id
int64 0
4.52k
| code
stringlengths 142
31.2k
| answer
stringclasses 7
values | prompt
stringlengths 1.64k
32.6k
| test_prompt
stringlengths 1.7k
32.7k
| token_length
int64 373
7.8k
| __index_level_0__
int64 0
4.5k
|
---|---|---|---|---|---|---|
4,101 |
import java.util.*;
import java.io.*;
import java.awt.Point;
import java.math.BigInteger;
import static java.lang.Math.*;
// Solution is at the bottom of code
public class ProblemC_008 implements Runnable{
final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null;
BufferedReader in;
OutputWriter out;
StringTokenizer tok = new StringTokenizer("");
public static void main(String[] args){
new Thread(null, new ProblemC_008(), "", 128 * (1L << 20)).start();
}
/////////////////////////////////////////////////////////////////////
void init() throws FileNotFoundException{
Locale.setDefault(Locale.US);
if (ONLINE_JUDGE){
in = new BufferedReader(new InputStreamReader(System.in));
out = new OutputWriter(System.out);
}else{
in = new BufferedReader(new FileReader("input.txt"));
out = new OutputWriter("output.txt");
}
}
////////////////////////////////////////////////////////////////
long timeBegin, timeEnd;
void time(){
timeEnd = System.currentTimeMillis();
System.err.println("Time = " + (timeEnd - timeBegin));
}
void debug(Object... objects){
if (ONLINE_JUDGE){
for (Object o: objects){
System.err.println(o.toString());
}
}
}
/////////////////////////////////////////////////////////////////////
public void run(){
try{
timeBegin = System.currentTimeMillis();
Locale.setDefault(Locale.US);
init();
solve();
out.close();
time();
}catch (Exception e){
e.printStackTrace(System.err);
System.exit(-1);
}
}
/////////////////////////////////////////////////////////////////////
String delim = " ";
String readString() throws IOException{
while(!tok.hasMoreTokens()){
try{
tok = new StringTokenizer(in.readLine());
}catch (Exception e){
return null;
}
}
return tok.nextToken(delim);
}
String readLine() throws IOException{
return in.readLine();
}
/////////////////////////////////////////////////////////////////
final char NOT_A_SYMBOL = '\0';
char readChar() throws IOException{
int intValue = in.read();
if (intValue == -1){
return NOT_A_SYMBOL;
}
return (char) intValue;
}
char[] readCharArray() throws IOException{
return readLine().toCharArray();
}
/////////////////////////////////////////////////////////////////
int readInt() throws IOException{
return Integer.parseInt(readString());
}
int[] readIntArray(int size) throws IOException{
int[] array = new int[size];
for (int index = 0; index < size; ++index){
array[index] = readInt();
}
return array;
}
///////////////////////////////////////////////////////////////////
long readLong() throws IOException{
return Long.parseLong(readString());
}
long[] readLongArray(int size) throws IOException{
long[] array = new long[size];
for (int index = 0; index < size; ++index){
array[index] = readLong();
}
return array;
}
////////////////////////////////////////////////////////////////////
double readDouble() throws IOException{
return Double.parseDouble(readString());
}
double[] readDoubleArray(int size) throws IOException{
double[] array = new double[size];
for (int index = 0; index < size; ++index){
array[index] = readDouble();
}
return array;
}
/////////////////////////////////////////////////////////////////////
Point readPoint() throws IOException{
return new Point(readInt(), readInt());
}
Point[] readPointArray(int size) throws IOException{
Point[] array = new Point[size];
for (int index = 0; index < size; ++index){
array[index] = readPoint();
}
return array;
}
/////////////////////////////////////////////////////////////////////
class OutputWriter extends PrintWriter{
final int DEFAULT_PRECISION = 12;
int precision;
String format, formatWithSpace;
{
precision = DEFAULT_PRECISION;
format = createFormat(precision);
formatWithSpace = format + " ";
}
public OutputWriter(OutputStream out) {
super(out);
}
public OutputWriter(String fileName) throws FileNotFoundException {
super(fileName);
}
public int getPrecision() {
return precision;
}
public void setPrecision(int precision) {
this.precision = precision;
format = createFormat(precision);
formatWithSpace = format + " ";
}
private String createFormat(int precision){
return "%." + precision + "f";
}
@Override
public void print(double d){
printf(format, d);
}
public void printWithSpace(double d){
printf(formatWithSpace, d);
}
public void printAll(double...d){
for (int i = 0; i < d.length - 1; ++i){
printWithSpace(d[i]);
}
print(d[d.length - 1]);
}
@Override
public void println(double d){
printlnAll(d);
}
public void printlnAll(double... d){
printAll(d);
println();
}
}
/////////////////////////////////////////////////////////////////////
int[][] steps = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
boolean check(int index, int lim){
return (0 <= index && index < lim);
}
/////////////////////////////////////////////////////////////////////
void solve() throws IOException{
Point bag = readPoint();
int n = readInt();
Point[] points = new Point[n];
for (int i = 0; i < n; ++i){
points[i] = readPoint();
}
int[] dist = new int[n];
for (int i = 0; i < n; ++i){
int dx = points[i].x - bag.x;
int dy = points[i].y - bag.y;
dist[i] = dx * dx + dy * dy;
}
int[][] d = new int[n][n];
for (int i = 0; i < n; ++i){
for (int j = 0; j < n; ++j){
int dx = points[i].x - points[j].x;
int dy = points[i].y - points[j].y;
d[i][j] = dx * dx + dy * dy;
d[i][j] += dist[i] + dist[j];
}
}
int[] singleMasks = new int[n];
for (int i = 0; i < n; ++i){
singleMasks[i] = (1 << i);
}
int[][] doubleMasks = new int[n][n];
for (int i = 0; i < n; ++i){
for (int j = 0; j < n; ++j){
doubleMasks[i][j] = (singleMasks[i] | singleMasks[j]);
}
}
int lim = (1 << n);
int[] dp = new int[lim];
Arrays.fill(dp, Integer.MAX_VALUE);
dp[0] = 0;
int[] p = new int[lim];
Arrays.fill(p, -1);
for (int mask = 0; mask < lim; ++mask){
if (dp[mask] == Integer.MAX_VALUE){
continue;
}
int minBit = -1;
for (int bit = 0; bit < n; ++bit){
if (checkBit(mask, bit)) continue;
if (minBit == -1 || (dist[minBit] > dist[bit])){
minBit = bit;
}
}
if (minBit == -1){
continue;
}
for (int bit = 0; bit < n; ++bit){
if (checkBit(mask, bit)) continue;
int newMask = (mask | (1 << minBit) | (1 << bit));
if (dp[newMask] > dp[mask] + d[minBit][bit]){
dp[newMask] = dp[mask] + d[minBit][bit];
p[newMask] = minBit * n + bit;
}
}
}
out.println(dp[lim-1]);
int curMask = lim - 1;
while (p[curMask] != -1){
out.print("0 ");
int first = p[curMask] / n;
int second = p[curMask] % n;
out.print((first + 1) + " ");
curMask ^= (1 << first);
if (first != second){
out.print((second + 1) + " ");
curMask ^= (1 << second);
}
}
out.println("0");
}
private boolean checkBit(int mask, int bitNumber) {
return (mask & (1 << bitNumber)) != 0;
}
boolean checkMask(int mask, int innerMask){
return (mask & innerMask) == innerMask;
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.awt.Point;
import java.math.BigInteger;
import static java.lang.Math.*;
// Solution is at the bottom of code
public class ProblemC_008 implements Runnable{
final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null;
BufferedReader in;
OutputWriter out;
StringTokenizer tok = new StringTokenizer("");
public static void main(String[] args){
new Thread(null, new ProblemC_008(), "", 128 * (1L << 20)).start();
}
/////////////////////////////////////////////////////////////////////
void init() throws FileNotFoundException{
Locale.setDefault(Locale.US);
if (ONLINE_JUDGE){
in = new BufferedReader(new InputStreamReader(System.in));
out = new OutputWriter(System.out);
}else{
in = new BufferedReader(new FileReader("input.txt"));
out = new OutputWriter("output.txt");
}
}
////////////////////////////////////////////////////////////////
long timeBegin, timeEnd;
void time(){
timeEnd = System.currentTimeMillis();
System.err.println("Time = " + (timeEnd - timeBegin));
}
void debug(Object... objects){
if (ONLINE_JUDGE){
for (Object o: objects){
System.err.println(o.toString());
}
}
}
/////////////////////////////////////////////////////////////////////
public void run(){
try{
timeBegin = System.currentTimeMillis();
Locale.setDefault(Locale.US);
init();
solve();
out.close();
time();
}catch (Exception e){
e.printStackTrace(System.err);
System.exit(-1);
}
}
/////////////////////////////////////////////////////////////////////
String delim = " ";
String readString() throws IOException{
while(!tok.hasMoreTokens()){
try{
tok = new StringTokenizer(in.readLine());
}catch (Exception e){
return null;
}
}
return tok.nextToken(delim);
}
String readLine() throws IOException{
return in.readLine();
}
/////////////////////////////////////////////////////////////////
final char NOT_A_SYMBOL = '\0';
char readChar() throws IOException{
int intValue = in.read();
if (intValue == -1){
return NOT_A_SYMBOL;
}
return (char) intValue;
}
char[] readCharArray() throws IOException{
return readLine().toCharArray();
}
/////////////////////////////////////////////////////////////////
int readInt() throws IOException{
return Integer.parseInt(readString());
}
int[] readIntArray(int size) throws IOException{
int[] array = new int[size];
for (int index = 0; index < size; ++index){
array[index] = readInt();
}
return array;
}
///////////////////////////////////////////////////////////////////
long readLong() throws IOException{
return Long.parseLong(readString());
}
long[] readLongArray(int size) throws IOException{
long[] array = new long[size];
for (int index = 0; index < size; ++index){
array[index] = readLong();
}
return array;
}
////////////////////////////////////////////////////////////////////
double readDouble() throws IOException{
return Double.parseDouble(readString());
}
double[] readDoubleArray(int size) throws IOException{
double[] array = new double[size];
for (int index = 0; index < size; ++index){
array[index] = readDouble();
}
return array;
}
/////////////////////////////////////////////////////////////////////
Point readPoint() throws IOException{
return new Point(readInt(), readInt());
}
Point[] readPointArray(int size) throws IOException{
Point[] array = new Point[size];
for (int index = 0; index < size; ++index){
array[index] = readPoint();
}
return array;
}
/////////////////////////////////////////////////////////////////////
class OutputWriter extends PrintWriter{
final int DEFAULT_PRECISION = 12;
int precision;
String format, formatWithSpace;
{
precision = DEFAULT_PRECISION;
format = createFormat(precision);
formatWithSpace = format + " ";
}
public OutputWriter(OutputStream out) {
super(out);
}
public OutputWriter(String fileName) throws FileNotFoundException {
super(fileName);
}
public int getPrecision() {
return precision;
}
public void setPrecision(int precision) {
this.precision = precision;
format = createFormat(precision);
formatWithSpace = format + " ";
}
private String createFormat(int precision){
return "%." + precision + "f";
}
@Override
public void print(double d){
printf(format, d);
}
public void printWithSpace(double d){
printf(formatWithSpace, d);
}
public void printAll(double...d){
for (int i = 0; i < d.length - 1; ++i){
printWithSpace(d[i]);
}
print(d[d.length - 1]);
}
@Override
public void println(double d){
printlnAll(d);
}
public void printlnAll(double... d){
printAll(d);
println();
}
}
/////////////////////////////////////////////////////////////////////
int[][] steps = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
boolean check(int index, int lim){
return (0 <= index && index < lim);
}
/////////////////////////////////////////////////////////////////////
void solve() throws IOException{
Point bag = readPoint();
int n = readInt();
Point[] points = new Point[n];
for (int i = 0; i < n; ++i){
points[i] = readPoint();
}
int[] dist = new int[n];
for (int i = 0; i < n; ++i){
int dx = points[i].x - bag.x;
int dy = points[i].y - bag.y;
dist[i] = dx * dx + dy * dy;
}
int[][] d = new int[n][n];
for (int i = 0; i < n; ++i){
for (int j = 0; j < n; ++j){
int dx = points[i].x - points[j].x;
int dy = points[i].y - points[j].y;
d[i][j] = dx * dx + dy * dy;
d[i][j] += dist[i] + dist[j];
}
}
int[] singleMasks = new int[n];
for (int i = 0; i < n; ++i){
singleMasks[i] = (1 << i);
}
int[][] doubleMasks = new int[n][n];
for (int i = 0; i < n; ++i){
for (int j = 0; j < n; ++j){
doubleMasks[i][j] = (singleMasks[i] | singleMasks[j]);
}
}
int lim = (1 << n);
int[] dp = new int[lim];
Arrays.fill(dp, Integer.MAX_VALUE);
dp[0] = 0;
int[] p = new int[lim];
Arrays.fill(p, -1);
for (int mask = 0; mask < lim; ++mask){
if (dp[mask] == Integer.MAX_VALUE){
continue;
}
int minBit = -1;
for (int bit = 0; bit < n; ++bit){
if (checkBit(mask, bit)) continue;
if (minBit == -1 || (dist[minBit] > dist[bit])){
minBit = bit;
}
}
if (minBit == -1){
continue;
}
for (int bit = 0; bit < n; ++bit){
if (checkBit(mask, bit)) continue;
int newMask = (mask | (1 << minBit) | (1 << bit));
if (dp[newMask] > dp[mask] + d[minBit][bit]){
dp[newMask] = dp[mask] + d[minBit][bit];
p[newMask] = minBit * n + bit;
}
}
}
out.println(dp[lim-1]);
int curMask = lim - 1;
while (p[curMask] != -1){
out.print("0 ");
int first = p[curMask] / n;
int second = p[curMask] % n;
out.print((first + 1) + " ");
curMask ^= (1 << first);
if (first != second){
out.print((second + 1) + " ");
curMask ^= (1 << second);
}
}
out.println("0");
}
private boolean checkBit(int mask, int bitNumber) {
return (mask & (1 << bitNumber)) != 0;
}
boolean checkMask(int mask, int innerMask){
return (mask & innerMask) == innerMask;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.awt.Point;
import java.math.BigInteger;
import static java.lang.Math.*;
// Solution is at the bottom of code
public class ProblemC_008 implements Runnable{
final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null;
BufferedReader in;
OutputWriter out;
StringTokenizer tok = new StringTokenizer("");
public static void main(String[] args){
new Thread(null, new ProblemC_008(), "", 128 * (1L << 20)).start();
}
/////////////////////////////////////////////////////////////////////
void init() throws FileNotFoundException{
Locale.setDefault(Locale.US);
if (ONLINE_JUDGE){
in = new BufferedReader(new InputStreamReader(System.in));
out = new OutputWriter(System.out);
}else{
in = new BufferedReader(new FileReader("input.txt"));
out = new OutputWriter("output.txt");
}
}
////////////////////////////////////////////////////////////////
long timeBegin, timeEnd;
void time(){
timeEnd = System.currentTimeMillis();
System.err.println("Time = " + (timeEnd - timeBegin));
}
void debug(Object... objects){
if (ONLINE_JUDGE){
for (Object o: objects){
System.err.println(o.toString());
}
}
}
/////////////////////////////////////////////////////////////////////
public void run(){
try{
timeBegin = System.currentTimeMillis();
Locale.setDefault(Locale.US);
init();
solve();
out.close();
time();
}catch (Exception e){
e.printStackTrace(System.err);
System.exit(-1);
}
}
/////////////////////////////////////////////////////////////////////
String delim = " ";
String readString() throws IOException{
while(!tok.hasMoreTokens()){
try{
tok = new StringTokenizer(in.readLine());
}catch (Exception e){
return null;
}
}
return tok.nextToken(delim);
}
String readLine() throws IOException{
return in.readLine();
}
/////////////////////////////////////////////////////////////////
final char NOT_A_SYMBOL = '\0';
char readChar() throws IOException{
int intValue = in.read();
if (intValue == -1){
return NOT_A_SYMBOL;
}
return (char) intValue;
}
char[] readCharArray() throws IOException{
return readLine().toCharArray();
}
/////////////////////////////////////////////////////////////////
int readInt() throws IOException{
return Integer.parseInt(readString());
}
int[] readIntArray(int size) throws IOException{
int[] array = new int[size];
for (int index = 0; index < size; ++index){
array[index] = readInt();
}
return array;
}
///////////////////////////////////////////////////////////////////
long readLong() throws IOException{
return Long.parseLong(readString());
}
long[] readLongArray(int size) throws IOException{
long[] array = new long[size];
for (int index = 0; index < size; ++index){
array[index] = readLong();
}
return array;
}
////////////////////////////////////////////////////////////////////
double readDouble() throws IOException{
return Double.parseDouble(readString());
}
double[] readDoubleArray(int size) throws IOException{
double[] array = new double[size];
for (int index = 0; index < size; ++index){
array[index] = readDouble();
}
return array;
}
/////////////////////////////////////////////////////////////////////
Point readPoint() throws IOException{
return new Point(readInt(), readInt());
}
Point[] readPointArray(int size) throws IOException{
Point[] array = new Point[size];
for (int index = 0; index < size; ++index){
array[index] = readPoint();
}
return array;
}
/////////////////////////////////////////////////////////////////////
class OutputWriter extends PrintWriter{
final int DEFAULT_PRECISION = 12;
int precision;
String format, formatWithSpace;
{
precision = DEFAULT_PRECISION;
format = createFormat(precision);
formatWithSpace = format + " ";
}
public OutputWriter(OutputStream out) {
super(out);
}
public OutputWriter(String fileName) throws FileNotFoundException {
super(fileName);
}
public int getPrecision() {
return precision;
}
public void setPrecision(int precision) {
this.precision = precision;
format = createFormat(precision);
formatWithSpace = format + " ";
}
private String createFormat(int precision){
return "%." + precision + "f";
}
@Override
public void print(double d){
printf(format, d);
}
public void printWithSpace(double d){
printf(formatWithSpace, d);
}
public void printAll(double...d){
for (int i = 0; i < d.length - 1; ++i){
printWithSpace(d[i]);
}
print(d[d.length - 1]);
}
@Override
public void println(double d){
printlnAll(d);
}
public void printlnAll(double... d){
printAll(d);
println();
}
}
/////////////////////////////////////////////////////////////////////
int[][] steps = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
boolean check(int index, int lim){
return (0 <= index && index < lim);
}
/////////////////////////////////////////////////////////////////////
void solve() throws IOException{
Point bag = readPoint();
int n = readInt();
Point[] points = new Point[n];
for (int i = 0; i < n; ++i){
points[i] = readPoint();
}
int[] dist = new int[n];
for (int i = 0; i < n; ++i){
int dx = points[i].x - bag.x;
int dy = points[i].y - bag.y;
dist[i] = dx * dx + dy * dy;
}
int[][] d = new int[n][n];
for (int i = 0; i < n; ++i){
for (int j = 0; j < n; ++j){
int dx = points[i].x - points[j].x;
int dy = points[i].y - points[j].y;
d[i][j] = dx * dx + dy * dy;
d[i][j] += dist[i] + dist[j];
}
}
int[] singleMasks = new int[n];
for (int i = 0; i < n; ++i){
singleMasks[i] = (1 << i);
}
int[][] doubleMasks = new int[n][n];
for (int i = 0; i < n; ++i){
for (int j = 0; j < n; ++j){
doubleMasks[i][j] = (singleMasks[i] | singleMasks[j]);
}
}
int lim = (1 << n);
int[] dp = new int[lim];
Arrays.fill(dp, Integer.MAX_VALUE);
dp[0] = 0;
int[] p = new int[lim];
Arrays.fill(p, -1);
for (int mask = 0; mask < lim; ++mask){
if (dp[mask] == Integer.MAX_VALUE){
continue;
}
int minBit = -1;
for (int bit = 0; bit < n; ++bit){
if (checkBit(mask, bit)) continue;
if (minBit == -1 || (dist[minBit] > dist[bit])){
minBit = bit;
}
}
if (minBit == -1){
continue;
}
for (int bit = 0; bit < n; ++bit){
if (checkBit(mask, bit)) continue;
int newMask = (mask | (1 << minBit) | (1 << bit));
if (dp[newMask] > dp[mask] + d[minBit][bit]){
dp[newMask] = dp[mask] + d[minBit][bit];
p[newMask] = minBit * n + bit;
}
}
}
out.println(dp[lim-1]);
int curMask = lim - 1;
while (p[curMask] != -1){
out.print("0 ");
int first = p[curMask] / n;
int second = p[curMask] % n;
out.print((first + 1) + " ");
curMask ^= (1 << first);
if (first != second){
out.print((second + 1) + " ");
curMask ^= (1 << second);
}
}
out.println("0");
}
private boolean checkBit(int mask, int bitNumber) {
return (mask & (1 << bitNumber)) != 0;
}
boolean checkMask(int mask, int innerMask){
return (mask & innerMask) == innerMask;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,323 | 4,090 |
208 |
import static java.lang.Integer.parseInt;
import static java.lang.Long.parseLong;
import static java.lang.Math.min;
import static java.lang.System.exit;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class F {
static void solve() throws Exception {
int n = scanInt();
long l[] = new long[n];
for (int i = 0; i < n; i++) {
l[i] = scanLong();
}
long e1 = 0, e2 = 0, ans = 0;
boolean water = false;
String types = scanString();
for (int i = 0; i < n; i++) {
long li = l[i], cur;
switch (types.charAt(i)) {
case 'G':
cur = min(e1, li);
e1 -= cur;
li -= cur;
e2 += 2 * cur;
ans += 2 * cur;
e2 += li;
ans += 3 * li;
break;
case 'W':
water = true;
e1 += li;
ans += 2 * li;
break;
case 'L':
cur = min(e1, li);
e1 -= cur;
li -= cur;
ans += 2 * cur;
cur = min(e2, li);
e2 -= cur;
li -= cur;
ans += 3 * cur;
ans += (water ? 4 : 6) * li;
break;
default:
throw new AssertionError();
}
}
out.print(ans);
}
static int scanInt() throws IOException {
return parseInt(scanString());
}
static long scanLong() throws IOException {
return parseLong(scanString());
}
static String scanString() throws IOException {
while (tok == null || !tok.hasMoreTokens()) {
tok = new StringTokenizer(in.readLine());
}
return tok.nextToken();
}
static BufferedReader in;
static PrintWriter out;
static StringTokenizer tok;
public static void main(String[] args) {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
in.close();
out.close();
} catch (Throwable e) {
e.printStackTrace();
exit(1);
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import static java.lang.Integer.parseInt;
import static java.lang.Long.parseLong;
import static java.lang.Math.min;
import static java.lang.System.exit;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class F {
static void solve() throws Exception {
int n = scanInt();
long l[] = new long[n];
for (int i = 0; i < n; i++) {
l[i] = scanLong();
}
long e1 = 0, e2 = 0, ans = 0;
boolean water = false;
String types = scanString();
for (int i = 0; i < n; i++) {
long li = l[i], cur;
switch (types.charAt(i)) {
case 'G':
cur = min(e1, li);
e1 -= cur;
li -= cur;
e2 += 2 * cur;
ans += 2 * cur;
e2 += li;
ans += 3 * li;
break;
case 'W':
water = true;
e1 += li;
ans += 2 * li;
break;
case 'L':
cur = min(e1, li);
e1 -= cur;
li -= cur;
ans += 2 * cur;
cur = min(e2, li);
e2 -= cur;
li -= cur;
ans += 3 * cur;
ans += (water ? 4 : 6) * li;
break;
default:
throw new AssertionError();
}
}
out.print(ans);
}
static int scanInt() throws IOException {
return parseInt(scanString());
}
static long scanLong() throws IOException {
return parseLong(scanString());
}
static String scanString() throws IOException {
while (tok == null || !tok.hasMoreTokens()) {
tok = new StringTokenizer(in.readLine());
}
return tok.nextToken();
}
static BufferedReader in;
static PrintWriter out;
static StringTokenizer tok;
public static void main(String[] args) {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
in.close();
out.close();
} catch (Throwable e) {
e.printStackTrace();
exit(1);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import static java.lang.Integer.parseInt;
import static java.lang.Long.parseLong;
import static java.lang.Math.min;
import static java.lang.System.exit;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class F {
static void solve() throws Exception {
int n = scanInt();
long l[] = new long[n];
for (int i = 0; i < n; i++) {
l[i] = scanLong();
}
long e1 = 0, e2 = 0, ans = 0;
boolean water = false;
String types = scanString();
for (int i = 0; i < n; i++) {
long li = l[i], cur;
switch (types.charAt(i)) {
case 'G':
cur = min(e1, li);
e1 -= cur;
li -= cur;
e2 += 2 * cur;
ans += 2 * cur;
e2 += li;
ans += 3 * li;
break;
case 'W':
water = true;
e1 += li;
ans += 2 * li;
break;
case 'L':
cur = min(e1, li);
e1 -= cur;
li -= cur;
ans += 2 * cur;
cur = min(e2, li);
e2 -= cur;
li -= cur;
ans += 3 * cur;
ans += (water ? 4 : 6) * li;
break;
default:
throw new AssertionError();
}
}
out.print(ans);
}
static int scanInt() throws IOException {
return parseInt(scanString());
}
static long scanLong() throws IOException {
return parseLong(scanString());
}
static String scanString() throws IOException {
while (tok == null || !tok.hasMoreTokens()) {
tok = new StringTokenizer(in.readLine());
}
return tok.nextToken();
}
static BufferedReader in;
static PrintWriter out;
static StringTokenizer tok;
public static void main(String[] args) {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
in.close();
out.close();
} catch (Throwable e) {
e.printStackTrace();
exit(1);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 865 | 208 |
2,440 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.util.HashMap;
import java.util.InputMismatchException;
import java.io.IOException;
import java.util.ArrayList;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author revanth
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
F2SameSumBlocksHard solver = new F2SameSumBlocksHard();
solver.solve(1, in, out);
out.close();
}
static class F2SameSumBlocksHard {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.nextInt();
long[] a = in.nextLongArray(n);
HashMap<Long, ArrayList<Pair>> hm = new HashMap<>();
long sum;
for (int j = 0; j < n; j++) {
sum = 0;
for (int i = j; i >= 0; i--) {
sum += a[i];
if (!hm.containsKey(sum))
hm.put(sum, new ArrayList<>());
hm.get(sum).add(new Pair(i + 1, j + 1));
}
}
ArrayList<Pair> al1 = new ArrayList<>();
ArrayList<Pair> al2 = new ArrayList<>();
int prev;
for (ArrayList<Pair> al : hm.values()) {
prev = 0;
al1.clear();
for (Pair p : al) {
if (p.x > prev) {
al1.add(p);
prev = p.y;
}
}
if (al1.size() > al2.size())
al2 = new ArrayList<>(al1);
}
out.println(al2.size());
for (Pair p : al2)
out.println(p.x + " " + p.y);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[8192];
private int curChar;
private int snumChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int snext() {
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars) {
curChar = 0;
try {
snumChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = snext();
while (isSpaceChar(c))
c = snext();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = snext();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = snext();
while (isSpaceChar(c))
c = snext();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = snext();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public long[] nextLongArray(int n) {
long a[] = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class Pair implements Comparable<Pair> {
public int x;
public int y;
public Pair(int x, int y) {
this.x = x;
this.y = y;
}
public boolean equals(Object obj) {
if (obj == null)
return false;
if (obj == this)
return true;
if (!(obj instanceof Pair))
return false;
Pair o = (Pair) obj;
return o.x == this.x && o.y == this.y;
}
public int hashCode() {
return this.x + this.y;
}
public int compareTo(Pair p) {
if (x == p.x)
return Integer.compare(y, p.y);
return Integer.compare(x, p.x);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
}
public void println(Object... objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.util.HashMap;
import java.util.InputMismatchException;
import java.io.IOException;
import java.util.ArrayList;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author revanth
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
F2SameSumBlocksHard solver = new F2SameSumBlocksHard();
solver.solve(1, in, out);
out.close();
}
static class F2SameSumBlocksHard {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.nextInt();
long[] a = in.nextLongArray(n);
HashMap<Long, ArrayList<Pair>> hm = new HashMap<>();
long sum;
for (int j = 0; j < n; j++) {
sum = 0;
for (int i = j; i >= 0; i--) {
sum += a[i];
if (!hm.containsKey(sum))
hm.put(sum, new ArrayList<>());
hm.get(sum).add(new Pair(i + 1, j + 1));
}
}
ArrayList<Pair> al1 = new ArrayList<>();
ArrayList<Pair> al2 = new ArrayList<>();
int prev;
for (ArrayList<Pair> al : hm.values()) {
prev = 0;
al1.clear();
for (Pair p : al) {
if (p.x > prev) {
al1.add(p);
prev = p.y;
}
}
if (al1.size() > al2.size())
al2 = new ArrayList<>(al1);
}
out.println(al2.size());
for (Pair p : al2)
out.println(p.x + " " + p.y);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[8192];
private int curChar;
private int snumChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int snext() {
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars) {
curChar = 0;
try {
snumChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = snext();
while (isSpaceChar(c))
c = snext();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = snext();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = snext();
while (isSpaceChar(c))
c = snext();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = snext();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public long[] nextLongArray(int n) {
long a[] = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class Pair implements Comparable<Pair> {
public int x;
public int y;
public Pair(int x, int y) {
this.x = x;
this.y = y;
}
public boolean equals(Object obj) {
if (obj == null)
return false;
if (obj == this)
return true;
if (!(obj instanceof Pair))
return false;
Pair o = (Pair) obj;
return o.x == this.x && o.y == this.y;
}
public int hashCode() {
return this.x + this.y;
}
public int compareTo(Pair p) {
if (x == p.x)
return Integer.compare(y, p.y);
return Integer.compare(x, p.x);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
}
public void println(Object... objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.util.HashMap;
import java.util.InputMismatchException;
import java.io.IOException;
import java.util.ArrayList;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author revanth
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
F2SameSumBlocksHard solver = new F2SameSumBlocksHard();
solver.solve(1, in, out);
out.close();
}
static class F2SameSumBlocksHard {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.nextInt();
long[] a = in.nextLongArray(n);
HashMap<Long, ArrayList<Pair>> hm = new HashMap<>();
long sum;
for (int j = 0; j < n; j++) {
sum = 0;
for (int i = j; i >= 0; i--) {
sum += a[i];
if (!hm.containsKey(sum))
hm.put(sum, new ArrayList<>());
hm.get(sum).add(new Pair(i + 1, j + 1));
}
}
ArrayList<Pair> al1 = new ArrayList<>();
ArrayList<Pair> al2 = new ArrayList<>();
int prev;
for (ArrayList<Pair> al : hm.values()) {
prev = 0;
al1.clear();
for (Pair p : al) {
if (p.x > prev) {
al1.add(p);
prev = p.y;
}
}
if (al1.size() > al2.size())
al2 = new ArrayList<>(al1);
}
out.println(al2.size());
for (Pair p : al2)
out.println(p.x + " " + p.y);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[8192];
private int curChar;
private int snumChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int snext() {
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars) {
curChar = 0;
try {
snumChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = snext();
while (isSpaceChar(c))
c = snext();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = snext();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = snext();
while (isSpaceChar(c))
c = snext();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = snext();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public long[] nextLongArray(int n) {
long a[] = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class Pair implements Comparable<Pair> {
public int x;
public int y;
public Pair(int x, int y) {
this.x = x;
this.y = y;
}
public boolean equals(Object obj) {
if (obj == null)
return false;
if (obj == this)
return true;
if (!(obj instanceof Pair))
return false;
Pair o = (Pair) obj;
return o.x == this.x && o.y == this.y;
}
public int hashCode() {
return this.x + this.y;
}
public int compareTo(Pair p) {
if (x == p.x)
return Integer.compare(y, p.y);
return Integer.compare(x, p.x);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
}
public void println(Object... objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,631 | 2,435 |
1,138 |
import java.util.*;
import java.lang.*;
import java.io.*;
public class ER23C {
static long s;
public static void main (String[] args) throws java.lang.Exception {
InputReader in = new InputReader(System.in);
PrintWriter w = new PrintWriter(System.out);
long n = in.nextLong();
s = in.nextLong();
long l = 0, h = n;
while (l < h) {
long mid = (l + h ) / 2;
// System.out.println("mid is : " + mid);
// System.out.println("high is : " + h);
//System.out.println("low is : " + l);
if (Ok(mid))
h = mid;
else
l = mid + 1;
}
if (Ok(h))
w.println(n - h + 1);
else
w.println(n - h);
w.close();
}
static boolean Ok(long n) {
int sum = 0;
long temp = n;
while (n > 0) {
sum += (n % 10);
n = n / 10;
}
//System.out.println("n is :" + n + " sum is : " + sum);
return (temp - sum >= s);
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new UnknownError();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new UnknownError();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int peek() {
if (numChars == -1)
return -1;
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
return -1;
}
if (numChars <= 0)
return -1;
}
return buf[curChar];
}
public void skip(int x) {
while (x-- > 0)
read();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public String nextString() {
return next();
}
public String next() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuffer res = new StringBuffer();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public String nextLine() {
StringBuffer buf = new StringBuffer();
int c = read();
while (c != '\n' && c != -1) {
if (c != '\r')
buf.appendCodePoint(c);
c = read();
}
return buf.toString();
}
public double nextDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public int[] nextIntArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public long[] nextLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public boolean hasNext() {
int value;
while (isSpaceChar(value = peek()) && value != -1)
read();
return value != -1;
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.lang.*;
import java.io.*;
public class ER23C {
static long s;
public static void main (String[] args) throws java.lang.Exception {
InputReader in = new InputReader(System.in);
PrintWriter w = new PrintWriter(System.out);
long n = in.nextLong();
s = in.nextLong();
long l = 0, h = n;
while (l < h) {
long mid = (l + h ) / 2;
// System.out.println("mid is : " + mid);
// System.out.println("high is : " + h);
//System.out.println("low is : " + l);
if (Ok(mid))
h = mid;
else
l = mid + 1;
}
if (Ok(h))
w.println(n - h + 1);
else
w.println(n - h);
w.close();
}
static boolean Ok(long n) {
int sum = 0;
long temp = n;
while (n > 0) {
sum += (n % 10);
n = n / 10;
}
//System.out.println("n is :" + n + " sum is : " + sum);
return (temp - sum >= s);
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new UnknownError();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new UnknownError();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int peek() {
if (numChars == -1)
return -1;
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
return -1;
}
if (numChars <= 0)
return -1;
}
return buf[curChar];
}
public void skip(int x) {
while (x-- > 0)
read();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public String nextString() {
return next();
}
public String next() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuffer res = new StringBuffer();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public String nextLine() {
StringBuffer buf = new StringBuffer();
int c = read();
while (c != '\n' && c != -1) {
if (c != '\r')
buf.appendCodePoint(c);
c = read();
}
return buf.toString();
}
public double nextDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public int[] nextIntArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public long[] nextLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public boolean hasNext() {
int value;
while (isSpaceChar(value = peek()) && value != -1)
read();
return value != -1;
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.lang.*;
import java.io.*;
public class ER23C {
static long s;
public static void main (String[] args) throws java.lang.Exception {
InputReader in = new InputReader(System.in);
PrintWriter w = new PrintWriter(System.out);
long n = in.nextLong();
s = in.nextLong();
long l = 0, h = n;
while (l < h) {
long mid = (l + h ) / 2;
// System.out.println("mid is : " + mid);
// System.out.println("high is : " + h);
//System.out.println("low is : " + l);
if (Ok(mid))
h = mid;
else
l = mid + 1;
}
if (Ok(h))
w.println(n - h + 1);
else
w.println(n - h);
w.close();
}
static boolean Ok(long n) {
int sum = 0;
long temp = n;
while (n > 0) {
sum += (n % 10);
n = n / 10;
}
//System.out.println("n is :" + n + " sum is : " + sum);
return (temp - sum >= s);
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new UnknownError();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new UnknownError();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int peek() {
if (numChars == -1)
return -1;
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
return -1;
}
if (numChars <= 0)
return -1;
}
return buf[curChar];
}
public void skip(int x) {
while (x-- > 0)
read();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public String nextString() {
return next();
}
public String next() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuffer res = new StringBuffer();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public String nextLine() {
StringBuffer buf = new StringBuffer();
int c = read();
while (c != '\n' && c != -1) {
if (c != '\r')
buf.appendCodePoint(c);
c = read();
}
return buf.toString();
}
public double nextDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public int[] nextIntArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public long[] nextLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public boolean hasNext() {
int value;
while (isSpaceChar(value = peek()) && value != -1)
read();
return value != -1;
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,475 | 1,137 |
1,237 |
import java.io.*;
import java.util.*;
public class CF {
long mod = (long) 1e9 + 9;
class Pair {
long a, b;
public Pair(long a, long b) {
super();
this.a = a % mod;
this.b = b % mod;
}
}
int k;
long pow(long n, long k) {
if (k == 0)
return 1;
long m1 = pow(n, k / 2);
m1 = (m1 * m1) % mod;
if (k % 2 != 0)
m1 = (m1 * n) % mod;
return m1;
}
long st(int n, int m, int k) {
int parts = n / k;
int used = n - m;
if (parts > n - m) {
long cur = 0;
int counter = 0;
int need = parts - (n - m);
for (int i = 1; i <= n; i++) {
if (counter + 1 == k && need <= 0) {
counter = 0;
used--;
} else {
counter++;
cur++;
if (counter == k) {
counter = 0;
cur = (cur * 2) % mod;
need--;
}
}
}
if (used < 0)
throw new AssertionError();
return cur;
} else {
return m;
}
}
long mysol(int n, int m, int k) {
this.k = k;
int parts = n / k;
if (parts > n - m) {
long ost = n - (n - m) * k;
long power = ost / k;
long res = pow(2, power + 1);
long cur = ((res - 2 + mod) % mod) * k;
cur %= mod;
cur += Math.max(0, m - power * k);
cur %= mod;
return cur;
} else {
return m;
}
}
void realSolve() throws IOException {
int n = in.nextInt();
int m = in.nextInt();
k = in.nextInt();
out.println(mysol(n, m, k));
/*Random rnd = new Random(123);
for (int t = 0; t < 10000; t++) {
System.err.println(t);
int n = rnd.nextInt(100) + 2;
int m = rnd.nextInt(n + 1);
int k = rnd.nextInt(n - 1) + 2;
if (t == 16) {
System.err.println("!");
}
long r1 = mysol(n, m, k);
long r2 = st(n, m, k);
if (r1 != r2)
throw new AssertionError(r1 + " " + r2);
}*/
}
private class InputReader {
StringTokenizer st;
BufferedReader br;
public InputReader(File f) {
try {
br = new BufferedReader(new FileReader(f));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
public InputReader(InputStream f) {
br = new BufferedReader(new InputStreamReader(f));
}
String next() {
while (st == null || !st.hasMoreElements()) {
String s;
try {
s = br.readLine();
} catch (IOException e) {
return null;
}
if (s == null)
return null;
st = new StringTokenizer(s);
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
boolean hasMoreElements() {
while (st == null || !st.hasMoreElements()) {
String s;
try {
s = br.readLine();
} catch (IOException e) {
return false;
}
st = new StringTokenizer(s);
}
return st.hasMoreElements();
}
long nextLong() {
return Long.parseLong(next());
}
}
InputReader in;
PrintWriter out;
void solveIO() throws IOException {
in = new InputReader(System.in);
out = new PrintWriter(System.out);
realSolve();
out.close();
}
void solve() throws IOException {
in = new InputReader(new File("input.txt"));
out = new PrintWriter(new File("output.txt"));
realSolve();
out.close();
}
public static void main(String[] args) throws IOException {
new CF().solveIO();
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class CF {
long mod = (long) 1e9 + 9;
class Pair {
long a, b;
public Pair(long a, long b) {
super();
this.a = a % mod;
this.b = b % mod;
}
}
int k;
long pow(long n, long k) {
if (k == 0)
return 1;
long m1 = pow(n, k / 2);
m1 = (m1 * m1) % mod;
if (k % 2 != 0)
m1 = (m1 * n) % mod;
return m1;
}
long st(int n, int m, int k) {
int parts = n / k;
int used = n - m;
if (parts > n - m) {
long cur = 0;
int counter = 0;
int need = parts - (n - m);
for (int i = 1; i <= n; i++) {
if (counter + 1 == k && need <= 0) {
counter = 0;
used--;
} else {
counter++;
cur++;
if (counter == k) {
counter = 0;
cur = (cur * 2) % mod;
need--;
}
}
}
if (used < 0)
throw new AssertionError();
return cur;
} else {
return m;
}
}
long mysol(int n, int m, int k) {
this.k = k;
int parts = n / k;
if (parts > n - m) {
long ost = n - (n - m) * k;
long power = ost / k;
long res = pow(2, power + 1);
long cur = ((res - 2 + mod) % mod) * k;
cur %= mod;
cur += Math.max(0, m - power * k);
cur %= mod;
return cur;
} else {
return m;
}
}
void realSolve() throws IOException {
int n = in.nextInt();
int m = in.nextInt();
k = in.nextInt();
out.println(mysol(n, m, k));
/*Random rnd = new Random(123);
for (int t = 0; t < 10000; t++) {
System.err.println(t);
int n = rnd.nextInt(100) + 2;
int m = rnd.nextInt(n + 1);
int k = rnd.nextInt(n - 1) + 2;
if (t == 16) {
System.err.println("!");
}
long r1 = mysol(n, m, k);
long r2 = st(n, m, k);
if (r1 != r2)
throw new AssertionError(r1 + " " + r2);
}*/
}
private class InputReader {
StringTokenizer st;
BufferedReader br;
public InputReader(File f) {
try {
br = new BufferedReader(new FileReader(f));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
public InputReader(InputStream f) {
br = new BufferedReader(new InputStreamReader(f));
}
String next() {
while (st == null || !st.hasMoreElements()) {
String s;
try {
s = br.readLine();
} catch (IOException e) {
return null;
}
if (s == null)
return null;
st = new StringTokenizer(s);
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
boolean hasMoreElements() {
while (st == null || !st.hasMoreElements()) {
String s;
try {
s = br.readLine();
} catch (IOException e) {
return false;
}
st = new StringTokenizer(s);
}
return st.hasMoreElements();
}
long nextLong() {
return Long.parseLong(next());
}
}
InputReader in;
PrintWriter out;
void solveIO() throws IOException {
in = new InputReader(System.in);
out = new PrintWriter(System.out);
realSolve();
out.close();
}
void solve() throws IOException {
in = new InputReader(new File("input.txt"));
out = new PrintWriter(new File("output.txt"));
realSolve();
out.close();
}
public static void main(String[] args) throws IOException {
new CF().solveIO();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class CF {
long mod = (long) 1e9 + 9;
class Pair {
long a, b;
public Pair(long a, long b) {
super();
this.a = a % mod;
this.b = b % mod;
}
}
int k;
long pow(long n, long k) {
if (k == 0)
return 1;
long m1 = pow(n, k / 2);
m1 = (m1 * m1) % mod;
if (k % 2 != 0)
m1 = (m1 * n) % mod;
return m1;
}
long st(int n, int m, int k) {
int parts = n / k;
int used = n - m;
if (parts > n - m) {
long cur = 0;
int counter = 0;
int need = parts - (n - m);
for (int i = 1; i <= n; i++) {
if (counter + 1 == k && need <= 0) {
counter = 0;
used--;
} else {
counter++;
cur++;
if (counter == k) {
counter = 0;
cur = (cur * 2) % mod;
need--;
}
}
}
if (used < 0)
throw new AssertionError();
return cur;
} else {
return m;
}
}
long mysol(int n, int m, int k) {
this.k = k;
int parts = n / k;
if (parts > n - m) {
long ost = n - (n - m) * k;
long power = ost / k;
long res = pow(2, power + 1);
long cur = ((res - 2 + mod) % mod) * k;
cur %= mod;
cur += Math.max(0, m - power * k);
cur %= mod;
return cur;
} else {
return m;
}
}
void realSolve() throws IOException {
int n = in.nextInt();
int m = in.nextInt();
k = in.nextInt();
out.println(mysol(n, m, k));
/*Random rnd = new Random(123);
for (int t = 0; t < 10000; t++) {
System.err.println(t);
int n = rnd.nextInt(100) + 2;
int m = rnd.nextInt(n + 1);
int k = rnd.nextInt(n - 1) + 2;
if (t == 16) {
System.err.println("!");
}
long r1 = mysol(n, m, k);
long r2 = st(n, m, k);
if (r1 != r2)
throw new AssertionError(r1 + " " + r2);
}*/
}
private class InputReader {
StringTokenizer st;
BufferedReader br;
public InputReader(File f) {
try {
br = new BufferedReader(new FileReader(f));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
public InputReader(InputStream f) {
br = new BufferedReader(new InputStreamReader(f));
}
String next() {
while (st == null || !st.hasMoreElements()) {
String s;
try {
s = br.readLine();
} catch (IOException e) {
return null;
}
if (s == null)
return null;
st = new StringTokenizer(s);
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
boolean hasMoreElements() {
while (st == null || !st.hasMoreElements()) {
String s;
try {
s = br.readLine();
} catch (IOException e) {
return false;
}
st = new StringTokenizer(s);
}
return st.hasMoreElements();
}
long nextLong() {
return Long.parseLong(next());
}
}
InputReader in;
PrintWriter out;
void solveIO() throws IOException {
in = new InputReader(System.in);
out = new PrintWriter(System.out);
realSolve();
out.close();
}
void solve() throws IOException {
in = new InputReader(new File("input.txt"));
out = new PrintWriter(new File("output.txt"));
realSolve();
out.close();
}
public static void main(String[] args) throws IOException {
new CF().solveIO();
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,381 | 1,236 |
4,034 |
import java.io.*;
import java.util.*;
import static java.lang.Math.*;
public class G1 {
static int n, T, duration[], type[];
static long dp[][][], mod = (long) 1e9 + 7;
public static void main(String[] args) throws Exception {
new Thread(null, new Runnable() {
public void run() {
try {
solveIt();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
}, "Main", 1 << 28).start();
}
public static void solveIt() throws Exception {
Scanner in = new Scanner(System.in);
PrintWriter pw = new PrintWriter(System.out);
n = in.nextInt();
T = in.nextInt();
dp = new long[4][T + 1][1 << n];
duration = new int[n];
type = new int[n];
for (int i = 0; i < n; i++) {
duration[i] = in.nextInt();
type[i] = in.nextInt() - 1;
}
for (long a[][] : dp) for (long b[] : a) Arrays.fill(b, -1);
pw.println(solve(3, T, 0));
pw.close();
}
static long solve(int lastType, int rem, int mask) {
if (rem == 0) return 1;
if (rem < 0) return 0;
if (dp[lastType][rem][mask] != -1) return dp[lastType][rem][mask];
long res = 0;
for (int i = 0; i < n; i++) {
if (!check(mask, i) && lastType != type[i] && rem - duration[i] >= 0) {
res += solve(type[i], rem - duration[i], set(mask, i));
if (res >= mod) res -= mod;
}
}
return dp[lastType][rem][mask] = res;
}
static boolean check(int N, int pos) {
return (N & (1 << pos)) != 0;
}
static int set(int N, int pos) {
return N = N | (1 << pos);
}
static int reset(int N, int pos) {
return N = N & ~(1 << pos);
}
static void debug(Object... obj) {
System.err.println(Arrays.deepToString(obj));
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import static java.lang.Math.*;
public class G1 {
static int n, T, duration[], type[];
static long dp[][][], mod = (long) 1e9 + 7;
public static void main(String[] args) throws Exception {
new Thread(null, new Runnable() {
public void run() {
try {
solveIt();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
}, "Main", 1 << 28).start();
}
public static void solveIt() throws Exception {
Scanner in = new Scanner(System.in);
PrintWriter pw = new PrintWriter(System.out);
n = in.nextInt();
T = in.nextInt();
dp = new long[4][T + 1][1 << n];
duration = new int[n];
type = new int[n];
for (int i = 0; i < n; i++) {
duration[i] = in.nextInt();
type[i] = in.nextInt() - 1;
}
for (long a[][] : dp) for (long b[] : a) Arrays.fill(b, -1);
pw.println(solve(3, T, 0));
pw.close();
}
static long solve(int lastType, int rem, int mask) {
if (rem == 0) return 1;
if (rem < 0) return 0;
if (dp[lastType][rem][mask] != -1) return dp[lastType][rem][mask];
long res = 0;
for (int i = 0; i < n; i++) {
if (!check(mask, i) && lastType != type[i] && rem - duration[i] >= 0) {
res += solve(type[i], rem - duration[i], set(mask, i));
if (res >= mod) res -= mod;
}
}
return dp[lastType][rem][mask] = res;
}
static boolean check(int N, int pos) {
return (N & (1 << pos)) != 0;
}
static int set(int N, int pos) {
return N = N | (1 << pos);
}
static int reset(int N, int pos) {
return N = N & ~(1 << pos);
}
static void debug(Object... obj) {
System.err.println(Arrays.deepToString(obj));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import static java.lang.Math.*;
public class G1 {
static int n, T, duration[], type[];
static long dp[][][], mod = (long) 1e9 + 7;
public static void main(String[] args) throws Exception {
new Thread(null, new Runnable() {
public void run() {
try {
solveIt();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
}, "Main", 1 << 28).start();
}
public static void solveIt() throws Exception {
Scanner in = new Scanner(System.in);
PrintWriter pw = new PrintWriter(System.out);
n = in.nextInt();
T = in.nextInt();
dp = new long[4][T + 1][1 << n];
duration = new int[n];
type = new int[n];
for (int i = 0; i < n; i++) {
duration[i] = in.nextInt();
type[i] = in.nextInt() - 1;
}
for (long a[][] : dp) for (long b[] : a) Arrays.fill(b, -1);
pw.println(solve(3, T, 0));
pw.close();
}
static long solve(int lastType, int rem, int mask) {
if (rem == 0) return 1;
if (rem < 0) return 0;
if (dp[lastType][rem][mask] != -1) return dp[lastType][rem][mask];
long res = 0;
for (int i = 0; i < n; i++) {
if (!check(mask, i) && lastType != type[i] && rem - duration[i] >= 0) {
res += solve(type[i], rem - duration[i], set(mask, i));
if (res >= mod) res -= mod;
}
}
return dp[lastType][rem][mask] = res;
}
static boolean check(int N, int pos) {
return (N & (1 << pos)) != 0;
}
static int set(int N, int pos) {
return N = N | (1 << pos);
}
static int reset(int N, int pos) {
return N = N & ~(1 << pos);
}
static void debug(Object... obj) {
System.err.println(Arrays.deepToString(obj));
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 860 | 4,023 |
3,740 |
import java.io.*;
import java.util.*;
public class C {
int removeSq(int x) {
for (int i = 2; i * i <= x; i++) {
while (x % (i * i) == 0) {
x /= i * i;
}
}
return x;
}
void submit() {
int n = nextInt();
HashMap<Integer, Integer> map = new HashMap<>();
for (int i = 0; i < n; i++) {
int x = removeSq(nextInt());
map.merge(x, 1, Integer::sum);
}
int[] a = new int[map.size()];
int ptr = 0;
for (Integer x : map.values()) {
a[ptr++] = x;
}
int ret = go(a);
for (int x : a) {
ret = (int)((long)ret * fact[x] % P);
}
out.println(ret);
}
int go(int[] a) {
int[] dp = new int[a[0]];
dp[a[0] - 1] = 1;
int places = a[0] + 1;
int toInsert = 0;
for (int x : a) {
toInsert += x;
}
toInsert -= a[0];
for (int i =1; i < a.length; i++) {
int here = a[i];
if (here == 0) {
continue;
}
int[] nxt = new int[dp.length + here];
for (int wasSame = 0; wasSame < dp.length; wasSame++) {
if (wasSame > toInsert) {
continue;
}
if (dp[wasSame] == 0) {
continue;
}
int wasDiff = places - wasSame;
for (int runsSame = 0; runsSame <= wasSame && runsSame <= here; runsSame++) {
for (int runsDiff = 0; runsDiff <= wasDiff && runsSame + runsDiff <= here; runsDiff++) {
if (runsSame + runsDiff == 0) {
continue;
}
int delta = (int) ((long) dp[wasSame]
* ways[wasSame][runsSame] % P * ways[wasDiff][runsDiff]
