Dataset Viewer
Auto-converted to Parquet
id
int64
0
4.52k
code
stringlengths
142
31.2k
answer
stringclasses
7 values
prompt
stringlengths
1.64k
32.6k
test_prompt
stringlengths
1.7k
32.7k
token_length
int64
373
7.8k
__index_level_0__
int64
0
4.5k
3,927
import java.lang.*; import java.util.*; import java.io.*; public class Main { void solve() { int m=ni(); long a[][]=new long[m][]; HashMap<Long,Integer> mp=new HashMap<>(); long TS=0; long sm[]=new long[m]; for(int i=0;i<m;i++){ int sz=ni(); a[i]=new long[sz]; for(int j=0;j<sz;j++){ a[i][j]=nl(); mp.put(a[i][j],i); sm[i]+=a[i][j]; } TS+=sm[i]; } if(TS%m!=0){ pw.println("No"); return; } TS/=m; ArrayList<Node> ansForMask[]=new ArrayList[(1<<m)]; for(int i=0;i<(1<<m);i++) ansForMask[i]=new ArrayList<>(); ArrayList<Node> tempList=new ArrayList<>(); int vis[]=new int[m]; for(int i=0;i<m;i++){ out:for(int j=0;j<a[i].length;j++){ int mask=0; tempList.clear(); long val=a[i][j],req=Long.MAX_VALUE; int idx=i,idx2; Arrays.fill(vis,0); if(sm[i]==TS){ mask=1<<i; if(ansForMask[mask].size()==0) ansForMask[mask].add(new Node(val,i,i)); continue; } while(vis[idx]==0){ req=TS-(sm[idx]-val); if(!mp.containsKey(req)) continue out; idx2=mp.get(req); if(vis[idx]==1 || idx==idx2) continue out; if(vis[idx2]==1) break; // if(i==0 && j==1) pw.println(idx2+" "+req+" "+val); vis[idx]=1; mask+=(1<<idx); tempList.add(new Node(req,idx2,idx)); idx=idx2; val=req; } if(req!=a[i][j])continue out; mask+=(1<<idx); tempList.add(new Node(a[i][j],i,idx)); if(ansForMask[mask].size()==0){ // pw.println(Integer.toBinaryString(mask)); ansForMask[mask].addAll(tempList); } } } int dp[]=new int[1<<m]; dp[0]=1; out: for(int mask=1;mask <(1<<m);mask++){ if(ansForMask[mask].size()!=0){ dp[mask]=1; // pw.println(Integer.toBinaryString(mask)+" "+mask); continue; } for(int s=mask;s>0;s=(s-1)&mask){ if(dp[s]==1 && dp[mask^s]==1){ dp[mask]=1; ansForMask[mask].addAll(ansForMask[s]); ansForMask[mask].addAll(ansForMask[mask^s]); continue out; } } } if(dp[(1<<m)-1]==0){ pw.println("No"); return; } pw.println("Yes"); Pair ans[]=new Pair[m]; for(Node p : ansForMask[(1<<m)-1]){ ans[p.id1]=new Pair(p.c,p.id2); } for(int i=0;i<m;i++) pw.println(ans[i].c+" "+(ans[i].p+1)); } class Pair { long c; int p; public Pair(long c,int p){ this.c=c; this.p=p; } } class Node{ long c; int id1; int id2; public Node(long c,int id1,int id2){ this.c=c; this.id1=id1; this.id2=id2; } } long M = (long)1e9+7; // END PrintWriter pw; StringTokenizer st; BufferedReader br; void run() throws Exception { br = new BufferedReader(new InputStreamReader(System.in)); pw = new PrintWriter(System.out); long s = System.currentTimeMillis(); solve(); pw.flush(); } public static void main(String[] args) throws Exception { new Main().run(); } String ns() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } String nextLine() throws Exception { String str = ""; try { str = br.readLine(); } catch (IOException e) { throw new Exception(e.toString()); } return str; } int ni() { return Integer.parseInt(ns()); } long nl() { return Long.parseLong(ns()); } double nd() { return Double.parseDouble(ns()); } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.lang.*; import java.util.*; import java.io.*; public class Main { void solve() { int m=ni(); long a[][]=new long[m][]; HashMap<Long,Integer> mp=new HashMap<>(); long TS=0; long sm[]=new long[m]; for(int i=0;i<m;i++){ int sz=ni(); a[i]=new long[sz]; for(int j=0;j<sz;j++){ a[i][j]=nl(); mp.put(a[i][j],i); sm[i]+=a[i][j]; } TS+=sm[i]; } if(TS%m!=0){ pw.println("No"); return; } TS/=m; ArrayList<Node> ansForMask[]=new ArrayList[(1<<m)]; for(int i=0;i<(1<<m);i++) ansForMask[i]=new ArrayList<>(); ArrayList<Node> tempList=new ArrayList<>(); int vis[]=new int[m]; for(int i=0;i<m;i++){ out:for(int j=0;j<a[i].length;j++){ int mask=0; tempList.clear(); long val=a[i][j],req=Long.MAX_VALUE; int idx=i,idx2; Arrays.fill(vis,0); if(sm[i]==TS){ mask=1<<i; if(ansForMask[mask].size()==0) ansForMask[mask].add(new Node(val,i,i)); continue; } while(vis[idx]==0){ req=TS-(sm[idx]-val); if(!mp.containsKey(req)) continue out; idx2=mp.get(req); if(vis[idx]==1 || idx==idx2) continue out; if(vis[idx2]==1) break; // if(i==0 && j==1) pw.println(idx2+" "+req+" "+val); vis[idx]=1; mask+=(1<<idx); tempList.add(new Node(req,idx2,idx)); idx=idx2; val=req; } if(req!=a[i][j])continue out; mask+=(1<<idx); tempList.add(new Node(a[i][j],i,idx)); if(ansForMask[mask].size()==0){ // pw.println(Integer.toBinaryString(mask)); ansForMask[mask].addAll(tempList); } } } int dp[]=new int[1<<m]; dp[0]=1; out: for(int mask=1;mask <(1<<m);mask++){ if(ansForMask[mask].size()!=0){ dp[mask]=1; // pw.println(Integer.toBinaryString(mask)+" "+mask); continue; } for(int s=mask;s>0;s=(s-1)&mask){ if(dp[s]==1 && dp[mask^s]==1){ dp[mask]=1; ansForMask[mask].addAll(ansForMask[s]); ansForMask[mask].addAll(ansForMask[mask^s]); continue out; } } } if(dp[(1<<m)-1]==0){ pw.println("No"); return; } pw.println("Yes"); Pair ans[]=new Pair[m]; for(Node p : ansForMask[(1<<m)-1]){ ans[p.id1]=new Pair(p.c,p.id2); } for(int i=0;i<m;i++) pw.println(ans[i].c+" "+(ans[i].p+1)); } class Pair { long c; int p; public Pair(long c,int p){ this.c=c; this.p=p; } } class Node{ long c; int id1; int id2; public Node(long c,int id1,int id2){ this.c=c; this.id1=id1; this.id2=id2; } } long M = (long)1e9+7; // END PrintWriter pw; StringTokenizer st; BufferedReader br; void run() throws Exception { br = new BufferedReader(new InputStreamReader(System.in)); pw = new PrintWriter(System.out); long s = System.currentTimeMillis(); solve(); pw.flush(); } public static void main(String[] args) throws Exception { new Main().run(); } String ns() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } String nextLine() throws Exception { String str = ""; try { str = br.readLine(); } catch (IOException e) { throw new Exception(e.toString()); } return str; } int ni() { return Integer.parseInt(ns()); } long nl() { return Long.parseLong(ns()); } double nd() { return Double.parseDouble(ns()); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.lang.*; import java.util.*; import java.io.*; public class Main { void solve() { int m=ni(); long a[][]=new long[m][]; HashMap<Long,Integer> mp=new HashMap<>(); long TS=0; long sm[]=new long[m]; for(int i=0;i<m;i++){ int sz=ni(); a[i]=new long[sz]; for(int j=0;j<sz;j++){ a[i][j]=nl(); mp.put(a[i][j],i); sm[i]+=a[i][j]; } TS+=sm[i]; } if(TS%m!=0){ pw.println("No"); return; } TS/=m; ArrayList<Node> ansForMask[]=new ArrayList[(1<<m)]; for(int i=0;i<(1<<m);i++) ansForMask[i]=new ArrayList<>(); ArrayList<Node> tempList=new ArrayList<>(); int vis[]=new int[m]; for(int i=0;i<m;i++){ out:for(int j=0;j<a[i].length;j++){ int mask=0; tempList.clear(); long val=a[i][j],req=Long.MAX_VALUE; int idx=i,idx2; Arrays.fill(vis,0); if(sm[i]==TS){ mask=1<<i; if(ansForMask[mask].size()==0) ansForMask[mask].add(new Node(val,i,i)); continue; } while(vis[idx]==0){ req=TS-(sm[idx]-val); if(!mp.containsKey(req)) continue out; idx2=mp.get(req); if(vis[idx]==1 || idx==idx2) continue out; if(vis[idx2]==1) break; // if(i==0 && j==1) pw.println(idx2+" "+req+" "+val); vis[idx]=1; mask+=(1<<idx); tempList.add(new Node(req,idx2,idx)); idx=idx2; val=req; } if(req!=a[i][j])continue out; mask+=(1<<idx); tempList.add(new Node(a[i][j],i,idx)); if(ansForMask[mask].size()==0){ // pw.println(Integer.toBinaryString(mask)); ansForMask[mask].addAll(tempList); } } } int dp[]=new int[1<<m]; dp[0]=1; out: for(int mask=1;mask <(1<<m);mask++){ if(ansForMask[mask].size()!=0){ dp[mask]=1; // pw.println(Integer.toBinaryString(mask)+" "+mask); continue; } for(int s=mask;s>0;s=(s-1)&mask){ if(dp[s]==1 && dp[mask^s]==1){ dp[mask]=1; ansForMask[mask].addAll(ansForMask[s]); ansForMask[mask].addAll(ansForMask[mask^s]); continue out; } } } if(dp[(1<<m)-1]==0){ pw.println("No"); return; } pw.println("Yes"); Pair ans[]=new Pair[m]; for(Node p : ansForMask[(1<<m)-1]){ ans[p.id1]=new Pair(p.c,p.id2); } for(int i=0;i<m;i++) pw.println(ans[i].c+" "+(ans[i].p+1)); } class Pair { long c; int p; public Pair(long c,int p){ this.c=c; this.p=p; } } class Node{ long c; int id1; int id2; public Node(long c,int id1,int id2){ this.c=c; this.id1=id1; this.id2=id2; } } long M = (long)1e9+7; // END PrintWriter pw; StringTokenizer st; BufferedReader br; void run() throws Exception { br = new BufferedReader(new InputStreamReader(System.in)); pw = new PrintWriter(System.out); long s = System.currentTimeMillis(); solve(); pw.flush(); } public static void main(String[] args) throws Exception { new Main().run(); } String ns() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } String nextLine() throws Exception { String str = ""; try { str = br.readLine(); } catch (IOException e) { throw new Exception(e.toString()); } return str; } int ni() { return Integer.parseInt(ns()); } long nl() { return Long.parseLong(ns()); } double nd() { return Double.parseDouble(ns()); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,408
3,917
815
import java.io.*; import java.util.