Dataset Viewer
id
int64 0
4.52k
| code
stringlengths 142
31.2k
| answer
stringclasses 7
values | prompt
stringlengths 1.64k
32.6k
| test_prompt
stringlengths 1.7k
32.7k
| token_length
int64 373
7.8k
| __index_level_0__
int64 0
4.5k
|
---|---|---|---|---|---|---|
3,927 |
import java.lang.*;
import java.util.*;
import java.io.*;
public class Main {
void solve() {
int m=ni();
long a[][]=new long[m][];
HashMap<Long,Integer> mp=new HashMap<>();
long TS=0;
long sm[]=new long[m];
for(int i=0;i<m;i++){
int sz=ni();
a[i]=new long[sz];
for(int j=0;j<sz;j++){
a[i][j]=nl();
mp.put(a[i][j],i);
sm[i]+=a[i][j];
}
TS+=sm[i];
}
if(TS%m!=0){
pw.println("No");
return;
}
TS/=m;
ArrayList<Node> ansForMask[]=new ArrayList[(1<<m)];
for(int i=0;i<(1<<m);i++) ansForMask[i]=new ArrayList<>();
ArrayList<Node> tempList=new ArrayList<>();
int vis[]=new int[m];
for(int i=0;i<m;i++){
out:for(int j=0;j<a[i].length;j++){
int mask=0;
tempList.clear();
long val=a[i][j],req=Long.MAX_VALUE;
int idx=i,idx2;
Arrays.fill(vis,0);
if(sm[i]==TS){
mask=1<<i;
if(ansForMask[mask].size()==0) ansForMask[mask].add(new Node(val,i,i));
continue;
}
while(vis[idx]==0){
req=TS-(sm[idx]-val);
if(!mp.containsKey(req)) continue out;
idx2=mp.get(req);
if(vis[idx]==1 || idx==idx2) continue out;
if(vis[idx2]==1) break;
// if(i==0 && j==1) pw.println(idx2+" "+req+" "+val);
vis[idx]=1;
mask+=(1<<idx);
tempList.add(new Node(req,idx2,idx));
idx=idx2;
val=req;
}
if(req!=a[i][j])continue out;
mask+=(1<<idx);
tempList.add(new Node(a[i][j],i,idx));
if(ansForMask[mask].size()==0){
// pw.println(Integer.toBinaryString(mask));
ansForMask[mask].addAll(tempList);
}
}
}
int dp[]=new int[1<<m];
dp[0]=1;
out: for(int mask=1;mask <(1<<m);mask++){
if(ansForMask[mask].size()!=0){
dp[mask]=1;
// pw.println(Integer.toBinaryString(mask)+" "+mask);
continue;
}
for(int s=mask;s>0;s=(s-1)&mask){
if(dp[s]==1 && dp[mask^s]==1){
dp[mask]=1;
ansForMask[mask].addAll(ansForMask[s]);
ansForMask[mask].addAll(ansForMask[mask^s]);
continue out;
}
}
}
if(dp[(1<<m)-1]==0){
pw.println("No");
return;
}
pw.println("Yes");
Pair ans[]=new Pair[m];
for(Node p : ansForMask[(1<<m)-1]){
ans[p.id1]=new Pair(p.c,p.id2);
}
for(int i=0;i<m;i++) pw.println(ans[i].c+" "+(ans[i].p+1));
}
class Pair {
long c;
int p;
public Pair(long c,int p){
this.c=c;
this.p=p;
}
}
class Node{
long c;
int id1;
int id2;
public Node(long c,int id1,int id2){
this.c=c;
this.id1=id1;
this.id2=id2;
}
}
long M = (long)1e9+7;
// END
PrintWriter pw;
StringTokenizer st;
BufferedReader br;
void run() throws Exception {
br = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
pw.flush();
}
public static void main(String[] args) throws Exception {
new Main().run();
}
String ns() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
String nextLine() throws Exception {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
throw new Exception(e.toString());
}
return str;
}
int ni() {
return Integer.parseInt(ns());
}
long nl() {
return Long.parseLong(ns());
}
double nd() {
return Double.parseDouble(ns());
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.lang.*;
import java.util.*;
import java.io.*;
public class Main {
void solve() {
int m=ni();
long a[][]=new long[m][];
HashMap<Long,Integer> mp=new HashMap<>();
long TS=0;
long sm[]=new long[m];
for(int i=0;i<m;i++){
int sz=ni();
a[i]=new long[sz];
for(int j=0;j<sz;j++){
a[i][j]=nl();
mp.put(a[i][j],i);
sm[i]+=a[i][j];
}
TS+=sm[i];
}
if(TS%m!=0){
pw.println("No");
return;
}
TS/=m;
ArrayList<Node> ansForMask[]=new ArrayList[(1<<m)];
for(int i=0;i<(1<<m);i++) ansForMask[i]=new ArrayList<>();
ArrayList<Node> tempList=new ArrayList<>();
int vis[]=new int[m];
for(int i=0;i<m;i++){
out:for(int j=0;j<a[i].length;j++){
int mask=0;
tempList.clear();
long val=a[i][j],req=Long.MAX_VALUE;
int idx=i,idx2;
Arrays.fill(vis,0);
if(sm[i]==TS){
mask=1<<i;
if(ansForMask[mask].size()==0) ansForMask[mask].add(new Node(val,i,i));
continue;
}
while(vis[idx]==0){
req=TS-(sm[idx]-val);
if(!mp.containsKey(req)) continue out;
idx2=mp.get(req);
if(vis[idx]==1 || idx==idx2) continue out;
if(vis[idx2]==1) break;
// if(i==0 && j==1) pw.println(idx2+" "+req+" "+val);
vis[idx]=1;
mask+=(1<<idx);
tempList.add(new Node(req,idx2,idx));
idx=idx2;
val=req;
}
if(req!=a[i][j])continue out;
mask+=(1<<idx);
tempList.add(new Node(a[i][j],i,idx));
if(ansForMask[mask].size()==0){
// pw.println(Integer.toBinaryString(mask));
ansForMask[mask].addAll(tempList);
}
}
}
int dp[]=new int[1<<m];
dp[0]=1;
out: for(int mask=1;mask <(1<<m);mask++){
if(ansForMask[mask].size()!=0){
dp[mask]=1;
// pw.println(Integer.toBinaryString(mask)+" "+mask);
continue;
}
for(int s=mask;s>0;s=(s-1)&mask){
if(dp[s]==1 && dp[mask^s]==1){
dp[mask]=1;
ansForMask[mask].addAll(ansForMask[s]);
ansForMask[mask].addAll(ansForMask[mask^s]);
continue out;
}
}
}
if(dp[(1<<m)-1]==0){
pw.println("No");
return;
}
pw.println("Yes");
Pair ans[]=new Pair[m];
for(Node p : ansForMask[(1<<m)-1]){
ans[p.id1]=new Pair(p.c,p.id2);
}
for(int i=0;i<m;i++) pw.println(ans[i].c+" "+(ans[i].p+1));
}
class Pair {
long c;
int p;
public Pair(long c,int p){
this.c=c;
this.p=p;
}
}
class Node{
long c;
int id1;
int id2;
public Node(long c,int id1,int id2){
this.c=c;
this.id1=id1;
this.id2=id2;
}
}
long M = (long)1e9+7;
// END
PrintWriter pw;
StringTokenizer st;
BufferedReader br;
void run() throws Exception {
br = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
pw.flush();
}
public static void main(String[] args) throws Exception {
new Main().run();
}
String ns() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
String nextLine() throws Exception {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
throw new Exception(e.toString());
}
return str;
}
int ni() {
return Integer.parseInt(ns());
}
long nl() {
return Long.parseLong(ns());
}
double nd() {
return Double.parseDouble(ns());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.lang.*;
import java.util.*;
import java.io.*;
public class Main {
void solve() {
int m=ni();
long a[][]=new long[m][];
HashMap<Long,Integer> mp=new HashMap<>();
long TS=0;
long sm[]=new long[m];
for(int i=0;i<m;i++){
int sz=ni();
a[i]=new long[sz];
for(int j=0;j<sz;j++){
a[i][j]=nl();
mp.put(a[i][j],i);
sm[i]+=a[i][j];
}
TS+=sm[i];
}
if(TS%m!=0){
pw.println("No");
return;
}
TS/=m;
ArrayList<Node> ansForMask[]=new ArrayList[(1<<m)];
for(int i=0;i<(1<<m);i++) ansForMask[i]=new ArrayList<>();
ArrayList<Node> tempList=new ArrayList<>();
int vis[]=new int[m];
for(int i=0;i<m;i++){
out:for(int j=0;j<a[i].length;j++){
int mask=0;
tempList.clear();
long val=a[i][j],req=Long.MAX_VALUE;
int idx=i,idx2;
Arrays.fill(vis,0);
if(sm[i]==TS){
mask=1<<i;
if(ansForMask[mask].size()==0) ansForMask[mask].add(new Node(val,i,i));
continue;
}
while(vis[idx]==0){
req=TS-(sm[idx]-val);
if(!mp.containsKey(req)) continue out;
idx2=mp.get(req);
if(vis[idx]==1 || idx==idx2) continue out;
if(vis[idx2]==1) break;
// if(i==0 && j==1) pw.println(idx2+" "+req+" "+val);
vis[idx]=1;
mask+=(1<<idx);
tempList.add(new Node(req,idx2,idx));
idx=idx2;
val=req;
}
if(req!=a[i][j])continue out;
mask+=(1<<idx);
tempList.add(new Node(a[i][j],i,idx));
if(ansForMask[mask].size()==0){
// pw.println(Integer.toBinaryString(mask));
ansForMask[mask].addAll(tempList);
}
}
}
int dp[]=new int[1<<m];
dp[0]=1;
out: for(int mask=1;mask <(1<<m);mask++){
if(ansForMask[mask].size()!=0){
dp[mask]=1;
// pw.println(Integer.toBinaryString(mask)+" "+mask);
continue;
}
for(int s=mask;s>0;s=(s-1)&mask){
if(dp[s]==1 && dp[mask^s]==1){
dp[mask]=1;
ansForMask[mask].addAll(ansForMask[s]);
ansForMask[mask].addAll(ansForMask[mask^s]);
continue out;
}
}
}
if(dp[(1<<m)-1]==0){
pw.println("No");
return;
}
pw.println("Yes");
Pair ans[]=new Pair[m];
for(Node p : ansForMask[(1<<m)-1]){
ans[p.id1]=new Pair(p.c,p.id2);
}
for(int i=0;i<m;i++) pw.println(ans[i].c+" "+(ans[i].p+1));
}
class Pair {
long c;
int p;
public Pair(long c,int p){
this.c=c;
this.p=p;
}
}
class Node{
long c;
int id1;
int id2;
public Node(long c,int id1,int id2){
this.c=c;
this.id1=id1;
this.id2=id2;
}
}
long M = (long)1e9+7;
// END
PrintWriter pw;
StringTokenizer st;
BufferedReader br;
void run() throws Exception {
br = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
pw.flush();
}
public static void main(String[] args) throws Exception {
new Main().run();
}
String ns() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
String nextLine() throws Exception {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
throw new Exception(e.toString());
}
return str;
}
int ni() {
return Integer.parseInt(ns());
}
long nl() {
return Long.parseLong(ns());
}
double nd() {
return Double.parseDouble(ns());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,408 | 3,917 |
815 |
import java.io.*;
import java.util.*;
public class Noldbach
{
public Scanner in = new Scanner(System.in);
public PrintStream out = System.out;
public boolean[] yes;
public int n, k;
public void main()
{
n = in.nextInt();
k = in.nextInt();
genPrime();
int i;
yes = new boolean[n+1];
int x;
for(i=0;i+1<prime.length;++i)
{
