0 : 1) - (s[i - k] == c[(i - k + 1) % 3] ? 0 : 1); dp[2] += (s[i] == c[(i + 2) % 3] ? 0 : 1) - (s[i - k] == c[(i - k + 2) % 3] ? 0 : 1); min = Math.min(Math.min(Math.min(dp[0], dp[1]), dp[2]), min); // System.out.println(Arrays.toString(dp)); } System.out.println(min); } /* -----: Template :----- */ static InputReader in = new InputReader(System.in); public static void main(String[] args) { P1196D2 p = new P1196D2(); int q = multipleIndependent ? in.nextInt() : 1; while (q-- > 0) { p.run(); } } int numLength(long n) { int l = 0; while (n > 0) { n /= 10; l++; } return l; } <R> long binarySearch(long lowerBound, long upperBound, R value, Function<Long, R> generatorFunction, Comparator<R> comparator) { if (lowerBound <= upperBound) { long mid = (lowerBound + upperBound) / 2; int compare = comparator.compare(generatorFunction.apply(mid), value); if (compare == 0) { return mid; } else if (compare < 0) { return binarySearch(mid + 1, upperBound, value, generatorFunction, comparator); } else { return binarySearch(lowerBound, mid - 1, value, generatorFunction, comparator); } } else { return -1; } } <T> Integer[] sortSimultaneously(T[] key, Comparator<T> comparator, Object[]... moreArrays) { int n = key.length; for (Object[] array : moreArrays) { if (array.length != n) { throw new RuntimeException("Arrays must have equals lengths"); } } Integer[] indices = new Integer[n]; for (int i = 0; i < n; i++) { indices[i] = i; } Comparator<Integer> delegatingComparator = (a, b) -> { return comparator.compare(key[a], key[b]); }; Arrays.sort(indices, delegatingComparator); reorder(indices, key); for (Object[] array : moreArrays) { reorder(indices, array); } return indices; } void reorder(Integer[] indices, Object[] arr) { if (indices.length != arr.length) { throw new RuntimeException("Arrays must have equals lengths"); } int n = arr.length; Object[] copy = new Object[n]; for (int i = 0; i < n; i++) { copy[i] = arr[indices[i]]; } System.arraycopy(copy, 0, arr, 0, n); } int prodMod(int a, int b, int mod) { return (int) (((long) a) * b % mod); } long prodMod(long a, long b, long mod) { long res = 0; a %= mod; b %= mod; while (b > 0) { if ((b & 1) > 0) { res = (res + a) % mod; } a = (a << 1) % mod; b >>= 1; } return res; } long sumMod(int[] b, long mod) { long res = 0; for (int i = 0; i < b.length; i++) { res = (res + b[i] % mod) % mod; } return res; } long sumMod(long[] a, long mod) { long res = 0; for (int i = 0; i < a.length; i++) { res = (res + a[i] % mod) % mod; } return res; } long sumProdMod(int[] a, long b, long mod) { long res = sumMod(a, mod); return prodMod(res, b, mod); } long sumProdMod(long[] a, long b, long mod) { long res = sumMod(a, mod); return prodMod(res, b, mod); } long sumProdMod(int[] a, int[] b, long mod) { if (a.length != b.length) { throw new RuntimeException("Arrays must have equals lengths"); } long res = 0; for (int i = 0; i < a.length; i++) { res = (res + prodMod(a[i], b[i], mod)) % mod; } return res; } long sumProdMod(long[] a, long[] b, long mod) { if (a.length != b.length) { throw new RuntimeException("Arrays must have equals lengths"); } long res = 0; for (int i = 0; i < a.length; i++) { res = (res + prodMod(a[i], b[i], mod)) % mod; } return res; } int[] toPrimitive(Integer[] arr) { int[] res = new int[arr.length]; for (int i = 0; i < arr.length; i++) { res[i] = arr[i]; } return res; } int[][] toPrimitive(Integer[][] arr) { int[][] res = new int[arr.length][]; for (int i = 0; i < arr.length; i++) { res[i] = toPrimitive(arr[i]); } return res; } long[] toPrimitive(Long[] arr) { long[] res = new long[arr.length]; for (int i = 0; i < arr.length; i++) { res[i] = arr[i]; } return res; } long[][] toPrimitive(Long[][] arr) { long[][] res = new long[arr.length][]; for (int i = 0; i < arr.length; i++) { res[i] = toPrimitive(arr[i]); } return res; } Integer[] toWrapper(int[] arr) { Integer[] res = new Integer[arr.length]; for (int i = 0; i < arr.length; i++) { res[i] = arr[i]; } return res; } Integer[][] toWrapper(int[][] arr) { Integer[][] res = new Integer[arr.length][]; for (int i = 0; i < arr.length; i++) { res[i] = toWrapper(arr[i]); } return res; } Long[] toWrapper(long[] arr) { Long[] res = new Long[arr.length]; for (int i = 0; i < arr.length; i++) { res[i] = arr[i]; } return res; } Long[][] toWrapper(long[][] arr) { Long[][] res = new Long[arr.length][]; for (int i = 0; i < arr.length; i++) { res[i] = toWrapper(arr[i]); } return res; } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public int[] nextIntArray(int n) { int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = nextInt(); } return arr; } public <T> T[] nextIntArray(int n, Function<Integer, T> function, Class<T> c) { T[] arr = (T[]) Array.newInstance(c, n); for (int i = 0; i < n; i++) { arr[i] = function.apply(nextInt()); } return arr; } public long[] nextLongArray(int n) { long[] arr = new long[n]; for (int i = 0; i < n; i++) { arr[i] = nextLong(); } return arr; } public <T> T[] nextLongArray(int n, Function<Long, T> function, Class<T> c) { T[] arr = (T[]) Array.newInstance(c, n); for (int i = 0; i < n; i++) { arr[i] = function.apply(nextLong()); } return arr; } public int[][] nextIntMap(int n, int m) { int[][] map = new int[n][m]; for (int i = 0; i < n; i++) { map[i] = nextIntArray(m); } return map; } public long[][] nextLongMap(int n, int m) { long[][] map = new long[n][m]; for (int i = 0; i < n; i++) { map[i] = nextLongArray(m); } return map; } public char[][] nextCharMap(int n) { char[][] map = new char[n][]; for (int i = 0; i < n; i++) { map[i] = next().toCharArray(); } return map; } public void readColumns(Object[]... columns) { int n = columns[0].length; for (Object[] column : columns) { if (column.length != n) { throw new RuntimeException("Arrays must have equals lengths"); } } for (int i = 0; i < n; i++) { for (Object[] column : columns) { column[i] = read(column[i].getClass()); } } } public <T> T read(Class<T> c) { throw new UnsupportedOperationException("To be implemented"); } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.lang.reflect.Array; import java.util.Arrays; import java.util.Comparator; import java.util.StringTokenizer; import java.util.function.Function; public class P1196D2 { static boolean multipleIndependent = true; void run() { int n = in.nextInt(); int k = in.nextInt(); char[] s = in.next().toCharArray(); int[] dp = new int[3]; char[] c = {'R', 'G', 'B'}; int min = Integer.MAX_VALUE; for (int i = 0; i < k; i++) { dp[0] += s[i] == c[(i + 0) % 3] ? 0 : 1; dp[1] += s[i] == c[(i + 1) % 3] ? 0 : 1; dp[2] += s[i] == c[(i + 2) % 3] ? 0 : 1; } min = Math.min(Math.min(Math.min(dp[0], dp[1]), dp[2]), min); // System.out.println(Arrays.toString(dp)); for (int i = k; i < n; i++) { dp[0] += (s[i] == c[(i + 0) % 3] ? 0 : 1) - (s[i - k] == c[(i - k + 0) % 3] ? 0 : 1); dp[1] += (s[i] == c[(i + 1) % 3] ? 0 : 1) - (s[i - k] == c[(i - k + 1) % 3] ? 0 : 1); dp[2] += (s[i] == c[(i + 2) % 3] ? 0 : 1) - (s[i - k] == c[(i - k + 2) % 3] ? 0 : 1); min = Math.min(Math.min(Math.min(dp[0], dp[1]), dp[2]), min); // System.out.println(Arrays.toString(dp)); } System.out.println(min); } /* -----: Template :----- */ static InputReader in = new InputReader(System.in); public static void main(String[] args) { P1196D2 p = new P1196D2(); int q = multipleIndependent ? in.nextInt() : 1; while (q-- > 0) { p.run(); } } int numLength(long n) { int l = 0; while (n > 0) { n /= 10; l++; } return l; } <R> long binarySearch(long lowerBound, long upperBound, R value, Function<Long, R> generatorFunction, Comparator<R> comparator) { if (lowerBound <= upperBound) { long mid = (lowerBound + upperBound) / 2; int compare = comparator.compare(generatorFunction.apply(mid), value); if (compare == 0) { return mid; } else if (compare < 0) { return binarySearch(mid + 1, upperBound, value, generatorFunction, comparator); } else { return binarySearch(lowerBound, mid - 1, value, generatorFunction, comparator); } } else { return -1; } } <T> Integer[] sortSimultaneously(T[] key, Comparator<T> comparator, Object[]... moreArrays) { int n = key.length; for (Object[] array : moreArrays) { if (array.length != n) { throw new RuntimeException("Arrays must have equals lengths"); } } Integer[] indices = new Integer[n]; for (int i = 0; i < n; i++) { indices[i] = i; } Comparator<Integer> delegatingComparator = (a, b) -> { return comparator.compare(key[a], key[b]); }; Arrays.sort(indices, delegatingComparator); reorder(indices, key); for (Object[] array : moreArrays) { reorder(indices, array); } return indices; } void reorder(Integer[] indices, Object[] arr) { if (indices.length != arr.length) { throw new RuntimeException("Arrays must have equals lengths"); } int n = arr.length; Object[] copy = new Object[n]; for (int i = 0; i < n; i++) { copy[i] = arr[indices[i]]; } System.arraycopy(copy, 0, arr, 0, n); } int prodMod(int a, int b, int mod) { return (int) (((long) a) * b % mod); } long prodMod(long a, long b, long mod) { long res = 0; a %= mod; b %= mod; while (b > 0) { if ((b & 1) > 0) { res = (res + a) % mod; } a = (a << 1) % mod; b >>= 1; } return res; } long sumMod(int[] b, long mod) { long res = 0; for (int i = 0; i < b.length; i++) { res = (res + b[i] % mod) % mod; } return res; } long sumMod(long[] a, long mod) { long res = 0; for (int i = 0; i < a.length; i++) { res = (res + a[i] % mod) % mod; } return res; } long sumProdMod(int[] a, long b, long mod) { long res = sumMod(a, mod); return prodMod(res, b, mod); } long sumProdMod(long[] a, long b, long mod) { long res = sumMod(a, mod); return prodMod(res, b, mod); } long sumProdMod(int[] a, int[] b, long mod) { if (a.length != b.length) { throw new RuntimeException("Arrays must have equals lengths"); } long res = 0; for (int i = 0; i < a.length; i++) { res = (res + prodMod(a[i], b[i], mod)) % mod; } return res; } long sumProdMod(long[] a, long[] b, long mod) { if (a.length != b.length) { throw new RuntimeException("Arrays must have equals lengths"); } long res = 0; for (int i = 0; i < a.length; i++) { res = (res + prodMod(a[i], b[i], mod)) % mod; } return res; } int[] toPrimitive(Integer[] arr) { int[] res = new int[arr.length]; for (int i = 0; i < arr.length; i++) { res[i] = arr[i]; } return res; } int[][] toPrimitive(Integer[][] arr) { int[][] res = new int[arr.length][]; for (int i = 0; i < arr.length; i++) { res[i] = toPrimitive(arr[i]); } return res; } long[] toPrimitive(Long[] arr) { long[] res = new long[arr.length]; for (int i = 0; i < arr.length; i++) { res[i] = arr[i]; } return res; } long[][] toPrimitive(Long[][] arr) { long[][] res = new long[arr.length][]; for (int i = 0; i < arr.length; i++) { res[i] = toPrimitive(arr[i]); } return res; } Integer[] toWrapper(int[] arr) { Integer[] res = new Integer[arr.length]; for (int i = 0; i < arr.length; i++) { res[i] = arr[i]; } return res; } Integer[][] toWrapper(int[][] arr) { Integer[][] res = new Integer[arr.length][]; for (int i = 0; i < arr.length; i++) { res[i] = toWrapper(arr[i]); } return res; } Long[] toWrapper(long[] arr) { Long[] res = new Long[arr.length]; for (int i = 0; i < arr.length; i++) { res[i] = arr[i]; } return res; } Long[][] toWrapper(long[][] arr) { Long[][] res = new Long[arr.length][]; for (int i = 0; i < arr.length; i++) { res[i] = toWrapper(arr[i]); } return res; } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public int[] nextIntArray(int n) { int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = nextInt(); } return arr; } public <T> T[] nextIntArray(int n, Function<Integer, T> function, Class<T> c) { T[] arr = (T[]) Array.newInstance(c, n); for (int i = 0; i < n; i++) { arr[i] = function.apply(nextInt()); } return arr; } public long[] nextLongArray(int n) { long[] arr = new long[n]; for (int i = 0; i < n; i++) { arr[i] = nextLong(); } return arr; } public <T> T[] nextLongArray(int n, Function<Long, T> function, Class<T> c) { T[] arr = (T[]) Array.newInstance(c, n); for (int i = 0; i < n; i++) { arr[i] = function.apply(nextLong()); } return arr; } public int[][] nextIntMap(int n, int m) { int[][] map = new int[n][m]; for (int i = 0; i < n; i++) { map[i] = nextIntArray(m); } return map; } public long[][] nextLongMap(int n, int m) { long[][] map = new long[n][m]; for (int i = 0; i < n; i++) { map[i] = nextLongArray(m); } return map; } public char[][] nextCharMap(int n) { char[][] map = new char[n][]; for (int i = 0; i < n; i++) { map[i] = next().toCharArray(); } return map; } public void readColumns(Object[]... columns) { int n = columns[0].length; for (Object[] column : columns) { if (column.length != n) { throw new RuntimeException("Arrays must have equals lengths"); } } for (int i = 0; i < n; i++) { for (Object[] column : columns) { column[i] = read(column[i].getClass()); } } } public <T> T read(Class<T> c) { throw new UnsupportedOperationException("To be implemented"); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
2,996
291
878
import java.util.*; public class B138 { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int a[] = new int[100004]; int b[] = new int[100004]; int n, m, ans = 0, dau, cuoi=-1; n = sc.nextInt(); m = sc.nextInt(); for(int i=0;i<100004;i++) a[i] = 0; for(int i=0;i<n;i++){ b[i] = sc.nextInt(); if(a[b[i]]==0){ a[b[i]] = 1; ans++; if(ans==m){ cuoi = i+1; break; } } } for(int i=cuoi-1;i>=00;i--){ if(a[b[i]]==1){ a[b[i]] = 0; ans--; if(ans==0){ System.out.println((i+1)+" "+cuoi); System.exit(0); } } } System.out.println("-1 -1"); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; public class B138 { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int a[] = new int[100004]; int b[] = new int[100004]; int n, m, ans = 0, dau, cuoi=-1; n = sc.nextInt(); m = sc.nextInt(); for(int i=0;i<100004;i++) a[i] = 0; for(int i=0;i<n;i++){ b[i] = sc.nextInt(); if(a[b[i]]==0){ a[b[i]] = 1; ans++; if(ans==m){ cuoi = i+1; break; } } } for(int i=cuoi-1;i>=00;i--){ if(a[b[i]]==1){ a[b[i]] = 0; ans--; if(ans==0){ System.out.println((i+1)+" "+cuoi); System.exit(0); } } } System.out.println("-1 -1"); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; public class B138 { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int a[] = new int[100004]; int b[] = new int[100004]; int n, m, ans = 0, dau, cuoi=-1; n = sc.nextInt(); m = sc.nextInt(); for(int i=0;i<100004;i++) a[i] = 0; for(int i=0;i<n;i++){ b[i] = sc.nextInt(); if(a[b[i]]==0){ a[b[i]] = 1; ans++; if(ans==m){ cuoi = i+1; break; } } } for(int i=cuoi-1;i>=00;i--){ if(a[b[i]]==1){ a[b[i]] = 0; ans--; if(ans==0){ System.out.println((i+1)+" "+cuoi); System.exit(0); } } } System.out.println("-1 -1"); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
586
877
175
/* package whatever; // don't place package name! */ import java.util.*; import java.lang.*; import java.io.*; /* Name of the class has to be "Main" only if the class is public. */ public class Ideone { public static void main (String[] args) throws java.lang.Exception { // your code goes here long n,s,p; Scanner in=new Scanner(System.in); n=in.nextLong(); s=in.nextLong(); if(n==1 && s<=1) { System.out.print(n-1); } else if(s<n) { if(s%2!=0) {System.out.print(s/2);} else {System.out.print(s/2-1);} } else if(s==n) { if(s%2==0) {System.out.println((n/2)-1);} else {System.out.println(n/2);} } else if(s<=(2*n-1)) { System.out.print((2*n+1-s)/2); } else { System.out.print(0); } } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> /* package whatever; // don't place package name! */ import java.util.*; import java.lang.*; import java.io.*; /* Name of the class has to be "Main" only if the class is public. */ public class Ideone { public static void main (String[] args) throws java.lang.Exception { // your code goes here long n,s,p; Scanner in=new Scanner(System.in); n=in.nextLong(); s=in.nextLong(); if(n==1 && s<=1) { System.out.print(n-1); } else if(s<n) { if(s%2!=0) {System.out.print(s/2);} else {System.out.print(s/2-1);} } else if(s==n) { if(s%2==0) {System.out.println((n/2)-1);} else {System.out.println(n/2);} } else if(s<=(2*n-1)) { System.out.print((2*n+1-s)/2); } else { System.out.print(0); } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> /* package whatever; // don't place package name! */ import java.util.*; import java.lang.*; import java.io.*; /* Name of the class has to be "Main" only if the class is public. */ public class Ideone { public static void main (String[] args) throws java.lang.Exception { // your code goes here long n,s,p; Scanner in=new Scanner(System.in); n=in.nextLong(); s=in.nextLong(); if(n==1 && s<=1) { System.out.print(n-1); } else if(s<n) { if(s%2!=0) {System.out.print(s/2);} else {System.out.print(s/2-1);} } else if(s==n) { if(s%2==0) {System.out.println((n/2)-1);} else {System.out.println(n/2);} } else if(s<=(2*n-1)) { System.out.print((2*n+1-s)/2); } else { System.out.print(0); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
603
175
3,107
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.LinkedList; import java.util.Scanner; import java.util.Stack; public class sample { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); System.out.println(n+n/2); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.LinkedList; import java.util.Scanner; import java.util.Stack; public class sample { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); System.out.println(n+n/2); } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.LinkedList; import java.util.Scanner; import java.util.Stack; public class sample { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); System.out.println(n+n/2); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
402
3,101
1,146
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class Main { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); String[] in = br.readLine().split(" "); long n = Long.parseLong(in[0]), s = Long.parseLong(in[1]); Solver solver = new Solver(n, s); System.out.println(solver.solve()); } } class Solver { private long n, s; Solver(long n, long s) { this.n = n; this.s = s; } public long solve() { long low = 1, high = n; for (int i = 0; i < 72; ++i) { long x = low + (high - low) / 2; if (check(x)) high = x - 1; else low = x + 1; } return n - high; } private boolean check(long x) { long tmp = x; int sum = 0; while (tmp > 0) { sum += tmp % 10; tmp /= 10; } return x - sum >= s; } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class Main { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); String[] in = br.readLine().split(" "); long n = Long.parseLong(in[0]), s = Long.parseLong(in[1]); Solver solver = new Solver(n, s); System.out.println(solver.solve()); } } class Solver { private long n, s; Solver(long n, long s) { this.n = n; this.s = s; } public long solve() { long low = 1, high = n; for (int i = 0; i < 72; ++i) { long x = low + (high - low) / 2; if (check(x)) high = x - 1; else low = x + 1; } return n - high; } private boolean check(long x) { long tmp = x; int sum = 0; while (tmp > 0) { sum += tmp % 10; tmp /= 10; } return x - sum >= s; } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class Main { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); String[] in = br.readLine().split(" "); long n = Long.parseLong(in[0]), s = Long.parseLong(in[1]); Solver solver = new Solver(n, s); System.out.println(solver.solve()); } } class Solver { private long n, s; Solver(long n, long s) { this.n = n; this.s = s; } public long solve() { long low = 1, high = n; for (int i = 0; i < 72; ++i) { long x = low + (high - low) / 2; if (check(x)) high = x - 1; else low = x + 1; } return n - high; } private boolean check(long x) { long tmp = x; int sum = 0; while (tmp > 0) { sum += tmp % 10; tmp /= 10; } return x - sum >= s; } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
622
1,145
750
import java.io.*; import java.util.*; /* * And now I wonder if I should delete these comments cause they might throw me off. * Lol who cares though? */ public class R364C { public static void main(String[] args) throws NumberFormatException, IOException { Scanner s = new Scanner(System.in); BufferedReader f = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(System.out); int n = Integer.parseInt(f.readLine()); char[] a = f.readLine().toCharArray(); int difTypes = 0; TreeSet<Character> types = new TreeSet<Character>(); for(int i = 0; i < n; i++) { if(!types.contains(a[i])) { types.add(a[i]); } } int i = 0, j = 0; difTypes = types.size(); int curTypes = 0; int min = Integer.MAX_VALUE; TreeSet<Character> has = new TreeSet<Character>(); HashMap<Character, Integer> freq = new HashMap<Character, Integer>(); while(i < n && j < n) { // System.out.println(i + " " + j); has.add(a[j]); if(!freq.containsKey(a[j])) { freq.put(a[j], 1); } else { freq.put(a[j], freq.get(a[j])+1); } j++; curTypes = has.size(); if(curTypes == difTypes) min = Math.min(min, j-i); // System.out.println(freq.toString()); // System.out.println(curTypes); // System.out.println(); while(i < n && has.size() == difTypes) { int Freq = freq.get(a[i]); // System.out.println(Freq); if(Freq - 1 == 0) { has.remove(a[i]); freq.put(a[i], freq.get(a[i])-1); i++; break; } freq.put(a[i], freq.get(a[i])-1); i++; if(curTypes == difTypes) min = Math.min(min, j-i); } curTypes = has.size(); } // if(curTypes == difTypes) min = Math.min(min, j-i); System.out.println(min); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; /* * And now I wonder if I should delete these comments cause they might throw me off. * Lol who cares though? */ public class R364C { public static void main(String[] args) throws NumberFormatException, IOException { Scanner s = new Scanner(System.in); BufferedReader f = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(System.out); int n = Integer.parseInt(f.readLine()); char[] a = f.readLine().toCharArray(); int difTypes = 0; TreeSet<Character> types = new TreeSet<Character>(); for(int i = 0; i < n; i++) { if(!types.contains(a[i])) { types.add(a[i]); } } int i = 0, j = 0; difTypes = types.size(); int curTypes = 0; int min = Integer.MAX_VALUE; TreeSet<Character> has = new TreeSet<Character>(); HashMap<Character, Integer> freq = new HashMap<Character, Integer>(); while(i < n && j < n) { // System.out.println(i + " " + j); has.add(a[j]); if(!freq.containsKey(a[j])) { freq.put(a[j], 1); } else { freq.put(a[j], freq.get(a[j])+1); } j++; curTypes = has.size(); if(curTypes == difTypes) min = Math.min(min, j-i); // System.out.println(freq.toString()); // System.out.println(curTypes); // System.out.println(); while(i < n && has.size() == difTypes) { int Freq = freq.get(a[i]); // System.out.println(Freq); if(Freq - 1 == 0) { has.remove(a[i]); freq.put(a[i], freq.get(a[i])-1); i++; break; } freq.put(a[i], freq.get(a[i])-1); i++; if(curTypes == difTypes) min = Math.min(min, j-i); } curTypes = has.size(); } // if(curTypes == difTypes) min = Math.min(min, j-i); System.out.println(min); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; /* * And now I wonder if I should delete these comments cause they might throw me off. * Lol who cares though? */ public class R364C { public static void main(String[] args) throws NumberFormatException, IOException { Scanner s = new Scanner(System.in); BufferedReader f = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(System.out); int n = Integer.parseInt(f.readLine()); char[] a = f.readLine().toCharArray(); int difTypes = 0; TreeSet<Character> types = new TreeSet<Character>(); for(int i = 0; i < n; i++) { if(!types.contains(a[i])) { types.add(a[i]); } } int i = 0, j = 0; difTypes = types.size(); int curTypes = 0; int min = Integer.MAX_VALUE; TreeSet<Character> has = new TreeSet<Character>(); HashMap<Character, Integer> freq = new HashMap<Character, Integer>(); while(i < n && j < n) { // System.out.println(i + " " + j); has.add(a[j]); if(!freq.containsKey(a[j])) { freq.put(a[j], 1); } else { freq.put(a[j], freq.get(a[j])+1); } j++; curTypes = has.size(); if(curTypes == difTypes) min = Math.min(min, j-i); // System.out.println(freq.toString()); // System.out.println(curTypes); // System.out.println(); while(i < n && has.size() == difTypes) { int Freq = freq.get(a[i]); // System.out.println(Freq); if(Freq - 1 == 0) { has.remove(a[i]); freq.put(a[i], freq.get(a[i])-1); i++; break; } freq.put(a[i], freq.get(a[i])-1); i++; if(curTypes == difTypes) min = Math.min(min, j-i); } curTypes = has.size(); } // if(curTypes == difTypes) min = Math.min(min, j-i); System.out.println(min); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
843
749
2,122
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastScanner in = new FastScanner(inputStream); PrintWriter out = new PrintWriter(outputStream); E solver = new E(); solver.solve(1, in, out); out.close(); } static class E { public void solve(int testNumber, FastScanner in, PrintWriter out) { int n = in.ni(), K = in.ni(); long mod = 998244353; long[][] dp = new long[n + 1][n + 1]; for (int lim = 1; lim <= n; lim++) { long sum = 1; dp[0][lim] = 1; for (int i = 1; i <= n; i++) { dp[i][lim] = (dp[i][lim] + sum) % mod; sum = (sum + dp[i][lim]) % mod; if (i >= lim) sum = (sum - dp[i - lim][lim] + mod) % mod; } } long ans = 0; for (int k = 1; k < Math.min(K, n + 1); k++) { long h = dp[n][k] - dp[n][k - 1]; int lim = K / k; if (K % k == 0) lim--; if (lim > n) lim = n; ans += dp[n][lim] * h % mod; } out.println(2 * ans % mod); } } static class FastScanner { private BufferedReader in; private StringTokenizer st; public FastScanner(InputStream stream) { in = new BufferedReader(new InputStreamReader(stream)); } public String ns() { while (st == null || !st.hasMoreTokens()) { try { String rl = in.readLine(); if (rl == null) { return null; } st = new StringTokenizer(rl); } catch (IOException e) { throw new RuntimeException(e); } } return st.nextToken(); } public int ni() { return Integer.parseInt(ns()); } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastScanner in = new FastScanner(inputStream); PrintWriter out = new PrintWriter(outputStream); E solver = new E(); solver.solve(1, in, out); out.close(); } static class E { public void solve(int testNumber, FastScanner in, PrintWriter out) { int n = in.ni(), K = in.ni(); long mod = 998244353; long[][] dp = new long[n + 1][n + 1]; for (int lim = 1; lim <= n; lim++) { long sum = 1; dp[0][lim] = 1; for (int i = 1; i <= n; i++) { dp[i][lim] = (dp[i][lim] + sum) % mod; sum = (sum + dp[i][lim]) % mod; if (i >= lim) sum = (sum - dp[i - lim][lim] + mod) % mod; } } long ans = 0; for (int k = 1; k < Math.min(K, n + 1); k++) { long h = dp[n][k] - dp[n][k - 1]; int lim = K / k; if (K % k == 0) lim--; if (lim > n) lim = n; ans += dp[n][lim] * h % mod; } out.println(2 * ans % mod); } } static class FastScanner { private BufferedReader in; private StringTokenizer st; public FastScanner(InputStream stream) { in = new BufferedReader(new InputStreamReader(stream)); } public String ns() { while (st == null || !st.hasMoreTokens()) { try { String rl = in.readLine(); if (rl == null) { return null; } st = new StringTokenizer(rl); } catch (IOException e) { throw new RuntimeException(e); } } return st.nextToken(); } public int ni() { return Integer.parseInt(ns()); } } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastScanner in = new FastScanner(inputStream); PrintWriter out = new PrintWriter(outputStream); E solver = new E(); solver.solve(1, in, out); out.close(); } static class E { public void solve(int testNumber, FastScanner in, PrintWriter out) { int n = in.ni(), K = in.ni(); long mod = 998244353; long[][] dp = new long[n + 1][n + 1]; for (int lim = 1; lim <= n; lim++) { long sum = 1; dp[0][lim] = 1; for (int i = 1; i <= n; i++) { dp[i][lim] = (dp[i][lim] + sum) % mod; sum = (sum + dp[i][lim]) % mod; if (i >= lim) sum = (sum - dp[i - lim][lim] + mod) % mod; } } long ans = 0; for (int k = 1; k < Math.min(K, n + 1); k++) { long h = dp[n][k] - dp[n][k - 1]; int lim = K / k; if (K % k == 0) lim--; if (lim > n) lim = n; ans += dp[n][lim] * h % mod; } out.println(2 * ans % mod); } } static class FastScanner { private BufferedReader in; private StringTokenizer st; public FastScanner(InputStream stream) { in = new BufferedReader(new InputStreamReader(stream)); } public String ns() { while (st == null || !st.hasMoreTokens()) { try { String rl = in.readLine(); if (rl == null) { return null; } st = new StringTokenizer(rl); } catch (IOException e) { throw new RuntimeException(e); } } return st.nextToken(); } public int ni() { return Integer.parseInt(ns()); } } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
903
2,118
1,977
import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.StringTokenizer; public class Solution { static class Team implements Comparable<Team> { int pr; int time; int id; public Team(int P, int T, int I) { pr = P; time = T; id = I; } @Override public int compareTo(Team t) { return pr != t.pr ? t.pr - pr : time != t.time ? time - t.time : id - t.id; } } public static void main(String[] args) throws Exception { BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(System.out); StringTokenizer st = new StringTokenizer(in.readLine()); int n = Integer.parseInt(st.nextToken()); int k = Integer.parseInt(st.nextToken()); Team[] a = new Team[n]; int[] c = new int[n + 1]; for (int i = 0; i < n; i++) { st = new StringTokenizer(in.readLine()); int p = Integer.parseInt(st.nextToken()); int t = Integer.parseInt(st.nextToken()); a[i] = new Team(p, t, i); } Arrays.sort(a); int prev = 1; c[1]++; for (int i = 1; i < n; i++) { if (a[i].pr == a[i - 1].pr && a[i].time == a[i - 1].time) for (int j = i + 1; j >= prev; j--) c[j] = i + 2 - prev; else { prev = i + 1; c[prev] = 1; } } out.println(c[k]); out.close(); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.StringTokenizer; public class Solution { static class Team implements Comparable<Team> { int pr; int time; int id; public Team(int P, int T, int I) { pr = P; time = T; id = I; } @Override public int compareTo(Team t) { return pr != t.pr ? t.pr - pr : time != t.time ? time - t.time : id - t.id; } } public static void main(String[] args) throws Exception { BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(System.out); StringTokenizer st = new StringTokenizer(in.readLine()); int n = Integer.parseInt(st.nextToken()); int k = Integer.parseInt(st.nextToken()); Team[] a = new Team[n]; int[] c = new int[n + 1]; for (int i = 0; i < n; i++) { st = new StringTokenizer(in.readLine()); int p = Integer.parseInt(st.nextToken()); int t = Integer.parseInt(st.nextToken()); a[i] = new Team(p, t, i); } Arrays.sort(a); int prev = 1; c[1]++; for (int i = 1; i < n; i++) { if (a[i].pr == a[i - 1].pr && a[i].time == a[i - 1].time) for (int j = i + 1; j >= prev; j--) c[j] = i + 2 - prev; else { prev = i + 1; c[prev] = 1; } } out.println(c[k]); out.close(); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.StringTokenizer; public class Solution { static class Team implements Comparable<Team> { int pr; int time; int id; public Team(int P, int T, int I) { pr = P; time = T; id = I; } @Override public int compareTo(Team t) { return pr != t.pr ? t.pr - pr : time != t.time ? time - t.time : id - t.id; } } public static void main(String[] args) throws Exception { BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(System.out); StringTokenizer st = new StringTokenizer(in.readLine()); int n = Integer.parseInt(st.nextToken()); int k = Integer.parseInt(st.nextToken()); Team[] a = new Team[n]; int[] c = new int[n + 1]; for (int i = 0; i < n; i++) { st = new StringTokenizer(in.readLine()); int p = Integer.parseInt(st.nextToken()); int t = Integer.parseInt(st.nextToken()); a[i] = new Team(p, t, i); } Arrays.sort(a); int prev = 1; c[1]++; for (int i = 1; i < n; i++) { if (a[i].pr == a[i - 1].pr && a[i].time == a[i - 1].time) for (int j = i + 1; j >= prev; j--) c[j] = i + 2 - prev; else { prev = i + 1; c[prev] = 1; } } out.println(c[k]); out.close(); } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
721
1,973
2,334
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } static class TaskC { public void solve(int testNumber, InputReader in, OutputWriter out) { int n = in.readInt(); boolean[] isF = new boolean[n]; for (int i = 0; i < n; i++) { isF[i] = in.readCharacter() == 'f'; } long[][] mem = new long[n + 1][n + 1]; mem[n][0] = 1; for (int idx = n - 1; idx >= 0; idx--) { for (int indentLevel = 0; indentLevel < n; indentLevel++) { mem[idx + 1][indentLevel + 1] += mem[idx + 1][indentLevel]; long res = isF[idx] ? mem[idx + 1][indentLevel + 1] - mem[idx + 1][indentLevel] : mem[idx + 1][indentLevel]; mem[idx][indentLevel] = res % MiscUtils.MOD7; } } out.printLine(mem[0][0]); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public char readCharacter() { int c = read(); while (isSpaceChar(c)) { c = read(); } return (char) c; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static class MiscUtils { public static final int MOD7 = (int) (1e9 + 7); } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void close() { writer.close(); } public void printLine(long i) { writer.println(i); } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } static class TaskC { public void solve(int testNumber, InputReader in, OutputWriter out) { int n = in.readInt(); boolean[] isF = new boolean[n]; for (int i = 0; i < n; i++) { isF[i] = in.readCharacter() == 'f'; } long[][] mem = new long[n + 1][n + 1]; mem[n][0] = 1; for (int idx = n - 1; idx >= 0; idx--) { for (int indentLevel = 0; indentLevel < n; indentLevel++) { mem[idx + 1][indentLevel + 1] += mem[idx + 1][indentLevel]; long res = isF[idx] ? mem[idx + 1][indentLevel + 1] - mem[idx + 1][indentLevel] : mem[idx + 1][indentLevel]; mem[idx][indentLevel] = res % MiscUtils.MOD7; } } out.printLine(mem[0][0]); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public char readCharacter() { int c = read(); while (isSpaceChar(c)) { c = read(); } return (char) c; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static class MiscUtils { public static final int MOD7 = (int) (1e9 + 7); } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void close() { writer.close(); } public void printLine(long i) { writer.println(i); } } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } static class TaskC { public void solve(int testNumber, InputReader in, OutputWriter out) { int n = in.readInt(); boolean[] isF = new boolean[n]; for (int i = 0; i < n; i++) { isF[i] = in.readCharacter() == 'f'; } long[][] mem = new long[n + 1][n + 1]; mem[n][0] = 1; for (int idx = n - 1; idx >= 0; idx--) { for (int indentLevel = 0; indentLevel < n; indentLevel++) { mem[idx + 1][indentLevel + 1] += mem[idx + 1][indentLevel]; long res = isF[idx] ? mem[idx + 1][indentLevel + 1] - mem[idx + 1][indentLevel] : mem[idx + 1][indentLevel]; mem[idx][indentLevel] = res % MiscUtils.MOD7; } } out.printLine(mem[0][0]); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public char readCharacter() { int c = read(); while (isSpaceChar(c)) { c = read(); } return (char) c; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static class MiscUtils { public static final int MOD7 = (int) (1e9 + 7); } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void close() { writer.close(); } public void printLine(long i) { writer.println(i); } } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,276
2,329
2,452