% P * ways[here - 1][runsSame + runsDiff - 1] % P);
if (delta == 0) {
continue;
}
int nxtIdx = (wasSame - runsSame) + (here - runsSame - runsDiff);
nxt[nxtIdx] += delta;
if (nxt[nxtIdx] >= P) {
nxt[nxtIdx] -= P;
}
}
}
}
dp = nxt;
places += here;
toInsert -= here;
}
// System.err.println(Arrays.toString(a) + " " + idx);
// System.err.println(Arrays.toString(dp));
return dp[0];
}
int[][] ways;
int[] fact;
static final int N = 350;
static final int P = 1_000_000_007;
void preCalc() {
ways = new int[N][];
for (int i = 0; i < N; i++) {
ways[i] = new int[i + 1];
ways[i][0] = ways[i][i] = 1;
for (int j = 1; j < i; j++) {
ways[i][j] = ways[i - 1][j] + ways[i - 1][j - 1];
if (ways[i][j] >= P) {
ways[i][j] -= P;
}
}
}
fact = new int[N];
fact[0] = 1;
for (int i = 1; i < N; i++) {
fact[i] = (int)((long)fact[i - 1] * i % P);
}
}
void stress() {
}
void test() {
}
C() throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
preCalc();
submit();
//stress();
//test();
out.close();
}
static final Random rng = new Random();
static int rand(int l, int r) {
return l + rng.nextInt(r - l + 1);
}
public static void main(String[] args) throws IOException {
new C();
}
BufferedReader br;
PrintWriter out;
StringTokenizer st;
String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return st.nextToken();
}
String nextString() {
try {
return br.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
int nextInt() {
return Integer.parseInt(nextToken());
}
long nextLong() {
return Long.parseLong(nextToken());
}
double nextDouble() {
return Double.parseDouble(nextToken());
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class C {
int removeSq(int x) {
for (int i = 2; i * i <= x; i++) {
while (x % (i * i) == 0) {
x /= i * i;
}
}
return x;
}
void submit() {
int n = nextInt();
HashMap<Integer, Integer> map = new HashMap<>();
for (int i = 0; i < n; i++) {
int x = removeSq(nextInt());
map.merge(x, 1, Integer::sum);
}
int[] a = new int[map.size()];
int ptr = 0;
for (Integer x : map.values()) {
a[ptr++] = x;
}
int ret = go(a);
for (int x : a) {
ret = (int)((long)ret * fact[x] % P);
}
out.println(ret);
}
int go(int[] a) {
int[] dp = new int[a[0]];
dp[a[0] - 1] = 1;
int places = a[0] + 1;
int toInsert = 0;
for (int x : a) {
toInsert += x;
}
toInsert -= a[0];
for (int i =1; i < a.length; i++) {
int here = a[i];
if (here == 0) {
continue;
}
int[] nxt = new int[dp.length + here];
for (int wasSame = 0; wasSame < dp.length; wasSame++) {
if (wasSame > toInsert) {
continue;
}
if (dp[wasSame] == 0) {
continue;
}
int wasDiff = places - wasSame;
for (int runsSame = 0; runsSame <= wasSame && runsSame <= here; runsSame++) {
for (int runsDiff = 0; runsDiff <= wasDiff && runsSame + runsDiff <= here; runsDiff++) {
if (runsSame + runsDiff == 0) {
continue;
}
int delta = (int) ((long) dp[wasSame]
* ways[wasSame][runsSame] % P * ways[wasDiff][runsDiff]
% P * ways[here - 1][runsSame + runsDiff - 1] % P);
if (delta == 0) {
continue;
}
int nxtIdx = (wasSame - runsSame) + (here - runsSame - runsDiff);
nxt[nxtIdx] += delta;
if (nxt[nxtIdx] >= P) {
nxt[nxtIdx] -= P;
}
}
}
}
dp = nxt;
places += here;
toInsert -= here;
}
// System.err.println(Arrays.toString(a) + " " + idx);
// System.err.println(Arrays.toString(dp));
return dp[0];
}
int[][] ways;
int[] fact;
static final int N = 350;
static final int P = 1_000_000_007;
void preCalc() {
ways = new int[N][];
for (int i = 0; i < N; i++) {
ways[i] = new int[i + 1];
ways[i][0] = ways[i][i] = 1;
for (int j = 1; j < i; j++) {
ways[i][j] = ways[i - 1][j] + ways[i - 1][j - 1];
if (ways[i][j] >= P) {
ways[i][j] -= P;
}
}
}
fact = new int[N];
fact[0] = 1;
for (int i = 1; i < N; i++) {
fact[i] = (int)((long)fact[i - 1] * i % P);
}
}
void stress() {
}
void test() {
}
C() throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
preCalc();
submit();
//stress();
//test();
out.close();
}
static final Random rng = new Random();
static int rand(int l, int r) {
return l + rng.nextInt(r - l + 1);
}
public static void main(String[] args) throws IOException {
new C();
}
BufferedReader br;
PrintWriter out;
StringTokenizer st;
String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return st.nextToken();
}
String nextString() {
try {
return br.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
int nextInt() {
return Integer.parseInt(nextToken());
}
long nextLong() {
return Long.parseLong(nextToken());
}
double nextDouble() {
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class C {
int removeSq(int x) {
for (int i = 2; i * i <= x; i++) {
while (x % (i * i) == 0) {
x /= i * i;
}
}
return x;
}
void submit() {
int n = nextInt();
HashMap<Integer, Integer> map = new HashMap<>();
for (int i = 0; i < n; i++) {
int x = removeSq(nextInt());
map.merge(x, 1, Integer::sum);
}
int[] a = new int[map.size()];
int ptr = 0;
for (Integer x : map.values()) {
a[ptr++] = x;
}
int ret = go(a);
for (int x : a) {
ret = (int)((long)ret * fact[x] % P);
}
out.println(ret);
}
int go(int[] a) {
int[] dp = new int[a[0]];
dp[a[0] - 1] = 1;
int places = a[0] + 1;
int toInsert = 0;
for (int x : a) {
toInsert += x;
}
toInsert -= a[0];
for (int i =1; i < a.length; i++) {
int here = a[i];
if (here == 0) {
continue;
}
int[] nxt = new int[dp.length + here];
for (int wasSame = 0; wasSame < dp.length; wasSame++) {
if (wasSame > toInsert) {
continue;
}
if (dp[wasSame] == 0) {
continue;
}
int wasDiff = places - wasSame;
for (int runsSame = 0; runsSame <= wasSame && runsSame <= here; runsSame++) {
for (int runsDiff = 0; runsDiff <= wasDiff && runsSame + runsDiff <= here; runsDiff++) {
if (runsSame + runsDiff == 0) {
continue;
}
int delta = (int) ((long) dp[wasSame]
* ways[wasSame][runsSame] % P * ways[wasDiff][runsDiff]
% P * ways[here - 1][runsSame + runsDiff - 1] % P);
if (delta == 0) {
continue;
}
int nxtIdx = (wasSame - runsSame) + (here - runsSame - runsDiff);
nxt[nxtIdx] += delta;
if (nxt[nxtIdx] >= P) {
nxt[nxtIdx] -= P;
}
}
}
}
dp = nxt;
places += here;
toInsert -= here;
}
// System.err.println(Arrays.toString(a) + " " + idx);
// System.err.println(Arrays.toString(dp));
return dp[0];
}
int[][] ways;
int[] fact;
static final int N = 350;
static final int P = 1_000_000_007;
void preCalc() {
ways = new int[N][];
for (int i = 0; i < N; i++) {
ways[i] = new int[i + 1];
ways[i][0] = ways[i][i] = 1;
for (int j = 1; j < i; j++) {
ways[i][j] = ways[i - 1][j] + ways[i - 1][j - 1];
if (ways[i][j] >= P) {
ways[i][j] -= P;
}
}
}
fact = new int[N];
fact[0] = 1;
for (int i = 1; i < N; i++) {
fact[i] = (int)((long)fact[i - 1] * i % P);
}
}
void stress() {
}
void test() {
}
C() throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
preCalc();
submit();
//stress();
//test();
out.close();
}
static final Random rng = new Random();
static int rand(int l, int r) {
return l + rng.nextInt(r - l + 1);
}
public static void main(String[] args) throws IOException {
new C();
}
BufferedReader br;
PrintWriter out;
StringTokenizer st;
String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return st.nextToken();
}
String nextString() {
try {
return br.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
int nextInt() {
return Integer.parseInt(nextToken());
}
long nextLong() {
return Long.parseLong(nextToken());
}
double nextDouble() {
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,501 | 3,732 |
4,140 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
import java.awt.Point;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
public void solve(int testNumber, InputReader in, PrintWriter out) {
Point bag = new Point(in.ni(), in.ni());
int n = in.ni();
Point[] arr = new Point[n];
for (int i = 0; i < n; ++i)
arr[i] = new Point(in.ni(), in.ni());
int[] dist = new int[n];
for (int i = 0; i < n; ++i) {
int dx = arr[i].x - bag.x;
int dy = arr[i].y - bag.y;
dist[i] = dx * dx + dy * dy;
}
int[][] d = new int[n][n];
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
int dx = arr[i].x - arr[j].x;
int dy = arr[i].y - arr[j].y;
d[i][j] = dx * dx + dy * dy + dist[i] + dist[j];
}
}
int lim = (1 << n);
int[] dp = new int[lim];
Arrays.fill(dp, Integer.MAX_VALUE);
dp[0] = 0;
int[] p = new int[lim];
Arrays.fill(p, -1);
for (int mask = 0; mask < lim; ++mask) {
if (dp[mask] == Integer.MAX_VALUE)
continue;
int minBit = -1;
for (int bit = 0; bit < n; ++bit) {
if (checkBit(mask, bit))
continue;
if (minBit == -1 || (dist[minBit] > dist[bit]))
minBit = bit;
}
if (minBit == -1)
continue;
for (int bit = 0; bit < n; ++bit) {
if (checkBit(mask, bit))
continue;
int newMask = (mask | (1 << minBit) | (1 << bit));
if (dp[newMask] > dp[mask] + d[minBit][bit]) {
dp[newMask] = dp[mask] + d[minBit][bit];
p[newMask] = minBit * n + bit;
}
}
}
out.println(dp[lim - 1]);
int curMask = lim - 1;
while (p[curMask] != -1) {
out.print("0 ");
int first = p[curMask] / n;
int second = p[curMask] % n;
out.print(first + 1 + " ");
curMask ^= (1 << first);
if (first != second) {
out.print(second + 1 + " ");
curMask ^= (1 << second);
}
}
out.println(0);
}
boolean checkBit(int mask, int bitNumber) {
return (mask & (1 << bitNumber)) != 0;
}
}
static class InputReader {
BufferedReader br;
StringTokenizer st;
public InputReader(InputStream inputStream) {
br = new BufferedReader(new InputStreamReader(inputStream));
}
public String n() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
throw new RuntimeException();
}
}
return st.nextToken();
}
public int ni() {
return Integer.parseInt(n());
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
import java.awt.Point;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
public void solve(int testNumber, InputReader in, PrintWriter out) {
Point bag = new Point(in.ni(), in.ni());
int n = in.ni();
Point[] arr = new Point[n];
for (int i = 0; i < n; ++i)
arr[i] = new Point(in.ni(), in.ni());
int[] dist = new int[n];
for (int i = 0; i < n; ++i) {
int dx = arr[i].x - bag.x;
int dy = arr[i].y - bag.y;
dist[i] = dx * dx + dy * dy;
}
int[][] d = new int[n][n];
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
int dx = arr[i].x - arr[j].x;
int dy = arr[i].y - arr[j].y;
d[i][j] = dx * dx + dy * dy + dist[i] + dist[j];
}
}
int lim = (1 << n);
int[] dp = new int[lim];
Arrays.fill(dp, Integer.MAX_VALUE);
dp[0] = 0;
int[] p = new int[lim];
Arrays.fill(p, -1);
for (int mask = 0; mask < lim; ++mask) {
if (dp[mask] == Integer.MAX_VALUE)
continue;
int minBit = -1;
for (int bit = 0; bit < n; ++bit) {
if (checkBit(mask, bit))
continue;
if (minBit == -1 || (dist[minBit] > dist[bit]))
minBit = bit;
}
if (minBit == -1)
continue;
for (int bit = 0; bit < n; ++bit) {
if (checkBit(mask, bit))
continue;
int newMask = (mask | (1 << minBit) | (1 << bit));
if (dp[newMask] > dp[mask] + d[minBit][bit]) {
dp[newMask] = dp[mask] + d[minBit][bit];
p[newMask] = minBit * n + bit;
}
}
}
out.println(dp[lim - 1]);
int curMask = lim - 1;
while (p[curMask] != -1) {
out.print("0 ");
int first = p[curMask] / n;
int second = p[curMask] % n;
out.print(first + 1 + " ");
curMask ^= (1 << first);
if (first != second) {
out.print(second + 1 + " ");
curMask ^= (1 << second);
}
}
out.println(0);
}
boolean checkBit(int mask, int bitNumber) {
return (mask & (1 << bitNumber)) != 0;
}
}
static class InputReader {
BufferedReader br;
StringTokenizer st;
public InputReader(InputStream inputStream) {
br = new BufferedReader(new InputStreamReader(inputStream));
}
public String n() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
throw new RuntimeException();
}
}
return st.nextToken();
}
public int ni() {
return Integer.parseInt(n());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
import java.awt.Point;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
public void solve(int testNumber, InputReader in, PrintWriter out) {
Point bag = new Point(in.ni(), in.ni());
int n = in.ni();
Point[] arr = new Point[n];
for (int i = 0; i < n; ++i)
arr[i] = new Point(in.ni(), in.ni());
int[] dist = new int[n];
for (int i = 0; i < n; ++i) {
int dx = arr[i].x - bag.x;
int dy = arr[i].y - bag.y;
dist[i] = dx * dx + dy * dy;
}
int[][] d = new int[n][n];
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
int dx = arr[i].x - arr[j].x;
int dy = arr[i].y - arr[j].y;
d[i][j] = dx * dx + dy * dy + dist[i] + dist[j];
}
}
int lim = (1 << n);
int[] dp = new int[lim];
Arrays.fill(dp, Integer.MAX_VALUE);
dp[0] = 0;
int[] p = new int[lim];
Arrays.fill(p, -1);
for (int mask = 0; mask < lim; ++mask) {
if (dp[mask] == Integer.MAX_VALUE)
continue;
int minBit = -1;
for (int bit = 0; bit < n; ++bit) {
if (checkBit(mask, bit))
continue;
if (minBit == -1 || (dist[minBit] > dist[bit]))
minBit = bit;
}
if (minBit == -1)
continue;
for (int bit = 0; bit < n; ++bit) {
if (checkBit(mask, bit))
continue;
int newMask = (mask | (1 << minBit) | (1 << bit));
if (dp[newMask] > dp[mask] + d[minBit][bit]) {
dp[newMask] = dp[mask] + d[minBit][bit];
p[newMask] = minBit * n + bit;
}
}
}
out.println(dp[lim - 1]);
int curMask = lim - 1;
while (p[curMask] != -1) {
out.print("0 ");
int first = p[curMask] / n;
int second = p[curMask] % n;
out.print(first + 1 + " ");
curMask ^= (1 << first);
if (first != second) {
out.print(second + 1 + " ");
curMask ^= (1 << second);
}
}
out.println(0);
}
boolean checkBit(int mask, int bitNumber) {
return (mask & (1 << bitNumber)) != 0;
}
}
static class InputReader {
BufferedReader br;
StringTokenizer st;
public InputReader(InputStream inputStream) {
br = new BufferedReader(new InputStreamReader(inputStream));
}
public String n() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
throw new RuntimeException();
}
}
return st.nextToken();
}
public int ni() {
return Integer.parseInt(n());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,244 | 4,129 |
884 |
import java.io.*;
import java.util.*;
public class Main {
boolean eof;
public String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
eof = true;
return "-1";
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(nextToken());
}
int NOD(int a, int b) {
while (a * b > 0) {
if (a > b) {
a %= b;
} else {
b %= a;
}
}
return a + b;
}
void solve() {
int n = nextInt(), k= nextInt();
int[] a = new int[n];
for (int i = 0; i < n; ++i){
a[i] = nextInt() - 1;
}
int[] b = new int[100000];
int p = 0;
for (int i = 0; i < n; ++i){
++b[a[i]];
if (b[a[i]] == 1){
++p;
}
if (k == p){
int j;
for (j = 0; j <= i; ++j){
if (b[a[j]] > 1){
--b[a[j]];
} else {
break;
}
}
out.print((j + 1) + " " + (i + 1));
return;
}
}
out.print("-1 -1");
}
BufferedReader br;
StringTokenizer st;
PrintWriter out;
void run() {
try {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(new OutputStreamWriter(System.out));
// br = new BufferedReader(new FileReader("input.txt"));
// out = new PrintWriter(new FileWriter("output.txt"));
solve();
br.close();
out.close();
} catch (Throwable e) {
e.printStackTrace();
System.exit(1);
}
}
public static void main(String[] args) {
new Main().run();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
boolean eof;
public String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
eof = true;
return "-1";
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(nextToken());
}
int NOD(int a, int b) {
while (a * b > 0) {
if (a > b) {
a %= b;
} else {
b %= a;
}
}
return a + b;
}
void solve() {
int n = nextInt(), k= nextInt();
int[] a = new int[n];
for (int i = 0; i < n; ++i){
a[i] = nextInt() - 1;
}
int[] b = new int[100000];
int p = 0;
for (int i = 0; i < n; ++i){
++b[a[i]];
if (b[a[i]] == 1){
++p;
}
if (k == p){
int j;
for (j = 0; j <= i; ++j){
if (b[a[j]] > 1){
--b[a[j]];
} else {
break;
}
}
out.print((j + 1) + " " + (i + 1));
return;
}
}
out.print("-1 -1");
}
BufferedReader br;
StringTokenizer st;
PrintWriter out;
void run() {
try {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(new OutputStreamWriter(System.out));
// br = new BufferedReader(new FileReader("input.txt"));
// out = new PrintWriter(new FileWriter("output.txt"));
solve();
br.close();
out.close();
} catch (Throwable e) {
e.printStackTrace();
System.exit(1);
}
}
public static void main(String[] args) {
new Main().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
boolean eof;
public String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
eof = true;
return "-1";
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(nextToken());
}
int NOD(int a, int b) {
while (a * b > 0) {
if (a > b) {
a %= b;
} else {
b %= a;
}
}
return a + b;
}
void solve() {
int n = nextInt(), k= nextInt();
int[] a = new int[n];
for (int i = 0; i < n; ++i){
a[i] = nextInt() - 1;
}
int[] b = new int[100000];
int p = 0;
for (int i = 0; i < n; ++i){
++b[a[i]];
if (b[a[i]] == 1){
++p;
}
if (k == p){
int j;
for (j = 0; j <= i; ++j){
if (b[a[j]] > 1){
--b[a[j]];
} else {
break;
}
}
out.print((j + 1) + " " + (i + 1));
return;
}
}
out.print("-1 -1");
}
BufferedReader br;
StringTokenizer st;
PrintWriter out;
void run() {
try {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(new OutputStreamWriter(System.out));
// br = new BufferedReader(new FileReader("input.txt"));
// out = new PrintWriter(new FileWriter("output.txt"));
solve();
br.close();
out.close();
} catch (Throwable e) {
e.printStackTrace();
System.exit(1);
}
}
public static void main(String[] args) {
new Main().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 837 | 883 |
1,006 |
import java.util.Scanner;
public class A1177 {
public static long exponential(long a, long b){
long result = 1;
for(int i=0;i<b;i++){
result *= a;
}
return result;
}
public static void main(String args[]){
Scanner scanner = new Scanner(System.in);
long k = scanner.nextLong();
//int k =21;
long sum = 0;
long i=1;
while(true){
long interval = 9 * exponential(10,i-1) * i;
if(sum + interval >= k){
break;
} else {
i++;
sum += interval;
}
}
long t = k-sum;
long targetNumber = exponential(10, i-1) + (t-1)/i;
String s = "" + targetNumber;
int hedef = (int)((t-1)%i);
System.out.println(s.charAt(hedef));
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class A1177 {
public static long exponential(long a, long b){
long result = 1;
for(int i=0;i<b;i++){
result *= a;
}
return result;
}
public static void main(String args[]){
Scanner scanner = new Scanner(System.in);
long k = scanner.nextLong();
//int k =21;
long sum = 0;
long i=1;
while(true){
long interval = 9 * exponential(10,i-1) * i;
if(sum + interval >= k){
break;
} else {
i++;
sum += interval;
}
}
long t = k-sum;
long targetNumber = exponential(10, i-1) + (t-1)/i;
String s = "" + targetNumber;
int hedef = (int)((t-1)%i);
System.out.println(s.charAt(hedef));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class A1177 {
public static long exponential(long a, long b){
long result = 1;
for(int i=0;i<b;i++){
result *= a;
}
return result;
}
public static void main(String args[]){
Scanner scanner = new Scanner(System.in);
long k = scanner.nextLong();
//int k =21;
long sum = 0;
long i=1;
while(true){
long interval = 9 * exponential(10,i-1) * i;
if(sum + interval >= k){
break;
} else {
i++;
sum += interval;
}
}
long t = k-sum;
long targetNumber = exponential(10, i-1) + (t-1)/i;
String s = "" + targetNumber;
int hedef = (int)((t-1)%i);
System.out.println(s.charAt(hedef));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 546 | 1,005 |
3,247 |
import java.io.*;
import java.util.*;
import java.math.*;
import static java.lang.Math.*;
import static java.lang.Integer.parseInt;
import static java.lang.Long.parseLong;
import static java.lang.Double.parseDouble;
import static java.lang.String.*;
public class Main {
public static void main(String[] args) throws IOException {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
//(new FileReader("input.in"));
StringBuilder out = new StringBuilder();
StringTokenizer tk;
long n = parseLong(in.readLine());
System.out.println("25");
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.*;
import static java.lang.Math.*;
import static java.lang.Integer.parseInt;
import static java.lang.Long.parseLong;
import static java.lang.Double.parseDouble;
import static java.lang.String.*;
public class Main {
public static void main(String[] args) throws IOException {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
//(new FileReader("input.in"));
StringBuilder out = new StringBuilder();
StringTokenizer tk;
long n = parseLong(in.readLine());
System.out.println("25");
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.*;
import static java.lang.Math.*;
import static java.lang.Integer.parseInt;
import static java.lang.Long.parseLong;
import static java.lang.Double.parseDouble;
import static java.lang.String.*;
public class Main {
public static void main(String[] args) throws IOException {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
//(new FileReader("input.in"));
StringBuilder out = new StringBuilder();
StringTokenizer tk;
long n = parseLong(in.readLine());
System.out.println("25");
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 468 | 3,241 |
219 |
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class cf2 {
static final double EPS = 1e-9;
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
//rec
int xr1=sc.nextInt(), yr1=sc.nextInt(), xr2=sc.nextInt(),yr2=sc.nextInt();
int xr3=sc.nextInt(), yr3=sc.nextInt(), xr4=sc.nextInt(),yr4=sc.nextInt();
Point pr1 = new Point(xr1, yr1);
Point pr2 = new Point(xr2, yr2);
Point pr3 = new Point(xr3, yr3);
Point pr4 = new Point(xr4, yr4);
LineSegment lr1 = new LineSegment(pr1, pr2);
LineSegment lr2 = new LineSegment(pr2, pr3);
LineSegment lr3 = new LineSegment(pr3, pr4);
LineSegment lr4 = new LineSegment(pr4, pr1);
//diamond
int xd1=sc.nextInt(), yd1=sc.nextInt(), xd2=sc.nextInt(),yd2=sc.nextInt();
int xd3=sc.nextInt(), yd3=sc.nextInt(), xd4=sc.nextInt(),yd4=sc.nextInt();
Point p1 = new Point(xd1, yd1);
Point p2 = new Point(xd2, yd2);
Point p3 = new Point(xd3, yd3);
Point p4 = new Point(xd4, yd4);
Point [] pt = new Point [5];
pt[0]=p1; pt[1]=p2; pt[2]=p3; pt[3]=p4; pt[4]=p1;
Polygon pg = new Polygon(pt);
if(pg.inside(pr1)||pg.inside(pr2)||pg.inside(pr3)||pg.inside(pr4)) {
System.out.println("YES");
return;
}
LineSegment ld1 = new LineSegment(p1, p2);
LineSegment ld2 = new LineSegment(p2, p3);
LineSegment ld3 = new LineSegment(p3, p4);
LineSegment ld4 = new LineSegment(p4, p1);
Rectangle rec = new Rectangle(new Point(Math.min(Math.min(xr3,xr4),Math.min(xr1,xr2)), Math.min(Math.min(yr3,yr4),Math.min(yr1,yr2))),
new Point(Math.max(Math.max(xr3,xr4),Math.max(xr1,xr2)), Math.max(Math.max(yr3,yr4),Math.max(yr1,yr2))) );
if(rec.contains(p1)||rec.contains(p2)||rec.contains(p3)||rec.contains(p4)) {
System.out.println("YES");
return;
}
if(ld1.intersect(lr1)||ld1.intersect(lr3)||ld1.intersect(lr3)||ld1.intersect(lr4)) {
System.out.println("YES");
return;
}
if(ld2.intersect(lr1)||ld2.intersect(lr3)||ld2.intersect(lr3)||ld2.intersect(lr4)) {
System.out.println("YES");
return;
}
if(ld3.intersect(lr1)||ld3.intersect(lr3)||ld3.intersect(lr3)||ld3.intersect(lr4)) {
System.out.println("YES");
return;
}
if(ld4.intersect(lr1)||ld4.intersect(lr3)||ld4.intersect(lr3)||ld4.intersect(lr4)) {
System.out.println("YES");
return;
}
System.out.println("NO");
}
public static class Polygon {
// Cases to handle: collinear points, polygons with n < 3
static final double EPS = 1e-9;
Point[] g; //first point = last point, counter-clockwise representation
Polygon(Point[] o) { g = o; }
double perimeter()
{
double sum = 0.0;
for(int i = 0; i < g.length - 1; ++i)
sum += g[i].dist(g[i+1]);
return sum;
}
double area() //clockwise/anti-clockwise check, for convex/concave polygons
{
double area = 0.0;
for(int i = 0; i < g.length - 1; ++i)
area += g[i].x * g[i+1].y - g[i].y * g[i+1].x;
return Math.abs(area) / 2.0; //negative value in case of clockwise
}
boolean inside(Point p) //for convex/concave polygons - winding number algorithm
{
double sum = 0.0;
for(int i = 0; i < g.length - 1; ++i)
{
double angle = Point.angle(g[i], p, g[i+1]);
if((Math.abs(angle) < EPS || Math.abs(angle - Math.PI) < EPS) && p.between(g[i], g[i+1]))
return true;
if(Point.ccw(p, g[i], g[i+1]))
sum += angle;
else
sum -= angle;
}
return Math.abs(2 * Math.PI - Math.abs(sum)) < EPS; //abs makes it work for clockwise
}
/*
* Another way if the polygon is convex
* 1. Triangulate the poylgon through p
* 2. Check if sum areas == poygon area
* 3. Handle empty polygon
*/
Point centroid() //center of mass
{
double cx = 0.0, cy = 0.0;
for(int i = 0; i < g.length - 1; i++)
{
double x1 = g[i].x, y1 = g[i].y;
double x2 = g[i+1].x, y2 = g[i+1].y;
double f = x1 * y2 - x2 * y1;
cx += (x1 + x2) * f;
cy += (y1 + y2) * f;
}
double area = area(); //remove abs
cx /= 6.0 * area;
cy /= 6.0 * area;
return new Point(cx, cy);
}
}
static class LineSegment {
Point p, q;
LineSegment(Point a, Point b) { p = a; q = b; }
boolean intersect(LineSegment ls)
{
Line l1 = new Line(p, q), l2 = new Line(ls.p, ls.q);
if(l1.parallel(l2))
{
if(l1.same(l2))
return p.between(ls.p, ls.q) || q.between(ls.p, ls.q) || ls.p.between(p, q) || ls.q.between(p, q);
return false;
}
Point c = l1.intersect(l2);
return c.between(p, q) && c.between(ls.p, ls.q);
}
}
static class Rectangle {
static final double EPS = 1e-9;
Point ll, ur;
Rectangle(Point a, Point b) { ll = a; ur = b; }
double area() { return (ur.x - ll.x) * (ur.y - ll.y); }
boolean contains(Point p)
{
return p.x <= ur.x + EPS && p.x + EPS >= ll.x && p.y <= ur.y + EPS && p.y + EPS >= ll.y;
}
Rectangle intersect(Rectangle r)
{
Point ll = new Point(Math.max(this.ll.x, r.ll.x), Math.max(this.ll.y, r.ll.y));
Point ur = new Point(Math.min(this.ur.x, r.ur.x), Math.min(this.ur.y, r.ur.y));
if(Math.abs(ur.x - ll.x) > EPS && Math.abs(ur.y - ll.y) > EPS && this.contains(ll) && this.contains(ur) && r.contains(ll) && r.contains(ur))
return new Rectangle(ll, ur);
return null;
}
}
static class Line {
static final double INF = 1e9, EPS = 1e-9;
double a, b, c;
Line(Point p, Point q)
{
if(Math.abs(p.x - q.x) < EPS) { a = 1; b = 0; c = -p.x; }
else
{
a = (p.y - q.y) / (q.x - p.x);
b = 1.0;
c = -(a * p.x + p.y);
}
}
Line(Point p, double m) { a = -m; b = 1; c = -(a * p.x + p.y); }
boolean parallel(Line l) { return Math.abs(a - l.a) < EPS && Math.abs(b - l.b) < EPS; }
boolean same(Line l) { return parallel(l) && Math.abs(c - l.c) < EPS; }
Point intersect(Line l)
{
if(parallel(l))
return null;
double x = (b * l.c - c * l.b) / (a * l.b - b * l.a);