*; public class Noldbach { public Scanner in = new Scanner(System.in); public PrintStream out = System.out; public boolean[] yes; public int n, k; public void main() { n = in.nextInt(); k = in.nextInt(); genPrime(); int i; yes = new boolean[n+1]; int x; for(i=0;i+1<prime.length;++i) { x = prime[i]+prime[i+1]+1; if(x <= n && fac[x] == x) yes[x] = true; } int count = 0; for(i=0;i<yes.length;++i) if(yes[i]) ++count; out.println((count>=k?"YES":"NO")); }//end public void main() //Generating Primes public int N = 100000+100; public int[] fac, rest; public int[] prime; public void genPrime() { ArrayList<Integer> ap = new ArrayList<Integer>(); fac = new int[N]; rest = new int[N]; int x,y; for(x=0;x<N;++x) { fac[x] = x; rest[x] = 1; } for(x=2;x<N;++x) if(fac[x]==x) { ap.add(x); for(y=x+x;y<N;y+=x) if(fac[y]==y) { fac[y] = x; rest[y] = y/x; } } prime = new int[ap.size()]; for(int i=0;i<prime.length;++i) prime[i] = ap.get(i); } public static void main(String[] args) { (new Noldbach()).main(); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class Noldbach { public Scanner in = new Scanner(System.in); public PrintStream out = System.out; public boolean[] yes; public int n, k; public void main() { n = in.nextInt(); k = in.nextInt(); genPrime(); int i; yes = new boolean[n+1]; int x; for(i=0;i+1<prime.length;++i) { x = prime[i]+prime[i+1]+1; if(x <= n && fac[x] == x) yes[x] = true; } int count = 0; for(i=0;i<yes.length;++i) if(yes[i]) ++count; out.println((count>=k?"YES":"NO")); }//end public void main() //Generating Primes public int N = 100000+100; public int[] fac, rest; public int[] prime; public void genPrime() { ArrayList<Integer> ap = new ArrayList<Integer>(); fac = new int[N]; rest = new int[N]; int x,y; for(x=0;x<N;++x) { fac[x] = x; rest[x] = 1; } for(x=2;x<N;++x) if(fac[x]==x) { ap.add(x); for(y=x+x;y<N;y+=x) if(fac[y]==y) { fac[y] = x; rest[y] = y/x; } } prime = new int[ap.size()]; for(int i=0;i<prime.length;++i) prime[i] = ap.get(i); } public static void main(String[] args) { (new Noldbach()).main(); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Noldbach { public Scanner in = new Scanner(System.in); public PrintStream out = System.out; public boolean[] yes; public int n, k; public void main() { n = in.nextInt(); k = in.nextInt(); genPrime(); int i; yes = new boolean[n+1]; int x; for(i=0;i+1<prime.length;++i) { x = prime[i]+prime[i+1]+1; if(x <= n && fac[x] == x) yes[x] = true; } int count = 0; for(i=0;i<yes.length;++i) if(yes[i]) ++count; out.println((count>=k?"YES":"NO")); }//end public void main() //Generating Primes public int N = 100000+100; public int[] fac, rest; public int[] prime; public void genPrime() { ArrayList<Integer> ap = new ArrayList<Integer>(); fac = new int[N]; rest = new int[N]; int x,y; for(x=0;x<N;++x) { fac[x] = x; rest[x] = 1; } for(x=2;x<N;++x) if(fac[x]==x) { ap.add(x); for(y=x+x;y<N;y+=x) if(fac[y]==y) { fac[y] = x; rest[y] = y/x; } } prime = new int[ap.size()]; for(int i=0;i<prime.length;++i) prime[i] = ap.get(i); } public static void main(String[] args) { (new Noldbach()).main(); } } </CODE> <EVALUATION_RUBRIC> - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
772
814
3,764
// Don't place your source in a package import javax.swing.*; import java.lang.reflect.Array; import java.text.DecimalFormat; import java.util.*; import java.lang.*; import java.io.*; import java.math.*; import java.util.stream.Stream; // Please name your class Main public class Main { static FastScanner fs=new FastScanner(); static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); public String next() { while (!st.hasMoreElements()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int Int() { return Integer.parseInt(next()); } long Long() { return Long.parseLong(next()); } String Str(){ return next(); } } public static void main (String[] args) throws java.lang.Exception { PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); int T=1; for(int t=0;t<T;t++){ int n=Int(),m=Int(),k=Int(); List<int[]>g[]=new ArrayList[n*m+1]; for(int i=0;i<g.length;i++){ g[i]=new ArrayList<>(); } for(int i=0;i<n;i++){ for(int j=0;j<m-1;j++){ int w=Int(); int u=i*m+j; int v=i*m+(j+1); g[u].add(new int[]{v,w}); g[v].add(new int[]{u,w}); } } for(int i=0;i<n-1;i++){ for(int j=0;j<m;j++){ int w=Int(); int u=i*m+j; int v=(i+1)*m+j; g[u].add(new int[]{v,w}); g[v].add(new int[]{u,w}); } } Solution sol=new Solution(out); sol.solution(n,m,k,g); } out.close(); } public static int Int(){ return fs.Int(); } public static long Long(){ return fs.Long(); } public static String Str(){ return fs.Str(); } } class Solution{ PrintWriter out; public Solution(PrintWriter out){ this.out=out; } List<int[]>g[]; int n,m; long INF=10000000000000000l; int curr=-1,curc=-1; long mn=Long.MAX_VALUE; long dp[][]; public void solution(int n,int m,int k,List<int[]>g[]){ //edge : 4 directions. this.n=n; this.m=m; long res[][]=new long[n][m]; if(k%2==1){ for(int i=0;i<n;i++){ Arrays.fill(res[i],-1); } print(res); return; } this.g=g; dp=new long[n*m+1][k/2+2]; for(int i=0;i<dp.length;i++){ Arrays.fill(dp[i],-1); } for(int i=0;i<n;i++){ for(int j=0;j<m;j++){ int id=i*m+j; dfs(id,k/2); } } for(int i=0;i<n;i++){ for(int j=0;j<m;j++){ int id=i*m+j; res[i][j]=dp[id][k/2]; } } print(res); } public long dfs(int id,int cnt){ if(cnt==0){ return 0; } if(dp[id][cnt]!=-1)return dp[id][cnt]; int r=id/m; int c=id%m; long res=Long.MAX_VALUE; for(int p[]:g[id]){ int next=p[0],w=p[1]; res=Math.min(res,w*2+dfs(next,cnt-1)); } dp[id][cnt]=res; return res; } public int dis(int x1,int y1,int x2,int y2){ return Math.abs(x1-x2)+Math.abs(y1-y2); } public void print(long A[][]){ for(int i=0;i<A.length;i++){ for(int j=0;j<A[0].length;j++){ out.print(A[i][j]+" "); } out.println(); } } } class Solution1{ PrintWriter out; public Solution1(PrintWriter out){ this.out=out; } public void solution(int A[]){ } } /* ;\ |' \ _ ; : ; / `-. /: : | | ,-.`-. ,': : | \ : `. `. ,'-. : | \ ; ; `-.__,' `-.| \ ; ; ::: ,::'`:. `. \ `-. : ` :. `. \ \ \ , ; ,: (\ \ :., :. ,'o)): ` `-. ,/,' ;' ,::"'`.`---' `. `-._ ,/ : ; '" `;' ,--`. ;/ :; ; ,:' ( ,:) ,.,:. ; ,:., ,-._ `. \""'/ '::' `:'` ,'( \`._____.-'"' ;, ; `. `. `._`-. \\ ;:. ;: `-._`-.\ \`. '`:. : |' `. `\ ) \ -hrr- ` ;: | `--\__,' '` ,' ,-' free bug dog */
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> // Don't place your source in a package import javax.swing.*; import java.lang.reflect.Array; import java.text.DecimalFormat; import java.util.*; import java.lang.*; import java.io.*; import java.math.*; import java.util.stream.Stream; // Please name your class Main public class Main { static FastScanner fs=new FastScanner(); static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); public String next() { while (!st.hasMoreElements()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int Int() { return Integer.parseInt(next()); } long Long() { return Long.parseLong(next()); } String Str(){ return next(); } } public static void main (String[] args) throws java.lang.Exception { PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); int T=1; for(int t=0;t<T;t++){ int n=Int(),m=Int(),k=Int(); List<int[]>g[]=new ArrayList[n*m+1]; for(int i=0;i<g.length;i++){ g[i]=new ArrayList<>(); } for(int i=0;i<n;i++){ for(int j=0;j<m-1;j++){ int w=Int(); int u=i*m+j; int v=i*m+(j+1); g[u].add(new int[]{v,w}); g[v].add(new int[]{u,w}); } } for(int i=0;i<n-1;i++){ for(int j=0;j<m;j++){ int w=Int(); int u=i*m+j; int v=(i+1)*m+j; g[u].add(new int[]{v,w}); g[v].add(new int[]{u,w}); } } Solution sol=new Solution(out); sol.solution(n,m,k,g); } out.close(); } public static int Int(){ return fs.Int(); } public static long Long(){ return fs.Long(); } public static String Str(){ return fs.Str(); } } class Solution{ PrintWriter out; public Solution(PrintWriter out){ this.out=out; } List<int[]>g[]; int n,m; long INF=10000000000000000l; int curr=-1,curc=-1; long mn=Long.MAX_VALUE; long dp[][]; public void solution(int n,int m,int k,List<int[]>g[]){ //edge : 4 directions. this.n=n; this.m=m; long res[][]=new long[n][m]; if(k%2==1){ for(int i=0;i<n;i++){ Arrays.fill(res[i],-1); } print(res); return; } this.g=g; dp=new long[n*m+1][k/2+2]; for(int i=0;i<dp.length;i++){ Arrays.fill(dp[i],-1); } for(int i=0;i<n;i++){ for(int j=0;j<m;j++){ int id=i*m+j; dfs(id,k/2); } } for(int i=0;i<n;i++){ for(int j=0;j<m;j++){ int id=i*m+j; res[i][j]=dp[id][k/2]; } } print(res); } public long dfs(int id,int cnt){ if(cnt==0){ return 0; } if(dp[id][cnt]!=-1)return dp[id][cnt]; int r=id/m; int c=id%m; long res=Long.MAX_VALUE; for(int p[]:g[id]){ int next=p[0],w=p[1]; res=Math.min(res,w*2+dfs(next,cnt-1)); } dp[id][cnt]=res; return res; } public int dis(int x1,int y1,int x2,int y2){ return Math.abs(x1-x2)+Math.abs(y1-y2); } public void print(long A[][]){ for(int i=0;i<A.length;i++){ for(int j=0;j<A[0].length;j++){ out.print(A[i][j]+" "); } out.println(); } } } class Solution1{ PrintWriter out; public Solution1(PrintWriter out){ this.out=out; } public void solution(int A[]){ } } /* ;\ |' \ _ ; : ; / `-. /: : | | ,-.`-. ,': : | \ : `. `. ,'-. : | \ ; ; `-.__,' `-.| \ ; ; ::: ,::'`:. `. \ `-. : ` :. `. \ \ \ , ; ,: (\ \ :., :. ,'o)): ` `-. ,/,' ;' ,::"'`.`---' `. `-._ ,/ : ; '" `;' ,--`. ;/ :; ; ,:' ( ,:) ,.,:. ; ,:., ,-._ `. \""'/ '::' `:'` ,'( \`._____.-'"' ;, ; `. `. `._`-. \\ ;:. ;: `-._`-.\ \`. '`:. : |' `. `\ ) \ -hrr- ` ;: | `--\__,' '` ,' ,-' free bug dog */ </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> // Don't place your source in a package import javax.swing.*; import java.lang.reflect.Array; import java.text.DecimalFormat; import java.util.*; import java.lang.*; import java.io.*; import java.math.*; import java.util.stream.Stream; // Please name your class Main public class Main { static FastScanner fs=new FastScanner(); static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); public String next() { while (!st.hasMoreElements()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int Int() { return Integer.parseInt(next()); } long Long() { return Long.parseLong(next()); } String Str(){ return next(); } } public static void main (String[] args) throws java.lang.Exception { PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); int T=1; for(int t=0;t<T;t++){ int n=Int(),m=Int(),k=Int(); List<int[]>g[]=new ArrayList[n*m+1]; for(int i=0;i<g.length;i++){ g[i]=new ArrayList<>(); } for(int i=0;i<n;i++){ for(int j=0;j<m-1;j++){ int w=Int(); int u=i*m+j; int v=i*m+(j+1); g[u].add(new int[]{v,w}); g[v].add(new int[]{u,w}); } } for(int i=0;i<n-1;i++){ for(int j=0;j<m;j++){ int w=Int(); int u=i*m+j; int v=(i+1)*m+j; g[u].add(new int[]{v,w}); g[v].add(new int[]{u,w}); } } Solution sol=new Solution(out); sol.solution(n,m,k,g); } out.close(); } public static int Int(){ return fs.Int(); } public static long Long(){ return fs.Long(); } public static String Str(){ return fs.Str(); } } class Solution{ PrintWriter out; public Solution(PrintWriter out){ this.out=out; } List<int[]>g[]; int n,m; long INF=10000000000000000l; int curr=-1,curc=-1; long mn=Long.MAX_VALUE; long dp[][]; public void solution(int n,int m,int k,List<int[]>g[]){ //edge : 4 directions. this.n=n; this.m=m; long res[][]=new long[n][m]; if(k%2==1){ for(int i=0;i<n;i++){ Arrays.fill(res[i],-1); } print(res); return; } this.g=g; dp=new long[n*m+1][k/2+2]; for(int i=0;i<dp.length;i++){ Arrays.fill(dp[i],-1); } for(int i=0;i<n;i++){ for(int j=0;j<m;j++){ int id=i*m+j; dfs(id,k/2); } } for(int i=0;i<n;i++){ for(int j=0;j<m;j++){ int id=i*m+j; res[i][j]=dp[id][k/2]; } } print(res); } public long dfs(int id,int cnt){ if(cnt==0){ return 0; } if(dp[id][cnt]!=-1)return dp[id][cnt]; int r=id/m; int c=id%m; long res=Long.MAX_VALUE; for(int p[]:g[id]){ int next=p[0],w=p[1]; res=Math.min(res,w*2+dfs(next,cnt-1)); } dp[id][cnt]=res; return res; } public int dis(int x1,int y1,int x2,int y2){ return Math.abs(x1-x2)+Math.abs(y1-y2); } public void print(long A[][]){ for(int i=0;i<A.length;i++){ for(int j=0;j<A[0].length;j++){ out.print(A[i][j]+" "); } out.println(); } } } class Solution1{ PrintWriter out; public Solution1(PrintWriter out){ this.out=out; } public void solution(int A[]){ } } /* ;\ |' \ _ ; : ; / `-. /: : | | ,-.`-. ,': : | \ : `. `. ,'-. : | \ ; ; `-.__,' `-.| \ ; ; ::: ,::'`:. `. \ `-. : ` :. `. \ \ \ , ; ,: (\ \ :., :. ,'o)): ` `-. ,/,' ;' ,::"'`.`---' `. `-._ ,/ : ; '" `;' ,--`. ;/ :; ; ,:' ( ,:) ,.,:. ; ,:., ,-._ `. \""'/ '::' `:'` ,'( \`._____.-'"' ;, ; `. `. `._`-. \\ ;:. ;: `-._`-.\ \`. '`:. : |' `. `\ ) \ -hrr- ` ;: | `--\__,' '` ,' ,-' free bug dog */ </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,622