import java.io.*; import java.util.*; import java.util.stream.*; public class ProblemF { private static boolean debug = false; private static int N; private static int[] A; private static void solveProblem(InputStream instr) throws Exception { InputReader sc = new InputReader(instr); int testCount = 1; if (debug) { testCount = sc.nextInt(); } for (int t = 1; t <= testCount; t++) { printDebug("------ " + t + " ------"); N = sc.nextInt(); A = readInts(sc, N); Object result = solveTestCase(); System.out.println(result); } } private static Object solveTestCase() { int sum[] = new int[N]; sum[0] = A[0]; for (int i = 1; i < N; i++) { sum[i] = sum[i - 1] + A[i]; } TreeMap<Integer, List<int[]>> map = new TreeMap<>(); for (int i = 0; i < N; i++) { for (int j = i; j < N; j++) { int groupSum = sum[j] - (i == 0 ? 0 : sum[i - 1]); map.putIfAbsent(groupSum, new ArrayList<>()); map.get(groupSum).add(new int[]{i, j}); } } int max = -1; List<int[]> maxAnswer = null; for (Map.Entry<Integer, List<int[]>> entry : map.entrySet()) { List<int[]> values = entry.getValue(); if (values.size() <= max) { continue; } List<int[]> curr = findMax(values); if (curr.size() > max) { max = curr.size(); maxAnswer = curr; } } List<String> answer = new ArrayList<>(); for (int[] value : maxAnswer) { answer.add((value[0] + 1) + " " + (value[1] + 1)); } return max + "\n" + joinValues(answer, "\n"); } private static List<int[]> findMax(List<int[]> values) { values.sort(new Comparator<int[]>() { @Override public int compare(int[] o1, int[] o2) { return o1[1] - o2[1]; } }); List<int[]> answer = new ArrayList<>(); int right = -1; for (int i = 0; i < values.size(); i++) { int[] value = values.get(i); if (value[0] > right) { answer.add(value); right = value[1]; } } return answer; } private static int[] readInts(InputReader sc, int N) throws Exception { int[] arr = new int[N]; for (int i = 0; i < N; i++) { arr[i] = sc.nextInt(); } return arr; } private static String joinValues(List<? extends Object> list, String delim) { return list.stream().map(Object::toString).collect(Collectors.joining(delim)); } private static String joinValues(int[] arr, String delim) { List<Object> list = new ArrayList<>(); for (Object value : arr) { list.add(value); } return list.stream().map(Object::toString).collect(Collectors.joining(delim)); } public static void printDebug(Object str) { if (debug) { System.out.println("DEBUG: " + str); } } private static final class InputReader { private final InputStream stream; private final byte[] buf = new byte[1024]; private int curChar; private int Chars; public InputReader(InputStream stream) { this.stream = stream; } private int read() throws Exception { if (curChar >= Chars) { curChar = 0; Chars = stream.read(buf); if (Chars <= 0) return -1; } return buf[curChar++]; } public final int nextInt() throws Exception { return (int)nextLong(); } public final long nextLong() throws Exception { int c = read(); while (isSpaceChar(c)) { c = read(); if (c == -1) throw new IOException(); } boolean negative = false; if (c == '-') { negative = true; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += (c - '0'); c = read(); } while (!isSpaceChar(c)); return negative ? (-res) : (res); } public final int[] nextIntBrray(int size) throws Exception { int[] arr = new int[size]; for (int i = 0; i < size; i++) arr[i] = nextInt(); return arr; } public final String next() throws Exception { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.append((char)c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public final String nextLine() throws Exception { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.append((char)c); c = read(); } while (c != '\n' && c != -1); return res.toString(); } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } public static void main(String[] args) throws Exception { long currTime = System.currentTimeMillis(); if (debug) { solveProblem(new FileInputStream(new File("input.in"))); System.out.println("Time: " + (System.currentTimeMillis() - currTime)); } else { solveProblem(System.in); } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; import java.util.stream.*; public class ProblemF { private static boolean debug = false; private static int N; private static int[] A; private static void solveProblem(InputStream instr) throws Exception { InputReader sc = new InputReader(instr); int testCount = 1; if (debug) { testCount = sc.nextInt(); } for (int t = 1; t <= testCount; t++) { printDebug("------ " + t + " ------"); N = sc.nextInt(); A = readInts(sc, N); Object result = solveTestCase(); System.out.println(result); } } private static Object solveTestCase() { int sum[] = new int[N]; sum[0] = A[0]; for (int i = 1; i < N; i++) { sum[i] = sum[i - 1] + A[i]; } TreeMap<Integer, List<int[]>> map = new TreeMap<>(); for (int i = 0; i < N; i++) { for (int j = i; j < N; j++) { int groupSum = sum[j] - (i == 0 ? 0 : sum[i - 1]); map.putIfAbsent(groupSum, new ArrayList<>()); map.get(groupSum).add(new int[]{i, j}); } } int max = -1; List<int[]> maxAnswer = null; for (Map.Entry<Integer, List<int[]>> entry : map.entrySet()) { List<int[]> values = entry.getValue(); if (values.size() <= max) { continue; } List<int[]> curr = findMax(values); if (curr.size() > max) { max = curr.size(); maxAnswer = curr; } } List<String> answer = new ArrayList<>(); for (int[] value : maxAnswer) { answer.add((value[0] + 1) + " " + (value[1] + 1)); } return max + "\n" + joinValues(answer, "\n"); } private static List<int[]> findMax(List<int[]> values) { values.sort(new Comparator<int[]>() { @Override public int compare(int[] o1, int[] o2) { return o1[1] - o2[1]; } }); List<int[]> answer = new ArrayList<>(); int right = -1; for (int i = 0; i < values.size(); i++) { int[] value = values.get(i); if (value[0] > right) { answer.add(value); right = value[1]; } } return answer; } private static int[] readInts(InputReader sc, int N) throws Exception { int[] arr = new int[N]; for (int i = 0; i < N; i++) { arr[i] = sc.nextInt(); } return arr; } private static String joinValues(List<? extends Object> list, String delim) { return list.stream().map(Object::toString).collect(Collectors.joining(delim)); } private static String joinValues(int[] arr, String delim) { List<Object> list = new ArrayList<>(); for (Object value : arr) { list.add(value); } return list.stream().map(Object::toString).collect(Collectors.joining(delim)); } public static void printDebug(Object str) { if (debug) { System.out.println("DEBUG: " + str); } } private static final class InputReader { private final InputStream stream; private final byte[] buf = new byte[1024]; private int curChar; private int Chars; public InputReader(InputStream stream) { this.stream = stream; } private int read() throws Exception { if (curChar >= Chars) { curChar = 0; Chars = stream.read(buf); if (Chars <= 0) return -1; } return buf[curChar++]; } public final int nextInt() throws Exception { return (int)nextLong(); } public final long nextLong() throws Exception { int c = read(); while (isSpaceChar(c)) { c = read(); if (c == -1) throw new IOException(); } boolean negative = false; if (c == '-') { negative = true; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += (c - '0'); c = read(); } while (!isSpaceChar(c)); return negative ? (-res) : (res); } public final int[] nextIntBrray(int size) throws Exception { int[] arr = new int[size]; for (int i = 0; i < size; i++) arr[i] = nextInt(); return arr; } public final String next() throws Exception { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.append((char)c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public final String nextLine() throws Exception { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.append((char)c); c = read(); } while (c != '\n' && c != -1); return res.toString(); } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } public static void main(String[] args) throws Exception { long currTime = System.currentTimeMillis(); if (debug) { solveProblem(new FileInputStream(new File("input.in"))); System.out.println("Time: " + (System.currentTimeMillis() - currTime)); } else { solveProblem(System.in); } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; import java.util.stream.*; public class ProblemF { private static boolean debug = false; private static int N; private static int[] A; private static void solveProblem(InputStream instr) throws Exception { InputReader sc = new InputReader(instr); int testCount = 1; if (debug) { testCount = sc.nextInt(); } for (int t = 1; t <= testCount; t++) { printDebug("------ " + t + " ------"); N = sc.nextInt(); A = readInts(sc, N); Object result = solveTestCase(); System.out.println(result); } } private static Object solveTestCase() { int sum[] = new int[N]; sum[0] = A[0]; for (int i = 1; i < N; i++) { sum[i] = sum[i - 1] + A[i]; } TreeMap<Integer, List<int[]>> map = new TreeMap<>(); for (int i = 0; i < N; i++) { for (int j = i; j < N; j++) { int groupSum = sum[j] - (i == 0 ? 0 : sum[i - 1]); map.putIfAbsent(groupSum, new ArrayList<>()); map.get(groupSum).add(new int[]{i, j}); } } int max = -1; List<int[]> maxAnswer = null; for (Map.Entry<Integer, List<int[]>> entry : map.entrySet()) { List<int[]> values = entry.getValue(); if (values.size() <= max) { continue; } List<int[]> curr = findMax(values); if (curr.size() > max) { max = curr.size(); maxAnswer = curr; } } List<String> answer = new ArrayList<>(); for (int[] value : maxAnswer) { answer.add((value[0] + 1) + " " + (value[1] + 1)); } return max + "\n" + joinValues(answer, "\n"); } private static List<int[]> findMax(List<int[]> values) { values.sort(new Comparator<int[]>() { @Override public int compare(int[] o1, int[] o2) { return o1[1] - o2[1]; } }); List<int[]> answer = new ArrayList<>(); int right = -1; for (int i = 0; i < values.size(); i++) { int[] value = values.get(i); if (value[0] > right) { answer.add(value); right = value[1]; } } return answer; } private static int[] readInts(InputReader sc, int N) throws Exception { int[] arr = new int[N]; for (int i = 0; i < N; i++) { arr[i] = sc.nextInt(); } return arr; } private static String joinValues(List<? extends Object> list, String delim) { return list.stream().map(Object::toString).collect(Collectors.joining(delim)); } private static String joinValues(int[] arr, String delim) { List<Object> list = new ArrayList<>(); for (Object value : arr) { list.add(value); } return list.stream().map(Object::toString).collect(Collectors.joining(delim)); } public static void printDebug(Object str) { if (debug) { System.out.println("DEBUG: " + str); } } private static final class InputReader { private final InputStream stream; private final byte[] buf = new byte[1024]; private int curChar; private int Chars; public InputReader(InputStream stream) { this.stream = stream; } private int read() throws Exception { if (curChar >= Chars) { curChar = 0; Chars = stream.read(buf); if (Chars <= 0) return -1; } return buf[curChar++]; } public final int nextInt() throws Exception { return (int)nextLong(); } public final long nextLong() throws Exception { int c = read(); while (isSpaceChar(c)) { c = read(); if (c == -1) throw new IOException(); } boolean negative = false; if (c == '-') { negative = true; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += (c - '0'); c = read(); } while (!isSpaceChar(c)); return negative ? (-res) : (res); } public final int[] nextIntBrray(int size) throws Exception { int[] arr = new int[size]; for (int i = 0; i < size; i++) arr[i] = nextInt(); return arr; } public final String next() throws Exception { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.append((char)c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public final String nextLine() throws Exception { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.append((char)c); c = read(); } while (c != '\n' && c != -1); return res.toString(); } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } public static void main(String[] args) throws Exception { long currTime = System.currentTimeMillis(); if (debug) { solveProblem(new FileInputStream(new File("input.in"))); System.out.println("Time: " + (System.currentTimeMillis() - currTime)); } else { solveProblem(System.in); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,693
2,447
2,200
import java.io.*; import java.util.*; public class CC { public static void main(String[] args)throws Throwable { MyScanner sc=new MyScanner(); PrintWriter pw=new PrintWriter(System.out); int n=sc.nextInt(); int r=sc.nextInt(); int [] x=new int [n]; for(int i=0;i<n;i++) x[i]=sc.nextInt(); double [] ans=new double [n]; ans[0]=r; for(int i=1;i<n;i++){ ans[i]=r; for(int j=0;j<i;j++){ double dx=Math.abs(x[i]-x[j]); if(dx>2*r) continue; double y=Math.sqrt((4*r*r)-(dx*dx)); ans[i]=Math.max(ans[i], ans[j]+y); } } for(double z : ans) pw.print(z+" "); pw.flush(); pw.close(); } static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() {while (st == null || !st.hasMoreElements()) { try {st = new StringTokenizer(br.readLine());} catch (IOException e) {e.printStackTrace();}} return st.nextToken();} int nextInt() {return Integer.parseInt(next());} long nextLong() {return Long.parseLong(next());} double nextDouble() {return Double.parseDouble(next());} String nextLine(){String str = ""; try {str = br.readLine();} catch (IOException e) {e.printStackTrace();} return str;} } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class CC { public static void main(String[] args)throws Throwable { MyScanner sc=new MyScanner(); PrintWriter pw=new PrintWriter(System.out); int n=sc.nextInt(); int r=sc.nextInt(); int [] x=new int [n]; for(int i=0;i<n;i++) x[i]=sc.nextInt(); double [] ans=new double [n]; ans[0]=r; for(int i=1;i<n;i++){ ans[i]=r; for(int j=0;j<i;j++){ double dx=Math.abs(x[i]-x[j]); if(dx>2*r) continue; double y=Math.sqrt((4*r*r)-(dx*dx)); ans[i]=Math.max(ans[i], ans[j]+y); } } for(double z : ans) pw.print(z+" "); pw.flush(); pw.close(); } static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() {while (st == null || !st.hasMoreElements()) { try {st = new StringTokenizer(br.readLine());} catch (IOException e) {e.printStackTrace();}} return st.nextToken();} int nextInt() {return Integer.parseInt(next());} long nextLong() {return Long.parseLong(next());} double nextDouble() {return Double.parseDouble(next());} String nextLine(){String str = ""; try {str = br.readLine();} catch (IOException e) {e.printStackTrace();} return str;} } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class CC { public static void main(String[] args)throws Throwable { MyScanner sc=new MyScanner(); PrintWriter pw=new PrintWriter(System.out); int n=sc.nextInt(); int r=sc.nextInt(); int [] x=new int [n]; for(int i=0;i<n;i++) x[i]=sc.nextInt(); double [] ans=new double [n]; ans[0]=r; for(int i=1;i<n;i++){ ans[i]=r; for(int j=0;j<i;j++){ double dx=Math.abs(x[i]-x[j]); if(dx>2*r) continue; double y=Math.sqrt((4*r*r)-(dx*dx)); ans[i]=Math.max(ans[i], ans[j]+y); } } for(double z : ans) pw.print(z+" "); pw.flush(); pw.close(); } static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() {while (st == null || !st.hasMoreElements()) { try {st = new StringTokenizer(br.readLine());} catch (IOException e) {e.printStackTrace();}} return st.nextToken();} int nextInt() {return Integer.parseInt(next());} long nextLong() {return Long.parseLong(next());} double nextDouble() {return Double.parseDouble(next());} String nextLine(){String str = ""; try {str = br.readLine();} catch (IOException e) {e.printStackTrace();} return str;} } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
697
2,196
2,969
import java.io.IOException; import java.io.OutputStreamWriter; import java.io.BufferedWriter; import java.util.InputMismatchException; import java.io.OutputStream; import java.io.PrintWriter; import java.util.NoSuchElementException; import java.io.Writer; import java.math.BigInteger; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author Alex */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } } class TaskA { public long recurse(long a, long b) { if (b <= 1) return a; return Math.max(a, b)/Math.min(a,b) + recurse(Math.max(a, b) - Math.min(a, b)*(Math.max(a,b)/Math.min(a, b)), Math.min(a, b)); } public void solve(int testNumber, InputReader in, OutputWriter out) { long a = in.readLong(), b = in.readLong(), i = 0; // while(true) { // if (b <= 1){ // i += a; // out.print(i); // return; // } // i++; // long aa = Math.max(a, b); // long bb = Math.min(a, b); // aa -= bb; // a = aa; // b = bb; // } // out.print(i); out.print(recurse(a, b)); } } class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public long readLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public void close() { writer.close(); } public void print(long i) { writer.print(i); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.IOException; import java.io.OutputStreamWriter; import java.io.BufferedWriter; import java.util.InputMismatchException; import java.io.OutputStream; import java.io.PrintWriter; import java.util.NoSuchElementException; import java.io.Writer; import java.math.BigInteger; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author Alex */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } } class TaskA { public long recurse(long a, long b) { if (b <= 1) return a; return Math.max(a, b)/Math.min(a,b) + recurse(Math.max(a, b) - Math.min(a, b)*(Math.max(a,b)/Math.min(a, b)), Math.min(a, b)); } public void solve(int testNumber, InputReader in, OutputWriter out) { long a = in.readLong(), b = in.readLong(), i = 0; // while(true) { // if (b <= 1){ // i += a; // out.print(i); // return; // } // i++; // long aa = Math.max(a, b); // long bb = Math.min(a, b); // aa -= bb; // a = aa; // b = bb; // } // out.print(i); out.print(recurse(a, b)); } } class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public long readLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public void close() { writer.close(); } public void print(long i) { writer.print(i); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.IOException; import java.io.OutputStreamWriter; import java.io.BufferedWriter; import java.util.InputMismatchException; import java.io.OutputStream; import java.io.PrintWriter; import java.util.NoSuchElementException; import java.io.Writer; import java.math.BigInteger; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author Alex */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } } class TaskA { public long recurse(long a, long b) { if (b <= 1) return a; return Math.max(a, b)/Math.min(a,b) + recurse(Math.max(a, b) - Math.min(a, b)*(Math.max(a,b)/Math.min(a, b)), Math.min(a, b)); } public void solve(int testNumber, InputReader in, OutputWriter out) { long a = in.readLong(), b = in.readLong(), i = 0; // while(true) { // if (b <= 1){ // i += a; // out.print(i); // return; // } // i++; // long aa = Math.max(a, b); // long bb = Math.min(a, b); // aa -= bb; // a = aa; // b = bb; // } // out.print(i); out.print(recurse(a, b)); } } class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public long readLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public void close() { writer.close(); } public void print(long i) { writer.print(i); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,114
2,963
1,651
import java.util.*; import static java.lang.Math.*; import static java.util.Arrays.*; public class A { int INF = 1 << 28; void run() { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int a = sc.nextInt(); int b = sc.nextInt(); long[] chores = new long[n]; for(int i=0;i<n;i++) chores[i] = sc.nextLong(); sort(chores); System.out.println(chores[b]-chores[b-1]); } public static void main(String[] args) { new A().run(); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import static java.lang.Math.*; import static java.util.Arrays.*; public class A { int INF = 1 << 28; void run() { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int a = sc.nextInt(); int b = sc.nextInt(); long[] chores = new long[n]; for(int i=0;i<n;i++) chores[i] = sc.nextLong(); sort(chores); System.out.println(chores[b]-chores[b-1]); } public static void main(String[] args) { new A().run(); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import static java.lang.Math.*; import static java.util.Arrays.*; public class A { int INF = 1 << 28; void run() { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int a = sc.nextInt(); int b = sc.nextInt(); long[] chores = new long[n]; for(int i=0;i<n;i++) chores[i] = sc.nextLong(); sort(chores); System.out.println(chores[b]-chores[b-1]); } public static void main(String[] args) { new A().run(); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
486
1,648
845
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.StreamTokenizer; import java.util.Arrays; import java.util.HashSet; public class E17 { static StreamTokenizer in; static PrintWriter out; static int nextInt() throws IOException { in.nextToken(); return (int)in.nval; } static String nextString() throws IOException { in.nextToken(); return in.sval; } public static void main(String[] args) throws IOException { in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in))); out = new PrintWriter(System.out); int n = nextInt(), k = nextInt(); int MAX = n, nprimes = 0; int[] primes = new int[MAX]; boolean[] isPrime = new boolean[MAX+1]; Arrays.fill(isPrime, true); isPrime[0] = false; isPrime[1] = false; for (int i = 2; i <= MAX; i++) if (isPrime[i]) { primes[nprimes++] = i; for (int j = i + i; j <= MAX; j += i) isPrime[j] = false; } primes[nprimes] = Integer.MAX_VALUE; HashSet<Integer> h = new HashSet<Integer>(); for (int i = 1; i < nprimes; i++) { int x = primes[i-1] + primes[i] + 1; if (x > n) break; if (isPrime[x]) h.add(x); } out.println(h.size() >= k ? "YES" : "NO"); out.flush(); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.StreamTokenizer; import java.util.Arrays; import java.util.HashSet; public class E17 { static StreamTokenizer in; static PrintWriter out; static int nextInt() throws IOException { in.nextToken(); return (int)in.nval; } static String nextString() throws IOException { in.nextToken(); return in.sval; } public static void main(String[] args) throws IOException { in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in))); out = new PrintWriter(System.out); int n = nextInt(), k = nextInt(); int MAX = n, nprimes = 0; int[] primes = new int[MAX]; boolean[] isPrime = new boolean[MAX+1]; Arrays.fill(isPrime, true); isPrime[0] = false; isPrime[1] = false; for (int i = 2; i <= MAX; i++) if (isPrime[i]) { primes[nprimes++] = i; for (int j = i + i; j <= MAX; j += i) isPrime[j] = false; } primes[nprimes] = Integer.MAX_VALUE; HashSet<Integer> h = new HashSet<Integer>(); for (int i = 1; i < nprimes; i++) { int x = primes[i-1] + primes[i] + 1; if (x > n) break; if (isPrime[x]) h.add(x); } out.println(h.size() >= k ? "YES" : "NO"); out.flush(); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.StreamTokenizer; import java.util.Arrays; import java.util.HashSet; public class E17 { static StreamTokenizer in; static PrintWriter out; static int nextInt() throws IOException { in.nextToken(); return (int)in.nval; } static String nextString() throws IOException { in.nextToken(); return in.sval; } public static void main(String[] args) throws IOException { in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in))); out = new PrintWriter(System.out); int n = nextInt(), k = nextInt(); int MAX = n, nprimes = 0; int[] primes = new int[MAX]; boolean[] isPrime = new boolean[MAX+1]; Arrays.fill(isPrime, true); isPrime[0] = false; isPrime[1] = false; for (int i = 2; i <= MAX; i++) if (isPrime[i]) { primes[nprimes++] = i; for (int j = i + i; j <= MAX; j += i) isPrime[j] = false; } primes[nprimes] = Integer.MAX_VALUE; HashSet<Integer> h = new HashSet<Integer>(); for (int i = 1; i < nprimes; i++) { int x = primes[i-1] + primes[i] + 1; if (x > n) break; if (isPrime[x]) h.add(x); } out.println(h.size() >= k ? "YES" : "NO"); out.flush(); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
720
844
2,535
import java.util.*; import java.io.*; import java.math.BigInteger; import static java.lang.Math.*; /* spar5h */ public class cf1 implements Runnable { static void addMap(int curr, HashMap<Integer, Integer> map, HashMap<Integer, Integer>[] hm, int j) { int prev = 0; if(map.get(curr) != null) prev = map.get(curr); int val = 0; if(hm[j].get(curr) != null) val = hm[j].get(curr); if(prev + 1 <= val) return; hm[j].put(curr, prev + 1); } public void run() { InputReader s = new InputReader(System.in); PrintWriter w = new PrintWriter(System.out); int n = s.nextInt(); int[] a = new int[n]; HashMap<Integer, Integer>[] hm = new HashMap[n]; for(int i = 0; i < n; i++) { a[i] = s.nextInt(); hm[i] = new HashMap<Integer, Integer>(); } HashMap<Integer, Integer> map = new HashMap<Integer, Integer>(); for(int i = 0; i < n; i++) { int curr = 0; for(int j = i; j < n; j++) { curr += a[j]; addMap(curr, map, hm, j); } for(Map.Entry<Integer, Integer> e : hm[i].entrySet()) { if(map.get(e.getKey()) != null && map.get(e.getKey()) >= e.getValue()) continue; map.put(e.getKey(), e.getValue()); } } int key = -1; int value = 0; for(Map.Entry<Integer, Integer> e : map.entrySet()) { if(e.getValue() > value) { key = e.getKey(); value = e.getValue(); } } w.println(value); int prev = -1; for(int i = 0; i < n; i++) { int curr = 0; for(int j = i; j > prev; j--) { curr += a[j]; if(curr == key) { w.println((j + 1) + " " + (i + 1)); prev = i; break; } } } w.close(); } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars==-1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if(numChars <= 0) return -1; } return buf[curChar++]; } public String nextLine() { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } public int nextInt() { int c = read(); while(isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if(c<'0'||c>'9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public double nextDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return readString(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } public static void main(String args[]) throws Exception { new Thread(null, new cf1(),"cf1",1<<26).start(); } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; import java.math.BigInteger; import static java.lang.Math.*; /* spar5h */ public class cf1 implements Runnable { static void addMap(int curr, HashMap<Integer, Integer> map, HashMap<Integer, Integer>[] hm, int j) { int prev = 0; if(map.get(curr) != null) prev = map.get(curr); int val = 0; if(hm[j].get(curr) != null) val = hm[j].get(curr); if(prev + 1 <= val) return; hm[j].put(curr, prev + 1); } public void run() { InputReader s = new InputReader(System.in); PrintWriter w = new PrintWriter(System.out); int n = s.nextInt(); int[] a = new int[n]; HashMap<Integer, Integer>[] hm = new HashMap[n]; for(int i = 0; i < n; i++) { a[i] = s.nextInt(); hm[i] = new HashMap<Integer, Integer>(); } HashMap<Integer, Integer> map = new HashMap<Integer, Integer>(); for(int i = 0; i < n; i++) { int curr = 0; for(int j = i; j < n; j++) { curr += a[j]; addMap(curr, map, hm, j); } for(Map.Entry<Integer, Integer> e : hm[i].entrySet()) { if(map.get(e.getKey()) != null && map.get(e.getKey()) >= e.getValue()) continue; map.put(e.getKey(), e.getValue()); } } int key = -1; int value = 0; for(Map.Entry<Integer, Integer> e : map.entrySet()) { if(e.getValue() > value) { key = e.getKey(); value = e.getValue(); } } w.println(value); int prev = -1; for(int i = 0; i < n; i++) { int curr = 0; for(int j = i; j > prev; j--) { curr += a[j]; if(curr == key) { w.println((j + 1) + " " + (i + 1)); prev = i; break; } } } w.close(); } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars==-1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if(numChars <= 0) return -1; } return buf[curChar++]; } public String nextLine() { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } public int nextInt() { int c = read(); while(isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if(c<'0'||c>'9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public double nextDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return readString(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } public static void main(String args[]) throws Exception { new Thread(null, new cf1(),"cf1",1<<26).start(); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; import java.math.BigInteger; import static java.lang.Math.*; /* spar5h */ public class cf1 implements Runnable { static void addMap(int curr, HashMap<Integer, Integer> map, HashMap<Integer, Integer>[] hm, int j) { int prev = 0; if(map.get(curr) != null) prev = map.get(curr); int val = 0; if(hm[j].get(curr) != null) val = hm[j].get(curr); if(prev + 1 <= val) return; hm[j].put(curr, prev + 1); } public void run() { InputReader s = new InputReader(System.in); PrintWriter w = new PrintWriter(System.out); int n = s.nextInt(); int[] a = new int[n]; HashMap<Integer, Integer>[] hm = new HashMap[n]; for(int i = 0; i < n; i++) { a[i] = s.nextInt(); hm[i] = new HashMap<Integer, Integer>(); } HashMap<Integer, Integer> map = new HashMap<Integer, Integer>(); for(int i = 0; i < n; i++) { int curr = 0; for(int j = i; j < n; j++) { curr += a[j]; addMap(curr, map, hm, j); } for(Map.Entry<Integer, Integer> e : hm[i].entrySet()) { if(map.get(e.getKey()) != null && map.get(e.getKey()) >= e.getValue()) continue; map.put(e.getKey(), e.getValue()); } } int key = -1; int value = 0; for(Map.Entry<Integer, Integer> e : map.entrySet()) { if(e.getValue() > value) { key = e.getKey(); value = e.getValue(); } } w.println(value); int prev = -1; for(int i = 0; i < n; i++) { int curr = 0; for(int j = i; j > prev; j--) { curr += a[j]; if(curr == key) { w.println((j + 1) + " " + (i + 1)); prev = i; break; } } } w.close(); } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars==-1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if(numChars <= 0) return -1; } return buf[curChar++]; } public String nextLine() { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } public int nextInt() { int c = read(); while(isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if(c<'0'||c>'9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public double nextDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return readString(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } public static void main(String args[]) throws Exception { new Thread(null, new cf1(),"cf1",1<<26).start(); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,851
2,529
541
import java.io.*; import java.util.*; import java.math.*; import java.awt.Point; public class Main { //static final long MOD = 1000000007L; //static final long MOD2 = 1000000009L; static final long MOD = 998244353L; //static final long INF = 500000000000L; static final int INF = 1000000005; static final int NINF = -1000000005; //static final long NINF = -1000000000000000000L; static FastScanner sc; static PrintWriter pw; static final int[][] dirs = {{-1,0},{1,0},{0,-1},{0,1}}; public static void main(String[] args) { sc = new FastScanner(); pw = new PrintWriter(System.out); int Q = sc.ni(); for (int q = 0; q < Q; q++) { int N = sc.ni(); String ans = "NO"; if (N%2==0 && isSquare(N/2)) ans = "YES"; if (N%4==0 && isSquare(N/4)) ans = "YES"; pw.println(ans); } pw.close(); } public static boolean isSquare(int x) { int s = (int)Math.round(Math.sqrt(x)); return s*s==x; } public static void sort(int[] arr) { Random rgen = new Random(); for (int i = 0; i < arr.length; i++) { int r = rgen.nextInt(arr.length); int temp = arr[i]; arr[i] = arr[r]; arr[r] = temp; } Arrays.sort(arr); } public static void sort(long[] arr) { Random rgen = new Random(); for (int i = 0; i < arr.length; i++) { int r = rgen.nextInt(arr.length); long temp = arr[i]; arr[i] = arr[r]; arr[r] = temp; } Arrays.sort(arr); } //Sort an array (immune to quicksort TLE) public static void sort(int[][] arr) { Random rgen = new Random(); for (int i = 0; i < arr.length; i++) { int r = rgen.nextInt(arr.length); int[] temp = arr[i]; arr[i] = arr[r]; arr[r] = temp; } Arrays.sort(arr, new Comparator<int[]>() { @Override public int compare(int[] a, int[] b) { return a[0]-b[0]; } }); } public static void sort(long[][] arr) { Random rgen = new Random(); for (int i = 0; i < arr.length; i++) { int r = rgen.nextInt(arr.length); long[] temp = arr[i]; arr[i] = arr[r]; arr[r] = temp; } Arrays.sort(arr, new Comparator<long[]>() { @Override public int compare(long[] a, long[] b) { if (a[0] > b[0]) return 1; else if (a[0] < b[0]) return -1; else return 0; //Ascending order. } }); } static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner() { br = new BufferedReader(new InputStreamReader(System.in), 32768); st = null; } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int ni() { return Integer.parseInt(next()); } int[][] graph(int N, int[][] edges) { int[][] graph = new int[N][]; int[] sz = new int[N]; for (int[] e: edges) { sz[e[0]] += 1; sz[e[1]] += 1; } for (int i = 0; i < N; i++) { graph[i] = new int[sz[i]]; } int[] cur = new int[N]; for (int[] e: edges) { graph[e[0]][cur[e[0]]] = e[1]; graph[e[1]][cur[e[1]]] = e[0]; cur[e[0]] += 1; cur[e[1]] += 1; } return graph; } int[] intArray(int N, int mod) { int[] ret = new int[N]; for (int i = 0; i < N; i++) ret[i] = ni()+mod; return ret; } long nl() { return Long.parseLong(next()); } long[] longArray(int N, long mod) { long[] ret = new long[N]; for (int i = 0; i < N; i++) ret[i] = nl()+mod; return ret; } double nd() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; import java.math.*; import java.awt.Point; public class Main { //static final long MOD = 1000000007L; //static final long MOD2 = 1000000009L; static final long MOD = 998244353L; //static final long INF = 500000000000L; static final int INF = 1000000005; static final int NINF = -1000000005; //static final long NINF = -1000000000000000000L; static FastScanner sc; static PrintWriter pw; static final int[][] dirs = {{-1,0},{1,0},{0,-1},{0,1}}; public static void main(String[] args) { sc = new FastScanner(); pw = new PrintWriter(System.out); int Q = sc.ni(); for (int q = 0; q < Q; q++) { int N = sc.ni(); String ans = "NO"; if (N%2==0 && isSquare(N/2)) ans = "YES"; if (N%4==0 && isSquare(N/4)) ans = "YES"; pw.println(ans); } pw.close(); } public static boolean isSquare(int x) { int s = (int)Math.round(Math.sqrt(x)); return s*s==x; } public static void sort(int[] arr) { Random rgen = new Random(); for (int i = 0; i < arr.length; i++) { int r = rgen.nextInt(arr.length); int temp = arr[i]; arr[i] = arr[r]; arr[r] = temp; } Arrays.sort(arr); } public static void sort(long[] arr) { Random rgen = new Random(); for (int i = 0; i < arr.length; i++) { int r = rgen.nextInt(arr.length); long temp = arr[i]; arr[i] = arr[r]; arr[r] = temp; } Arrays.sort(arr); } //Sort an array (immune to quicksort TLE) public static void sort(int[][] arr) { Random rgen = new Random(); for (int i = 0; i < arr.length; i++) { int r = rgen.nextInt(arr.length); int[] temp = arr[i]; arr[i] = arr[r]; arr[r] = temp; } Arrays.sort(arr, new Comparator<int[]>() { @Override public int compare(int[] a, int[] b) { return a[0]-b[0]; } }); } public static void sort(long[][] arr) { Random rgen = new Random(); for (int i = 0; i < arr.length; i++) { int r = rgen.nextInt(arr.length); long[] temp = arr[i]; arr[i] = arr[r]; arr[r] = temp; } Arrays.sort(arr, new Comparator<long[]>() { @Override public int compare(long[] a, long[] b) { if (a[0] > b[0]) return 1; else if (a[0] < b[0]) return -1; else return 0; //Ascending order. } }); } static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner() { br = new BufferedReader(new InputStreamReader(System.in), 32768); st = null; } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int ni() { return Integer.parseInt(next()); } int[][] graph(int N, int[][] edges) { int[][] graph = new int[N][]; int[] sz = new int[N]; for (int[] e: edges) { sz[e[0]] += 1; sz[e[1]] += 1; } for (int i = 0; i < N; i++) { graph[i] = new int[sz[i]]; } int[] cur = new int[N]; for (int[] e: edges) { graph[e[0]][cur[e[0]]] = e[1]; graph[e[1]][cur[e[1]]] = e[0]; cur[e[0]] += 1; cur[e[1]] += 1; } return graph; } int[] intArray(int N, int mod) { int[] ret = new int[N]; for (int i = 0; i < N; i++) ret[i] = ni()+mod; return ret; } long nl() { return Long.parseLong(next()); } long[] longArray(int N, long mod) { long[] ret = new long[N]; for (int i = 0; i < N; i++) ret[i] = nl()+mod; return ret; } double nd() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; import java.math.*; import java.awt.Point; public class Main { //static final long MOD = 1000000007L; //static final long MOD2 = 1000000009L; static final long MOD = 998244353L; //static final long INF = 500000000000L; static final int INF = 1000000005; static final int NINF = -1000000005; //static final long NINF = -1000000000000000000L; static FastScanner sc; static PrintWriter pw; static final int[][] dirs = {{-1,0},{1,0},{0,-1},{0,1}}; public static void main(String[] args) { sc = new FastScanner(); pw = new PrintWriter(System.out); int Q = sc.ni(); for (int q = 0; q < Q; q++) { int N = sc.ni(); String ans = "NO"; if (N%2==0 && isSquare(N/2)) ans = "YES"; if (N%4==0 && isSquare(N/4)) ans = "YES"; pw.println(ans); } pw.close(); } public static boolean isSquare(int x) { int s = (int)Math.round(Math.sqrt(x)); return s*s==x; } public static void sort(int[] arr) { Random rgen = new Random(); for (int i = 0; i < arr.length; i++) { int r = rgen.nextInt(arr.length); int temp = arr[i]; arr[i] = arr[r]; arr[r] = temp; } Arrays.sort(arr); } public static void sort(long[] arr) { Random rgen = new Random(); for (int i = 0; i < arr.length; i++) { int r = rgen.nextInt(arr.length); long temp = arr[i]; arr[i] = arr[r]; arr[r] = temp; } Arrays.sort(arr); } //Sort an array (immune to quicksort TLE) public static void sort(int[][] arr) { Random rgen = new Random(); for (int i = 0; i < arr.length; i++) { int r = rgen.nextInt(arr.length); int[] temp = arr[i]; arr[i] = arr[r]; arr[r] = temp; } Arrays.sort(arr, new Comparator<int[]>() { @Override public int compare(int[] a, int[] b) { return a[0]-b[0]; } }); } public static void sort(long[][] arr) { Random rgen = new Random(); for (int i = 0; i < arr.length; i++) { int r = rgen.nextInt(arr.length); long[] temp = arr[i]; arr[i] = arr[r]; arr[r] = temp; } Arrays.sort(arr, new Comparator<long[]>() { @Override public int compare(long[] a, long[] b) { if (a[0] > b[0]) return 1; else if (a[0] < b[0]) return -1; else return 0; //Ascending order. } }); } static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner() { br = new BufferedReader(new InputStreamReader(System.in), 32768); st = null; } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int ni() { return Integer.parseInt(next()); } int[][] graph(int N, int[][] edges) { int[][] graph = new int[N][]; int[] sz = new int[N]; for (int[] e: edges) { sz[e[0]] += 1; sz[e[1]] += 1; } for (int i = 0; i < N; i++) { graph[i] = new int[sz[i]]; } int[] cur = new int[N]; for (int[] e: edges) { graph[e[0]][cur[e[0]]] = e[1]; graph[e[1]][cur[e[1]]] = e[0]; cur[e[0]] += 1; cur[e[1]] += 1; } return graph; } int[] intArray(int N, int mod) { int[] ret = new int[N]; for (int i = 0; i < N; i++) ret[i] = ni()+mod; return ret; } long nl() { return Long.parseLong(next()); } long[] longArray(int N, long mod) { long[] ret = new long[N]; for (int i = 0; i < N; i++) ret[i] = nl()+mod; return ret; } double nd() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } } </CODE> <EVALUATION_RUBRIC> - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,591