double y;
if(Math.abs(b) < EPS)
y = -l.a * x - l.c;
else
y = -a * x - c;
return new Point(x, y);
}
Point closestPoint(Point p)
{
if(Math.abs(b) < EPS) return new Point(-c, p.y);
if(Math.abs(a) < EPS) return new Point(p.x, -c);
return intersect(new Line(p, 1 / a));
}
}
public static class Vector {
double x, y;
Vector(double a, double b) { x = a; y = b; }
Vector(Point a, Point b) { this(b.x - a.x, b.y - a.y); }
Vector scale(double s) { return new Vector(x * s, y * s); } //s is a non-negative value
double dot(Vector v) { return (x * v.x + y * v.y); }
double cross(Vector v) { return x * v.y - y * v.x; }
double norm2() { return x * x + y * y; }
Vector reverse() { return new Vector(-x, -y); }
Vector normalize()
{
double d = Math.sqrt(norm2());
return scale(1 / d);
}
}
static class Point implements Comparable<Point>{
static final double EPS = 1e-9;
double x, y;
Point(double a, double b) { x = a; y = b; }
public int compareTo(Point p)
{
if(Math.abs(x - p.x) > EPS) return x > p.x ? 1 : -1;
if(Math.abs(y - p.y) > EPS) return y > p.y ? 1 : -1;
return 0;
}
static double angle(Point a, Point o, Point b) // angle AOB
{
Vector oa = new Vector(o, a), ob = new Vector(o, b);
return Math.acos(oa.dot(ob) / Math.sqrt(oa.norm2() * ob.norm2()));
}
static boolean ccw(Point p, Point q, Point r)
{
return new Vector(p, q).cross(new Vector(p, r)) > 0;
}
public double dist(Point p) { return Math.sqrt(sq(x - p.x) + sq(y - p.y)); }
static double sq(double x) { return x * x; }
Point rotate(double angle)
{
double c = Math.cos(angle), s = Math.sin(angle);
return new Point(x * c - y * s, x * s + y * c);
}
// for integer points and rotation by 90 (counterclockwise) : swap x and y, negate x
boolean between(Point p, Point q)
{
return x < Math.max(p.x, q.x) + EPS && x + EPS > Math.min(p.x, q.x)
&& y < Math.max(p.y, q.y) + EPS && y + EPS > Math.min(p.y, q.y);
}
//returns true if it is on the line defined by a and b
//returns true if it is on the ray whose start point is a and passes through b
// Another way: find closest point and calculate the distance between it and p
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public Scanner(String file) throws FileNotFoundException {
br = new BufferedReader(new FileReader(file));
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public long nextlong() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
long res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public boolean ready() throws IOException {
return br.ready();
}
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class cf2 {
static final double EPS = 1e-9;
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
//rec
int xr1=sc.nextInt(), yr1=sc.nextInt(), xr2=sc.nextInt(),yr2=sc.nextInt();
int xr3=sc.nextInt(), yr3=sc.nextInt(), xr4=sc.nextInt(),yr4=sc.nextInt();
Point pr1 = new Point(xr1, yr1);
Point pr2 = new Point(xr2, yr2);
Point pr3 = new Point(xr3, yr3);
Point pr4 = new Point(xr4, yr4);
LineSegment lr1 = new LineSegment(pr1, pr2);
LineSegment lr2 = new LineSegment(pr2, pr3);
LineSegment lr3 = new LineSegment(pr3, pr4);
LineSegment lr4 = new LineSegment(pr4, pr1);
//diamond
int xd1=sc.nextInt(), yd1=sc.nextInt(), xd2=sc.nextInt(),yd2=sc.nextInt();
int xd3=sc.nextInt(), yd3=sc.nextInt(), xd4=sc.nextInt(),yd4=sc.nextInt();
Point p1 = new Point(xd1, yd1);
Point p2 = new Point(xd2, yd2);
Point p3 = new Point(xd3, yd3);
Point p4 = new Point(xd4, yd4);
Point [] pt = new Point [5];
pt[0]=p1; pt[1]=p2; pt[2]=p3; pt[3]=p4; pt[4]=p1;
Polygon pg = new Polygon(pt);
if(pg.inside(pr1)||pg.inside(pr2)||pg.inside(pr3)||pg.inside(pr4)) {
System.out.println("YES");
return;
}
LineSegment ld1 = new LineSegment(p1, p2);
LineSegment ld2 = new LineSegment(p2, p3);
LineSegment ld3 = new LineSegment(p3, p4);
LineSegment ld4 = new LineSegment(p4, p1);
Rectangle rec = new Rectangle(new Point(Math.min(Math.min(xr3,xr4),Math.min(xr1,xr2)), Math.min(Math.min(yr3,yr4),Math.min(yr1,yr2))),
new Point(Math.max(Math.max(xr3,xr4),Math.max(xr1,xr2)), Math.max(Math.max(yr3,yr4),Math.max(yr1,yr2))) );
if(rec.contains(p1)||rec.contains(p2)||rec.contains(p3)||rec.contains(p4)) {
System.out.println("YES");
return;
}
if(ld1.intersect(lr1)||ld1.intersect(lr3)||ld1.intersect(lr3)||ld1.intersect(lr4)) {
System.out.println("YES");
return;
}
if(ld2.intersect(lr1)||ld2.intersect(lr3)||ld2.intersect(lr3)||ld2.intersect(lr4)) {
System.out.println("YES");
return;
}
if(ld3.intersect(lr1)||ld3.intersect(lr3)||ld3.intersect(lr3)||ld3.intersect(lr4)) {
System.out.println("YES");
return;
}
if(ld4.intersect(lr1)||ld4.intersect(lr3)||ld4.intersect(lr3)||ld4.intersect(lr4)) {
System.out.println("YES");
return;
}
System.out.println("NO");
}
public static class Polygon {
// Cases to handle: collinear points, polygons with n < 3
static final double EPS = 1e-9;
Point[] g; //first point = last point, counter-clockwise representation
Polygon(Point[] o) { g = o; }
double perimeter()
{
double sum = 0.0;
for(int i = 0; i < g.length - 1; ++i)
sum += g[i].dist(g[i+1]);
return sum;
}
double area() //clockwise/anti-clockwise check, for convex/concave polygons
{
double area = 0.0;
for(int i = 0; i < g.length - 1; ++i)
area += g[i].x * g[i+1].y - g[i].y * g[i+1].x;
return Math.abs(area) / 2.0; //negative value in case of clockwise
}
boolean inside(Point p) //for convex/concave polygons - winding number algorithm
{
double sum = 0.0;
for(int i = 0; i < g.length - 1; ++i)
{
double angle = Point.angle(g[i], p, g[i+1]);
if((Math.abs(angle) < EPS || Math.abs(angle - Math.PI) < EPS) && p.between(g[i], g[i+1]))
return true;
if(Point.ccw(p, g[i], g[i+1]))
sum += angle;
else
sum -= angle;
}
return Math.abs(2 * Math.PI - Math.abs(sum)) < EPS; //abs makes it work for clockwise
}
/*
* Another way if the polygon is convex
* 1. Triangulate the poylgon through p
* 2. Check if sum areas == poygon area
* 3. Handle empty polygon
*/
Point centroid() //center of mass
{
double cx = 0.0, cy = 0.0;
for(int i = 0; i < g.length - 1; i++)
{
double x1 = g[i].x, y1 = g[i].y;
double x2 = g[i+1].x, y2 = g[i+1].y;
double f = x1 * y2 - x2 * y1;
cx += (x1 + x2) * f;
cy += (y1 + y2) * f;
}
double area = area(); //remove abs
cx /= 6.0 * area;
cy /= 6.0 * area;
return new Point(cx, cy);
}
}
static class LineSegment {
Point p, q;
LineSegment(Point a, Point b) { p = a; q = b; }
boolean intersect(LineSegment ls)
{
Line l1 = new Line(p, q), l2 = new Line(ls.p, ls.q);
if(l1.parallel(l2))
{
if(l1.same(l2))
return p.between(ls.p, ls.q) || q.between(ls.p, ls.q) || ls.p.between(p, q) || ls.q.between(p, q);
return false;
}
Point c = l1.intersect(l2);
return c.between(p, q) && c.between(ls.p, ls.q);
}
}
static class Rectangle {
static final double EPS = 1e-9;
Point ll, ur;
Rectangle(Point a, Point b) { ll = a; ur = b; }
double area() { return (ur.x - ll.x) * (ur.y - ll.y); }
boolean contains(Point p)
{
return p.x <= ur.x + EPS && p.x + EPS >= ll.x && p.y <= ur.y + EPS && p.y + EPS >= ll.y;
}
Rectangle intersect(Rectangle r)
{
Point ll = new Point(Math.max(this.ll.x, r.ll.x), Math.max(this.ll.y, r.ll.y));
Point ur = new Point(Math.min(this.ur.x, r.ur.x), Math.min(this.ur.y, r.ur.y));
if(Math.abs(ur.x - ll.x) > EPS && Math.abs(ur.y - ll.y) > EPS && this.contains(ll) && this.contains(ur) && r.contains(ll) && r.contains(ur))
return new Rectangle(ll, ur);
return null;
}
}
static class Line {
static final double INF = 1e9, EPS = 1e-9;
double a, b, c;
Line(Point p, Point q)
{
if(Math.abs(p.x - q.x) < EPS) { a = 1; b = 0; c = -p.x; }
else
{
a = (p.y - q.y) / (q.x - p.x);
b = 1.0;
c = -(a * p.x + p.y);
}
}
Line(Point p, double m) { a = -m; b = 1; c = -(a * p.x + p.y); }
boolean parallel(Line l) { return Math.abs(a - l.a) < EPS && Math.abs(b - l.b) < EPS; }
boolean same(Line l) { return parallel(l) && Math.abs(c - l.c) < EPS; }
Point intersect(Line l)
{
if(parallel(l))
return null;
double x = (b * l.c - c * l.b) / (a * l.b - b * l.a);
double y;
if(Math.abs(b) < EPS)
y = -l.a * x - l.c;
else
y = -a * x - c;
return new Point(x, y);
}
Point closestPoint(Point p)
{
if(Math.abs(b) < EPS) return new Point(-c, p.y);
if(Math.abs(a) < EPS) return new Point(p.x, -c);
return intersect(new Line(p, 1 / a));
}
}
public static class Vector {
double x, y;
Vector(double a, double b) { x = a; y = b; }
Vector(Point a, Point b) { this(b.x - a.x, b.y - a.y); }
Vector scale(double s) { return new Vector(x * s, y * s); } //s is a non-negative value
double dot(Vector v) { return (x * v.x + y * v.y); }
double cross(Vector v) { return x * v.y - y * v.x; }
double norm2() { return x * x + y * y; }
Vector reverse() { return new Vector(-x, -y); }
Vector normalize()
{
double d = Math.sqrt(norm2());
return scale(1 / d);
}
}
static class Point implements Comparable<Point>{
static final double EPS = 1e-9;
double x, y;
Point(double a, double b) { x = a; y = b; }
public int compareTo(Point p)
{
if(Math.abs(x - p.x) > EPS) return x > p.x ? 1 : -1;
if(Math.abs(y - p.y) > EPS) return y > p.y ? 1 : -1;
return 0;
}
static double angle(Point a, Point o, Point b) // angle AOB
{
Vector oa = new Vector(o, a), ob = new Vector(o, b);
return Math.acos(oa.dot(ob) / Math.sqrt(oa.norm2() * ob.norm2()));
}
static boolean ccw(Point p, Point q, Point r)
{
return new Vector(p, q).cross(new Vector(p, r)) > 0;
}
public double dist(Point p) { return Math.sqrt(sq(x - p.x) + sq(y - p.y)); }
static double sq(double x) { return x * x; }
Point rotate(double angle)
{
double c = Math.cos(angle), s = Math.sin(angle);
return new Point(x * c - y * s, x * s + y * c);
}
// for integer points and rotation by 90 (counterclockwise) : swap x and y, negate x
boolean between(Point p, Point q)
{
return x < Math.max(p.x, q.x) + EPS && x + EPS > Math.min(p.x, q.x)
&& y < Math.max(p.y, q.y) + EPS && y + EPS > Math.min(p.y, q.y);
}
//returns true if it is on the line defined by a and b
//returns true if it is on the ray whose start point is a and passes through b
// Another way: find closest point and calculate the distance between it and p
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public Scanner(String file) throws FileNotFoundException {
br = new BufferedReader(new FileReader(file));
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public long nextlong() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
long res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public boolean ready() throws IOException {
return br.ready();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class cf2 {
static final double EPS = 1e-9;
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
//rec
int xr1=sc.nextInt(), yr1=sc.nextInt(), xr2=sc.nextInt(),yr2=sc.nextInt();
int xr3=sc.nextInt(), yr3=sc.nextInt(), xr4=sc.nextInt(),yr4=sc.nextInt();
Point pr1 = new Point(xr1, yr1);
Point pr2 = new Point(xr2, yr2);
Point pr3 = new Point(xr3, yr3);
Point pr4 = new Point(xr4, yr4);
LineSegment lr1 = new LineSegment(pr1, pr2);
LineSegment lr2 = new LineSegment(pr2, pr3);
LineSegment lr3 = new LineSegment(pr3, pr4);
LineSegment lr4 = new LineSegment(pr4, pr1);
//diamond
int xd1=sc.nextInt(), yd1=sc.nextInt(), xd2=sc.nextInt(),yd2=sc.nextInt();
int xd3=sc.nextInt(), yd3=sc.nextInt(), xd4=sc.nextInt(),yd4=sc.nextInt();
Point p1 = new Point(xd1, yd1);
Point p2 = new Point(xd2, yd2);
Point p3 = new Point(xd3, yd3);
Point p4 = new Point(xd4, yd4);
Point [] pt = new Point [5];
pt[0]=p1; pt[1]=p2; pt[2]=p3; pt[3]=p4; pt[4]=p1;
Polygon pg = new Polygon(pt);
if(pg.inside(pr1)||pg.inside(pr2)||pg.inside(pr3)||pg.inside(pr4)) {
System.out.println("YES");
return;
}
LineSegment ld1 = new LineSegment(p1, p2);
LineSegment ld2 = new LineSegment(p2, p3);
LineSegment ld3 = new LineSegment(p3, p4);
LineSegment ld4 = new LineSegment(p4, p1);
Rectangle rec = new Rectangle(new Point(Math.min(Math.min(xr3,xr4),Math.min(xr1,xr2)), Math.min(Math.min(yr3,yr4),Math.min(yr1,yr2))),
new Point(Math.max(Math.max(xr3,xr4),Math.max(xr1,xr2)), Math.max(Math.max(yr3,yr4),Math.max(yr1,yr2))) );
if(rec.contains(p1)||rec.contains(p2)||rec.contains(p3)||rec.contains(p4)) {
System.out.println("YES");
return;
}
if(ld1.intersect(lr1)||ld1.intersect(lr3)||ld1.intersect(lr3)||ld1.intersect(lr4)) {
System.out.println("YES");
return;
}
if(ld2.intersect(lr1)||ld2.intersect(lr3)||ld2.intersect(lr3)||ld2.intersect(lr4)) {
System.out.println("YES");
return;
}
if(ld3.intersect(lr1)||ld3.intersect(lr3)||ld3.intersect(lr3)||ld3.intersect(lr4)) {
System.out.println("YES");
return;
}
if(ld4.intersect(lr1)||ld4.intersect(lr3)||ld4.intersect(lr3)||ld4.intersect(lr4)) {
System.out.println("YES");
return;
}
System.out.println("NO");
}
public static class Polygon {
// Cases to handle: collinear points, polygons with n < 3
static final double EPS = 1e-9;
Point[] g; //first point = last point, counter-clockwise representation
Polygon(Point[] o) { g = o; }
double perimeter()
{
double sum = 0.0;
for(int i = 0; i < g.length - 1; ++i)
sum += g[i].dist(g[i+1]);
return sum;
}
double area() //clockwise/anti-clockwise check, for convex/concave polygons
{
double area = 0.0;
for(int i = 0; i < g.length - 1; ++i)
area += g[i].x * g[i+1].y - g[i].y * g[i+1].x;
return Math.abs(area) / 2.0; //negative value in case of clockwise
}
boolean inside(Point p) //for convex/concave polygons - winding number algorithm
{
double sum = 0.0;
for(int i = 0; i < g.length - 1; ++i)
{
double angle = Point.angle(g[i], p, g[i+1]);
if((Math.abs(angle) < EPS || Math.abs(angle - Math.PI) < EPS) && p.between(g[i], g[i+1]))
return true;
if(Point.ccw(p, g[i], g[i+1]))
sum += angle;
else
sum -= angle;
}
return Math.abs(2 * Math.PI - Math.abs(sum)) < EPS; //abs makes it work for clockwise
}
/*
* Another way if the polygon is convex
* 1. Triangulate the poylgon through p
* 2. Check if sum areas == poygon area
* 3. Handle empty polygon
*/
Point centroid() //center of mass
{
double cx = 0.0, cy = 0.0;
for(int i = 0; i < g.length - 1; i++)
{
double x1 = g[i].x, y1 = g[i].y;
double x2 = g[i+1].x, y2 = g[i+1].y;
double f = x1 * y2 - x2 * y1;
cx += (x1 + x2) * f;
cy += (y1 + y2) * f;
}
double area = area(); //remove abs
cx /= 6.0 * area;
cy /= 6.0 * area;
return new Point(cx, cy);
}
}
static class LineSegment {
Point p, q;
LineSegment(Point a, Point b) { p = a; q = b; }
boolean intersect(LineSegment ls)
{
Line l1 = new Line(p, q), l2 = new Line(ls.p, ls.q);
if(l1.parallel(l2))
{
if(l1.same(l2))
return p.between(ls.p, ls.q) || q.between(ls.p, ls.q) || ls.p.between(p, q) || ls.q.between(p, q);
return false;
}
Point c = l1.intersect(l2);
return c.between(p, q) && c.between(ls.p, ls.q);
}
}
static class Rectangle {
static final double EPS = 1e-9;
Point ll, ur;
Rectangle(Point a, Point b) { ll = a; ur = b; }
double area() { return (ur.x - ll.x) * (ur.y - ll.y); }
boolean contains(Point p)
{
return p.x <= ur.x + EPS && p.x + EPS >= ll.x && p.y <= ur.y + EPS && p.y + EPS >= ll.y;
}
Rectangle intersect(Rectangle r)
{
Point ll = new Point(Math.max(this.ll.x, r.ll.x), Math.max(this.ll.y, r.ll.y));
Point ur = new Point(Math.min(this.ur.x, r.ur.x), Math.min(this.ur.y, r.ur.y));
if(Math.abs(ur.x - ll.x) > EPS && Math.abs(ur.y - ll.y) > EPS && this.contains(ll) && this.contains(ur) && r.contains(ll) && r.contains(ur))
return new Rectangle(ll, ur);
return null;
}
}
static class Line {
static final double INF = 1e9, EPS = 1e-9;
double a, b, c;
Line(Point p, Point q)
{
if(Math.abs(p.x - q.x) < EPS) { a = 1; b = 0; c = -p.x; }
else
{
a = (p.y - q.y) / (q.x - p.x);
b = 1.0;
c = -(a * p.x + p.y);
}
}
Line(Point p, double m) { a = -m; b = 1; c = -(a * p.x + p.y); }
boolean parallel(Line l) { return Math.abs(a - l.a) < EPS && Math.abs(b - l.b) < EPS; }
boolean same(Line l) { return parallel(l) && Math.abs(c - l.c) < EPS; }
Point intersect(Line l)
{
if(parallel(l))
return null;
double x = (b * l.c - c * l.b) / (a * l.b - b * l.a);
double y;
if(Math.abs(b) < EPS)
y = -l.a * x - l.c;
else
y = -a * x - c;
return new Point(x, y);
}
Point closestPoint(Point p)
{
if(Math.abs(b) < EPS) return new Point(-c, p.y);
if(Math.abs(a) < EPS) return new Point(p.x, -c);
return intersect(new Line(p, 1 / a));
}
}
public static class Vector {
double x, y;
Vector(double a, double b) { x = a; y = b; }
Vector(Point a, Point b) { this(b.x - a.x, b.y - a.y); }
Vector scale(double s) { return new Vector(x * s, y * s); } //s is a non-negative value
double dot(Vector v) { return (x * v.x + y * v.y); }
double cross(Vector v) { return x * v.y - y * v.x; }
double norm2() { return x * x + y * y; }
Vector reverse() { return new Vector(-x, -y); }
Vector normalize()
{
double d = Math.sqrt(norm2());
return scale(1 / d);
}
}
static class Point implements Comparable<Point>{
static final double EPS = 1e-9;
double x, y;
Point(double a, double b) { x = a; y = b; }
public int compareTo(Point p)
{
if(Math.abs(x - p.x) > EPS) return x > p.x ? 1 : -1;
if(Math.abs(y - p.y) > EPS) return y > p.y ? 1 : -1;
return 0;
}
static double angle(Point a, Point o, Point b) // angle AOB
{
Vector oa = new Vector(o, a), ob = new Vector(o, b);
return Math.acos(oa.dot(ob) / Math.sqrt(oa.norm2() * ob.norm2()));
}
static boolean ccw(Point p, Point q, Point r)
{
return new Vector(p, q).cross(new Vector(p, r)) > 0;
}
public double dist(Point p) { return Math.sqrt(sq(x - p.x) + sq(y - p.y)); }
static double sq(double x) { return x * x; }
Point rotate(double angle)
{
double c = Math.cos(angle), s = Math.sin(angle);
return new Point(x * c - y * s, x * s + y * c);
}
// for integer points and rotation by 90 (counterclockwise) : swap x and y, negate x
boolean between(Point p, Point q)
{
return x < Math.max(p.x, q.x) + EPS && x + EPS > Math.min(p.x, q.x)
&& y < Math.max(p.y, q.y) + EPS && y + EPS > Math.min(p.y, q.y);
}
//returns true if it is on the line defined by a and b
//returns true if it is on the ray whose start point is a and passes through b
// Another way: find closest point and calculate the distance between it and p
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public Scanner(String file) throws FileNotFoundException {
br = new BufferedReader(new FileReader(file));
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public long nextlong() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
long res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public boolean ready() throws IOException {
return br.ready();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 3,566 | 219 |
1,514 |
import java.util.Scanner;
public class Main2 {
public static void main(String args[]){
Scanner input = new Scanner(System.in);
long s = input.nextLong();
long e = input.nextLong();
System.out.println(count(s,e));
}
public static long count(long s,long e){
int ncount = 0;
long es = e;
while(es != 0){
es /= 2;
ncount++;
}
while(ncount >= 0){
if(((s>>ncount-1)&1) == 1 && ((e>>ncount-1)&1) == 0 || ((s>>ncount-1)&1) == 0 && ((e>>ncount-1)&1) == 1){
break;
}
ncount--;
}
if(ncount >= 0){
return (long)Math.pow(2, ncount)-1;
}else{
return 0;
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class Main2 {
public static void main(String args[]){
Scanner input = new Scanner(System.in);
long s = input.nextLong();
long e = input.nextLong();
System.out.println(count(s,e));
}
public static long count(long s,long e){
int ncount = 0;
long es = e;
while(es != 0){
es /= 2;
ncount++;
}
while(ncount >= 0){
if(((s>>ncount-1)&1) == 1 && ((e>>ncount-1)&1) == 0 || ((s>>ncount-1)&1) == 0 && ((e>>ncount-1)&1) == 1){
break;
}
ncount--;
}
if(ncount >= 0){
return (long)Math.pow(2, ncount)-1;
}else{
return 0;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class Main2 {
public static void main(String args[]){
Scanner input = new Scanner(System.in);
long s = input.nextLong();
long e = input.nextLong();
System.out.println(count(s,e));
}
public static long count(long s,long e){
int ncount = 0;
long es = e;
while(es != 0){
es /= 2;
ncount++;
}
while(ncount >= 0){
if(((s>>ncount-1)&1) == 1 && ((e>>ncount-1)&1) == 0 || ((s>>ncount-1)&1) == 0 && ((e>>ncount-1)&1) == 1){
break;
}
ncount--;
}
if(ncount >= 0){
return (long)Math.pow(2, ncount)-1;
}else{
return 0;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 568 | 1,512 |
382 |
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.HashMap;
import java.util.InputMismatchException;
import java.util.Map;
/**
* Created by hama_du on 2014/09/21.
*/
public class ProblemB {
public static void main(String[] args) {
InputReader in = new InputReader(System.in);
PrintWriter out = new PrintWriter(System.out);
int n = in.nextInt();
long a = in.nextLong();
long b = in.nextLong();
long[] x = new long[n];
for (int i = 0; i < n; i++) {
x[i] = in.nextLong();
}
Map<Long,Integer> idxmap = new HashMap<>();
for (int i = 0; i < n; i++) {
idxmap.put(x[i], i);
}
if (a == b) {
solve1(x, a, idxmap, out);
return;
}
int[] mark = new int[n];
Arrays.fill(mark, -1);
boolean isok = true;
for (int i = 0 ; i < n ; i++) {
if (mark[i] != -1) {
continue;
}
long w = x[i];
long aw = a - w;
long bw = b - w;
if (idxmap.containsKey(aw) && idxmap.containsKey(bw)) {
continue;
} else if (idxmap.containsKey(bw)) {
long w1 = w;
long w2 = bw;
while (true) {
if (!idxmap.containsKey(w1) || !idxmap.containsKey(w2)) {
break;
}
int i1 = idxmap.get(w1);
int i2 = idxmap.get(w2);
if (mark[i1] == 0 || mark[i2] == 0) {
isok = false;
}
mark[i1] = 1;
mark[i2] = 1;
if (w1 + a - b == w2) {
break;
}
w1 += (a - b);
w2 += (b - a);
}
} else if (idxmap.containsKey(aw)){
long w1 = w;
long w2 = aw;
while (true) {
if (!idxmap.containsKey(w1) || !idxmap.containsKey(w2)) {
break;
}
int i1 = idxmap.get(w1);
int i2 = idxmap.get(w2);
if (mark[i1] == 1 || mark[i2] == 1) {
isok = false;
}
mark[i1] = 0;
mark[i2] = 0;
if (w1 + b - a == w2) {
break;
}
w1 += (b - a);
w2 += (a - b);
}
}
}
for (int i = 0 ; i < n ; i++) {
if (mark[i] == -1) {
isok = false;
break;
}
}
if (isok) {
printAnswer(mark, out);
} else {
out.println("NO");
}
out.flush();
}
private static void printAnswer(int[] mark, PrintWriter out) {
out.println("YES");
StringBuilder ln = new StringBuilder();
for (int m : mark) {
ln.append(' ').append(m);
}
out.println(ln.substring(1));
}
private static void solve1(long[] x, long a, Map<Long, Integer> idxmap, PrintWriter out) {
int[] mark = new int[x.length];
for (int i = 0 ; i < x.length ; i++) {
if (mark[i] == 1) {
continue;
}
long w = x[i];
long wp = a - w;
if (idxmap.containsKey(wp)) {
mark[i] = mark[idxmap.get(wp)] = 1;
}
}
boolean isok = true;
for (int i = 0 ; i < x.length ; i++) {
if (mark[i] == 0) {
isok = false;
break;
}
}
if (isok) {
printAnswer(mark, out);
} else {
out.println("NO");
}
out.flush();
}
public static void debug(Object... o) {
System.err.println(Arrays.deepToString(o));
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int next() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = next();
while (isSpaceChar(c))
c = next();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = next();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = next();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = next();
while (isSpaceChar(c))
c = next();
long sgn = 1;
if (c == '-') {
sgn = -1;
c = next();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = next();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.HashMap;
import java.util.InputMismatchException;
import java.util.Map;
/**
* Created by hama_du on 2014/09/21.
*/
public class ProblemB {
public static void main(String[] args) {
InputReader in = new InputReader(System.in);
PrintWriter out = new PrintWriter(System.out);
int n = in.nextInt();
long a = in.nextLong();
long b = in.nextLong();
long[] x = new long[n];
for (int i = 0; i < n; i++) {
x[i] = in.nextLong();
}
Map<Long,Integer> idxmap = new HashMap<>();
for (int i = 0; i < n; i++) {
idxmap.put(x[i], i);
}
if (a == b) {
solve1(x, a, idxmap, out);
return;
}
int[] mark = new int[n];
Arrays.fill(mark, -1);
boolean isok = true;
for (int i = 0 ; i < n ; i++) {
if (mark[i] != -1) {
continue;
}
long w = x[i];
long aw = a - w;
long bw = b - w;
if (idxmap.containsKey(aw) && idxmap.containsKey(bw)) {
continue;
} else if (idxmap.containsKey(bw)) {
long w1 = w;
long w2 = bw;
while (true) {
if (!idxmap.containsKey(w1) || !idxmap.containsKey(w2)) {
break;
}
int i1 = idxmap.get(w1);
int i2 = idxmap.get(w2);
if (mark[i1] == 0 || mark[i2] == 0) {
isok = false;
}
mark[i1] = 1;
mark[i2] = 1;
if (w1 + a - b == w2) {
break;
}
w1 += (a - b);
w2 += (b - a);
}
} else if (idxmap.containsKey(aw)){
long w1 = w;
long w2 = aw;
while (true) {
if (!idxmap.containsKey(w1) || !idxmap.containsKey(w2)) {
break;
}
int i1 = idxmap.get(w1);
int i2 = idxmap.get(w2);
if (mark[i1] == 1 || mark[i2] == 1) {
isok = false;
}
mark[i1] = 0;
mark[i2] = 0;
if (w1 + b - a == w2) {
break;
}
w1 += (b - a);
w2 += (a - b);
}
}
}
for (int i = 0 ; i < n ; i++) {
if (mark[i] == -1) {
isok = false;
break;
}
}
if (isok) {
printAnswer(mark, out);
} else {
out.println("NO");
}
out.flush();
}
private static void printAnswer(int[] mark, PrintWriter out) {
out.println("YES");
StringBuilder ln = new StringBuilder();
for (int m : mark) {
ln.append(' ').append(m);
}
out.println(ln.substring(1));
}
private static void solve1(long[] x, long a, Map<Long, Integer> idxmap, PrintWriter out) {
int[] mark = new int[x.length];
for (int i = 0 ; i < x.length ; i++) {
if (mark[i] == 1) {
continue;
}
long w = x[i];
long wp = a - w;
if (idxmap.containsKey(wp)) {
mark[i] = mark[idxmap.get(wp)] = 1;
}
}
boolean isok = true;
for (int i = 0 ; i < x.length ; i++) {
if (mark[i] == 0) {
isok = false;
break;
}
}
if (isok) {
printAnswer(mark, out);
} else {
out.println("NO");
}
out.flush();
}
public static void debug(Object... o) {
System.err.println(Arrays.deepToString(o));
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int next() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = next();
while (isSpaceChar(c))
c = next();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = next();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = next();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = next();
while (isSpaceChar(c))
c = next();
long sgn = 1;
if (c == '-') {
sgn = -1;
c = next();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = next();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.HashMap;
import java.util.InputMismatchException;
import java.util.Map;
/**
* Created by hama_du on 2014/09/21.