3,756
3,125
import java.io.*; import java.util.*; import java.math.*; public class Solution implements Runnable { private BufferedReader in; private PrintWriter out; private StringTokenizer st; private Random rnd; double Vend; private double calcFirstSegment(double a, double Vmax, double Vend, double l) { double Vl = 0, Vr = Vmax; for(int it = 0; it < 256; it++) { double Vm = (Vl + Vr) / 2.0; double tFirst = Vm / a; double tSecond = 0; if(Vend < Vm) tSecond = (Vm - Vend) / a; double firstPart = a * tFirst * tFirst / 2.0; double secondPart = Vm * tSecond - a * tSecond * tSecond / 2.0; double res = firstPart + secondPart; if(res < l) Vl = Vm; else Vr = Vm; } this.Vend = Math.min(Vl, Vend); double res = 0.0; { double Vm = Vl; double tFirst = Vm / a; double tSecond = 0; if(Vend < Vm) tSecond = (Vm - Vend) / a; //out.println(tSecond); double firstPart = a * tFirst * tFirst / 2.0; double secondPart = Vm * tSecond - a * tSecond * tSecond / 2.0; double remain = l - firstPart - secondPart; res = tFirst + tSecond + (remain / Vm); } return res; } private double calcSecondPart(double a, double Vmax, double Vstart, double l) { double Vl = Vstart, Vr = Vmax; //out.println(Vstart); for(int it = 0; it < 256; it++) { double Vm = (Vl + Vr) / 2.0; double t = (Vm - Vstart) / a; double s = Vstart * t + a * t * t / 2.0; if(s < l) Vl = Vm; else Vr = Vm; } double res = 0.0; { double Vm = (Vl + Vr) / 2.0; double t = (Vm - Vstart) / a; double s = Vstart * t + a * t * t / 2.0; double remain = l - s; res = t + (remain / Vmax); } return res; } public void solve() throws IOException { double a = nextDouble(), v = nextDouble(), l = nextDouble(), d = nextDouble(), w = nextDouble(); double res = calcFirstSegment(a, v, w, d); res += calcSecondPart(a, v, Vend, l - d); out.println(res); } public static void main(String[] args) { new Solution().run(); } public void run() { try { //in = new BufferedReader(new FileReader("input.txt")); //out = new PrintWriter(new FileWriter("output.txt")); in = new BufferedReader(new InputStreamReader((System.in))); out = new PrintWriter(System.out); st = null; rnd = new Random(); solve(); out.close(); } catch(IOException e) { e.printStackTrace(); } } private String nextToken() throws IOException, NullPointerException { while(st == null || !st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } private int nextInt() throws IOException { return Integer.parseInt(nextToken()); } private long nextLong() throws IOException { return Long.parseLong(nextToken()); } private double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; import java.math.*; public class Solution implements Runnable { private BufferedReader in; private PrintWriter out; private StringTokenizer st; private Random rnd; double Vend; private double calcFirstSegment(double a, double Vmax, double Vend, double l) { double Vl = 0, Vr = Vmax; for(int it = 0; it < 256; it++) { double Vm = (Vl + Vr) / 2.0; double tFirst = Vm / a; double tSecond = 0; if(Vend < Vm) tSecond = (Vm - Vend) / a; double firstPart = a * tFirst * tFirst / 2.0; double secondPart = Vm * tSecond - a * tSecond * tSecond / 2.0; double res = firstPart + secondPart; if(res < l) Vl = Vm; else Vr = Vm; } this.Vend = Math.min(Vl, Vend); double res = 0.0; { double Vm = Vl; double tFirst = Vm / a; double tSecond = 0; if(Vend < Vm) tSecond = (Vm - Vend) / a; //out.println(tSecond); double firstPart = a * tFirst * tFirst / 2.0; double secondPart = Vm * tSecond - a * tSecond * tSecond / 2.0; double remain = l - firstPart - secondPart; res = tFirst + tSecond + (remain / Vm); } return res; } private double calcSecondPart(double a, double Vmax, double Vstart, double l) { double Vl = Vstart, Vr = Vmax; //out.println(Vstart); for(int it = 0; it < 256; it++) { double Vm = (Vl + Vr) / 2.0; double t = (Vm - Vstart) / a; double s = Vstart * t + a * t * t / 2.0; if(s < l) Vl = Vm; else Vr = Vm; } double res = 0.0; { double Vm = (Vl + Vr) / 2.0; double t = (Vm - Vstart) / a; double s = Vstart * t + a * t * t / 2.0; double remain = l - s; res = t + (remain / Vmax); } return res; } public void solve() throws IOException { double a = nextDouble(), v = nextDouble(), l = nextDouble(), d = nextDouble(), w = nextDouble(); double res = calcFirstSegment(a, v, w, d); res += calcSecondPart(a, v, Vend, l - d); out.println(res); } public static void main(String[] args) { new Solution().run(); } public void run() { try { //in = new BufferedReader(new FileReader("input.txt")); //out = new PrintWriter(new FileWriter("output.txt")); in = new BufferedReader(new InputStreamReader((System.in))); out = new PrintWriter(System.out); st = null; rnd = new Random(); solve(); out.close(); } catch(IOException e) { e.printStackTrace(); } } private String nextToken() throws IOException, NullPointerException { while(st == null || !st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } private int nextInt() throws IOException { return Integer.parseInt(nextToken()); } private long nextLong() throws IOException { return Long.parseLong(nextToken()); } private double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; import java.math.*; public class Solution implements Runnable { private BufferedReader in; private PrintWriter out; private StringTokenizer st; private Random rnd; double Vend; private double calcFirstSegment(double a, double Vmax, double Vend, double l) { double Vl = 0, Vr = Vmax; for(int it = 0; it < 256; it++) { double Vm = (Vl + Vr) / 2.0; double tFirst = Vm / a; double tSecond = 0; if(Vend < Vm) tSecond = (Vm - Vend) / a; double firstPart = a * tFirst * tFirst / 2.0; double secondPart = Vm * tSecond - a * tSecond * tSecond / 2.0; double res = firstPart + secondPart; if(res < l) Vl = Vm; else Vr = Vm; } this.Vend = Math.min(Vl, Vend); double res = 0.0; { double Vm = Vl; double tFirst = Vm / a; double tSecond = 0; if(Vend < Vm) tSecond = (Vm - Vend) / a; //out.println(tSecond); double firstPart = a * tFirst * tFirst / 2.0; double secondPart = Vm * tSecond - a * tSecond * tSecond / 2.0; double remain = l - firstPart - secondPart; res = tFirst + tSecond + (remain / Vm); } return res; } private double calcSecondPart(double a, double Vmax, double Vstart, double l) { double Vl = Vstart, Vr = Vmax; //out.println(Vstart); for(int it = 0; it < 256; it++) { double Vm = (Vl + Vr) / 2.0; double t = (Vm - Vstart) / a; double s = Vstart * t + a * t * t / 2.0; if(s < l) Vl = Vm; else Vr = Vm; } double res = 0.0; { double Vm = (Vl + Vr) / 2.0; double t = (Vm - Vstart) / a; double s = Vstart * t + a * t * t / 2.0; double remain = l - s; res = t + (remain / Vmax); } return res; } public void solve() throws IOException { double a = nextDouble(), v = nextDouble(), l = nextDouble(), d = nextDouble(), w = nextDouble(); double res = calcFirstSegment(a, v, w, d); res += calcSecondPart(a, v, Vend, l - d); out.println(res); } public static void main(String[] args) { new Solution().run(); } public void run() { try { //in = new BufferedReader(new FileReader("input.txt")); //out = new PrintWriter(new FileWriter("output.txt")); in = new BufferedReader(new InputStreamReader((System.in))); out = new PrintWriter(System.out); st = null; rnd = new Random(); solve(); out.close(); } catch(IOException e) { e.printStackTrace(); } } private String nextToken() throws IOException, NullPointerException { while(st == null || !st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } private int nextInt() throws IOException { return Integer.parseInt(nextToken()); } private long nextLong() throws IOException { return Long.parseLong(nextToken()); } private double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,244
3,119
3,575
import java.util.*; import java.io.*; public class C{ public static void main(String args[]) throws Exception{ Scanner in = new Scanner(new FileReader("input.txt")); PrintWriter out = new PrintWriter(new File("output.txt")); int N = in.nextInt(); int M = in.nextInt(); int K = in.nextInt(); int[] X = new int[K], Y = new int[K]; for (int i = 0; i < K; i++){ X[i] = in.nextInt(); Y[i] = in.nextInt(); } int d = -1; int a = -1; int b = -1; for (int i = 1; i <= N; i++) for (int j = 1; j <= M; j++){ int h = Integer.MAX_VALUE; for (int p = 0; p < K; p++) h = Math.min(h,Math.abs(i-X[p]) + Math.abs(j-Y[p])); if (h > d){ d = h; a = i; b = j; } } out.print(a + " " + b); out.close(); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class C{ public static void main(String args[]) throws Exception{ Scanner in = new Scanner(new FileReader("input.txt")); PrintWriter out = new PrintWriter(new File("output.txt")); int N = in.nextInt(); int M = in.nextInt(); int K = in.nextInt(); int[] X = new int[K], Y = new int[K]; for (int i = 0; i < K; i++){ X[i] = in.nextInt(); Y[i] = in.nextInt(); } int d = -1; int a = -1; int b = -1; for (int i = 1; i <= N; i++) for (int j = 1; j <= M; j++){ int h = Integer.MAX_VALUE; for (int p = 0; p < K; p++) h = Math.min(h,Math.abs(i-X[p]) + Math.abs(j-Y[p])); if (h > d){ d = h; a = i; b = j; } } out.print(a + " " + b); out.close(); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class C{ public static void main(String args[]) throws Exception{ Scanner in = new Scanner(new FileReader("input.txt")); PrintWriter out = new PrintWriter(new File("output.txt")); int N = in.nextInt(); int M = in.nextInt(); int K = in.nextInt(); int[] X = new int[K], Y = new int[K]; for (int i = 0; i < K; i++){ X[i] = in.nextInt(); Y[i] = in.nextInt(); } int d = -1; int a = -1; int b = -1; for (int i = 1; i <= N; i++) for (int j = 1; j <= M; j++){ int h = Integer.MAX_VALUE; for (int p = 0; p < K; p++) h = Math.min(h,Math.abs(i-X[p]) + Math.abs(j-Y[p])); if (h > d){ d = h; a = i; b = j; } } out.print(a + " " + b); out.close(); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
585
3,567
2,481