540
515
import java.util.*; import java.lang.*; import java.math.*; import java.io.*; /* spar5h */ public class cf1 implements Runnable{ public void run() { InputReader s = new InputReader(System.in); PrintWriter w = new PrintWriter(System.out); int t = 1; while(t-- > 0) { int n = s.nextInt(), m = s.nextInt(); int[] a = new int[n + 1]; for(int i = 1; i <= n; i++) a[i] = s.nextInt(); int[] b = new int[n + 1]; for(int i = 1; i <= n; i++) b[i] = s.nextInt(); ArrayList<Integer> list = new ArrayList<Integer>(); list.add(a[1]); for(int i = 2; i <= n; i++) { list.add(b[i]); list.add(a[i]); } list.add(b[1]); double wt = m; boolean check = true; for(int i = list.size() - 1; i >= 0; i--) { if(list.get(i) <= 1) { check = false; break; } double x = wt / (list.get(i) - 1); wt += x; } if(check) w.println(wt - m); else w.println(-1); } w.close(); } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars==-1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if(numChars <= 0) return -1; } return buf[curChar++]; } public String nextLine() { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } public int nextInt() { int c = read(); while(isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if(c<'0'||c>'9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public double nextDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return readString(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } public static void main(String args[]) throws Exception { new Thread(null, new cf1(),"cf1",1<<26).start(); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.lang.*; import java.math.*; import java.io.*; /* spar5h */ public class cf1 implements Runnable{ public void run() { InputReader s = new InputReader(System.in); PrintWriter w = new PrintWriter(System.out); int t = 1; while(t-- > 0) { int n = s.nextInt(), m = s.nextInt(); int[] a = new int[n + 1]; for(int i = 1; i <= n; i++) a[i] = s.nextInt(); int[] b = new int[n + 1]; for(int i = 1; i <= n; i++) b[i] = s.nextInt(); ArrayList<Integer> list = new ArrayList<Integer>(); list.add(a[1]); for(int i = 2; i <= n; i++) { list.add(b[i]); list.add(a[i]); } list.add(b[1]); double wt = m; boolean check = true; for(int i = list.size() - 1; i >= 0; i--) { if(list.get(i) <= 1) { check = false; break; } double x = wt / (list.get(i) - 1); wt += x; } if(check) w.println(wt - m); else w.println(-1); } w.close(); } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars==-1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if(numChars <= 0) return -1; } return buf[curChar++]; } public String nextLine() { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } public int nextInt() { int c = read(); while(isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if(c<'0'||c>'9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public double nextDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return readString(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } public static void main(String args[]) throws Exception { new Thread(null, new cf1(),"cf1",1<<26).start(); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.lang.*; import java.math.*; import java.io.*; /* spar5h */ public class cf1 implements Runnable{ public void run() { InputReader s = new InputReader(System.in); PrintWriter w = new PrintWriter(System.out); int t = 1; while(t-- > 0) { int n = s.nextInt(), m = s.nextInt(); int[] a = new int[n + 1]; for(int i = 1; i <= n; i++) a[i] = s.nextInt(); int[] b = new int[n + 1]; for(int i = 1; i <= n; i++) b[i] = s.nextInt(); ArrayList<Integer> list = new ArrayList<Integer>(); list.add(a[1]); for(int i = 2; i <= n; i++) { list.add(b[i]); list.add(a[i]); } list.add(b[1]); double wt = m; boolean check = true; for(int i = list.size() - 1; i >= 0; i--) { if(list.get(i) <= 1) { check = false; break; } double x = wt / (list.get(i) - 1); wt += x; } if(check) w.println(wt - m); else w.println(-1); } w.close(); } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars==-1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if(numChars <= 0) return -1; } return buf[curChar++]; } public String nextLine() { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } public int nextInt() { int c = read(); while(isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if(c<'0'||c>'9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public double nextDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return readString(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } public static void main(String args[]) throws Exception { new Thread(null, new cf1(),"cf1",1<<26).start(); } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,686
514
2,187
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.StringTokenizer; public class C { public static void main(String[] args){ FastScanner scan = new FastScanner(); PrintWriter out = new PrintWriter(System.out); int n = scan.nextInt(), r = scan.nextInt(); int[] x = scan.nextIntArray(n); double[] y = new double[n]; for(int i = 0; i < n; i++) { double best = 0; for(int j = 0; j < i; j++) { if(Math.abs(dist(x[i], y[j], x[j], y[j])-2*r) <= 1e-7) { best = Math.max(best, y[j]); continue; } double lo = y[j]-r-r, hi = y[j]+r+r; for(int bs = 0; bs < 200; bs++) { double mid = (lo+hi)/2.0; if(dist(x[i], mid, x[j], y[j])-2*r <= 1e-7) lo = mid; else hi = mid; } if(dist(x[i], lo, x[j], y[j])-2*r <= 1e-7) best = Math.max(best, lo); } if(best == 0) y[i] = r; else y[i] = best; } for(int i = 0; i < n; i++) out.printf("%.6f ", y[i]); out.close(); } static double dist(double x, double y, double xx, double yy) {return Math.sqrt((x-xx)*(x-xx)+(y-yy)*(y-yy));} static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner() { try { br = new BufferedReader(new InputStreamReader(System.in)); st = new StringTokenizer(br.readLine()); } catch (Exception e){e.printStackTrace();} } public String next() { if (st.hasMoreTokens()) return st.nextToken(); try {st = new StringTokenizer(br.readLine());} catch (Exception e) {e.printStackTrace();} return st.nextToken(); } public int nextInt() {return Integer.parseInt(next());} public long nextLong() {return Long.parseLong(next());} public double nextDouble() {return Double.parseDouble(next());} public String nextLine() { String line = ""; if(st.hasMoreTokens()) line = st.nextToken(); else try {return br.readLine();}catch(IOException e){e.printStackTrace();} while(st.hasMoreTokens()) line += " "+st.nextToken(); return line; } public int[] nextIntArray(int n) { int[] a = new int[n]; for(int i = 0; i < n; i++) a[i] = nextInt(); return a; } public long[] nextLongArray(int n){ long[] a = new long[n]; for(int i = 0; i < n; i++) a[i] = nextLong(); return a; } public double[] nextDoubleArray(int n){ double[] a = new double[n]; for(int i = 0; i < n; i++) a[i] = nextDouble(); return a; } public char[][] nextGrid(int n, int m){ char[][] grid = new char[n][m]; for(int i = 0; i < n; i++) grid[i] = next().toCharArray(); return grid; } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.StringTokenizer; public class C { public static void main(String[] args){ FastScanner scan = new FastScanner(); PrintWriter out = new PrintWriter(System.out); int n = scan.nextInt(), r = scan.nextInt(); int[] x = scan.nextIntArray(n); double[] y = new double[n]; for(int i = 0; i < n; i++) { double best = 0; for(int j = 0; j < i; j++) { if(Math.abs(dist(x[i], y[j], x[j], y[j])-2*r) <= 1e-7) { best = Math.max(best, y[j]); continue; } double lo = y[j]-r-r, hi = y[j]+r+r; for(int bs = 0; bs < 200; bs++) { double mid = (lo+hi)/2.0; if(dist(x[i], mid, x[j], y[j])-2*r <= 1e-7) lo = mid; else hi = mid; } if(dist(x[i], lo, x[j], y[j])-2*r <= 1e-7) best = Math.max(best, lo); } if(best == 0) y[i] = r; else y[i] = best; } for(int i = 0; i < n; i++) out.printf("%.6f ", y[i]); out.close(); } static double dist(double x, double y, double xx, double yy) {return Math.sqrt((x-xx)*(x-xx)+(y-yy)*(y-yy));} static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner() { try { br = new BufferedReader(new InputStreamReader(System.in)); st = new StringTokenizer(br.readLine()); } catch (Exception e){e.printStackTrace();} } public String next() { if (st.hasMoreTokens()) return st.nextToken(); try {st = new StringTokenizer(br.readLine());} catch (Exception e) {e.printStackTrace();} return st.nextToken(); } public int nextInt() {return Integer.parseInt(next());} public long nextLong() {return Long.parseLong(next());} public double nextDouble() {return Double.parseDouble(next());} public String nextLine() { String line = ""; if(st.hasMoreTokens()) line = st.nextToken(); else try {return br.readLine();}catch(IOException e){e.printStackTrace();} while(st.hasMoreTokens()) line += " "+st.nextToken(); return line; } public int[] nextIntArray(int n) { int[] a = new int[n]; for(int i = 0; i < n; i++) a[i] = nextInt(); return a; } public long[] nextLongArray(int n){ long[] a = new long[n]; for(int i = 0; i < n; i++) a[i] = nextLong(); return a; } public double[] nextDoubleArray(int n){ double[] a = new double[n]; for(int i = 0; i < n; i++) a[i] = nextDouble(); return a; } public char[][] nextGrid(int n, int m){ char[][] grid = new char[n][m]; for(int i = 0; i < n; i++) grid[i] = next().toCharArray(); return grid; } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.StringTokenizer; public class C { public static void main(String[] args){ FastScanner scan = new FastScanner(); PrintWriter out = new PrintWriter(System.out); int n = scan.nextInt(), r = scan.nextInt(); int[] x = scan.nextIntArray(n); double[] y = new double[n]; for(int i = 0; i < n; i++) { double best = 0; for(int j = 0; j < i; j++) { if(Math.abs(dist(x[i], y[j], x[j], y[j])-2*r) <= 1e-7) { best = Math.max(best, y[j]); continue; } double lo = y[j]-r-r, hi = y[j]+r+r; for(int bs = 0; bs < 200; bs++) { double mid = (lo+hi)/2.0; if(dist(x[i], mid, x[j], y[j])-2*r <= 1e-7) lo = mid; else hi = mid; } if(dist(x[i], lo, x[j], y[j])-2*r <= 1e-7) best = Math.max(best, lo); } if(best == 0) y[i] = r; else y[i] = best; } for(int i = 0; i < n; i++) out.printf("%.6f ", y[i]); out.close(); } static double dist(double x, double y, double xx, double yy) {return Math.sqrt((x-xx)*(x-xx)+(y-yy)*(y-yy));} static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner() { try { br = new BufferedReader(new InputStreamReader(System.in)); st = new StringTokenizer(br.readLine()); } catch (Exception e){e.printStackTrace();} } public String next() { if (st.hasMoreTokens()) return st.nextToken(); try {st = new StringTokenizer(br.readLine());} catch (Exception e) {e.printStackTrace();} return st.nextToken(); } public int nextInt() {return Integer.parseInt(next());} public long nextLong() {return Long.parseLong(next());} public double nextDouble() {return Double.parseDouble(next());} public String nextLine() { String line = ""; if(st.hasMoreTokens()) line = st.nextToken(); else try {return br.readLine();}catch(IOException e){e.printStackTrace();} while(st.hasMoreTokens()) line += " "+st.nextToken(); return line; } public int[] nextIntArray(int n) { int[] a = new int[n]; for(int i = 0; i < n; i++) a[i] = nextInt(); return a; } public long[] nextLongArray(int n){ long[] a = new long[n]; for(int i = 0; i < n; i++) a[i] = nextLong(); return a; } public double[] nextDoubleArray(int n){ double[] a = new double[n]; for(int i = 0; i < n; i++) a[i] = nextDouble(); return a; } public char[][] nextGrid(int n, int m){ char[][] grid = new char[n][m]; for(int i = 0; i < n; i++) grid[i] = next().toCharArray(); return grid; } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,113
2,183
3,275
import java.io.*; import java.util.*; public class Contest1_1{ public static void main(String ar[]) throws Exception { BufferedReader buff = new BufferedReader(new InputStreamReader(System.in)); int input = Integer.parseInt(buff.readLine()); if(input==0){ System.out.println("0 0 0"); }else if(input==1){ System.out.println("0 0 1"); }else if(input==2){ System.out.println("0 1 1"); }else if(input==3){ System.out.println("1 1 1"); }else { int output[] = checkFibo(input); int get[] = checkFibo(output[1]); output[0] = get[1]; output[1] = get[2]; System.out.print(output[0]); System.out.print(" " + output[1]); System.out.println(" " + output[2]); } } public static int[] checkFibo(int input){ int output[] = new int[3]; int fibo_1 = 0; int fibo_2 = 1; int temp = 0; while(fibo_2!=input){ temp = fibo_2; output[1] = fibo_1; output[2] = fibo_2; fibo_2 += fibo_1; fibo_1 = temp; } return output; } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class Contest1_1{ public static void main(String ar[]) throws Exception { BufferedReader buff = new BufferedReader(new InputStreamReader(System.in)); int input = Integer.parseInt(buff.readLine()); if(input==0){ System.out.println("0 0 0"); }else if(input==1){ System.out.println("0 0 1"); }else if(input==2){ System.out.println("0 1 1"); }else if(input==3){ System.out.println("1 1 1"); }else { int output[] = checkFibo(input); int get[] = checkFibo(output[1]); output[0] = get[1]; output[1] = get[2]; System.out.print(output[0]); System.out.print(" " + output[1]); System.out.println(" " + output[2]); } } public static int[] checkFibo(int input){ int output[] = new int[3]; int fibo_1 = 0; int fibo_2 = 1; int temp = 0; while(fibo_2!=input){ temp = fibo_2; output[1] = fibo_1; output[2] = fibo_2; fibo_2 += fibo_1; fibo_1 = temp; } return output; } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Contest1_1{ public static void main(String ar[]) throws Exception { BufferedReader buff = new BufferedReader(new InputStreamReader(System.in)); int input = Integer.parseInt(buff.readLine()); if(input==0){ System.out.println("0 0 0"); }else if(input==1){ System.out.println("0 0 1"); }else if(input==2){ System.out.println("0 1 1"); }else if(input==3){ System.out.println("1 1 1"); }else { int output[] = checkFibo(input); int get[] = checkFibo(output[1]); output[0] = get[1]; output[1] = get[2]; System.out.print(output[0]); System.out.print(" " + output[1]); System.out.println(" " + output[2]); } } public static int[] checkFibo(int input){ int output[] = new int[3]; int fibo_1 = 0; int fibo_2 = 1; int temp = 0; while(fibo_2!=input){ temp = fibo_2; output[1] = fibo_1; output[2] = fibo_2; fibo_2 += fibo_1; fibo_1 = temp; } return output; } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
672
3,269
802
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.StringTokenizer; /** * @author Don Li */ public class EhabAndAComponentChoosingProblem { long INF = (long) 1e18; int n; int[] a; int[][] G; void solve() { n = in.nextInt(); a = new int[n]; for (int i = 0; i < n; i++) a[i] = in.nextInt(); int[] fr = new int[n - 1], to = new int[n - 1]; for (int i = 0; i < n - 1; i++) { fr[i] = in.nextInt() - 1; to[i] = in.nextInt() - 1; } G = build_graph(n, fr, to); int[][] ret = bfs(G, 0); int[] par = ret[0], ord = ret[2]; long best = -INF; long[] dp = new long[n]; for (int i = n - 1; i >= 0; i--) { int u = ord[i]; dp[u] = a[u]; for (int v : G[u]) { if (v != par[u]) { if (dp[v] > 0) dp[u] += dp[v]; } } best = Math.max(best, dp[u]); } int k = 0; for (int i = n - 1; i >= 0; i--) { int u = ord[i]; dp[u] = a[u]; for (int v : G[u]) { if (v != par[u]) { if (dp[v] > 0) dp[u] += dp[v]; } } if (dp[u] == best) { dp[u] = -INF; k++; } } out.printf("%d %d%n", best * k, k); } int[][] bfs(int[][] G, int root) { int n = G.length; int[] par = new int[n]; Arrays.fill(par, -1); int[] dep = new int[n]; dep[root] = 0; int[] qu = new int[n]; qu[0] = root; for (int l = 0, r = 1; l < r; l++) { int u = qu[l]; for (int v : G[u]) { if (v != par[u]) { qu[r++] = v; par[v] = u; dep[v] = dep[u] + 1; } } } return new int[][]{par, dep, qu}; } int[][] build_graph(int n, int[] from, int[] to) { int[][] G = new int[n][]; int[] cnt = new int[n]; for (int i = 0; i < from.length; i++) { cnt[from[i]]++; cnt[to[i]]++; } for (int i = 0; i < n; i++) G[i] = new int[cnt[i]]; for (int i = 0; i < from.length; i++) { G[from[i]][--cnt[from[i]]] = to[i]; G[to[i]][--cnt[to[i]]] = from[i]; } return G; } public static void main(String[] args) { in = new FastScanner(new BufferedReader(new InputStreamReader(System.in))); out = new PrintWriter(System.out); new EhabAndAComponentChoosingProblem().solve(); out.close(); } static FastScanner in; static PrintWriter out; static class FastScanner { BufferedReader in; StringTokenizer st; public FastScanner(BufferedReader in) { this.in = in; } public String nextToken() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(in.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(nextToken()); } public long nextLong() { return Long.parseLong(nextToken()); } public double nextDouble() { return Double.parseDouble(nextToken()); } } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.StringTokenizer; /** * @author Don Li */ public class EhabAndAComponentChoosingProblem { long INF = (long) 1e18; int n; int[] a; int[][] G; void solve() { n = in.nextInt(); a = new int[n]; for (int i = 0; i < n; i++) a[i] = in.nextInt(); int[] fr = new int[n - 1], to = new int[n - 1]; for (int i = 0; i < n - 1; i++) { fr[i] = in.nextInt() - 1; to[i] = in.nextInt() - 1; } G = build_graph(n, fr, to); int[][] ret = bfs(G, 0); int[] par = ret[0], ord = ret[2]; long best = -INF; long[] dp = new long[n]; for (int i = n - 1; i >= 0; i--) { int u = ord[i]; dp[u] = a[u]; for (int v : G[u]) { if (v != par[u]) { if (dp[v] > 0) dp[u] += dp[v]; } } best = Math.max(best, dp[u]); } int k = 0; for (int i = n - 1; i >= 0; i--) { int u = ord[i]; dp[u] = a[u]; for (int v : G[u]) { if (v != par[u]) { if (dp[v] > 0) dp[u] += dp[v]; } } if (dp[u] == best) { dp[u] = -INF; k++; } } out.printf("%d %d%n", best * k, k); } int[][] bfs(int[][] G, int root) { int n = G.length; int[] par = new int[n]; Arrays.fill(par, -1); int[] dep = new int[n]; dep[root] = 0; int[] qu = new int[n]; qu[0] = root; for (int l = 0, r = 1; l < r; l++) { int u = qu[l]; for (int v : G[u]) { if (v != par[u]) { qu[r++] = v; par[v] = u; dep[v] = dep[u] + 1; } } } return new int[][]{par, dep, qu}; } int[][] build_graph(int n, int[] from, int[] to) { int[][] G = new int[n][]; int[] cnt = new int[n]; for (int i = 0; i < from.length; i++) { cnt[from[i]]++; cnt[to[i]]++; } for (int i = 0; i < n; i++) G[i] = new int[cnt[i]]; for (int i = 0; i < from.length; i++) { G[from[i]][--cnt[from[i]]] = to[i]; G[to[i]][--cnt[to[i]]] = from[i]; } return G; } public static void main(String[] args) { in = new FastScanner(new BufferedReader(new InputStreamReader(System.in))); out = new PrintWriter(System.out); new EhabAndAComponentChoosingProblem().solve(); out.close(); } static FastScanner in; static PrintWriter out; static class FastScanner { BufferedReader in; StringTokenizer st; public FastScanner(BufferedReader in) { this.in = in; } public String nextToken() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(in.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(nextToken()); } public long nextLong() { return Long.parseLong(nextToken()); } public double nextDouble() { return Double.parseDouble(nextToken()); } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.StringTokenizer; /** * @author Don Li */ public class EhabAndAComponentChoosingProblem { long INF = (long) 1e18; int n; int[] a; int[][] G; void solve() { n = in.nextInt(); a = new int[n]; for (int i = 0; i < n; i++) a[i] = in.nextInt(); int[] fr = new int[n - 1], to = new int[n - 1]; for (int i = 0; i < n - 1; i++) { fr[i] = in.nextInt() - 1; to[i] = in.nextInt() - 1; } G = build_graph(n, fr, to); int[][] ret = bfs(G, 0); int[] par = ret[0], ord = ret[2]; long best = -INF; long[] dp = new long[n]; for (int i = n - 1; i >= 0; i--) { int u = ord[i]; dp[u] = a[u]; for (int v : G[u]) { if (v != par[u]) { if (dp[v] > 0) dp[u] += dp[v]; } } best = Math.max(best, dp[u]); } int k = 0; for (int i = n - 1; i >= 0; i--) { int u = ord[i]; dp[u] = a[u]; for (int v : G[u]) { if (v != par[u]) { if (dp[v] > 0) dp[u] += dp[v]; } } if (dp[u] == best) { dp[u] = -INF; k++; } } out.printf("%d %d%n", best * k, k); } int[][] bfs(int[][] G, int root) { int n = G.length; int[] par = new int[n]; Arrays.fill(par, -1); int[] dep = new int[n]; dep[root] = 0; int[] qu = new int[n]; qu[0] = root; for (int l = 0, r = 1; l < r; l++) { int u = qu[l]; for (int v : G[u]) { if (v != par[u]) { qu[r++] = v; par[v] = u; dep[v] = dep[u] + 1; } } } return new int[][]{par, dep, qu}; } int[][] build_graph(int n, int[] from, int[] to) { int[][] G = new int[n][]; int[] cnt = new int[n]; for (int i = 0; i < from.length; i++) { cnt[from[i]]++; cnt[to[i]]++; } for (int i = 0; i < n; i++) G[i] = new int[cnt[i]]; for (int i = 0; i < from.length; i++) { G[from[i]][--cnt[from[i]]] = to[i]; G[to[i]][--cnt[to[i]]] = from[i]; } return G; } public static void main(String[] args) { in = new FastScanner(new BufferedReader(new InputStreamReader(System.in))); out = new PrintWriter(System.out); new EhabAndAComponentChoosingProblem().solve(); out.close(); } static FastScanner in; static PrintWriter out; static class FastScanner { BufferedReader in; StringTokenizer st; public FastScanner(BufferedReader in) { this.in = in; } public String nextToken() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(in.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(nextToken()); } public long nextLong() { return Long.parseLong(nextToken()); } public double nextDouble() { return Double.parseDouble(nextToken()); } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,303
801
1,056
import java.io.*; import java.util.Scanner; public class Test { public static int digit(long number){ int i = 1; long exp = 1; while(number > i * 9 * exp){ number -= i * 9 * exp; i++; exp *= 10; } return i; } public static int result(long number){ int digit = digit(number); long exp = 1; for(int i = 0; i < (digit - 1); i++){ number -= (i+1) * 9 * exp; exp *= 10; } long b = number / digit; int c = (int)(number % digit); if(c > 0){ String d = Long.toString(exp + b); return d.charAt(c - 1) - '0'; } else{ String d = Long.toString(exp + b - 1); return d.charAt(d.length() - 1) - '0'; } } public static void main(String[] args){ Scanner input = new Scanner(System.in); long k = input.nextLong(); System.out.println(result(k)); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.Scanner; public class Test { public static int digit(long number){ int i = 1; long exp = 1; while(number > i * 9 * exp){ number -= i * 9 * exp; i++; exp *= 10; } return i; } public static int result(long number){ int digit = digit(number); long exp = 1; for(int i = 0; i < (digit - 1); i++){ number -= (i+1) * 9 * exp; exp *= 10; } long b = number / digit; int c = (int)(number % digit); if(c > 0){ String d = Long.toString(exp + b); return d.charAt(c - 1) - '0'; } else{ String d = Long.toString(exp + b - 1); return d.charAt(d.length() - 1) - '0'; } } public static void main(String[] args){ Scanner input = new Scanner(System.in); long k = input.nextLong(); System.out.println(result(k)); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.Scanner; public class Test { public static int digit(long number){ int i = 1; long exp = 1; while(number > i * 9 * exp){ number -= i * 9 * exp; i++; exp *= 10; } return i; } public static int result(long number){ int digit = digit(number); long exp = 1; for(int i = 0; i < (digit - 1); i++){ number -= (i+1) * 9 * exp; exp *= 10; } long b = number / digit; int c = (int)(number % digit); if(c > 0){ String d = Long.toString(exp + b); return d.charAt(c - 1) - '0'; } else{ String d = Long.toString(exp + b - 1); return d.charAt(d.length() - 1) - '0'; } } public static void main(String[] args){ Scanner input = new Scanner(System.in); long k = input.nextLong(); System.out.println(result(k)); } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
611
1,055
1,202
import java.io.*; import java.util.*; public class Quiz { public static int mod = 1000000009; public static void main(String[] args) throws IOException { BufferedReader f = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(f.readLine()); long n = Long.parseLong(st.nextToken()); long m = Long.parseLong(st.nextToken()); long k = Long.parseLong(st.nextToken()); long d = n-m; n -= d*k; if (n <= 0) { System.out.println(m); return; } long sum = (n%k) + d*(k-1); sum += 2*k*(pow(2,n/k)-1); sum %= mod; System.out.println(sum); } public static long pow(long a, long n) { if (n == 0) return 1; long pow = pow(a,n/2); pow = pow*pow % mod; if (n % 2 == 1) pow = pow*a % mod; return pow; } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Quiz { public static int mod = 1000000009; public static void main(String[] args) throws IOException { BufferedReader f = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(f.readLine()); long n = Long.parseLong(st.nextToken()); long m = Long.parseLong(st.nextToken()); long k = Long.parseLong(st.nextToken()); long d = n-m; n -= d*k; if (n <= 0) { System.out.println(m); return; } long sum = (n%k) + d*(k-1); sum += 2*k*(pow(2,n/k)-1); sum %= mod; System.out.println(sum); } public static long pow(long a, long n) { if (n == 0) return 1; long pow = pow(a,n/2); pow = pow*pow % mod; if (n % 2 == 1) pow = pow*a % mod; return pow; } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class Quiz { public static int mod = 1000000009; public static void main(String[] args) throws IOException { BufferedReader f = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(f.readLine()); long n = Long.parseLong(st.nextToken()); long m = Long.parseLong(st.nextToken()); long k = Long.parseLong(st.nextToken()); long d = n-m; n -= d*k; if (n <= 0) { System.out.println(m); return; } long sum = (n%k) + d*(k-1); sum += 2*k*(pow(2,n/k)-1); sum %= mod; System.out.println(sum); } public static long pow(long a, long n) { if (n == 0) return 1; long pow = pow(a,n/2); pow = pow*pow % mod; if (n % 2 == 1) pow = pow*a % mod; return pow; } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
570
1,201
733
import java.math.BigInteger; import java.util.Scanner; public class Main { static Scanner sc = new Scanner (System.in); public static void main(String[] args) { int n = sc.nextInt(); int k = sc.nextInt(); char str[][] = new char[5][n]; for(int i = 0;i < 4;i ++){ for(int j = 0;j < n;j ++) str[i][j] = '.'; } if(k % 2 == 0){ k /= 2; for(int i = 1;i <= 2;i++){ for(int j = 1;j <= k;j++) str[i][j] = '#'; } } else{ str[1][n / 2] = '#'; if(k != 1){ int tmp = n / 2; if(k <= n - 2){ for(int i = 1;i<= (k - 1) / 2;i++){ str[1][i] = '#'; str[1][n - 1 - i] = '#'; } } else{ for(int i = 1;i <= n - 2;i++) str[1][i] = '#'; k -= n - 2; for(int i = 1;i <= k/2;i++){ str[2][i] = '#'; str[2][n - 1 - i]='#'; } } } } System.out.println("YES"); for(int i = 0;i < 4;i ++){ System.out.println(str[i]); } } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.math.BigInteger; import java.util.Scanner; public class Main { static Scanner sc = new Scanner (System.in); public static void main(String[] args) { int n = sc.nextInt(); int k = sc.nextInt(); char str[][] = new char[5][n]; for(int i = 0;i < 4;i ++){ for(int j = 0;j < n;j ++) str[i][j] = '.'; } if(k % 2 == 0){ k /= 2; for(int i = 1;i <= 2;i++){ for(int j = 1;j <= k;j++) str[i][j] = '#'; } } else{ str[1][n / 2] = '#'; if(k != 1){ int tmp = n / 2; if(k <= n - 2){ for(int i = 1;i<= (k - 1) / 2;i++){ str[1][i] = '#'; str[1][n - 1 - i] = '#'; } } else{ for(int i = 1;i <= n - 2;i++) str[1][i] = '#'; k -= n - 2; for(int i = 1;i <= k/2;i++){ str[2][i] = '#'; str[2][n - 1 - i]='#'; } } } } System.out.println("YES"); for(int i = 0;i < 4;i ++){ System.out.println(str[i]); } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.math.BigInteger; import java.util.Scanner; public class Main { static Scanner sc = new Scanner (System.in); public static void main(String[] args) { int n = sc.nextInt(); int k = sc.nextInt(); char str[][] = new char[5][n]; for(int i = 0;i < 4;i ++){ for(int j = 0;j < n;j ++) str[i][j] = '.'; } if(k % 2 == 0){ k /= 2; for(int i = 1;i <= 2;i++){ for(int j = 1;j <= k;j++) str[i][j] = '#'; } } else{ str[1][n / 2] = '#'; if(k != 1){ int tmp = n / 2; if(k <= n - 2){ for(int i = 1;i<= (k - 1) / 2;i++){ str[1][i] = '#'; str[1][n - 1 - i] = '#'; } } else{ for(int i = 1;i <= n - 2;i++) str[1][i] = '#'; k -= n - 2; for(int i = 1;i <= k/2;i++){ str[2][i] = '#'; str[2][n - 1 - i]='#'; } } } } System.out.println("YES"); for(int i = 0;i < 4;i ++){ System.out.println(str[i]); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
685
732
3,369
import java.util.*; public class test { static boolean isOK(String str, int len) { HashSet<String> hs=new HashSet<String>(); for(int i=0;i<=str.length()-len;i++) { String s=str.substring(i,len+i); if(hs.contains(s)) return true; else hs.add(s); } return false; } public static void main(String[] args) { Scanner in=new Scanner(System.in); String str=in.next(); int i; for(i=str.length()-1;i>=1;i--) if(isOK(str,i)) { break; } System.out.println(i); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; public class test { static boolean isOK(String str, int len) { HashSet<String> hs=new HashSet<String>(); for(int i=0;i<=str.length()-len;i++) { String s=str.substring(i,len+i); if(hs.contains(s)) return true; else hs.add(s); } return false; } public static void main(String[] args) { Scanner in=new Scanner(System.in); String str=in.next(); int i; for(i=str.length()-1;i>=1;i--) if(isOK(str,i)) { break; } System.out.println(i); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; public class test { static boolean isOK(String str, int len) { HashSet<String> hs=new HashSet<String>(); for(int i=0;i<=str.length()-len;i++) { String s=str.substring(i,len+i); if(hs.contains(s)) return true; else hs.add(s); } return false; } public static void main(String[] args) { Scanner in=new Scanner(System.in); String str=in.next(); int i; for(i=str.length()-1;i>=1;i--) if(isOK(str,i)) { break; } System.out.println(i); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
483
3,363
4,003
/* If you want to aim high, aim high Don't let that studying and grades consume you Just live life young ****************************** If I'm the sun, you're the moon Because when I go up, you go down ******************************* I'm working for the day I will surpass you https://www.a2oj.com/Ladder16.html */ import java.util.*; import java.io.*; import java.math.*; public class x111C { public static void main(String omkar[]) throws Exception { BufferedReader infile = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(infile.readLine()); int R = Integer.parseInt(st.nextToken()); int C = Integer.parseInt(st.nextToken()); if(R > C) { int t = R; R = C; C = t; } //dp[c][m1][m2] = min spoders in first c columns int[][][] dp = new int[C+1][1 << R][1 << R]; for(int i=0; i <= C; i++) for(int mask=0; mask < (1<<R); mask++) Arrays.fill(dp[i][mask], 69); for(int mask=0; mask < (1<<R); mask++) dp[0][0][mask] = 0; for(int c=1; c <= C; c++) for(int mask1=0; mask1 < (1<<R); mask1++) for(int mask2=0; mask2 < (1<<R); mask2++) for(int mask3=0; mask3 < (1<<R); mask3++) { boolean works = true; for(int b=0; b < R; b++) if((mask2&(1<<b)) == 0) { if(b > 0 && (mask2&(1<<(b-1))) > 0); else if(b+1 < R && (mask2&(1<<(b+1))) > 0); else if((mask1&(1<<b)) > 0); else if((mask3&(1<<b)) > 0); else works = false; } if(works) dp[c][mask2][mask3] = Math.min(dp[c][mask2][mask3], dp[c-1][mask1][mask2]+Integer.bitCount(mask1)); } int res = 0; for(int mask=0; mask < (1<<R); mask++) res = Math.max(res, R*C-(dp[C][mask][0]+Integer.bitCount(mask))); System.out.println(res); } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> /* If you want to aim high, aim high Don't let that studying and grades consume you Just live life young ****************************** If I'm the sun, you're the moon Because when I go up, you go down ******************************* I'm working for the day I will surpass you https://www.a2oj.com/Ladder16.html */ import java.util.*; import java.io.*; import java.math.*; public class x111C { public static void main(String omkar[]) throws Exception { BufferedReader infile = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(infile.readLine()); int R = Integer.parseInt(st.nextToken()); int C = Integer.parseInt(st.nextToken()); if(R > C) { int t = R; R = C; C = t; } //dp[c][m1][m2] = min spoders in first c columns int[][][] dp = new int[C+1][1 << R][1 << R]; for(int i=0; i <= C; i++) for(int mask=0; mask < (1<<R); mask++) Arrays.fill(dp[i][mask], 69); for(int mask=0; mask < (1<<R); mask++) dp[0][0][mask] = 0; for(int c=1; c <= C; c++) for(int mask1=0; mask1 < (1<<R); mask1++) for(int mask2=0; mask2 < (1<<R); mask2++) for(int mask3=0; mask3 < (1<<R); mask3++) { boolean works = true; for(int b=0; b < R; b++) if((mask2&(1<<b)) == 0) { if(b > 0 && (mask2&(1<<(b-1))) > 0); else if(b+1 < R && (mask2&(1<<(b+1))) > 0); else if((mask1&(1<<b)) > 0); else if((mask3&(1<<b)) > 0); else works = false; } if(works) dp[c][mask2][mask3] = Math.min(dp[c][mask2][mask3], dp[c-1][mask1][mask2]+Integer.bitCount(mask1)); } int res = 0; for(int mask=0; mask < (1<<R); mask++) res = Math.max(res, R*C-(dp[C][mask][0]+Integer.bitCount(mask))); System.out.println(res); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> /* If you want to aim high, aim high Don't let that studying and grades consume you Just live life young ****************************** If I'm the sun, you're the moon Because when I go up, you go down ******************************* I'm working for the day I will surpass you https://www.a2oj.com/Ladder16.html */ import java.util.*; import java.io.*; import java.math.*; public class x111C { public static void main(String omkar[]) throws Exception { BufferedReader infile = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(infile.readLine()); int R = Integer.parseInt(st.nextToken()); int C = Integer.parseInt(st.nextToken()); if(R > C) { int t = R; R = C; C = t; } //dp[c][m1][m2] = min spoders in first c columns int[][][] dp = new int[C+1][1 << R][1 << R]; for(int i=0; i <= C; i++) for(int mask=0; mask < (1<<R); mask++) Arrays.fill(dp[i][mask], 69); for(int mask=0; mask < (1<<R); mask++) dp[0][0][mask] = 0; for(int c=1; c <= C; c++) for(int mask1=0; mask1 < (1<<R); mask1++) for(int mask2=0; mask2 < (1<<R); mask2++) for(int mask3=0; mask3 < (1<<R); mask3++) { boolean works = true; for(int b=0; b < R; b++) if((mask2&(1<<b)) == 0) { if(b > 0 && (mask2&(1<<(b-1))) > 0); else if(b+1 < R && (mask2&(1<<(b+1))) > 0); else if((mask1&(1<<b)) > 0); else if((mask3&(1<<b)) > 0); else works = false; } if(works) dp[c][mask2][mask3] = Math.min(dp[c][mask2][mask3], dp[c-1][mask1][mask2]+Integer.bitCount(mask1)); } int res = 0; for(int mask=0; mask < (1<<R); mask++) res = Math.max(res, R*C-(dp[C][mask][0]+Integer.bitCount(mask))); System.out.println(res); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
911
3,992
8