*/
public class ProblemB {
public static void main(String[] args) {
InputReader in = new InputReader(System.in);
PrintWriter out = new PrintWriter(System.out);
int n = in.nextInt();
long a = in.nextLong();
long b = in.nextLong();
long[] x = new long[n];
for (int i = 0; i < n; i++) {
x[i] = in.nextLong();
}
Map<Long,Integer> idxmap = new HashMap<>();
for (int i = 0; i < n; i++) {
idxmap.put(x[i], i);
}
if (a == b) {
solve1(x, a, idxmap, out);
return;
}
int[] mark = new int[n];
Arrays.fill(mark, -1);
boolean isok = true;
for (int i = 0 ; i < n ; i++) {
if (mark[i] != -1) {
continue;
}
long w = x[i];
long aw = a - w;
long bw = b - w;
if (idxmap.containsKey(aw) && idxmap.containsKey(bw)) {
continue;
} else if (idxmap.containsKey(bw)) {
long w1 = w;
long w2 = bw;
while (true) {
if (!idxmap.containsKey(w1) || !idxmap.containsKey(w2)) {
break;
}
int i1 = idxmap.get(w1);
int i2 = idxmap.get(w2);
if (mark[i1] == 0 || mark[i2] == 0) {
isok = false;
}
mark[i1] = 1;
mark[i2] = 1;
if (w1 + a - b == w2) {
break;
}
w1 += (a - b);
w2 += (b - a);
}
} else if (idxmap.containsKey(aw)){
long w1 = w;
long w2 = aw;
while (true) {
if (!idxmap.containsKey(w1) || !idxmap.containsKey(w2)) {
break;
}
int i1 = idxmap.get(w1);
int i2 = idxmap.get(w2);
if (mark[i1] == 1 || mark[i2] == 1) {
isok = false;
}
mark[i1] = 0;
mark[i2] = 0;
if (w1 + b - a == w2) {
break;
}
w1 += (b - a);
w2 += (a - b);
}
}
}
for (int i = 0 ; i < n ; i++) {
if (mark[i] == -1) {
isok = false;
break;
}
}
if (isok) {
printAnswer(mark, out);
} else {
out.println("NO");
}
out.flush();
}
private static void printAnswer(int[] mark, PrintWriter out) {
out.println("YES");
StringBuilder ln = new StringBuilder();
for (int m : mark) {
ln.append(' ').append(m);
}
out.println(ln.substring(1));
}
private static void solve1(long[] x, long a, Map<Long, Integer> idxmap, PrintWriter out) {
int[] mark = new int[x.length];
for (int i = 0 ; i < x.length ; i++) {
if (mark[i] == 1) {
continue;
}
long w = x[i];
long wp = a - w;
if (idxmap.containsKey(wp)) {
mark[i] = mark[idxmap.get(wp)] = 1;
}
}
boolean isok = true;
for (int i = 0 ; i < x.length ; i++) {
if (mark[i] == 0) {
isok = false;
break;
}
}
if (isok) {
printAnswer(mark, out);
} else {
out.println("NO");
}
out.flush();
}
public static void debug(Object... o) {
System.err.println(Arrays.deepToString(o));
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int next() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = next();
while (isSpaceChar(c))
c = next();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = next();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = next();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = next();
while (isSpaceChar(c))
c = next();
long sgn = 1;
if (c == '-') {
sgn = -1;
c = next();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = next();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,788 | 381 |
522 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;
import static java.lang.Math.*;
public class Main {
private FastScanner scanner = new FastScanner();
public static void main(String[] args) {
new Main().solve();
}
private void solve() {
int n = scanner.nextInt();
Map<Integer, Integer> cnt = new HashMap<>();
for (int i = 0; i < n; i++) {
String s = scanner.nextLine();
LinkedList<Character> st = new LinkedList<>();
for (char c : s.toCharArray()) {
if (c == ')' && !st.isEmpty() && st.getLast() == '(') {
st.pollLast();
continue;
}
st.addLast(c);
}
int t = st.size();
Set<Character> set = new HashSet<>(st);
if (set.size() > 1) {
continue;
}
if (set.isEmpty()) {
cnt.put(0, cnt.getOrDefault(0, 0) + 1);
continue;
}
if (st.getLast() == '(') {
cnt.put(t, cnt.getOrDefault(t, 0) + 1);
} else {
cnt.put(-t, cnt.getOrDefault(-t, 0) + 1);
}
}
long ans = 0;
for (int next : cnt.keySet()) {
if (next == 0) {
ans += (long) cnt.get(next) * (cnt.get(next) - 1) + cnt.get(next);
} else if (next > 0) {
int t = next * -1;
if (cnt.containsKey(t)) {
ans += (long) cnt.get(next) * cnt.get(t);
}
}
}
System.out.print(ans);
}
class FastScanner {
BufferedReader reader;
StringTokenizer tokenizer;
FastScanner() {
reader = new BufferedReader(new InputStreamReader(System.in), 32768);
tokenizer = null;
}
String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
Integer[] nextA(int n) {
Integer a[] = new Integer[n];
for (int i = 0; i < n; i++) {
a[i] = scanner.nextInt();
}
return a;
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
try {
return reader.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;
import static java.lang.Math.*;
public class Main {
private FastScanner scanner = new FastScanner();
public static void main(String[] args) {
new Main().solve();
}
private void solve() {
int n = scanner.nextInt();
Map<Integer, Integer> cnt = new HashMap<>();
for (int i = 0; i < n; i++) {
String s = scanner.nextLine();
LinkedList<Character> st = new LinkedList<>();
for (char c : s.toCharArray()) {
if (c == ')' && !st.isEmpty() && st.getLast() == '(') {
st.pollLast();
continue;
}
st.addLast(c);
}
int t = st.size();
Set<Character> set = new HashSet<>(st);
if (set.size() > 1) {
continue;
}
if (set.isEmpty()) {
cnt.put(0, cnt.getOrDefault(0, 0) + 1);
continue;
}
if (st.getLast() == '(') {
cnt.put(t, cnt.getOrDefault(t, 0) + 1);
} else {
cnt.put(-t, cnt.getOrDefault(-t, 0) + 1);
}
}
long ans = 0;
for (int next : cnt.keySet()) {
if (next == 0) {
ans += (long) cnt.get(next) * (cnt.get(next) - 1) + cnt.get(next);
} else if (next > 0) {
int t = next * -1;
if (cnt.containsKey(t)) {
ans += (long) cnt.get(next) * cnt.get(t);
}
}
}
System.out.print(ans);
}
class FastScanner {
BufferedReader reader;
StringTokenizer tokenizer;
FastScanner() {
reader = new BufferedReader(new InputStreamReader(System.in), 32768);
tokenizer = null;
}
String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
Integer[] nextA(int n) {
Integer a[] = new Integer[n];
for (int i = 0; i < n; i++) {
a[i] = scanner.nextInt();
}
return a;
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
try {
return reader.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;
import static java.lang.Math.*;
public class Main {
private FastScanner scanner = new FastScanner();
public static void main(String[] args) {
new Main().solve();
}
private void solve() {
int n = scanner.nextInt();
Map<Integer, Integer> cnt = new HashMap<>();
for (int i = 0; i < n; i++) {
String s = scanner.nextLine();
LinkedList<Character> st = new LinkedList<>();
for (char c : s.toCharArray()) {
if (c == ')' && !st.isEmpty() && st.getLast() == '(') {
st.pollLast();
continue;
}
st.addLast(c);
}
int t = st.size();
Set<Character> set = new HashSet<>(st);
if (set.size() > 1) {
continue;
}
if (set.isEmpty()) {
cnt.put(0, cnt.getOrDefault(0, 0) + 1);
continue;
}
if (st.getLast() == '(') {
cnt.put(t, cnt.getOrDefault(t, 0) + 1);
} else {
cnt.put(-t, cnt.getOrDefault(-t, 0) + 1);
}
}
long ans = 0;
for (int next : cnt.keySet()) {
if (next == 0) {
ans += (long) cnt.get(next) * (cnt.get(next) - 1) + cnt.get(next);
} else if (next > 0) {
int t = next * -1;
if (cnt.containsKey(t)) {
ans += (long) cnt.get(next) * cnt.get(t);
}
}
}
System.out.print(ans);
}
class FastScanner {
BufferedReader reader;
StringTokenizer tokenizer;
FastScanner() {
reader = new BufferedReader(new InputStreamReader(System.in), 32768);
tokenizer = null;
}
String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
Integer[] nextA(int n) {
Integer a[] = new Integer[n];
for (int i = 0; i < n; i++) {
a[i] = scanner.nextInt();
}
return a;
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
try {
return reader.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 964 | 521 |
4,486 |
import java.util.*;
import java.io.*;
public class EdA {
static long[] mods = {1000000007, 998244353, 1000000009};
static long mod = mods[0];
public static MyScanner sc;
public static PrintWriter out;
public static void main(String[] omkar) throws Exception{
// TODO Auto-generated method stub
sc = new MyScanner();
out = new PrintWriter(System.out);
int n = sc.nextInt();
int m = sc.nextInt();
int[][]cnt = new int[m][m];
String s = sc.next();
for(int j =0;j<n-1;j++){
if (s.charAt(j) != s.charAt(j+1)){
cnt[s.charAt(j)-'a'][s.charAt(j+1)-'a']++;
cnt[s.charAt(j+1)-'a'][s.charAt(j)-'a']++;
}
}
int[] st = new int[m+1];
for(int j = 0;j<=m;j++){
st[j] = (1<<j);
}
int[][] arr = new int[m][1<<m];
for(int j = 0;j<m;j++){
for(int k = 1;k<(1<<m);k++){
int z = Integer.lowestOneBit(k);
int count = 0;
while(z!=0 && z%2==0){
z/=2;
count++;
}
arr[j][k] = arr[j][k^(Integer.lowestOneBit(k))] + cnt[j][count];
}
}
int[] dp = new int[1<<m];
Arrays.fill(dp, Integer.MAX_VALUE);
dp[0] = 0;
for(int j = 1;j<st[m];j++){
for(int k = 0;k<m;k++){
int y = st[k];
if ((y&j) != 0){
int sum = 2*arr[k][j] - arr[k][(1<<m)-1];
// for(int t = 0;t<m;t++){
// if (t!= k){
// if ((st[t]&j) != 0)
// sum+=cnt[t][k];
// else
// sum-=cnt[t][k];
// }
// }
dp[j] = Math.min(dp[j], dp[y^j]+sum*Integer.bitCount(j));
}
}
}
out.println(dp[(1<<m)-1]);
out.close();
}
public static void sort(int[] array){
ArrayList<Integer> copy = new ArrayList<Integer>();
for (int i : array)
copy.add(i);
Collections.sort(copy);
for(int i = 0;i<array.length;i++)
array[i] = copy.get(i);
}
static String[] readArrayString(int n){
String[] array = new String[n];
for(int j =0 ;j<n;j++)
array[j] = sc.next();
return array;
}
static int[] readArrayInt(int n){
int[] array = new int[n];
for(int j = 0;j<n;j++)
array[j] = sc.nextInt();
return array;
}
static int[] readArrayInt1(int n){
int[] array = new int[n+1];
for(int j = 1;j<=n;j++){
array[j] = sc.nextInt();
}
return array;
}
static long[] readArrayLong(int n){
long[] array = new long[n];
for(int j =0 ;j<n;j++)
array[j] = sc.nextLong();
return array;
}
static double[] readArrayDouble(int n){
double[] array = new double[n];
for(int j =0 ;j<n;j++)
array[j] = sc.nextDouble();
return array;
}
static int minIndex(int[] array){
int minValue = Integer.MAX_VALUE;
int minIndex = -1;
for(int j = 0;j<array.length;j++){
if (array[j] < minValue){
minValue = array[j];
minIndex = j;
}
}
return minIndex;
}
static int minIndex(long[] array){
long minValue = Long.MAX_VALUE;
int minIndex = -1;
for(int j = 0;j<array.length;j++){
if (array[j] < minValue){
minValue = array[j];
minIndex = j;
}
}
return minIndex;
}
static int minIndex(double[] array){
double minValue = Double.MAX_VALUE;
int minIndex = -1;
for(int j = 0;j<array.length;j++){
if (array[j] < minValue){
minValue = array[j];
minIndex = j;
}
}
return minIndex;
}
static long power(long x, long y){
if (y == 0)
return 1;
if (y%2 == 1)
return (x*power(x, y-1))%mod;
return power((x*x)%mod, y/2)%mod;
}
static void verdict(boolean a){
out.println(a ? "YES" : "NO");
}
public static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try{
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
//StringJoiner sj = new StringJoiner(" ");
//sj.add(strings)
//sj.toString() gives string of those stuff w spaces or whatever that sequence is
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class EdA {
static long[] mods = {1000000007, 998244353, 1000000009};
static long mod = mods[0];
public static MyScanner sc;
public static PrintWriter out;
public static void main(String[] omkar) throws Exception{
// TODO Auto-generated method stub
sc = new MyScanner();
out = new PrintWriter(System.out);
int n = sc.nextInt();
int m = sc.nextInt();
int[][]cnt = new int[m][m];
String s = sc.next();
for(int j =0;j<n-1;j++){
if (s.charAt(j) != s.charAt(j+1)){
cnt[s.charAt(j)-'a'][s.charAt(j+1)-'a']++;
cnt[s.charAt(j+1)-'a'][s.charAt(j)-'a']++;
}
}
int[] st = new int[m+1];
for(int j = 0;j<=m;j++){
st[j] = (1<<j);
}
int[][] arr = new int[m][1<<m];
for(int j = 0;j<m;j++){
for(int k = 1;k<(1<<m);k++){
int z = Integer.lowestOneBit(k);
int count = 0;
while(z!=0 && z%2==0){
z/=2;
count++;
}
arr[j][k] = arr[j][k^(Integer.lowestOneBit(k))] + cnt[j][count];
}
}
int[] dp = new int[1<<m];
Arrays.fill(dp, Integer.MAX_VALUE);
dp[0] = 0;
for(int j = 1;j<st[m];j++){
for(int k = 0;k<m;k++){
int y = st[k];
if ((y&j) != 0){
int sum = 2*arr[k][j] - arr[k][(1<<m)-1];
// for(int t = 0;t<m;t++){
// if (t!= k){
// if ((st[t]&j) != 0)
// sum+=cnt[t][k];
// else
// sum-=cnt[t][k];
// }
// }
dp[j] = Math.min(dp[j], dp[y^j]+sum*Integer.bitCount(j));
}
}
}
out.println(dp[(1<<m)-1]);
out.close();
}
public static void sort(int[] array){
ArrayList<Integer> copy = new ArrayList<Integer>();
for (int i : array)
copy.add(i);
Collections.sort(copy);
for(int i = 0;i<array.length;i++)
array[i] = copy.get(i);
}
static String[] readArrayString(int n){
String[] array = new String[n];
for(int j =0 ;j<n;j++)
array[j] = sc.next();
return array;
}
static int[] readArrayInt(int n){
int[] array = new int[n];
for(int j = 0;j<n;j++)
array[j] = sc.nextInt();
return array;
}
static int[] readArrayInt1(int n){
int[] array = new int[n+1];
for(int j = 1;j<=n;j++){
array[j] = sc.nextInt();
}
return array;
}
static long[] readArrayLong(int n){
long[] array = new long[n];
for(int j =0 ;j<n;j++)
array[j] = sc.nextLong();
return array;
}
static double[] readArrayDouble(int n){
double[] array = new double[n];
for(int j =0 ;j<n;j++)
array[j] = sc.nextDouble();
return array;
}
static int minIndex(int[] array){
int minValue = Integer.MAX_VALUE;
int minIndex = -1;
for(int j = 0;j<array.length;j++){
if (array[j] < minValue){
minValue = array[j];
minIndex = j;
}
}
return minIndex;
}
static int minIndex(long[] array){
long minValue = Long.MAX_VALUE;
int minIndex = -1;
for(int j = 0;j<array.length;j++){
if (array[j] < minValue){
minValue = array[j];
minIndex = j;
}
}
return minIndex;
}
static int minIndex(double[] array){
double minValue = Double.MAX_VALUE;
int minIndex = -1;
for(int j = 0;j<array.length;j++){
if (array[j] < minValue){
minValue = array[j];
minIndex = j;
}
}
return minIndex;
}
static long power(long x, long y){
if (y == 0)
return 1;
if (y%2 == 1)
return (x*power(x, y-1))%mod;
return power((x*x)%mod, y/2)%mod;
}
static void verdict(boolean a){
out.println(a ? "YES" : "NO");
}
public static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try{
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
//StringJoiner sj = new StringJoiner(" ");
//sj.add(strings)
//sj.toString() gives string of those stuff w spaces or whatever that sequence is
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class EdA {
static long[] mods = {1000000007, 998244353, 1000000009};
static long mod = mods[0];
public static MyScanner sc;
public static PrintWriter out;
public static void main(String[] omkar) throws Exception{
// TODO Auto-generated method stub
sc = new MyScanner();
out = new PrintWriter(System.out);
int n = sc.nextInt();
int m = sc.nextInt();
int[][]cnt = new int[m][m];
String s = sc.next();
for(int j =0;j<n-1;j++){
if (s.charAt(j) != s.charAt(j+1)){
cnt[s.charAt(j)-'a'][s.charAt(j+1)-'a']++;
cnt[s.charAt(j+1)-'a'][s.charAt(j)-'a']++;
}
}
int[] st = new int[m+1];
for(int j = 0;j<=m;j++){
st[j] = (1<<j);
}
int[][] arr = new int[m][1<<m];
for(int j = 0;j<m;j++){
for(int k = 1;k<(1<<m);k++){
int z = Integer.lowestOneBit(k);
int count = 0;
while(z!=0 && z%2==0){
z/=2;
count++;
}
arr[j][k] = arr[j][k^(Integer.lowestOneBit(k))] + cnt[j][count];
}
}
int[] dp = new int[1<<m];
Arrays.fill(dp, Integer.MAX_VALUE);
dp[0] = 0;
for(int j = 1;j<st[m];j++){
for(int k = 0;k<m;k++){
int y = st[k];
if ((y&j) != 0){
int sum = 2*arr[k][j] - arr[k][(1<<m)-1];
// for(int t = 0;t<m;t++){
// if (t!= k){
// if ((st[t]&j) != 0)
// sum+=cnt[t][k];
// else
// sum-=cnt[t][k];
// }
// }
dp[j] = Math.min(dp[j], dp[y^j]+sum*Integer.bitCount(j));
}
}
}
out.println(dp[(1<<m)-1]);
out.close();
}
public static void sort(int[] array){
ArrayList<Integer> copy = new ArrayList<Integer>();
for (int i : array)
copy.add(i);
Collections.sort(copy);
for(int i = 0;i<array.length;i++)
array[i] = copy.get(i);
}
static String[] readArrayString(int n){
String[] array = new String[n];
for(int j =0 ;j<n;j++)
array[j] = sc.next();
return array;
}
static int[] readArrayInt(int n){
int[] array = new int[n];
for(int j = 0;j<n;j++)
array[j] = sc.nextInt();
return array;
}
static int[] readArrayInt1(int n){
int[] array = new int[n+1];
for(int j = 1;j<=n;j++){
array[j] = sc.nextInt();
}
return array;
}
static long[] readArrayLong(int n){
long[] array = new long[n];
for(int j =0 ;j<n;j++)
array[j] = sc.nextLong();
return array;
}
static double[] readArrayDouble(int n){
double[] array = new double[n];
for(int j =0 ;j<n;j++)
array[j] = sc.nextDouble();
return array;
}
static int minIndex(int[] array){
int minValue = Integer.MAX_VALUE;
int minIndex = -1;
for(int j = 0;j<array.length;j++){
if (array[j] < minValue){
minValue = array[j];
minIndex = j;
}
}
return minIndex;
}
static int minIndex(long[] array){
long minValue = Long.MAX_VALUE;
int minIndex = -1;
for(int j = 0;j<array.length;j++){
if (array[j] < minValue){
minValue = array[j];
minIndex = j;
}
}
return minIndex;
}
static int minIndex(double[] array){
double minValue = Double.MAX_VALUE;
int minIndex = -1;
for(int j = 0;j<array.length;j++){
if (array[j] < minValue){
minValue = array[j];
minIndex = j;
}
}
return minIndex;
}
static long power(long x, long y){
if (y == 0)
return 1;
if (y%2 == 1)
return (x*power(x, y-1))%mod;
return power((x*x)%mod, y/2)%mod;
}
static void verdict(boolean a){
out.println(a ? "YES" : "NO");
}
public static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try{
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
//StringJoiner sj = new StringJoiner(" ");
//sj.add(strings)
//sj.toString() gives string of those stuff w spaces or whatever that sequence is
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,711 | 4,475 |
1,533 |
import java.util.*;
import java.io.*;
public class a {
public static void main(String[] args) throws IOException
{
input.init(System.in);
int n = input.nextInt(), k = input.nextInt();
TreeSet<Integer> ts = new TreeSet<Integer>();
int[] data = new int[n];
for(int i = 0; i<n; i++)
{
data[i] = input.nextInt();
}
Arrays.sort(data);
if(n>1 && k==1.*data[n-1]/data[0])
System.out.println(n-1);
else
{
for(int i = 0; i<n; i++)
{
if(data[i]%k != 0)
ts.add(data[i]);
else
{
if(!ts.contains(data[i]/k))
ts.add(data[i]);
}
}
System.out.println(ts.size());
}
}
public static class input {
static BufferedReader reader;
static StringTokenizer tokenizer;
/** call this method to initialize reader for InputStream */
static void init(InputStream input) {
reader = new BufferedReader(
new InputStreamReader(input) );
tokenizer = new StringTokenizer("");
}
/** get next word */
static String next() throws IOException {
while ( ! tokenizer.hasMoreTokens() ) {
//TODO add check for eof if necessary
tokenizer = new StringTokenizer(
reader.readLine() );
}
return tokenizer.nextToken();
}
static int nextInt() throws IOException {
return Integer.parseInt( next() );
}
static double nextDouble() throws IOException {
return Double.parseDouble( next() );
}
static long nextLong() throws IOException {
return Long.parseLong( next() );
}
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class a {
public static void main(String[] args) throws IOException
{
input.init(System.in);
int n = input.nextInt(), k = input.nextInt();
TreeSet<Integer> ts = new TreeSet<Integer>();
int[] data = new int[n];
for(int i = 0; i<n; i++)
{
data[i] = input.nextInt();
}
Arrays.sort(data);
if(n>1 && k==1.*data[n-1]/data[0])
System.out.println(n-1);
else
{
for(int i = 0; i<n; i++)
{
if(data[i]%k != 0)
ts.add(data[i]);
else
{
if(!ts.contains(data[i]/k))
ts.add(data[i]);
}
}
System.out.println(ts.size());
}
}
public static class input {
static BufferedReader reader;
static StringTokenizer tokenizer;
/** call this method to initialize reader for InputStream */
static void init(InputStream input) {
reader = new BufferedReader(
new InputStreamReader(input) );
tokenizer = new StringTokenizer("");
}
/** get next word */
static String next() throws IOException {
while ( ! tokenizer.hasMoreTokens() ) {
//TODO add check for eof if necessary
tokenizer = new StringTokenizer(
reader.readLine() );
}
return tokenizer.nextToken();
}
static int nextInt() throws IOException {
return Integer.parseInt( next() );
}
static double nextDouble() throws IOException {
return Double.parseDouble( next() );
}
static long nextLong() throws IOException {
return Long.parseLong( next() );
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class a {
public static void main(String[] args) throws IOException
{
input.init(System.in);
int n = input.nextInt(), k = input.nextInt();
TreeSet<Integer> ts = new TreeSet<Integer>();
int[] data = new int[n];
for(int i = 0; i<n; i++)
{
data[i] = input.nextInt();
}
Arrays.sort(data);
if(n>1 && k==1.*data[n-1]/data[0])
System.out.println(n-1);
else
{
for(int i = 0; i<n; i++)
{
if(data[i]%k != 0)
ts.add(data[i]);
else
{
if(!ts.contains(data[i]/k))
ts.add(data[i]);
}
}
System.out.println(ts.size());
}
}
public static class input {
static BufferedReader reader;
static StringTokenizer tokenizer;
/** call this method to initialize reader for InputStream */
static void init(InputStream input) {
reader = new BufferedReader(
new InputStreamReader(input) );
tokenizer = new StringTokenizer("");
}
/** get next word */
static String next() throws IOException {
while ( ! tokenizer.hasMoreTokens() ) {
//TODO add check for eof if necessary
tokenizer = new StringTokenizer(
reader.readLine() );
}
return tokenizer.nextToken();
}
static int nextInt() throws IOException {
return Integer.parseInt( next() );
}
static double nextDouble() throws IOException {
return Double.parseDouble( next() );
}
static long nextLong() throws IOException {
return Long.parseLong( next() );
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 686 | 1,531 |
1,227 |
import java.util.*;
import java.io.*;
public class A2 {
/*
*/
public static void main(String[] args) throws Exception {
uu.s1();
uu.out.close();
}
public static class uu {
public static BR in = new BR();
public static PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
public static boolean bg = true;
public static MOD m1 = new MOD(1000000000+9);
public static long mod = 1000000000+9;
public static void s1() throws Exception {
long n = in.ni();
long m = in.ni();
long k = in.ni();
long lose = n - m;
long aval = m / (k - 1l);
long times1 = Math.min(lose, aval);
long notused = times1 * (k - 1l);
long used = m - notused;
long blocks = used / k;
long left = used % k;
long k1 = 0;
if (blocks != 0){
k1 = m1.pow(2, blocks+1);
k1 = m1.s(k1, 2);
}
long ans = (m1.t(k, k1)+left + notused)%mod;
pn(ans);
}
public static void geom(long f1){
}
public static void s2() throws Exception {
}
public static void s3() throws Exception {
}
private static void pn(Object... o1) {
for (int i = 0; i < o1.length; i++){
if (i!= 0) out.print(" ");
out.print(o1[i]);
}
out.println();
}
public static boolean allTrue(boolean ... l1){
for (boolean e: l1) if (!e) return false;
return true;
}
public static boolean allFalse(boolean ... l1){
for (boolean e: l1) if (e) return false;
return true;
}
}
private static class MOD {
public long mod = -1;
public MOD(long k1) {
mod = k1;
}
public long cl(long n1){
long fin = n1%mod;
if (fin<0) fin+= mod;
return fin;
}
public long s(long n1, long n2) {
long k1 = (n1 - n2) % mod;
if (k1 < 0)
k1 += mod;
return k1;
}
public long t(long n1, long n2) {
long k1 = (n1 * n2) % mod;
if (k1 < 0)
k1 += mod;
return k1;
}
public static long xgcd(long n1, long n2) {
long k1 = n1;
long k2 = n2;
long[] l1 = { 1, 0 };
long[] l2 = { 0, 1 };
for (;;) {
long f1 = k1 / k2;
long f2 = k1 % k2;
if (f2 == 0)
break;
long[] l3 = { 0, 0 };
l3[0] = l1[0] - f1 * l2[0];
l3[1] = l1[1] - f1 * l2[1];
l1 = l2;
l2 = l3;
k1 = k2;
k2 = f2;
}
long fin = l2[1] % n1;
if (fin < 0) {
fin += n1;
}
return fin;
}
public long pow(long n1, long pow) {
if (pow == 0)
return 1;
else if (pow == 1)
return t(1l, n1);
else if ((pow & 1) == 0) {
long half = pow(n1, pow >> 1);
return t(half, half);
} else {
long half = pow(n1, pow >> 1);
return t(half, t(half, n1));
}
}
public long factorial(long k1, long n1) {
long fin = 1;
long q1 = k1;
for (int i = 0; i < n1; i++) {
fin = t(fin, q1);
q1--;
if (q1 <= 0)
break;
}
return cl(fin);
}
}
private static class BR {
BufferedReader k1 = null;
StringTokenizer k2 = null;
public BR() {
k1 = new BufferedReader(new InputStreamReader(System.in));
}
public String nx() throws Exception {
for (;;) {
if (k2 == null || !k2.hasMoreTokens()) {
String temp = k1.readLine();
if (temp == null)
return null;
k2 = new StringTokenizer(temp);
}
else
break;
}
return k2.nextToken();
}
public int ni() throws Exception {
return Integer.parseInt(nx());
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class A2 {
/*
*/
public static void main(String[] args) throws Exception {
uu.s1();
uu.out.close();
}
public static class uu {
public static BR in = new BR();
public static PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
public static boolean bg = true;
public static MOD m1 = new MOD(1000000000+9);
public static long mod = 1000000000+9;
public static void s1() throws Exception {
long n = in.ni();
long m = in.ni();
long k = in.ni();
long lose = n - m;
long aval = m / (k - 1l);
long times1 = Math.min(lose, aval);
long notused = times1 * (k - 1l);
long used = m - notused;
long blocks = used / k;
long left = used % k;
long k1 = 0;
if (blocks != 0){
k1 = m1.pow(2, blocks+1);
k1 = m1.s(k1, 2);
}
long ans = (m1.t(k, k1)+left + notused)%mod;
pn(ans);
}
public static void geom(long f1){
}
public static void s2() throws Exception {
}
public static void s3() throws Exception {
}
private static void pn(Object... o1) {
for (int i = 0; i < o1.length; i++){
if (i!= 0) out.print(" ");
out.print(o1[i]);
}
out.println();
}
public static boolean allTrue(boolean ... l1){
for (boolean e: l1) if (!e) return false;
return true;
}
public static boolean allFalse(boolean ... l1){
for (boolean e: l1) if (e) return false;
return true;
}
}
private static class MOD {
public long mod = -1;
public MOD(long k1) {
mod = k1;
}
public long cl(long n1){
long fin = n1%mod;
if (fin<0) fin+= mod;
return fin;
}
public long s(long n1, long n2) {
long k1 = (n1 - n2) % mod;
if (k1 < 0)
k1 += mod;
return k1;
}
public long t(long n1, long n2) {
long k1 = (n1 * n2) % mod;
if (k1 < 0)
k1 += mod;
return k1;
}
public static long xgcd(long n1, long n2) {
long k1 = n1;
long k2 = n2;
long[] l1 = { 1, 0 };
long[] l2 = { 0, 1 };
for (;;) {
long f1 = k1 / k2;
long f2 = k1 % k2;
if (f2 == 0)
break;
long[] l3 = { 0, 0 };
l3[0] = l1[0] - f1 * l2[0];
l3[1] = l1[1] - f1 * l2[1];
l1 = l2;
l2 = l3;
k1 = k2;
k2 = f2;
}
long fin = l2[1] % n1;
if (fin < 0) {
fin += n1;
}
return fin;
}
public long pow(long n1, long pow) {
if (pow == 0)
return 1;
else if (pow == 1)
return t(1l, n1);
else if ((pow & 1) == 0) {
long half = pow(n1, pow >> 1);
return t(half, half);
} else {
long half = pow(n1, pow >> 1);
return t(half, t(half, n1));
}
}
public long factorial(long k1, long n1) {
long fin = 1;
long q1 = k1;
for (int i = 0; i < n1; i++) {
fin = t(fin, q1);
q1--;
if (q1 <= 0)
break;
}
return cl(fin);
}
}
private static class BR {
BufferedReader k1 = null;
StringTokenizer k2 = null;
public BR() {
k1 = new BufferedReader(new InputStreamReader(System.in));
}
public String nx() throws Exception {
for (;;) {
if (k2 == null || !k2.hasMoreTokens()) {
String temp = k1.readLine();
if (temp == null)
return null;
k2 = new StringTokenizer(temp);
}
else
break;
}
return k2.nextToken();