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.HashMap; import java.util.InputMismatchException; import java.io.IOException; import java.util.ArrayList; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author beginner1010 */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskF2 solver = new TaskF2(); solver.solve(1, in, out); out.close(); } static class TaskF2 { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = in.nextInt(); } HashMap<Long, ArrayList<Interval>> map = new HashMap<>(); for (int i = 0; i < n; i++) { long sum = 0; for (int j = i; j < n; j++) { sum += a[j]; if (map.containsKey(sum) == false) { map.put(sum, new ArrayList<>()); } ArrayList<Interval> arr = map.get(sum); if (arr.isEmpty() || arr.get(arr.size() - 1).r < i) { arr.add(new Interval(i, j)); } else if (arr.get(arr.size() - 1).r >= j) { arr.set(arr.size() - 1, new Interval(i, j)); } } } ArrayList<Interval> best = new ArrayList<>(); for (ArrayList<Interval> arr : map.values()) { if (best.size() < arr.size()) { best = arr; } } out.println(best.size()); for (Interval i : best) { out.println((i.l + 1) + " " + (i.r + 1)); } } class Interval { int l; int r; Interval(int l, int r) { this.l = l; this.r = r; } } } static class InputReader { private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputStream stream; public InputReader(InputStream stream) { this.stream = stream; } private boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = read(); while (isWhitespace(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isWhitespace(c)); return res * sgn; } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.HashMap; import java.util.InputMismatchException; import java.io.IOException; import java.util.ArrayList; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author beginner1010 */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskF2 solver = new TaskF2(); solver.solve(1, in, out); out.close(); } static class TaskF2 { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = in.nextInt(); } HashMap<Long, ArrayList<Interval>> map = new HashMap<>(); for (int i = 0; i < n; i++) { long sum = 0; for (int j = i; j < n; j++) { sum += a[j]; if (map.containsKey(sum) == false) { map.put(sum, new ArrayList<>()); } ArrayList<Interval> arr = map.get(sum); if (arr.isEmpty() || arr.get(arr.size() - 1).r < i) { arr.add(new Interval(i, j)); } else if (arr.get(arr.size() - 1).r >= j) { arr.set(arr.size() - 1, new Interval(i, j)); } } } ArrayList<Interval> best = new ArrayList<>(); for (ArrayList<Interval> arr : map.values()) { if (best.size() < arr.size()) { best = arr; } } out.println(best.size()); for (Interval i : best) { out.println((i.l + 1) + " " + (i.r + 1)); } } class Interval { int l; int r; Interval(int l, int r) { this.l = l; this.r = r; } } } static class InputReader { private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputStream stream; public InputReader(InputStream stream) { this.stream = stream; } private boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = read(); while (isWhitespace(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isWhitespace(c)); return res * sgn; } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.HashMap; import java.util.InputMismatchException; import java.io.IOException; import java.util.ArrayList; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author beginner1010 */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskF2 solver = new TaskF2(); solver.solve(1, in, out); out.close(); } static class TaskF2 { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = in.nextInt(); } HashMap<Long, ArrayList<Interval>> map = new HashMap<>(); for (int i = 0; i < n; i++) { long sum = 0; for (int j = i; j < n; j++) { sum += a[j]; if (map.containsKey(sum) == false) { map.put(sum, new ArrayList<>()); } ArrayList<Interval> arr = map.get(sum); if (arr.isEmpty() || arr.get(arr.size() - 1).r < i) { arr.add(new Interval(i, j)); } else if (arr.get(arr.size() - 1).r >= j) { arr.set(arr.size() - 1, new Interval(i, j)); } } } ArrayList<Interval> best = new ArrayList<>(); for (ArrayList<Interval> arr : map.values()) { if (best.size() < arr.size()) { best = arr; } } out.println(best.size()); for (Interval i : best) { out.println((i.l + 1) + " " + (i.r + 1)); } } class Interval { int l; int r; Interval(int l, int r) { this.l = l; this.r = r; } } } static class InputReader { private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputStream stream; public InputReader(InputStream stream) { this.stream = stream; } private boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = read(); while (isWhitespace(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isWhitespace(c)); return res * sgn; } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,158
2,476
4,436
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Arrays; import java.util.StringTokenizer; /** * Author - * User: kansal * Date: 9/3/11 * Time: 5:28 PM */ public class CF85E { public static void main(String[] args) { reader = new BufferedReader(new InputStreamReader(System.in)); int height = nextInt(), width = nextInt(); if (width > height) { int t = width; width = height; height = t; } final int INF = height * width + 10; int[][][] dp = new int[height + 1][1 << width][1 << width]; for (int[][] ints : dp) { for (int[] anInt : ints) { Arrays.fill(anInt, INF); } } dp[0][0][0] = 0; for(int r = 0; r < height; ++r) { for(int uncovered = 0; uncovered < (1 << width); ++uncovered) { for(int mask = 0; mask < (1 << width); ++mask) { if (dp[r][uncovered][mask] == INF) { continue; } for(int curMask = uncovered; curMask < (1 << width); curMask = (curMask + 1) | uncovered) { int curUncovered = (1 << width) - 1; for(int i = 0; i < width; ++i) { if (hasBit(mask, i) || hasBit(curMask, i)) { curUncovered &= ~(1 << i); } if (i > 0 && hasBit(curMask, i-1)) { curUncovered &= ~(1 << i); } if (i < width-1 && hasBit(curMask, i+1)) { curUncovered &= ~(1 << i); } } dp[r+1][curUncovered][curMask] = Math.min(dp[r+1][curUncovered][curMask], dp[r][uncovered][mask] + Integer.bitCount(curMask)); } } } } int res = INF; for(int x: dp[height][0]) res = Math.min(res, x); System.out.println(height * width - res); } private static boolean hasBit(int mask, int bit) { return (((mask >> bit) & 1) == 1); } public static BufferedReader reader; public static StringTokenizer tokenizer = null; static String nextToken() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } static public int nextInt() { return Integer.parseInt(nextToken()); } static public long nextLong() { return Long.parseLong(nextToken()); } static public String next() { return nextToken(); } static public String nextLine() { try { return reader.readLine(); } catch (IOException e) { e.printStackTrace(); } return null; } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Arrays; import java.util.StringTokenizer; /** * Author - * User: kansal * Date: 9/3/11 * Time: 5:28 PM */ public class CF85E { public static void main(String[] args) { reader = new BufferedReader(new InputStreamReader(System.in)); int height = nextInt(), width = nextInt(); if (width > height) { int t = width; width = height; height = t; } final int INF = height * width + 10; int[][][] dp = new int[height + 1][1 << width][1 << width]; for (int[][] ints : dp) { for (int[] anInt : ints) { Arrays.fill(anInt, INF); } } dp[0][0][0] = 0; for(int r = 0; r < height; ++r) { for(int uncovered = 0; uncovered < (1 << width); ++uncovered) { for(int mask = 0; mask < (1 << width); ++mask) { if (dp[r][uncovered][mask] == INF) { continue; } for(int curMask = uncovered; curMask < (1 << width); curMask = (curMask + 1) | uncovered) { int curUncovered = (1 << width) - 1; for(int i = 0; i < width; ++i) { if (hasBit(mask, i) || hasBit(curMask, i)) { curUncovered &= ~(1 << i); } if (i > 0 && hasBit(curMask, i-1)) { curUncovered &= ~(1 << i); } if (i < width-1 && hasBit(curMask, i+1)) { curUncovered &= ~(1 << i); } } dp[r+1][curUncovered][curMask] = Math.min(dp[r+1][curUncovered][curMask], dp[r][uncovered][mask] + Integer.bitCount(curMask)); } } } } int res = INF; for(int x: dp[height][0]) res = Math.min(res, x); System.out.println(height * width - res); } private static boolean hasBit(int mask, int bit) { return (((mask >> bit) & 1) == 1); } public static BufferedReader reader; public static StringTokenizer tokenizer = null; static String nextToken() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } static public int nextInt() { return Integer.parseInt(nextToken()); } static public long nextLong() { return Long.parseLong(nextToken()); } static public String next() { return nextToken(); } static public String nextLine() { try { return reader.readLine(); } catch (IOException e) { e.printStackTrace(); } return null; } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Arrays; import java.util.StringTokenizer; /** * Author - * User: kansal * Date: 9/3/11 * Time: 5:28 PM */ public class CF85E { public static void main(String[] args) { reader = new BufferedReader(new InputStreamReader(System.in)); int height = nextInt(), width = nextInt(); if (width > height) { int t = width; width = height; height = t; } final int INF = height * width + 10; int[][][] dp = new int[height + 1][1 << width][1 << width]; for (int[][] ints : dp) { for (int[] anInt : ints) { Arrays.fill(anInt, INF); } } dp[0][0][0] = 0; for(int r = 0; r < height; ++r) { for(int uncovered = 0; uncovered < (1 << width); ++uncovered) { for(int mask = 0; mask < (1 << width); ++mask) { if (dp[r][uncovered][mask] == INF) { continue; } for(int curMask = uncovered; curMask < (1 << width); curMask = (curMask + 1) | uncovered) { int curUncovered = (1 << width) - 1; for(int i = 0; i < width; ++i) { if (hasBit(mask, i) || hasBit(curMask, i)) { curUncovered &= ~(1 << i); } if (i > 0 && hasBit(curMask, i-1)) { curUncovered &= ~(1 << i); } if (i < width-1 && hasBit(curMask, i+1)) { curUncovered &= ~(1 << i); } } dp[r+1][curUncovered][curMask] = Math.min(dp[r+1][curUncovered][curMask], dp[r][uncovered][mask] + Integer.bitCount(curMask)); } } } } int res = INF; for(int x: dp[height][0]) res = Math.min(res, x); System.out.println(height * width - res); } private static boolean hasBit(int mask, int bit) { return (((mask >> bit) & 1) == 1); } public static BufferedReader reader; public static StringTokenizer tokenizer = null; static String nextToken() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } static public int nextInt() { return Integer.parseInt(nextToken()); } static public long nextLong() { return Long.parseLong(nextToken()); } static public String next() { return nextToken(); } static public String nextLine() { try { return reader.readLine(); } catch (IOException e) { e.printStackTrace(); } return null; } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,038
4,425
377