x = prime[i]+prime[i+1]+1;
if(x <= n && fac[x] == x) yes[x] = true;
}
int count = 0;
for(i=0;i<yes.length;++i) if(yes[i]) ++count;
out.println((count>=k?"YES":"NO"));
}//end public void main()
//Generating Primes
public int N = 100000+100;
public int[] fac, rest;
public int[] prime;
public void genPrime()
{
ArrayList<Integer> ap = new ArrayList<Integer>();
fac = new int[N];
rest = new int[N];
int x,y;
for(x=0;x<N;++x)
{
fac[x] = x;
rest[x] = 1;
}
for(x=2;x<N;++x)
if(fac[x]==x)
{
ap.add(x);
for(y=x+x;y<N;y+=x)
if(fac[y]==y)
{
fac[y] = x;
rest[y] = y/x;
}
}
prime = new int[ap.size()];
for(int i=0;i<prime.length;++i) prime[i] = ap.get(i);
}
public static void main(String[] args)
{
(new Noldbach()).main();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Noldbach
{
public Scanner in = new Scanner(System.in);
public PrintStream out = System.out;
public boolean[] yes;
public int n, k;
public void main()
{
n = in.nextInt();
k = in.nextInt();
genPrime();
int i;
yes = new boolean[n+1];
int x;
for(i=0;i+1<prime.length;++i)
{
x = prime[i]+prime[i+1]+1;
if(x <= n && fac[x] == x) yes[x] = true;
}
int count = 0;
for(i=0;i<yes.length;++i) if(yes[i]) ++count;
out.println((count>=k?"YES":"NO"));
}//end public void main()
//Generating Primes
public int N = 100000+100;
public int[] fac, rest;
public int[] prime;
public void genPrime()
{
ArrayList<Integer> ap = new ArrayList<Integer>();
fac = new int[N];
rest = new int[N];
int x,y;
for(x=0;x<N;++x)
{
fac[x] = x;
rest[x] = 1;
}
for(x=2;x<N;++x)
if(fac[x]==x)
{
ap.add(x);
for(y=x+x;y<N;y+=x)
if(fac[y]==y)
{
fac[y] = x;
rest[y] = y/x;
}
}
prime = new int[ap.size()];
for(int i=0;i<prime.length;++i) prime[i] = ap.get(i);
}
public static void main(String[] args)
{
(new Noldbach()).main();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Noldbach
{
public Scanner in = new Scanner(System.in);
public PrintStream out = System.out;
public boolean[] yes;
public int n, k;
public void main()
{
n = in.nextInt();
k = in.nextInt();
genPrime();
int i;
yes = new boolean[n+1];
int x;
for(i=0;i+1<prime.length;++i)
{
x = prime[i]+prime[i+1]+1;
if(x <= n && fac[x] == x) yes[x] = true;
}
int count = 0;
for(i=0;i<yes.length;++i) if(yes[i]) ++count;
out.println((count>=k?"YES":"NO"));
}//end public void main()
//Generating Primes
public int N = 100000+100;
public int[] fac, rest;
public int[] prime;
public void genPrime()
{
ArrayList<Integer> ap = new ArrayList<Integer>();
fac = new int[N];
rest = new int[N];
int x,y;
for(x=0;x<N;++x)
{
fac[x] = x;
rest[x] = 1;
}
for(x=2;x<N;++x)
if(fac[x]==x)
{
ap.add(x);
for(y=x+x;y<N;y+=x)
if(fac[y]==y)
{
fac[y] = x;
rest[y] = y/x;
}
}
prime = new int[ap.size()];
for(int i=0;i<prime.length;++i) prime[i] = ap.get(i);
}
public static void main(String[] args)
{
(new Noldbach()).main();
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 772 | 814 |
3,764 |
// Don't place your source in a package
import javax.swing.*;
import java.lang.reflect.Array;
import java.text.DecimalFormat;
import java.util.*;
import java.lang.*;
import java.io.*;
import java.math.*;
import java.util.stream.Stream;
// Please name your class Main
public class Main {
static FastScanner fs=new FastScanner();
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
public String next() {
while (!st.hasMoreElements())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int Int() {
return Integer.parseInt(next());
}
long Long() {
return Long.parseLong(next());
}
String Str(){
return next();
}
}
public static void main (String[] args) throws java.lang.Exception {
PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
int T=1;
for(int t=0;t<T;t++){
int n=Int(),m=Int(),k=Int();
List<int[]>g[]=new ArrayList[n*m+1];
for(int i=0;i<g.length;i++){
g[i]=new ArrayList<>();
}
for(int i=0;i<n;i++){
for(int j=0;j<m-1;j++){
int w=Int();
int u=i*m+j;
int v=i*m+(j+1);
g[u].add(new int[]{v,w});
g[v].add(new int[]{u,w});
}
}
for(int i=0;i<n-1;i++){
for(int j=0;j<m;j++){
int w=Int();
int u=i*m+j;
int v=(i+1)*m+j;
g[u].add(new int[]{v,w});
g[v].add(new int[]{u,w});
}
}
Solution sol=new Solution(out);
sol.solution(n,m,k,g);
}
out.close();
}
public static int Int(){
return fs.Int();
}
public static long Long(){
return fs.Long();
}
public static String Str(){
return fs.Str();
}
}
class Solution{
PrintWriter out;
public Solution(PrintWriter out){
this.out=out;
}
List<int[]>g[];
int n,m;
long INF=10000000000000000l;
int curr=-1,curc=-1;
long mn=Long.MAX_VALUE;
long dp[][];
public void solution(int n,int m,int k,List<int[]>g[]){
//edge : 4 directions.
this.n=n;
this.m=m;
long res[][]=new long[n][m];
if(k%2==1){
for(int i=0;i<n;i++){
Arrays.fill(res[i],-1);
}
print(res);
return;
}
this.g=g;
dp=new long[n*m+1][k/2+2];
for(int i=0;i<dp.length;i++){
Arrays.fill(dp[i],-1);
}
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
int id=i*m+j;
dfs(id,k/2);
}
}
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
int id=i*m+j;
res[i][j]=dp[id][k/2];
}
}
print(res);
}
public long dfs(int id,int cnt){
if(cnt==0){
return 0;
}
if(dp[id][cnt]!=-1)return dp[id][cnt];
int r=id/m;
int c=id%m;
long res=Long.MAX_VALUE;
for(int p[]:g[id]){
int next=p[0],w=p[1];
res=Math.min(res,w*2+dfs(next,cnt-1));
}
dp[id][cnt]=res;
return res;
}
public int dis(int x1,int y1,int x2,int y2){
return Math.abs(x1-x2)+Math.abs(y1-y2);
}
public void print(long A[][]){
for(int i=0;i<A.length;i++){
for(int j=0;j<A[0].length;j++){
out.print(A[i][j]+" ");
}
out.println();
}
}
}
class Solution1{
PrintWriter out;
public Solution1(PrintWriter out){
this.out=out;
}
public void solution(int A[]){
}
}
/*
;\
|' \
_ ; : ;
/ `-. /: : |
| ,-.`-. ,': : |
\ : `. `. ,'-. : |
\ ; ; `-.__,' `-.|
\ ; ; ::: ,::'`:. `.
\ `-. : ` :. `. \
\ \ , ; ,: (\
\ :., :. ,'o)): ` `-.
,/,' ;' ,::"'`.`---' `. `-._
,/ : ; '" `;' ,--`.
;/ :; ; ,:' ( ,:)
,.,:. ; ,:., ,-._ `. \""'/
'::' `:'` ,'( \`._____.-'"'
;, ; `. `. `._`-. \\
;:. ;: `-._`-.\ \`.
'`:. : |' `. `\ ) \
-hrr- ` ;: | `--\__,'
'` ,'
,-'
free bug dog
*/
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
// Don't place your source in a package
import javax.swing.*;
import java.lang.reflect.Array;
import java.text.DecimalFormat;
import java.util.*;
import java.lang.*;
import java.io.*;
import java.math.*;
import java.util.stream.Stream;
// Please name your class Main
public class Main {
static FastScanner fs=new FastScanner();
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
public String next() {
while (!st.hasMoreElements())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int Int() {
return Integer.parseInt(next());
}
long Long() {
return Long.parseLong(next());
}
String Str(){
return next();
}
}
public static void main (String[] args) throws java.lang.Exception {
PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
int T=1;
for(int t=0;t<T;t++){
int n=Int(),m=Int(),k=Int();
List<int[]>g[]=new ArrayList[n*m+1];
for(int i=0;i<g.length;i++){
g[i]=new ArrayList<>();
}
for(int i=0;i<n;i++){
for(int j=0;j<m-1;j++){
int w=Int();
int u=i*m+j;
int v=i*m+(j+1);
g[u].add(new int[]{v,w});
g[v].add(new int[]{u,w});
}
}
for(int i=0;i<n-1;i++){
for(int j=0;j<m;j++){
int w=Int();
int u=i*m+j;
int v=(i+1)*m+j;
g[u].add(new int[]{v,w});
g[v].add(new int[]{u,w});
}
}
Solution sol=new Solution(out);
sol.solution(n,m,k,g);
}
out.close();
}
public static int Int(){
return fs.Int();
}
public static long Long(){
return fs.Long();
}
public static String Str(){
return fs.Str();
}
}
class Solution{
PrintWriter out;
public Solution(PrintWriter out){
this.out=out;
}
List<int[]>g[];
int n,m;
long INF=10000000000000000l;
int curr=-1,curc=-1;
long mn=Long.MAX_VALUE;
long dp[][];
public void solution(int n,int m,int k,List<int[]>g[]){
//edge : 4 directions.
this.n=n;
this.m=m;
long res[][]=new long[n][m];
if(k%2==1){
for(int i=0;i<n;i++){
Arrays.fill(res[i],-1);
}
print(res);
return;
}
this.g=g;
dp=new long[n*m+1][k/2+2];
for(int i=0;i<dp.length;i++){
Arrays.fill(dp[i],-1);
}
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
int id=i*m+j;
dfs(id,k/2);
}
}
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
int id=i*m+j;
res[i][j]=dp[id][k/2];
}
}
print(res);
}
public long dfs(int id,int cnt){
if(cnt==0){
return 0;
}
if(dp[id][cnt]!=-1)return dp[id][cnt];
int r=id/m;
int c=id%m;
long res=Long.MAX_VALUE;
for(int p[]:g[id]){
int next=p[0],w=p[1];
res=Math.min(res,w*2+dfs(next,cnt-1));
}
dp[id][cnt]=res;
return res;
}
public int dis(int x1,int y1,int x2,int y2){
return Math.abs(x1-x2)+Math.abs(y1-y2);
}
public void print(long A[][]){
for(int i=0;i<A.length;i++){
for(int j=0;j<A[0].length;j++){
out.print(A[i][j]+" ");
}
out.println();
}
}
}
class Solution1{
PrintWriter out;
public Solution1(PrintWriter out){
this.out=out;
}
public void solution(int A[]){
}
}
/*
;\
|' \
_ ; : ;
/ `-. /: : |
| ,-.`-. ,': : |
\ : `. `. ,'-. : |
\ ; ; `-.__,' `-.|
\ ; ; ::: ,::'`:. `.
\ `-. : ` :. `. \
\ \ , ; ,: (\
\ :., :. ,'o)): ` `-.
,/,' ;' ,::"'`.`---' `. `-._
,/ : ; '" `;' ,--`.
;/ :; ; ,:' ( ,:)
,.,:. ; ,:., ,-._ `. \""'/
'::' `:'` ,'( \`._____.-'"'
;, ; `. `. `._`-. \\
;:. ;: `-._`-.\ \`.