}
public int ni() throws Exception {
return Integer.parseInt(nx());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class A2 {
/*
*/
public static void main(String[] args) throws Exception {
uu.s1();
uu.out.close();
}
public static class uu {
public static BR in = new BR();
public static PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
public static boolean bg = true;
public static MOD m1 = new MOD(1000000000+9);
public static long mod = 1000000000+9;
public static void s1() throws Exception {
long n = in.ni();
long m = in.ni();
long k = in.ni();
long lose = n - m;
long aval = m / (k - 1l);
long times1 = Math.min(lose, aval);
long notused = times1 * (k - 1l);
long used = m - notused;
long blocks = used / k;
long left = used % k;
long k1 = 0;
if (blocks != 0){
k1 = m1.pow(2, blocks+1);
k1 = m1.s(k1, 2);
}
long ans = (m1.t(k, k1)+left + notused)%mod;
pn(ans);
}
public static void geom(long f1){
}
public static void s2() throws Exception {
}
public static void s3() throws Exception {
}
private static void pn(Object... o1) {
for (int i = 0; i < o1.length; i++){
if (i!= 0) out.print(" ");
out.print(o1[i]);
}
out.println();
}
public static boolean allTrue(boolean ... l1){
for (boolean e: l1) if (!e) return false;
return true;
}
public static boolean allFalse(boolean ... l1){
for (boolean e: l1) if (e) return false;
return true;
}
}
private static class MOD {
public long mod = -1;
public MOD(long k1) {
mod = k1;
}
public long cl(long n1){
long fin = n1%mod;
if (fin<0) fin+= mod;
return fin;
}
public long s(long n1, long n2) {
long k1 = (n1 - n2) % mod;
if (k1 < 0)
k1 += mod;
return k1;
}
public long t(long n1, long n2) {
long k1 = (n1 * n2) % mod;
if (k1 < 0)
k1 += mod;
return k1;
}
public static long xgcd(long n1, long n2) {
long k1 = n1;
long k2 = n2;
long[] l1 = { 1, 0 };
long[] l2 = { 0, 1 };
for (;;) {
long f1 = k1 / k2;
long f2 = k1 % k2;
if (f2 == 0)
break;
long[] l3 = { 0, 0 };
l3[0] = l1[0] - f1 * l2[0];
l3[1] = l1[1] - f1 * l2[1];
l1 = l2;
l2 = l3;
k1 = k2;
k2 = f2;
}
long fin = l2[1] % n1;
if (fin < 0) {
fin += n1;
}
return fin;
}
public long pow(long n1, long pow) {
if (pow == 0)
return 1;
else if (pow == 1)
return t(1l, n1);
else if ((pow & 1) == 0) {
long half = pow(n1, pow >> 1);
return t(half, half);
} else {
long half = pow(n1, pow >> 1);
return t(half, t(half, n1));
}
}
public long factorial(long k1, long n1) {
long fin = 1;
long q1 = k1;
for (int i = 0; i < n1; i++) {
fin = t(fin, q1);
q1--;
if (q1 <= 0)
break;
}
return cl(fin);
}
}
private static class BR {
BufferedReader k1 = null;
StringTokenizer k2 = null;
public BR() {
k1 = new BufferedReader(new InputStreamReader(System.in));
}
public String nx() throws Exception {
for (;;) {
if (k2 == null || !k2.hasMoreTokens()) {
String temp = k1.readLine();
if (temp == null)
return null;
k2 = new StringTokenizer(temp);
}
else
break;
}
return k2.nextToken();
}
public int ni() throws Exception {
return Integer.parseInt(nx());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,519 | 1,226 |
2,409 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Liavontsi Brechka
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskD solver = new TaskD();
solver.solve(1, in, out);
out.close();
}
static
@SuppressWarnings("Duplicates")
class TaskD {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int[] a = in.nextIntArray(n);
int m = in.nextInt();
int count = 0;
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
if (a[i] > a[j]) count = (count + 1) % 2;
}
}
StringBuilder res = new StringBuilder();
int l, r;
while (m-- > 0) {
l = in.nextInt() - 1;
r = in.nextInt() - 1;
count = count ^ (((r - l + 1) * (r - l) / 2) % 2);
res.append(count == 1 ? "odd" : "even").append('\n');
}
out.print(res);
}
}
static class InputReader {
private final BufferedReader reader;
private StringTokenizer tokenizer;
public InputReader(InputStream in) {
reader = new BufferedReader(new InputStreamReader(in));
}
public int[] nextIntArray(int size) {
int[] array = new int[size];
for (int i = 0; i < size; ++i) {
array[i] = nextInt();
}
return array;
}
public int nextInt() {
return Integer.parseInt(next());
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(readLine());
}
return tokenizer.nextToken();
}
public String readLine() {
String line;
try {
line = reader.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
return line;
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Liavontsi Brechka
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskD solver = new TaskD();
solver.solve(1, in, out);
out.close();
}
static
@SuppressWarnings("Duplicates")
class TaskD {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int[] a = in.nextIntArray(n);
int m = in.nextInt();
int count = 0;
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
if (a[i] > a[j]) count = (count + 1) % 2;
}
}
StringBuilder res = new StringBuilder();
int l, r;
while (m-- > 0) {
l = in.nextInt() - 1;
r = in.nextInt() - 1;
count = count ^ (((r - l + 1) * (r - l) / 2) % 2);
res.append(count == 1 ? "odd" : "even").append('\n');
}
out.print(res);
}
}
static class InputReader {
private final BufferedReader reader;
private StringTokenizer tokenizer;
public InputReader(InputStream in) {
reader = new BufferedReader(new InputStreamReader(in));
}
public int[] nextIntArray(int size) {
int[] array = new int[size];
for (int i = 0; i < size; ++i) {
array[i] = nextInt();
}
return array;
}
public int nextInt() {
return Integer.parseInt(next());
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(readLine());
}
return tokenizer.nextToken();
}
public String readLine() {
String line;
try {
line = reader.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
return line;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Liavontsi Brechka
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskD solver = new TaskD();
solver.solve(1, in, out);
out.close();
}
static
@SuppressWarnings("Duplicates")
class TaskD {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int[] a = in.nextIntArray(n);
int m = in.nextInt();
int count = 0;
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
if (a[i] > a[j]) count = (count + 1) % 2;
}
}
StringBuilder res = new StringBuilder();
int l, r;
while (m-- > 0) {
l = in.nextInt() - 1;
r = in.nextInt() - 1;
count = count ^ (((r - l + 1) * (r - l) / 2) % 2);
res.append(count == 1 ? "odd" : "even").append('\n');
}
out.print(res);
}
}
static class InputReader {
private final BufferedReader reader;
private StringTokenizer tokenizer;
public InputReader(InputStream in) {
reader = new BufferedReader(new InputStreamReader(in));
}
public int[] nextIntArray(int size) {
int[] array = new int[size];
for (int i = 0; i < size; ++i) {
array[i] = nextInt();
}
return array;
}
public int nextInt() {
return Integer.parseInt(next());
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(readLine());
}
return tokenizer.nextToken();
}
public String readLine() {
String line;
try {
line = reader.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
return line;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 904 | 2,404 |
3,142 |
import static java.lang.Math.*;
import static java.util.Arrays.*;
import java.io.*;
import java.util.*;
public class Main {
static boolean LOCAL = System.getSecurityManager() == null;
Scanner sc = new Scanner(System.in);
void run() {
double a = sc.nextDouble(), v = sc.nextDouble();
double L = sc.nextDouble(), d = sc.nextDouble(), w = sc.nextDouble();
w = min(w, v);
double t = 0;
if (w * w / (2 * a) <= d) {
if ((v * v + 2 * v * (v - w) - (v - w) * (v - w)) / (2 * a) <= d) {
t = (2 * v - w) / a + (d - (v * v + 2 * v * (v - w) - (v - w) * (v - w)) / (2 * a)) / v;
} else {
double A = a, B = w, C = (w * w) / (2 * a) - d;
t = w / a + (-B + sqrt(max(0, B * B - A * C))) / A * 2;
}
if ((2 * w * (v - w) + (v - w) * (v - w)) / (2 * a) <= L - d) {
t += (v - w) / a + (L - d - (2 * w * (v - w) + (v - w) * (v - w)) / (2 * a)) / v;
} else {
double A = a, B = w, C = -2 * (L - d);
t += (-B + sqrt(max(0, B * B - A * C))) / A;
}
} else if (v * v / (2 * a) <= L) {
t = v / a + (L - (v * v / (2 * a))) / v;
} else {
t = sqrt(2 * L / a);
}
System.out.printf("%.10f%n", t);
}
class Scanner {
BufferedReader br;
StringTokenizer st;
Scanner(InputStream in) {
br = new BufferedReader(new InputStreamReader(in));
eat("");
}
void eat(String s) {
st = new StringTokenizer(s);
}
String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
boolean hasNext() {
while (!st.hasMoreTokens()) {
String s = nextLine();
if (s == null) return false;
eat(s);
}
return true;
}
String next() {
hasNext();
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
void debug(Object...os) {
System.err.println(deepToString(os));
}
public static void main(String[] args) {
if (LOCAL) {
try {
System.setIn(new FileInputStream("in.txt"));
} catch (Throwable e) {
LOCAL = false;
}
}
if (!LOCAL) {
try {
Locale.setDefault(Locale.US);
System.setOut(new PrintStream(new BufferedOutputStream(System.out)));
} catch (Throwable e) {
}
}
new Main().run();
System.out.flush();
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import static java.lang.Math.*;
import static java.util.Arrays.*;
import java.io.*;
import java.util.*;
public class Main {
static boolean LOCAL = System.getSecurityManager() == null;
Scanner sc = new Scanner(System.in);
void run() {
double a = sc.nextDouble(), v = sc.nextDouble();
double L = sc.nextDouble(), d = sc.nextDouble(), w = sc.nextDouble();
w = min(w, v);
double t = 0;
if (w * w / (2 * a) <= d) {
if ((v * v + 2 * v * (v - w) - (v - w) * (v - w)) / (2 * a) <= d) {
t = (2 * v - w) / a + (d - (v * v + 2 * v * (v - w) - (v - w) * (v - w)) / (2 * a)) / v;
} else {
double A = a, B = w, C = (w * w) / (2 * a) - d;
t = w / a + (-B + sqrt(max(0, B * B - A * C))) / A * 2;
}
if ((2 * w * (v - w) + (v - w) * (v - w)) / (2 * a) <= L - d) {
t += (v - w) / a + (L - d - (2 * w * (v - w) + (v - w) * (v - w)) / (2 * a)) / v;
} else {
double A = a, B = w, C = -2 * (L - d);
t += (-B + sqrt(max(0, B * B - A * C))) / A;
}
} else if (v * v / (2 * a) <= L) {
t = v / a + (L - (v * v / (2 * a))) / v;
} else {
t = sqrt(2 * L / a);
}
System.out.printf("%.10f%n", t);
}
class Scanner {
BufferedReader br;
StringTokenizer st;
Scanner(InputStream in) {
br = new BufferedReader(new InputStreamReader(in));
eat("");
}
void eat(String s) {
st = new StringTokenizer(s);
}
String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
boolean hasNext() {
while (!st.hasMoreTokens()) {
String s = nextLine();
if (s == null) return false;
eat(s);
}
return true;
}
String next() {
hasNext();
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
void debug(Object...os) {
System.err.println(deepToString(os));
}
public static void main(String[] args) {
if (LOCAL) {
try {
System.setIn(new FileInputStream("in.txt"));
} catch (Throwable e) {
LOCAL = false;
}
}
if (!LOCAL) {
try {
Locale.setDefault(Locale.US);
System.setOut(new PrintStream(new BufferedOutputStream(System.out)));
} catch (Throwable e) {
}
}
new Main().run();
System.out.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import static java.lang.Math.*;
import static java.util.Arrays.*;
import java.io.*;
import java.util.*;
public class Main {
static boolean LOCAL = System.getSecurityManager() == null;
Scanner sc = new Scanner(System.in);
void run() {
double a = sc.nextDouble(), v = sc.nextDouble();
double L = sc.nextDouble(), d = sc.nextDouble(), w = sc.nextDouble();
w = min(w, v);
double t = 0;
if (w * w / (2 * a) <= d) {
if ((v * v + 2 * v * (v - w) - (v - w) * (v - w)) / (2 * a) <= d) {
t = (2 * v - w) / a + (d - (v * v + 2 * v * (v - w) - (v - w) * (v - w)) / (2 * a)) / v;
} else {
double A = a, B = w, C = (w * w) / (2 * a) - d;
t = w / a + (-B + sqrt(max(0, B * B - A * C))) / A * 2;
}
if ((2 * w * (v - w) + (v - w) * (v - w)) / (2 * a) <= L - d) {
t += (v - w) / a + (L - d - (2 * w * (v - w) + (v - w) * (v - w)) / (2 * a)) / v;
} else {
double A = a, B = w, C = -2 * (L - d);
t += (-B + sqrt(max(0, B * B - A * C))) / A;
}
} else if (v * v / (2 * a) <= L) {
t = v / a + (L - (v * v / (2 * a))) / v;
} else {
t = sqrt(2 * L / a);
}
System.out.printf("%.10f%n", t);
}
class Scanner {
BufferedReader br;
StringTokenizer st;
Scanner(InputStream in) {
br = new BufferedReader(new InputStreamReader(in));
eat("");
}
void eat(String s) {
st = new StringTokenizer(s);
}
String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
boolean hasNext() {
while (!st.hasMoreTokens()) {
String s = nextLine();
if (s == null) return false;
eat(s);
}
return true;
}
String next() {
hasNext();
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
void debug(Object...os) {
System.err.println(deepToString(os));
}
public static void main(String[] args) {
if (LOCAL) {
try {
System.setIn(new FileInputStream("in.txt"));
} catch (Throwable e) {
LOCAL = false;
}
}
if (!LOCAL) {
try {
Locale.setDefault(Locale.US);
System.setOut(new PrintStream(new BufferedOutputStream(System.out)));
} catch (Throwable e) {
}
}
new Main().run();
System.out.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,126 | 3,136 |
2,095 |
import java.io.BufferedOutputStream;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Scanner;
public class ProblemA {
private void solve() throws IOException {
Scanner stdin = new Scanner(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out));
int n = Integer.valueOf(stdin.nextInt());
int[] p = new int[n];
for (int i = 0; i < n; i++) {
p[i] = stdin.nextInt();
}
Arrays.sort(p);
if (p[n-1] == 1) {
p[n-1] = 2;
} else {
p[n-1] = 1;
out.print(p[n-1] + " ");
n--;
}
for (int i = 0; i < n; i++) {
out.print(p[i] + " ");
}
out.flush();
out.close();
}
public static void main(String[] args) throws IOException {
ProblemA solver = new ProblemA();
solver.solve();
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedOutputStream;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Scanner;
public class ProblemA {
private void solve() throws IOException {
Scanner stdin = new Scanner(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out));
int n = Integer.valueOf(stdin.nextInt());
int[] p = new int[n];
for (int i = 0; i < n; i++) {
p[i] = stdin.nextInt();
}
Arrays.sort(p);
if (p[n-1] == 1) {
p[n-1] = 2;
} else {
p[n-1] = 1;
out.print(p[n-1] + " ");
n--;
}
for (int i = 0; i < n; i++) {
out.print(p[i] + " ");
}
out.flush();
out.close();
}
public static void main(String[] args) throws IOException {
ProblemA solver = new ProblemA();
solver.solve();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedOutputStream;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Scanner;
public class ProblemA {
private void solve() throws IOException {
Scanner stdin = new Scanner(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out));
int n = Integer.valueOf(stdin.nextInt());
int[] p = new int[n];
for (int i = 0; i < n; i++) {
p[i] = stdin.nextInt();
}
Arrays.sort(p);
if (p[n-1] == 1) {
p[n-1] = 2;
} else {
p[n-1] = 1;
out.print(p[n-1] + " ");
n--;
}
for (int i = 0; i < n; i++) {
out.print(p[i] + " ");
}
out.flush();
out.close();
}
public static void main(String[] args) throws IOException {
ProblemA solver = new ProblemA();
solver.solve();
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 575 | 2,091 |
3,629 |
import java.io.*;
import java.util.*;
public class Main {
static BufferedReader br;
static PrintWriter out;
static StringTokenizer st;
static int[][] moves = new int[][]{{0, 1}, {1, 0}, {-1, 0}, {0, -1}};
static boolean correct(int x, int y, int n, int m) {
return (x >= 0 && x < n && y >= 0 && y < m);
}
static void solve() throws Exception {
int n = nextInt();
int m = nextInt();
int k = nextInt();
int[][] order = new int[n][m];
boolean[][] used = new boolean[n][m];
Queue<Integer[]> q = new LinkedList<>();
Set<String> set = new HashSet<String>();
for(int i = 0; i < k; i++) {
int x = nextInt() - 1;
int y = nextInt() - 1;
order[x][y] = 1;
used[x][y] = true;
q.add(new Integer[] {x, y});
set.add(x + "" + y);
}
while(!q.isEmpty()) {
Integer[] v = q.remove();
for(int[] move : moves) {
int x = v[0] + move[0];
int y = v[1] + move[1];
// if(set.contains(x + "" + y)) {
// continue;
// }
if(correct(x, y, n, m) && !used[x][y]) {
q.add(new Integer[] {x, y});
used[x][y] = true;
order[x][y] = order[v[0]][v[1]] + 1;
}
}
}
int max = Integer.MIN_VALUE;
int maxI = -1;
int maxJ = -1;
for(int i = 0; i < n; i++) {
for(int j = 0; j < m; j++) {
if(order[i][j] > max) {
max = order[i][j];
maxI = i;
maxJ = j;
}
}
}
maxI++;
maxJ++;
out.println(maxI + " " + maxJ);
}
static int nextInt() throws IOException {
return Integer.parseInt(next());
}
static long nextLong() throws IOException {
return Long.parseLong(next());
}
static double nextDouble() throws IOException {
return Double.parseDouble(next());
}
static String next() throws IOException {
while (st == null || !st.hasMoreTokens()) {
String line = br.readLine();
if (line == null) {
return null;
}
st = new StringTokenizer(line);
}
return st.nextToken();
}
public static void main(String[] args) {
try {
InputStream input = System.in;
OutputStream output = System.out;
br = new BufferedReader(new InputStreamReader(new FileInputStream(new File("input.txt"))));
out = new PrintWriter(new PrintStream(new File("output.txt")));
solve();
out.close();
br.close();
} catch (Throwable t) {
t.printStackTrace();
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
static BufferedReader br;
static PrintWriter out;
static StringTokenizer st;
static int[][] moves = new int[][]{{0, 1}, {1, 0}, {-1, 0}, {0, -1}};
static boolean correct(int x, int y, int n, int m) {
return (x >= 0 && x < n && y >= 0 && y < m);
}
static void solve() throws Exception {
int n = nextInt();
int m = nextInt();
int k = nextInt();
int[][] order = new int[n][m];
boolean[][] used = new boolean[n][m];
Queue<Integer[]> q = new LinkedList<>();
Set<String> set = new HashSet<String>();
for(int i = 0; i < k; i++) {
int x = nextInt() - 1;
int y = nextInt() - 1;
order[x][y] = 1;
used[x][y] = true;
q.add(new Integer[] {x, y});
set.add(x + "" + y);
}
while(!q.isEmpty()) {
Integer[] v = q.remove();
for(int[] move : moves) {
int x = v[0] + move[0];
int y = v[1] + move[1];
// if(set.contains(x + "" + y)) {
// continue;
// }
if(correct(x, y, n, m) && !used[x][y]) {
q.add(new Integer[] {x, y});
used[x][y] = true;
order[x][y] = order[v[0]][v[1]] + 1;
}
}
}
int max = Integer.MIN_VALUE;
int maxI = -1;
int maxJ = -1;
for(int i = 0; i < n; i++) {
for(int j = 0; j < m; j++) {
if(order[i][j] > max) {
max = order[i][j];
maxI = i;
maxJ = j;
}
}
}
maxI++;
maxJ++;
out.println(maxI + " " + maxJ);
}
static int nextInt() throws IOException {
return Integer.parseInt(next());
}
static long nextLong() throws IOException {
return Long.parseLong(next());
}
static double nextDouble() throws IOException {
return Double.parseDouble(next());
}
static String next() throws IOException {
while (st == null || !st.hasMoreTokens()) {
String line = br.readLine();
if (line == null) {
return null;
}
st = new StringTokenizer(line);
}
return st.nextToken();
}
public static void main(String[] args) {
try {
InputStream input = System.in;
OutputStream output = System.out;
br = new BufferedReader(new InputStreamReader(new FileInputStream(new File("input.txt"))));
out = new PrintWriter(new PrintStream(new File("output.txt")));
solve();
out.close();
br.close();
} catch (Throwable t) {
t.printStackTrace();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
static BufferedReader br;
static PrintWriter out;
static StringTokenizer st;
static int[][] moves = new int[][]{{0, 1}, {1, 0}, {-1, 0}, {0, -1}};
static boolean correct(int x, int y, int n, int m) {
return (x >= 0 && x < n && y >= 0 && y < m);
}
static void solve() throws Exception {
int n = nextInt();
int m = nextInt();
int k = nextInt();
int[][] order = new int[n][m];
boolean[][] used = new boolean[n][m];
Queue<Integer[]> q = new LinkedList<>();
Set<String> set = new HashSet<String>();
for(int i = 0; i < k; i++) {
int x = nextInt() - 1;
int y = nextInt() - 1;
order[x][y] = 1;
used[x][y] = true;
q.add(new Integer[] {x, y});
set.add(x + "" + y);
}
while(!q.isEmpty()) {
Integer[] v = q.remove();
for(int[] move : moves) {
int x = v[0] + move[0];
int y = v[1] + move[1];
// if(set.contains(x + "" + y)) {
// continue;
// }
if(correct(x, y, n, m) && !used[x][y]) {
q.add(new Integer[] {x, y});
used[x][y] = true;
order[x][y] = order[v[0]][v[1]] + 1;
}
}
}
int max = Integer.MIN_VALUE;
int maxI = -1;
int maxJ = -1;
for(int i = 0; i < n; i++) {
for(int j = 0; j < m; j++) {
if(order[i][j] > max) {
max = order[i][j];
maxI = i;
maxJ = j;
}
}
}
maxI++;
maxJ++;
out.println(maxI + " " + maxJ);
}
static int nextInt() throws IOException {
return Integer.parseInt(next());
}
static long nextLong() throws IOException {
return Long.parseLong(next());
}
static double nextDouble() throws IOException {
return Double.parseDouble(next());
}
static String next() throws IOException {
while (st == null || !st.hasMoreTokens()) {
String line = br.readLine();
if (line == null) {
return null;
}
st = new StringTokenizer(line);
}
return st.nextToken();
}
public static void main(String[] args) {
try {
InputStream input = System.in;
OutputStream output = System.out;
br = new BufferedReader(new InputStreamReader(new FileInputStream(new File("input.txt"))));
out = new PrintWriter(new PrintStream(new File("output.txt")));
solve();
out.close();
br.close();
} catch (Throwable t) {
t.printStackTrace();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,047 | 3,621 |
3,162 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class A {
static class Scanner{
BufferedReader br=null;
StringTokenizer tk=null;
public Scanner(){
br=new BufferedReader(new InputStreamReader(System.in));
}
public String next() throws IOException{
while(tk==null || !tk.hasMoreTokens())
tk=new StringTokenizer(br.readLine());
return tk.nextToken();
}
public int nextInt() throws NumberFormatException, IOException{
return Integer.valueOf(next());
}
public double nextDouble() throws NumberFormatException, IOException{
return Double.valueOf(next());
}
}
public static void main(String args[]) throws NumberFormatException, IOException{
Scanner sc = new Scanner();
int T = sc.nextInt();
if ( T > 0)
System.out.println(T);
else{
String cad = (T + "");
int min = Math.min(cad.charAt(cad.length() - 1) - '0', cad.charAt(cad.length() - 2) - '0');
if (min == 0 && cad.length() == 3)
System.out.println(0);
else
System.out.println(cad.substring(0, cad.length() - 2) + "" + min);
}
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class A {
static class Scanner{
BufferedReader br=null;
StringTokenizer tk=null;
public Scanner(){
br=new BufferedReader(new InputStreamReader(System.in));
}
public String next() throws IOException{
while(tk==null || !tk.hasMoreTokens())
tk=new StringTokenizer(br.readLine());
return tk.nextToken();
}
public int nextInt() throws NumberFormatException, IOException{
return Integer.valueOf(next());
}
public double nextDouble() throws NumberFormatException, IOException{
return Double.valueOf(next());
}
}
public static void main(String args[]) throws NumberFormatException, IOException{
Scanner sc = new Scanner();
int T = sc.nextInt();
if ( T > 0)
System.out.println(T);
else{
String cad = (T + "");
int min = Math.min(cad.charAt(cad.length() - 1) - '0', cad.charAt(cad.length() - 2) - '0');
if (min == 0 && cad.length() == 3)
System.out.println(0);
else
System.out.println(cad.substring(0, cad.length() - 2) + "" + min);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class A {
static class Scanner{
BufferedReader br=null;
StringTokenizer tk=null;
public Scanner(){
br=new BufferedReader(new InputStreamReader(System.in));
}
public String next() throws IOException{
while(tk==null || !tk.hasMoreTokens())
tk=new StringTokenizer(br.readLine());
return tk.nextToken();
}
public int nextInt() throws NumberFormatException, IOException{
return Integer.valueOf(next());
}
public double nextDouble() throws NumberFormatException, IOException{
return Double.valueOf(next());
}
}
public static void main(String args[]) throws NumberFormatException, IOException{
Scanner sc = new Scanner();
int T = sc.nextInt();
if ( T > 0)
System.out.println(T);
else{
String cad = (T + "");
int min = Math.min(cad.charAt(cad.length() - 1) - '0', cad.charAt(cad.length() - 2) - '0');
if (min == 0 && cad.length() == 3)
System.out.println(0);
else
System.out.println(cad.substring(0, cad.length() - 2) + "" + min);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 629 | 3,156 |
1,353 |
//package round371;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Scanner;
public class BT {
Scanner in;
PrintWriter out;
String INPUT = "";
int q(int r1, int c1, int r2, int c2)
{
out.printf("? %d %d %d %d\n", r1+1, c1+1, r2+1, c2+1);
out.flush();
return ni();
}
void e(int r1, int c1, int r2, int c2, int r3, int c3, int r4, int c4)
{
out.printf("! %d %d %d %d %d %d %d %d\n",
r1+1, c1+1, r2+1, c2+1,
r3+1, c3+1, r4+1, c4+1
);
out.flush();
}
void solve()
{
int n = ni();
int cu = -1, cv = -1;
{
int low = -1, high = n-1;
while(high - low > 1){
int h = high+low>>1;
if(q(0, 0, n-1, h) >= 2){
high = h;
}else{
low = h;
}
}
cu = high;
}
{
int low = -1, high = n-1;
while(high - low > 1){
int h = high+low>>1;
if(q(0, 0, n-1, h) >= 1){
high = h;
}else{
low = h;
}
}
cv = high;
}
int du = -1, dv = -1;
{
int low = 0, high = n;
while(high - low > 1){
int h = high+low>>1;
if(q(0, h, n-1, n-1) >= 2){
low = h;
}else{
high = h;
}
}
du = low;
}
{
int low = 0, high = n;
while(high - low > 1){
int h = high+low>>1;
if(q(0, h, n-1, n-1) >= 1){
low = h;
}else{
high = h;
}
}
dv= low;
}
int eu = -1, ev = -1;
{
int low = -1, high = n-1;
while(high - low > 1){
int h = high+low>>1;
if(q(0, 0, h, n-1) >= 2){
high = h;
}else{
low = h;
}
}
eu = high;
}
{
int low = -1, high = n-1;
while(high - low > 1){
int h = high+low>>1;
if(q(0, 0, h, n-1) >= 1){
high = h;
}else{
low = h;
}
}
ev = high;
}
int fu = -1, fv = -1;
{
int low = 0, high = n;
while(high - low > 1){
int h = high+low>>1;
if(q(h, 0, n-1, n-1) >= 2){
low = h;
}else{
high = h;
}
}
fu = low;
}
{
int low = 0, high = n;
while(high - low > 1){
int h = high+low>>1;
if(q(h, 0, n-1, n-1) >= 1){
low = h;
}else{
high = h;
}
}
fv= low;
}
// cv <= cu
// du <= dv
int[][][] canc = {
{{du, cu}, {dv, cv}},
{{du, cv}, {dv, cu}}
};
int[][][] canr = {
{{fu, eu}, {fv, ev}},
{{fu, ev}, {fv, eu}}
};
for(int[][] cr : canr){
if(cr[0][0] > cr[0][1])continue;
if(cr[1][0] > cr[1][1])continue;
for(int[][] cc : canc){
if(cc[0][0] > cc[0][1])continue;
if(cc[1][0] > cc[1][1])continue;
for(int z = 0;z < 2;z++){
if(
q(cr[0][0], cc[0^z][0], cr[0][1], cc[0^z][1]) == 1 &&
q(cr[1][0], cc[1^z][0], cr[1][1], cc[1^z][1]) == 1){
e(cr[0][0], cc[0^z][0], cr[0][1], cc[0^z][1], cr[1][0], cc[1^z][0], cr[1][1], cc[1^z][1]);
return;
}
}
}
}
throw new RuntimeException();
}
void run() throws Exception
{
in = oj ? new Scanner(System.in) : new Scanner(INPUT);
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception
{
new BT().run();
}
int ni() { return Integer.parseInt(in.next()); }
long nl() { return Long.parseLong(in.next()); }
double nd() { return Double.parseDouble(in.next()); }
boolean oj = System.getProperty("ONLINE_JUDGE") != null;
void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); }
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
//package round371;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Scanner;
public class BT {