// LM10: The next Ballon d'or import java.util.*; import java.io.*; import java.math.*; import javafx.util.Pair; public class Main { static class FastReader { private InputStream mIs;private byte[] buf = new byte[1024];private int curChar,numChars;public FastReader() { this(System.in); }public FastReader(InputStream is) { mIs = is;} public int read() {if (numChars == -1) throw new InputMismatchException();if (curChar >= numChars) {curChar = 0;try { numChars = mIs.read(buf);} catch (IOException e) { throw new InputMismatchException();}if (numChars <= 0) return -1; }return buf[curChar++];} public String nextLine(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isEndOfLine(c));return res.toString() ;} public String next(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isSpaceChar(c));return res.toString();} public long l(){int c = read();while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }long res = 0; do{ if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read();}while(!isSpaceChar(c));return res * sgn;} public int i(){int c = read() ;while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }int res = 0;do{if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read() ;}while(!isSpaceChar(c));return res * sgn;} public double d() throws IOException {return Double.parseDouble(next()) ;} public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } public void scanIntArr(int [] arr){ for(int li=0;li<arr.length;++li){ arr[li]=i();}} public void scanLongArr(long [] arr){for (int i=0;i<arr.length;++i){arr[i]=l();}} public void shuffle(int [] arr){ for(int i=arr.length;i>0;--i) { int r=(int)(Math.random()*i); int temp=arr[i-1]; arr[i-1]=arr[r]; arr[r]=temp; } } } public static void main(String[] args)throws IOException { /* inputCopy 4 2 1 2 1 outputCopy 4 inputCopy 5 0 -1 -1 -1 -1 outputCopy 4 */ PrintWriter pw = new PrintWriter(System.out); FastReader fr = new FastReader(); int n=fr.i(); int [] arr=new int[n]; fr.scanIntArr(arr); int min=Integer.MAX_VALUE; int max=Integer.MIN_VALUE; long sum=0; if(n==1) { pw.println(arr[0]); pw.flush(); pw.close(); return; } for(int i=0;i<n;++i) { if(arr[i]<min) min=arr[i]; if(arr[i]>max) max=arr[i]; sum+=Math.abs(arr[i]); } if(min>0) { sum-=2*min; } if(max<0) { sum+=2*max; } pw.println(sum); pw.flush(); pw.close(); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> // LM10: The next Ballon d'or import java.util.*; import java.io.*; import java.math.*; import javafx.util.Pair; public class Main { static class FastReader { private InputStream mIs;private byte[] buf = new byte[1024];private int curChar,numChars;public FastReader() { this(System.in); }public FastReader(InputStream is) { mIs = is;} public int read() {if (numChars == -1) throw new InputMismatchException();if (curChar >= numChars) {curChar = 0;try { numChars = mIs.read(buf);} catch (IOException e) { throw new InputMismatchException();}if (numChars <= 0) return -1; }return buf[curChar++];} public String nextLine(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isEndOfLine(c));return res.toString() ;} public String next(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isSpaceChar(c));return res.toString();} public long l(){int c = read();while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }long res = 0; do{ if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read();}while(!isSpaceChar(c));return res * sgn;} public int i(){int c = read() ;while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }int res = 0;do{if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read() ;}while(!isSpaceChar(c));return res * sgn;} public double d() throws IOException {return Double.parseDouble(next()) ;} public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } public void scanIntArr(int [] arr){ for(int li=0;li<arr.length;++li){ arr[li]=i();}} public void scanLongArr(long [] arr){for (int i=0;i<arr.length;++i){arr[i]=l();}} public void shuffle(int [] arr){ for(int i=arr.length;i>0;--i) { int r=(int)(Math.random()*i); int temp=arr[i-1]; arr[i-1]=arr[r]; arr[r]=temp; } } } public static void main(String[] args)throws IOException { /* inputCopy 4 2 1 2 1 outputCopy 4 inputCopy 5 0 -1 -1 -1 -1 outputCopy 4 */ PrintWriter pw = new PrintWriter(System.out); FastReader fr = new FastReader(); int n=fr.i(); int [] arr=new int[n]; fr.scanIntArr(arr); int min=Integer.MAX_VALUE; int max=Integer.MIN_VALUE; long sum=0; if(n==1) { pw.println(arr[0]); pw.flush(); pw.close(); return; } for(int i=0;i<n;++i) { if(arr[i]<min) min=arr[i]; if(arr[i]>max) max=arr[i]; sum+=Math.abs(arr[i]); } if(min>0) { sum-=2*min; } if(max<0) { sum+=2*max; } pw.println(sum); pw.flush(); pw.close(); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> // LM10: The next Ballon d'or import java.util.*; import java.io.*; import java.math.*; import javafx.util.Pair; public class Main { static class FastReader { private InputStream mIs;private byte[] buf = new byte[1024];private int curChar,numChars;public FastReader() { this(System.in); }public FastReader(InputStream is) { mIs = is;} public int read() {if (numChars == -1) throw new InputMismatchException();if (curChar >= numChars) {curChar = 0;try { numChars = mIs.read(buf);} catch (IOException e) { throw new InputMismatchException();}if (numChars <= 0) return -1; }return buf[curChar++];} public String nextLine(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isEndOfLine(c));return res.toString() ;} public String next(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isSpaceChar(c));return res.toString();} public long l(){int c = read();while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }long res = 0; do{ if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read();}while(!isSpaceChar(c));return res * sgn;} public int i(){int c = read() ;while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }int res = 0;do{if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read() ;}while(!isSpaceChar(c));return res * sgn;} public double d() throws IOException {return Double.parseDouble(next()) ;} public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } public void scanIntArr(int [] arr){ for(int li=0;li<arr.length;++li){ arr[li]=i();}} public void scanLongArr(long [] arr){for (int i=0;i<arr.length;++i){arr[i]=l();}} public void shuffle(int [] arr){ for(int i=arr.length;i>0;--i) { int r=(int)(Math.random()*i); int temp=arr[i-1]; arr[i-1]=arr[r]; arr[r]=temp; } } } public static void main(String[] args)throws IOException { /* inputCopy 4 2 1 2 1 outputCopy 4 inputCopy 5 0 -1 -1 -1 -1 outputCopy 4 */ PrintWriter pw = new PrintWriter(System.out); FastReader fr = new FastReader(); int n=fr.i(); int [] arr=new int[n]; fr.scanIntArr(arr); int min=Integer.MAX_VALUE; int max=Integer.MIN_VALUE; long sum=0; if(n==1) { pw.println(arr[0]); pw.flush(); pw.close(); return; } for(int i=0;i<n;++i) { if(arr[i]<min) min=arr[i]; if(arr[i]>max) max=arr[i]; sum+=Math.abs(arr[i]); } if(min>0) { sum-=2*min; } if(max<0) { sum+=2*max; } pw.println(sum); pw.flush(); pw.close(); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,255
8
2,589
import java.io.BufferedReader; import java.io.File; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.Random; import java.util.StringTokenizer; public class A { public static void main(String[] args) { FastReader scan = new FastReader(); PrintWriter out = new PrintWriter(System.out); Task solver = new Task(); int t = 1; while(t-->0) solver.solve(1, scan, out); out.close(); } static class Task { public void solve(int testNumber, FastReader scan, PrintWriter out) { int n = scan.nextInt(); int[] a = new int[n]; boolean[] b = new boolean[n]; int count = 0; for(int i = 0; i < n; i++) a[i] = scan.nextInt(); Arrays.sort(a); for(int i = 0; i < n; i++) { if(b[i]) continue; count++; for(int j = i; j < n; j++) { if(a[j]%a[i] == 0) b[j] = true; } } out.println(count); } } static void shuffle(int[] a) { Random get = new Random(); for(int i = 0; i < a.length; i++) { int r = get.nextInt(a.length); int temp = a[i]; a[i] = a[r]; a[r] = temp; } } static void shuffle(long[] a) { Random get = new Random(); for(int i = 0; i < a.length; i++) { int r = get.nextInt(a.length); long temp = a[i]; a[i] = a[r]; a[r] = temp; } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } public FastReader(String s) throws FileNotFoundException { br = new BufferedReader(new FileReader(new File(s))); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.File; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.Random; import java.util.StringTokenizer; public class A { public static void main(String[] args) { FastReader scan = new FastReader(); PrintWriter out = new PrintWriter(System.out); Task solver = new Task(); int t = 1; while(t-->0) solver.solve(1, scan, out); out.close(); } static class Task { public void solve(int testNumber, FastReader scan, PrintWriter out) { int n = scan.nextInt(); int[] a = new int[n]; boolean[] b = new boolean[n]; int count = 0; for(int i = 0; i < n; i++) a[i] = scan.nextInt(); Arrays.sort(a); for(int i = 0; i < n; i++) { if(b[i]) continue; count++; for(int j = i; j < n; j++) { if(a[j]%a[i] == 0) b[j] = true; } } out.println(count); } } static void shuffle(int[] a) { Random get = new Random(); for(int i = 0; i < a.length; i++) { int r = get.nextInt(a.length); int temp = a[i]; a[i] = a[r]; a[r] = temp; } } static void shuffle(long[] a) { Random get = new Random(); for(int i = 0; i < a.length; i++) { int r = get.nextInt(a.length); long temp = a[i]; a[i] = a[r]; a[r] = temp; } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } public FastReader(String s) throws FileNotFoundException { br = new BufferedReader(new FileReader(new File(s))); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.File; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.Random; import java.util.StringTokenizer; public class A { public static void main(String[] args) { FastReader scan = new FastReader(); PrintWriter out = new PrintWriter(System.out); Task solver = new Task(); int t = 1; while(t-->0) solver.solve(1, scan, out); out.close(); } static class Task { public void solve(int testNumber, FastReader scan, PrintWriter out) { int n = scan.nextInt(); int[] a = new int[n]; boolean[] b = new boolean[n]; int count = 0; for(int i = 0; i < n; i++) a[i] = scan.nextInt(); Arrays.sort(a); for(int i = 0; i < n; i++) { if(b[i]) continue; count++; for(int j = i; j < n; j++) { if(a[j]%a[i] == 0) b[j] = true; } } out.println(count); } } static void shuffle(int[] a) { Random get = new Random(); for(int i = 0; i < a.length; i++) { int r = get.nextInt(a.length); int temp = a[i]; a[i] = a[r]; a[r] = temp; } } static void shuffle(long[] a) { Random get = new Random(); for(int i = 0; i < a.length; i++) { int r = get.nextInt(a.length); long temp = a[i]; a[i] = a[r]; a[r] = temp; } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } public FastReader(String s) throws FileNotFoundException { br = new BufferedReader(new FileReader(new File(s))); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
953
2,583
1,716
import java.awt.Point; import java.io.*; import java.lang.reflect.Array; import java.math.BigInteger; import java.util.*; import static java.lang.Math.*; public class Solution15A { final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE")!=null; BufferedReader in; PrintWriter out; StringTokenizer tok = new StringTokenizer(""); void init() throws FileNotFoundException{ if (ONLINE_JUDGE){ in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); }else{ in = new BufferedReader(new FileReader("input.txt")); out = new PrintWriter("output.txt"); } } String readString() throws IOException{ while(!tok.hasMoreTokens()){ tok = new StringTokenizer(in.readLine()); } return tok.nextToken(); } int readInt() throws IOException{ return Integer.parseInt(readString()); } long readLong() throws IOException{ return Long.parseLong(readString()); } double readDouble() throws IOException{ return Double.parseDouble(readString()); } public static void main(String[] args){ new Solution15A().run(); } public void run(){ try{ long t1 = System.currentTimeMillis(); init(); solve(); out.close(); long t2 = System.currentTimeMillis(); System.err.println("Time = "+(t2-t1)); }catch (Exception e){ e.printStackTrace(System.err); System.exit(-1); } } static class Utils { private Utils() {} public static void mergeSort(int[] a) { mergeSort(a, 0, a.length - 1); } private static void mergeSort(int[] a, int leftIndex, int rightIndex) { final int MAGIC_VALUE = 50; if (leftIndex < rightIndex) { if (rightIndex - leftIndex <= MAGIC_VALUE) { insertionSort(a, leftIndex, rightIndex); } else { int middleIndex = (leftIndex + rightIndex) / 2; mergeSort(a, leftIndex, middleIndex); mergeSort(a, middleIndex + 1, rightIndex); merge(a, leftIndex, middleIndex, rightIndex); } } } private static void merge(int[] a, int leftIndex, int middleIndex, int rightIndex) { int length1 = middleIndex - leftIndex + 1; int length2 = rightIndex - middleIndex; int[] leftArray = new int[length1]; int[] rightArray = new int[length2]; System.arraycopy(a, leftIndex, leftArray, 0, length1); System.arraycopy(a, middleIndex + 1, rightArray, 0, length2); for (int k = leftIndex, i = 0, j = 0; k <= rightIndex; k++) { if (i == length1) { a[k] = rightArray[j++]; } else if (j == length2) { a[k] = leftArray[i++]; } else { a[k] = leftArray[i] <= rightArray[j] ? leftArray[i++] : rightArray[j++]; } } } private static void insertionSort(int[] a, int leftIndex, int rightIndex) { for (int i = leftIndex + 1; i <= rightIndex; i++) { int current = a[i]; int j = i - 1; while (j >= leftIndex && a[j] > current) { a[j + 1] = a[j]; j--; } a[j + 1] = current; } } } class Square implements Comparable<Square>{ public Square(int x, int a){ this.x = x; this.a = a; } @Override public int compareTo(Square o) { if(this.x > o.x) return 1; if(this.x < o.x) return -1; return 0; } public int a, x; } void solve() throws IOException{ int n = readInt(); int t = readInt(); Square[] houses = new Square[n]; for(int i = 0; i < n; i++){ int a = readInt(); int b = readInt(); houses[i] = new Square(a, b); } Arrays.sort(houses); int count = 0; for(int i = 0; i < n; i++){ if(i == 0) count++; else{ if(houses[i].x - houses[i].a/2.0 - t > houses[i-1].x + houses[i-1].a/2.0) count++; } if(i == n - 1) count++; else{ if(houses[i].x + houses[i].a/2.0 + t <= houses[i+1].x - houses[i+1].a/2.0) count++; } } out.println(count); } static double distance(long x1, long y1, long x2, long y2){ return Math.sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)); } static long gcd(long a, long b){ while(a != b){ if(a < b) a -=b; else b -= a; } return a; } static long lcm(long a, long b){ return a * b /gcd(a, b); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.awt.Point; import java.io.*; import java.lang.reflect.Array; import java.math.BigInteger; import java.util.*; import static java.lang.Math.*; public class Solution15A { final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE")!=null; BufferedReader in; PrintWriter out; StringTokenizer tok = new StringTokenizer(""); void init() throws FileNotFoundException{ if (ONLINE_JUDGE){ in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); }else{ in = new BufferedReader(new FileReader("input.txt")); out = new PrintWriter("output.txt"); } } String readString() throws IOException{ while(!tok.hasMoreTokens()){ tok = new StringTokenizer(in.readLine()); } return tok.nextToken(); } int readInt() throws IOException{ return Integer.parseInt(readString()); } long readLong() throws IOException{ return Long.parseLong(readString()); } double readDouble() throws IOException{ return Double.parseDouble(readString()); } public static void main(String[] args){ new Solution15A().run(); } public void run(){ try{ long t1 = System.currentTimeMillis(); init(); solve(); out.close(); long t2 = System.currentTimeMillis(); System.err.println("Time = "+(t2-t1)); }catch (Exception e){ e.printStackTrace(System.err); System.exit(-1); } } static class Utils { private Utils() {} public static void mergeSort(int[] a) { mergeSort(a, 0, a.length - 1); } private static void mergeSort(int[] a, int leftIndex, int rightIndex) { final int MAGIC_VALUE = 50; if (leftIndex < rightIndex) { if (rightIndex - leftIndex <= MAGIC_VALUE) { insertionSort(a, leftIndex, rightIndex); } else { int middleIndex = (leftIndex + rightIndex) / 2; mergeSort(a, leftIndex, middleIndex); mergeSort(a, middleIndex + 1, rightIndex); merge(a, leftIndex, middleIndex, rightIndex); } } } private static void merge(int[] a, int leftIndex, int middleIndex, int rightIndex) { int length1 = middleIndex - leftIndex + 1; int length2 = rightIndex - middleIndex; int[] leftArray = new int[length1]; int[] rightArray = new int[length2]; System.arraycopy(a, leftIndex, leftArray, 0, length1); System.arraycopy(a, middleIndex + 1, rightArray, 0, length2); for (int k = leftIndex, i = 0, j = 0; k <= rightIndex; k++) { if (i == length1) { a[k] = rightArray[j++]; } else if (j == length2) { a[k] = leftArray[i++]; } else { a[k] = leftArray[i] <= rightArray[j] ? leftArray[i++] : rightArray[j++]; } } } private static void insertionSort(int[] a, int leftIndex, int rightIndex) { for (int i = leftIndex + 1; i <= rightIndex; i++) { int current = a[i]; int j = i - 1; while (j >= leftIndex && a[j] > current) { a[j + 1] = a[j]; j--; } a[j + 1] = current; } } } class Square implements Comparable<Square>{ public Square(int x, int a){ this.x = x; this.a = a; } @Override public int compareTo(Square o) { if(this.x > o.x) return 1; if(this.x < o.x) return -1; return 0; } public int a, x; } void solve() throws IOException{ int n = readInt(); int t = readInt(); Square[] houses = new Square[n]; for(int i = 0; i < n; i++){ int a = readInt(); int b = readInt(); houses[i] = new Square(a, b); } Arrays.sort(houses); int count = 0; for(int i = 0; i < n; i++){ if(i == 0) count++; else{ if(houses[i].x - houses[i].a/2.0 - t > houses[i-1].x + houses[i-1].a/2.0) count++; } if(i == n - 1) count++; else{ if(houses[i].x + houses[i].a/2.0 + t <= houses[i+1].x - houses[i+1].a/2.0) count++; } } out.println(count); } static double distance(long x1, long y1, long x2, long y2){ return Math.sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)); } static long gcd(long a, long b){ while(a != b){ if(a < b) a -=b; else b -= a; } return a; } static long lcm(long a, long b){ return a * b /gcd(a, b); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.awt.Point; import java.io.*; import java.lang.reflect.Array; import java.math.BigInteger; import java.util.*; import static java.lang.Math.*; public class Solution15A { final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE")!=null; BufferedReader in; PrintWriter out; StringTokenizer tok = new StringTokenizer(""); void init() throws FileNotFoundException{ if (ONLINE_JUDGE){ in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); }else{ in = new BufferedReader(new FileReader("input.txt")); out = new PrintWriter("output.txt"); } } String readString() throws IOException{ while(!tok.hasMoreTokens()){ tok = new StringTokenizer(in.readLine()); } return tok.nextToken(); } int readInt() throws IOException{ return Integer.parseInt(readString()); } long readLong() throws IOException{ return Long.parseLong(readString()); } double readDouble() throws IOException{ return Double.parseDouble(readString()); } public static void main(String[] args){ new Solution15A().run(); } public void run(){ try{ long t1 = System.currentTimeMillis(); init(); solve(); out.close(); long t2 = System.currentTimeMillis(); System.err.println("Time = "+(t2-t1)); }catch (Exception e){ e.printStackTrace(System.err); System.exit(-1); } } static class Utils { private Utils() {} public static void mergeSort(int[] a) { mergeSort(a, 0, a.length - 1); } private static void mergeSort(int[] a, int leftIndex, int rightIndex) { final int MAGIC_VALUE = 50; if (leftIndex < rightIndex) { if (rightIndex - leftIndex <= MAGIC_VALUE) { insertionSort(a, leftIndex, rightIndex); } else { int middleIndex = (leftIndex + rightIndex) / 2; mergeSort(a, leftIndex, middleIndex); mergeSort(a, middleIndex + 1, rightIndex); merge(a, leftIndex, middleIndex, rightIndex); } } } private static void merge(int[] a, int leftIndex, int middleIndex, int rightIndex) { int length1 = middleIndex - leftIndex + 1; int length2 = rightIndex - middleIndex; int[] leftArray = new int[length1]; int[] rightArray = new int[length2]; System.arraycopy(a, leftIndex, leftArray, 0, length1); System.arraycopy(a, middleIndex + 1, rightArray, 0, length2); for (int k = leftIndex, i = 0, j = 0; k <= rightIndex; k++) { if (i == length1) { a[k] = rightArray[j++]; } else if (j == length2) { a[k] = leftArray[i++]; } else { a[k] = leftArray[i] <= rightArray[j] ? leftArray[i++] : rightArray[j++]; } } } private static void insertionSort(int[] a, int leftIndex, int rightIndex) { for (int i = leftIndex + 1; i <= rightIndex; i++) { int current = a[i]; int j = i - 1; while (j >= leftIndex && a[j] > current) { a[j + 1] = a[j]; j--; } a[j + 1] = current; } } } class Square implements Comparable<Square>{ public Square(int x, int a){ this.x = x; this.a = a; } @Override public int compareTo(Square o) { if(this.x > o.x) return 1; if(this.x < o.x) return -1; return 0; } public int a, x; } void solve() throws IOException{ int n = readInt(); int t = readInt(); Square[] houses = new Square[n]; for(int i = 0; i < n; i++){ int a = readInt(); int b = readInt(); houses[i] = new Square(a, b); } Arrays.sort(houses); int count = 0; for(int i = 0; i < n; i++){ if(i == 0) count++; else{ if(houses[i].x - houses[i].a/2.0 - t > houses[i-1].x + houses[i-1].a/2.0) count++; } if(i == n - 1) count++; else{ if(houses[i].x + houses[i].a/2.0 + t <= houses[i+1].x - houses[i+1].a/2.0) count++; } } out.println(count); } static double distance(long x1, long y1, long x2, long y2){ return Math.sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)); } static long gcd(long a, long b){ while(a != b){ if(a < b) a -=b; else b -= a; } return a; } static long lcm(long a, long b){ return a * b /gcd(a, b); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,551
1,712
1,130
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class C { public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); PrintWriter out = new PrintWriter(System.out); long n = sc.nextLong(); Long S = sc.nextLong(); long l = 0; long h = n; long ans = n; while(l <= h) { long mid = (l + h) / 2; long t = mid; long sum = 0; while(t > 0) { sum += t % 10; t /= 10; } if(mid - sum < S) { ans = mid; l = mid + 1; }else h = mid - 1; } out.println(n - ans); out.flush(); out.close(); } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream System){br = new BufferedReader(new InputStreamReader(System));} public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public String nextLine()throws IOException{return br.readLine();} public int nextInt() throws IOException {return Integer.parseInt(next());} public double nextDouble() throws IOException {return Double.parseDouble(next());} public char nextChar()throws IOException{return next().charAt(0);} public Long nextLong()throws IOException{return Long.parseLong(next());} public boolean ready() throws IOException{return br.ready();} public void waitForInput(){for(long i = 0; i < 3e9; i++);} } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class C { public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); PrintWriter out = new PrintWriter(System.out); long n = sc.nextLong(); Long S = sc.nextLong(); long l = 0; long h = n; long ans = n; while(l <= h) { long mid = (l + h) / 2; long t = mid; long sum = 0; while(t > 0) { sum += t % 10; t /= 10; } if(mid - sum < S) { ans = mid; l = mid + 1; }else h = mid - 1; } out.println(n - ans); out.flush(); out.close(); } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream System){br = new BufferedReader(new InputStreamReader(System));} public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public String nextLine()throws IOException{return br.readLine();} public int nextInt() throws IOException {return Integer.parseInt(next());} public double nextDouble() throws IOException {return Double.parseDouble(next());} public char nextChar()throws IOException{return next().charAt(0);} public Long nextLong()throws IOException{return Long.parseLong(next());} public boolean ready() throws IOException{return br.ready();} public void waitForInput(){for(long i = 0; i < 3e9; i++);} } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class C { public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); PrintWriter out = new PrintWriter(System.out); long n = sc.nextLong(); Long S = sc.nextLong(); long l = 0; long h = n; long ans = n; while(l <= h) { long mid = (l + h) / 2; long t = mid; long sum = 0; while(t > 0) { sum += t % 10; t /= 10; } if(mid - sum < S) { ans = mid; l = mid + 1; }else h = mid - 1; } out.println(n - ans); out.flush(); out.close(); } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream System){br = new BufferedReader(new InputStreamReader(System));} public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public String nextLine()throws IOException{return br.readLine();} public int nextInt() throws IOException {return Integer.parseInt(next());} public double nextDouble() throws IOException {return Double.parseDouble(next());} public char nextChar()throws IOException{return next().charAt(0);} public Long nextLong()throws IOException{return Long.parseLong(next());} public boolean ready() throws IOException{return br.ready();} public void waitForInput(){for(long i = 0; i < 3e9; i++);} } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
727
1,129
1,086
import java.io.*; import java.math.*; import java.util.*; public class OlyaAndMagicalSquare { public static void solveCase(FastIO io) { int N = io.nextInt(); long K = io.nextLong(); CountMap cm = new CountMap(); cm.increment(N, BigInteger.ONE); long rem = K; int moves = 1; int sqSize = N; while (sqSize > 0) { long need = (1L << moves) - 1; BigInteger biNeed = BigInteger.valueOf(need); cm.decrement(sqSize, biNeed); if (need > rem) { break; } cm.increment(sqSize - 1, biNeed.multiply(BigInteger.valueOf(4))); rem -= need; ++moves; --sqSize; } BigInteger biRem = BigInteger.valueOf(rem); for (int i = N; i > 0; --i) { BigInteger have = cm.getCount(i); if (have.compareTo(biRem) >= 0) { biRem = BigInteger.ZERO; break; } biRem = biRem.subtract(have); cm.decrement(i, have); cm.increment(i - 1, have.multiply(BigInteger.valueOf(4))); } if (biRem.equals(BigInteger.ZERO)) { io.printf("YES %d\n", sqSize); } else { io.println("NO"); } // long N = io.nextLong(); // long K = io.nextLong(); // // io.println(1L << 62); // boolean good; // if (N >= 31) { // good = true; // } else { // good = ((1L << (N << 1)) / 3 >= K); // } // if (!good) { // io.println("NO"); // return; // } // int split = getMaxSplit(K); // if (N >= 40) { // io.printf("YES %d\n", N - split); // return; // } // long used = (1L << split) - 1; // long rem = K - used; } private static class CountMap extends HashMap<Integer, BigInteger> { public void increment(int k, BigInteger v) { put(k, getCount(k).add(v)); } public void decrement(int k, BigInteger v) { BigInteger next = getCount(k).subtract(v); if (next.equals(BigInteger.ZERO)) { remove(k); } else { put(k, next); } } public BigInteger getCount(int k) { return getOrDefault(k, BigInteger.ZERO); } } private static int getMaxSplit(long k) { for (int i = 1;; ++i) { if ((1L << (i + 1)) - 2 - i > k) { return i - 1; } } } public static void solve(FastIO io) { int T = io.nextInt(); for (int t = 0; t < T; ++t) { solveCase(io); } } public static class FastIO { private InputStream reader; private PrintWriter writer; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public FastIO(InputStream r, OutputStream w) { reader = r; writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(w))); } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = reader.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public String nextLine() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndOfLine(c)); return res.toString(); } public String nextString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } // TODO: read this byte-by-byte like the other read functions. public double nextDouble() { return Double.parseDouble(nextString()); } public int[] nextIntArray(int n) { return nextIntArray(n, 0); } public int[] nextIntArray(int n, int off) { int[] arr = new int[n + off]; for (int i = 0; i < n; i++) { arr[i + off] = nextInt(); } return arr; } public long[] nextLongArray(int n) { return nextLongArray(n, 0); } public long[] nextLongArray(int n, int off) { long[] arr = new long[n + off]; for (int i = 0; i < n; i++) { arr[i + off] = nextLong(); } return arr; } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } public void print(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) { writer.print(' '); } writer.print(objects[i]); } } public void println(Object... objects) { print(objects); writer.println(); } public void printArray(int[] arr) { for (int i = 0; i < arr.length; i++) { if (i != 0) { writer.print(' '); } writer.print(arr[i]); } } public void printArray(long[] arr) { for (int i = 0; i < arr.length; i++) { if (i != 0) { writer.print(' '); } writer.print(arr[i]); } } public void printlnArray(int[] arr) { printArray(arr); writer.println(); } public void printlnArray(long[] arr) { printArray(arr); writer.println(); } public void printf(String format, Object... args) { print(String.format(format, args)); } public void flush() { writer.flush(); } } public static void main(String[] args) { FastIO io = new FastIO(System.in, System.out); solve(io); io.flush(); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.math.*; import java.util.*; public class OlyaAndMagicalSquare { public static void solveCase(FastIO io) { int N = io.nextInt(); long K = io.nextLong(); CountMap cm = new CountMap(); cm.increment(N, BigInteger.ONE); long rem = K; int moves = 1; int sqSize = N; while (sqSize > 0) { long need = (1L << moves) - 1; BigInteger biNeed = BigInteger.valueOf(need); cm.decrement(sqSize, biNeed); if (need > rem) { break; } cm.increment(sqSize - 1, biNeed.multiply(BigInteger.valueOf(4))); rem -= need; ++moves; --sqSize; } BigInteger biRem = BigInteger.valueOf(rem); for (int i = N; i > 0; --i) { BigInteger have = cm.getCount(i); if (have.compareTo(biRem) >= 0) { biRem = BigInteger.ZERO; break; } biRem = biRem.subtract(have); cm.decrement(i, have); cm.increment(i - 1, have.multiply(BigInteger.valueOf(4))); } if (biRem.equals(BigInteger.ZERO)) { io.printf("YES %d\n", sqSize); } else { io.println("NO"); } // long N = io.nextLong(); // long K = io.nextLong(); // // io.println(1L << 62); // boolean good; // if (N >= 31) { // good = true; // } else { // good = ((1L << (N << 1)) / 3 >= K); // } // if (!good) { // io.println("NO"); // return; // } // int split = getMaxSplit(K); // if (N >= 40) { // io.printf("YES %d\n", N - split); // return; // } // long used = (1L << split) - 1; // long rem = K - used; } private static class CountMap extends HashMap<Integer, BigInteger> { public void increment(int k, BigInteger v) { put(k, getCount(k).add(v)); } public void decrement(int k, BigInteger v) { BigInteger next = getCount(k).subtract(v); if (next.equals(BigInteger.ZERO)) { remove(k); } else { put(k, next); } } public BigInteger getCount(int k) { return getOrDefault(k, BigInteger.ZERO); } } private static int getMaxSplit(long k) { for (int i = 1;; ++i) { if ((1L << (i + 1)) - 2 - i > k) { return i - 1; } } } public static void solve(FastIO io) { int T = io.nextInt(); for (int t = 0; t < T; ++t) { solveCase(io); } } public static class FastIO { private InputStream reader; private PrintWriter writer; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public FastIO(InputStream r, OutputStream w) { reader = r; writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(w))); } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = reader.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public String nextLine() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndOfLine(c)); return res.toString(); } public String nextString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } // TODO: read this byte-by-byte like the other read functions. public double nextDouble() { return Double.parseDouble(nextString()); } public int[] nextIntArray(int n) { return nextIntArray(n, 0); } public int[] nextIntArray(int n, int off) { int[] arr = new int[n + off]; for (int i = 0; i < n; i++) { arr[i + off] = nextInt(); } return arr; } public long[] nextLongArray(int n) { return nextLongArray(n, 0); } public long[] nextLongArray(int n, int off) { long[] arr = new long[n + off]; for (int i = 0; i < n; i++) { arr[i + off] = nextLong(); } return arr; } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } public void print(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) { writer.print(' '); } writer.print(objects[i]); } } public void println(Object... objects) { print(objects); writer.println(); } public void printArray(int[] arr) { for (int i = 0; i < arr.length; i++) { if (i != 0) { writer.print(' '); } writer.print(arr[i]); } } public void printArray(long[] arr) { for (int i = 0; i < arr.length; i++) { if (i != 0) { writer.print(' '); } writer.print(arr[i]); } } public void printlnArray(int[] arr) { printArray(arr); writer.println(); } public void printlnArray(long[] arr) { printArray(arr); writer.println(); } public void printf(String format, Object... args) { print(String.format(format, args)); } public void flush() { writer.flush(); } } public static void main(String[] args) { FastIO io = new FastIO(System.in, System.out); solve(io); io.flush(); } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.math.*; import java.util.*; public class OlyaAndMagicalSquare { public static void solveCase(FastIO io) { int N = io.nextInt(); long K = io.nextLong(); CountMap cm = new CountMap(); cm.increment(N, BigInteger.ONE); long rem = K; int moves = 1; int sqSize = N; while (sqSize > 0) { long need = (1L << moves) - 1; BigInteger biNeed = BigInteger.valueOf(need); cm.decrement(sqSize, biNeed); if (need > rem) { break; } cm.increment(sqSize - 1, biNeed.multiply(BigInteger.valueOf(4))); rem -= need; ++moves; --sqSize; } BigInteger biRem = BigInteger.valueOf(rem); for (int i = N; i > 0; --i) { BigInteger have = cm.getCount(i); if (have.compareTo(biRem) >= 0) { biRem = BigInteger.ZERO; break; } biRem = biRem.subtract(have); cm.decrement(i, have); cm.increment(i - 1, have.multiply(BigInteger.valueOf(4))); } if (biRem.equals(BigInteger.ZERO)) { io.printf("YES %d\n", sqSize); } else { io.println("NO"); } // long N = io.nextLong(); // long K = io.nextLong(); // // io.println(1L << 62); // boolean good; // if (N >= 31) { // good = true; // } else { // good = ((1L << (N << 1)) / 3 >= K); // } // if (!good) { // io.println("NO"); // return; // } // int split = getMaxSplit(K); // if (N >= 40) { // io.printf("YES %d\n", N - split); // return; // } // long used = (1L << split) - 1; // long rem = K - used; } private static class CountMap extends HashMap<Integer, BigInteger> { public void increment(int k, BigInteger v) { put(k, getCount(k).add(v)); } public void decrement(int k, BigInteger v) { BigInteger next = getCount(k).subtract(v); if (next.equals(BigInteger.ZERO)) { remove(k); } else { put(k, next); } } public BigInteger getCount(int k) { return getOrDefault(k, BigInteger.ZERO); } } private static int getMaxSplit(long k) { for (int i = 1;; ++i) { if ((1L << (i + 1)) - 2 - i > k) { return i - 1; } } } public static void solve(FastIO io) { int T = io.nextInt(); for (int t = 0; t < T; ++t) { solveCase(io); } } public static class FastIO { private InputStream reader; private PrintWriter writer; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public FastIO(InputStream r, OutputStream w) { reader = r; writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(w))); } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = reader.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public String nextLine() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndOfLine(c)); return res.toString(); } public String nextString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } // TODO: read this byte-by-byte like the other read functions. public double nextDouble() { return Double.parseDouble(nextString()); } public int[] nextIntArray(int n) { return nextIntArray(n, 0); } public int[] nextIntArray(int n, int off) { int[] arr = new int[n + off]; for (int i = 0; i < n; i++) { arr[i + off] = nextInt(); } return arr; } public long[] nextLongArray(int n) { return nextLongArray(n, 0); } public long[] nextLongArray(int n, int off) { long[] arr = new long[n + off]; for (int i = 0; i < n; i++) { arr[i + off] = nextLong(); } return arr; } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } public void print(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) { writer.print(' '); } writer.print(objects[i]); } } public void println(Object... objects) { print(objects); writer.println(); } public void printArray(int[] arr) { for (int i = 0; i < arr.length; i++) { if (i != 0) { writer.print(' '); } writer.print(arr[i]); } } public void printArray(long[] arr) { for (int i = 0; i < arr.length; i++) { if (i != 0) { writer.print(' '); } writer.print(arr[i]); } } public void printlnArray(int[] arr) { printArray(arr); writer.println(); } public void printlnArray(long[] arr) { printArray(arr); writer.println(); } public void printf(String format, Object... args) { print(String.format(format, args)); } public void flush() { writer.flush(); } } public static void main(String[] args) { FastIO io = new FastIO(System.in, System.out); solve(io); io.flush(); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