'`:. : |' `. `\ ) \
-hrr- ` ;: | `--\__,'
'` ,'
,-'
free bug dog
*/
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
// Don't place your source in a package
import javax.swing.*;
import java.lang.reflect.Array;
import java.text.DecimalFormat;
import java.util.*;
import java.lang.*;
import java.io.*;
import java.math.*;
import java.util.stream.Stream;
// Please name your class Main
public class Main {
static FastScanner fs=new FastScanner();
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
public String next() {
while (!st.hasMoreElements())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int Int() {
return Integer.parseInt(next());
}
long Long() {
return Long.parseLong(next());
}
String Str(){
return next();
}
}
public static void main (String[] args) throws java.lang.Exception {
PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
int T=1;
for(int t=0;t<T;t++){
int n=Int(),m=Int(),k=Int();
List<int[]>g[]=new ArrayList[n*m+1];
for(int i=0;i<g.length;i++){
g[i]=new ArrayList<>();
}
for(int i=0;i<n;i++){
for(int j=0;j<m-1;j++){
int w=Int();
int u=i*m+j;
int v=i*m+(j+1);
g[u].add(new int[]{v,w});
g[v].add(new int[]{u,w});
}
}
for(int i=0;i<n-1;i++){
for(int j=0;j<m;j++){
int w=Int();
int u=i*m+j;
int v=(i+1)*m+j;
g[u].add(new int[]{v,w});
g[v].add(new int[]{u,w});
}
}
Solution sol=new Solution(out);
sol.solution(n,m,k,g);
}
out.close();
}
public static int Int(){
return fs.Int();
}
public static long Long(){
return fs.Long();
}
public static String Str(){
return fs.Str();
}
}
class Solution{
PrintWriter out;
public Solution(PrintWriter out){
this.out=out;
}
List<int[]>g[];
int n,m;
long INF=10000000000000000l;
int curr=-1,curc=-1;
long mn=Long.MAX_VALUE;
long dp[][];
public void solution(int n,int m,int k,List<int[]>g[]){
//edge : 4 directions.
this.n=n;
this.m=m;
long res[][]=new long[n][m];
if(k%2==1){
for(int i=0;i<n;i++){
Arrays.fill(res[i],-1);
}
print(res);
return;
}
this.g=g;
dp=new long[n*m+1][k/2+2];
for(int i=0;i<dp.length;i++){
Arrays.fill(dp[i],-1);
}
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
int id=i*m+j;
dfs(id,k/2);
}
}
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
int id=i*m+j;
res[i][j]=dp[id][k/2];
}
}
print(res);
}
public long dfs(int id,int cnt){
if(cnt==0){
return 0;
}
if(dp[id][cnt]!=-1)return dp[id][cnt];
int r=id/m;
int c=id%m;
long res=Long.MAX_VALUE;
for(int p[]:g[id]){
int next=p[0],w=p[1];
res=Math.min(res,w*2+dfs(next,cnt-1));
}
dp[id][cnt]=res;
return res;
}
public int dis(int x1,int y1,int x2,int y2){
return Math.abs(x1-x2)+Math.abs(y1-y2);
}
public void print(long A[][]){
for(int i=0;i<A.length;i++){
for(int j=0;j<A[0].length;j++){
out.print(A[i][j]+" ");
}
out.println();
}
}
}
class Solution1{
PrintWriter out;
public Solution1(PrintWriter out){
this.out=out;
}
public void solution(int A[]){
}
}
/*
;\
|' \
_ ; : ;
/ `-. /: : |
| ,-.`-. ,': : |
\ : `. `. ,'-. : |
\ ; ; `-.__,' `-.|
\ ; ; ::: ,::'`:. `.
\ `-. : ` :. `. \
\ \ , ; ,: (\
\ :., :. ,'o)): ` `-.
,/,' ;' ,::"'`.`---' `. `-._
,/ : ; '" `;' ,--`.
;/ :; ; ,:' ( ,:)
,.,:. ; ,:., ,-._ `. \""'/
'::' `:'` ,'( \`._____.-'"'
;, ; `. `. `._`-. \\
;:. ;: `-._`-.\ \`.
'`:. : |' `. `\ ) \
-hrr- ` ;: | `--\__,'
'` ,'
,-'
free bug dog
*/
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,622 | 3,756 |
3,125 |
import java.io.*;
import java.util.*;
import java.math.*;
public class Solution implements Runnable {
private BufferedReader in;
private PrintWriter out;
private StringTokenizer st;
private Random rnd;
double Vend;
private double calcFirstSegment(double a, double Vmax, double Vend, double l) {
double Vl = 0, Vr = Vmax;
for(int it = 0; it < 256; it++) {
double Vm = (Vl + Vr) / 2.0;
double tFirst = Vm / a;
double tSecond = 0;
if(Vend < Vm) tSecond = (Vm - Vend) / a;
double firstPart = a * tFirst * tFirst / 2.0;
double secondPart = Vm * tSecond - a * tSecond * tSecond / 2.0;
double res = firstPart + secondPart;
if(res < l) Vl = Vm;
else Vr = Vm;
}
this.Vend = Math.min(Vl, Vend);
double res = 0.0;
{
double Vm = Vl;
double tFirst = Vm / a;
double tSecond = 0;
if(Vend < Vm) tSecond = (Vm - Vend) / a;
//out.println(tSecond);
double firstPart = a * tFirst * tFirst / 2.0;
double secondPart = Vm * tSecond - a * tSecond * tSecond / 2.0;
double remain = l - firstPart - secondPart;
res = tFirst + tSecond + (remain / Vm);
}
return res;
}
private double calcSecondPart(double a, double Vmax, double Vstart, double l) {
double Vl = Vstart, Vr = Vmax;
//out.println(Vstart);
for(int it = 0; it < 256; it++) {
double Vm = (Vl + Vr) / 2.0;
double t = (Vm - Vstart) / a;
double s = Vstart * t + a * t * t / 2.0;
if(s < l) Vl = Vm;
else Vr = Vm;
}
double res = 0.0;
{
double Vm = (Vl + Vr) / 2.0;
double t = (Vm - Vstart) / a;
double s = Vstart * t + a * t * t / 2.0;
double remain = l - s;
res = t + (remain / Vmax);
}
return res;
}
public void solve() throws IOException {
double a = nextDouble(), v = nextDouble(), l = nextDouble(), d = nextDouble(), w = nextDouble();
double res = calcFirstSegment(a, v, w, d);
res += calcSecondPart(a, v, Vend, l - d);
out.println(res);
}
public static void main(String[] args) {
new Solution().run();
}
public void run() {
try {
//in = new BufferedReader(new FileReader("input.txt"));
//out = new PrintWriter(new FileWriter("output.txt"));
in = new BufferedReader(new InputStreamReader((System.in)));
out = new PrintWriter(System.out);
st = null;
rnd = new Random();
solve();
out.close();
} catch(IOException e) {
e.printStackTrace();
}
}
private String nextToken() throws IOException, NullPointerException {
while(st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
private int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
private long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
private double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.*;
public class Solution implements Runnable {
private BufferedReader in;
private PrintWriter out;
private StringTokenizer st;
private Random rnd;
double Vend;
private double calcFirstSegment(double a, double Vmax, double Vend, double l) {
double Vl = 0, Vr = Vmax;
for(int it = 0; it < 256; it++) {
double Vm = (Vl + Vr) / 2.0;
double tFirst = Vm / a;
double tSecond = 0;
if(Vend < Vm) tSecond = (Vm - Vend) / a;
double firstPart = a * tFirst * tFirst / 2.0;
double secondPart = Vm * tSecond - a * tSecond * tSecond / 2.0;
double res = firstPart + secondPart;
if(res < l) Vl = Vm;
else Vr = Vm;
}
this.Vend = Math.min(Vl, Vend);
double res = 0.0;
{
double Vm = Vl;
double tFirst = Vm / a;
double tSecond = 0;
if(Vend < Vm) tSecond = (Vm - Vend) / a;
//out.println(tSecond);
double firstPart = a * tFirst * tFirst / 2.0;
double secondPart = Vm * tSecond - a * tSecond * tSecond / 2.0;
double remain = l - firstPart - secondPart;
res = tFirst + tSecond + (remain / Vm);
}
return res;
}
private double calcSecondPart(double a, double Vmax, double Vstart, double l) {
double Vl = Vstart, Vr = Vmax;
//out.println(Vstart);
for(int it = 0; it < 256; it++) {
double Vm = (Vl + Vr) / 2.0;
double t = (Vm - Vstart) / a;
double s = Vstart * t + a * t * t / 2.0;
if(s < l) Vl = Vm;
else Vr = Vm;
}
double res = 0.0;
{
double Vm = (Vl + Vr) / 2.0;
double t = (Vm - Vstart) / a;
double s = Vstart * t + a * t * t / 2.0;
double remain = l - s;
res = t + (remain / Vmax);
}
return res;
}
public void solve() throws IOException {
double a = nextDouble(), v = nextDouble(), l = nextDouble(), d = nextDouble(), w = nextDouble();
double res = calcFirstSegment(a, v, w, d);
res += calcSecondPart(a, v, Vend, l - d);
out.println(res);
}
public static void main(String[] args) {
new Solution().run();
}
public void run() {
try {
//in = new BufferedReader(new FileReader("input.txt"));
//out = new PrintWriter(new FileWriter("output.txt"));
in = new BufferedReader(new InputStreamReader((System.in)));
out = new PrintWriter(System.out);
st = null;
rnd = new Random();
solve();
out.close();
} catch(IOException e) {
e.printStackTrace();
}
}
private String nextToken() throws IOException, NullPointerException {
while(st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
private int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
private long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
private double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.*;
public class Solution implements Runnable {
private BufferedReader in;
private PrintWriter out;
private StringTokenizer st;
private Random rnd;
double Vend;
private double calcFirstSegment(double a, double Vmax, double Vend, double l) {
double Vl = 0, Vr = Vmax;
for(int it = 0; it < 256; it++) {
double Vm = (Vl + Vr) / 2.0;
double tFirst = Vm / a;
double tSecond = 0;
if(Vend < Vm) tSecond = (Vm - Vend) / a;
double firstPart = a * tFirst * tFirst / 2.0;
double secondPart = Vm * tSecond - a * tSecond * tSecond / 2.0;
double res = firstPart + secondPart;
if(res < l) Vl = Vm;
else Vr = Vm;
}
this.Vend = Math.min(Vl, Vend);
double res = 0.0;
{
double Vm = Vl;
double tFirst = Vm / a;
double tSecond = 0;
if(Vend < Vm) tSecond = (Vm - Vend) / a;
//out.println(tSecond);
double firstPart = a * tFirst * tFirst / 2.0;
double secondPart = Vm * tSecond - a * tSecond * tSecond / 2.0;
double remain = l - firstPart - secondPart;
res = tFirst + tSecond + (remain / Vm);
}
return res;
}
private double calcSecondPart(double a, double Vmax, double Vstart, double l) {
double Vl = Vstart, Vr = Vmax;
//out.println(Vstart);
for(int it = 0; it < 256; it++) {
double Vm = (Vl + Vr) / 2.0;
double t = (Vm - Vstart) / a;
double s = Vstart * t + a * t * t / 2.0;
if(s < l) Vl = Vm;
else Vr = Vm;
}
double res = 0.0;
{
double Vm = (Vl + Vr) / 2.0;
double t = (Vm - Vstart) / a;
double s = Vstart * t + a * t * t / 2.0;
double remain = l - s;
res = t + (remain / Vmax);
}
return res;
}
public void solve() throws IOException {
double a = nextDouble(), v = nextDouble(), l = nextDouble(), d = nextDouble(), w = nextDouble();
double res = calcFirstSegment(a, v, w, d);
res += calcSecondPart(a, v, Vend, l - d);
out.println(res);
}
public static void main(String[] args) {
new Solution().run();
}
public void run() {
try {
//in = new BufferedReader(new FileReader("input.txt"));
//out = new PrintWriter(new FileWriter("output.txt"));
in = new BufferedReader(new InputStreamReader((System.in)));
out = new PrintWriter(System.out);
st = null;
rnd = new Random();
solve();
out.close();
} catch(IOException e) {
e.printStackTrace();
}
}
private String nextToken() throws IOException, NullPointerException {
while(st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
private int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
private long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
private double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,244 | 3,119 |
3,575 |
import java.util.*;
import java.io.*;
public class C{
public static void main(String args[]) throws Exception{