Scanner in;
PrintWriter out;
String INPUT = "";
int q(int r1, int c1, int r2, int c2)
{
out.printf("? %d %d %d %d\n", r1+1, c1+1, r2+1, c2+1);
out.flush();
return ni();
}
void e(int r1, int c1, int r2, int c2, int r3, int c3, int r4, int c4)
{
out.printf("! %d %d %d %d %d %d %d %d\n",
r1+1, c1+1, r2+1, c2+1,
r3+1, c3+1, r4+1, c4+1
);
out.flush();
}
void solve()
{
int n = ni();
int cu = -1, cv = -1;
{
int low = -1, high = n-1;
while(high - low > 1){
int h = high+low>>1;
if(q(0, 0, n-1, h) >= 2){
high = h;
}else{
low = h;
}
}
cu = high;
}
{
int low = -1, high = n-1;
while(high - low > 1){
int h = high+low>>1;
if(q(0, 0, n-1, h) >= 1){
high = h;
}else{
low = h;
}
}
cv = high;
}
int du = -1, dv = -1;
{
int low = 0, high = n;
while(high - low > 1){
int h = high+low>>1;
if(q(0, h, n-1, n-1) >= 2){
low = h;
}else{
high = h;
}
}
du = low;
}
{
int low = 0, high = n;
while(high - low > 1){
int h = high+low>>1;
if(q(0, h, n-1, n-1) >= 1){
low = h;
}else{
high = h;
}
}
dv= low;
}
int eu = -1, ev = -1;
{
int low = -1, high = n-1;
while(high - low > 1){
int h = high+low>>1;
if(q(0, 0, h, n-1) >= 2){
high = h;
}else{
low = h;
}
}
eu = high;
}
{
int low = -1, high = n-1;
while(high - low > 1){
int h = high+low>>1;
if(q(0, 0, h, n-1) >= 1){
high = h;
}else{
low = h;
}
}
ev = high;
}
int fu = -1, fv = -1;
{
int low = 0, high = n;
while(high - low > 1){
int h = high+low>>1;
if(q(h, 0, n-1, n-1) >= 2){
low = h;
}else{
high = h;
}
}
fu = low;
}
{
int low = 0, high = n;
while(high - low > 1){
int h = high+low>>1;
if(q(h, 0, n-1, n-1) >= 1){
low = h;
}else{
high = h;
}
}
fv= low;
}
// cv <= cu
// du <= dv
int[][][] canc = {
{{du, cu}, {dv, cv}},
{{du, cv}, {dv, cu}}
};
int[][][] canr = {
{{fu, eu}, {fv, ev}},
{{fu, ev}, {fv, eu}}
};
for(int[][] cr : canr){
if(cr[0][0] > cr[0][1])continue;
if(cr[1][0] > cr[1][1])continue;
for(int[][] cc : canc){
if(cc[0][0] > cc[0][1])continue;
if(cc[1][0] > cc[1][1])continue;
for(int z = 0;z < 2;z++){
if(
q(cr[0][0], cc[0^z][0], cr[0][1], cc[0^z][1]) == 1 &&
q(cr[1][0], cc[1^z][0], cr[1][1], cc[1^z][1]) == 1){
e(cr[0][0], cc[0^z][0], cr[0][1], cc[0^z][1], cr[1][0], cc[1^z][0], cr[1][1], cc[1^z][1]);
return;
}
}
}
}
throw new RuntimeException();
}
void run() throws Exception
{
in = oj ? new Scanner(System.in) : new Scanner(INPUT);
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception
{
new BT().run();
}
int ni() { return Integer.parseInt(in.next()); }
long nl() { return Long.parseLong(in.next()); }
double nd() { return Double.parseDouble(in.next()); }
boolean oj = System.getProperty("ONLINE_JUDGE") != null;
void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); }
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
//package round371;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Scanner;
public class BT {
Scanner in;
PrintWriter out;
String INPUT = "";
int q(int r1, int c1, int r2, int c2)
{
out.printf("? %d %d %d %d\n", r1+1, c1+1, r2+1, c2+1);
out.flush();
return ni();
}
void e(int r1, int c1, int r2, int c2, int r3, int c3, int r4, int c4)
{
out.printf("! %d %d %d %d %d %d %d %d\n",
r1+1, c1+1, r2+1, c2+1,
r3+1, c3+1, r4+1, c4+1
);
out.flush();
}
void solve()
{
int n = ni();
int cu = -1, cv = -1;
{
int low = -1, high = n-1;
while(high - low > 1){
int h = high+low>>1;
if(q(0, 0, n-1, h) >= 2){
high = h;
}else{
low = h;
}
}
cu = high;
}
{
int low = -1, high = n-1;
while(high - low > 1){
int h = high+low>>1;
if(q(0, 0, n-1, h) >= 1){
high = h;
}else{
low = h;
}
}
cv = high;
}
int du = -1, dv = -1;
{
int low = 0, high = n;
while(high - low > 1){
int h = high+low>>1;
if(q(0, h, n-1, n-1) >= 2){
low = h;
}else{
high = h;
}
}
du = low;
}
{
int low = 0, high = n;
while(high - low > 1){
int h = high+low>>1;
if(q(0, h, n-1, n-1) >= 1){
low = h;
}else{
high = h;
}
}
dv= low;
}
int eu = -1, ev = -1;
{
int low = -1, high = n-1;
while(high - low > 1){
int h = high+low>>1;
if(q(0, 0, h, n-1) >= 2){
high = h;
}else{
low = h;
}
}
eu = high;
}
{
int low = -1, high = n-1;
while(high - low > 1){
int h = high+low>>1;
if(q(0, 0, h, n-1) >= 1){
high = h;
}else{
low = h;
}
}
ev = high;
}
int fu = -1, fv = -1;
{
int low = 0, high = n;
while(high - low > 1){
int h = high+low>>1;
if(q(h, 0, n-1, n-1) >= 2){
low = h;
}else{
high = h;
}
}
fu = low;
}
{
int low = 0, high = n;
while(high - low > 1){
int h = high+low>>1;
if(q(h, 0, n-1, n-1) >= 1){
low = h;
}else{
high = h;
}
}
fv= low;
}
// cv <= cu
// du <= dv
int[][][] canc = {
{{du, cu}, {dv, cv}},
{{du, cv}, {dv, cu}}
};
int[][][] canr = {
{{fu, eu}, {fv, ev}},
{{fu, ev}, {fv, eu}}
};
for(int[][] cr : canr){
if(cr[0][0] > cr[0][1])continue;
if(cr[1][0] > cr[1][1])continue;
for(int[][] cc : canc){
if(cc[0][0] > cc[0][1])continue;
if(cc[1][0] > cc[1][1])continue;
for(int z = 0;z < 2;z++){
if(
q(cr[0][0], cc[0^z][0], cr[0][1], cc[0^z][1]) == 1 &&
q(cr[1][0], cc[1^z][0], cr[1][1], cc[1^z][1]) == 1){
e(cr[0][0], cc[0^z][0], cr[0][1], cc[0^z][1], cr[1][0], cc[1^z][0], cr[1][1], cc[1^z][1]);
return;
}
}
}
}
throw new RuntimeException();
}
void run() throws Exception
{
in = oj ? new Scanner(System.in) : new Scanner(INPUT);
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception
{
new BT().run();
}
int ni() { return Integer.parseInt(in.next()); }
long nl() { return Long.parseLong(in.next()); }
double nd() { return Double.parseDouble(in.next()); }
boolean oj = System.getProperty("ONLINE_JUDGE") != null;
void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); }
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,766 | 1,351 |
3,664 |
import java.io.OutputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.FileInputStream;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.util.StringTokenizer;
import java.io.Writer;
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author zodiacLeo
*/
public class Main
{
public static void main(String[] args)
{
InputStream inputStream;
try
{
inputStream = new FileInputStream("input.txt");
} catch (IOException e)
{
throw new RuntimeException(e);
}
OutputStream outputStream;
try
{
outputStream = new FileOutputStream("output.txt");
} catch (IOException e)
{
throw new RuntimeException(e);
}
FastScanner in = new FastScanner(inputStream);
FastPrinter out = new FastPrinter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC
{
public void solve(int testNumber, FastScanner in, FastPrinter out)
{
int n = in.nextInt();
int m = in.nextInt();
int p = in.nextInt();
int[] x = new int[p];
int[] y = new int[p];
for (int i = 0; i < p; i++)
{
x[i] = in.nextInt();
y[i] = in.nextInt();
}
int X = x[0];
int Y = y[0];
int D = -1;
for (int dx = 1; dx <= n; dx++)
{
int x1 = dx;
int y1 = 1;
int xx = 0;
int yy = 0;
int minD = Integer.MAX_VALUE;
for (int j = 0; j < p; j++)
{
int d = Math.abs(x1 - x[j]) + Math.abs(y1 - y[j]);
if (d < minD)
{
minD = d;
xx = x1;
yy = y1;
}
}
if (D < minD && minD != 0 && minD != Integer.MAX_VALUE)
{
D = minD;
X = xx;
Y = yy;
}
}
for (int dx = 1; dx <= n; dx++)
{
int x1 = dx;
int y1 = m;
int xx = 0;
int yy = 0;
int minD = Integer.MAX_VALUE;
for (int j = 0; j < p; j++)
{
int d = Math.abs(x1 - x[j]) + Math.abs(y1 - y[j]);
if (d < minD)
{
minD = d;
xx = x1;
yy = y1;
}
}
if (D < minD && minD != 0 && minD != Integer.MAX_VALUE)
{
D = minD;
X = xx;
Y = yy;
}
}
for (int dy = 1; dy <= m; dy++)
{
int x1 = 1;
int y1 = dy;
int xx = 0;
int yy = 0;
int minD = Integer.MAX_VALUE;
for (int j = 0; j < p; j++)
{
int d = Math.abs(x1 - x[j]) + Math.abs(y1 - y[j]);
if (d < minD)
{
minD = d;
xx = x1;
yy = y1;
}
}
if (D < minD && minD != 0 && minD != Integer.MAX_VALUE)
{
D = minD;
X = xx;
Y = yy;
}
}
for (int dy = 1; dy <= m; dy++)
{
int x1 = n;
int y1 = dy;
int xx = 0;
int yy = 0;
int minD = Integer.MAX_VALUE;
for (int j = 0; j < p; j++)
{
int d = Math.abs(x1 - x[j]) + Math.abs(y1 - y[j]);
if (d < minD)
{
minD = d;
xx = x1;
yy = y1;
}
}
if (D < minD && minD != 0 && minD != Integer.MAX_VALUE)
{
D = minD;
X = xx;
Y = yy;
}
}
for (int i = 1; i <= Math.min(m, n); i++)
{
int x1 = i;
int y1 = i;
int xx = 0;
int yy = 0;
int minD = Integer.MAX_VALUE;
for (int j = 0; j < p; j++)
{
int d = Math.abs(x1 - x[j]) + Math.abs(y1 - y[j]);
if (d < minD)
{
minD = d;
xx = x1;
yy = y1;
}
}
if (D < minD && minD != 0 && minD != Integer.MAX_VALUE)
{
D = minD;
X = xx;
Y = yy;
}
}
for (int i = 1, ii = m; i <= n && ii >= 1; i++, ii--)
{
int x1 = i;
int y1 = ii;
int xx = 0;
int yy = 0;
int minD = Integer.MAX_VALUE;
for (int j = 0; j < p; j++)
{
int d = Math.abs(x1 - x[j]) + Math.abs(y1 - y[j]);
if (d < minD)
{
minD = d;
xx = x1;
yy = y1;
}
}
if (D < minD && minD != 0 && minD != Integer.MAX_VALUE)
{
D = minD;
X = xx;
Y = yy;
}
}
out.println(X + " " + Y);
}
}
static class FastScanner
{
public BufferedReader br;
public StringTokenizer st;
public FastScanner(InputStream is)
{
br = new BufferedReader(new InputStreamReader(is));
}
public FastScanner(File f)
{
try
{
br = new BufferedReader(new FileReader(f));
} catch (FileNotFoundException e)
{
e.printStackTrace();
}
}
public String next()
{
while (st == null || !st.hasMoreElements())
{
String s = null;
try
{
s = br.readLine();
} catch (IOException e)
{
e.printStackTrace();
}
if (s == null)
return null;
st = new StringTokenizer(s);
}
return st.nextToken();
}
public int nextInt()
{
return Integer.parseInt(next());
}
}
static class FastPrinter extends PrintWriter
{
public FastPrinter(OutputStream out)
{
super(out);
}
public FastPrinter(Writer out)
{
super(out);
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.FileInputStream;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.util.StringTokenizer;
import java.io.Writer;
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author zodiacLeo
*/
public class Main
{
public static void main(String[] args)
{
InputStream inputStream;
try
{
inputStream = new FileInputStream("input.txt");
} catch (IOException e)
{
throw new RuntimeException(e);
}
OutputStream outputStream;
try
{
outputStream = new FileOutputStream("output.txt");
} catch (IOException e)
{
throw new RuntimeException(e);
}
FastScanner in = new FastScanner(inputStream);
FastPrinter out = new FastPrinter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC
{
public void solve(int testNumber, FastScanner in, FastPrinter out)
{
int n = in.nextInt();
int m = in.nextInt();
int p = in.nextInt();
int[] x = new int[p];
int[] y = new int[p];
for (int i = 0; i < p; i++)
{
x[i] = in.nextInt();
y[i] = in.nextInt();
}
int X = x[0];
int Y = y[0];
int D = -1;
for (int dx = 1; dx <= n; dx++)
{
int x1 = dx;
int y1 = 1;
int xx = 0;
int yy = 0;
int minD = Integer.MAX_VALUE;
for (int j = 0; j < p; j++)
{
int d = Math.abs(x1 - x[j]) + Math.abs(y1 - y[j]);
if (d < minD)
{
minD = d;
xx = x1;
yy = y1;
}
}
if (D < minD && minD != 0 && minD != Integer.MAX_VALUE)
{
D = minD;
X = xx;
Y = yy;
}
}
for (int dx = 1; dx <= n; dx++)
{
int x1 = dx;
int y1 = m;
int xx = 0;
int yy = 0;
int minD = Integer.MAX_VALUE;
for (int j = 0; j < p; j++)
{
int d = Math.abs(x1 - x[j]) + Math.abs(y1 - y[j]);
if (d < minD)
{
minD = d;
xx = x1;
yy = y1;
}
}
if (D < minD && minD != 0 && minD != Integer.MAX_VALUE)
{
D = minD;
X = xx;
Y = yy;
}
}
for (int dy = 1; dy <= m; dy++)
{
int x1 = 1;
int y1 = dy;
int xx = 0;
int yy = 0;
int minD = Integer.MAX_VALUE;
for (int j = 0; j < p; j++)
{
int d = Math.abs(x1 - x[j]) + Math.abs(y1 - y[j]);
if (d < minD)
{
minD = d;
xx = x1;
yy = y1;
}
}
if (D < minD && minD != 0 && minD != Integer.MAX_VALUE)
{
D = minD;
X = xx;
Y = yy;
}
}
for (int dy = 1; dy <= m; dy++)
{
int x1 = n;
int y1 = dy;
int xx = 0;
int yy = 0;
int minD = Integer.MAX_VALUE;
for (int j = 0; j < p; j++)
{
int d = Math.abs(x1 - x[j]) + Math.abs(y1 - y[j]);
if (d < minD)
{
minD = d;
xx = x1;
yy = y1;
}
}
if (D < minD && minD != 0 && minD != Integer.MAX_VALUE)
{
D = minD;
X = xx;
Y = yy;
}
}
for (int i = 1; i <= Math.min(m, n); i++)
{
int x1 = i;
int y1 = i;
int xx = 0;
int yy = 0;
int minD = Integer.MAX_VALUE;
for (int j = 0; j < p; j++)
{
int d = Math.abs(x1 - x[j]) + Math.abs(y1 - y[j]);
if (d < minD)
{
minD = d;
xx = x1;
yy = y1;
}
}
if (D < minD && minD != 0 && minD != Integer.MAX_VALUE)
{
D = minD;
X = xx;
Y = yy;
}
}
for (int i = 1, ii = m; i <= n && ii >= 1; i++, ii--)
{
int x1 = i;
int y1 = ii;
int xx = 0;
int yy = 0;
int minD = Integer.MAX_VALUE;
for (int j = 0; j < p; j++)
{
int d = Math.abs(x1 - x[j]) + Math.abs(y1 - y[j]);
if (d < minD)
{
minD = d;
xx = x1;
yy = y1;
}
}
if (D < minD && minD != 0 && minD != Integer.MAX_VALUE)
{
D = minD;
X = xx;
Y = yy;
}
}
out.println(X + " " + Y);
}
}
static class FastScanner
{
public BufferedReader br;
public StringTokenizer st;
public FastScanner(InputStream is)
{
br = new BufferedReader(new InputStreamReader(is));
}
public FastScanner(File f)
{
try
{
br = new BufferedReader(new FileReader(f));
} catch (FileNotFoundException e)
{
e.printStackTrace();
}
}
public String next()
{
while (st == null || !st.hasMoreElements())
{
String s = null;
try
{
s = br.readLine();
} catch (IOException e)
{
e.printStackTrace();
}
if (s == null)
return null;
st = new StringTokenizer(s);
}
return st.nextToken();
}
public int nextInt()
{
return Integer.parseInt(next());
}
}
static class FastPrinter extends PrintWriter
{
public FastPrinter(OutputStream out)
{
super(out);
}
public FastPrinter(Writer out)
{
super(out);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.FileInputStream;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.util.StringTokenizer;
import java.io.Writer;
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author zodiacLeo
*/
public class Main
{
public static void main(String[] args)
{
InputStream inputStream;
try
{
inputStream = new FileInputStream("input.txt");
} catch (IOException e)
{
throw new RuntimeException(e);
}
OutputStream outputStream;
try
{
outputStream = new FileOutputStream("output.txt");
} catch (IOException e)
{
throw new RuntimeException(e);
}
FastScanner in = new FastScanner(inputStream);
FastPrinter out = new FastPrinter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC
{
public void solve(int testNumber, FastScanner in, FastPrinter out)
{
int n = in.nextInt();
int m = in.nextInt();
int p = in.nextInt();
int[] x = new int[p];
int[] y = new int[p];
for (int i = 0; i < p; i++)
{
x[i] = in.nextInt();
y[i] = in.nextInt();
}
int X = x[0];
int Y = y[0];
int D = -1;
for (int dx = 1; dx <= n; dx++)
{
int x1 = dx;
int y1 = 1;
int xx = 0;
int yy = 0;
int minD = Integer.MAX_VALUE;
for (int j = 0; j < p; j++)
{
int d = Math.abs(x1 - x[j]) + Math.abs(y1 - y[j]);
if (d < minD)
{
minD = d;
xx = x1;
yy = y1;
}
}
if (D < minD && minD != 0 && minD != Integer.MAX_VALUE)
{
D = minD;
X = xx;
Y = yy;
}
}
for (int dx = 1; dx <= n; dx++)
{
int x1 = dx;
int y1 = m;
int xx = 0;
int yy = 0;
int minD = Integer.MAX_VALUE;
for (int j = 0; j < p; j++)
{
int d = Math.abs(x1 - x[j]) + Math.abs(y1 - y[j]);
if (d < minD)
{
minD = d;
xx = x1;
yy = y1;
}
}
if (D < minD && minD != 0 && minD != Integer.MAX_VALUE)
{
D = minD;
X = xx;
Y = yy;
}
}
for (int dy = 1; dy <= m; dy++)
{
int x1 = 1;
int y1 = dy;
int xx = 0;
int yy = 0;
int minD = Integer.MAX_VALUE;
for (int j = 0; j < p; j++)
{
int d = Math.abs(x1 - x[j]) + Math.abs(y1 - y[j]);
if (d < minD)
{
minD = d;
xx = x1;
yy = y1;
}
}
if (D < minD && minD != 0 && minD != Integer.MAX_VALUE)
{
D = minD;
X = xx;
Y = yy;
}
}
for (int dy = 1; dy <= m; dy++)
{
int x1 = n;
int y1 = dy;
int xx = 0;
int yy = 0;
int minD = Integer.MAX_VALUE;
for (int j = 0; j < p; j++)
{
int d = Math.abs(x1 - x[j]) + Math.abs(y1 - y[j]);
if (d < minD)
{
minD = d;
xx = x1;
yy = y1;
}
}
if (D < minD && minD != 0 && minD != Integer.MAX_VALUE)
{
D = minD;
X = xx;
Y = yy;
}
}
for (int i = 1; i <= Math.min(m, n); i++)
{
int x1 = i;
int y1 = i;
int xx = 0;
int yy = 0;
int minD = Integer.MAX_VALUE;
for (int j = 0; j < p; j++)
{
int d = Math.abs(x1 - x[j]) + Math.abs(y1 - y[j]);
if (d < minD)
{
minD = d;
xx = x1;
yy = y1;
}
}
if (D < minD && minD != 0 && minD != Integer.MAX_VALUE)
{
D = minD;
X = xx;
Y = yy;
}
}
for (int i = 1, ii = m; i <= n && ii >= 1; i++, ii--)
{
int x1 = i;
int y1 = ii;
int xx = 0;
int yy = 0;
int minD = Integer.MAX_VALUE;
for (int j = 0; j < p; j++)
{
int d = Math.abs(x1 - x[j]) + Math.abs(y1 - y[j]);
if (d < minD)
{
minD = d;
xx = x1;
yy = y1;
}
}
if (D < minD && minD != 0 && minD != Integer.MAX_VALUE)
{
D = minD;
X = xx;
Y = yy;
}
}
out.println(X + " " + Y);
}
}
static class FastScanner
{
public BufferedReader br;
public StringTokenizer st;
public FastScanner(InputStream is)
{
br = new BufferedReader(new InputStreamReader(is));
}
public FastScanner(File f)
{
try
{
br = new BufferedReader(new FileReader(f));
} catch (FileNotFoundException e)
{
e.printStackTrace();
}
}
public String next()
{
while (st == null || !st.hasMoreElements())
{
String s = null;
try
{
s = br.readLine();
} catch (IOException e)
{
e.printStackTrace();
}
if (s == null)
return null;
st = new StringTokenizer(s);
}
return st.nextToken();
}
public int nextInt()
{
return Integer.parseInt(next());
}
}
static class FastPrinter extends PrintWriter
{
public FastPrinter(OutputStream out)
{
super(out);
}
public FastPrinter(Writer out)
{
super(out);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,947 | 3,656 |
3,321 |
import java.io.*;
import java.util.*;
public class CF387D {
static class A {
ArrayList<Integer> list = new ArrayList<>();
int u, v, d;
}
static final int INF = Integer.MAX_VALUE;
static boolean bfs(A[] aa, int n) {
ArrayDeque<Integer> q = new ArrayDeque<>();
for (int u = 1; u <= n; u++)
if (aa[u].v > 0)
aa[u].d = INF;
else {
aa[u].d = 0;
q.addLast(u);
}
aa[0].d = INF;
while (!q.isEmpty()) {
int u = q.removeFirst();
for (int v : aa[u].list) {
int w = aa[v].u;
if (aa[w].d == INF) {
aa[w].d = aa[u].d + 1;
if (w == 0)
return true;
q.addLast(w);
}
}
}
return false;
}
static boolean dfs(A[] aa, int n, int u) {
if (u == 0)
return true;
for (int v : aa[u].list) {
int w = aa[v].u;
if (aa[w].d == aa[u].d + 1 && dfs(aa, n, w)) {
aa[u].v = v;
aa[v].u = u;
return true;
}
}
aa[u].d = INF;
return false;
}
static int matchings(A[] aa, int n) {
int cnt = 0;
while (bfs(aa, n))
for (int u = 1; u <= n; u++)
if (aa[u].v == 0 && dfs(aa, n, u))
cnt++;
return cnt;
}
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(br.readLine());
int n = Integer.parseInt(st.nextToken());
int m = Integer.parseInt(st.nextToken());
int[] eu = new int[m];
int[] ev = new int[m];
for (int j = 0; j < m; j++) {
st = new StringTokenizer(br.readLine());
eu[j] = Integer.parseInt(st.nextToken());
ev[j] = Integer.parseInt(st.nextToken());
}
A[] aa = new A[n + 1];
int min = m + n * 3;
for (int ctr = 1; ctr <= n; ctr++) {
boolean loop = false;
boolean[] ci = new boolean[n + 1];
boolean[] co = new boolean[n + 1];
for (int i = 0; i <= n; i++)
aa[i] = new A();
int m_ = 0;
for (int j = 0; j < m; j++) {
int u = eu[j];
int v = ev[j];
if (u == ctr && v == ctr)
loop = true;
else if (u == ctr && v != ctr)
ci[v] = true;
else if (u != ctr && v == ctr)
co[u] = true;
else {
aa[u].list.add(v);
m_++;
}
}
int cnt = loop ? 0 : 1;
for (int i = 1; i <= n; i++)
if (i != ctr) {
if (!ci[i])
cnt++;
if (!co[i])
cnt++;
}
int m2 = matchings(aa, n);
cnt += (m_ - m2) + (n - 1 - m2);
if (min > cnt)
min = cnt;
}
System.out.println(min);
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class CF387D {
static class A {
ArrayList<Integer> list = new ArrayList<>();
int u, v, d;
}
static final int INF = Integer.MAX_VALUE;
static boolean bfs(A[] aa, int n) {
ArrayDeque<Integer> q = new ArrayDeque<>();
for (int u = 1; u <= n; u++)
if (aa[u].v > 0)
aa[u].d = INF;
else {
aa[u].d = 0;
q.addLast(u);
}
aa[0].d = INF;
while (!q.isEmpty()) {
int u = q.removeFirst();
for (int v : aa[u].list) {
int w = aa[v].u;
if (aa[w].d == INF) {
aa[w].d = aa[u].d + 1;
if (w == 0)
return true;
q.addLast(w);
}
}
}
return false;
}
static boolean dfs(A[] aa, int n, int u) {
if (u == 0)
return true;
for (int v : aa[u].list) {
int w = aa[v].u;
if (aa[w].d == aa[u].d + 1 && dfs(aa, n, w)) {
aa[u].v = v;
aa[v].u = u;
return true;
}
}
aa[u].d = INF;
return false;
}
static int matchings(A[] aa, int n) {
int cnt = 0;
while (bfs(aa, n))
for (int u = 1; u <= n; u++)
if (aa[u].v == 0 && dfs(aa, n, u))
cnt++;
return cnt;
}
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(br.readLine());
int n = Integer.parseInt(st.nextToken());
int m = Integer.parseInt(st.nextToken());
int[] eu = new int[m];
int[] ev = new int[m];
for (int j = 0; j < m; j++) {
st = new StringTokenizer(br.readLine());
eu[j] = Integer.parseInt(st.nextToken());
ev[j] = Integer.parseInt(st.nextToken());
}
A[] aa = new A[n + 1];
int min = m + n * 3;
for (int ctr = 1; ctr <= n; ctr++) {
boolean loop = false;
boolean[] ci = new boolean[n + 1];
boolean[] co = new boolean[n + 1];
for (int i = 0; i <= n; i++)
aa[i] = new A();
int m_ = 0;
for (int j = 0; j < m; j++) {
int u = eu[j];
int v = ev[j];
if (u == ctr && v == ctr)
loop = true;
else if (u == ctr && v != ctr)
ci[v] = true;
else if (u != ctr && v == ctr)
co[u] = true;
else {
aa[u].list.add(v);
m_++;
}
}
int cnt = loop ? 0 : 1;
for (int i = 1; i <= n; i++)
if (i != ctr) {
if (!ci[i])
cnt++;
if (!co[i])
cnt++;
}
int m2 = matchings(aa, n);
cnt += (m_ - m2) + (n - 1 - m2);
if (min > cnt)
min = cnt;
}
System.out.println(min);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class CF387D {
static class A {
ArrayList<Integer> list = new ArrayList<>();
int u, v, d;
}
static final int INF = Integer.MAX_VALUE;
static boolean bfs(A[] aa, int n) {
ArrayDeque<Integer> q = new ArrayDeque<>();
for (int u = 1; u <= n; u++)
if (aa[u].v > 0)
aa[u].d = INF;
else {
aa[u].d = 0;
q.addLast(u);
}
aa[0].d = INF;
while (!q.isEmpty()) {
int u = q.removeFirst();
for (int v : aa[u].list) {
int w = aa[v].u;
if (aa[w].d == INF) {
aa[w].d = aa[u].d + 1;
if (w == 0)
return true;
q.addLast(w);
}
}
}
return false;
}
static boolean dfs(A[] aa, int n, int u) {
if (u == 0)
return true;
for (int v : aa[u].list) {
int w = aa[v].u;
if (aa[w].d == aa[u].d + 1 && dfs(aa, n, w)) {
aa[u].v = v;
aa[v].u = u;
return true;
}
}
aa[u].d = INF;
return false;
}
static int matchings(A[] aa, int n) {
int cnt = 0;
while (bfs(aa, n))
for (int u = 1; u <= n; u++)
if (aa[u].v == 0 && dfs(aa, n, u))
cnt++;
return cnt;
}
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(br.readLine());
int n = Integer.parseInt(st.nextToken());
int m = Integer.parseInt(st.nextToken());
int[] eu = new int[m];
int[] ev = new int[m];
for (int j = 0; j < m; j++) {
st = new StringTokenizer(br.readLine());
eu[j] = Integer.parseInt(st.nextToken());
ev[j] = Integer.parseInt(st.nextToken());
}
A[] aa = new A[n + 1];
int min = m + n * 3;
for (int ctr = 1; ctr <= n; ctr++) {
boolean loop = false;
boolean[] ci = new boolean[n + 1];
boolean[] co = new boolean[n + 1];
for (int i = 0; i <= n; i++)
aa[i] = new A();
int m_ = 0;
for (int j = 0; j < m; j++) {
int u = eu[j];
int v = ev[j];
if (u == ctr && v == ctr)
loop = true;
else if (u == ctr && v != ctr)
ci[v] = true;
else if (u != ctr && v == ctr)
co[u] = true;
else {
aa[u].list.add(v);
m_++;
}
}
int cnt = loop ? 0 : 1;
for (int i = 1; i <= n; i++)
if (i != ctr) {
if (!ci[i])
cnt++;
if (!co[i])
cnt++;
}
int m2 = matchings(aa, n);
cnt += (m_ - m2) + (n - 1 - m2);
if (min > cnt)
min = cnt;
}
System.out.println(min);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,181 | 3,315 |
3,503 |
import java.io.*;
import java.math.*;
import java.security.*;
import java.text.*;
import java.util.*;
import java.util.concurrent.*;
import java.util.function.*;
import java.util.regex.*;
import java.util.stream.*;
import static java.util.stream.Collectors.joining;
import static java.util.stream.Collectors.toList;
public class Main{
static long MOD = 1_000_000_007L;
//static long MOD = 998_244_353L;
//static long MOD = 1_000_000_033L;
static long inv2 = (MOD + 1) / 2;
static int[][] dir = new int[][]{{1, 0}, {0, 1}, {-1, 0}, {0, -1}};
static long lMax = 0x3f3f3f3f3f3f3f3fL;
static int iMax = 0x3f3f3f3f;
static HashMap <Long, Long> memo = new HashMap();
static MyScanner sc = new MyScanner();
//static ArrayList <Integer> primes;
static int nn = 300000;
static long[] pow2;
static long [] fac;
static long [] pow;
static long [] inv;
static long [] facInv;
static int[] base;
static int[] numOfDiffDiv;
static int[] numOfDiv;
static ArrayList <Integer> primes;
//static int[] primes;
static int ptr = 0;
static boolean[] isPrime;
//-----------PrintWriter for faster output---------------------------------
public static PrintWriter out;
public static void main(String[] args) {
out = new PrintWriter(new BufferedOutputStream(System.out));
// Start writing your solution here. -------------------------------------
/*fac = new long[nn + 1];
fac[1] = 1;
for(int i = 2; i <= nn; i++)
fac[i] = fac[i - 1] * i % MOD;*/
/*pow2 = new long[nn + 1];
pow2[0] = 1L;
for(int i = 1; i <= nn; i++)
pow2[i] = pow2[i - 1] * 2L;*/
/*inv = new long[nn + 1];
inv[1] = 1;
for (int i = 2; i <= nn; ++i)
inv[i] = (MOD - MOD / i) * inv[(int)(MOD % i)] % MOD;*/
/*facInv = new long[nn + 1];
facInv[0] = facInv[1] = 1;
for (int i = 2; i <= nn; ++i)
facInv[i] = facInv[i - 1] * inv[i] % MOD;*/
/*numOfDiffDiv = new int[nn + 1];
for(int i = 2; i <= nn; i++)
if(numOfDiffDiv[i] == 0)
for(int j = i; j <= nn; j += i)
numOfDiv[j] ++;*/
/*numOfDiv = new int[nn + 1];
numOfDiv[1] = 1;
for(int i = 2; i <= nn; i++) {
for(int j = 2; j * j <= i; j++) {
if(i % j == 0) {
numOfDiv[i] = numOfDiv[i / j] + 1;
break;
}
}
}*/
//primes = sieveOfEratosthenes(100001);
/*
int t = 1;
//t = sc.ni();
while(t-- > 0) {
//boolean res = solve();
//out.println(res ? "YES" : "NO");
long res = solve();
out.println(res);
}*/
int t = 1, tt = 0;
//t = sc.ni();
for(int i = 1; i <40000; i++) squares.add(i * i);
while(tt++ < t) {
boolean res = solve();
//out.println("Case #" + tt + ": " + res);
//out.println(res ? "YES" : "NO");
}
out.close();
}
static HashSet <Integer> squares = new HashSet();
static boolean solve() {
/*String s = sc.nextLine();
char[] c = s.toCharArray();
int n = c.length;*/
//int n = sc.ni();
//long[] a = new long[n];
//for(int i = 0; i < n; i++) a[i] = sc.nl();
long res = 0;
int n = sc.ni();
long m = sc.nl();
long[][][] dp = new long[2][5][5];
long[][][] dp2 = new long[2][5][5];
dp[0][2][1] = dp[1][2][2] = dp2[0][1][1] = 1L;
for(int i = 3; i <= n; i++) {
long[][] bef = dp[0];
long[][] aft = dp[1];
long[][] nbef = new long[i + 3][i + 3];
long[][] naft = new long[i + 3][i + 3];
for(int len = 1; len <= i; len++) {
for(int ind = 1; ind <= len; ind++) {
nbef[len + 1][1] += bef[len][ind];
nbef[len + 1][ind + 1] -= bef[len][ind];
naft[len + 1][ind + 1] += bef[len][ind];
//naft[len + 1][len + 2] -= bef[len][ind];
naft[len + 1][ind + 1] += aft[len][ind];
//naft[len + 1][len + 2] -= aft[len][ind];
nbef[len + 1][1] += dp2[0][len][ind] + dp2[1][len][ind];
//nbef[len + 1][len + 2] -= dp2[0][len][ind] + dp2[1][len][ind];
}
}
for(int len = 1; len <= i; len++) {
for(int ind = 1; ind <= len; ind ++) {
nbef[len][ind] = (nbef[len][ind] + nbef[len][ind - 1] + 10000000L * m) % m;
naft[len][ind] = (naft[len][ind] + naft[len][ind - 1] + 10000000L * m) % m;
}
}
dp2 = dp;
dp = new long[][][]{nbef, naft};
}
for(long[] row: dp[0])
for(long i : row)
res += i;
for(long[] row: dp[1])
for(long i : row)
res += i;
out.println(res % m);
return false;
}
// edges to adjacency list by uwi
public static int[][] packU(int n, int[] from, int[] to) {
return packU(n, from, to, from.length);
}
public static int[][] packU(int n, int[] from, int[] to, int sup) {
int[][] g = new int[n][];