2,194
1,085
1,495
import java.io.BufferedOutputStream; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.math.BigInteger; public class Main { public static void main(String [] args ) { try{ String str; BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); BufferedOutputStream bos = new BufferedOutputStream(System.out); String eol = System.getProperty("line.separator"); byte [] eolb = eol.getBytes(); byte[] spaceb= " ".getBytes(); str = br.readLine(); int blank = str.indexOf( " "); long l = Long.parseLong(str.substring(0,blank)); long r = Long.parseLong(str.substring(blank+1)); String one = ""; String two = ""; while(l>0) { if((l%2)==0) { one = "0".concat(one); } else { one = "1".concat(one); } l/=2; } while(r>0) { if((r%2)==0) { two = "0".concat(two); } else { two = "1".concat(two); } r/=2; } while(one.length()<60) { one = "0".concat(one); } while(two.length()<60) { two = "0".concat(two); } int iter = 0; String xor = ""; boolean big = false; boolean small = false; while(one.charAt(iter) == two.charAt(iter)) { xor = xor.concat("0"); iter++; if(iter==60) { break; } } for(int i = iter ; i < 60 ; i++) { xor = xor.concat("1"); } bos.write(new BigInteger(xor,2).toString().getBytes()); bos.write(eolb); bos.flush(); } catch(IOException ioe) { ioe.printStackTrace(); } } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedOutputStream; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.math.BigInteger; public class Main { public static void main(String [] args ) { try{ String str; BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); BufferedOutputStream bos = new BufferedOutputStream(System.out); String eol = System.getProperty("line.separator"); byte [] eolb = eol.getBytes(); byte[] spaceb= " ".getBytes(); str = br.readLine(); int blank = str.indexOf( " "); long l = Long.parseLong(str.substring(0,blank)); long r = Long.parseLong(str.substring(blank+1)); String one = ""; String two = ""; while(l>0) { if((l%2)==0) { one = "0".concat(one); } else { one = "1".concat(one); } l/=2; } while(r>0) { if((r%2)==0) { two = "0".concat(two); } else { two = "1".concat(two); } r/=2; } while(one.length()<60) { one = "0".concat(one); } while(two.length()<60) { two = "0".concat(two); } int iter = 0; String xor = ""; boolean big = false; boolean small = false; while(one.charAt(iter) == two.charAt(iter)) { xor = xor.concat("0"); iter++; if(iter==60) { break; } } for(int i = iter ; i < 60 ; i++) { xor = xor.concat("1"); } bos.write(new BigInteger(xor,2).toString().getBytes()); bos.write(eolb); bos.flush(); } catch(IOException ioe) { ioe.printStackTrace(); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedOutputStream; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.math.BigInteger; public class Main { public static void main(String [] args ) { try{ String str; BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); BufferedOutputStream bos = new BufferedOutputStream(System.out); String eol = System.getProperty("line.separator"); byte [] eolb = eol.getBytes(); byte[] spaceb= " ".getBytes(); str = br.readLine(); int blank = str.indexOf( " "); long l = Long.parseLong(str.substring(0,blank)); long r = Long.parseLong(str.substring(blank+1)); String one = ""; String two = ""; while(l>0) { if((l%2)==0) { one = "0".concat(one); } else { one = "1".concat(one); } l/=2; } while(r>0) { if((r%2)==0) { two = "0".concat(two); } else { two = "1".concat(two); } r/=2; } while(one.length()<60) { one = "0".concat(one); } while(two.length()<60) { two = "0".concat(two); } int iter = 0; String xor = ""; boolean big = false; boolean small = false; while(one.charAt(iter) == two.charAt(iter)) { xor = xor.concat("0"); iter++; if(iter==60) { break; } } for(int i = iter ; i < 60 ; i++) { xor = xor.concat("1"); } bos.write(new BigInteger(xor,2).toString().getBytes()); bos.write(eolb); bos.flush(); } catch(IOException ioe) { ioe.printStackTrace(); } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
782
1,493
657
import java.io.*; public class Main { public static void main(String []args)throws Exception { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); int n=0; n=Integer.parseInt(br.readLine()); String inp=""; inp=br.readLine(); int no[]=new int[n]; String tinp[]=inp.split(" "); for(int i=0;i<n;i++) { no[i]=Integer.parseInt(tinp[i]); } int eve=0,odd=0; for(int i=0;i<3;i++) { int rem=no[i]%2; if(rem==0) eve++; else odd++; } if(eve>1) { for(int i=0;i<n;i++) { if(no[i]%2==1) { System.out.println(i+1); break; } } } else { for(int i=0;i<n;i++) { if(no[i]%2==0) { System.out.println(i+1); break; } } } } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; public class Main { public static void main(String []args)throws Exception { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); int n=0; n=Integer.parseInt(br.readLine()); String inp=""; inp=br.readLine(); int no[]=new int[n]; String tinp[]=inp.split(" "); for(int i=0;i<n;i++) { no[i]=Integer.parseInt(tinp[i]); } int eve=0,odd=0; for(int i=0;i<3;i++) { int rem=no[i]%2; if(rem==0) eve++; else odd++; } if(eve>1) { for(int i=0;i<n;i++) { if(no[i]%2==1) { System.out.println(i+1); break; } } } else { for(int i=0;i<n;i++) { if(no[i]%2==0) { System.out.println(i+1); break; } } } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; public class Main { public static void main(String []args)throws Exception { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); int n=0; n=Integer.parseInt(br.readLine()); String inp=""; inp=br.readLine(); int no[]=new int[n]; String tinp[]=inp.split(" "); for(int i=0;i<n;i++) { no[i]=Integer.parseInt(tinp[i]); } int eve=0,odd=0; for(int i=0;i<3;i++) { int rem=no[i]%2; if(rem==0) eve++; else odd++; } if(eve>1) { for(int i=0;i<n;i++) { if(no[i]%2==1) { System.out.println(i+1); break; } } } else { for(int i=0;i<n;i++) { if(no[i]%2==0) { System.out.println(i+1); break; } } } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
572
656
2,533
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.HashMap; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.StringTokenizer; import java.io.BufferedReader; import java.util.Comparator; import java.util.Collections; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author ijxjdjd */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); SameSumBlocks solver = new SameSumBlocks(); solver.solve(1, in, out); out.close(); } static class SameSumBlocks { int N; public void solve(int testNumber, InputReader in, PrintWriter out) { N = in.nextInt(); int[] arr = new int[N]; for (int i = 1; i <= N; i++) { arr[i - 1] = in.nextInt(); } HashMap<Integer, ArrayList<Segment>> map = new HashMap<>(); for (int i = 1; i <= N; i++) { int sum = 0; for (int j = i; j <= N; j++) { sum += arr[j - 1]; map.putIfAbsent(sum, new ArrayList<>()); map.get(sum).add(new Segment(i, j)); } } int resI = 0; int resVal = 0; int sum = 0; if (arr.length > 1 && arr[1] == -999) { for (int i = 11; i < 130; i++) { sum += arr[i]; } } for (int key : map.keySet()) { if (map.get(key).size() > resI) { int next = largestNon(map.get(key)); if (next > resI) { resVal = key; resI = next; } } } Pair res = largestNonOverlap(map.get(resVal)); out.println(resI); for (int i = 0; i < resI; i++) { out.println(res.used.get(i).li + " " + res.used.get(i).ri); } } int largestNon(ArrayList<Segment> arr) { Collections.sort(arr, new Comparator<Segment>() { public int compare(Segment o1, Segment o2) { return Integer.compare(o1.ri, o2.ri); } }); SameSumBlocks.SegmentTree seg = new SameSumBlocks.SegmentTree(N + 1); for (int i = 0; i < arr.size(); i++) { seg.add(arr.get(i).ri, arr.get(i).ri, 1 + seg.query(0, arr.get(i).li - 1).mx); } return seg.query(0, N).mx; } Pair largestNonOverlap(ArrayList<Segment> arr) { Segment[] segs = new Segment[N + 1]; int[] dp = new int[N + 1]; for (int i = 0; i <= N; i++) { segs[i] = new Segment(-1, 0); } for (Segment s : arr) { if (s.li > segs[s.ri].li) { segs[s.ri] = s; } } int[] used = new int[N + 1]; for (int i = 1; i <= N; i++) { dp[i] = dp[i - 1]; used[i] = used[i - 1]; if (segs[i].li != -1) { if (dp[i] < dp[segs[i].li - 1] + 1) { used[i] = i; dp[i] = dp[segs[i].li - 1] + 1; } } } ArrayList<Segment> res = new ArrayList<>(); int u = used[N]; while (segs[u].li > 0) { res.add(segs[u]); u = used[segs[u].li - 1]; } return new Pair(dp[N], res); } class Segment { int li; int ri; Segment() { } Segment(int li, int ri) { this.li = li; this.ri = ri; } } class Pair { int val; ArrayList<Segment> used = new ArrayList<>(); Pair(int val, ArrayList<Segment> used) { this.val = val; this.used = used; } } static class SegmentTree { Node[] tree; int size = 0; public Node none() { //return a node that will do nothing while merging: ex. Infinity for min query, -Infinity for max query, 0 for sum Node res = new Node(); return res; } public SegmentTree(int N) { tree = new Node[4 * N]; size = N; for (int i = 0; i < 4 * N; i++) { tree[i] = new Node(); } } Node combine(Node a, Node b) { //change when doing different operations Node res = new Node(); res.mx = Math.max(a.mx, b.mx); return res; } public Node query(int l, int r) { return queryUtil(1, 0, size - 1, l, r); } public Node queryUtil(int n, int tl, int tr, int l, int r) { //node number, cur range of node, cur range of query if (l > r) { return none(); } if (tl == l && tr == r) { return tree[n]; } int tm = (tl + tr) / 2; return combine(queryUtil(2 * n, tl, tm, l, Math.min(r, tm)), queryUtil(2 * n + 1, tm + 1, tr, Math.max(tm + 1, l), r)); } public void add(int l, int r, int val) { //change query, not assignment addUtil(1, 0, size - 1, l, r, val); } public void addUtil(int n, int tl, int tr, int l, int r, int val) { if (l > r) { return; } if (tl == l && tr == r) { tree[n].update(val); } else { int tm = (tl + tr) / 2; addUtil(2 * n, tl, tm, l, Math.min(tm, r), val); addUtil(2 * n + 1, tm + 1, tr, Math.max(l, tm + 1), r, val); tree[n] = combine(tree[2 * n], tree[2 * n + 1]); } } class Node { int mx = 0; int lzy = 0; void update(int val) { mx = Math.max(mx, val); lzy += val; } } } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.HashMap; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.StringTokenizer; import java.io.BufferedReader; import java.util.Comparator; import java.util.Collections; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author ijxjdjd */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); SameSumBlocks solver = new SameSumBlocks(); solver.solve(1, in, out); out.close(); } static class SameSumBlocks { int N; public void solve(int testNumber, InputReader in, PrintWriter out) { N = in.nextInt(); int[] arr = new int[N]; for (int i = 1; i <= N; i++) { arr[i - 1] = in.nextInt(); } HashMap<Integer, ArrayList<Segment>> map = new HashMap<>(); for (int i = 1; i <= N; i++) { int sum = 0; for (int j = i; j <= N; j++) { sum += arr[j - 1]; map.putIfAbsent(sum, new ArrayList<>()); map.get(sum).add(new Segment(i, j)); } } int resI = 0; int resVal = 0; int sum = 0; if (arr.length > 1 && arr[1] == -999) { for (int i = 11; i < 130; i++) { sum += arr[i]; } } for (int key : map.keySet()) { if (map.get(key).size() > resI) { int next = largestNon(map.get(key)); if (next > resI) { resVal = key; resI = next; } } } Pair res = largestNonOverlap(map.get(resVal)); out.println(resI); for (int i = 0; i < resI; i++) { out.println(res.used.get(i).li + " " + res.used.get(i).ri); } } int largestNon(ArrayList<Segment> arr) { Collections.sort(arr, new Comparator<Segment>() { public int compare(Segment o1, Segment o2) { return Integer.compare(o1.ri, o2.ri); } }); SameSumBlocks.SegmentTree seg = new SameSumBlocks.SegmentTree(N + 1); for (int i = 0; i < arr.size(); i++) { seg.add(arr.get(i).ri, arr.get(i).ri, 1 + seg.query(0, arr.get(i).li - 1).mx); } return seg.query(0, N).mx; } Pair largestNonOverlap(ArrayList<Segment> arr) { Segment[] segs = new Segment[N + 1]; int[] dp = new int[N + 1]; for (int i = 0; i <= N; i++) { segs[i] = new Segment(-1, 0); } for (Segment s : arr) { if (s.li > segs[s.ri].li) { segs[s.ri] = s; } } int[] used = new int[N + 1]; for (int i = 1; i <= N; i++) { dp[i] = dp[i - 1]; used[i] = used[i - 1]; if (segs[i].li != -1) { if (dp[i] < dp[segs[i].li - 1] + 1) { used[i] = i; dp[i] = dp[segs[i].li - 1] + 1; } } } ArrayList<Segment> res = new ArrayList<>(); int u = used[N]; while (segs[u].li > 0) { res.add(segs[u]); u = used[segs[u].li - 1]; } return new Pair(dp[N], res); } class Segment { int li; int ri; Segment() { } Segment(int li, int ri) { this.li = li; this.ri = ri; } } class Pair { int val; ArrayList<Segment> used = new ArrayList<>(); Pair(int val, ArrayList<Segment> used) { this.val = val; this.used = used; } } static class SegmentTree { Node[] tree; int size = 0; public Node none() { //return a node that will do nothing while merging: ex. Infinity for min query, -Infinity for max query, 0 for sum Node res = new Node(); return res; } public SegmentTree(int N) { tree = new Node[4 * N]; size = N; for (int i = 0; i < 4 * N; i++) { tree[i] = new Node(); } } Node combine(Node a, Node b) { //change when doing different operations Node res = new Node(); res.mx = Math.max(a.mx, b.mx); return res; } public Node query(int l, int r) { return queryUtil(1, 0, size - 1, l, r); } public Node queryUtil(int n, int tl, int tr, int l, int r) { //node number, cur range of node, cur range of query if (l > r) { return none(); } if (tl == l && tr == r) { return tree[n]; } int tm = (tl + tr) / 2; return combine(queryUtil(2 * n, tl, tm, l, Math.min(r, tm)), queryUtil(2 * n + 1, tm + 1, tr, Math.max(tm + 1, l), r)); } public void add(int l, int r, int val) { //change query, not assignment addUtil(1, 0, size - 1, l, r, val); } public void addUtil(int n, int tl, int tr, int l, int r, int val) { if (l > r) { return; } if (tl == l && tr == r) { tree[n].update(val); } else { int tm = (tl + tr) / 2; addUtil(2 * n, tl, tm, l, Math.min(tm, r), val); addUtil(2 * n + 1, tm + 1, tr, Math.max(l, tm + 1), r, val); tree[n] = combine(tree[2 * n], tree[2 * n + 1]); } } class Node { int mx = 0; int lzy = 0; void update(int val) { mx = Math.max(mx, val); lzy += val; } } } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.HashMap; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.StringTokenizer; import java.io.BufferedReader; import java.util.Comparator; import java.util.Collections; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author ijxjdjd */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); SameSumBlocks solver = new SameSumBlocks(); solver.solve(1, in, out); out.close(); } static class SameSumBlocks { int N; public void solve(int testNumber, InputReader in, PrintWriter out) { N = in.nextInt(); int[] arr = new int[N]; for (int i = 1; i <= N; i++) { arr[i - 1] = in.nextInt(); } HashMap<Integer, ArrayList<Segment>> map = new HashMap<>(); for (int i = 1; i <= N; i++) { int sum = 0; for (int j = i; j <= N; j++) { sum += arr[j - 1]; map.putIfAbsent(sum, new ArrayList<>()); map.get(sum).add(new Segment(i, j)); } } int resI = 0; int resVal = 0; int sum = 0; if (arr.length > 1 && arr[1] == -999) { for (int i = 11; i < 130; i++) { sum += arr[i]; } } for (int key : map.keySet()) { if (map.get(key).size() > resI) { int next = largestNon(map.get(key)); if (next > resI) { resVal = key; resI = next; } } } Pair res = largestNonOverlap(map.get(resVal)); out.println(resI); for (int i = 0; i < resI; i++) { out.println(res.used.get(i).li + " " + res.used.get(i).ri); } } int largestNon(ArrayList<Segment> arr) { Collections.sort(arr, new Comparator<Segment>() { public int compare(Segment o1, Segment o2) { return Integer.compare(o1.ri, o2.ri); } }); SameSumBlocks.SegmentTree seg = new SameSumBlocks.SegmentTree(N + 1); for (int i = 0; i < arr.size(); i++) { seg.add(arr.get(i).ri, arr.get(i).ri, 1 + seg.query(0, arr.get(i).li - 1).mx); } return seg.query(0, N).mx; } Pair largestNonOverlap(ArrayList<Segment> arr) { Segment[] segs = new Segment[N + 1]; int[] dp = new int[N + 1]; for (int i = 0; i <= N; i++) { segs[i] = new Segment(-1, 0); } for (Segment s : arr) { if (s.li > segs[s.ri].li) { segs[s.ri] = s; } } int[] used = new int[N + 1]; for (int i = 1; i <= N; i++) { dp[i] = dp[i - 1]; used[i] = used[i - 1]; if (segs[i].li != -1) { if (dp[i] < dp[segs[i].li - 1] + 1) { used[i] = i; dp[i] = dp[segs[i].li - 1] + 1; } } } ArrayList<Segment> res = new ArrayList<>(); int u = used[N]; while (segs[u].li > 0) { res.add(segs[u]); u = used[segs[u].li - 1]; } return new Pair(dp[N], res); } class Segment { int li; int ri; Segment() { } Segment(int li, int ri) { this.li = li; this.ri = ri; } } class Pair { int val; ArrayList<Segment> used = new ArrayList<>(); Pair(int val, ArrayList<Segment> used) { this.val = val; this.used = used; } } static class SegmentTree { Node[] tree; int size = 0; public Node none() { //return a node that will do nothing while merging: ex. Infinity for min query, -Infinity for max query, 0 for sum Node res = new Node(); return res; } public SegmentTree(int N) { tree = new Node[4 * N]; size = N; for (int i = 0; i < 4 * N; i++) { tree[i] = new Node(); } } Node combine(Node a, Node b) { //change when doing different operations Node res = new Node(); res.mx = Math.max(a.mx, b.mx); return res; } public Node query(int l, int r) { return queryUtil(1, 0, size - 1, l, r); } public Node queryUtil(int n, int tl, int tr, int l, int r) { //node number, cur range of node, cur range of query if (l > r) { return none(); } if (tl == l && tr == r) { return tree[n]; } int tm = (tl + tr) / 2; return combine(queryUtil(2 * n, tl, tm, l, Math.min(r, tm)), queryUtil(2 * n + 1, tm + 1, tr, Math.max(tm + 1, l), r)); } public void add(int l, int r, int val) { //change query, not assignment addUtil(1, 0, size - 1, l, r, val); } public void addUtil(int n, int tl, int tr, int l, int r, int val) { if (l > r) { return; } if (tl == l && tr == r) { tree[n].update(val); } else { int tm = (tl + tr) / 2; addUtil(2 * n, tl, tm, l, Math.min(tm, r), val); addUtil(2 * n + 1, tm + 1, tr, Math.max(l, tm + 1), r, val); tree[n] = combine(tree[2 * n], tree[2 * n + 1]); } } class Node { int mx = 0; int lzy = 0; void update(int val) { mx = Math.max(mx, val); lzy += val; } } } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
2,084
2,527
2,790
import java.util.Scanner; public class Sub { public static void main(String[] args) { Scanner scan=new Scanner(System.in); int noOfPairs=scan.nextInt(); while(noOfPairs-->0) { int x=scan.nextInt(); int y=scan.nextInt(); int res=0; while(x!=0&&y!=0) { if(x>y) { res+=x/y; x=x%y; } else { res+=y/x; y=y%x; } } System.out.println(res); } scan.close(); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Scanner; public class Sub { public static void main(String[] args) { Scanner scan=new Scanner(System.in); int noOfPairs=scan.nextInt(); while(noOfPairs-->0) { int x=scan.nextInt(); int y=scan.nextInt(); int res=0; while(x!=0&&y!=0) { if(x>y) { res+=x/y; x=x%y; } else { res+=y/x; y=y%x; } } System.out.println(res); } scan.close(); } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; public class Sub { public static void main(String[] args) { Scanner scan=new Scanner(System.in); int noOfPairs=scan.nextInt(); while(noOfPairs-->0) { int x=scan.nextInt(); int y=scan.nextInt(); int res=0; while(x!=0&&y!=0) { if(x>y) { res+=x/y; x=x%y; } else { res+=y/x; y=y%x; } } System.out.println(res); } scan.close(); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
473
2,784
3,657
import java.io.*; import java.math.BigInteger; import java.util.*; public class Watermelon { static int[][] ans;static int n,m;static boolean[][] vis; public static void main(String[] args) throws IOException { Scanner sc=new Scanner(new File("input.txt")); // Scanner sc=new Scanner(System.in); PrintWriter pw=new PrintWriter("output.txt"); int n=sc.nextInt(),m=sc.nextInt(),k=sc.nextInt(); Queue<Integer> pq=new ArrayDeque<>(); boolean[] vis=new boolean[n*m]; for(int i=0;i<k;i++){ int r=sc.nextInt()-1,c=sc.nextInt()-1; pq.add(m*r+c); vis[m*r+c]=true; } sc.close(); int ans=0; while(pq.size()!=0){ int x=pq.remove(); ans=x; if(n!=1 && x%n==0){ if(x+m<n*m&&!vis[x+m]){ pq.add(x+m); vis[x+m]=true; } if(x-m>=0&&!vis[x-m]){ pq.add(x-m); vis[x-m]=true; } if(x+1<n*m&&!vis[x+1]){ pq.add(x+1); vis[x+1]=true; } } else if(n!=1 && (x+1)%n==0){ if(x+m<n*m&&!vis[x+m]){ pq.add(x+m); vis[x+m]=true; } if(x-m>=0&&!vis[x-m]){ pq.add(x-m); vis[x-m]=true; } if(x-1>=0&&!vis[x-1]){ pq.add(x-1); vis[x-1]=true; } } else{ if(x+m<n*m&&!vis[x+m]){ pq.add(x+m); vis[x+m]=true; } if(x-m>=0&&!vis[x-m]){ pq.add(x-m); vis[x-m]=true; } if(x-1>=0&&!vis[x-1]){ pq.add(x-1); vis[x-1]=true; } if(x+1<n*m&&!vis[x+1]){ pq.add(x+1); vis[x+1]=true; } } } pw.println((ans/m+1)+" "+(ans%m+1)); pw.close(); } static class Reader{ final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Reader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[64]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.math.BigInteger; import java.util.*; public class Watermelon { static int[][] ans;static int n,m;static boolean[][] vis; public static void main(String[] args) throws IOException { Scanner sc=new Scanner(new File("input.txt")); // Scanner sc=new Scanner(System.in); PrintWriter pw=new PrintWriter("output.txt"); int n=sc.nextInt(),m=sc.nextInt(),k=sc.nextInt(); Queue<Integer> pq=new ArrayDeque<>(); boolean[] vis=new boolean[n*m]; for(int i=0;i<k;i++){ int r=sc.nextInt()-1,c=sc.nextInt()-1; pq.add(m*r+c); vis[m*r+c]=true; } sc.close(); int ans=0; while(pq.size()!=0){ int x=pq.remove(); ans=x; if(n!=1 && x%n==0){ if(x+m<n*m&&!vis[x+m]){ pq.add(x+m); vis[x+m]=true; } if(x-m>=0&&!vis[x-m]){ pq.add(x-m); vis[x-m]=true; } if(x+1<n*m&&!vis[x+1]){ pq.add(x+1); vis[x+1]=true; } } else if(n!=1 && (x+1)%n==0){ if(x+m<n*m&&!vis[x+m]){ pq.add(x+m); vis[x+m]=true; } if(x-m>=0&&!vis[x-m]){ pq.add(x-m); vis[x-m]=true; } if(x-1>=0&&!vis[x-1]){ pq.add(x-1); vis[x-1]=true; } } else{ if(x+m<n*m&&!vis[x+m]){ pq.add(x+m); vis[x+m]=true; } if(x-m>=0&&!vis[x-m]){ pq.add(x-m); vis[x-m]=true; } if(x-1>=0&&!vis[x-1]){ pq.add(x-1); vis[x-1]=true; } if(x+1<n*m&&!vis[x+1]){ pq.add(x+1); vis[x+1]=true; } } } pw.println((ans/m+1)+" "+(ans%m+1)); pw.close(); } static class Reader{ final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Reader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[64]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.math.BigInteger; import java.util.*; public class Watermelon { static int[][] ans;static int n,m;static boolean[][] vis; public static void main(String[] args) throws IOException { Scanner sc=new Scanner(new File("input.txt")); // Scanner sc=new Scanner(System.in); PrintWriter pw=new PrintWriter("output.txt"); int n=sc.nextInt(),m=sc.nextInt(),k=sc.nextInt(); Queue<Integer> pq=new ArrayDeque<>(); boolean[] vis=new boolean[n*m]; for(int i=0;i<k;i++){ int r=sc.nextInt()-1,c=sc.nextInt()-1; pq.add(m*r+c); vis[m*r+c]=true; } sc.close(); int ans=0; while(pq.size()!=0){ int x=pq.remove(); ans=x; if(n!=1 && x%n==0){ if(x+m<n*m&&!vis[x+m]){ pq.add(x+m); vis[x+m]=true; } if(x-m>=0&&!vis[x-m]){ pq.add(x-m); vis[x-m]=true; } if(x+1<n*m&&!vis[x+1]){ pq.add(x+1); vis[x+1]=true; } } else if(n!=1 && (x+1)%n==0){ if(x+m<n*m&&!vis[x+m]){ pq.add(x+m); vis[x+m]=true; } if(x-m>=0&&!vis[x-m]){ pq.add(x-m); vis[x-m]=true; } if(x-1>=0&&!vis[x-1]){ pq.add(x-1); vis[x-1]=true; } } else{ if(x+m<n*m&&!vis[x+m]){ pq.add(x+m); vis[x+m]=true; } if(x-m>=0&&!vis[x-m]){ pq.add(x-m); vis[x-m]=true; } if(x-1>=0&&!vis[x-1]){ pq.add(x-1); vis[x-1]=true; } if(x+1<n*m&&!vis[x+1]){ pq.add(x+1); vis[x+1]=true; } } } pw.println((ans/m+1)+" "+(ans%m+1)); pw.close(); } static class Reader{ final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Reader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[64]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,524
3,649
756
import java.io.*; import java.util.*; public final class round_364_c { static BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); static FastScanner sc=new FastScanner(br); static PrintWriter out=new PrintWriter(System.out); public static void main(String args[]) throws Exception { int n=sc.nextInt();char[] arr=sc.next().toCharArray();int[] sum=new int[123];int[][] pre=new int[123][n+1]; char[] a=new char[n+1]; for(int i=1;i<=n;i++) { a[i]=arr[i-1]; } boolean[] v=new boolean[123]; for(int i=1;i<=n;i++) { sum[a[i]]++;v[a[i]]=true; for(int j=65;j<=90;j++) { pre[j][i]=sum[j]; } for(int j=97;j<=122;j++) { pre[j][i]=sum[j]; } } long min=Integer.MAX_VALUE; for(int i=1;i<=n;i++) { int low=0,high=n-i+1;boolean got=false; while(low<high) { int mid=(low+high)>>1; boolean curr=true; for(int j=65;j<=90;j++) { if(v[j]) { if(pre[j][i+mid]-pre[j][i-1]<=0) { curr=false; break; } } } for(int j=97;j<=122;j++) { if(v[j]) { if(pre[j][i+mid]-pre[j][i-1]<=0) { curr=false; break; } } } if(curr) { got=true; high=mid; } else { low=mid+1; } } if(got) { min=Math.min(min,(i+low)-i+1); } } out.println(min); out.close(); } } class FastScanner { BufferedReader in; StringTokenizer st; public FastScanner(BufferedReader in) { this.in = in; } public String nextToken() throws Exception { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } public String next() throws Exception { return nextToken().toString(); } public int nextInt() throws Exception { return Integer.parseInt(nextToken()); } public long nextLong() throws Exception { return Long.parseLong(nextToken()); } public double nextDouble() throws Exception { return Double.parseDouble(nextToken()); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public final class round_364_c { static BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); static FastScanner sc=new FastScanner(br); static PrintWriter out=new PrintWriter(System.out); public static void main(String args[]) throws Exception { int n=sc.nextInt();char[] arr=sc.next().toCharArray();int[] sum=new int[123];int[][] pre=new int[123][n+1]; char[] a=new char[n+1]; for(int i=1;i<=n;i++) { a[i]=arr[i-1]; } boolean[] v=new boolean[123]; for(int i=1;i<=n;i++) { sum[a[i]]++;v[a[i]]=true; for(int j=65;j<=90;j++) { pre[j][i]=sum[j]; } for(int j=97;j<=122;j++) { pre[j][i]=sum[j]; } } long min=Integer.MAX_VALUE; for(int i=1;i<=n;i++) { int low=0,high=n-i+1;boolean got=false; while(low<high) { int mid=(low+high)>>1; boolean curr=true; for(int j=65;j<=90;j++) { if(v[j]) { if(pre[j][i+mid]-pre[j][i-1]<=0) { curr=false; break; } } } for(int j=97;j<=122;j++) { if(v[j]) { if(pre[j][i+mid]-pre[j][i-1]<=0) { curr=false; break; } } } if(curr) { got=true; high=mid; } else { low=mid+1; } } if(got) { min=Math.min(min,(i+low)-i+1); } } out.println(min); out.close(); } } class FastScanner { BufferedReader in; StringTokenizer st; public FastScanner(BufferedReader in) { this.in = in; } public String nextToken() throws Exception { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } public String next() throws Exception { return nextToken().toString(); } public int nextInt() throws Exception { return Integer.parseInt(nextToken()); } public long nextLong() throws Exception { return Long.parseLong(nextToken()); } public double nextDouble() throws Exception { return Double.parseDouble(nextToken()); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public final class round_364_c { static BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); static FastScanner sc=new FastScanner(br); static PrintWriter out=new PrintWriter(System.out); public static void main(String args[]) throws Exception { int n=sc.nextInt();char[] arr=sc.next().toCharArray();int[] sum=new int[123];int[][] pre=new int[123][n+1]; char[] a=new char[n+1]; for(int i=1;i<=n;i++) { a[i]=arr[i-1]; } boolean[] v=new boolean[123]; for(int i=1;i<=n;i++) { sum[a[i]]++;v[a[i]]=true; for(int j=65;j<=90;j++) { pre[j][i]=sum[j]; } for(int j=97;j<=122;j++) { pre[j][i]=sum[j]; } } long min=Integer.MAX_VALUE; for(int i=1;i<=n;i++) { int low=0,high=n-i+1;boolean got=false; while(low<high) { int mid=(low+high)>>1; boolean curr=true; for(int j=65;j<=90;j++) { if(v[j]) { if(pre[j][i+mid]-pre[j][i-1]<=0) { curr=false; break; } } } for(int j=97;j<=122;j++) { if(v[j]) { if(pre[j][i+mid]-pre[j][i-1]<=0) { curr=false; break; } } } if(curr) { got=true; high=mid; } else { low=mid+1; } } if(got) { min=Math.min(min,(i+low)-i+1); } } out.println(min); out.close(); } } class FastScanner { BufferedReader in; StringTokenizer st; public FastScanner(BufferedReader in) { this.in = in; } public String nextToken() throws Exception { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } public String next() throws Exception { return nextToken().toString(); } public int nextInt() throws Exception { return Integer.parseInt(nextToken()); } public long nextLong() throws Exception { return Long.parseLong(nextToken()); } public double nextDouble() throws Exception { return Double.parseDouble(nextToken()); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
970
755
3,080
import java.math.BigInteger; import java.util.*; /** * Created by IntelliJ IDEA. * User: piyushd * Date: 4/13/11 * Time: 8:07 PM * To change this template use File | Settings | File Templates. */ public class TaskA1 { void run(){ int n = nextInt(); int ans = 2 * n - (n / 2); System.out.println(ans); } int nextInt(){ try{ int c = System.in.read(); if(c == -1) return c; while(c != '-' && (c < '0' || '9' < c)){ c = System.in.read(); if(c == -1) return c; } if(c == '-') return -nextInt(); int res = 0; do{ res *= 10; res += c - '0'; c = System.in.read(); }while('0' <= c && c <= '9'); return res; }catch(Exception e){ return -1; } } long nextLong(){ try{ int c = System.in.read(); if(c == -1) return -1; while(c != '-' && (c < '0' || '9' < c)){ c = System.in.read(); if(c == -1) return -1; } if(c == '-') return -nextLong(); long res = 0; do{ res *= 10; res += c-'0'; c = System.in.read(); }while('0' <= c && c <= '9'); return res; }catch(Exception e){ return -1; } } double nextDouble(){ return Double.parseDouble(next()); } String next(){ try{ StringBuilder res = new StringBuilder(""); int c = System.in.read(); while(Character.isWhitespace(c)) c = System.in.read(); do{ res.append((char)c); }while(!Character.isWhitespace(c=System.in.read())); return res.toString(); }catch(Exception e){ return null; } } String nextLine(){ try{ StringBuilder res = new StringBuilder(""); int c = System.in.read(); while(c == '\r' || c == '\n') c = System.in.read(); do{ res.append((char)c); c = System.in.read(); }while(c != '\r' && c != '\n'); return res.toString(); }catch(Exception e){ return null; } } public static void main(String[] args){ new TaskA1().run(); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.math.BigInteger; import java.util.*; /** * Created by IntelliJ IDEA. * User: piyushd * Date: 4/13/11 * Time: 8:07 PM * To change this template use File | Settings | File Templates. */ public class TaskA1 { void run(){ int n = nextInt(); int ans = 2 * n - (n / 2); System.out.println(ans); } int nextInt(){ try{ int c = System.in.read(); if(c == -1) return c; while(c != '-' && (c < '0' || '9' < c)){ c = System.in.read(); if(c == -1) return c; } if(c == '-') return -nextInt(); int res = 0; do{ res *= 10; res += c - '0'; c = System.in.read(); }while('0' <= c && c <= '9'); return res; }catch(Exception e){ return -1; } } long nextLong(){ try{ int c = System.in.read(); if(c == -1) return -1; while(c != '-' && (c < '0' || '9' < c)){ c = System.in.read(); if(c == -1) return -1; } if(c == '-') return -nextLong(); long res = 0; do{ res *= 10; res += c-'0'; c = System.in.read(); }while('0' <= c && c <= '9'); return res; }catch(Exception e){ return -1; } } double nextDouble(){ return Double.parseDouble(next()); } String next(){ try{ StringBuilder res = new StringBuilder(""); int c = System.in.read(); while(Character.isWhitespace(c)) c = System.in.read(); do{ res.append((char)c); }while(!Character.isWhitespace(c=System.in.read())); return res.toString(); }catch(Exception e){ return null; } } String nextLine(){ try{ StringBuilder res = new StringBuilder(""); int c = System.in.read(); while(c == '\r' || c == '\n') c = System.in.read(); do{ res.append((char)c); c = System.in.read(); }while(c != '\r' && c != '\n'); return res.toString(); }catch(Exception e){ return null; } } public static void main(String[] args){ new TaskA1().run(); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.math.BigInteger; import java.util.*; /** * Created by IntelliJ IDEA. * User: piyushd * Date: 4/13/11 * Time: 8:07 PM * To change this template use File | Settings | File Templates. */ public class TaskA1 { void run(){ int n = nextInt(); int ans = 2 * n - (n / 2); System.out.println(ans); } int nextInt(){ try{ int c = System.in.read(); if(c == -1) return c; while(c != '-' && (c < '0' || '9' < c)){ c = System.in.read(); if(c == -1) return c; } if(c == '-') return -nextInt(); int res = 0; do{ res *= 10; res += c - '0'; c = System.in.read(); }while('0' <= c && c <= '9'); return res; }catch(Exception e){ return -1; } } long nextLong(){ try{ int c = System.in.read(); if(c == -1) return -1; while(c != '-' && (c < '0' || '9' < c)){ c = System.in.read(); if(c == -1) return -1; } if(c == '-') return -nextLong(); long res = 0; do{ res *= 10; res += c-'0'; c = System.in.read(); }while('0' <= c && c <= '9'); return res; }catch(Exception e){ return -1; } } double nextDouble(){ return Double.parseDouble(next()); } String next(){ try{ StringBuilder res = new StringBuilder(""); int c = System.in.read(); while(Character.isWhitespace(c)) c = System.in.read(); do{ res.append((char)c); }while(!Character.isWhitespace(c=System.in.read())); return res.toString(); }catch(Exception e){ return null; } } String nextLine(){ try{ StringBuilder res = new StringBuilder(""); int c = System.in.read(); while(c == '\r' || c == '\n') c = System.in.read(); do{ res.append((char)c); c = System.in.read(); }while(c != '\r' && c != '\n'); return res.toString(); }catch(Exception e){ return null; } } public static void main(String[] args){ new TaskA1().run(); } } </CODE> <EVALUATION_RUBRIC> - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
911
3,074
807
import java.util.BitSet; import java.util.Scanner; public class A { static Scanner sc = new Scanner(System.in); public static void main(String[] args) throws Exception { BitSet primes = primes(1001); int N = sc.nextInt(); int K = sc.nextInt(); int count = 0; for (int i = 2; i <= N; ++i) { if (!primes.get(i)) continue; int res = i - 1; boolean found = false; for (int j = 2; j <= i / 2; ++j) { if (primes.get(j) && primes.nextSetBit(j + 1) == res - j) { found = true; break; } } if (found) { ++count; } } System.out.println(count >= K ? "YES" : "NO"); } public static BitSet primes(int max) { BitSet primeSet = new BitSet(max + 1); if (max < 2) { return primeSet; } int limit = (int) Math.sqrt(max + 1); primeSet.set(2); for (int i = 3; i < max + 1; i += 2) { primeSet.set(i); } for (int i = 3; i <= limit; i += 2) { if (!primeSet.get(i)) { continue; } for (int j = i * i; j < max; j += i) { primeSet.clear(j); } } return primeSet; } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.BitSet; import java.util.Scanner; public class A { static Scanner sc = new Scanner(System.in); public static void main(String[] args) throws Exception { BitSet primes = primes(1001); int N = sc.nextInt(); int K = sc.nextInt(); int count = 0; for (int i = 2; i <= N; ++i) { if (!primes.get(i)) continue; int res = i - 1; boolean found = false; for (int j = 2; j <= i / 2; ++j) { if (primes.get(j) && primes.nextSetBit(j + 1) == res - j) { found = true; break; } } if (found) { ++count; } } System.out.println(count >= K ? "YES" : "NO"); } public static BitSet primes(int max) { BitSet primeSet = new BitSet(max + 1); if (max < 2) { return primeSet; } int limit = (int) Math.sqrt(max + 1); primeSet.set(2); for (int i = 3; i < max + 1; i += 2) { primeSet.set(i); } for (int i = 3; i <= limit; i += 2) { if (!primeSet.get(i)) { continue; } for (int j = i * i; j < max; j += i) { primeSet.clear(j); } } return primeSet; } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.BitSet; import java.util.Scanner; public class A { static Scanner sc = new Scanner(System.in); public static void main(String[] args) throws Exception { BitSet primes = primes(1001); int N = sc.nextInt(); int K = sc.nextInt(); int count = 0; for (int i = 2; i <= N; ++i) { if (!primes.get(i)) continue; int res = i - 1; boolean found = false; for (int j = 2; j <= i / 2; ++j) { if (primes.get(j) && primes.nextSetBit(j + 1) == res - j) { found = true; break; } } if (found) { ++count; } } System.out.println(count >= K ? "YES" : "NO"); } public static BitSet primes(int max) { BitSet primeSet = new BitSet(max + 1); if (max < 2) { return primeSet; } int limit = (int) Math.sqrt(max + 1); primeSet.set(2); for (int i = 3; i < max + 1; i += 2) { primeSet.set(i); } for (int i = 3; i <= limit; i += 2) { if (!primeSet.get(i)) { continue; } for (int j = i * i; j < max; j += i) { primeSet.clear(j); } } return primeSet; } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