Scanner in = new Scanner(new FileReader("input.txt"));
PrintWriter out = new PrintWriter(new File("output.txt"));
int N = in.nextInt();
int M = in.nextInt();
int K = in.nextInt();
int[] X = new int[K], Y = new int[K];
for (int i = 0; i < K; i++){
X[i] = in.nextInt();
Y[i] = in.nextInt();
}
int d = -1;
int a = -1; int b = -1;
for (int i = 1; i <= N; i++)
for (int j = 1; j <= M; j++){
int h = Integer.MAX_VALUE;
for (int p = 0; p < K; p++)
h = Math.min(h,Math.abs(i-X[p]) + Math.abs(j-Y[p]));
if (h > d){
d = h; a = i; b = j;
}
}
out.print(a + " " + b);
out.close();
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class C{
public static void main(String args[]) throws Exception{
Scanner in = new Scanner(new FileReader("input.txt"));
PrintWriter out = new PrintWriter(new File("output.txt"));
int N = in.nextInt();
int M = in.nextInt();
int K = in.nextInt();
int[] X = new int[K], Y = new int[K];
for (int i = 0; i < K; i++){
X[i] = in.nextInt();
Y[i] = in.nextInt();
}
int d = -1;
int a = -1; int b = -1;
for (int i = 1; i <= N; i++)
for (int j = 1; j <= M; j++){
int h = Integer.MAX_VALUE;
for (int p = 0; p < K; p++)
h = Math.min(h,Math.abs(i-X[p]) + Math.abs(j-Y[p]));
if (h > d){
d = h; a = i; b = j;
}
}
out.print(a + " " + b);
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class C{
public static void main(String args[]) throws Exception{
Scanner in = new Scanner(new FileReader("input.txt"));
PrintWriter out = new PrintWriter(new File("output.txt"));
int N = in.nextInt();
int M = in.nextInt();
int K = in.nextInt();
int[] X = new int[K], Y = new int[K];
for (int i = 0; i < K; i++){
X[i] = in.nextInt();
Y[i] = in.nextInt();
}
int d = -1;
int a = -1; int b = -1;
for (int i = 1; i <= N; i++)
for (int j = 1; j <= M; j++){
int h = Integer.MAX_VALUE;
for (int p = 0; p < K; p++)
h = Math.min(h,Math.abs(i-X[p]) + Math.abs(j-Y[p]));
if (h > d){
d = h; a = i; b = j;
}
}
out.print(a + " " + b);
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 585 | 3,567 |
2,481 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.HashMap;
import java.util.InputMismatchException;
import java.io.IOException;
import java.util.ArrayList;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author beginner1010
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskF2 solver = new TaskF2();
solver.solve(1, in, out);
out.close();
}
static class TaskF2 {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = in.nextInt();
}
HashMap<Long, ArrayList<Interval>> map = new HashMap<>();
for (int i = 0; i < n; i++) {
long sum = 0;
for (int j = i; j < n; j++) {
sum += a[j];
if (map.containsKey(sum) == false) {
map.put(sum, new ArrayList<>());
}
ArrayList<Interval> arr = map.get(sum);
if (arr.isEmpty() || arr.get(arr.size() - 1).r < i) {
arr.add(new Interval(i, j));
} else if (arr.get(arr.size() - 1).r >= j) {
arr.set(arr.size() - 1, new Interval(i, j));
}
}
}
ArrayList<Interval> best = new ArrayList<>();
for (ArrayList<Interval> arr : map.values()) {
if (best.size() < arr.size()) {
best = arr;
}
}
out.println(best.size());
for (Interval i : best) {
out.println((i.l + 1) + " " + (i.r + 1));
}
}
class Interval {
int l;
int r;
Interval(int l, int r) {
this.l = l;
this.r = r;
}
}
}
static class InputReader {
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputStream stream;
public InputReader(InputStream stream) {
this.stream = stream;
}
private boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isWhitespace(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isWhitespace(c));
return res * sgn;
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.HashMap;
import java.util.InputMismatchException;
import java.io.IOException;
import java.util.ArrayList;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author beginner1010
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskF2 solver = new TaskF2();
solver.solve(1, in, out);
out.close();
}
static class TaskF2 {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = in.nextInt();
}
HashMap<Long, ArrayList<Interval>> map = new HashMap<>();
for (int i = 0; i < n; i++) {
long sum = 0;
for (int j = i; j < n; j++) {
sum += a[j];
if (map.containsKey(sum) == false) {
map.put(sum, new ArrayList<>());
}
ArrayList<Interval> arr = map.get(sum);
if (arr.isEmpty() || arr.get(arr.size() - 1).r < i) {
arr.add(new Interval(i, j));
} else if (arr.get(arr.size() - 1).r >= j) {
arr.set(arr.size() - 1, new Interval(i, j));
}
}
}
ArrayList<Interval> best = new ArrayList<>();
for (ArrayList<Interval> arr : map.values()) {
if (best.size() < arr.size()) {
best = arr;
}
}
out.println(best.size());
for (Interval i : best) {
out.println((i.l + 1) + " " + (i.r + 1));
}
}
class Interval {
int l;
int r;
Interval(int l, int r) {
this.l = l;
this.r = r;
}
}
}
static class InputReader {
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputStream stream;
public InputReader(InputStream stream) {
this.stream = stream;
}
private boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isWhitespace(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isWhitespace(c));
return res * sgn;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.HashMap;
import java.util.InputMismatchException;
import java.io.IOException;
import java.util.ArrayList;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author beginner1010
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskF2 solver = new TaskF2();
solver.solve(1, in, out);
out.close();
}
static class TaskF2 {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = in.nextInt();
}
HashMap<Long, ArrayList<Interval>> map = new HashMap<>();
for (int i = 0; i < n; i++) {
long sum = 0;
for (int j = i; j < n; j++) {
sum += a[j];
if (map.containsKey(sum) == false) {
map.put(sum, new ArrayList<>());
}
ArrayList<Interval> arr = map.get(sum);
if (arr.isEmpty() || arr.get(arr.size() - 1).r < i) {
arr.add(new Interval(i, j));
} else if (arr.get(arr.size() - 1).r >= j) {
arr.set(arr.size() - 1, new Interval(i, j));
}
}
}
ArrayList<Interval> best = new ArrayList<>();
for (ArrayList<Interval> arr : map.values()) {
if (best.size() < arr.size()) {
best = arr;
}
}
out.println(best.size());
for (Interval i : best) {
out.println((i.l + 1) + " " + (i.r + 1));
}
}
class Interval {
int l;
int r;
Interval(int l, int r) {
this.l = l;
this.r = r;
}
}
}
static class InputReader {
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputStream stream;
public InputReader(InputStream stream) {
this.stream = stream;
}
private boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isWhitespace(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isWhitespace(c));
return res * sgn;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,158 | 2,476 |
4,436 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.StringTokenizer;
/**
* Author -
* User: kansal
* Date: 9/3/11
* Time: 5:28 PM
*/
public class CF85E {
public static void main(String[] args) {
reader = new BufferedReader(new InputStreamReader(System.in));
int height = nextInt(), width = nextInt();
if (width > height) {
int t = width;
width = height;
height = t;
}
final int INF = height * width + 10;
int[][][] dp = new int[height + 1][1 << width][1 << width];
for (int[][] ints : dp) {
for (int[] anInt : ints) {
Arrays.fill(anInt, INF);
}
}
dp[0][0][0] = 0;
for(int r = 0; r < height; ++r) {
for(int uncovered = 0; uncovered < (1 << width); ++uncovered) {
for(int mask = 0; mask < (1 << width); ++mask) {
if (dp[r][uncovered][mask] == INF) {
continue;
}
for(int curMask = uncovered; curMask < (1 << width); curMask = (curMask + 1) | uncovered) {
int curUncovered = (1 << width) - 1;
for(int i = 0; i < width; ++i) {
if (hasBit(mask, i) || hasBit(curMask, i)) {
curUncovered &= ~(1 << i);
}
if (i > 0 && hasBit(curMask, i-1)) {
curUncovered &= ~(1 << i);
}
if (i < width-1 && hasBit(curMask, i+1)) {
curUncovered &= ~(1 << i);
}
}
dp[r+1][curUncovered][curMask] = Math.min(dp[r+1][curUncovered][curMask], dp[r][uncovered][mask] + Integer.bitCount(curMask));
}
}
}
}
int res = INF;
for(int x: dp[height][0]) res = Math.min(res, x);
System.out.println(height * width - res);
}
private static boolean hasBit(int mask, int bit) {
return (((mask >> bit) & 1) == 1);
}
public static BufferedReader reader;
public static StringTokenizer tokenizer = null;
static String nextToken() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
static public int nextInt() {
return Integer.parseInt(nextToken());
}
static public long nextLong() {
return Long.parseLong(nextToken());
}
static public String next() {
return nextToken();
}
static public String nextLine() {
try {
return reader.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return null;
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.StringTokenizer;
/**
* Author -
* User: kansal
* Date: 9/3/11
* Time: 5:28 PM
*/
public class CF85E {
public static void main(String[] args) {
reader = new BufferedReader(new InputStreamReader(System.in));
int height = nextInt(), width = nextInt();
if (width > height) {
int t = width;
width = height;
height = t;
}
final int INF = height * width + 10;
int[][][] dp = new int[height + 1][1 << width][1 << width];
for (int[][] ints : dp) {
for (int[] anInt : ints) {
Arrays.fill(anInt, INF);
}
}
dp[0][0][0] = 0;
for(int r = 0; r < height; ++r) {
for(int uncovered = 0; uncovered < (1 << width); ++uncovered) {
for(int mask = 0; mask < (1 << width); ++mask) {
if (dp[r][uncovered][mask] == INF) {
continue;
}
for(int curMask = uncovered; curMask < (1 << width); curMask = (curMask + 1) | uncovered) {
int curUncovered = (1 << width) - 1;
for(int i = 0; i < width; ++i) {
if (hasBit(mask, i) || hasBit(curMask, i)) {
curUncovered &= ~(1 << i);
}
if (i > 0 && hasBit(curMask, i-1)) {
curUncovered &= ~(1 << i);
}
if (i < width-1 && hasBit(curMask, i+1)) {
curUncovered &= ~(1 << i);
}
}
dp[r+1][curUncovered][curMask] = Math.min(dp[r+1][curUncovered][curMask], dp[r][uncovered][mask] + Integer.bitCount(curMask));
}
}
}
}
int res = INF;
for(int x: dp[height][0]) res = Math.min(res, x);
System.out.println(height * width - res);
}
private static boolean hasBit(int mask, int bit) {
return (((mask >> bit) & 1) == 1);
}
public static BufferedReader reader;
public static StringTokenizer tokenizer = null;
static String nextToken() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
static public int nextInt() {
return Integer.parseInt(nextToken());
}
static public long nextLong() {
return Long.parseLong(nextToken());
}
static public String next() {
return nextToken();
}
static public String nextLine() {
try {
return reader.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return null;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.StringTokenizer;
/**
* Author -
* User: kansal
* Date: 9/3/11
* Time: 5:28 PM
*/
public class CF85E {
public static void main(String[] args) {
reader = new BufferedReader(new InputStreamReader(System.in));