import java.util.InputMismatchException; import java.math.BigInteger; import java.io.*; import java.util.*; /** * Generated by Contest helper plug-in * Actual solution is at the bottom */ public class Main { public static void main(String[] args) { InputReader in = new StreamInputReader(System.in); PrintWriter out = new PrintWriter(System.out); run(in, out); } public static void run(InputReader in, PrintWriter out) { Solver solver = new Task(); solver.solve(1, in, out); Exit.exit(in, out); } } abstract class InputReader { private boolean finished = false; public abstract int read(); public long readLong() { return new BigInteger(readString()).longValue(); } public int readInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuffer res = new StringBuffer(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public void setFinished(boolean finished) { this.finished = finished; } public abstract void close(); } class StreamInputReader extends InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar, numChars; public StreamInputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public void close() { try { stream.close(); } catch (IOException ignored) { } } } class Exit { private Exit() { } public static void exit(InputReader in, PrintWriter out) { in.setFinished(true); in.close(); out.close(); } } interface Solver { public void solve(int testNumber, InputReader in, PrintWriter out); } class Task implements Solver { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.readInt(); int a = in.readInt(); int b = in.readInt(); if (a==b) { b = 0; } boolean[] where = new boolean[n]; HashSet<Integer> set = new HashSet<Integer>(); HashMap<Integer,Integer> indexmap = new HashMap<Integer,Integer>(); for (int i = 0; i<n; i++) { int x = in.readInt(); indexmap.put(x, i); set.add(x); } while (set.size() > 0) { int size = set.size(); HashSet<Integer> todo = new HashSet<Integer>(); HashSet<Integer> used = new HashSet<Integer>(); for (int x : set) { if (used.contains(x)) continue; int ax = a-x; int bx = b-x; if ((set.contains(ax) && !used.contains(ax)) && (set.contains(bx) && !used.contains(bx))) { todo.add(x); } else if (set.contains(ax) && !used.contains(ax)) { used.add(x); used.add(ax); todo.remove(ax); //chain bx = b-ax; while (set.contains(bx) && !used.contains(bx)) { x = bx; ax = a-x; if (!set.contains(ax) || used.contains(ax)) { System.out.println("NO"); return; } todo.remove(x); todo.remove(ax); used.add(x); used.add(ax); bx = b-ax; } } else if (set.contains(bx) && !used.contains(bx)) { used.add(x); used.add(bx); todo.remove(bx); where[indexmap.get(bx)] = true; where[indexmap.get(x)] = true; //chain ax = a-bx; while (set.contains(ax) && !used.contains(ax)) { x = ax; bx = b-x; if (!set.contains(bx) || used.contains(bx)) { System.out.println("NO"); return; } todo.remove(x); todo.remove(bx); used.add(x); used.add(bx); where[indexmap.get(bx)] = true; where[indexmap.get(x)] = true; ax = a-bx; } } else { System.out.println("NO"); return; } } set = todo; if (set.size() == size) { System.out.println("Set size constant!!"); break; } } System.out.println("YES"); for (int i = 0; i<n; i++) if (where[i]) System.out.print("1 "); else System.out.print("0 "); } } class num { } ///
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.InputMismatchException; import java.math.BigInteger; import java.io.*; import java.util.*; /** * Generated by Contest helper plug-in * Actual solution is at the bottom */ public class Main { public static void main(String[] args) { InputReader in = new StreamInputReader(System.in); PrintWriter out = new PrintWriter(System.out); run(in, out); } public static void run(InputReader in, PrintWriter out) { Solver solver = new Task(); solver.solve(1, in, out); Exit.exit(in, out); } } abstract class InputReader { private boolean finished = false; public abstract int read(); public long readLong() { return new BigInteger(readString()).longValue(); } public int readInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuffer res = new StringBuffer(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public void setFinished(boolean finished) { this.finished = finished; } public abstract void close(); } class StreamInputReader extends InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar, numChars; public StreamInputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public void close() { try { stream.close(); } catch (IOException ignored) { } } } class Exit { private Exit() { } public static void exit(InputReader in, PrintWriter out) { in.setFinished(true); in.close(); out.close(); } } interface Solver { public void solve(int testNumber, InputReader in, PrintWriter out); } class Task implements Solver { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.readInt(); int a = in.readInt(); int b = in.readInt(); if (a==b) { b = 0; } boolean[] where = new boolean[n]; HashSet<Integer> set = new HashSet<Integer>(); HashMap<Integer,Integer> indexmap = new HashMap<Integer,Integer>(); for (int i = 0; i<n; i++) { int x = in.readInt(); indexmap.put(x, i); set.add(x); } while (set.size() > 0) { int size = set.size(); HashSet<Integer> todo = new HashSet<Integer>(); HashSet<Integer> used = new HashSet<Integer>(); for (int x : set) { if (used.contains(x)) continue; int ax = a-x; int bx = b-x; if ((set.contains(ax) && !used.contains(ax)) && (set.contains(bx) && !used.contains(bx))) { todo.add(x); } else if (set.contains(ax) && !used.contains(ax)) { used.add(x); used.add(ax); todo.remove(ax); //chain bx = b-ax; while (set.contains(bx) && !used.contains(bx)) { x = bx; ax = a-x; if (!set.contains(ax) || used.contains(ax)) { System.out.println("NO"); return; } todo.remove(x); todo.remove(ax); used.add(x); used.add(ax); bx = b-ax; } } else if (set.contains(bx) && !used.contains(bx)) { used.add(x); used.add(bx); todo.remove(bx); where[indexmap.get(bx)] = true; where[indexmap.get(x)] = true; //chain ax = a-bx; while (set.contains(ax) && !used.contains(ax)) { x = ax; bx = b-x; if (!set.contains(bx) || used.contains(bx)) { System.out.println("NO"); return; } todo.remove(x); todo.remove(bx); used.add(x); used.add(bx); where[indexmap.get(bx)] = true; where[indexmap.get(x)] = true; ax = a-bx; } } else { System.out.println("NO"); return; } } set = todo; if (set.size() == size) { System.out.println("Set size constant!!"); break; } } System.out.println("YES"); for (int i = 0; i<n; i++) if (where[i]) System.out.print("1 "); else System.out.print("0 "); } } class num { } /// </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.InputMismatchException; import java.math.BigInteger; import java.io.*; import java.util.*; /** * Generated by Contest helper plug-in * Actual solution is at the bottom */ public class Main { public static void main(String[] args) { InputReader in = new StreamInputReader(System.in); PrintWriter out = new PrintWriter(System.out); run(in, out); } public static void run(InputReader in, PrintWriter out) { Solver solver = new Task(); solver.solve(1, in, out); Exit.exit(in, out); } } abstract class InputReader { private boolean finished = false; public abstract int read(); public long readLong() { return new BigInteger(readString()).longValue(); } public int readInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuffer res = new StringBuffer(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public void setFinished(boolean finished) { this.finished = finished; } public abstract void close(); } class StreamInputReader extends InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar, numChars; public StreamInputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public void close() { try { stream.close(); } catch (IOException ignored) { } } } class Exit { private Exit() { } public static void exit(InputReader in, PrintWriter out) { in.setFinished(true); in.close(); out.close(); } } interface Solver { public void solve(int testNumber, InputReader in, PrintWriter out); } class Task implements Solver { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.readInt(); int a = in.readInt(); int b = in.readInt(); if (a==b) { b = 0; } boolean[] where = new boolean[n]; HashSet<Integer> set = new HashSet<Integer>(); HashMap<Integer,Integer> indexmap = new HashMap<Integer,Integer>(); for (int i = 0; i<n; i++) { int x = in.readInt(); indexmap.put(x, i); set.add(x); } while (set.size() > 0) { int size = set.size(); HashSet<Integer> todo = new HashSet<Integer>(); HashSet<Integer> used = new HashSet<Integer>(); for (int x : set) { if (used.contains(x)) continue; int ax = a-x; int bx = b-x; if ((set.contains(ax) && !used.contains(ax)) && (set.contains(bx) && !used.contains(bx))) { todo.add(x); } else if (set.contains(ax) && !used.contains(ax)) { used.add(x); used.add(ax); todo.remove(ax); //chain bx = b-ax; while (set.contains(bx) && !used.contains(bx)) { x = bx; ax = a-x; if (!set.contains(ax) || used.contains(ax)) { System.out.println("NO"); return; } todo.remove(x); todo.remove(ax); used.add(x); used.add(ax); bx = b-ax; } } else if (set.contains(bx) && !used.contains(bx)) { used.add(x); used.add(bx); todo.remove(bx); where[indexmap.get(bx)] = true; where[indexmap.get(x)] = true; //chain ax = a-bx; while (set.contains(ax) && !used.contains(ax)) { x = ax; bx = b-x; if (!set.contains(bx) || used.contains(bx)) { System.out.println("NO"); return; } todo.remove(x); todo.remove(bx); used.add(x); used.add(bx); where[indexmap.get(bx)] = true; where[indexmap.get(x)] = true; ax = a-bx; } } else { System.out.println("NO"); return; } } set = todo; if (set.size() == size) { System.out.println("Set size constant!!"); break; } } System.out.println("YES"); for (int i = 0; i<n; i++) if (where[i]) System.out.print("1 "); else System.out.print("0 "); } } class num { } /// </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,659
376
2,733
import java.util.*; public class maximus { static long GCD(long a,long b){ if(b==0)return a; return GCD(b,a%b); } public static void main(String [] args){ Scanner in=new Scanner(System.in); long n=in.nextInt(); if(n<=2){ System.out.print(n); return; } if(n%2==1){ System.out.print((n*(n-1)*(n-2))); return; } if(n%2==0 && n<=6){ System.out.print(n*(n-1)*(n-2)/2); return; } long temp=(n*(n-1)*(n-3))/GCD(n,n-3); System.out.print(Math.max((n-1)*(n-2)*(n-3),temp)); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; public class maximus { static long GCD(long a,long b){ if(b==0)return a; return GCD(b,a%b); } public static void main(String [] args){ Scanner in=new Scanner(System.in); long n=in.nextInt(); if(n<=2){ System.out.print(n); return; } if(n%2==1){ System.out.print((n*(n-1)*(n-2))); return; } if(n%2==0 && n<=6){ System.out.print(n*(n-1)*(n-2)/2); return; } long temp=(n*(n-1)*(n-3))/GCD(n,n-3); System.out.print(Math.max((n-1)*(n-2)*(n-3),temp)); } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; public class maximus { static long GCD(long a,long b){ if(b==0)return a; return GCD(b,a%b); } public static void main(String [] args){ Scanner in=new Scanner(System.in); long n=in.nextInt(); if(n<=2){ System.out.print(n); return; } if(n%2==1){ System.out.print((n*(n-1)*(n-2))); return; } if(n%2==0 && n<=6){ System.out.print(n*(n-1)*(n-2)/2); return; } long temp=(n*(n-1)*(n-3))/GCD(n,n-3); System.out.print(Math.max((n-1)*(n-2)*(n-3),temp)); } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