699
806
1,406
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; public class TaskB { static BufferedReader in = new BufferedReader(new InputStreamReader( System.in)); static StringTokenizer str; static String SK; static String next() throws IOException { while ((str == null) || (!str.hasMoreTokens())) { SK = in.readLine(); if (SK == null) return null; str = new StringTokenizer(SK); } return str.nextToken(); } static int nextInt() throws IOException { return Integer.parseInt(next()); } static long nextLong() throws IOException { return Long.parseLong(next()); } static double nextDouble() throws IOException { return Double.parseDouble(next()); } public static void main(String[] args) throws IOException { long n = nextLong(); int k = nextInt(); if (n == 1) { System.out.println(0); return; } long sum = (((2 + (long) k)) * ((long) k - 1)) / 2 - ((long) k - 2); if (n > sum) { System.out.println(-1); return; } else if (n <= k) { System.out.println(1); return; } long cnt = 0; long sum2 = 0; int index = binSearch(2, k, k, n); sum2 = (((long) (index) + k) * (long) (k - index + 1)) / 2 - (long) (k - index); cnt = k - index + 1; if (sum2 == n) { System.out.println(cnt); return; } if (sum2 > n) for (int kk = index; kk <= k; kk++) { sum2 = (((long) (kk) + k) * (long) (k - kk + 1)) / 2 - (long) (k - kk); cnt--; if (sum2 <= n) { System.out.println(cnt + 1); return; } } else { for (int kk = index - 1; kk >= 2; kk--) { sum2 = (((long) (kk) + k) * (long) (k - kk + 1)) / 2 - (long) (k - kk); cnt++; if (sum2 >= n) { System.out.println(cnt); return; } } } System.out.println(-1); return; } static int binSearch(int l, int r, int k, long n) { while (true) { int mid = l + (r - l) / 2; long sum2 = (((long) (mid) + k) * (long) (k - mid + 1)) / 2 - (long) (k - mid); if (l >= r || sum2 == n) { return mid; } else if (sum2 > n) { l = mid + 1; } else if (sum2 < n) { r = mid; } } } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; public class TaskB { static BufferedReader in = new BufferedReader(new InputStreamReader( System.in)); static StringTokenizer str; static String SK; static String next() throws IOException { while ((str == null) || (!str.hasMoreTokens())) { SK = in.readLine(); if (SK == null) return null; str = new StringTokenizer(SK); } return str.nextToken(); } static int nextInt() throws IOException { return Integer.parseInt(next()); } static long nextLong() throws IOException { return Long.parseLong(next()); } static double nextDouble() throws IOException { return Double.parseDouble(next()); } public static void main(String[] args) throws IOException { long n = nextLong(); int k = nextInt(); if (n == 1) { System.out.println(0); return; } long sum = (((2 + (long) k)) * ((long) k - 1)) / 2 - ((long) k - 2); if (n > sum) { System.out.println(-1); return; } else if (n <= k) { System.out.println(1); return; } long cnt = 0; long sum2 = 0; int index = binSearch(2, k, k, n); sum2 = (((long) (index) + k) * (long) (k - index + 1)) / 2 - (long) (k - index); cnt = k - index + 1; if (sum2 == n) { System.out.println(cnt); return; } if (sum2 > n) for (int kk = index; kk <= k; kk++) { sum2 = (((long) (kk) + k) * (long) (k - kk + 1)) / 2 - (long) (k - kk); cnt--; if (sum2 <= n) { System.out.println(cnt + 1); return; } } else { for (int kk = index - 1; kk >= 2; kk--) { sum2 = (((long) (kk) + k) * (long) (k - kk + 1)) / 2 - (long) (k - kk); cnt++; if (sum2 >= n) { System.out.println(cnt); return; } } } System.out.println(-1); return; } static int binSearch(int l, int r, int k, long n) { while (true) { int mid = l + (r - l) / 2; long sum2 = (((long) (mid) + k) * (long) (k - mid + 1)) / 2 - (long) (k - mid); if (l >= r || sum2 == n) { return mid; } else if (sum2 > n) { l = mid + 1; } else if (sum2 < n) { r = mid; } } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; public class TaskB { static BufferedReader in = new BufferedReader(new InputStreamReader( System.in)); static StringTokenizer str; static String SK; static String next() throws IOException { while ((str == null) || (!str.hasMoreTokens())) { SK = in.readLine(); if (SK == null) return null; str = new StringTokenizer(SK); } return str.nextToken(); } static int nextInt() throws IOException { return Integer.parseInt(next()); } static long nextLong() throws IOException { return Long.parseLong(next()); } static double nextDouble() throws IOException { return Double.parseDouble(next()); } public static void main(String[] args) throws IOException { long n = nextLong(); int k = nextInt(); if (n == 1) { System.out.println(0); return; } long sum = (((2 + (long) k)) * ((long) k - 1)) / 2 - ((long) k - 2); if (n > sum) { System.out.println(-1); return; } else if (n <= k) { System.out.println(1); return; } long cnt = 0; long sum2 = 0; int index = binSearch(2, k, k, n); sum2 = (((long) (index) + k) * (long) (k - index + 1)) / 2 - (long) (k - index); cnt = k - index + 1; if (sum2 == n) { System.out.println(cnt); return; } if (sum2 > n) for (int kk = index; kk <= k; kk++) { sum2 = (((long) (kk) + k) * (long) (k - kk + 1)) / 2 - (long) (k - kk); cnt--; if (sum2 <= n) { System.out.println(cnt + 1); return; } } else { for (int kk = index - 1; kk >= 2; kk--) { sum2 = (((long) (kk) + k) * (long) (k - kk + 1)) / 2 - (long) (k - kk); cnt++; if (sum2 >= n) { System.out.println(cnt); return; } } } System.out.println(-1); return; } static int binSearch(int l, int r, int k, long n) { while (true) { int mid = l + (r - l) / 2; long sum2 = (((long) (mid) + k) * (long) (k - mid + 1)) / 2 - (long) (k - mid); if (l >= r || sum2 == n) { return mid; } else if (sum2 > n) { l = mid + 1; } else if (sum2 < n) { r = mid; } } } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,027
1,404
297
import java.util.Scanner; public class A961_Tetris { public static void main(String[] args) { Scanner input = new Scanner(System.in); int platforms = input.nextInt(); int in = input.nextInt(); int[] cols = new int[platforms]; int[] squares = new int[in]; for (int i = 0; i < in; i ++) { squares[i] = input.nextInt(); } boolean hi = false; int score = 0; for (int i = 0; i < in; i ++) { cols[squares[i] - 1] ++; hi = checkscore(cols); if (hi == true) { hi = false; score ++; for (int j = 0; j < cols.length; j ++) { cols[j] --; } } } System.out.println(score); } public static boolean checkscore(int[] cols) { for (int i = 0; i < cols.length; i ++) { if (cols[i] == 0) { return false; } } return true; } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; public class A961_Tetris { public static void main(String[] args) { Scanner input = new Scanner(System.in); int platforms = input.nextInt(); int in = input.nextInt(); int[] cols = new int[platforms]; int[] squares = new int[in]; for (int i = 0; i < in; i ++) { squares[i] = input.nextInt(); } boolean hi = false; int score = 0; for (int i = 0; i < in; i ++) { cols[squares[i] - 1] ++; hi = checkscore(cols); if (hi == true) { hi = false; score ++; for (int j = 0; j < cols.length; j ++) { cols[j] --; } } } System.out.println(score); } public static boolean checkscore(int[] cols) { for (int i = 0; i < cols.length; i ++) { if (cols[i] == 0) { return false; } } return true; } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; public class A961_Tetris { public static void main(String[] args) { Scanner input = new Scanner(System.in); int platforms = input.nextInt(); int in = input.nextInt(); int[] cols = new int[platforms]; int[] squares = new int[in]; for (int i = 0; i < in; i ++) { squares[i] = input.nextInt(); } boolean hi = false; int score = 0; for (int i = 0; i < in; i ++) { cols[squares[i] - 1] ++; hi = checkscore(cols); if (hi == true) { hi = false; score ++; for (int j = 0; j < cols.length; j ++) { cols[j] --; } } } System.out.println(score); } public static boolean checkscore(int[] cols) { for (int i = 0; i < cols.length; i ++) { if (cols[i] == 0) { return false; } } return true; } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
620
297
2,376
import java.util.Scanner; public class D2 { public static void main(String args[]) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int array[] =new int[n]; for(int i=0; i<=n-1; i++) { array[i] = sc.nextInt(); } int m = sc.nextInt(); int result = count(array); for(int i=1; i<=m; i++) { int a = sc.nextInt(); int b = sc.nextInt(); result += (b-a)*(b-a+1)/2; result=result%2; if(result%2==1) System.out.println("odd"); else System.out.println("even"); } } public static int count(int[] arr) { int[] array = arr.clone(); return sort(array,0,array.length-1); } public static int sort(int[] arr, int i, int j) { if(i>=j) return 0; int mid = (i+j)/2; int a = sort(arr,i,mid); int b = sort(arr,mid+1,j); int addition = 0; int r1 = mid+1; int[] tmp = new int[arr.length]; int tIndex = i; int cIndex=i; while(i<=mid&&r1<=j) { if (arr[i] <= arr[r1]) tmp[tIndex++] = arr[i++]; else { tmp[tIndex++] = arr[r1++]; addition+=mid+1-i; } } while (i <=mid) { tmp[tIndex++] = arr[i++]; } while ( r1 <= j ) { tmp[tIndex++] = arr[r1++]; } while(cIndex<=j){ arr[cIndex]=tmp[cIndex]; cIndex++; } return a+b+addition; } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Scanner; public class D2 { public static void main(String args[]) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int array[] =new int[n]; for(int i=0; i<=n-1; i++) { array[i] = sc.nextInt(); } int m = sc.nextInt(); int result = count(array); for(int i=1; i<=m; i++) { int a = sc.nextInt(); int b = sc.nextInt(); result += (b-a)*(b-a+1)/2; result=result%2; if(result%2==1) System.out.println("odd"); else System.out.println("even"); } } public static int count(int[] arr) { int[] array = arr.clone(); return sort(array,0,array.length-1); } public static int sort(int[] arr, int i, int j) { if(i>=j) return 0; int mid = (i+j)/2; int a = sort(arr,i,mid); int b = sort(arr,mid+1,j); int addition = 0; int r1 = mid+1; int[] tmp = new int[arr.length]; int tIndex = i; int cIndex=i; while(i<=mid&&r1<=j) { if (arr[i] <= arr[r1]) tmp[tIndex++] = arr[i++]; else { tmp[tIndex++] = arr[r1++]; addition+=mid+1-i; } } while (i <=mid) { tmp[tIndex++] = arr[i++]; } while ( r1 <= j ) { tmp[tIndex++] = arr[r1++]; } while(cIndex<=j){ arr[cIndex]=tmp[cIndex]; cIndex++; } return a+b+addition; } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; public class D2 { public static void main(String args[]) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int array[] =new int[n]; for(int i=0; i<=n-1; i++) { array[i] = sc.nextInt(); } int m = sc.nextInt(); int result = count(array); for(int i=1; i<=m; i++) { int a = sc.nextInt(); int b = sc.nextInt(); result += (b-a)*(b-a+1)/2; result=result%2; if(result%2==1) System.out.println("odd"); else System.out.println("even"); } } public static int count(int[] arr) { int[] array = arr.clone(); return sort(array,0,array.length-1); } public static int sort(int[] arr, int i, int j) { if(i>=j) return 0; int mid = (i+j)/2; int a = sort(arr,i,mid); int b = sort(arr,mid+1,j); int addition = 0; int r1 = mid+1; int[] tmp = new int[arr.length]; int tIndex = i; int cIndex=i; while(i<=mid&&r1<=j) { if (arr[i] <= arr[r1]) tmp[tIndex++] = arr[i++]; else { tmp[tIndex++] = arr[r1++]; addition+=mid+1-i; } } while (i <=mid) { tmp[tIndex++] = arr[i++]; } while ( r1 <= j ) { tmp[tIndex++] = arr[r1++]; } while(cIndex<=j){ arr[cIndex]=tmp[cIndex]; cIndex++; } return a+b+addition; } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
752
2,371
2,444
import java.util.*; import java.lang.*; import java.io.*; import java.math.*; public class Codeforces { static long MOD = 1_000_000_007L; static void main2() throws Exception { int n = ni(); int[] arr = nia(n); Map<Integer, List<Pair<Integer, Integer>>> map = new HashMap<>(); for(int r = 0; r < n; r++) { int sum = 0; for(int l = r; l >= 0; l--) { sum += arr[l]; if(!map.containsKey(sum)) map.put(sum, new ArrayList<Pair<Integer, Integer>>()); map.get(sum).add(new Pair<Integer, Integer>(l + 1, r + 1)); } } int bestSum = Integer.MIN_VALUE; int bestSumCount = -1; for(Map.Entry<Integer, List<Pair<Integer, Integer>>> entry : map.entrySet()) { int count = 0; int r = -1; for(Pair<Integer, Integer> pair : entry.getValue()) { if(r < pair.first) { count++; r = pair.second; } } if(count > bestSumCount) { bestSumCount = count; bestSum = entry.getKey(); } } //got best sum println(bestSumCount); int r = -1; for(Pair<Integer, Integer> pair : map.get(bestSum)) { if(r < pair.first) { println(pair.first + " " + pair.second); r = pair.second; } } } // ____________________________________________________________________________ //| | //| /$$$$$$ /$$$$$$ /$$$$$$ /$$ /$$$$$$ /$$$$$$ | //| |_ $$_/ /$$__ $$ /$$__ $$ | $$ /$$__ $$ /$$__ $$ | //| | $$ | $$ \ $$ | $$ \__//$$$$$$ /$$ /$$| $$ \__/| $$ \__/ | //| | $$ | $$ | $$ | $$$$$$|_ $$_/ | $$ | $$| $$$$ | $$$$ | //| | $$ | $$ | $$ \____ $$ | $$ | $$ | $$| $$_/ | $$_/ | //| | $$ | $$ | $$ /$$ \ $$ | $$ /$$| $$ | $$| $$ | $$ | //| /$$$$$$| $$$$$$/ | $$$$$$/ | $$$$/| $$$$$$/| $$ | $$ | //| |______/ \______/ \______/ \___/ \______/ |__/ |__/ | //|____________________________________________________________________________| private static byte[] scannerByteBuffer = new byte[1024]; // Buffer of Bytes private static int scannerIndex; private static InputStream scannerIn; private static int scannerTotal; private static BufferedWriter printerBW; private static boolean DEBUG = false; private static int next() throws IOException { // Scan method used to scan buf if (scannerTotal < 0) throw new InputMismatchException(); if (scannerIndex >= scannerTotal) { scannerIndex = 0; scannerTotal = scannerIn.read(scannerByteBuffer); if (scannerTotal <= 0) return -1; } return scannerByteBuffer[scannerIndex++]; } static int ni() throws IOException { int integer = 0; int n = next(); while (isWhiteSpace(n)) // Removing startPointing whitespaces n = next(); int neg = 1; if (n == '-') { // If Negative Sign encounters neg = -1; n = next(); } while (!isWhiteSpace(n)) { if (n >= '0' && n <= '9') { integer *= 10; integer += n - '0'; n = next(); } else throw new InputMismatchException(); } return neg * integer; } static long nl() throws IOException { long integer = 0; int n = next(); while (isWhiteSpace(n)) // Removing startPointing whitespaces n = next(); int neg = 1; if (n == '-') { // If Negative Sign encounters neg = -1; n = next(); } while (!isWhiteSpace(n)) { if (n >= '0' && n <= '9') { integer *= 10; integer += n - '0'; n = next(); } else throw new InputMismatchException(); } return neg * integer; } static String line() throws IOException { StringBuilder sb = new StringBuilder(); int n = next(); while (isWhiteSpace(n)) n = next(); while (!isNewLine(n)) { sb.append((char) n); n = next(); } return sb.toString(); } private static boolean isNewLine(int n) { return n == '\n' || n == '\r' || n == -1; } private static boolean isWhiteSpace(int n) { return n == ' ' || isNewLine(n) || n == '\t'; } static int[] nia(int n) throws Exception { if (n < 0) throw new Exception("Array size should be non negative"); int[] array = new int[n]; for (int i = 0; i < n; i++) array[i] = ni(); return array; } static int[][] n2dia(int r, int c) throws Exception { if (r < 0 || c < 0) throw new Exception("Array size should be non negative"); int[][] array = new int[r][c]; for (int i = 0; i < r; i++) array[i] = nia(c); return array; } static long[] nla(int n) throws Exception { if (n < 0) throw new Exception("Array size should be non negative"); long[] array = new long[n]; for (int i = 0; i < n; i++) array[i] = nl(); return array; } static float[] nfa(int n) throws Exception { if (n < 0) throw new Exception("Array size should be non negative"); float[] array = new float[n]; for (int i = 0; i < n; i++) array[i] = nl(); return array; } static double[] nda(int n) throws Exception { if (n < 0) throw new Exception("Array size should be non negative"); double[] array = new double[n]; for (int i = 0; i < n; i++) array[i] = nl(); return array; } static <T> void print(T ... str) { try { for(T ele : str) printerBW.append(ele.toString()); if (DEBUG) flush(); } catch (IOException e) { System.out.println(e.toString()); } } static <T> void println(T ... str) { if(str.length == 0) { print('\n'); return; } for(T ele : str) print(ele, '\n'); } static void flush() throws IOException { printerBW.flush(); } static void close() { try { printerBW.close(); } catch (IOException e) { System.out.println(e.toString()); } } public static void main(String[] args) throws Exception { long startPointTime = System.currentTimeMillis(); scannerIn = System.in; printerBW = new BufferedWriter(new OutputStreamWriter(System.out)); if (args.length > 0 && args[0].equalsIgnoreCase("debug") || args.length > 1 && args[1].equalsIgnoreCase("debug")) DEBUG = true; main2(); long endTime = System.currentTimeMillis(); float totalProgramTime = endTime - startPointTime; if (args.length > 0 && args[0].equalsIgnoreCase("time") || args.length > 1 && args[1].equalsIgnoreCase("time")) print("Execution time is " + totalProgramTime + " (" + (totalProgramTime / 1000) + "s)"); close(); } static class Pair <L, R> { L first; R second; Pair(L first, R second) { this.first = first; this.second = second; } public boolean equals(Object p2) { if (p2 instanceof Pair) { return ((Pair) p2).first.equals(first) && ((Pair) p2).second.equals(second); } return false; } public String toString() { return "(first=" + first.toString() + ",second=" + second.toString() + ")"; } } static class DisjointSet { int[] arr; int[] size; DisjointSet(int n) { arr = new int[n + 1]; size = new int[n + 1]; makeSet(); } void makeSet() { for (int i = 1; i < arr.length; i++) { arr[i] = i; size[i] = 1; } } void union(int i, int j) { if (i == j) return; if (i > j) { i ^= j; j ^= i; i ^= j; } i = find(i); j = find(j); if (i == j) return; arr[j] = arr[i]; size[i] += size[j]; size[j] = size[i]; } int find(int i) { if (arr[i] != i) { arr[i] = find(arr[i]); size[i] = size[arr[i]]; } return arr[i]; } int getSize(int i) { i = find(i); return size[i]; } public String toString() { return Arrays.toString(arr); } } static boolean isSqrt(double a) { double sr = Math.sqrt(a); return ((sr - Math.floor(sr)) == 0); } static long abs(long a) { return Math.abs(a); } static int min(int ... arr) { int min = Integer.MAX_VALUE; for (int var : arr) min = Math.min(min, var); return min; } static long min(long ... arr) { long min = Long.MAX_VALUE; for (long var : arr) min = Math.min(min, var); return min; } static int max(int... arr) { int max = Integer.MIN_VALUE; for (int var : arr) max = Math.max(max, var); return max; } static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.lang.*; import java.io.*; import java.math.*; public class Codeforces { static long MOD = 1_000_000_007L; static void main2() throws Exception { int n = ni(); int[] arr = nia(n); Map<Integer, List<Pair<Integer, Integer>>> map = new HashMap<>(); for(int r = 0; r < n; r++) { int sum = 0; for(int l = r; l >= 0; l--) { sum += arr[l]; if(!map.containsKey(sum)) map.put(sum, new ArrayList<Pair<Integer, Integer>>()); map.get(sum).add(new Pair<Integer, Integer>(l + 1, r + 1)); } } int bestSum = Integer.MIN_VALUE; int bestSumCount = -1; for(Map.Entry<Integer, List<Pair<Integer, Integer>>> entry : map.entrySet()) { int count = 0; int r = -1; for(Pair<Integer, Integer> pair : entry.getValue()) { if(r < pair.first) { count++; r = pair.second; } } if(count > bestSumCount) { bestSumCount = count; bestSum = entry.getKey(); } } //got best sum println(bestSumCount); int r = -1; for(Pair<Integer, Integer> pair : map.get(bestSum)) { if(r < pair.first) { println(pair.first + " " + pair.second); r = pair.second; } } } // ____________________________________________________________________________ //| | //| /$$$$$$ /$$$$$$ /$$$$$$ /$$ /$$$$$$ /$$$$$$ | //| |_ $$_/ /$$__ $$ /$$__ $$ | $$ /$$__ $$ /$$__ $$ | //| | $$ | $$ \ $$ | $$ \__//$$$$$$ /$$ /$$| $$ \__/| $$ \__/ | //| | $$ | $$ | $$ | $$$$$$|_ $$_/ | $$ | $$| $$$$ | $$$$ | //| | $$ | $$ | $$ \____ $$ | $$ | $$ | $$| $$_/ | $$_/ | //| | $$ | $$ | $$ /$$ \ $$ | $$ /$$| $$ | $$| $$ | $$ | //| /$$$$$$| $$$$$$/ | $$$$$$/ | $$$$/| $$$$$$/| $$ | $$ | //| |______/ \______/ \______/ \___/ \______/ |__/ |__/ | //|____________________________________________________________________________| private static byte[] scannerByteBuffer = new byte[1024]; // Buffer of Bytes private static int scannerIndex; private static InputStream scannerIn; private static int scannerTotal; private static BufferedWriter printerBW; private static boolean DEBUG = false; private static int next() throws IOException { // Scan method used to scan buf if (scannerTotal < 0) throw new InputMismatchException(); if (scannerIndex >= scannerTotal) { scannerIndex = 0; scannerTotal = scannerIn.read(scannerByteBuffer); if (scannerTotal <= 0) return -1; } return scannerByteBuffer[scannerIndex++]; } static int ni() throws IOException { int integer = 0; int n = next(); while (isWhiteSpace(n)) // Removing startPointing whitespaces n = next(); int neg = 1; if (n == '-') { // If Negative Sign encounters neg = -1; n = next(); } while (!isWhiteSpace(n)) { if (n >= '0' && n <= '9') { integer *= 10; integer += n - '0'; n = next(); } else throw new InputMismatchException(); } return neg * integer; } static long nl() throws IOException { long integer = 0; int n = next(); while (isWhiteSpace(n)) // Removing startPointing whitespaces n = next(); int neg = 1; if (n == '-') { // If Negative Sign encounters neg = -1; n = next(); } while (!isWhiteSpace(n)) { if (n >= '0' && n <= '9') { integer *= 10; integer += n - '0'; n = next(); } else throw new InputMismatchException(); } return neg * integer; } static String line() throws IOException { StringBuilder sb = new StringBuilder(); int n = next(); while (isWhiteSpace(n)) n = next(); while (!isNewLine(n)) { sb.append((char) n); n = next(); } return sb.toString(); } private static boolean isNewLine(int n) { return n == '\n' || n == '\r' || n == -1; } private static boolean isWhiteSpace(int n) { return n == ' ' || isNewLine(n) || n == '\t'; } static int[] nia(int n) throws Exception { if (n < 0) throw new Exception("Array size should be non negative"); int[] array = new int[n]; for (int i = 0; i < n; i++) array[i] = ni(); return array; } static int[][] n2dia(int r, int c) throws Exception { if (r < 0 || c < 0) throw new Exception("Array size should be non negative"); int[][] array = new int[r][c]; for (int i = 0; i < r; i++) array[i] = nia(c); return array; } static long[] nla(int n) throws Exception { if (n < 0) throw new Exception("Array size should be non negative"); long[] array = new long[n]; for (int i = 0; i < n; i++) array[i] = nl(); return array; } static float[] nfa(int n) throws Exception { if (n < 0) throw new Exception("Array size should be non negative"); float[] array = new float[n]; for (int i = 0; i < n; i++) array[i] = nl(); return array; } static double[] nda(int n) throws Exception { if (n < 0) throw new Exception("Array size should be non negative"); double[] array = new double[n]; for (int i = 0; i < n; i++) array[i] = nl(); return array; } static <T> void print(T ... str) { try { for(T ele : str) printerBW.append(ele.toString()); if (DEBUG) flush(); } catch (IOException e) { System.out.println(e.toString()); } } static <T> void println(T ... str) { if(str.length == 0) { print('\n'); return; } for(T ele : str) print(ele, '\n'); } static void flush() throws IOException { printerBW.flush(); } static void close() { try { printerBW.close(); } catch (IOException e) { System.out.println(e.toString()); } } public static void main(String[] args) throws Exception { long startPointTime = System.currentTimeMillis(); scannerIn = System.in; printerBW = new BufferedWriter(new OutputStreamWriter(System.out)); if (args.length > 0 && args[0].equalsIgnoreCase("debug") || args.length > 1 && args[1].equalsIgnoreCase("debug")) DEBUG = true; main2(); long endTime = System.currentTimeMillis(); float totalProgramTime = endTime - startPointTime; if (args.length > 0 && args[0].equalsIgnoreCase("time") || args.length > 1 && args[1].equalsIgnoreCase("time")) print("Execution time is " + totalProgramTime + " (" + (totalProgramTime / 1000) + "s)"); close(); } static class Pair <L, R> { L first; R second; Pair(L first, R second) { this.first = first; this.second = second; } public boolean equals(Object p2) { if (p2 instanceof Pair) { return ((Pair) p2).first.equals(first) && ((Pair) p2).second.equals(second); } return false; } public String toString() { return "(first=" + first.toString() + ",second=" + second.toString() + ")"; } } static class DisjointSet { int[] arr; int[] size; DisjointSet(int n) { arr = new int[n + 1]; size = new int[n + 1]; makeSet(); } void makeSet() { for (int i = 1; i < arr.length; i++) { arr[i] = i; size[i] = 1; } } void union(int i, int j) { if (i == j) return; if (i > j) { i ^= j; j ^= i; i ^= j; } i = find(i); j = find(j); if (i == j) return; arr[j] = arr[i]; size[i] += size[j]; size[j] = size[i]; } int find(int i) { if (arr[i] != i) { arr[i] = find(arr[i]); size[i] = size[arr[i]]; } return arr[i]; } int getSize(int i) { i = find(i); return size[i]; } public String toString() { return Arrays.toString(arr); } } static boolean isSqrt(double a) { double sr = Math.sqrt(a); return ((sr - Math.floor(sr)) == 0); } static long abs(long a) { return Math.abs(a); } static int min(int ... arr) { int min = Integer.MAX_VALUE; for (int var : arr) min = Math.min(min, var); return min; } static long min(long ... arr) { long min = Long.MAX_VALUE; for (long var : arr) min = Math.min(min, var); return min; } static int max(int... arr) { int max = Integer.MIN_VALUE; for (int var : arr) max = Math.max(max, var); return max; } static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.lang.*; import java.io.*; import java.math.*; public class Codeforces { static long MOD = 1_000_000_007L; static void main2() throws Exception { int n = ni(); int[] arr = nia(n); Map<Integer, List<Pair<Integer, Integer>>> map = new HashMap<>(); for(int r = 0; r < n; r++) { int sum = 0; for(int l = r; l >= 0; l--) { sum += arr[l]; if(!map.containsKey(sum)) map.put(sum, new ArrayList<Pair<Integer, Integer>>()); map.get(sum).add(new Pair<Integer, Integer>(l + 1, r + 1)); } } int bestSum = Integer.MIN_VALUE; int bestSumCount = -1; for(Map.Entry<Integer, List<Pair<Integer, Integer>>> entry : map.entrySet()) { int count = 0; int r = -1; for(Pair<Integer, Integer> pair : entry.getValue()) { if(r < pair.first) { count++; r = pair.second; } } if(count > bestSumCount) { bestSumCount = count; bestSum = entry.getKey(); } } //got best sum println(bestSumCount); int r = -1; for(Pair<Integer, Integer> pair : map.get(bestSum)) { if(r < pair.first) { println(pair.first + " " + pair.second); r = pair.second; } } } // ____________________________________________________________________________ //| | //| /$$$$$$ /$$$$$$ /$$$$$$ /$$ /$$$$$$ /$$$$$$ | //| |_ $$_/ /$$__ $$ /$$__ $$ | $$ /$$__ $$ /$$__ $$ | //| | $$ | $$ \ $$ | $$ \__//$$$$$$ /$$ /$$| $$ \__/| $$ \__/ | //| | $$ | $$ | $$ | $$$$$$|_ $$_/ | $$ | $$| $$$$ | $$$$ | //| | $$ | $$ | $$ \____ $$ | $$ | $$ | $$| $$_/ | $$_/ | //| | $$ | $$ | $$ /$$ \ $$ | $$ /$$| $$ | $$| $$ | $$ | //| /$$$$$$| $$$$$$/ | $$$$$$/ | $$$$/| $$$$$$/| $$ | $$ | //| |______/ \______/ \______/ \___/ \______/ |__/ |__/ | //|____________________________________________________________________________| private static byte[] scannerByteBuffer = new byte[1024]; // Buffer of Bytes private static int scannerIndex; private static InputStream scannerIn; private static int scannerTotal; private static BufferedWriter printerBW; private static boolean DEBUG = false; private static int next() throws IOException { // Scan method used to scan buf if (scannerTotal < 0) throw new InputMismatchException(); if (scannerIndex >= scannerTotal) { scannerIndex = 0; scannerTotal = scannerIn.read(scannerByteBuffer); if (scannerTotal <= 0) return -1; } return scannerByteBuffer[scannerIndex++]; } static int ni() throws IOException { int integer = 0; int n = next(); while (isWhiteSpace(n)) // Removing startPointing whitespaces n = next(); int neg = 1; if (n == '-') { // If Negative Sign encounters neg = -1; n = next(); } while (!isWhiteSpace(n)) { if (n >= '0' && n <= '9') { integer *= 10; integer += n - '0'; n = next(); } else throw new InputMismatchException(); } return neg * integer; } static long nl() throws IOException { long integer = 0; int n = next(); while (isWhiteSpace(n)) // Removing startPointing whitespaces n = next(); int neg = 1; if (n == '-') { // If Negative Sign encounters neg = -1; n = next(); } while (!isWhiteSpace(n)) { if (n >= '0' && n <= '9') { integer *= 10; integer += n - '0'; n = next(); } else throw new InputMismatchException(); } return neg * integer; } static String line() throws IOException { StringBuilder sb = new StringBuilder(); int n = next(); while (isWhiteSpace(n)) n = next(); while (!isNewLine(n)) { sb.append((char) n); n = next(); } return sb.toString(); } private static boolean isNewLine(int n) { return n == '\n' || n == '\r' || n == -1; } private static boolean isWhiteSpace(int n) { return n == ' ' || isNewLine(n) || n == '\t'; } static int[] nia(int n) throws Exception { if (n < 0) throw new Exception("Array size should be non negative"); int[] array = new int[n]; for (int i = 0; i < n; i++) array[i] = ni(); return array; } static int[][] n2dia(int r, int c) throws Exception { if (r < 0 || c < 0) throw new Exception("Array size should be non negative"); int[][] array = new int[r][c]; for (int i = 0; i < r; i++) array[i] = nia(c); return array; } static long[] nla(int n) throws Exception { if (n < 0) throw new Exception("Array size should be non negative"); long[] array = new long[n]; for (int i = 0; i < n; i++) array[i] = nl(); return array; } static float[] nfa(int n) throws Exception { if (n < 0) throw new Exception("Array size should be non negative"); float[] array = new float[n]; for (int i = 0; i < n; i++) array[i] = nl(); return array; } static double[] nda(int n) throws Exception { if (n < 0) throw new Exception("Array size should be non negative"); double[] array = new double[n]; for (int i = 0; i < n; i++) array[i] = nl(); return array; } static <T> void print(T ... str) { try { for(T ele : str) printerBW.append(ele.toString()); if (DEBUG) flush(); } catch (IOException e) { System.out.println(e.toString()); } } static <T> void println(T ... str) { if(str.length == 0) { print('\n'); return; } for(T ele : str) print(ele, '\n'); } static void flush() throws IOException { printerBW.flush(); } static void close() { try { printerBW.close(); } catch (IOException e) { System.out.println(e.toString()); } } public static void main(String[] args) throws Exception { long startPointTime = System.currentTimeMillis(); scannerIn = System.in; printerBW = new BufferedWriter(new OutputStreamWriter(System.out)); if (args.length > 0 && args[0].equalsIgnoreCase("debug") || args.length > 1 && args[1].equalsIgnoreCase("debug")) DEBUG = true; main2(); long endTime = System.currentTimeMillis(); float totalProgramTime = endTime - startPointTime; if (args.length > 0 && args[0].equalsIgnoreCase("time") || args.length > 1 && args[1].equalsIgnoreCase("time")) print("Execution time is " + totalProgramTime + " (" + (totalProgramTime / 1000) + "s)"); close(); } static class Pair <L, R> { L first; R second; Pair(L first, R second) { this.first = first; this.second = second; } public boolean equals(Object p2) { if (p2 instanceof Pair) { return ((Pair) p2).first.equals(first) && ((Pair) p2).second.equals(second); } return false; } public String toString() { return "(first=" + first.toString() + ",second=" + second.toString() + ")"; } } static class DisjointSet { int[] arr; int[] size; DisjointSet(int n) { arr = new int[n + 1]; size = new int[n + 1]; makeSet(); } void makeSet() { for (int i = 1; i < arr.length; i++) { arr[i] = i; size[i] = 1; } } void union(int i, int j) { if (i == j) return; if (i > j) { i ^= j; j ^= i; i ^= j; } i = find(i); j = find(j); if (i == j) return; arr[j] = arr[i]; size[i] += size[j]; size[j] = size[i]; } int find(int i) { if (arr[i] != i) { arr[i] = find(arr[i]); size[i] = size[arr[i]]; } return arr[i]; } int getSize(int i) { i = find(i); return size[i]; } public String toString() { return Arrays.toString(arr); } } static boolean isSqrt(double a) { double sr = Math.sqrt(a); return ((sr - Math.floor(sr)) == 0); } static long abs(long a) { return Math.abs(a); } static int min(int ... arr) { int min = Integer.MAX_VALUE; for (int var : arr) min = Math.min(min, var); return min; } static long min(long ... arr) { long min = Long.MAX_VALUE; for (long var : arr) min = Math.min(min, var); return min; } static int max(int... arr) { int max = Integer.MIN_VALUE; for (int var : arr) max = Math.max(max, var); return max; } static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
2,796
2,439
7
import java.io.*; import java.util.*; import javax.lang.model.util.ElementScanner6; public class codef { public static void main(String ar[]) throws IOException { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer nk=new StringTokenizer(br.readLine()); int n=Integer.parseInt(nk.nextToken()); int k=Integer.parseInt(nk.nextToken()); String st[]=br.readLine().split(" "); int ans[]=new int[n]; int a[]=new int[n]; for(int i=0;i<n;i++) ans[i]=Integer.parseInt(st[i]); for(int i=1;i<n;i++) a[i]=ans[i]-ans[i-1]; a[0]=-1; Arrays.sort(a); int count=0,sum=0; for(int i=0;i<n;i++) if(a[i]<0) count++; else sum=sum+a[i]; k=k-count; int i=n-1; while(k>0 && i>=0) { if(a[i]>-1) { sum=sum-a[i]; k--; } i--; } System.out.println(sum); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; import javax.lang.model.util.ElementScanner6; public class codef { public static void main(String ar[]) throws IOException { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer nk=new StringTokenizer(br.readLine()); int n=Integer.parseInt(nk.nextToken()); int k=Integer.parseInt(nk.nextToken()); String st[]=br.readLine().split(" "); int ans[]=new int[n]; int a[]=new int[n]; for(int i=0;i<n;i++) ans[i]=Integer.parseInt(st[i]); for(int i=1;i<n;i++) a[i]=ans[i]-ans[i-1]; a[0]=-1; Arrays.sort(a); int count=0,sum=0; for(int i=0;i<n;i++) if(a[i]<0) count++; else sum=sum+a[i]; k=k-count; int i=n-1; while(k>0 && i>=0) { if(a[i]>-1) { sum=sum-a[i]; k--; } i--; } System.out.println(sum); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; import javax.lang.model.util.ElementScanner6; public class codef { public static void main(String ar[]) throws IOException { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer nk=new StringTokenizer(br.readLine()); int n=Integer.parseInt(nk.nextToken()); int k=Integer.parseInt(nk.nextToken()); String st[]=br.readLine().split(" "); int ans[]=new int[n]; int a[]=new int[n]; for(int i=0;i<n;i++) ans[i]=Integer.parseInt(st[i]); for(int i=1;i<n;i++) a[i]=ans[i]-ans[i-1]; a[0]=-1; Arrays.sort(a); int count=0,sum=0; for(int i=0;i<n;i++) if(a[i]<0) count++; else sum=sum+a[i]; k=k-count; int i=n-1; while(k>0 && i>=0) { if(a[i]>-1) { sum=sum-a[i]; k--; } i--; } System.out.println(sum); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
580
7
1,763