int height = nextInt(), width = nextInt();
if (width > height) {
int t = width;
width = height;
height = t;
}
final int INF = height * width + 10;
int[][][] dp = new int[height + 1][1 << width][1 << width];
for (int[][] ints : dp) {
for (int[] anInt : ints) {
Arrays.fill(anInt, INF);
}
}
dp[0][0][0] = 0;
for(int r = 0; r < height; ++r) {
for(int uncovered = 0; uncovered < (1 << width); ++uncovered) {
for(int mask = 0; mask < (1 << width); ++mask) {
if (dp[r][uncovered][mask] == INF) {
continue;
}
for(int curMask = uncovered; curMask < (1 << width); curMask = (curMask + 1) | uncovered) {
int curUncovered = (1 << width) - 1;
for(int i = 0; i < width; ++i) {
if (hasBit(mask, i) || hasBit(curMask, i)) {
curUncovered &= ~(1 << i);
}
if (i > 0 && hasBit(curMask, i-1)) {
curUncovered &= ~(1 << i);
}
if (i < width-1 && hasBit(curMask, i+1)) {
curUncovered &= ~(1 << i);
}
}
dp[r+1][curUncovered][curMask] = Math.min(dp[r+1][curUncovered][curMask], dp[r][uncovered][mask] + Integer.bitCount(curMask));
}
}
}
}
int res = INF;
for(int x: dp[height][0]) res = Math.min(res, x);
System.out.println(height * width - res);
}
private static boolean hasBit(int mask, int bit) {
return (((mask >> bit) & 1) == 1);
}
public static BufferedReader reader;
public static StringTokenizer tokenizer = null;
static String nextToken() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
static public int nextInt() {
return Integer.parseInt(nextToken());
}
static public long nextLong() {
return Long.parseLong(nextToken());
}
static public String next() {
return nextToken();
}
static public String nextLine() {
try {
return reader.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return null;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,038 | 4,425 |
377 |
import java.util.InputMismatchException;
import java.math.BigInteger;
import java.io.*;
import java.util.*;
/**
* Generated by Contest helper plug-in
* Actual solution is at the bottom
*/
public class Main {
public static void main(String[] args) {
InputReader in = new StreamInputReader(System.in);
PrintWriter out = new PrintWriter(System.out);
run(in, out);
}
public static void run(InputReader in, PrintWriter out) {
Solver solver = new Task();
solver.solve(1, in, out);
Exit.exit(in, out);
}
}
abstract class InputReader {
private boolean finished = false;
public abstract int read();
public long readLong() {
return new BigInteger(readString()).longValue();
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuffer res = new StringBuffer();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public void setFinished(boolean finished) {
this.finished = finished;
}
public abstract void close();
}
class StreamInputReader extends InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar, numChars;
public StreamInputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public void close() {
try {
stream.close();
} catch (IOException ignored) {
}
}
}
class Exit {
private Exit() {
}
public static void exit(InputReader in, PrintWriter out) {
in.setFinished(true);
in.close();
out.close();
}
}
interface Solver {
public void solve(int testNumber, InputReader in, PrintWriter out);
}
class Task implements Solver {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.readInt();
int a = in.readInt();
int b = in.readInt();
if (a==b) {
b = 0;
}
boolean[] where = new boolean[n];
HashSet<Integer> set = new HashSet<Integer>();
HashMap<Integer,Integer> indexmap = new HashMap<Integer,Integer>();
for (int i = 0; i<n; i++) {
int x = in.readInt();
indexmap.put(x, i);
set.add(x);
}
while (set.size() > 0) {
int size = set.size();
HashSet<Integer> todo = new HashSet<Integer>();
HashSet<Integer> used = new HashSet<Integer>();
for (int x : set) {
if (used.contains(x))
continue;
int ax = a-x;
int bx = b-x;
if ((set.contains(ax) && !used.contains(ax)) && (set.contains(bx) && !used.contains(bx))) {
todo.add(x);
} else if (set.contains(ax) && !used.contains(ax)) {
used.add(x);
used.add(ax);
todo.remove(ax);
//chain
bx = b-ax;
while (set.contains(bx) && !used.contains(bx)) {
x = bx;
ax = a-x;
if (!set.contains(ax) || used.contains(ax)) {
System.out.println("NO");
return;
}
todo.remove(x);
todo.remove(ax);
used.add(x);
used.add(ax);
bx = b-ax;
}
} else if (set.contains(bx) && !used.contains(bx)) {
used.add(x);
used.add(bx);
todo.remove(bx);
where[indexmap.get(bx)] = true;
where[indexmap.get(x)] = true;
//chain
ax = a-bx;
while (set.contains(ax) && !used.contains(ax)) {
x = ax;
bx = b-x;
if (!set.contains(bx) || used.contains(bx)) {
System.out.println("NO");
return;
}
todo.remove(x);
todo.remove(bx);
used.add(x);
used.add(bx);
where[indexmap.get(bx)] = true;
where[indexmap.get(x)] = true;
ax = a-bx;
}
} else {
System.out.println("NO");
return;
}
}
set = todo;
if (set.size() == size) {
System.out.println("Set size constant!!");
break;
}
}
System.out.println("YES");
for (int i = 0; i<n; i++)
if (where[i])
System.out.print("1 ");
else
System.out.print("0 ");
}
}
class num {
}
///
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.InputMismatchException;
import java.math.BigInteger;
import java.io.*;
import java.util.*;
/**
* Generated by Contest helper plug-in
* Actual solution is at the bottom
*/
public class Main {
public static void main(String[] args) {
InputReader in = new StreamInputReader(System.in);
PrintWriter out = new PrintWriter(System.out);
run(in, out);
}
public static void run(InputReader in, PrintWriter out) {
Solver solver = new Task();
solver.solve(1, in, out);
Exit.exit(in, out);
}
}
abstract class InputReader {
private boolean finished = false;
public abstract int read();
public long readLong() {
return new BigInteger(readString()).longValue();
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuffer res = new StringBuffer();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public void setFinished(boolean finished) {
this.finished = finished;
}
public abstract void close();
}
class StreamInputReader extends InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar, numChars;
public StreamInputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public void close() {
try {
stream.close();
} catch (IOException ignored) {
}
}
}
class Exit {
private Exit() {
}
public static void exit(InputReader in, PrintWriter out) {
in.setFinished(true);
in.close();
out.close();
}
}
interface Solver {
public void solve(int testNumber, InputReader in, PrintWriter out);
}
class Task implements Solver {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.readInt();
int a = in.readInt();
int b = in.readInt();
if (a==b) {
b = 0;
}
boolean[] where = new boolean[n];
HashSet<Integer> set = new HashSet<Integer>();
HashMap<Integer,Integer> indexmap = new HashMap<Integer,Integer>();
for (int i = 0; i<n; i++) {
int x = in.readInt();
indexmap.put(x, i);
set.add(x);
}
while (set.size() > 0) {
int size = set.size();
HashSet<Integer> todo = new HashSet<Integer>();
HashSet<Integer> used = new HashSet<Integer>();
for (int x : set) {
if (used.contains(x))
continue;
int ax = a-x;
int bx = b-x;
if ((set.contains(ax) && !used.contains(ax)) && (set.contains(bx) && !used.contains(bx))) {
todo.add(x);
} else if (set.contains(ax) && !used.contains(ax)) {
used.add(x);
used.add(ax);
todo.remove(ax);
//chain
bx = b-ax;
while (set.contains(bx) && !used.contains(bx)) {
x = bx;
ax = a-x;
if (!set.contains(ax) || used.contains(ax)) {
System.out.println("NO");
return;
}
todo.remove(x);
todo.remove(ax);
used.add(x);
used.add(ax);
bx = b-ax;
}
} else if (set.contains(bx) && !used.contains(bx)) {
used.add(x);
used.add(bx);
todo.remove(bx);
where[indexmap.get(bx)] = true;
where[indexmap.get(x)] = true;
//chain
ax = a-bx;
while (set.contains(ax) && !used.contains(ax)) {
x = ax;
bx = b-x;
if (!set.contains(bx) || used.contains(bx)) {
System.out.println("NO");
return;
}
todo.remove(x);
todo.remove(bx);
used.add(x);
used.add(bx);
where[indexmap.get(bx)] = true;
where[indexmap.get(x)] = true;
ax = a-bx;
}
} else {
System.out.println("NO");
return;
}
}
set = todo;
if (set.size() == size) {
System.out.println("Set size constant!!");
break;
}
}
System.out.println("YES");
for (int i = 0; i<n; i++)
if (where[i])
System.out.print("1 ");
else
System.out.print("0 ");
}
}
class num {
}
///
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.InputMismatchException;
import java.math.BigInteger;
import java.io.*;
import java.util.*;
/**
* Generated by Contest helper plug-in
* Actual solution is at the bottom
*/
public class Main {
public static void main(String[] args) {
InputReader in = new StreamInputReader(System.in);
PrintWriter out = new PrintWriter(System.out);
run(in, out);
}
public static void run(InputReader in, PrintWriter out) {
Solver solver = new Task();
solver.solve(1, in, out);
Exit.exit(in, out);
}
}
abstract class InputReader {
private boolean finished = false;
public abstract int read();
public long readLong() {
return new BigInteger(readString()).longValue();
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuffer res = new StringBuffer();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public void setFinished(boolean finished) {
this.finished = finished;
}
public abstract void close();
}
class StreamInputReader extends InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar, numChars;
public StreamInputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public void close() {
try {
stream.close();
} catch (IOException ignored) {
}
}
}
class Exit {
private Exit() {
}
public static void exit(InputReader in, PrintWriter out) {
in.setFinished(true);
in.close();
out.close();
}
}
interface Solver {
public void solve(int testNumber, InputReader in, PrintWriter out);
}
class Task implements Solver {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.readInt();
int a = in.readInt();
int b = in.readInt();
if (a==b) {
b = 0;
}
boolean[] where = new boolean[n];
HashSet<Integer> set = new HashSet<Integer>();
HashMap<Integer,Integer> indexmap = new HashMap<Integer,Integer>();
for (int i = 0; i<n; i++) {
int x = in.readInt();
indexmap.put(x, i);
set.add(x);
}
while (set.size() > 0) {
int size = set.size();
HashSet<Integer> todo = new HashSet<Integer>();
HashSet<Integer> used = new HashSet<Integer>();
for (int x : set) {
if (used.contains(x))
continue;
int ax = a-x;
int bx = b-x;
if ((set.contains(ax) && !used.contains(ax)) && (set.contains(bx) && !used.contains(bx))) {
todo.add(x);
} else if (set.contains(ax) && !used.contains(ax)) {
used.add(x);
used.add(ax);
todo.remove(ax);
//chain
bx = b-ax;
while (set.contains(bx) && !used.contains(bx)) {
x = bx;
ax = a-x;
if (!set.contains(ax) || used.contains(ax)) {
System.out.println("NO");
return;
}
todo.remove(x);
todo.remove(ax);
used.add(x);
used.add(ax);
bx = b-ax;
}
} else if (set.contains(bx) && !used.contains(bx)) {
used.add(x);
used.add(bx);
todo.remove(bx);
where[indexmap.get(bx)] = true;