534
2,727
4,072
import java.io.*; import java.util.*; public class Main { BufferedReader in = null; PrintWriter out = null; int dist(int x1, int y1, int x2, int y2) { int dx = Math.abs(x1 - x2); int dy = Math.abs(y1 - y2); return dx * dx + dy * dy; } boolean testBit(int use, int p) { return ((use >> p) & 1) == 1; } int rec(int use, int a[][], int dp[], int next[]) { if (dp[use] != -1) { return dp[use]; } if (use == 0) { return dp[use] = 0; } int n = a.length; int ix = -1; for (int i = 0; i < n; ++i) { if (testBit(use, i)) { if (ix == -1) { ix = i; break; } /* int t = rec(use ^ (1 << i), a, dp); t += a[i][i]; r = Math.min(r, t);*/ } } int r = rec(use ^ (1 << ix), a, dp, next) + a[ix][ix]; next[use] = use ^ (1 << ix); for (int i = ix + 1; i < n; ++i) { if (!testBit(use, i)) { continue; } int t = rec(use ^ (1 << ix) ^ (1 << i), a, dp, next); t += a[ix][i]; if (t < r) { r = t; next[use] = use ^ (1 << ix) ^ (1 << i); } } return dp[use] = r; } void print(int use1, int use2, int n) { for (int i = 0; i < n; ++i) { if (testBit(use1, i) ^ testBit(use2, i)) { int x = i + 1; out.print(x + " "); } } } void solve() throws IOException { in = new BufferedReader(new InputStreamReader(System.in)); //in = new BufferedReader(new FileReader("input.txt")); out = new PrintWriter(System.out); StringTokenizer st; st = new StringTokenizer(in.readLine()); int sx = Integer.valueOf(st.nextToken()); int sy = Integer.valueOf(st.nextToken()); st = new StringTokenizer(in.readLine()); int n = Integer.valueOf(st.nextToken()); int x[] = new int[n]; int y[] = new int[n]; for (int i = 0; i < n; ++i) { st = new StringTokenizer(in.readLine()); x[i] = Integer.valueOf(st.nextToken()); y[i] = Integer.valueOf(st.nextToken()); } int a[][] = new int[n][n]; for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { a[i][j] = dist(x[i], y[i], sx, sy) + dist(x[j], y[j], sx, sy) + dist(x[i], y[i], x[j], y[j]); } } int dp[] = new int[1 << n]; Arrays.fill(dp, -1); int next[] = new int[1 << n]; int ans = rec((1 << n) - 1, a, dp, next); out.println(ans); int use = (1 << n) - 1; while (true) { int nuse = next[use]; out.print("0 "); print(use, nuse, n); if (nuse == 0) break; use = nuse; } out.println("0"); in.close(); out.close(); } public static void main(String[] args) throws IOException { new Main().solve(); } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main { BufferedReader in = null; PrintWriter out = null; int dist(int x1, int y1, int x2, int y2) { int dx = Math.abs(x1 - x2); int dy = Math.abs(y1 - y2); return dx * dx + dy * dy; } boolean testBit(int use, int p) { return ((use >> p) & 1) == 1; } int rec(int use, int a[][], int dp[], int next[]) { if (dp[use] != -1) { return dp[use]; } if (use == 0) { return dp[use] = 0; } int n = a.length; int ix = -1; for (int i = 0; i < n; ++i) { if (testBit(use, i)) { if (ix == -1) { ix = i; break; } /* int t = rec(use ^ (1 << i), a, dp); t += a[i][i]; r = Math.min(r, t);*/ } } int r = rec(use ^ (1 << ix), a, dp, next) + a[ix][ix]; next[use] = use ^ (1 << ix); for (int i = ix + 1; i < n; ++i) { if (!testBit(use, i)) { continue; } int t = rec(use ^ (1 << ix) ^ (1 << i), a, dp, next); t += a[ix][i]; if (t < r) { r = t; next[use] = use ^ (1 << ix) ^ (1 << i); } } return dp[use] = r; } void print(int use1, int use2, int n) { for (int i = 0; i < n; ++i) { if (testBit(use1, i) ^ testBit(use2, i)) { int x = i + 1; out.print(x + " "); } } } void solve() throws IOException { in = new BufferedReader(new InputStreamReader(System.in)); //in = new BufferedReader(new FileReader("input.txt")); out = new PrintWriter(System.out); StringTokenizer st; st = new StringTokenizer(in.readLine()); int sx = Integer.valueOf(st.nextToken()); int sy = Integer.valueOf(st.nextToken()); st = new StringTokenizer(in.readLine()); int n = Integer.valueOf(st.nextToken()); int x[] = new int[n]; int y[] = new int[n]; for (int i = 0; i < n; ++i) { st = new StringTokenizer(in.readLine()); x[i] = Integer.valueOf(st.nextToken()); y[i] = Integer.valueOf(st.nextToken()); } int a[][] = new int[n][n]; for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { a[i][j] = dist(x[i], y[i], sx, sy) + dist(x[j], y[j], sx, sy) + dist(x[i], y[i], x[j], y[j]); } } int dp[] = new int[1 << n]; Arrays.fill(dp, -1); int next[] = new int[1 << n]; int ans = rec((1 << n) - 1, a, dp, next); out.println(ans); int use = (1 << n) - 1; while (true) { int nuse = next[use]; out.print("0 "); print(use, nuse, n); if (nuse == 0) break; use = nuse; } out.println("0"); in.close(); out.close(); } public static void main(String[] args) throws IOException { new Main().solve(); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main { BufferedReader in = null; PrintWriter out = null; int dist(int x1, int y1, int x2, int y2) { int dx = Math.abs(x1 - x2); int dy = Math.abs(y1 - y2); return dx * dx + dy * dy; } boolean testBit(int use, int p) { return ((use >> p) & 1) == 1; } int rec(int use, int a[][], int dp[], int next[]) { if (dp[use] != -1) { return dp[use]; } if (use == 0) { return dp[use] = 0; } int n = a.length; int ix = -1; for (int i = 0; i < n; ++i) { if (testBit(use, i)) { if (ix == -1) { ix = i; break; } /* int t = rec(use ^ (1 << i), a, dp); t += a[i][i]; r = Math.min(r, t);*/ } } int r = rec(use ^ (1 << ix), a, dp, next) + a[ix][ix]; next[use] = use ^ (1 << ix); for (int i = ix + 1; i < n; ++i) { if (!testBit(use, i)) { continue; } int t = rec(use ^ (1 << ix) ^ (1 << i), a, dp, next); t += a[ix][i]; if (t < r) { r = t; next[use] = use ^ (1 << ix) ^ (1 << i); } } return dp[use] = r; } void print(int use1, int use2, int n) { for (int i = 0; i < n; ++i) { if (testBit(use1, i) ^ testBit(use2, i)) { int x = i + 1; out.print(x + " "); } } } void solve() throws IOException { in = new BufferedReader(new InputStreamReader(System.in)); //in = new BufferedReader(new FileReader("input.txt")); out = new PrintWriter(System.out); StringTokenizer st; st = new StringTokenizer(in.readLine()); int sx = Integer.valueOf(st.nextToken()); int sy = Integer.valueOf(st.nextToken()); st = new StringTokenizer(in.readLine()); int n = Integer.valueOf(st.nextToken()); int x[] = new int[n]; int y[] = new int[n]; for (int i = 0; i < n; ++i) { st = new StringTokenizer(in.readLine()); x[i] = Integer.valueOf(st.nextToken()); y[i] = Integer.valueOf(st.nextToken()); } int a[][] = new int[n][n]; for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { a[i][j] = dist(x[i], y[i], sx, sy) + dist(x[j], y[j], sx, sy) + dist(x[i], y[i], x[j], y[j]); } } int dp[] = new int[1 << n]; Arrays.fill(dp, -1); int next[] = new int[1 << n]; int ans = rec((1 << n) - 1, a, dp, next); out.println(ans); int use = (1 << n) - 1; while (true) { int nuse = next[use]; out.print("0 "); print(use, nuse, n); if (nuse == 0) break; use = nuse; } out.println("0"); in.close(); out.close(); } public static void main(String[] args) throws IOException { new Main().solve(); } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,220
4,061
2,142
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.io.OutputStream; import java.io.IOException; import java.io.InputStreamReader; import java.util.TreeSet; import java.io.BufferedOutputStream; import java.util.StringTokenizer; import java.io.BufferedReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Aeroui */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; Kattio in = new Kattio(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } static class TaskC { public void solve(int testNumber, Kattio in, PrintWriter out) { int n = in.nextInt(); int r = in.nextInt(); double[] xs = new double[n]; double[] ys = new double[n]; TreeSet<TaskC.Pair> set = new TreeSet<>(); for (int i = 0; i < n; ++i) { xs[i] = in.nextDouble(); ys[i] = (double) Integer.MIN_VALUE; if (i == 0) { // the first one out.printf("%f", (double) r); ys[i] = (double) r; set.add(new TaskC.Pair(xs[i], ys[i])); } else { for (TaskC.Pair p : set) { double maximum = p.x; double diffX = (xs[i] - maximum) * (xs[i] - maximum); if (diffX <= r * r * 4.0) { ys[i] = Math.max(ys[i], p.y + Math.sqrt(r * r * 4.0 - diffX)); continue; } } if (ys[i] < 0) ys[i] = (double) r; set.add(new TaskC.Pair(xs[i], ys[i])); out.printf(" %f", ys[i]); } } } private static class Pair implements Comparable<TaskC.Pair> { double x; double y; public Pair(double x, double y) { this.x = x; this.y = y; } public int compareTo(TaskC.Pair p) { if (this.y - p.y < 0) return 1; return -1; } } } static class Kattio extends PrintWriter { private BufferedReader r; private String line; private StringTokenizer st; private String token; public Kattio(InputStream i) { super(new BufferedOutputStream(System.out)); r = new BufferedReader(new InputStreamReader(i)); } public Kattio(InputStream i, OutputStream o) { super(new BufferedOutputStream(o)); r = new BufferedReader(new InputStreamReader(i)); } public int nextInt() { return Integer.parseInt(nextToken()); } public double nextDouble() { return Double.parseDouble(nextToken()); } private String peekToken() { if (token == null) try { while (st == null || !st.hasMoreTokens()) { line = r.readLine(); if (line == null) return null; st = new StringTokenizer(line); } token = st.nextToken(); } catch (IOException e) { } return token; } private String nextToken() { String ans = peekToken(); token = null; return ans; } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.io.OutputStream; import java.io.IOException; import java.io.InputStreamReader; import java.util.TreeSet; import java.io.BufferedOutputStream; import java.util.StringTokenizer; import java.io.BufferedReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Aeroui */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; Kattio in = new Kattio(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } static class TaskC { public void solve(int testNumber, Kattio in, PrintWriter out) { int n = in.nextInt(); int r = in.nextInt(); double[] xs = new double[n]; double[] ys = new double[n]; TreeSet<TaskC.Pair> set = new TreeSet<>(); for (int i = 0; i < n; ++i) { xs[i] = in.nextDouble(); ys[i] = (double) Integer.MIN_VALUE; if (i == 0) { // the first one out.printf("%f", (double) r); ys[i] = (double) r; set.add(new TaskC.Pair(xs[i], ys[i])); } else { for (TaskC.Pair p : set) { double maximum = p.x; double diffX = (xs[i] - maximum) * (xs[i] - maximum); if (diffX <= r * r * 4.0) { ys[i] = Math.max(ys[i], p.y + Math.sqrt(r * r * 4.0 - diffX)); continue; } } if (ys[i] < 0) ys[i] = (double) r; set.add(new TaskC.Pair(xs[i], ys[i])); out.printf(" %f", ys[i]); } } } private static class Pair implements Comparable<TaskC.Pair> { double x; double y; public Pair(double x, double y) { this.x = x; this.y = y; } public int compareTo(TaskC.Pair p) { if (this.y - p.y < 0) return 1; return -1; } } } static class Kattio extends PrintWriter { private BufferedReader r; private String line; private StringTokenizer st; private String token; public Kattio(InputStream i) { super(new BufferedOutputStream(System.out)); r = new BufferedReader(new InputStreamReader(i)); } public Kattio(InputStream i, OutputStream o) { super(new BufferedOutputStream(o)); r = new BufferedReader(new InputStreamReader(i)); } public int nextInt() { return Integer.parseInt(nextToken()); } public double nextDouble() { return Double.parseDouble(nextToken()); } private String peekToken() { if (token == null) try { while (st == null || !st.hasMoreTokens()) { line = r.readLine(); if (line == null) return null; st = new StringTokenizer(line); } token = st.nextToken(); } catch (IOException e) { } return token; } private String nextToken() { String ans = peekToken(); token = null; return ans; } } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.io.OutputStream; import java.io.IOException; import java.io.InputStreamReader; import java.util.TreeSet; import java.io.BufferedOutputStream; import java.util.StringTokenizer; import java.io.BufferedReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Aeroui */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; Kattio in = new Kattio(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } static class TaskC { public void solve(int testNumber, Kattio in, PrintWriter out) { int n = in.nextInt(); int r = in.nextInt(); double[] xs = new double[n]; double[] ys = new double[n]; TreeSet<TaskC.Pair> set = new TreeSet<>(); for (int i = 0; i < n; ++i) { xs[i] = in.nextDouble(); ys[i] = (double) Integer.MIN_VALUE; if (i == 0) { // the first one out.printf("%f", (double) r); ys[i] = (double) r; set.add(new TaskC.Pair(xs[i], ys[i])); } else { for (TaskC.Pair p : set) { double maximum = p.x; double diffX = (xs[i] - maximum) * (xs[i] - maximum); if (diffX <= r * r * 4.0) { ys[i] = Math.max(ys[i], p.y + Math.sqrt(r * r * 4.0 - diffX)); continue; } } if (ys[i] < 0) ys[i] = (double) r; set.add(new TaskC.Pair(xs[i], ys[i])); out.printf(" %f", ys[i]); } } } private static class Pair implements Comparable<TaskC.Pair> { double x; double y; public Pair(double x, double y) { this.x = x; this.y = y; } public int compareTo(TaskC.Pair p) { if (this.y - p.y < 0) return 1; return -1; } } } static class Kattio extends PrintWriter { private BufferedReader r; private String line; private StringTokenizer st; private String token; public Kattio(InputStream i) { super(new BufferedOutputStream(System.out)); r = new BufferedReader(new InputStreamReader(i)); } public Kattio(InputStream i, OutputStream o) { super(new BufferedOutputStream(o)); r = new BufferedReader(new InputStreamReader(i)); } public int nextInt() { return Integer.parseInt(nextToken()); } public double nextDouble() { return Double.parseDouble(nextToken()); } private String peekToken() { if (token == null) try { while (st == null || !st.hasMoreTokens()) { line = r.readLine(); if (line == null) return null; st = new StringTokenizer(line); } token = st.nextToken(); } catch (IOException e) { } return token; } private String nextToken() { String ans = peekToken(); token = null; return ans; } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,118
2,138
761
//package baobab; import java.io.*; import java.util.*; public class C { public static void main(String[] args) { CIO io = new CIO(); try { Csolver solver = new Csolver(io); solver.solve(); } finally { io.close(); } } } class Csolver { CIO io; public Csolver(CIO io) { this.io = io; } public void solve() { int n = io.nextInt(); String input = io.next(); int[] count = new int[1000]; int pokemonsInRange = 0; int answer = Integer.MAX_VALUE; int a = 0; int b = 0; for (; b < n ; b++) { char end = input.charAt(b); if (count[end] == 0) { pokemonsInRange++; answer = Integer.MAX_VALUE; } count[end]++; while (count[input.charAt(a)] > 1) { count[input.charAt(a)]--; a++; } answer = Math.min(answer, b-a+1); } io.println(answer); } private static class Pair implements Comparable<Pair> { int id; long val; public Pair(long val, int id) { this.val = val; this.id = id; } @Override public int compareTo(Pair o) { if (this.val < o.val) return -1; if (this.val > o.val) return 1; return this.id - o.id; } } private List<Integer>[] toGraph(CIO io, int n) { List<Integer>[] g = new ArrayList[n+1]; for (int i=1; i<=n; i++) g[i] = new ArrayList<>(); for (int i=1; i<=n-1; i++) { int a = io.nextInt(); int b = io.nextInt(); g[a].add(b); g[b].add(a); } return g; } } class CIO extends PrintWriter { private InputStreamReader r; private static final int BUFSIZE = 1 << 15; private char[] buf; private int bufc; private int bufi; private StringBuilder sb; public CIO() { super(new BufferedOutputStream(System.out)); r = new InputStreamReader(System.in); buf = new char[BUFSIZE]; bufc = 0; bufi = 0; sb = new StringBuilder(); } private void fillBuf() throws IOException { bufi = 0; bufc = 0; while(bufc == 0) { bufc = r.read(buf, 0, BUFSIZE); if(bufc == -1) { bufc = 0; return; } } } private boolean pumpBuf() throws IOException { if(bufi == bufc) { fillBuf(); } return bufc != 0; } private boolean isDelimiter(char c) { return c == ' ' || c == '\t' || c == '\n' || c == '\r' || c == '\f'; } private void eatDelimiters() throws IOException { while(true) { if(bufi == bufc) { fillBuf(); if(bufc == 0) throw new RuntimeException("IO: Out of input."); } if(!isDelimiter(buf[bufi])) break; ++bufi; } } public String next() { try { sb.setLength(0); eatDelimiters(); int start = bufi; while(true) { if(bufi == bufc) { sb.append(buf, start, bufi - start); fillBuf(); start = 0; if(bufc == 0) break; } if(isDelimiter(buf[bufi])) break; ++bufi; } sb.append(buf, start, bufi - start); return sb.toString(); } catch(IOException e) { throw new RuntimeException("IO.next: Caught IOException."); } } public int nextInt() { try { int ret = 0; eatDelimiters(); boolean positive = true; if(buf[bufi] == '-') { ++bufi; if(!pumpBuf()) throw new RuntimeException("IO.nextInt: Invalid int."); positive = false; } boolean first = true; while(true) { if(!pumpBuf()) break; if(isDelimiter(buf[bufi])) { if(first) throw new RuntimeException("IO.nextInt: Invalid int."); break; } first = false; if(buf[bufi] >= '0' && buf[bufi] <= '9') { if(ret < -214748364) throw new RuntimeException("IO.nextInt: Invalid int."); ret *= 10; ret -= (int)(buf[bufi] - '0'); if(ret > 0) throw new RuntimeException("IO.nextInt: Invalid int."); } else { throw new RuntimeException("IO.nextInt: Invalid int."); } ++bufi; } if(positive) { if(ret == -2147483648) throw new RuntimeException("IO.nextInt: Invalid int."); ret = -ret; } return ret; } catch(IOException e) { throw new RuntimeException("IO.nextInt: Caught IOException."); } } public long nextLong() { try { long ret = 0; eatDelimiters(); boolean positive = true; if(buf[bufi] == '-') { ++bufi; if(!pumpBuf()) throw new RuntimeException("IO.nextLong: Invalid long."); positive = false; } boolean first = true; while(true) { if(!pumpBuf()) break; if(isDelimiter(buf[bufi])) { if(first) throw new RuntimeException("IO.nextLong: Invalid long."); break; } first = false; if(buf[bufi] >= '0' && buf[bufi] <= '9') { if(ret < -922337203685477580L) throw new RuntimeException("IO.nextLong: Invalid long."); ret *= 10; ret -= (long)(buf[bufi] - '0'); if(ret > 0) throw new RuntimeException("IO.nextLong: Invalid long."); } else { throw new RuntimeException("IO.nextLong: Invalid long."); } ++bufi; } if(positive) { if(ret == -9223372036854775808L) throw new RuntimeException("IO.nextLong: Invalid long."); ret = -ret; } return ret; } catch(IOException e) { throw new RuntimeException("IO.nextLong: Caught IOException."); } } public double nextDouble() { return Double.parseDouble(next()); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> //package baobab; import java.io.*; import java.util.*; public class C { public static void main(String[] args) { CIO io = new CIO(); try { Csolver solver = new Csolver(io); solver.solve(); } finally { io.close(); } } } class Csolver { CIO io; public Csolver(CIO io) { this.io = io; } public void solve() { int n = io.nextInt(); String input = io.next(); int[] count = new int[1000]; int pokemonsInRange = 0; int answer = Integer.MAX_VALUE; int a = 0; int b = 0; for (; b < n ; b++) { char end = input.charAt(b); if (count[end] == 0) { pokemonsInRange++; answer = Integer.MAX_VALUE; } count[end]++; while (count[input.charAt(a)] > 1) { count[input.charAt(a)]--; a++; } answer = Math.min(answer, b-a+1); } io.println(answer); } private static class Pair implements Comparable<Pair> { int id; long val; public Pair(long val, int id) { this.val = val; this.id = id; } @Override public int compareTo(Pair o) { if (this.val < o.val) return -1; if (this.val > o.val) return 1; return this.id - o.id; } } private List<Integer>[] toGraph(CIO io, int n) { List<Integer>[] g = new ArrayList[n+1]; for (int i=1; i<=n; i++) g[i] = new ArrayList<>(); for (int i=1; i<=n-1; i++) { int a = io.nextInt(); int b = io.nextInt(); g[a].add(b); g[b].add(a); } return g; } } class CIO extends PrintWriter { private InputStreamReader r; private static final int BUFSIZE = 1 << 15; private char[] buf; private int bufc; private int bufi; private StringBuilder sb; public CIO() { super(new BufferedOutputStream(System.out)); r = new InputStreamReader(System.in); buf = new char[BUFSIZE]; bufc = 0; bufi = 0; sb = new StringBuilder(); } private void fillBuf() throws IOException { bufi = 0; bufc = 0; while(bufc == 0) { bufc = r.read(buf, 0, BUFSIZE); if(bufc == -1) { bufc = 0; return; } } } private boolean pumpBuf() throws IOException { if(bufi == bufc) { fillBuf(); } return bufc != 0; } private boolean