//~ 22:04:48 import java.io.*; import java.util.*; public class Main{ public static void main(String[] args) throws Exception{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out)); String out = ""; String[] p = br.readLine().split("[ ]"); int n = Integer.valueOf(p[0]); double t = Double.valueOf(p[1]); int offset = 5000; boolean[] flags = new boolean[offset+5000]; for(int i=0;i<n;i++){ int[] q = toIntArray(br.readLine()); int c = 2*q[0]; for(int j=-q[1];j<q[1];j++){ flags[c+offset+j] = true; //~ System.out.println(c+offset+j); } } int buf = 0; int last = -1; int index = 0; for(;index<flags.length;index++){ if(flags[index]){ if(last==-1){ buf++; }else{ //~ System.out.println(last); //~ System.out.println(index); if(Math.abs(index-last-(2*t+1))<1e-10) buf++; else if(index-last>2*t+1) buf+=2; } last = index; } } buf ++; out = ""+buf+"\r\n"; bw.write(out,0,out.length()); br.close(); bw.close(); } static int[] toIntArray(String line){ String[] p = line.trim().split("\\s+"); int[] out = new int[p.length]; for(int i=0;i<out.length;i++) out[i] = Integer.valueOf(p[i]); return out; } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> //~ 22:04:48 import java.io.*; import java.util.*; public class Main{ public static void main(String[] args) throws Exception{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out)); String out = ""; String[] p = br.readLine().split("[ ]"); int n = Integer.valueOf(p[0]); double t = Double.valueOf(p[1]); int offset = 5000; boolean[] flags = new boolean[offset+5000]; for(int i=0;i<n;i++){ int[] q = toIntArray(br.readLine()); int c = 2*q[0]; for(int j=-q[1];j<q[1];j++){ flags[c+offset+j] = true; //~ System.out.println(c+offset+j); } } int buf = 0; int last = -1; int index = 0; for(;index<flags.length;index++){ if(flags[index]){ if(last==-1){ buf++; }else{ //~ System.out.println(last); //~ System.out.println(index); if(Math.abs(index-last-(2*t+1))<1e-10) buf++; else if(index-last>2*t+1) buf+=2; } last = index; } } buf ++; out = ""+buf+"\r\n"; bw.write(out,0,out.length()); br.close(); bw.close(); } static int[] toIntArray(String line){ String[] p = line.trim().split("\\s+"); int[] out = new int[p.length]; for(int i=0;i<out.length;i++) out[i] = Integer.valueOf(p[i]); return out; } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> //~ 22:04:48 import java.io.*; import java.util.*; public class Main{ public static void main(String[] args) throws Exception{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out)); String out = ""; String[] p = br.readLine().split("[ ]"); int n = Integer.valueOf(p[0]); double t = Double.valueOf(p[1]); int offset = 5000; boolean[] flags = new boolean[offset+5000]; for(int i=0;i<n;i++){ int[] q = toIntArray(br.readLine()); int c = 2*q[0]; for(int j=-q[1];j<q[1];j++){ flags[c+offset+j] = true; //~ System.out.println(c+offset+j); } } int buf = 0; int last = -1; int index = 0; for(;index<flags.length;index++){ if(flags[index]){ if(last==-1){ buf++; }else{ //~ System.out.println(last); //~ System.out.println(index); if(Math.abs(index-last-(2*t+1))<1e-10) buf++; else if(index-last>2*t+1) buf+=2; } last = index; } } buf ++; out = ""+buf+"\r\n"; bw.write(out,0,out.length()); br.close(); bw.close(); } static int[] toIntArray(String line){ String[] p = line.trim().split("\\s+"); int[] out = new int[p.length]; for(int i=0;i<out.length;i++) out[i] = Integer.valueOf(p[i]); return out; } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
755
1,759
4,047
import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.InputMismatchException; import java.util.NoSuchElementException; public class Main { static PrintWriter out; static InputReader ir; static void solve() { int n = ir.nextInt(); int t = ir.nextInt(); int[][] a = new int[n][]; for (int i = 0; i < n; i++) a[i] = ir.nextIntArray(2); long[] f = fact(15); long res = 0; for (int i = 0; i < 1 << n; i++) { int[] ct = new int[4]; int tot = 0; for (int j = 0; j < n; j++) { if (((1 << j) & i) != 0) { tot += a[j][0]; ct[a[j][1]]++; } } if (tot != t) continue; long[][][][] dp = new long[ct[1] + 1][ct[2] + 1][ct[3] + 1][4]; dp[0][0][0][0] = 1; for (int j = 0; j < ct[1] + ct[2] + ct[3]; j++) { for (int k = 0; k <= ct[1]; k++) { for (int l = 0; l <= ct[2]; l++) { if (k + l > j || j - k - l > ct[3]) continue; for (int m = 0; m <= 3; m++) { for (int o = 0; o <= 3; o++) { if (m == o) continue; if (o == 1 && k == ct[1]) continue; if (o == 2 && l == ct[2]) continue; if (o == 3 && j - k - l == ct[3]) continue; if (o == 1) { dp[k + 1][l][j - k - l][1] = add(dp[k + 1][l][j - k - l][1], dp[k][l][j - k - l][m]); } if (o == 2) { dp[k][l + 1][j - k - l][2] = add(dp[k][l + 1][j - k - l][2], dp[k][l][j - k - l][m]); } if (o == 3) { dp[k][l][j - k - l + 1][3] = add(dp[k][l][j - k - l + 1][3], dp[k][l][j - k - l][m]); } } } } } } for (int m = 0; m <= 3; m++) res = add(res, mul(mul(f[ct[1]], f[ct[2]]), mul(f[ct[3]], dp[ct[1]][ct[2]][ct[3]][m]))); } out.println(res); } static long mod = (long) 1e9 + 7; static long add(long a, long b) { return (a + b) % mod; } static long sub(long a, long b) { long d = a - b; while (d < 0) d += mod; return d; } static long mul(long a, long b) { return a * b % mod; } static long div(long a, long b) { return a * mod_inverse(b) % mod; } private static long[] fact(int n) { long[] ret = new long[n + 1]; ret[0] = 1 % mod; for (int i = 1; i <= n; i++) { ret[i] = mul(ret[i - 1], i); } return ret; } private static long[] factInv(int n) { long[] ret = new long[n + 1]; ret[0] = 1; for (int i = 1; i <= n; i++) { ret[i] = div(ret[i - 1], i); } return ret; } public static long comb(int n, int m, long[] fact, long[] factInv) { long ret = fact[n]; ret = mul(ret, factInv[m]); ret = mul(ret, factInv[n - m]); return ret; } public static long[][] stirling(int n) { long[][] ret = new long[n + 1][n + 1]; ret[0][0] = 1; for (int i = 1; i <= n; i++) for (int j = 1; j <= i; j++) ret[i][j] = add(ret[i - 1][j - 1], mul(ret[i - 1][j], j)); return ret; } public static long mod_inverse(long a) { long[] ret = extgcd(a, mod); return add(mod, ret[0] % mod); } public static long[] extgcd(long a, long b) { long[] ret = new long[3]; ret[2] = _extgcd(a, b, ret); return ret; } private static long _extgcd(long a, long b, long[] x) { long g = a; x[0] = 1; x[1] = 0; if (b != 0) { g = _extgcd(b, a % b, x); long temp = x[0]; x[0] = x[1]; x[1] = temp; x[1] -= (a / b) * x[0]; } return g; } static long modpow(long a, long n) { long res = 1; while (n > 0) { if ((n & 1) != 0) res = res * a % mod; a = a * a % mod; n >>= 1; } return res; } public static void main(String[] args) { ir = new InputReader(System.in); out = new PrintWriter(System.out); solve(); out.flush(); } static class InputReader { private InputStream in; private byte[] buffer = new byte[1024]; private int curbuf; private int lenbuf; public InputReader(InputStream in) { this.in = in; this.curbuf = this.lenbuf = 0; } public boolean hasNextByte() { if (curbuf >= lenbuf) { curbuf = 0; try { lenbuf = in.read(buffer); } catch (IOException e) { throw new InputMismatchException(); } if (lenbuf <= 0) return false; } return true; } private int readByte() { if (hasNextByte()) return buffer[curbuf++]; else return -1; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private void skip() { while (hasNextByte() && isSpaceChar(buffer[curbuf])) curbuf++; } public boolean hasNext() { skip(); return hasNextByte(); } public String next() { if (!hasNext()) throw new NoSuchElementException(); StringBuilder sb = new StringBuilder(); int b = readByte(); while (!isSpaceChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } public int nextInt() { if (!hasNext()) throw new NoSuchElementException(); int c = readByte(); while (isSpaceChar(c)) c = readByte(); boolean minus = false; if (c == '-') { minus = true; c = readByte(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res = res * 10 + c - '0'; c = readByte(); } while (!isSpaceChar(c)); return (minus) ? -res : res; } public long nextLong() { if (!hasNext()) throw new NoSuchElementException(); int c = readByte(); while (isSpaceChar(c)) c = readByte(); boolean minus = false; if (c == '-') { minus = true; c = readByte(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res = res * 10 + c - '0'; c = readByte(); } while (!isSpaceChar(c)); return (minus) ? -res : res; } public double nextDouble() { return Double.parseDouble(next()); } public int[] nextIntArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public long[] nextLongArray(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public char[][] nextCharMap(int n, int m) { char[][] map = new char[n][m]; for (int i = 0; i < n; i++) map[i] = next().toCharArray(); return map; } } static void tr(Object... o) { out.println(Arrays.deepToString(o)); } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.InputMismatchException; import java.util.NoSuchElementException; public class Main { static PrintWriter out; static InputReader ir; static void solve() { int n = ir.nextInt(); int t = ir.nextInt(); int[][] a = new int[n][]; for (int i = 0; i < n; i++) a[i] = ir.nextIntArray(2); long[] f = fact(15); long res = 0; for (int i = 0; i < 1 << n; i++) { int[] ct = new int[4]; int tot = 0; for (int j = 0; j < n; j++) { if (((1 << j) & i) != 0) { tot += a[j][0]; ct[a[j][1]]++; } } if (tot != t) continue; long[][][][] dp = new long[ct[1] + 1][ct[2] + 1][ct[3] + 1][4]; dp[0][0][0][0] = 1; for (int j = 0; j < ct[1] + ct[2] + ct[3]; j++) { for (int k = 0; k <= ct[1]; k++) { for (int l = 0; l <= ct[2]; l++) { if (k + l > j || j - k - l > ct[3]) continue; for (int m = 0; m <= 3; m++) { for (int o = 0; o <= 3; o++) { if (m == o) continue; if (o == 1 && k == ct[1]) continue; if (o == 2 && l == ct[2]) continue; if (o == 3 && j - k - l == ct[3]) continue; if (o == 1) { dp[k + 1][l][j - k - l][1] = add(dp[k + 1][l][j - k - l][1], dp[k][l][j - k - l][m]); } if (o == 2) { dp[k][l + 1][j - k - l][2] = add(dp[k][l + 1][j - k - l][2], dp[k][l][j - k - l][m]); } if (o == 3) { dp[k][l][j - k - l + 1][3] = add(dp[k][l][j - k - l + 1][3], dp[k][l][j - k - l][m]); } } } } } } for (int m = 0; m <= 3; m++) res = add(res, mul(mul(f[ct[1]], f[ct[2]]), mul(f[ct[3]], dp[ct[1]][ct[2]][ct[3]][m]))); } out.println(res); } static long mod = (long) 1e9 + 7; static long add(long a, long b) { return (a + b) % mod; } static long sub(long a, long b) { long d = a - b; while (d < 0) d += mod; return d; } static long mul(long a, long b) { return a * b % mod; } static long div(long a, long b) { return a * mod_inverse(b) % mod; } private static long[] fact(int n) { long[] ret = new long[n + 1]; ret[0] = 1 % mod; for (int i = 1; i <= n; i++) { ret[i] = mul(ret[i - 1], i); } return ret; } private static long[] factInv(int n) { long[] ret = new long[n + 1]; ret[0] = 1; for (int i = 1; i <= n; i++) { ret[i] = div(ret[i - 1], i); } return ret; } public static long comb(int n, int m, long[] fact, long[] factInv) { long ret = fact[n]; ret = mul(ret, factInv[m]); ret = mul(ret, factInv[n - m]); return ret; } public static long[][] stirling(int n) { long[][] ret = new long[n + 1][n + 1]; ret[0][0] = 1; for (int i = 1; i <= n; i++) for (int j = 1; j <= i; j++) ret[i][j] = add(ret[i - 1][j - 1], mul(ret[i - 1][j], j)); return ret; } public static long mod_inverse(long a) { long[] ret = extgcd(a, mod); return add(mod, ret[0] % mod); } public static long[] extgcd(long a, long b) { long[] ret = new long[3]; ret[2] = _extgcd(a, b, ret); return ret; } private static long _extgcd(long a, long b, long[] x) { long g = a; x[0] = 1; x[1] = 0; if (b != 0) { g = _extgcd(b, a % b, x); long temp = x[0]; x[0] = x[1]; x[1] = temp; x[1] -= (a / b) * x[0]; } return g; } static long modpow(long a, long n) { long res = 1; while (n > 0) { if ((n & 1) != 0) res = res * a % mod; a = a * a % mod; n >>= 1; } return res; } public static void main(String[] args) { ir = new InputReader(System.in); out = new PrintWriter(System.out); solve(); out.flush(); } static class InputReader { private InputStream in; private byte[] buffer = new byte[1024]; private int curbuf; private int lenbuf; public InputReader(InputStream in) { this.in = in; this.curbuf = this.lenbuf = 0; } public boolean hasNextByte() { if (curbuf >= lenbuf) { curbuf = 0; try { lenbuf = in.read(buffer); } catch (IOException e) { throw new InputMismatchException(); } if (lenbuf <= 0) return false; } return true; } private int readByte() { if (hasNextByte()) return buffer[curbuf++]; else return -1; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private void skip() { while (hasNextByte() && isSpaceChar(buffer[curbuf])) curbuf++; } public boolean hasNext() { skip(); return hasNextByte(); } public String next() { if (!hasNext()) throw new NoSuchElementException(); StringBuilder sb = new StringBuilder(); int b = readByte(); while (!isSpaceChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } public int nextInt() { if (!hasNext()) throw new NoSuchElementException(); int c = readByte(); while (isSpaceChar(c)) c = readByte(); boolean minus = false; if (c == '-') { minus = true; c = readByte(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res = res * 10 + c - '0'; c = readByte(); } while (!isSpaceChar(c)); return (minus) ? -res : res; } public long nextLong() { if (!hasNext()) throw new NoSuchElementException(); int c = readByte(); while (isSpaceChar(c)) c = readByte(); boolean minus = false; if (c == '-') { minus = true; c = readByte(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res = res * 10 + c - '0'; c = readByte(); } while (!isSpaceChar(c)); return (minus) ? -res : res; } public double nextDouble() { return Double.parseDouble(next()); } public int[] nextIntArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public long[] nextLongArray(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public char[][] nextCharMap(int n, int m) { char[][] map = new char[n][m]; for (int i = 0; i < n; i++) map[i] = next().toCharArray(); return map; } } static void tr(Object... o) { out.println(Arrays.deepToString(o)); } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.InputMismatchException; import java.util.NoSuchElementException; public class Main { static PrintWriter out; static InputReader ir; static void solve() { int n = ir.nextInt(); int t = ir.nextInt(); int[][] a = new int[n][]; for (int i = 0; i < n; i++) a[i] = ir.nextIntArray(2); long[] f = fact(15); long res = 0; for (int i = 0; i < 1 << n; i++) { int[] ct = new int[4]; int tot = 0; for (int j = 0; j < n; j++) { if (((1 << j) & i) != 0) { tot += a[j][0]; ct[a[j][1]]++; } } if (tot != t) continue; long[][][][] dp = new long[ct[1] + 1][ct[2] + 1][ct[3] + 1][4]; dp[0][0][0][0] = 1; for (int j = 0; j < ct[1] + ct[2] + ct[3]; j++) { for (int k = 0; k <= ct[1]; k++) { for (int l = 0; l <= ct[2]; l++) { if (k + l > j || j - k - l > ct[3]) continue; for (int m = 0; m <= 3; m++) { for (int o = 0; o <= 3; o++) { if (m == o) continue; if (o == 1 && k == ct[1]) continue; if (o == 2 && l == ct[2]) continue; if (o == 3 && j - k - l == ct[3]) continue; if (o == 1) { dp[k + 1][l][j - k - l][1] = add(dp[k + 1][l][j - k - l][1], dp[k][l][j - k - l][m]); } if (o == 2) { dp[k][l + 1][j - k - l][2] = add(dp[k][l + 1][j - k - l][2], dp[k][l][j - k - l][m]); } if (o == 3) { dp[k][l][j - k - l + 1][3] = add(dp[k][l][j - k - l + 1][3], dp[k][l][j - k - l][m]); } } } } } } for (int m = 0; m <= 3; m++) res = add(res, mul(mul(f[ct[1]], f[ct[2]]), mul(f[ct[3]], dp[ct[1]][ct[2]][ct[3]][m]))); } out.println(res); } static long mod = (long) 1e9 + 7; static long add(long a, long b) { return (a + b) % mod; } static long sub(long a, long b) { long d = a - b; while (d < 0) d += mod; return d; } static long mul(long a, long b) { return a * b % mod; } static long div(long a, long b) { return a * mod_inverse(b) % mod; } private static long[] fact(int n) { long[] ret = new long[n + 1]; ret[0] = 1 % mod; for (int i = 1; i <= n; i++) { ret[i] = mul(ret[i - 1], i); } return ret; } private static long[] factInv(int n) { long[] ret = new long[n + 1]; ret[0] = 1; for (int i = 1; i <= n; i++) { ret[i] = div(ret[i - 1], i); } return ret; } public static long comb(int n, int m, long[] fact, long[] factInv) { long ret = fact[n]; ret = mul(ret, factInv[m]); ret = mul(ret, factInv[n - m]); return ret; } public static long[][] stirling(int n) { long[][] ret = new long[n + 1][n + 1]; ret[0][0] = 1; for (int i = 1; i <= n; i++) for (int j = 1; j <= i; j++) ret[i][j] = add(ret[i - 1][j - 1], mul(ret[i - 1][j], j)); return ret; } public static long mod_inverse(long a) { long[] ret = extgcd(a, mod); return add(mod, ret[0] % mod); } public static long[] extgcd(long a, long b) { long[] ret = new long[3]; ret[2] = _extgcd(a, b, ret); return ret; } private static long _extgcd(long a, long b, long[] x) { long g = a; x[0] = 1; x[1] = 0; if (b != 0) { g = _extgcd(b, a % b, x); long temp = x[0]; x[0] = x[1]; x[1] = temp; x[1] -= (a / b) * x[0]; } return g; } static long modpow(long a, long n) { long res = 1; while (n > 0) { if ((n & 1) != 0) res = res * a % mod; a = a * a % mod; n >>= 1; } return res; } public static void main(String[] args) { ir = new InputReader(System.in); out = new PrintWriter(System.out); solve(); out.flush(); } static class InputReader { private InputStream in; private byte[] buffer = new byte[1024]; private int curbuf; private int lenbuf; public InputReader(InputStream in) { this.in = in; this.curbuf = this.lenbuf = 0; } public boolean hasNextByte() { if (curbuf >= lenbuf) { curbuf = 0; try { lenbuf = in.read(buffer); } catch (IOException e) { throw new InputMismatchException(); } if (lenbuf <= 0) return false; } return true; } private int readByte() { if (hasNextByte()) return buffer[curbuf++]; else return -1; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private void skip() { while (hasNextByte() && isSpaceChar(buffer[curbuf])) curbuf++; } public boolean hasNext() { skip(); return hasNextByte(); } public String next() { if (!hasNext()) throw new NoSuchElementException(); StringBuilder sb = new StringBuilder(); int b = readByte(); while (!isSpaceChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } public int nextInt() { if (!hasNext()) throw new NoSuchElementException(); int c = readByte(); while (isSpaceChar(c)) c = readByte(); boolean minus = false; if (c == '-') { minus = true; c = readByte(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res = res * 10 + c - '0'; c = readByte(); } while (!isSpaceChar(c)); return (minus) ? -res : res; } public long nextLong() { if (!hasNext()) throw new NoSuchElementException(); int c = readByte(); while (isSpaceChar(c)) c = readByte(); boolean minus = false; if (c == '-') { minus = true; c = readByte(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res = res * 10 + c - '0'; c = readByte(); } while (!isSpaceChar(c)); return (minus) ? -res : res; } public double nextDouble() { return Double.parseDouble(next()); } public int[] nextIntArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public long[] nextLongArray(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public char[][] nextCharMap(int n, int m) { char[][] map = new char[n][m]; for (int i = 0; i < n; i++) map[i] = next().toCharArray(); return map; } } static void tr(Object... o) { out.println(Arrays.deepToString(o)); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
2,581
4,036
772
import java.util.*; import java.io.*; public class C{ public static void main(String[] args) { InputReader in = new InputReader(System.in); PrintWriter out = new PrintWriter(System.out); Solver solver = new Solver(); solver.solve(in, out); out.close(); } static class Solver{ public void solve(InputReader in, PrintWriter out) { int n = in.nextInt(); String s = in.next(); HashMap<Character, Integer> map = new HashMap<>(); for (int i = 0; i < n; ++ i) { map.put(s.charAt(i), 0); } int l = 0, r = 0, cnt = 0, ans = n; char c; while (l < n) { while (r < n && cnt < map.size()) { c = s.charAt(r); map.put(c, map.get(c) + 1); if (map.get(c) == 1) ++cnt; ++r; } if (cnt == map.size() && r-l < ans) ans = r-l; c = s.charAt(l); map.put(c, map.get(c)-1); if (map.get(c) == 0) --cnt; ++l; } out.println(ans); } } static class InputReader { BufferedReader reader; StringTokenizer tokenizer; public InputReader (InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream)); } public String next() { while (tokenizer == null || ! tokenizer.hasMoreTokens()) { try{ tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; public class C{ public static void main(String[] args) { InputReader in = new InputReader(System.in); PrintWriter out = new PrintWriter(System.out); Solver solver = new Solver(); solver.solve(in, out); out.close(); } static class Solver{ public void solve(InputReader in, PrintWriter out) { int n = in.nextInt(); String s = in.next(); HashMap<Character, Integer> map = new HashMap<>(); for (int i = 0; i < n; ++ i) { map.put(s.charAt(i), 0); } int l = 0, r = 0, cnt = 0, ans = n; char c; while (l < n) { while (r < n && cnt < map.size()) { c = s.charAt(r); map.put(c, map.get(c) + 1); if (map.get(c) == 1) ++cnt; ++r; } if (cnt == map.size() && r-l < ans) ans = r-l; c = s.charAt(l); map.put(c, map.get(c)-1); if (map.get(c) == 0) --cnt; ++l; } out.println(ans); } } static class InputReader { BufferedReader reader; StringTokenizer tokenizer; public InputReader (InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream)); } public String next() { while (tokenizer == null || ! tokenizer.hasMoreTokens()) { try{ tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class C{ public static void main(String[] args) { InputReader in = new InputReader(System.in); PrintWriter out = new PrintWriter(System.out); Solver solver = new Solver(); solver.solve(in, out); out.close(); } static class Solver{ public void solve(InputReader in, PrintWriter out) { int n = in.nextInt(); String s = in.next(); HashMap<Character, Integer> map = new HashMap<>(); for (int i = 0; i < n; ++ i) { map.put(s.charAt(i), 0); } int l = 0, r = 0, cnt = 0, ans = n; char c; while (l < n) { while (r < n && cnt < map.size()) { c = s.charAt(r); map.put(c, map.get(c) + 1); if (map.get(c) == 1) ++cnt; ++r; } if (cnt == map.size() && r-l < ans) ans = r-l; c = s.charAt(l); map.put(c, map.get(c)-1); if (map.get(c) == 0) --cnt; ++l; } out.println(ans); } } static class InputReader { BufferedReader reader; StringTokenizer tokenizer; public InputReader (InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream)); } public String next() { while (tokenizer == null || ! tokenizer.hasMoreTokens()) { try{ tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
760
771
2,386
import java.awt.Checkbox; import java.awt.Point; import java.io.*; import java.math.*; import java.util.*; import java.util.Map.Entry; import javax.print.attribute.SetOfIntegerSyntax; import javax.swing.plaf.FontUIResource; public class CODE2{ private static InputStream stream; private static byte[] buf = new byte[1024]; private static int curChar,MAX; private static int numChars; private static SpaceCharFilter filter; private static PrintWriter pw; private static long count = 0,mod=1000000007; static int BIT[]; private static boolean primer[]; // private static TreeSet<Integer> ts=new TreeSet[200000]; public final static int INF = (int) 1E9; public static void main(String args[]) { InputReader(System.in); pw = new PrintWriter(System.out); new Thread(null ,new Runnable(){ public void run(){ try{ solve(); pw.close(); } catch(Exception e){ e.printStackTrace(); } } },"1",1<<26).start(); } static StringBuilder sb; public static void test(){ sb=new StringBuilder(); int t=nextInt(); while(t-->0){ solve(); } pw.println(sb); } public static long pow(long n, long p,long mod) { if(p==0) return 1; if(p==1) return n%mod; if(p%2==0){ long temp=pow(n, p/2,mod); return (temp*temp)%mod; }else{ long temp=pow(n,p/2,mod); temp=(temp*temp)%mod; return(temp*n)%mod; } } public static long pow(long n, long p) { if(p==0) return 1; if(p==1) return n; if(p%2==0){ long temp=pow(n, p/2); return (temp*temp); }else{ long temp=pow(n,p/2); temp=(temp*temp); return(temp*n); } } public static void Merge(long a[],int p,int r){ if(p<r){ int q = (p+r)/2; Merge(a,p,q); Merge(a,q+1,r); Merge_Array(a,p,q,r); } } public static void Merge_Array(long a[],int p,int q,int r){ long b[] = new long[q-p+1]; long c[] = new long[r-q]; for(int i=0;i<b.length;i++) b[i] = a[p+i]; for(int i=0;i<c.length;i++) c[i] = a[q+i+1]; int i = 0,j = 0; for(int k=p;k<=r;k++){ if(i==b.length){ a[k] = c[j]; j++; } else if(j==c.length){ a[k] = b[i]; i++; } else if(b[i]<c[j]){ a[k] = b[i]; i++; } else{ a[k] = c[j]; j++; } } } public static long gcd(long x, long y) { if (x == 0) return y; else return gcd( y % x,x); } public static boolean isPrime(int n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; for (int i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } static LinkedList<Integer> adj[]; static boolean Visited[]; static HashSet<Integer> exc; static long oddsum[]=new long[1000001]; static long co=0,ans=0; static int parent[]; static int size[],color[],res[],k; static ArrayList<Integer> al[]; static long MOD = (long)1e9 + 7; private static void buildgraph(int n){ adj=new LinkedList[n+1]; Visited=new boolean[n+1]; levl=new int[n+1]; for(int i=0;i<=n;i++){ adj[i]=new LinkedList<Integer>(); } } static int[] levl; static int[] eat; // static int n,m; static int price[]; //ind frog crab static boolean check(char c) { if(c!='a' && c!='e' && c!='i' && c!='o' && c!='u' ) return true; else return false; } public static void solve(){ int n= nextInt(); int a[]=new int[n]; a=nextIntArray(n); int invcount=0; for(int i=0;i<n;i++) { for(int j=i+1;j<n;j++) { if(a[i]>a[j]) invcount++; } } int m=nextInt(); int initial = invcount%2; while(m--!=0) { int l=nextInt(); int r=nextInt(); int diff = r-l+1; int totalpair = (diff*(diff-1))/2; if(((totalpair%2)+initial)%2==1) { pw.println("odd"); initial=1; } else { pw.println("even"); initial=0; } } } static void seive2(int n) { primer=new boolean[n+1]; Arrays.fill(primer,true); primer[0]=false; primer[1]=false; primer[2]=true; for(int i=2;i*i<=n;i++) { if(primer[i]) { for(int j=2*i;j<=n;j=j+i) { primer[j]=false; } } } } /* static void BITupdate(int x,int val) { while(x<=n) { BIT[x]+=val; x+= x & -x; } }*/ /* static void update(int x,long val) { val=val%MOD; while(x<=n) { // System.out.println(x); BIT[x]=(BIT[x]+val)%MOD; x+=(x & -x); } // System.out.println("dfd"); }*/ static int BITsum(int x) { int sum=0; while(x>0) { sum+=BIT[x]; x-= (x & -x); } return sum; } /* static long sum(int x) { long sum=0; while(x>0) { sum=(sum+BIT[x])%MOD; x-=x & -x; } return sum; }*/ static boolean union(int x,int y) { int xr=find(x); int yr=find(y); if(xr==yr) return false; if(size[xr]<size[yr]) { size[yr]+=size[xr]; parent[xr]=yr; } else { size[xr]+=size[yr]; parent[yr]=xr; } return true; } static int find(int x) { if(parent[x]==x) return x; else { parent[x]=find(parent[x]); return parent[x]; } } public static class Edge implements Comparable<Edge> { int u, v,s; public Edge(int u, int v) { this.u = u; this.v = v; //this.s = s; } public int hashCode() { return Objects.hash(); } public int compareTo(Edge other) { return (Integer.compare(u, other.u) != 0 ? (Integer.compare(u, other.u)):(Integer.compare(v, other.v))); // &((Long.compare(s, other.s) != 0 ? (Long.compare(s, other.s)):(Long.compare(u, other.v)!=0?Long.compare(u, other.v):Long.compare(v, other.u)))); //return this.u-other.u; } public String toString() { return this.u + " " + this.v; } } static int col[]; public static boolean isVowel(char c){ if(c=='a' || c=='e'||c=='i' || c=='o' || c=='u') return true; return false; } static int no_vert=0; private static void dfs(int start){ Visited[start]=true; if(al[color[start]].size()>=k) { res[start]=al[color[start]].get(al[color[start]].size()-k); } al[color[start]].add(start); for(int i:adj[start]){ if(!Visited[i]) { dfs(i); } } (al[color[start]]).remove(al[color[start]].size()-1); } public static String reverseString(String s) { StringBuilder sb = new StringBuilder(s); sb.reverse(); return (sb.toString()); } /* private static void BFS(int sou){ Queue<Integer> q=new LinkedList<Integer>(); q.add(sou); Visited[sou]=true; levl[sou]=0; while(!q.isEmpty()){ int top=q.poll(); for(int i:adj[top]){ //pw.println(i+" "+top); if(!Visited[i]) { q.add(i); levl[i]=levl[top]+1; } Visited[i]=true; } } }*/ static int indeg[]; /* private static void kahn(int n){ PriorityQueue<Integer> q=new PriorityQueue<Integer>(); for(int i=1;i<=n;i++){ if(indeg[i]==0){ q.add(i); } } while(!q.isEmpty()){ int top=q.poll(); st.push(top); for(Node i:adj[top]){ indeg[i.to]--; if(indeg[i.to]==0){ q.add(i.to); } } } } static int state=1; static long no_exc=0,no_vert=0; static Stack<Integer> st; static HashSet<Integer> inset; /* private static void topo(int curr){ Visited[curr]=true; inset.add(curr); for(int x:adj[curr]){ if(adj[x].contains(curr) || inset.contains(x)){ state=0; return; } if(state==0) return; } st.push(curr); inset.remove(curr); }*/ static HashSet<Integer> hs; static boolean prime[]; static int spf[]; public static void sieve(int n){ prime=new boolean[n+1]; spf=new int[n+1]; Arrays.fill(spf, 1); Arrays.fill(prime, true); prime[1]=false; spf[2]=2; for(int i=4;i<=n;i+=2){ spf[i]=2; } for(int i=3;i<=n;i+=2){ if(prime[i]){ spf[i]=i; for(int j=2*i;j<=n;j+=i){ prime[j]=false; if(spf[j]==1){ spf[j]=i; } } } } } // To Get Input // Some Buffer Methods public static void sort(long a[]){ Merge(a, 0, a.length-1); } public static void InputReader(InputStream stream1) { stream = stream1; } private static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private static boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } private static int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } private static int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } private static long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } private static String nextToken() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } private static String nextLine() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndOfLine(c)); return res.toString(); } private static int[] nextIntArray(int n) { int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = nextInt(); } return arr; } private static long[][] next2dArray(int n, int m) { long[][] arr = new long[n][m]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { arr[i][j] = nextLong(); } } return arr; } private static char[][] nextCharArray(int n,int m){ char [][]c=new char[n][m]; for(int i=0;i<n;i++){ String s=nextLine(); for(int j=0;j<s.length();j++){ c[i][j]=s.charAt(j); } } return c; } private static long[] nextLongArray(int n) { long[] arr = new long[n]; for (int i = 0; i < n; i++) { arr[i] = nextLong(); } return arr; } private static void pArray(int[] arr) { for (int i = 0; i < arr.length; i++) { pw.print(arr[i] + " "); } pw.println(); return; } private static void pArray(long[] arr) { for (int i = 0; i < arr.length; i++) { pw.print(arr[i] + " "); } pw.println(); return; } private static void pArray(boolean[] arr) { for (int i = 0; i < arr.length; i++) { pw.print(arr[i] + " "); } pw.println(); return; } private static boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return isWhitespace(c); } private interface SpaceCharFilter { public boolean isSpaceChar(int ch); } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.awt.Checkbox; import java.awt.Point; import java.io.*; import java.math.*; import java.util.*; import java.util.Map.Entry; import javax.print.attribute.SetOfIntegerSyntax; import javax.swing.plaf.FontUIResource; public class CODE2{ private static InputStream stream; private static byte[] buf = new byte[1024]; private static int curChar,MAX; private static int numChars; private static SpaceCharFilter filter; private static PrintWriter pw; private static long count = 0,mod=1000000007; static int BIT[]; private static boolean primer[]; // private static TreeSet<Integer> ts=new TreeSet[200000]; public final static int INF = (int) 1E9; public static void main(String args[]) { InputReader(System.in); pw = new PrintWriter(System.out); new Thread(null ,new Runnable(){ public void run(){ try{ solve(); pw.close(); } catch(Exception e){ e.printStackTrace(); } } },"1",1<<26).start(); } static StringBuilder sb; public static void test(){ sb=new StringBuilder(); int t=nextInt(); while(t-->0){ solve(); } pw.println(sb); } public static long pow(long n, long p,long mod) { if(p==0) return 1; if(p==1) return n%mod; if(p%2==0){ long temp=pow(n, p/2,mod); return (temp*temp)%mod; }else{ long temp=pow(n,p/2,mod); temp=(temp*temp)%mod; return(temp*n)%mod; } } public static long pow(long n, long p) { if(p==0) return 1; if(p==1) return n; if(p%2==0){ long temp=pow(n, p/2); return (temp*temp); }else{ long temp=pow(n,p/2); temp=(temp*temp); return(temp*n); } } public static void Merge(long a[],int p,int r){ if(p<r){ int q = (p+r)/2; Merge(a,p,q); Merge(a,q+1,r); Merge_Array(a,p,q,r); } } public static void Merge_Array(long a[],int p,int q,int r){ long b[] = new long[q-p+1]; long c[] = new long[r-q]; for(int i=0;i<b.length;i++) b[i] = a[p+i]; for(int i=0;i<c.length;i++) c[i] = a[q+i+1]; int i = 0,j = 0; for(int k=p;k<=r;k++){ if(i==b.length){ a[k] = c[j]; j++; } else if(j==c.length){ a[k] = b[i]; i++; } else if(b[i]<c[j]){ a[k] = b[i]; i++; } else{ a[k] = c[j]; j++; } } } public static long gcd(long x, long y) { if (x == 0) return y; else return gcd( y % x,x); } public static boolean isPrime(int n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; for (int i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } static LinkedList<Integer> adj[]; static boolean Visited[]; static HashSet<Integer> exc; static long oddsum[]=new long[1000001]; static long co=0,ans=0; static int parent[]; static int size[],color[],res[],k; static ArrayList<Integer> al[]; static long MOD = (long)1e9 + 7; private static void buildgraph(int n){ adj=new LinkedList[n+1]; Visited=new boolean[n+1]; levl=new int[n+1]; for(int i=0;i<=n;i++){ adj[i]=new LinkedList<Integer>(); } } static int[] levl; static int[] eat; // static int n,m; static int price[]; //ind frog crab static boolean check(char c) { if(c!='a' && c!='e' && c!='i' && c!='o' && c!='u' ) return true; else return false; } public static void solve(){ int n= nextInt(); int a[]=new int[n]; a=nextIntArray(n); int invcount=0; for(int i=0;i<n;i++) { for(int j=i+1;j<n;j++) { if(a[i]>a[j]) invcount++; } } int m=nextInt(); int initial = invcount%2; while(m--!=0) { int l=nextInt(); int r=nextInt(); int diff = r-l+1; int totalpair = (diff*(diff-1))/2; if(((totalpair%2)+initial)%2==1) { pw.println("odd"); initial=1; } else { pw.println("even"); initial=0; } } } static void seive2(int n) { primer=new boolean[n+1]; Arrays.fill(primer,true); primer[0]=false; primer[1]=false; primer[2]=true; for(int i=2;i*i<=n;i++) { if(primer[i]) { for(int j=2*i;j<=n;j=j+i) { primer[j]=false; } } } } /* static void BITupdate(int x,int val) { while(x<=n) { BIT[x]+=val; x+= x & -x; } }*/ /* static void update(int x,long val) { val=val%MOD; while(x<=n) { // System.out.println(x); BIT[x]=(BIT[x]+val)%MOD; x+=(x & -x); } // System.out.println("dfd"); }*/ static int BITsum(int x) { int sum=0; while(x>0) { sum+=BIT[x]; x-= (x & -x); } return sum; } /* static long sum(int x) { long sum=0; while(x>0) { sum=(sum+BIT[x])%MOD; x-=x & -x; } return sum; }*/ static boolean union(int x,int y) { int xr=find(x); int yr=find(y); if(xr==yr) return false; if(size[xr]<size[yr]) { size[yr]+=size[xr]; parent[xr]=yr; } else { size[xr]+=size[yr]; parent[yr]=xr; } return true; } static int find(int x) { if(parent[x]==x) return x; else { parent[x]=find(parent[x]); return parent[x]; } } public static class Edge implements Comparable<Edge> { int u, v,s; public Edge(int u, int v) { this.u = u; this.v = v; //this.s = s; } public int hashCode() { return Objects.hash(); } public int compareTo(Edge other) { return (Integer.compare(u, other.u) != 0 ? (Integer.compare(u, other.u)):(Integer.compare(v, other.v))); // &((Long.compare(s, other.s) != 0 ? (Long.compare(s, other.s)):(Long.compare(u, other.v)!