where[indexmap.get(x)] = true;
//chain
ax = a-bx;
while (set.contains(ax) && !used.contains(ax)) {
x = ax;
bx = b-x;
if (!set.contains(bx) || used.contains(bx)) {
System.out.println("NO");
return;
}
todo.remove(x);
todo.remove(bx);
used.add(x);
used.add(bx);
where[indexmap.get(bx)] = true;
where[indexmap.get(x)] = true;
ax = a-bx;
}
} else {
System.out.println("NO");
return;
}
}
set = todo;
if (set.size() == size) {
System.out.println("Set size constant!!");
break;
}
}
System.out.println("YES");
for (int i = 0; i<n; i++)
if (where[i])
System.out.print("1 ");
else
System.out.print("0 ");
}
}
class num {
}
///
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,659 | 376 |
2,733 |
import java.util.*;
public class maximus {
static long GCD(long a,long b){
if(b==0)return a;
return GCD(b,a%b);
}
public static void main(String [] args){
Scanner in=new Scanner(System.in);
long n=in.nextInt();
if(n<=2){
System.out.print(n);
return;
}
if(n%2==1){
System.out.print((n*(n-1)*(n-2)));
return;
}
if(n%2==0 && n<=6){
System.out.print(n*(n-1)*(n-2)/2);
return;
}
long temp=(n*(n-1)*(n-3))/GCD(n,n-3);
System.out.print(Math.max((n-1)*(n-2)*(n-3),temp));
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
public class maximus {
static long GCD(long a,long b){
if(b==0)return a;
return GCD(b,a%b);
}
public static void main(String [] args){
Scanner in=new Scanner(System.in);
long n=in.nextInt();
if(n<=2){
System.out.print(n);
return;
}
if(n%2==1){
System.out.print((n*(n-1)*(n-2)));
return;
}
if(n%2==0 && n<=6){
System.out.print(n*(n-1)*(n-2)/2);
return;
}
long temp=(n*(n-1)*(n-3))/GCD(n,n-3);
System.out.print(Math.max((n-1)*(n-2)*(n-3),temp));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
public class maximus {
static long GCD(long a,long b){
if(b==0)return a;
return GCD(b,a%b);
}
public static void main(String [] args){
Scanner in=new Scanner(System.in);
long n=in.nextInt();
if(n<=2){
System.out.print(n);
return;
}
if(n%2==1){
System.out.print((n*(n-1)*(n-2)));
return;
}
if(n%2==0 && n<=6){
System.out.print(n*(n-1)*(n-2)/2);
return;
}
long temp=(n*(n-1)*(n-3))/GCD(n,n-3);
System.out.print(Math.max((n-1)*(n-2)*(n-3),temp));
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 534 | 2,727 |
4,072 |
import java.io.*;
import java.util.*;
public class Main {
BufferedReader in = null;
PrintWriter out = null;
int dist(int x1, int y1, int x2, int y2) {
int dx = Math.abs(x1 - x2);
int dy = Math.abs(y1 - y2);
return dx * dx + dy * dy;
}
boolean testBit(int use, int p) {
return ((use >> p) & 1) == 1;
}
int rec(int use, int a[][], int dp[], int next[]) {
if (dp[use] != -1) {
return dp[use];
}
if (use == 0) {
return dp[use] = 0;
}
int n = a.length;
int ix = -1;
for (int i = 0; i < n; ++i) {
if (testBit(use, i)) {
if (ix == -1) {
ix = i;
break;
}
/*
int t = rec(use ^ (1 << i), a, dp);
t += a[i][i];
r = Math.min(r, t);*/
}
}
int r = rec(use ^ (1 << ix), a, dp, next) + a[ix][ix];
next[use] = use ^ (1 << ix);
for (int i = ix + 1; i < n; ++i) {
if (!testBit(use, i)) {
continue;
}
int t = rec(use ^ (1 << ix) ^ (1 << i), a, dp, next);
t += a[ix][i];
if (t < r) {
r = t;
next[use] = use ^ (1 << ix) ^ (1 << i);
}
}
return dp[use] = r;
}
void print(int use1, int use2, int n) {
for (int i = 0; i < n; ++i) {
if (testBit(use1, i) ^ testBit(use2, i)) {
int x = i + 1;
out.print(x + " ");
}
}
}
void solve() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
//in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter(System.out);
StringTokenizer st;
st = new StringTokenizer(in.readLine());
int sx = Integer.valueOf(st.nextToken());
int sy = Integer.valueOf(st.nextToken());
st = new StringTokenizer(in.readLine());
int n = Integer.valueOf(st.nextToken());
int x[] = new int[n];
int y[] = new int[n];
for (int i = 0; i < n; ++i) {
st = new StringTokenizer(in.readLine());
x[i] = Integer.valueOf(st.nextToken());
y[i] = Integer.valueOf(st.nextToken());
}
int a[][] = new int[n][n];
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
a[i][j] = dist(x[i], y[i], sx, sy) + dist(x[j], y[j], sx, sy) + dist(x[i], y[i], x[j], y[j]);
}
}
int dp[] = new int[1 << n];
Arrays.fill(dp, -1);
int next[] = new int[1 << n];
int ans = rec((1 << n) - 1, a, dp, next);
out.println(ans);
int use = (1 << n) - 1;
while (true) {
int nuse = next[use];
out.print("0 ");
print(use, nuse, n);
if (nuse == 0) break;
use = nuse;
}
out.println("0");
in.close();
out.close();
}
public static void main(String[] args) throws IOException {
new Main().solve();
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
BufferedReader in = null;
PrintWriter out = null;
int dist(int x1, int y1, int x2, int y2) {
int dx = Math.abs(x1 - x2);
int dy = Math.abs(y1 - y2);
return dx * dx + dy * dy;
}
boolean testBit(int use, int p) {
return ((use >> p) & 1) == 1;
}
int rec(int use, int a[][], int dp[], int next[]) {
if (dp[use] != -1) {
return dp[use];
}
if (use == 0) {
return dp[use] = 0;
}
int n = a.length;
int ix = -1;
for (int i = 0; i < n; ++i) {
if (testBit(use, i)) {
if (ix == -1) {
ix = i;
break;
}
/*
int t = rec(use ^ (1 << i), a, dp);
t += a[i][i];
r = Math.min(r, t);*/
}
}
int r = rec(use ^ (1 << ix), a, dp, next) + a[ix][ix];
next[use] = use ^ (1 << ix);
for (int i = ix + 1; i < n; ++i) {
if (!testBit(use, i)) {
continue;
}
int t = rec(use ^ (1 << ix) ^ (1 << i), a, dp, next);
t += a[ix][i];
if (t < r) {
r = t;
next[use] = use ^ (1 << ix) ^ (1 << i);
}
}
return dp[use] = r;
}
void print(int use1, int use2, int n) {
for (int i = 0; i < n; ++i) {
if (testBit(use1, i) ^ testBit(use2, i)) {
int x = i + 1;
out.print(x + " ");
}
}
}
void solve() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
//in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter(System.out);
StringTokenizer st;
st = new StringTokenizer(in.readLine());
int sx = Integer.valueOf(st.nextToken());
int sy = Integer.valueOf(st.nextToken());
st = new StringTokenizer(in.readLine());
int n = Integer.valueOf(st.nextToken());
int x[] = new int[n];
int y[] = new int[n];
for (int i = 0; i < n; ++i) {
st = new StringTokenizer(in.readLine());
x[i] = Integer.valueOf(st.nextToken());
y[i] = Integer.valueOf(st.nextToken());
}
int a[][] = new int[n][n];
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
a[i][j] = dist(x[i], y[i], sx, sy) + dist(x[j], y[j], sx, sy) + dist(x[i], y[i], x[j], y[j]);
}
}
int dp[] = new int[1 << n];
Arrays.fill(dp, -1);
int next[] = new int[1 << n];
int ans = rec((1 << n) - 1, a, dp, next);
out.println(ans);
int use = (1 << n) - 1;
while (true) {
int nuse = next[use];
out.print("0 ");
print(use, nuse, n);
if (nuse == 0) break;
use = nuse;
}
out.println("0");
in.close();
out.close();
}
public static void main(String[] args) throws IOException {
new Main().solve();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
BufferedReader in = null;
PrintWriter out = null;
int dist(int x1, int y1, int x2, int y2) {
int dx = Math.abs(x1 - x2);
int dy = Math.abs(y1 - y2);
return dx * dx + dy * dy;
}
boolean testBit(int use, int p) {
return ((use >> p) & 1) == 1;
}
int rec(int use, int a[][], int dp[], int next[]) {
if (dp[use] != -1) {
return dp[use];
}
if (use == 0) {
return dp[use] = 0;
}
int n = a.length;
int ix = -1;
for (int i = 0; i < n; ++i) {
if (testBit(use, i)) {
if (ix == -1) {
ix = i;
break;
}
/*
int t = rec(use ^ (1 << i), a, dp);
t += a[i][i];
r = Math.min(r, t);*/
}
}
int r = rec(use ^ (1 << ix), a, dp, next) + a[ix][ix];
next[use] = use ^ (1 << ix);
for (int i = ix + 1; i < n; ++i) {
if (!testBit(use, i)) {
continue;
}
int t = rec(use ^ (1 << ix) ^ (1 << i), a, dp, next);
t += a[ix][i];
if (t < r) {
r = t;
next[use] = use ^ (1 << ix) ^ (1 << i);
}
}
return dp[use] = r;
}
void print(int use1, int use2, int n) {
for (int i = 0; i < n; ++i) {
if (testBit(use1, i) ^ testBit(use2, i)) {
int x = i + 1;
out.print(x + " ");
}
}
}
void solve() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
//in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter(System.out);
StringTokenizer st;
st = new StringTokenizer(in.readLine());
int sx = Integer.valueOf(st.nextToken());
int sy = Integer.valueOf(st.nextToken());
st = new StringTokenizer(in.readLine());
int n = Integer.valueOf(st.nextToken());
int x[] = new int[n];
int y[] = new int[n];
for (int i = 0; i < n; ++i) {
st = new StringTokenizer(in.readLine());
x[i] = Integer.valueOf(st.nextToken());
y[i] = Integer.valueOf(st.nextToken());
}
int a[][] = new int[n][n];
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
a[i][j] = dist(x[i], y[i], sx, sy) + dist(x[j], y[j], sx, sy) + dist(x[i], y[i], x[j], y[j]);
}
}
int dp[] = new int[1 << n];
Arrays.fill(dp, -1);
int next[] = new int[1 << n];
int ans = rec((1 << n) - 1, a, dp, next);
out.println(ans);
int use = (1 << n) - 1;
while (true) {
int nuse = next[use];
out.print("0 ");
print(use, nuse, n);
if (nuse == 0) break;
use = nuse;
}
out.println("0");
in.close();
out.close();
}
public static void main(String[] args) throws IOException {
new Main().solve();
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,220 | 4,061 |
2,142 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.TreeSet;
import java.io.BufferedOutputStream;
import java.util.StringTokenizer;
import java.io.BufferedReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Aeroui
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
Kattio in = new Kattio(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
public void solve(int testNumber, Kattio in, PrintWriter out) {
int n = in.nextInt();
int r = in.nextInt();
double[] xs = new double[n];
double[] ys = new double[n];
TreeSet<TaskC.Pair> set = new TreeSet<>();
for (int i = 0; i < n; ++i) {
xs[i] = in.nextDouble();
ys[i] = (double) Integer.MIN_VALUE;
if (i == 0) { // the first one
out.printf("%f", (double) r);
ys[i] = (double) r;
set.add(new TaskC.Pair(xs[i], ys[i]));
} else {
for (TaskC.Pair p : set) {
double maximum = p.x;
double diffX = (xs[i] - maximum) * (xs[i] - maximum);
if (diffX <= r * r * 4.0) {
ys[i] = Math.max(ys[i], p.y + Math.sqrt(r * r * 4.0 - diffX));
continue;
}
}
if (ys[i] < 0)
ys[i] = (double) r;
set.add(new TaskC.Pair(xs[i], ys[i]));
out.printf(" %f", ys[i]);
}
}
}
private static class Pair implements Comparable<TaskC.Pair> {
double x;
double y;
public Pair(double x, double y) {
this.x = x;
this.y = y;
}
public int compareTo(TaskC.Pair p) {
if (this.y - p.y < 0)
return 1;
return -1;
}
}
}
static class Kattio extends PrintWriter {
private BufferedReader r;
private String line;
private StringTokenizer st;
private String token;
public Kattio(InputStream i) {
super(new BufferedOutputStream(System.out));
r = new BufferedReader(new InputStreamReader(i));
}
public Kattio(InputStream i, OutputStream o) {
super(new BufferedOutputStream(o));
r = new BufferedReader(new InputStreamReader(i));
}
public int nextInt() {
return Integer.parseInt(nextToken());
}
public double nextDouble() {