isDelimiter(char c) { return c == ' ' || c == '\t' || c == '\n' || c == '\r' || c == '\f'; } private void eatDelimiters() throws IOException { while(true) { if(bufi == bufc) { fillBuf(); if(bufc == 0) throw new RuntimeException("IO: Out of input."); } if(!isDelimiter(buf[bufi])) break; ++bufi; } } public String next() { try { sb.setLength(0); eatDelimiters(); int start = bufi; while(true) { if(bufi == bufc) { sb.append(buf, start, bufi - start); fillBuf(); start = 0; if(bufc == 0) break; } if(isDelimiter(buf[bufi])) break; ++bufi; } sb.append(buf, start, bufi - start); return sb.toString(); } catch(IOException e) { throw new RuntimeException("IO.next: Caught IOException."); } } public int nextInt() { try { int ret = 0; eatDelimiters(); boolean positive = true; if(buf[bufi] == '-') { ++bufi; if(!pumpBuf()) throw new RuntimeException("IO.nextInt: Invalid int."); positive = false; } boolean first = true; while(true) { if(!pumpBuf()) break; if(isDelimiter(buf[bufi])) { if(first) throw new RuntimeException("IO.nextInt: Invalid int."); break; } first = false; if(buf[bufi] >= '0' && buf[bufi] <= '9') { if(ret < -214748364) throw new RuntimeException("IO.nextInt: Invalid int."); ret *= 10; ret -= (int)(buf[bufi] - '0'); if(ret > 0) throw new RuntimeException("IO.nextInt: Invalid int."); } else { throw new RuntimeException("IO.nextInt: Invalid int."); } ++bufi; } if(positive) { if(ret == -2147483648) throw new RuntimeException("IO.nextInt: Invalid int."); ret = -ret; } return ret; } catch(IOException e) { throw new RuntimeException("IO.nextInt: Caught IOException."); } } public long nextLong() { try { long ret = 0; eatDelimiters(); boolean positive = true; if(buf[bufi] == '-') { ++bufi; if(!pumpBuf()) throw new RuntimeException("IO.nextLong: Invalid long."); positive = false; } boolean first = true; while(true) { if(!pumpBuf()) break; if(isDelimiter(buf[bufi])) { if(first) throw new RuntimeException("IO.nextLong: Invalid long."); break; } first = false; if(buf[bufi] >= '0' && buf[bufi] <= '9') { if(ret < -922337203685477580L) throw new RuntimeException("IO.nextLong: Invalid long."); ret *= 10; ret -= (long)(buf[bufi] - '0'); if(ret > 0) throw new RuntimeException("IO.nextLong: Invalid long."); } else { throw new RuntimeException("IO.nextLong: Invalid long."); } ++bufi; } if(positive) { if(ret == -9223372036854775808L) throw new RuntimeException("IO.nextLong: Invalid long."); ret = -ret; } return ret; } catch(IOException e) { throw new RuntimeException("IO.nextLong: Caught IOException."); } } public double nextDouble() { return Double.parseDouble(next()); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> //package baobab; import java.io.*; import java.util.*; public class C { public static void main(String[] args) { CIO io = new CIO(); try { Csolver solver = new Csolver(io); solver.solve(); } finally { io.close(); } } } class Csolver { CIO io; public Csolver(CIO io) { this.io = io; } public void solve() { int n = io.nextInt(); String input = io.next(); int[] count = new int[1000]; int pokemonsInRange = 0; int answer = Integer.MAX_VALUE; int a = 0; int b = 0; for (; b < n ; b++) { char end = input.charAt(b); if (count[end] == 0) { pokemonsInRange++; answer = Integer.MAX_VALUE; } count[end]++; while (count[input.charAt(a)] > 1) { count[input.charAt(a)]--; a++; } answer = Math.min(answer, b-a+1); } io.println(answer); } private static class Pair implements Comparable<Pair> { int id; long val; public Pair(long val, int id) { this.val = val; this.id = id; } @Override public int compareTo(Pair o) { if (this.val < o.val) return -1; if (this.val > o.val) return 1; return this.id - o.id; } } private List<Integer>[] toGraph(CIO io, int n) { List<Integer>[] g = new ArrayList[n+1]; for (int i=1; i<=n; i++) g[i] = new ArrayList<>(); for (int i=1; i<=n-1; i++) { int a = io.nextInt(); int b = io.nextInt(); g[a].add(b); g[b].add(a); } return g; } } class CIO extends PrintWriter { private InputStreamReader r; private static final int BUFSIZE = 1 << 15; private char[] buf; private int bufc; private int bufi; private StringBuilder sb; public CIO() { super(new BufferedOutputStream(System.out)); r = new InputStreamReader(System.in); buf = new char[BUFSIZE]; bufc = 0; bufi = 0; sb = new StringBuilder(); } private void fillBuf() throws IOException { bufi = 0; bufc = 0; while(bufc == 0) { bufc = r.read(buf, 0, BUFSIZE); if(bufc == -1) { bufc = 0; return; } } } private boolean pumpBuf() throws IOException { if(bufi == bufc) { fillBuf(); } return bufc != 0; } private boolean isDelimiter(char c) { return c == ' ' || c == '\t' || c == '\n' || c == '\r' || c == '\f'; } private void eatDelimiters() throws IOException { while(true) { if(bufi == bufc) { fillBuf(); if(bufc == 0) throw new RuntimeException("IO: Out of input."); } if(!isDelimiter(buf[bufi])) break; ++bufi; } } public String next() { try { sb.setLength(0); eatDelimiters(); int start = bufi; while(true) { if(bufi == bufc) { sb.append(buf, start, bufi - start); fillBuf(); start = 0; if(bufc == 0) break; } if(isDelimiter(buf[bufi])) break; ++bufi; } sb.append(buf, start, bufi - start); return sb.toString(); } catch(IOException e) { throw new RuntimeException("IO.next: Caught IOException."); } } public int nextInt() { try { int ret = 0; eatDelimiters(); boolean positive = true; if(buf[bufi] == '-') { ++bufi; if(!pumpBuf()) throw new RuntimeException("IO.nextInt: Invalid int."); positive = false; } boolean first = true; while(true) { if(!pumpBuf()) break; if(isDelimiter(buf[bufi])) { if(first) throw new RuntimeException("IO.nextInt: Invalid int."); break; } first = false; if(buf[bufi] >= '0' && buf[bufi] <= '9') { if(ret < -214748364) throw new RuntimeException("IO.nextInt: Invalid int."); ret *= 10; ret -= (int)(buf[bufi] - '0'); if(ret > 0) throw new RuntimeException("IO.nextInt: Invalid int."); } else { throw new RuntimeException("IO.nextInt: Invalid int."); } ++bufi; } if(positive) { if(ret == -2147483648) throw new RuntimeException("IO.nextInt: Invalid int."); ret = -ret; } return ret; } catch(IOException e) { throw new RuntimeException("IO.nextInt: Caught IOException."); } } public long nextLong() { try { long ret = 0; eatDelimiters(); boolean positive = true; if(buf[bufi] == '-') { ++bufi; if(!pumpBuf()) throw new RuntimeException("IO.nextLong: Invalid long."); positive = false; } boolean first = true; while(true) { if(!pumpBuf()) break; if(isDelimiter(buf[bufi])) { if(first) throw new RuntimeException("IO.nextLong: Invalid long."); break; } first = false; if(buf[bufi] >= '0' && buf[bufi] <= '9') { if(ret < -922337203685477580L) throw new RuntimeException("IO.nextLong: Invalid long."); ret *= 10; ret -= (long)(buf[bufi] - '0'); if(ret > 0) throw new RuntimeException("IO.nextLong: Invalid long."); } else { throw new RuntimeException("IO.nextLong: Invalid long."); } ++bufi; } if(positive) { if(ret == -9223372036854775808L) throw new RuntimeException("IO.nextLong: Invalid long."); ret = -ret; } return ret; } catch(IOException e) { throw new RuntimeException("IO.nextLong: Caught IOException."); } } public double nextDouble() { return Double.parseDouble(next()); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,864
760
561
import java.util.*; import java.lang.*; import java.io.*; public class Main { PrintWriter out = new PrintWriter(System.out); BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer tok = new StringTokenizer(""); String next() throws IOException { if (!tok.hasMoreTokens()) { tok = new StringTokenizer(in.readLine()); } return tok.nextToken(); } int ni() throws IOException { return Integer.parseInt(next()); } long nl() throws IOException { return Long.parseLong(next()); } long mod=1000000007; void solve() throws IOException { for (int tc=ni();tc>0;tc--) { long n=ni(); long q=1; long p=1; boolean f=false; while (true) { if (p*2==n || p*4==n) { f=true; break; } q++; p=q*q; if (p>n) break; } if (f) out.println("YES"); else out.println("NO"); } out.flush(); } int gcd(int a,int b) { return(b==0?a:gcd(b,a%b)); } long gcd(long a,long b) { return(b==0?a:gcd(b,a%b)); } long mp(long a,long p) { long r=1; while(p>0) { if ((p&1)==1) r=(r*a)%mod; p>>=1; a=(a*a)%mod; } return r; } public static void main(String[] args) throws IOException { new Main().solve(); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.lang.*; import java.io.*; public class Main { PrintWriter out = new PrintWriter(System.out); BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer tok = new StringTokenizer(""); String next() throws IOException { if (!tok.hasMoreTokens()) { tok = new StringTokenizer(in.readLine()); } return tok.nextToken(); } int ni() throws IOException { return Integer.parseInt(next()); } long nl() throws IOException { return Long.parseLong(next()); } long mod=1000000007; void solve() throws IOException { for (int tc=ni();tc>0;tc--) { long n=ni(); long q=1; long p=1; boolean f=false; while (true) { if (p*2==n || p*4==n) { f=true; break; } q++; p=q*q; if (p>n) break; } if (f) out.println("YES"); else out.println("NO"); } out.flush(); } int gcd(int a,int b) { return(b==0?a:gcd(b,a%b)); } long gcd(long a,long b) { return(b==0?a:gcd(b,a%b)); } long mp(long a,long p) { long r=1; while(p>0) { if ((p&1)==1) r=(r*a)%mod; p>>=1; a=(a*a)%mod; } return r; } public static void main(String[] args) throws IOException { new Main().solve(); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.lang.*; import java.io.*; public class Main { PrintWriter out = new PrintWriter(System.out); BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer tok = new StringTokenizer(""); String next() throws IOException { if (!tok.hasMoreTokens()) { tok = new StringTokenizer(in.readLine()); } return tok.nextToken(); } int ni() throws IOException { return Integer.parseInt(next()); } long nl() throws IOException { return Long.parseLong(next()); } long mod=1000000007; void solve() throws IOException { for (int tc=ni();tc>0;tc--) { long n=ni(); long q=1; long p=1; boolean f=false; while (true) { if (p*2==n || p*4==n) { f=true; break; } q++; p=q*q; if (p>n) break; } if (f) out.println("YES"); else out.println("NO"); } out.flush(); } int gcd(int a,int b) { return(b==0?a:gcd(b,a%b)); } long gcd(long a,long b) { return(b==0?a:gcd(b,a%b)); } long mp(long a,long p) { long r=1; while(p>0) { if ((p&1)==1) r=(r*a)%mod; p>>=1; a=(a*a)%mod; } return r; } public static void main(String[] args) throws IOException { new Main().solve(); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
680
560
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
49