=0?Long.compare(u, other.v):Long.compare(v, other.u)))); //return this.u-other.u; } public String toString() { return this.u + " " + this.v; } } static int col[]; public static boolean isVowel(char c){ if(c=='a' || c=='e'||c=='i' || c=='o' || c=='u') return true; return false; } static int no_vert=0; private static void dfs(int start){ Visited[start]=true; if(al[color[start]].size()>=k) { res[start]=al[color[start]].get(al[color[start]].size()-k); } al[color[start]].add(start); for(int i:adj[start]){ if(!Visited[i]) { dfs(i); } } (al[color[start]]).remove(al[color[start]].size()-1); } public static String reverseString(String s) { StringBuilder sb = new StringBuilder(s); sb.reverse(); return (sb.toString()); } /* private static void BFS(int sou){ Queue<Integer> q=new LinkedList<Integer>(); q.add(sou); Visited[sou]=true; levl[sou]=0; while(!q.isEmpty()){ int top=q.poll(); for(int i:adj[top]){ //pw.println(i+" "+top); if(!Visited[i]) { q.add(i); levl[i]=levl[top]+1; } Visited[i]=true; } } }*/ static int indeg[]; /* private static void kahn(int n){ PriorityQueue<Integer> q=new PriorityQueue<Integer>(); for(int i=1;i<=n;i++){ if(indeg[i]==0){ q.add(i); } } while(!q.isEmpty()){ int top=q.poll(); st.push(top); for(Node i:adj[top]){ indeg[i.to]--; if(indeg[i.to]==0){ q.add(i.to); } } } } static int state=1; static long no_exc=0,no_vert=0; static Stack<Integer> st; static HashSet<Integer> inset; /* private static void topo(int curr){ Visited[curr]=true; inset.add(curr); for(int x:adj[curr]){ if(adj[x].contains(curr) || inset.contains(x)){ state=0; return; } if(state==0) return; } st.push(curr); inset.remove(curr); }*/ static HashSet<Integer> hs; static boolean prime[]; static int spf[]; public static void sieve(int n){ prime=new boolean[n+1]; spf=new int[n+1]; Arrays.fill(spf, 1); Arrays.fill(prime, true); prime[1]=false; spf[2]=2; for(int i=4;i<=n;i+=2){ spf[i]=2; } for(int i=3;i<=n;i+=2){ if(prime[i]){ spf[i]=i; for(int j=2*i;j<=n;j+=i){ prime[j]=false; if(spf[j]==1){ spf[j]=i; } } } } } // To Get Input // Some Buffer Methods public static void sort(long a[]){ Merge(a, 0, a.length-1); } public static void InputReader(InputStream stream1) { stream = stream1; } private static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private static boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } private static int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } private static int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } private static long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } private static String nextToken() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } private static String nextLine() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndOfLine(c)); return res.toString(); } private static int[] nextIntArray(int n) { int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = nextInt(); } return arr; } private static long[][] next2dArray(int n, int m) { long[][] arr = new long[n][m]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { arr[i][j] = nextLong(); } } return arr; } private static char[][] nextCharArray(int n,int m){ char [][]c=new char[n][m]; for(int i=0;i<n;i++){ String s=nextLine(); for(int j=0;j<s.length();j++){ c[i][j]=s.charAt(j); } } return c; } private static long[] nextLongArray(int n) { long[] arr = new long[n]; for (int i = 0; i < n; i++) { arr[i] = nextLong(); } return arr; } private static void pArray(int[] arr) { for (int i = 0; i < arr.length; i++) { pw.print(arr[i] + " "); } pw.println(); return; } private static void pArray(long[] arr) { for (int i = 0; i < arr.length; i++) { pw.print(arr[i] + " "); } pw.println(); return; } private static void pArray(boolean[] arr) { for (int i = 0; i < arr.length; i++) { pw.print(arr[i] + " "); } pw.println(); return; } private static boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return isWhitespace(c); } private interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.awt.Checkbox; import java.awt.Point; import java.io.*; import java.math.*; import java.util.*; import java.util.Map.Entry; import javax.print.attribute.SetOfIntegerSyntax; import javax.swing.plaf.FontUIResource; public class CODE2{ private static InputStream stream; private static byte[] buf = new byte[1024]; private static int curChar,MAX; private static int numChars; private static SpaceCharFilter filter; private static PrintWriter pw; private static long count = 0,mod=1000000007; static int BIT[]; private static boolean primer[]; // private static TreeSet<Integer> ts=new TreeSet[200000]; public final static int INF = (int) 1E9; public static void main(String args[]) { InputReader(System.in); pw = new PrintWriter(System.out); new Thread(null ,new Runnable(){ public void run(){ try{ solve(); pw.close(); } catch(Exception e){ e.printStackTrace(); } } },"1",1<<26).start(); } static StringBuilder sb; public static void test(){ sb=new StringBuilder(); int t=nextInt(); while(t-->0){ solve(); } pw.println(sb); } public static long pow(long n, long p,long mod) { if(p==0) return 1; if(p==1) return n%mod; if(p%2==0){ long temp=pow(n, p/2,mod); return (temp*temp)%mod; }else{ long temp=pow(n,p/2,mod); temp=(temp*temp)%mod; return(temp*n)%mod; } } public static long pow(long n, long p) { if(p==0) return 1; if(p==1) return n; if(p%2==0){ long temp=pow(n, p/2); return (temp*temp); }else{ long temp=pow(n,p/2); temp=(temp*temp); return(temp*n); } } public static void Merge(long a[],int p,int r){ if(p<r){ int q = (p+r)/2; Merge(a,p,q); Merge(a,q+1,r); Merge_Array(a,p,q,r); } } public static void Merge_Array(long a[],int p,int q,int r){ long b[] = new long[q-p+1]; long c[] = new long[r-q]; for(int i=0;i<b.length;i++) b[i] = a[p+i]; for(int i=0;i<c.length;i++) c[i] = a[q+i+1]; int i = 0,j = 0; for(int k=p;k<=r;k++){ if(i==b.length){ a[k] = c[j]; j++; } else if(j==c.length){ a[k] = b[i]; i++; } else if(b[i]<c[j]){ a[k] = b[i]; i++; } else{ a[k] = c[j]; j++; } } } public static long gcd(long x, long y) { if (x == 0) return y; else return gcd( y % x,x); } public static boolean isPrime(int n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; for (int i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } static LinkedList<Integer> adj[]; static boolean Visited[]; static HashSet<Integer> exc; static long oddsum[]=new long[1000001]; static long co=0,ans=0; static int parent[]; static int size[],color[],res[],k; static ArrayList<Integer> al[]; static long MOD = (long)1e9 + 7; private static void buildgraph(int n){ adj=new LinkedList[n+1]; Visited=new boolean[n+1]; levl=new int[n+1]; for(int i=0;i<=n;i++){ adj[i]=new LinkedList<Integer>(); } } static int[] levl; static int[] eat; // static int n,m; static int price[]; //ind frog crab static boolean check(char c) { if(c!='a' && c!='e' && c!='i' && c!='o' && c!='u' ) return true; else return false; } public static void solve(){ int n= nextInt(); int a[]=new int[n]; a=nextIntArray(n); int invcount=0; for(int i=0;i<n;i++) { for(int j=i+1;j<n;j++) { if(a[i]>a[j]) invcount++; } } int m=nextInt(); int initial = invcount%2; while(m--!=0) { int l=nextInt(); int r=nextInt(); int diff = r-l+1; int totalpair = (diff*(diff-1))/2; if(((totalpair%2)+initial)%2==1) { pw.println("odd"); initial=1; } else { pw.println("even"); initial=0; } } } static void seive2(int n) { primer=new boolean[n+1]; Arrays.fill(primer,true); primer[0]=false; primer[1]=false; primer[2]=true; for(int i=2;i*i<=n;i++) { if(primer[i]) { for(int j=2*i;j<=n;j=j+i) { primer[j]=false; } } } } /* static void BITupdate(int x,int val) { while(x<=n) { BIT[x]+=val; x+= x & -x; } }*/ /* static void update(int x,long val) { val=val%MOD; while(x<=n) { // System.out.println(x); BIT[x]=(BIT[x]+val)%MOD; x+=(x & -x); } // System.out.println("dfd"); }*/ static int BITsum(int x) { int sum=0; while(x>0) { sum+=BIT[x]; x-= (x & -x); } return sum; } /* static long sum(int x) { long sum=0; while(x>0) { sum=(sum+BIT[x])%MOD; x-=x & -x; } return sum; }*/ static boolean union(int x,int y) { int xr=find(x); int yr=find(y); if(xr==yr) return false; if(size[xr]<size[yr]) { size[yr]+=size[xr]; parent[xr]=yr; } else { size[xr]+=size[yr]; parent[yr]=xr; } return true; } static int find(int x) { if(parent[x]==x) return x; else { parent[x]=find(parent[x]); return parent[x]; } } public static class Edge implements Comparable<Edge> { int u, v,s; public Edge(int u, int v) { this.u = u; this.v = v; //this.s = s; } public int hashCode() { return Objects.hash(); } public int compareTo(Edge other) { return (Integer.compare(u, other.u) != 0 ? (Integer.compare(u, other.u)):(Integer.compare(v, other.v))); // &((Long.compare(s, other.s) != 0 ? (Long.compare(s, other.s)):(Long.compare(u, other.v)!=0?Long.compare(u, other.v):Long.compare(v, other.u)))); //return this.u-other.u; } public String toString() { return this.u + " " + this.v; } } static int col[]; public static boolean isVowel(char c){ if(c=='a' || c=='e'||c=='i' || c=='o' || c=='u') return true; return false; } static int no_vert=0; private static void dfs(int start){ Visited[start]=true; if(al[color[start]].size()>=k) { res[start]=al[color[start]].get(al[color[start]].size()-k); } al[color[start]].add(start); for(int i:adj[start]){ if(!Visited[i]) { dfs(i); } } (al[color[start]]).remove(al[color[start]].size()-1); } public static String reverseString(String s) { StringBuilder sb = new StringBuilder(s); sb.reverse(); return (sb.toString()); } /* private static void BFS(int sou){ Queue<Integer> q=new LinkedList<Integer>(); q.add(sou); Visited[sou]=true; levl[sou]=0; while(!q.isEmpty()){ int top=q.poll(); for(int i:adj[top]){ //pw.println(i+" "+top); if(!Visited[i]) { q.add(i); levl[i]=levl[top]+1; } Visited[i]=true; } } }*/ static int indeg[]; /* private static void kahn(int n){ PriorityQueue<Integer> q=new PriorityQueue<Integer>(); for(int i=1;i<=n;i++){ if(indeg[i]==0){ q.add(i); } } while(!q.isEmpty()){ int top=q.poll(); st.push(top); for(Node i:adj[top]){ indeg[i.to]--; if(indeg[i.to]==0){ q.add(i.to); } } } } static int state=1; static long no_exc=0,no_vert=0; static Stack<Integer> st; static HashSet<Integer> inset; /* private static void topo(int curr){ Visited[curr]=true; inset.add(curr); for(int x:adj[curr]){ if(adj[x].contains(curr) || inset.contains(x)){ state=0; return; } if(state==0) return; } st.push(curr); inset.remove(curr); }*/ static HashSet<Integer> hs; static boolean prime[]; static int spf[]; public static void sieve(int n){ prime=new boolean[n+1]; spf=new int[n+1]; Arrays.fill(spf, 1); Arrays.fill(prime, true); prime[1]=false; spf[2]=2; for(int i=4;i<=n;i+=2){ spf[i]=2; } for(int i=3;i<=n;i+=2){ if(prime[i]){ spf[i]=i; for(int j=2*i;j<=n;j+=i){ prime[j]=false; if(spf[j]==1){ spf[j]=i; } } } } } // To Get Input // Some Buffer Methods public static void sort(long a[]){ Merge(a, 0, a.length-1); } public static void InputReader(InputStream stream1) { stream = stream1; } private static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private static boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } private static int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } private static int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } private static long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } private static String nextToken() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } private static String nextLine() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndOfLine(c)); return res.toString(); } private static int[] nextIntArray(int n) { int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = nextInt(); } return arr; } private static long[][] next2dArray(int n, int m) { long[][] arr = new long[n][m]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { arr[i][j] = nextLong(); } } return arr; } private static char[][] nextCharArray(int n,int m){ char [][]c=new char[n][m]; for(int i=0;i<n;i++){ String s=nextLine(); for(int j=0;j<s.length();j++){ c[i][j]=s.charAt(j); } } return c; } private static long[] nextLongArray(int n) { long[] arr = new long[n]; for (int i = 0; i < n; i++) { arr[i] = nextLong(); } return arr; } private static void pArray(int[] arr) { for (int i = 0; i < arr.length; i++) { pw.print(arr[i] + " "); } pw.println(); return; } private static void pArray(long[] arr) { for (int i = 0; i < arr.length; i++) { pw.print(arr[i] + " "); } pw.println(); return; } private static void pArray(boolean[] arr) { for (int i = 0; i < arr.length; i++) { pw.print(arr[i] + " "); } pw.println(); return; } private static boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return isWhitespace(c); } private interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
4,087
2,381
1,372
import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.Scanner; import java.util.Vector; /** * Created with IntelliJ IDEA. * User: horikawa * Date: 3/23/13 * Time: 1:29 AM * To change this template use File | Settings | File Templates. */ public class B { public static void main (String[] argv) { Scanner in = new Scanner(System.in); long n = in.nextLong(); long k = in.nextLong(); long max = ((k*(k-1))/2L)+1L; long ans = -1; if (n == 1) { System.out.println(0); return; } if (max < n) { ans = -1; } else if (max == n) { ans = k-1; } else { if (k >= n) { ans = 1; } else { long low = 1; long high = k-1; while (high > low+1) { long mid = (low+high)/2; long sum = (((mid+(k-1)) * (k-mid)) / 2) + 1; if (sum >= n) { low = mid; } else { high = mid; } } ans = (k - low); } } System.out.println(ans); return; } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.Scanner; import java.util.Vector; /** * Created with IntelliJ IDEA. * User: horikawa * Date: 3/23/13 * Time: 1:29 AM * To change this template use File | Settings | File Templates. */ public class B { public static void main (String[] argv) { Scanner in = new Scanner(System.in); long n = in.nextLong(); long k = in.nextLong(); long max = ((k*(k-1))/2L)+1L; long ans = -1; if (n == 1) { System.out.println(0); return; } if (max < n) { ans = -1; } else if (max == n) { ans = k-1; } else { if (k >= n) { ans = 1; } else { long low = 1; long high = k-1; while (high > low+1) { long mid = (low+high)/2; long sum = (((mid+(k-1)) * (k-mid)) / 2) + 1; if (sum >= n) { low = mid; } else { high = mid; } } ans = (k - low); } } System.out.println(ans); return; } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.Scanner; import java.util.Vector; /** * Created with IntelliJ IDEA. * User: horikawa * Date: 3/23/13 * Time: 1:29 AM * To change this template use File | Settings | File Templates. */ public class B { public static void main (String[] argv) { Scanner in = new Scanner(System.in); long n = in.nextLong(); long k = in.nextLong(); long max = ((k*(k-1))/2L)+1L; long ans = -1; if (n == 1) { System.out.println(0); return; } if (max < n) { ans = -1; } else if (max == n) { ans = k-1; } else { if (k >= n) { ans = 1; } else { long low = 1; long high = k-1; while (high > low+1) { long mid = (low+high)/2; long sum = (((mid+(k-1)) * (k-mid)) / 2) + 1; if (sum >= n) { low = mid; } else { high = mid; } } ans = (k - low); } } System.out.println(ans); return; } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
670
1,370
1,185
import java.io.*; import java.util.*; public class TestClass { static PrintWriter out = new PrintWriter(System.out); public static void main(String args[] ) throws Exception { BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); String s[] = in.readLine().split(" "); long n = Long.parseLong(s[0]); long k = Long.parseLong(s[1]); long x = bs(n,k); out.println(n-x+1); out.close(); } public static long bs(long n,long k) { long l=0,h=n; while(l<=h) { long mid = l + (h-l)/2; long x = mid - sum(mid); if(x>=k) { h = mid-1; } else { l = mid+1; } } return l; } public static long sum(long x) { long ans=0; while(x>0) { ans += x%10; x=x/10; } return ans; } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class TestClass { static PrintWriter out = new PrintWriter(System.out); public static void main(String args[] ) throws Exception { BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); String s[] = in.readLine().split(" "); long n = Long.parseLong(s[0]); long k = Long.parseLong(s[1]); long x = bs(n,k); out.println(n-x+1); out.close(); } public static long bs(long n,long k) { long l=0,h=n; while(l<=h) { long mid = l + (h-l)/2; long x = mid - sum(mid); if(x>=k) { h = mid-1; } else { l = mid+1; } } return l; } public static long sum(long x) { long ans=0; while(x>0) { ans += x%10; x=x/10; } return ans; } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class TestClass { static PrintWriter out = new PrintWriter(System.out); public static void main(String args[] ) throws Exception { BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); String s[] = in.readLine().split(" "); long n = Long.parseLong(s[0]); long k = Long.parseLong(s[1]); long x = bs(n,k); out.println(n-x+1); out.close(); } public static long bs(long n,long k) { long l=0,h=n; while(l<=h) { long mid = l + (h-l)/2; long x = mid - sum(mid); if(x>=k) { h = mid-1; } else { l = mid+1; } } return l; } public static long sum(long x) { long ans=0; while(x>0) { ans += x%10; x=x/10; } return ans; } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
575
1,184
2,637
import java.util.Arrays; import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner s=new Scanner(System.in); int n=s.nextInt(); int[] arr=new int[n]; for(int i=0;i<n;i++) { arr[i]=s.nextInt(); } Arrays.sort(arr); int[] visited=new int[n]; int ans=0; for(int i=0;i<n;i++) { if(visited[i]==0) { ans++; for(int j=i+1;j<n;j++) { if(arr[j]%arr[i]==0&&visited[j]==0) { visited[j]=1; } } } } System.out.println(ans); } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Arrays; import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner s=new Scanner(System.in); int n=s.nextInt(); int[] arr=new int[n]; for(int i=0;i<n;i++) { arr[i]=s.nextInt(); } Arrays.sort(arr); int[] visited=new int[n]; int ans=0; for(int i=0;i<n;i++) { if(visited[i]==0) { ans++; for(int j=i+1;j<n;j++) { if(arr[j]%arr[i]==0&&visited[j]==0) { visited[j]=1; } } } } System.out.println(ans); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Arrays; import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner s=new Scanner(System.in); int n=s.nextInt(); int[] arr=new int[n]; for(int i=0;i<n;i++) { arr[i]=s.nextInt(); } Arrays.sort(arr); int[] visited=new int[n]; int ans=0; for(int i=0;i<n;i++) { if(visited[i]==0) { ans++; for(int j=i+1;j<n;j++) { if(arr[j]%arr[i]==0&&visited[j]==0) { visited[j]=1; } } } } System.out.println(ans); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
521
2,631
3,267
import java.io.*; import java.math.BigInteger; import java.util.*; import java.util.Map.Entry; public class Main { public static void main(String[] args) throws IOException { (new Main()).solve(); } public void Main() { } void solve() throws IOException { // BufferedReader in = new BufferedReader(new // InputStreamReader(System.in)); // Scanner in = new Scanner(System.in); MyReader in = new MyReader(); PrintWriter out = new PrintWriter(System.out); // Scanner in = new Scanner(new FileReader("input.txt")); // PrintWriter out = new PrintWriter("output.txt"); int n = in.nextInt(); out.print("0 0 "); out.print(n); out.close(); } }; class MyReader { private BufferedReader in; String[] parsed; int index = 0; public MyReader() { in = new BufferedReader(new InputStreamReader(System.in)); } public int nextInt() throws NumberFormatException, IOException { if (parsed == null || parsed.length == index) { read(); } return Integer.parseInt(parsed[index++]); } public long nextLong() throws NumberFormatException, IOException { if (parsed == null || parsed.length == index) { read(); } return Long.parseLong(parsed[index++]); } public String nextString() throws IOException { if (parsed == null || parsed.length == index) { read(); } return parsed[index++]; } private void read() throws IOException { parsed = in.readLine().split(" "); index = 0; } public String readLine() throws IOException { return in.readLine(); } };
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.math.BigInteger; import java.util.*; import java.util.Map.Entry; public class Main { public static void main(String[] args) throws IOException { (new Main()).solve(); } public void Main() { } void solve() throws IOException { // BufferedReader in = new BufferedReader(new // InputStreamReader(System.in)); // Scanner in = new Scanner(System.in); MyReader in = new MyReader(); PrintWriter out = new PrintWriter(System.out); // Scanner in = new Scanner(new FileReader("input.txt")); // PrintWriter out = new PrintWriter("output.txt"); int n = in.nextInt(); out.print("0 0 "); out.print(n); out.close(); } }; class MyReader { private BufferedReader in; String[] parsed; int index = 0; public MyReader() { in = new BufferedReader(new InputStreamReader(System.in)); } public int nextInt() throws NumberFormatException, IOException { if (parsed == null || parsed.length == index) { read(); } return Integer.parseInt(parsed[index++]); } public long nextLong() throws NumberFormatException, IOException { if (parsed == null || parsed.length == index) { read(); } return Long.parseLong(parsed[index++]); } public String nextString() throws IOException { if (parsed == null || parsed.length == index) { read(); } return parsed[index++]; } private void read() throws IOException { parsed = in.readLine().split(" "); index = 0; } public String readLine() throws IOException { return in.readLine(); } }; </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.math.BigInteger; import java.util.*; import java.util.Map.Entry; public class Main { public static void main(String[] args) throws IOException { (new Main()).solve(); } public void Main() { } void solve() throws IOException { // BufferedReader in = new BufferedReader(new // InputStreamReader(System.in)); // Scanner in = new Scanner(System.in); MyReader in = new MyReader(); PrintWriter out = new PrintWriter(System.out); // Scanner in = new Scanner(new FileReader("input.txt")); // PrintWriter out = new PrintWriter("output.txt"); int n = in.nextInt(); out.print("0 0 "); out.print(n); out.close(); } }; class MyReader { private BufferedReader in; String[] parsed; int index = 0; public MyReader() { in = new BufferedReader(new InputStreamReader(System.in)); } public int nextInt() throws NumberFormatException, IOException { if (parsed == null || parsed.length == index) { read(); } return Integer.parseInt(parsed[index++]); } public long nextLong() throws NumberFormatException, IOException { if (parsed == null || parsed.length == index) { read(); } return Long.parseLong(parsed[index++]); } public String nextString() throws IOException { if (parsed == null || parsed.length == index) { read(); } return parsed[index++]; } private void read() throws IOException { parsed = in.readLine().split(" "); index = 0; } public String readLine() throws IOException { return in.readLine(); } }; </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
697
3,261
1,029
import java.io.BufferedReader; import java.io.FileReader; import java.io.IOException; import java.io.PrintWriter; import java.util.*; public class CodeForces { class Pair<K, V> { K first; V second; public Pair(K k, V v) { first = k; second = v; } } private boolean contain(int set, int i) { return (set & (1<<i)) > 0; } private static int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a%b); } private long pow(long a, long p) { if (p == 0) return 1; long b = pow(a, p/2); b = b * b; if (p % 2 == 1) b *= a; return b % mod; } private static boolean isSame(double a, double b) { return Math.abs(a - b) < 1e-10; } private static void swapBoolean(boolean[] p, int i, int j) { boolean tmp = p[i]; p[i] = p[j]; p[j] = tmp; } private static void swap(int[] p, int i, int j) { int tmp = p[i]; p[i] = p[j]; p[j] = tmp; } private static int countOne(int a) { if (a == 0) return 0; return countOne(a & (a-1)) + 1; } private static int sdiv(int a, int b) { return (a +b -1) / b; } private int[] retran(int index) { int[] res = new int[2]; res[0] = index / M; res[1] = index % M; return res; } private int tran(int x, int y) { return x * M + y; } private boolean inTable(int x, int y) { return x>=0 && x< N && y >= 0 && y < M; } int N; int R; int[][] C = new int[10][10]; int M; int mod = 1_000_000_007; long IMPO; int ans; int[] dx = new int[]{1,0, -1, 0}; int[] dy = new int[]{0, -1, 0, 1}; Map<String, Boolean> dp = new HashMap<>(); class Edge { int u; int v; int start; int duration; public Edge(int u, int v, int l, int d) { this.u = u; this.v = v; this.start = l; this.duration = d; } } List<List<Integer>> graph = new ArrayList<>(); List<Edge> edges = new ArrayList<>(); int[] parent; boolean[] visited; public void run(Scanner scanner) throws IOException { long k = scanner.nextLong(); int len = 1; long number = 9; for (int i = 0; true; i++) { if (len * number < k) { k -= len * number; len ++; number *= 10; } else { break; } } number /= 9; StringBuilder sb = new StringBuilder(); for (int i = 1; i <= 9; i++) { if (len * number < k) { k -= len * number; } else { sb.append(i); break; } } for (int i = 1; i < len; i++) { number /= 10; for (int j = 0; j <= 9; j++) { if (len * number < k) { k -= len * number; } else { sb.append(j); break; } } } System.out.println(sb.charAt((int) k - 1)); } public static void main(String[] args) throws NumberFormatException, IOException { // String fileName = "C://Users/user/eclipse-workspace/algo/example.txt"; // String outFile = "C://Users/user/eclipse-workspace/algo/example-out.txt"; // String fileName = "C://Users/user/eclipse-workspace/algo/A-small-practice.in"; // String outFile = "C://Users/user/eclipse-workspace/algo/A-small-out.txt"; // String fileName = "C://Users/user/eclipse-workspace/algo/A-large-practice.in"; // String outFile = "C://Users/user/eclipse-workspace/algo/A-large-out.txt"; // String fileName = "/Users/mobike/IdeaProjects/algo/B-small-practice.in"; // String outFile = "/Users/mobike/IdeaProjects/algo/B-small-out.txt"; // String fileName = "/Users/mobike/IdeaProjects/algo/B-large-practice.in"; // String outFile = "/Users/mobike/IdeaProjects/algo/B-large-out.txt"; // String fileName = "C://Users/user/eclipse-workspace/algo/C-small-practice.in"; // String outFile = "C://Users/user/eclipse-workspace/algo/C-small-out.txt"; // String fileName = "C://Users/user/eclipse-workspace/algo/D-small-practice.in"; // String outFile = "C://Users/user/eclipse-workspace/algo/D-small-out.txt"; // String fileName = "C://Users/user/eclipse-workspace/algo/D-large-practice.in"; // String outFile = "C://Users/user/eclipse-workspace/algo/D-large-out.txt"; Scanner scanner = new Scanner(System.in); // int T = scanner.nextInt(); // for (int i = 1; i <= T; i++) { CodeForces jam = new CodeForces(); jam.run(scanner); // } } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.FileReader; import java.io.IOException; import java.io.PrintWriter; import java.util.*; public class CodeForces { class Pair<K, V> { K first; V second; public Pair(K k, V v) { first = k; second = v; } } private boolean contain(int set, int i) { return (set & (1<<i)) > 0; } private static int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a%b); } private long pow(long a, long p) { if (p == 0) return 1; long b = pow(a, p/2); b = b * b; if (p % 2 == 1) b *= a; return b % mod; } private static boolean isSame(double a, double b) { return Math.abs(a - b) < 1e-10; } private static void swapBoolean(boolean[] p, int i, int j) { boolean tmp = p[i]; p[i] = p[j]; p[j] = tmp; } private static void swap(int[] p, int i, int j) { int tmp = p[i]; p[i] = p[j]; p[j] = tmp; } private static int countOne(int a) { if (a == 0) return 0; return countOne(a & (a-1)) + 1; } private static int sdiv(int a, int b) { return (a +b -1) / b; } private int[] retran(int index) { int[] res = new int[2]; res[0] = index / M; res[1] = index % M; return res; } private int tran(int x, int y) { return x * M + y; } private boolean inTable(int x, int y) { return x>=0 && x< N && y >= 0 && y < M; } int N; int R; int[][] C = new int[10][10]; int M; int mod = 1_000_000_007; long IMPO; int ans; int[] dx = new int[]{1,0, -1, 0}; int[] dy = new int[]{0, -1, 0, 1}; Map<String, Boolean> dp = new HashMap<>(); class Edge { int u; int v; int start; int duration; public Edge(int u, int v, int l, int d) { this.u = u; this.v = v; this.start = l; this.duration = d; } } List<List<Integer>> graph = new ArrayList<>(); List<Edge> edges = new ArrayList<>(); int[] parent; boolean[] visited; public void run(Scanner scanner) throws IOException { long k = scanner.nextLong(); int len = 1; long number = 9; for (int i = 0; true; i++) { if (len * number < k) { k -= len * number; len ++; number *= 10; } else { break; } } number /= 9; StringBuilder sb = new StringBuilder(); for (int i = 1; i <= 9; i++) { if (len * number < k) { k -= len * number; } else { sb.append(i); break; } } for (int i = 1; i < len; i++) { number /= 10; for (int j = 0; j <= 9; j++) { if (len * number < k) { k -= len * number; } else { sb.append(j); break; } } } System.out.println(sb.charAt((int) k - 1)); } public static void main(String[] args) throws NumberFormatException, IOException { // String fileName = "C://Users/user/eclipse-workspace/algo/example.txt"; // String outFile = "C://Users/user/eclipse-workspace/algo/example-out.txt"; // String fileName = "C://Users/user/eclipse-workspace/algo/A-small-practice.in"; // String outFile = "C://Users/user/eclipse-workspace/algo/A-small-out.txt"; // String fileName = "C://Users/user/eclipse-workspace/algo/A-large-practice.in"; // String outFile = "C://Users/user/eclipse-workspace/algo/A-large-out.txt"; // String fileName = "/Users/mobike/IdeaProjects/algo/B-small-practice.in"; // String outFile = "/Users/mobike/IdeaProjects/algo/B-small-out.txt"; // String fileName = "/Users/mobike/IdeaProjects/algo/B-large-practice.in"; // String outFile = "/Users/mobike/IdeaProjects/algo/B-large-out.txt"; // String fileName = "C://Users/user/eclipse-workspace/algo/C-small-practice.in"; // String outFile = "C://Users/user/eclipse-workspace/algo/C-small-out.txt"; // String fileName = "C://Users/user/eclipse-workspace/algo/D-small-practice.in"; // String outFile = "C://Users/user/eclipse-workspace/algo/D-small-out.txt"; // String fileName = "C://Users/user/eclipse-workspace/algo/D-large-practice.in"; // String outFile = "C://Users/user/eclipse-workspace/algo/D-large-out.txt"; Scanner scanner = new Scanner(System.in); // int T = scanner.nextInt(); // for (int i = 1; i <= T; i++) { CodeForces jam = new CodeForces(); jam.run(scanner); // } } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.FileReader; import java.io.IOException; import java.io.PrintWriter; import java.util.*; public class CodeForces { class Pair<K, V> { K first; V second; public Pair(K k, V v) { first = k; second = v; } } private boolean contain(int set, int i) { return (set & (1<<i)) > 0; } private static int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a%b); } private long pow(long a, long p) { if (p == 0) return 1; long b = pow(a, p/2); b = b * b; if (p % 2 == 1) b *= a; return b % mod; } private static boolean isSame(double a, double b) { return Math.abs(a - b) < 1e-10; } private static void swapBoolean(boolean[] p, int i, int j) { boolean tmp = p[i]; p[i] = p[j]; p[j] = tmp; } private static void swap(int[] p, int i, int j) { int tmp = p[i]; p[i] = p[j]; p[j] = tmp; } private static int countOne(int a) { if (a == 0) return 0; return countOne(a & (a-1)) + 1; } private static int sdiv(int a, int b) { return (a +b -1) / b; } private int[] retran(int index) { int[] res = new int[2]; res[0] = index / M; res[1] = index % M; return res; } private int tran(int x, int y) { return x * M + y; } private boolean inTable(int x, int y) { return x>=0 && x< N && y >= 0 && y < M; } int N; int R; int[][] C = new int[10][10]; int M; int mod = 1_000_000_007; long IMPO; int ans; int[] dx = new int[]{1,0, -1, 0}; int[] dy = new int[]{0, -1, 0, 1}; Map<String, Boolean> dp = new HashMap<>(); class Edge { int u; int v; int start; int duration; public Edge(int u, int v, int l, int d) { this.u = u; this.v = v; this.start = l; this.duration = d; } } List<List<Integer>> graph = new ArrayList<>(); List<Edge> edges = new ArrayList<>(); int[] parent; boolean[] visited; public void run(Scanner scanner) throws IOException { long k = scanner.nextLong(); int len = 1; long number = 9; for (int i = 0; true; i++) { if (len * number < k) { k -= len * number; len ++; number *= 10; } else { break; } } number /= 9; StringBuilder sb = new StringBuilder(); for (int i = 1; i <= 9; i++) { if (len * number < k) { k -= len * number; } else { sb.append(i); break; } } for (int i = 1; i < len; i++) { number /= 10; for (int j = 0; j <= 9; j++) { if (len * number < k) { k -= len * number; } else { sb.append(j); break; } } } System.out.println(sb.charAt((int) k - 1)); } public static void main(String[] args) throws NumberFormatException, IOException { // String fileName = "C://Users/user/eclipse-workspace/algo/example.txt"; // String outFile = "C://Users/user/eclipse-workspace/algo/example-out.txt"; // String fileName = "C://Users/user/eclipse-workspace/algo/A-small-practice.in"; // String outFile = "C://Users/user/eclipse-workspace/algo/A-small-out.txt"; // String fileName = "C://Users/user/eclipse-workspace/algo/A-large-practice.in"; // String outFile = "C://Users/user/eclipse-workspace/algo/A-large-out.txt"; // String fileName = "/Users/mobike/IdeaProjects/algo/B-small-practice.in"; // String outFile = "/Users/mobike/IdeaProjects/algo/B-small-out.txt"; // String fileName = "/Users/mobike/IdeaProjects/algo/B-large-practice.in"; // String outFile = "/Users/mobike/IdeaProjects/algo/B-large-out.txt"; // String fileName = "C://Users/user/eclipse-workspace/algo/C-small-practice.in"; // String outFile = "C://Users/user/eclipse-workspace/algo/C-small-out.txt"; // String fileName = "C://Users/user/eclipse-workspace/algo/D-small-practice.in"; // String outFile = "C://Users/user/eclipse-workspace/algo/D-small-out.txt"; // String fileName = "C://Users/user/eclipse-workspace/algo/D-large-practice.in"; // String outFile = "C://Users/user/eclipse-workspace/algo/D-large-out.txt"; Scanner scanner = new Scanner(System.in); // int T = scanner.nextInt(); // for (int i = 1; i <= T; i++) { CodeForces jam = new CodeForces(); jam.run(scanner); // } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,649
1,028
212
//package fourninetysixDiv3; import java.util.HashMap; import java.util.Scanner; public class Median_Segments_general { public static void main(String[] args) { Scanner s = new Scanner(System.in); int n = s.nextInt(); int m = s.nextInt(); int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = s.nextInt(); } System.out.println(func(n, m, arr)-func(n, m+1, arr)); } public static long func(int n,int m,int[] arr) { HashMap<Long, Integer> map = new HashMap<>(); map.put((long) 0, 1); long sum = 0; long res = 0; long add=0; for(int i=0;i<n;i++) { if(arr[i]<m) { sum--; if(map.containsKey(sum)) { add-=map.get(sum); } } else { if(map.containsKey(sum)) { add+=map.get(sum); } sum++; } res+=add; if(map.containsKey(sum)) { map.put(sum, map.get(sum)+1); } else { map.put(sum,1); } } return res; } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> //package fourninetysixDiv3; import java.util.HashMap; import java.util.Scanner; public class Median_Segments_general { public static void main(String[] args) { Scanner s = new Scanner(System.in); int n = s.nextInt(); int m = s.nextInt(); int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = s.nextInt(); } System.out.println(func(n, m, arr)-func(n, m+1, arr)); } public static long func(int n,int m,int[] arr) { HashMap<Long, Integer> map = new HashMap<>(); map.put((long) 0, 1); long sum = 0; long res = 0; long add=0; for(int i=0;i<n;i++) { if(arr[i]<m) { sum--; if(map.containsKey(sum)) { add-=map.get(sum); } } else { if(map.containsKey(sum)) { add+=map.get(sum); } sum++; } res+=add; if(map.containsKey(sum)) { map.put(sum, map.get(sum)+1); } else { map.put(sum,1); } } return res; } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> //package fourninetysixDiv3; import java.util.HashMap; import java.util.Scanner; public class Median_Segments_general { public static void main(String[] args) { Scanner s = new Scanner(System.in); int n = s.nextInt(); int m = s.nextInt(); int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = s.nextInt(); } System.out.println(func(n, m, arr)-func(n, m+1, arr)); } public static long func(int n,int m,int[] arr) { HashMap<Long, Integer> map = new HashMap<>(); map.put((long) 0, 1); long sum = 0; long res = 0; long add=0; for(int i=0;i<n;i++) { if(arr[i]<m) { sum--; if(map.containsKey(sum)) { add-=map.get(sum); } } else { if(map.containsKey(sum)) { add+=map.get(sum); } sum++; } res+=add; if(map.containsKey(sum)) { map.put(sum, map.get(sum)+1); } else { map.put(sum,1); } } return res; } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
619
212