return Double.parseDouble(nextToken());
}
private String peekToken() {
if (token == null)
try {
while (st == null || !st.hasMoreTokens()) {
line = r.readLine();
if (line == null) return null;
st = new StringTokenizer(line);
}
token = st.nextToken();
} catch (IOException e) {
}
return token;
}
private String nextToken() {
String ans = peekToken();
token = null;
return ans;
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.TreeSet;
import java.io.BufferedOutputStream;
import java.util.StringTokenizer;
import java.io.BufferedReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Aeroui
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
Kattio in = new Kattio(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
public void solve(int testNumber, Kattio in, PrintWriter out) {
int n = in.nextInt();
int r = in.nextInt();
double[] xs = new double[n];
double[] ys = new double[n];
TreeSet<TaskC.Pair> set = new TreeSet<>();
for (int i = 0; i < n; ++i) {
xs[i] = in.nextDouble();
ys[i] = (double) Integer.MIN_VALUE;
if (i == 0) { // the first one
out.printf("%f", (double) r);
ys[i] = (double) r;
set.add(new TaskC.Pair(xs[i], ys[i]));
} else {
for (TaskC.Pair p : set) {
double maximum = p.x;
double diffX = (xs[i] - maximum) * (xs[i] - maximum);
if (diffX <= r * r * 4.0) {
ys[i] = Math.max(ys[i], p.y + Math.sqrt(r * r * 4.0 - diffX));
continue;
}
}
if (ys[i] < 0)
ys[i] = (double) r;
set.add(new TaskC.Pair(xs[i], ys[i]));
out.printf(" %f", ys[i]);
}
}
}
private static class Pair implements Comparable<TaskC.Pair> {
double x;
double y;
public Pair(double x, double y) {
this.x = x;
this.y = y;
}
public int compareTo(TaskC.Pair p) {
if (this.y - p.y < 0)
return 1;
return -1;
}
}
}
static class Kattio extends PrintWriter {
private BufferedReader r;
private String line;
private StringTokenizer st;
private String token;
public Kattio(InputStream i) {
super(new BufferedOutputStream(System.out));
r = new BufferedReader(new InputStreamReader(i));
}
public Kattio(InputStream i, OutputStream o) {
super(new BufferedOutputStream(o));
r = new BufferedReader(new InputStreamReader(i));
}
public int nextInt() {
return Integer.parseInt(nextToken());
}
public double nextDouble() {
return Double.parseDouble(nextToken());
}
private String peekToken() {
if (token == null)
try {
while (st == null || !st.hasMoreTokens()) {
line = r.readLine();
if (line == null) return null;
st = new StringTokenizer(line);
}
token = st.nextToken();
} catch (IOException e) {
}
return token;
}
private String nextToken() {
String ans = peekToken();
token = null;
return ans;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.TreeSet;
import java.io.BufferedOutputStream;
import java.util.StringTokenizer;
import java.io.BufferedReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Aeroui
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
Kattio in = new Kattio(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
public void solve(int testNumber, Kattio in, PrintWriter out) {
int n = in.nextInt();
int r = in.nextInt();
double[] xs = new double[n];
double[] ys = new double[n];
TreeSet<TaskC.Pair> set = new TreeSet<>();
for (int i = 0; i < n; ++i) {
xs[i] = in.nextDouble();
ys[i] = (double) Integer.MIN_VALUE;
if (i == 0) { // the first one
out.printf("%f", (double) r);
ys[i] = (double) r;
set.add(new TaskC.Pair(xs[i], ys[i]));
} else {
for (TaskC.Pair p : set) {
double maximum = p.x;
double diffX = (xs[i] - maximum) * (xs[i] - maximum);
if (diffX <= r * r * 4.0) {
ys[i] = Math.max(ys[i], p.y + Math.sqrt(r * r * 4.0 - diffX));
continue;
}
}
if (ys[i] < 0)
ys[i] = (double) r;
set.add(new TaskC.Pair(xs[i], ys[i]));
out.printf(" %f", ys[i]);
}
}
}
private static class Pair implements Comparable<TaskC.Pair> {
double x;
double y;
public Pair(double x, double y) {
this.x = x;
this.y = y;
}
public int compareTo(TaskC.Pair p) {
if (this.y - p.y < 0)
return 1;
return -1;
}
}
}
static class Kattio extends PrintWriter {
private BufferedReader r;
private String line;
private StringTokenizer st;
private String token;
public Kattio(InputStream i) {
super(new BufferedOutputStream(System.out));
r = new BufferedReader(new InputStreamReader(i));
}
public Kattio(InputStream i, OutputStream o) {
super(new BufferedOutputStream(o));
r = new BufferedReader(new InputStreamReader(i));
}
public int nextInt() {
return Integer.parseInt(nextToken());
}
public double nextDouble() {
return Double.parseDouble(nextToken());
}
private String peekToken() {
if (token == null)
try {
while (st == null || !st.hasMoreTokens()) {
line = r.readLine();
if (line == null) return null;
st = new StringTokenizer(line);
}
token = st.nextToken();
} catch (IOException e) {
}
return token;
}
private String nextToken() {
String ans = peekToken();
token = null;
return ans;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,118 | 2,138 |
761 |
//package baobab;
import java.io.*;
import java.util.*;
public class C {
public static void main(String[] args) {
CIO io = new CIO();
try {
Csolver solver = new Csolver(io);
solver.solve();
} finally {
io.close();
}
}
}
class Csolver {
CIO io;
public Csolver(CIO io) {
this.io = io;
}
public void solve() {
int n = io.nextInt();
String input = io.next();
int[] count = new int[1000];
int pokemonsInRange = 0;
int answer = Integer.MAX_VALUE;
int a = 0;
int b = 0;
for (; b < n ; b++) {
char end = input.charAt(b);
if (count[end] == 0) {
pokemonsInRange++;
answer = Integer.MAX_VALUE;
}
count[end]++;
while (count[input.charAt(a)] > 1) {
count[input.charAt(a)]--;
a++;
}
answer = Math.min(answer, b-a+1);
}
io.println(answer);
}
private static class Pair implements Comparable<Pair> {
int id;
long val;
public Pair(long val, int id) {
this.val = val;
this.id = id;
}
@Override
public int compareTo(Pair o) {
if (this.val < o.val) return -1;
if (this.val > o.val) return 1;
return this.id - o.id;
}
}
private List<Integer>[] toGraph(CIO io, int n) {
List<Integer>[] g = new ArrayList[n+1];
for (int i=1; i<=n; i++) g[i] = new ArrayList<>();
for (int i=1; i<=n-1; i++) {
int a = io.nextInt();
int b = io.nextInt();
g[a].add(b);
g[b].add(a);
}
return g;
}
}
class CIO extends PrintWriter {
private InputStreamReader r;
private static final int BUFSIZE = 1 << 15;
private char[] buf;
private int bufc;
private int bufi;
private StringBuilder sb;
public CIO() {
super(new BufferedOutputStream(System.out));
r = new InputStreamReader(System.in);
buf = new char[BUFSIZE];
bufc = 0;
bufi = 0;
sb = new StringBuilder();
}
private void fillBuf() throws IOException {
bufi = 0;
bufc = 0;
while(bufc == 0) {
bufc = r.read(buf, 0, BUFSIZE);
if(bufc == -1) {
bufc = 0;
return;
}
}
}
private boolean pumpBuf() throws IOException {
if(bufi == bufc) {
fillBuf();
}
return bufc != 0;
}
private boolean isDelimiter(char c) {
return c == ' ' || c == '\t' || c == '\n' || c == '\r' || c == '\f';
}
private void eatDelimiters() throws IOException {
while(true) {
if(bufi == bufc) {
fillBuf();
if(bufc == 0) throw new RuntimeException("IO: Out of input.");
}
if(!isDelimiter(buf[bufi])) break;
++bufi;
}
}
public String next() {
try {
sb.setLength(0);
eatDelimiters();
int start = bufi;
while(true) {
if(bufi == bufc) {
sb.append(buf, start, bufi - start);
fillBuf();
start = 0;
if(bufc == 0) break;
}
if(isDelimiter(buf[bufi])) break;
++bufi;
}
sb.append(buf, start, bufi - start);
return sb.toString();
} catch(IOException e) {
throw new RuntimeException("IO.next: Caught IOException.");
}
}
public int nextInt() {
try {
int ret = 0;
eatDelimiters();
boolean positive = true;
if(buf[bufi] == '-') {
++bufi;
if(!pumpBuf()) throw new RuntimeException("IO.nextInt: Invalid int.");
positive = false;
}
boolean first = true;
while(true) {
if(!pumpBuf()) break;
if(isDelimiter(buf[bufi])) {
if(first) throw new RuntimeException("IO.nextInt: Invalid int.");
break;
}
first = false;
if(buf[bufi] >= '0' && buf[bufi] <= '9') {
if(ret < -214748364) throw new RuntimeException("IO.nextInt: Invalid int.");
ret *= 10;
ret -= (int)(buf[bufi] - '0');
if(ret > 0) throw new RuntimeException("IO.nextInt: Invalid int.");
} else {
throw new RuntimeException("IO.nextInt: Invalid int.");
}
++bufi;
}
if(positive) {
if(ret == -2147483648) throw new RuntimeException("IO.nextInt: Invalid int.");
ret = -ret;
}
return ret;
} catch(IOException e) {
throw new RuntimeException("IO.nextInt: Caught IOException.");
}
}
public long nextLong() {
try {
long ret = 0;
eatDelimiters();
boolean positive = true;
if(buf[bufi] == '-') {
++bufi;
if(!pumpBuf()) throw new RuntimeException("IO.nextLong: Invalid long.");
positive = false;
}
boolean first = true;
while(true) {
if(!pumpBuf()) break;
if(isDelimiter(buf[bufi])) {
if(first) throw new RuntimeException("IO.nextLong: Invalid long.");
break;
}
first = false;
if(buf[bufi] >= '0' && buf[bufi] <= '9') {
if(ret < -922337203685477580L) throw new RuntimeException("IO.nextLong: Invalid long.");
ret *= 10;
ret -= (long)(buf[bufi] - '0');
if(ret > 0) throw new RuntimeException("IO.nextLong: Invalid long.");
} else {
throw new RuntimeException("IO.nextLong: Invalid long.");
}
++bufi;
}
if(positive) {
if(ret == -9223372036854775808L) throw new RuntimeException("IO.nextLong: Invalid long.");
ret = -ret;
}
return ret;
} catch(IOException e) {
throw new RuntimeException("IO.nextLong: Caught IOException.");
}
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
//package baobab;
import java.io.*;
import java.util.*;
public class C {
public static void main(String[] args) {
CIO io = new CIO();
try {
Csolver solver = new Csolver(io);
solver.solve();
} finally {
io.close();
}
}
}
class Csolver {
CIO io;
public Csolver(CIO io) {
this.io = io;
}
public void solve() {
int n = io.nextInt();
String input = io.next();
int[] count = new int[1000];
int pokemonsInRange = 0;
int answer = Integer.MAX_VALUE;
int a = 0;
int b = 0;
for (; b < n ; b++) {
char end = input.charAt(b);
if (count[end] == 0) {
pokemonsInRange++;
answer = Integer.MAX_VALUE;
}
count[end]++;
while (count[input.charAt(a)] > 1) {
count[input.charAt(a)]--;
a++;
}
answer = Math.min(answer, b-a+1);
}
io.println(answer);
}
private static class Pair implements Comparable<Pair> {
int id;
long val;
public Pair(long val, int id) {
this.val = val;
this.id = id;
}
@Override
public int compareTo(Pair o) {
if (this.val < o.val) return -1;
if (this.val > o.val) return 1;
return this.id - o.id;
}
}
private List<Integer>[] toGraph(CIO io, int n) {
List<Integer>[] g = new ArrayList[n+1];
for (int i=1; i<=n; i++) g[i] = new ArrayList<>();
for (int i=1; i<=n-1; i++) {
int a = io.nextInt();
int b = io.nextInt();
g[a].add(b);
g[b].add(a);
}
return g;
}
}
class CIO extends PrintWriter {
private InputStreamReader r;
private static final int BUFSIZE = 1 << 15;
private char[] buf;
private int bufc;
private int bufi;
private StringBuilder sb;
public CIO() {
super(new BufferedOutputStream(System.out));
r = new InputStreamReader(System.in);
buf = new char[BUFSIZE];
bufc = 0;
bufi = 0;
sb = new StringBuilder();
}
private void fillBuf() throws IOException {
bufi = 0;
bufc = 0;
while(bufc == 0) {
bufc = r.read(buf, 0, BUFSIZE);
if(bufc == -1) {
bufc = 0;
return;
}
}
}
private boolean pumpBuf() throws IOException {
if(bufi == bufc) {
fillBuf();
}
return bufc != 0;
}
private boolean isDelimiter(char c) {
return c == ' ' || c == '\t' || c == '\n' || c == '\r' || c == '\f';
}
private void eatDelimiters() throws IOException {
while(true) {
if(bufi == bufc) {
fillBuf();
if(bufc == 0) throw new RuntimeException("IO: Out of input.");
}
if(!isDelimiter(buf[bufi])) break;
++bufi;
}
}
public String next() {
try {
sb.setLength(0);
eatDelimiters();
int start = bufi;
while(true) {
if(bufi == bufc) {
sb.append(buf, start, bufi - start);
fillBuf();
start = 0;
if(bufc == 0) break;
}
if(isDelimiter(buf[bufi])) break;
++bufi;
}
sb.append(buf, start, bufi - start);
return sb.toString();
} catch(IOException e) {
throw new RuntimeException("IO.next: Caught IOException.");
}
}
public int nextInt() {
try {
int ret = 0;
eatDelimiters();
boolean positive = true;
if(buf[bufi] == '-') {
++bufi;
if(!pumpBuf()) throw new RuntimeException("IO.nextInt: Invalid int.");
positive = false;
}
boolean first = true;
while(true) {
if(!pumpBuf()) break;
if(isDelimiter(buf[bufi])) {
if(first) throw new RuntimeException("IO.nextInt: Invalid int.");
break;
}
first = false;
if(buf[bufi] >= '0' && buf[bufi] <= '9') {
if(ret < -214748364) throw new RuntimeException("IO.nextInt: Invalid int.");
ret *= 10;
ret -= (int)(buf[bufi] - '0');
if(ret > 0) throw new RuntimeException("IO.nextInt: Invalid int.");
} else {
throw new RuntimeException("IO.nextInt: Invalid int.");
}
++bufi;
}
if(positive) {
if(ret == -2147483648) throw new RuntimeException("IO.nextInt: Invalid int.");
ret = -ret;
}
return ret;
} catch(IOException e) {
throw new RuntimeException("IO.nextInt: Caught IOException.");
}
}
public long nextLong() {
try {
long ret = 0;
eatDelimiters();
boolean positive = true;
if(buf[bufi] == '-') {
++bufi;
if(!pumpBuf()) throw new RuntimeException("IO.nextLong: Invalid long.");
positive = false;
}
boolean first = true;
while(true) {
if(!pumpBuf()) break;
if(isDelimiter(buf[bufi])) {
if(first) throw new RuntimeException("IO.nextLong: Invalid long.");
break;
}
first = false;
if(buf[bufi] >= '0' && buf[bufi] <= '9') {
if(ret < -922337203685477580L) throw new RuntimeException("IO.nextLong: Invalid long.");
ret *= 10;
ret -= (long)(buf[bufi] - '0');
if(ret > 0) throw new RuntimeException("IO.nextLong: Invalid long.");
} else {
throw new RuntimeException("IO.nextLong: Invalid long.");
}
++bufi;
}
if(positive) {
if(ret == -9223372036854775808L) throw new RuntimeException("IO.nextLong: Invalid long.");
ret = -ret;
}
return ret;
} catch(IOException e) {
throw new RuntimeException("IO.nextLong: Caught IOException.");
}
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
//package baobab;
import java.io.*;
import java.util.*;
public class C {
public static void main(String[] args) {
CIO io = new CIO();
try {
Csolver solver = new Csolver(io);
solver.solve();
} finally {
io.close();
}
}
}
class Csolver {
CIO io;
public Csolver(CIO io) {
this.io = io;
}
public void solve() {
int n = io.nextInt();
String input = io.next();
int[] count = new int[1000];
int pokemonsInRange = 0;
int answer = Integer.MAX_VALUE;
int a = 0;
int b = 0;
for (; b < n ; b++) {
char end = input.charAt(b);
if (count[end] == 0) {
pokemonsInRange++;
answer = Integer.MAX_VALUE;
}
count[end]++;
while (count[input.charAt(a)] > 1) {
count[input.charAt(a)]--;
a++;
}
answer = Math.min(answer, b-a+1);
}
io.println(answer);
}
private static class Pair implements Comparable<Pair> {
int id;
long val;
public Pair(long val, int id) {
this.val = val;
this.id = id;
}
@Override
public int compareTo(Pair o) {
if (this.val < o.val) return -1;
if (this.val > o.val) return 1;
return this.id - o.id;
}
}
private List<Integer>[] toGraph(CIO io, int n) {
List<Integer>[] g = new ArrayList[n+1];
for (int i=1; i<=n; i++) g[i] = new ArrayList<>();
for (int i=1; i<=n-1; i++) {
int a = io.nextInt();
int b = io.nextInt();
g[a].add(b);
g[b].add(a);
}
return g;
}
}
class CIO extends PrintWriter {
private InputStreamReader r;
private static final int BUFSIZE = 1 << 15;
private char[] buf;
private int bufc;
private int bufi;
private StringBuilder sb;
public CIO() {
super(new BufferedOutputStream(System.out));
r = new InputStreamReader(System.in);
buf = new char[BUFSIZE];
bufc = 0;
bufi = 0;
sb = new StringBuilder();
}
private void fillBuf() throws IOException {
bufi = 0;
bufc = 0;
while(bufc == 0) {
bufc = r.read(buf, 0, BUFSIZE);
if(bufc == -1) {
bufc = 0;
return;
}
}
}
private boolean pumpBuf() throws IOException {
if(bufi == bufc) {
fillBuf();
}
return bufc != 0;
}
private boolean isDelimiter(char c) {
return c == ' ' || c == '\t' || c == '\n' || c == '\r' || c == '\f';
}
private void eatDelimiters() throws IOException {
while(true) {
if(bufi == bufc) {
fillBuf();
if(bufc == 0) throw new RuntimeException("IO: Out of input.");
}
if(!isDelimiter(buf[bufi])) break;
++bufi;
}
}
public String next() {
try {
sb.setLength(0);
eatDelimiters();
int start = bufi;
while(true) {
if(bufi == bufc) {
sb.append(buf, start, bufi - start);
fillBuf();
start = 0;
if(bufc == 0) break;
}
if(isDelimiter(buf[bufi])) break;
++bufi;
}
sb.append(buf, start, bufi - start);
return sb.toString();
} catch(IOException e) {
throw new RuntimeException("IO.next: Caught IOException.");
}
}
public int nextInt() {
try {
int ret = 0;
eatDelimiters();
boolean positive = true;
if(buf[bufi] == '-') {
++bufi;
if(!pumpBuf()) throw new RuntimeException("IO.nextInt: Invalid int.");
positive = false;
}
boolean first = true;
while(true) {
if(!pumpBuf()) break;
if(isDelimiter(buf[bufi])) {
if(first) throw new RuntimeException("IO.nextInt: Invalid int.");
break;
}
first = false;
if(buf[bufi] >= '0' && buf[bufi] <= '9') {
if(ret < -214748364) throw new RuntimeException("IO.nextInt: Invalid int.");
ret *= 10;
ret -= (int)(buf[bufi] - '0');
if(ret > 0) throw new RuntimeException("IO.nextInt: Invalid int.");
} else {
throw new RuntimeException("IO.nextInt: Invalid int.");
}
++bufi;
}
if(positive) {
if(ret == -2147483648) throw new RuntimeException("IO.nextInt: Invalid int.");
ret = -ret;
}
return ret;
} catch(IOException e) {
throw new RuntimeException("IO.nextInt: Caught IOException.");
}
}
public long nextLong() {
try {
long ret = 0;
eatDelimiters();
boolean positive = true;
if(buf[bufi] == '-') {
++bufi;
if(!pumpBuf()) throw new RuntimeException("IO.nextLong: Invalid long.");
positive = false;
}
boolean first = true;
while(true) {
if(!pumpBuf()) break;
if(isDelimiter(buf[bufi])) {
if(first) throw new RuntimeException("IO.nextLong: Invalid long.");
break;
}
first = false;
if(buf[bufi] >= '0' && buf[bufi] <= '9') {
if(ret < -922337203685477580L) throw new RuntimeException("IO.nextLong: Invalid long.");
ret *= 10;
ret -= (long)(buf[bufi] - '0');
if(ret > 0) throw new RuntimeException("IO.nextLong: Invalid long.");
} else {
throw new RuntimeException("IO.nextLong: Invalid long.");
}
++bufi;
}
if(positive) {
if(ret == -9223372036854775808L) throw new RuntimeException("IO.nextLong: Invalid long.");
ret = -ret;
}
return ret;
} catch(IOException e) {
throw new RuntimeException("IO.nextLong: Caught IOException.");
}
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,864 | 760 |
561 |
import java.util.*;
import java.lang.*;
import java.io.*;
public class Main
{
PrintWriter out = new PrintWriter(System.out);
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer tok = new StringTokenizer("");
String next() throws IOException {
if (!tok.hasMoreTokens()) { tok = new StringTokenizer(in.readLine()); }
return tok.nextToken();
}
int ni() throws IOException { return Integer.parseInt(next()); }
long nl() throws IOException { return Long.parseLong(next()); }
long mod=1000000007;
void solve() throws IOException {
for (int tc=ni();tc>0;tc--) {
long n=ni();
long q=1;
long p=1;
boolean f=false;
while (true) {
if (p*2==n || p*4==n) { f=true; break; }
q++;
p=q*q;
if (p>n) break;
}
if (f) out.println("YES");
else out.println("NO");
}
out.flush();
}
int gcd(int a,int b) { return(b==0?a:gcd(b,a%b)); }
long gcd(long a,long b) { return(b==0?a:gcd(b,a%b)); }
long mp(long a,long p) { long r=1; while(p>0) { if ((p&1)==1) r=(r*a)%mod; p>>=1; a=(a*a)%mod; } return r; }
public static void main(String[] args) throws IOException {
new Main().solve();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.lang.*;
import java.io.*;
public class Main
{
PrintWriter out = new PrintWriter(System.out);
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer tok = new StringTokenizer("");
String next() throws IOException {
if (!tok.hasMoreTokens()) { tok = new StringTokenizer(in.readLine()); }
return tok.nextToken();
}
int ni() throws IOException { return Integer.parseInt(next()); }
long nl() throws IOException { return Long.parseLong(next()); }
long mod=1000000007;
void solve() throws IOException {
for (int tc=ni();tc>0;tc--) {
long n=ni();
long q=1;
long p=1;
boolean f=false;
while (true) {
if (p*2==n || p*4==n) { f=true; break; }
q++;
p=q*q;
if (p>n) break;
}
if (f) out.println("YES");
else out.println("NO");
}
out.flush();
}
int gcd(int a,int b) { return(b==0?a:gcd(b,a%b)); }
long gcd(long a,long b) { return(b==0?a:gcd(b,a%b)); }
long mp(long a,long p) { long r=1; while(p>0) { if ((p&1)==1) r=(r*a)%mod; p>>=1; a=(a*a)%mod; } return r; }
public static void main(String[] args) throws IOException {
new Main().solve();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.lang.*;
import java.io.*;
public class Main
{
PrintWriter out = new PrintWriter(System.out);
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer tok = new StringTokenizer("");
String next() throws IOException {
if (!tok.hasMoreTokens()) { tok = new StringTokenizer(in.readLine()); }
return tok.nextToken();
}
int ni() throws IOException { return Integer.parseInt(next()); }
long nl() throws IOException { return Long.parseLong(next()); }
long mod=1000000007;
void solve() throws IOException {
for (int tc=ni();tc>0;tc--) {
long n=ni();
long q=1;
long p=1;
boolean f=false;
while (true) {
if (p*2==n || p*4==n) { f=true; break; }
q++;
p=q*q;
if (p>n) break;
}
if (f) out.println("YES");
else out.println("NO");
}
out.flush();
}
int gcd(int a,int b) { return(b==0?a:gcd(b,a%b)); }
long gcd(long a,long b) { return(b==0?a:gcd(b,a%b)); }
long mp(long a,long p) { long r=1; while(p>0) { if ((p&1)==1) r=(r*a)%mod; p>>=1; a=(a*a)%mod; } return r; }
public static void main(String[] args) throws IOException {
new Main().solve();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 680 | 560 |
End of preview. Expand
in Data Studio
README.md exists but content is empty.
- Downloads last month
- 49