int[] p = new int[n];
for (int i = 0; i < sup; i++) p[from[i]]++;
for (int i = 0; i < sup; i++) p[to[i]]++;
for (int i = 0; i < n; i++) g[i] = new int[p[i]];
for (int i = 0; i < sup; i++) {
g[from[i]][--p[from[i]]] = to[i];
g[to[i]][--p[to[i]]] = from[i];
}
return g;
}
// tree diameter by uwi
public static int[] diameter(int[][] g) {
int n = g.length;
int f0 = -1, f1 = -1, d01 = -1;
int[] q = new int[n];
boolean[] ved = new boolean[n];
{
int qp = 0;
q[qp++] = 0; ved[0] = true;
for(int i = 0;i < qp;i++){
int cur = q[i];
for(int e : g[cur]){
if(!ved[e]){
ved[e] = true;
q[qp++] = e;
continue;
}
}
}
f0 = q[n-1];
}
{
int[] d = new int[n];
int qp = 0;
Arrays.fill(ved, false);
q[qp++] = f0; ved[f0] = true;
for(int i = 0;i < qp;i++){
int cur = q[i];
for(int e : g[cur]){
if(!ved[e]){
ved[e] = true;
q[qp++] = e;
d[e] = d[cur] + 1;
continue;
}
}
}
f1 = q[n-1];
d01 = d[f1];
}
return new int[]{d01, f0, f1};
}
public static long c(int n, int k) {
return (fac[n] * facInv[k] % MOD) * facInv[n - k] % MOD;
}
// SegmentTree range min/max query by uwi
public static class SegmentTreeRMQ {
public int M, H, N;
public int[] st;
public SegmentTreeRMQ(int n)
{
N = n;
M = Integer.highestOneBit(Math.max(N-1, 1))<<2;
H = M>>>1;
st = new int[M];
Arrays.fill(st, 0, M, Integer.MAX_VALUE);
}
public SegmentTreeRMQ(int[] a)
{
N = a.length;
M = Integer.highestOneBit(Math.max(N-1, 1))<<2;
H = M>>>1;
st = new int[M];
for(int i = 0;i < N;i++){
st[H+i] = a[i];
}
Arrays.fill(st, H+N, M, Integer.MAX_VALUE);
for(int i = H-1;i >= 1;i--)propagate(i);
}
public void update(int pos, int x)
{
st[H+pos] = x;
for(int i = (H+pos)>>>1;i >= 1;i >>>= 1)propagate(i);
}
private void propagate(int i)
{
st[i] = Math.min(st[2*i], st[2*i+1]);
}
public int minx(int l, int r){
int min = Integer.MAX_VALUE;
if(l >= r)return min;
while(l != 0){
int f = l&-l;
if(l+f > r)break;
int v = st[(H+l)/f];
if(v < min)min = v;
l += f;
}
while(l < r){
int f = r&-r;
int v = st[(H+r)/f-1];
if(v < min)min = v;
r -= f;
}
return min;
}
public int min(int l, int r){ return l >= r ? 0 : min(l, r, 0, H, 1);}
private int min(int l, int r, int cl, int cr, int cur)
{
if(l <= cl && cr <= r){
return st[cur];
}else{
int mid = cl+cr>>>1;
int ret = Integer.MAX_VALUE;
if(cl < r && l < mid){
ret = Math.min(ret, min(l, r, cl, mid, 2*cur));
}
if(mid < r && l < cr){
ret = Math.min(ret, min(l, r, mid, cr, 2*cur+1));
}
return ret;
}
}
}
public static char[] rev(char[] a){char[] b = new char[a.length];for(int i = 0;i < a.length;i++)b[a.length-1-i] = a[i];return b;}
public static double dist(double a, double b){
return Math.sqrt(a * a + b * b);
}
public static long inv(long a){
return quickPOW(a, MOD - 2);
}
public class Interval {
int start;
int end;
public Interval(int start, int end) {
this.start = start;
this.end = end;
}
}
public static ArrayList<Integer> sieveOfEratosthenes(int n) {
boolean prime[] = new boolean[n + 1];
Arrays.fill(prime, true);
for (int p = 2; p * p <= n; p++) {
if (prime[p]) {
for (int i = p * 2; i <= n; i += p) {
prime[i] = false;
}
}
}
ArrayList<Integer> primeNumbers = new ArrayList<>();
for (int i = 2; i <= n; i++) {
if (prime[i]) {
primeNumbers.add(i);
}
}
return primeNumbers;
}
public static int lowerBound(int[] a, int v){ return lowerBound(a, 0, a.length, v); }
public static int lowerBound(int[] a, int l, int r, int v)
{
if(l > r || l < 0 || r > a.length)throw new IllegalArgumentException();
int low = l-1, high = r;
while(high-low > 1){
int h = high+low>>>1;
if(a[h] >= v){
high = h;
}else{
low = h;
}
}
return high;
}
public static int rlowerBound(int[] a, int v){ return lowerBound(a, 0, a.length, v); }
public static int rlowerBound(int[] a, int l, int r, int v)
{
if(l > r || l < 0 || r > a.length)throw new IllegalArgumentException();
int low = l-1, high = r;
while(high-low > 1){
int h = high+low>>>1;
if(a[h] <= v){
high = h;
}else{
low = h;
}
}
return high;
}
public static long C(int n, int m)
{
if(m == 0 || m == n) return 1l;
if(m > n || m < 0) return 0l;
long res = fac[n] * quickPOW((fac[m] * fac[n - m]) % MOD, MOD - 2) % MOD;
return res;
}
public static long quickPOW(long n, long m)
{
long ans = 1l;
while(m > 0)
{
if(m % 2 == 1)
ans = (ans * n) % MOD;
n = (n * n) % MOD;
m >>= 1;
}
return ans;
}
public static long quickPOW(long n, long m, long mod)
{
long ans = 1l;
while(m > 0)
{
if(m % 2 == 1)
ans = (ans * n) % mod;
n = (n * n) % mod;
m >>= 1;
}
return ans;
}
public static int gcd(int a, int b)
{
if(a % b == 0) return b;
return gcd(b, a % b);
}
public static long gcd(long a, long b)
{
if(a % b == 0) return b;
return gcd(b, a % b);
}
static class Randomized {
public static void shuffle(int[] data) {
shuffle(data, 0, data.length - 1);
}
public static void shuffle(int[] data, int from, int to) {
to--;
for (int i = from; i <= to; i++) {
int s = nextInt(i, to);
int tmp = data[i];
data[i] = data[s];
data[s] = tmp;
}
}
public static void shuffle(long[] data) {
shuffle(data, 0, data.length - 1);
}
public static void shuffle(long[] data, int from, int to) {
to--;
for (int i = from; i <= to; i++) {
int s = nextInt(i, to);
long tmp = data[i];
data[i] = data[s];
data[s] = tmp;
}
}
public static int nextInt(int l, int r) {
return RandomWrapper.INSTANCE.nextInt(l, r);
}
}
static class RandomWrapper {
private Random random;
public static final RandomWrapper INSTANCE = new RandomWrapper(new Random());
public RandomWrapper() {
this(new Random());
}
public RandomWrapper(Random random) {
this.random = random;
}
public int nextInt(int l, int r) {
return random.nextInt(r - l + 1) + l;
}
}
//-----------MyScanner class for faster input----------
public static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int ni() {
return Integer.parseInt(next());
}
long nl() {
return Long.parseLong(next());
}
double nd() {
return Double.parseDouble(next());
}
String nextLine(){
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
//--------------------------------------------------------
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.math.*;
import java.security.*;
import java.text.*;
import java.util.*;
import java.util.concurrent.*;
import java.util.function.*;
import java.util.regex.*;
import java.util.stream.*;
import static java.util.stream.Collectors.joining;
import static java.util.stream.Collectors.toList;
public class Main{
static long MOD = 1_000_000_007L;
//static long MOD = 998_244_353L;
//static long MOD = 1_000_000_033L;
static long inv2 = (MOD + 1) / 2;
static int[][] dir = new int[][]{{1, 0}, {0, 1}, {-1, 0}, {0, -1}};
static long lMax = 0x3f3f3f3f3f3f3f3fL;
static int iMax = 0x3f3f3f3f;
static HashMap <Long, Long> memo = new HashMap();
static MyScanner sc = new MyScanner();
//static ArrayList <Integer> primes;
static int nn = 300000;
static long[] pow2;
static long [] fac;
static long [] pow;
static long [] inv;
static long [] facInv;
static int[] base;
static int[] numOfDiffDiv;
static int[] numOfDiv;
static ArrayList <Integer> primes;
//static int[] primes;
static int ptr = 0;
static boolean[] isPrime;
//-----------PrintWriter for faster output---------------------------------
public static PrintWriter out;
public static void main(String[] args) {
out = new PrintWriter(new BufferedOutputStream(System.out));
// Start writing your solution here. -------------------------------------
/*fac = new long[nn + 1];
fac[1] = 1;
for(int i = 2; i <= nn; i++)
fac[i] = fac[i - 1] * i % MOD;*/
/*pow2 = new long[nn + 1];
pow2[0] = 1L;
for(int i = 1; i <= nn; i++)
pow2[i] = pow2[i - 1] * 2L;*/
/*inv = new long[nn + 1];
inv[1] = 1;
for (int i = 2; i <= nn; ++i)
inv[i] = (MOD - MOD / i) * inv[(int)(MOD % i)] % MOD;*/
/*facInv = new long[nn + 1];
facInv[0] = facInv[1] = 1;
for (int i = 2; i <= nn; ++i)
facInv[i] = facInv[i - 1] * inv[i] % MOD;*/
/*numOfDiffDiv = new int[nn + 1];
for(int i = 2; i <= nn; i++)
if(numOfDiffDiv[i] == 0)
for(int j = i; j <= nn; j += i)
numOfDiv[j] ++;*/
/*numOfDiv = new int[nn + 1];
numOfDiv[1] = 1;
for(int i = 2; i <= nn; i++) {
for(int j = 2; j * j <= i; j++) {
if(i % j == 0) {
numOfDiv[i] = numOfDiv[i / j] + 1;
break;
}
}
}*/
//primes = sieveOfEratosthenes(100001);
/*
int t = 1;
//t = sc.ni();
while(t-- > 0) {
//boolean res = solve();
//out.println(res ? "YES" : "NO");
long res = solve();
out.println(res);
}*/
int t = 1, tt = 0;
//t = sc.ni();
for(int i = 1; i <40000; i++) squares.add(i * i);
while(tt++ < t) {
boolean res = solve();
//out.println("Case #" + tt + ": " + res);
//out.println(res ? "YES" : "NO");
}
out.close();
}
static HashSet <Integer> squares = new HashSet();
static boolean solve() {
/*String s = sc.nextLine();
char[] c = s.toCharArray();
int n = c.length;*/
//int n = sc.ni();
//long[] a = new long[n];
//for(int i = 0; i < n; i++) a[i] = sc.nl();
long res = 0;
int n = sc.ni();
long m = sc.nl();
long[][][] dp = new long[2][5][5];
long[][][] dp2 = new long[2][5][5];
dp[0][2][1] = dp[1][2][2] = dp2[0][1][1] = 1L;
for(int i = 3; i <= n; i++) {
long[][] bef = dp[0];
long[][] aft = dp[1];
long[][] nbef = new long[i + 3][i + 3];
long[][] naft = new long[i + 3][i + 3];
for(int len = 1; len <= i; len++) {
for(int ind = 1; ind <= len; ind++) {
nbef[len + 1][1] += bef[len][ind];
nbef[len + 1][ind + 1] -= bef[len][ind];
naft[len + 1][ind + 1] += bef[len][ind];
//naft[len + 1][len + 2] -= bef[len][ind];
naft[len + 1][ind + 1] += aft[len][ind];
//naft[len + 1][len + 2] -= aft[len][ind];
nbef[len + 1][1] += dp2[0][len][ind] + dp2[1][len][ind];
//nbef[len + 1][len + 2] -= dp2[0][len][ind] + dp2[1][len][ind];
}
}
for(int len = 1; len <= i; len++) {
for(int ind = 1; ind <= len; ind ++) {
nbef[len][ind] = (nbef[len][ind] + nbef[len][ind - 1] + 10000000L * m) % m;
naft[len][ind] = (naft[len][ind] + naft[len][ind - 1] + 10000000L * m) % m;
}
}
dp2 = dp;
dp = new long[][][]{nbef, naft};
}
for(long[] row: dp[0])
for(long i : row)
res += i;
for(long[] row: dp[1])
for(long i : row)
res += i;
out.println(res % m);
return false;
}
// edges to adjacency list by uwi
public static int[][] packU(int n, int[] from, int[] to) {
return packU(n, from, to, from.length);
}
public static int[][] packU(int n, int[] from, int[] to, int sup) {
int[][] g = new int[n][];
int[] p = new int[n];
for (int i = 0; i < sup; i++) p[from[i]]++;
for (int i = 0; i < sup; i++) p[to[i]]++;
for (int i = 0; i < n; i++) g[i] = new int[p[i]];
for (int i = 0; i < sup; i++) {
g[from[i]][--p[from[i]]] = to[i];
g[to[i]][--p[to[i]]] = from[i];
}
return g;
}
// tree diameter by uwi
public static int[] diameter(int[][] g) {
int n = g.length;
int f0 = -1, f1 = -1, d01 = -1;
int[] q = new int[n];
boolean[] ved = new boolean[n];
{
int qp = 0;
q[qp++] = 0; ved[0] = true;
for(int i = 0;i < qp;i++){
int cur = q[i];
for(int e : g[cur]){
if(!ved[e]){
ved[e] = true;
q[qp++] = e;
continue;
}
}
}
f0 = q[n-1];
}
{
int[] d = new int[n];
int qp = 0;
Arrays.fill(ved, false);
q[qp++] = f0; ved[f0] = true;
for(int i = 0;i < qp;i++){
int cur = q[i];
for(int e : g[cur]){
if(!ved[e]){
ved[e] = true;
q[qp++] = e;
d[e] = d[cur] + 1;
continue;
}
}
}
f1 = q[n-1];
d01 = d[f1];
}
return new int[]{d01, f0, f1};
}
public static long c(int n, int k) {
return (fac[n] * facInv[k] % MOD) * facInv[n - k] % MOD;
}
// SegmentTree range min/max query by uwi
public static class SegmentTreeRMQ {
public int M, H, N;
public int[] st;
public SegmentTreeRMQ(int n)
{
N = n;
M = Integer.highestOneBit(Math.max(N-1, 1))<<2;
H = M>>>1;
st = new int[M];
Arrays.fill(st, 0, M, Integer.MAX_VALUE);
}
public SegmentTreeRMQ(int[] a)
{
N = a.length;
M = Integer.highestOneBit(Math.max(N-1, 1))<<2;
H = M>>>1;
st = new int[M];
for(int i = 0;i < N;i++){
st[H+i] = a[i];
}
Arrays.fill(st, H+N, M, Integer.MAX_VALUE);
for(int i = H-1;i >= 1;i--)propagate(i);
}
public void update(int pos, int x)
{
st[H+pos] = x;
for(int i = (H+pos)>>>1;i >= 1;i >>>= 1)propagate(i);
}
private void propagate(int i)
{
st[i] = Math.min(st[2*i], st[2*i+1]);
}
public int minx(int l, int r){
int min = Integer.MAX_VALUE;
if(l >= r)return min;
while(l != 0){
int f = l&-l;
if(l+f > r)break;
int v = st[(H+l)/f];
if(v < min)min = v;
l += f;
}
while(l < r){
int f = r&-r;
int v = st[(H+r)/f-1];
if(v < min)min = v;
r -= f;
}
return min;
}
public int min(int l, int r){ return l >= r ? 0 : min(l, r, 0, H, 1);}
private int min(int l, int r, int cl, int cr, int cur)
{
if(l <= cl && cr <= r){
return st[cur];
}else{
int mid = cl+cr>>>1;
int ret = Integer.MAX_VALUE;
if(cl < r && l < mid){
ret = Math.min(ret, min(l, r, cl, mid, 2*cur));
}
if(mid < r && l < cr){
ret = Math.min(ret, min(l, r, mid, cr, 2*cur+1));
}
return ret;
}
}
}
public static char[] rev(char[] a){char[] b = new char[a.length];for(int i = 0;i < a.length;i++)b[a.length-1-i] = a[i];return b;}
public static double dist(double a, double b){
return Math.sqrt(a * a + b * b);
}
public static long inv(long a){
return quickPOW(a, MOD - 2);
}
public class Interval {
int start;
int end;
public Interval(int start, int end) {
this.start = start;
this.end = end;
}
}
public static ArrayList<Integer> sieveOfEratosthenes(int n) {
boolean prime[] = new boolean[n + 1];
Arrays.fill(prime, true);
for (int p = 2; p * p <= n; p++) {
if (prime[p]) {
for (int i = p * 2; i <= n; i += p) {
prime[i] = false;
}
}
}
ArrayList<Integer> primeNumbers = new ArrayList<>();
for (int i = 2; i <= n; i++) {
if (prime[i]) {
primeNumbers.add(i);
}
}
return primeNumbers;
}
public static int lowerBound(int[] a, int v){ return lowerBound(a, 0, a.length, v); }
public static int lowerBound(int[] a, int l, int r, int v)
{
if(l > r || l < 0 || r > a.length)throw new IllegalArgumentException();
int low = l-1, high = r;
while(high-low > 1){
int h = high+low>>>1;
if(a[h] >= v){
high = h;
}else{
low = h;
}
}
return high;
}
public static int rlowerBound(int[] a, int v){ return lowerBound(a, 0, a.length, v); }
public static int rlowerBound(int[] a, int l, int r, int v)
{
if(l > r || l < 0 || r > a.length)throw new IllegalArgumentException();
int low = l-1, high = r;
while(high-low > 1){
int h = high+low>>>1;
if(a[h] <= v){
high = h;
}else{
low = h;
}
}
return high;
}
public static long C(int n, int m)
{
if(m == 0 || m == n) return 1l;
if(m > n || m < 0) return 0l;
long res = fac[n] * quickPOW((fac[m] * fac[n - m]) % MOD, MOD - 2) % MOD;
return res;
}
public static long quickPOW(long n, long m)
{
long ans = 1l;
while(m > 0)
{
if(m % 2 == 1)
ans = (ans * n) % MOD;
n = (n * n) % MOD;
m >>= 1;
}
return ans;
}
public static long quickPOW(long n, long m, long mod)
{
long ans = 1l;
while(m > 0)
{
if(m % 2 == 1)
ans = (ans * n) % mod;
n = (n * n) % mod;
m >>= 1;
}
return ans;
}
public static int gcd(int a, int b)
{
if(a % b == 0) return b;
return gcd(b, a % b);
}
public static long gcd(long a, long b)
{
if(a % b == 0) return b;
return gcd(b, a % b);
}
static class Randomized {
public static void shuffle(int[] data) {
shuffle(data, 0, data.length - 1);
}
public static void shuffle(int[] data, int from, int to) {
to--;
for (int i = from; i <= to; i++) {
int s = nextInt(i, to);
int tmp = data[i];
data[i] = data[s];
data[s] = tmp;
}
}
public static void shuffle(long[] data) {
shuffle(data, 0, data.length - 1);
}
public static void shuffle(long[] data, int from, int to) {
to--;
for (int i = from; i <= to; i++) {
int s = nextInt(i, to);
long tmp = data[i];
data[i] = data[s];
data[s] = tmp;
}
}
public static int nextInt(int l, int r) {
return RandomWrapper.INSTANCE.nextInt(l, r);
}
}
static class RandomWrapper {
private Random random;
public static final RandomWrapper INSTANCE = new RandomWrapper(new Random());
public RandomWrapper() {
this(new Random());
}
public RandomWrapper(Random random) {
this.random = random;
}
public int nextInt(int l, int r) {
return random.nextInt(r - l + 1) + l;
}
}
//-----------MyScanner class for faster input----------
public static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int ni() {
return Integer.parseInt(next());
}
long nl() {
return Long.parseLong(next());
}
double nd() {
return Double.parseDouble(next());
}
String nextLine(){
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
//--------------------------------------------------------
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.math.*;
import java.security.*;
import java.text.*;
import java.util.*;
import java.util.concurrent.*;
import java.util.function.*;
import java.util.regex.*;
import java.util.stream.*;
import static java.util.stream.Collectors.joining;
import static java.util.stream.Collectors.toList;
public class Main{
static long MOD = 1_000_000_007L;
//static long MOD = 998_244_353L;
//static long MOD = 1_000_000_033L;
static long inv2 = (MOD + 1) / 2;
static int[][] dir = new int[][]{{1, 0}, {0, 1}, {-1, 0}, {0, -1}};
static long lMax = 0x3f3f3f3f3f3f3f3fL;
static int iMax = 0x3f3f3f3f;
static HashMap <Long, Long> memo = new HashMap();
static MyScanner sc = new MyScanner();
//static ArrayList <Integer> primes;
static int nn = 300000;
static long[] pow2;
static long [] fac;
static long [] pow;
static long [] inv;
static long [] facInv;
static int[] base;
static int[] numOfDiffDiv;
static int[] numOfDiv;
static ArrayList <Integer> primes;
//static int[] primes;
static int ptr = 0;
static boolean[] isPrime;
//-----------PrintWriter for faster output---------------------------------
public static PrintWriter out;
public static void main(String[] args) {
out = new PrintWriter(new BufferedOutputStream(System.out));
// Start writing your solution here. -------------------------------------
/*fac = new long[nn + 1];
fac[1] = 1;
for(int i = 2; i <= nn; i++)
fac[i] = fac[i - 1] * i % MOD;*/
/*pow2 = new long[nn + 1];
pow2[0] = 1L;
for(int i = 1; i <= nn; i++)
pow2[i] = pow2[i - 1] * 2L;*/
/*inv = new long[nn + 1];
inv[1] = 1;
for (int i = 2; i <= nn; ++i)
inv[i] = (MOD - MOD / i) * inv[(int)(MOD % i)] % MOD;*/
/*facInv = new long[nn + 1];
facInv[0] = facInv[1] = 1;
for (int i = 2; i <= nn; ++i)
facInv[i] = facInv[i - 1] * inv[i] % MOD;*/
/*numOfDiffDiv = new int[nn + 1];
for(int i = 2; i <= nn; i++)
if(numOfDiffDiv[i] == 0)
for(int j = i; j <= nn; j += i)
numOfDiv[j] ++;*/
/*numOfDiv = new int[nn + 1];
numOfDiv[1] = 1;
for(int i = 2; i <= nn; i++) {
for(int j = 2; j * j <= i; j++) {
if(i % j == 0) {
numOfDiv[i] = numOfDiv[i / j] + 1;
break;
}
}
}*/
//primes = sieveOfEratosthenes(100001);
/*
int t = 1;
//t = sc.ni();
while(t-- > 0) {
//boolean res = solve();
//out.println(res ? "YES" : "NO");
long res = solve();
out.println(res);
}*/
int t = 1, tt = 0;
//t = sc.ni();
for(int i = 1; i <40000; i++) squares.add(i * i);
while(tt++ < t) {
boolean res = solve();
//out.println("Case #" + tt + ": " + res);
//out.println(res ? "YES" : "NO");
}
out.close();
}
static HashSet <Integer> squares = new HashSet();
static boolean solve() {
/*String s = sc.nextLine();
char[] c = s.toCharArray();
int n = c.length;*/
//int n = sc.ni();
//long[] a = new long[n];
//for(int i = 0; i < n; i++) a[i] = sc.nl();
long res = 0;
int n = sc.ni();
long m = sc.nl();
long[][][] dp = new long[2][5][5];
long[][][] dp2 = new long[2][5][5];
dp[0][2][1] = dp[1][2][2] = dp2[0][1][1] = 1L;
for(int i = 3; i <= n; i++) {
long[][] bef = dp[0];
long[][] aft = dp[1];
long[][] nbef = new long[i + 3][i + 3];
long[][] naft = new long[i + 3][i + 3];
for(int len = 1; len <= i; len++) {
for(int ind = 1; ind <= len; ind++) {
nbef[len + 1][1] += bef[len][ind];
nbef[len + 1][ind + 1] -= bef[len][ind];
naft[len + 1][ind + 1] += bef[len][ind];
//naft[len + 1][len + 2] -= bef[len][ind];
naft[len + 1][ind + 1] += aft[len][ind];
//naft[len + 1][len + 2] -= aft[len][ind];
nbef[len + 1][1] += dp2[0][len][ind] + dp2[1][len][ind];
//nbef[len + 1][len + 2] -= dp2[0][len][ind] + dp2[1][len][ind];
}
}
for(int len = 1; len <= i; len++) {
for(int ind = 1; ind <= len; ind ++) {
nbef[len][ind] = (nbef[len][ind] + nbef[len][ind - 1] + 10000000L * m) % m;
naft[len][ind] = (naft[len][ind] + naft[len][ind - 1] + 10000000L * m) % m;
}
}
dp2 = dp;
dp = new long[][][]{nbef, naft};
}
for(long[] row: dp[0])
for(long i : row)
res += i;
for(long[] row: dp[1])
for(long i : row)
res += i;
out.println(res % m);
return false;
}
// edges to adjacency list by uwi
public static int[][] packU(int n, int[] from, int[] to) {
return packU(n, from, to, from.length);
}
public static int[][] packU(int n, int[] from, int[] to, int sup) {
int[][] g = new int[n][];
int[] p = new int[n];
for (int i = 0; i < sup; i++) p[from[i]]++;
for (int i = 0; i < sup; i++) p[to[i]]++;
for (int i = 0; i < n; i++) g[i] = new int[p[i]];
for (int i = 0; i < sup; i++) {
g[from[i]][--p[from[i]]] = to[i];
g[to[i]][--p[to[i]]] = from[i];
}
return g;
}
// tree diameter by uwi
public static int[] diameter(int[][] g) {
int n = g.length;
int f0 = -1, f1 = -1, d01 = -1;
int[] q = new int[n];
boolean[] ved = new boolean[n];
{
int qp = 0;
q[qp++] = 0; ved[0] = true;
for(int i = 0;i < qp;i++){
int cur = q[i];
for(int e : g[cur]){
if(!ved[e]){
ved[e] = true;
q[qp++] = e;
continue;
}
}
}
f0 = q[n-1];
}
{
int[] d = new int[n];
int qp = 0;
Arrays.fill(ved, false);
q[qp++] = f0; ved[f0] = true;
for(int i = 0;i < qp;i++){
int cur = q[i];
for(int e : g[cur]){
if(!ved[e]){
ved[e] = true;
q[qp++] = e;
d[e] = d[cur] + 1;
continue;
}
}
}
f1 = q[n-1];
d01 = d[f1];
}
return new int[]{d01, f0, f1};
}
public static long c(int n, int k) {
return (fac[n] * facInv[k] % MOD) * facInv[n - k] % MOD;
}
// SegmentTree range min/max query by uwi
public static class SegmentTreeRMQ {
public int M, H, N;
public int[] st;
public SegmentTreeRMQ(int n)
{
N = n;
M = Integer.highestOneBit(Math.max(N-1, 1))<<2;
H = M>>>1;
st = new int[M];
Arrays.fill(st, 0, M, Integer.MAX_VALUE);
}
public SegmentTreeRMQ(int[] a)
{
N = a.length;
M = Integer.highestOneBit(Math.max(N-1, 1))<<2;
H = M>>>1;
st = new int[M];
for(int i = 0;i < N;i++){
st[H+i] = a[i];
}
Arrays.fill(st, H+N, M, Integer.MAX_VALUE);
for(int i = H-1;i >= 1;i--)propagate(i);
}
public void update(int pos, int x)
{
st[H+pos] = x;
for(int i = (H+pos)>>>1;i >= 1;i >>>= 1)propagate(i);
}
private void propagate(int i)
{
st[i] = Math.min(st[2*i], st[2*i+1]);
}
public int minx(int l, int r){
int min = Integer.MAX_VALUE;
if(l >= r)return min;
while(l != 0){
int f = l&-l;
if(l+f > r)break;
int v = st[(H+l)/f];
if(v < min)min = v;
l += f;
}
while(l < r){
int f = r&-r;
int v = st[(H+r)/f-1];
if(v < min)min = v;
r -= f;
}
return min;
}
public int min(int l, int r){ return l >= r ? 0 : min(l, r, 0, H, 1);}
private int min(int l, int r, int cl, int cr, int cur)
{
if(l <= cl && cr <= r){
return st[cur];
}else{
int mid = cl+cr>>>1;
int ret = Integer.MAX_VALUE;
if(cl < r && l < mid){
ret = Math.min(ret, min(l, r, cl, mid, 2*cur));
}
if(mid < r && l < cr){
ret = Math.min(ret, min(l, r, mid, cr, 2*cur+1));
}
return ret;
}
}
}
public static char[] rev(char[] a){char[] b = new char[a.length];for(int i = 0;i < a.length;i++)b[a.length-1-i] = a[i];return b;}
public static double dist(double a, double b){
return Math.sqrt(a * a + b * b);
}
public static long inv(long a){
return quickPOW(a, MOD - 2);
}
public class Interval {
int start;
int end;
public Interval(int start, int end) {
this.start = start;
this.end = end;
}
}
public static ArrayList<Integer> sieveOfEratosthenes(int n) {
boolean prime[] = new boolean[n + 1];
Arrays.fill(prime, true);
for (int p = 2; p * p <= n; p++) {
if (prime[p]) {
for (int i = p * 2; i <= n; i += p) {
prime[i] = false;
}
}
}
ArrayList<Integer> primeNumbers = new ArrayList<>();
for (int i = 2; i <= n; i++) {
if (prime[i]) {
primeNumbers.add(i);
}
}
return primeNumbers;
}
public static int lowerBound(int[] a, int v){ return lowerBound(a, 0, a.length, v); }
public static int lowerBound(int[] a, int l, int r, int v)
{
if(l > r || l < 0 || r > a.length)throw new IllegalArgumentException();
int low = l-1, high = r;
while(high-low > 1){
int h = high+low>>>1;
if(a[h] >= v){
high = h;
}else{
low = h;
}
}
return high;
}
public static int rlowerBound(int[] a, int v){ return lowerBound(a, 0, a.length, v); }
public static int rlowerBound(int[] a, int l, int r, int v)
{
if(l > r || l < 0 || r > a.length)throw new IllegalArgumentException();
int low = l-1, high = r;
while(high-low > 1){
int h = high+low>>>1;
if(a[h] <= v){
high = h;
}else{
low = h;
}
}
return high;
}
public static long C(int n, int m)
{
if(m == 0 || m == n) return 1l;
if(m > n || m < 0) return 0l;
long res = fac[n] * quickPOW((fac[m] * fac[n - m]) % MOD, MOD - 2) % MOD;
return res;
}
public static long quickPOW(long n, long m)
{
long ans = 1l;
while(m > 0)
{
if(m % 2 == 1)
ans = (ans * n) % MOD;
n = (n * n) % MOD;
m >>= 1;
}
return ans;
}
public static long quickPOW(long n, long m, long mod)
{
long ans = 1l;
while(m > 0)
{
if(m % 2 == 1)
ans = (ans * n) % mod;
n = (n * n) % mod;
m >>= 1;
}
return ans;
}
public static int gcd(int a, int b)
{
if(a % b == 0) return b;
return gcd(b, a % b);
}
public static long gcd(long a, long b)
{
if(a % b == 0) return b;
return gcd(b, a % b);
}
static class Randomized {
public static void shuffle(int[] data) {
shuffle(data, 0, data.length - 1);
}
public static void shuffle(int[] data, int from, int to) {
to--;
for (int i = from; i <= to; i++) {
int s = nextInt(i, to);
int tmp = data[i];
data[i] = data[s];
data[s] = tmp;
}
}
public static void shuffle(long[] data) {
shuffle(data, 0, data.length - 1);
}
public static void shuffle(long[] data, int from, int to) {
to--;
for (int i = from; i <= to; i++) {
int s = nextInt(i, to);
long tmp = data[i];
data[i] = data[s];
data[s] = tmp;
}
}
public static int nextInt(int l, int r) {
return RandomWrapper.INSTANCE.nextInt(l, r);
}
}
static class RandomWrapper {
private Random random;
public static final RandomWrapper INSTANCE = new RandomWrapper(new Random());
public RandomWrapper() {
this(new Random());
}
public RandomWrapper(Random random) {
this.random = random;
}
public int nextInt(int l, int r) {
return random.nextInt(r - l + 1) + l;
}
}
//-----------MyScanner class for faster input----------
public static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int ni() {
return Integer.parseInt(next());
}
long nl() {
return Long.parseLong(next());
}
double nd() {
return Double.parseDouble(next());
}
String nextLine(){
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
//--------------------------------------------------------
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 4,428 | 3,497 |
4,203 |
import java.util.Locale;
import java.util.Scanner;
public class E {
public static void main(String[] args) {
new E().run();
}
private void run() {
Locale.setDefault(Locale.US);
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
double[][] p = new double[n][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++)
p[i][j] = sc.nextDouble();
}
sc.close();
double[] w = new double[1 << n];
int max = (1 << n) - 1;
w[max] = 1;
for (int mask = max; mask > 0; mask--) {
int count = 0;
for (int i = 0; i < n; i++)
if (((mask >> i) & 1) > 0)
for (int j = i + 1; j < n; j++)
if (((mask >> j) & 1) > 0) {
count++;
}
if (count > 0)
for (int i = 0; i < n; i++)
if (((mask >> i) & 1) > 0)
for (int j = i + 1; j < n; j++)
if (((mask >> j) & 1) > 0) {
w[mask ^ (1 << j)] += w[mask] * p[i][j] / count;
w[mask ^ (1 << i)] += w[mask] * (1 - p[i][j])
/ count;
}
}
for (int i = 0; i < n; i++) {
if (i != 0)
System.out.print(' ');
System.out.printf("%.6f", w[1 << i]);
}
System.out.println();
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Locale;
import java.util.Scanner;
public class E {
public static void main(String[] args) {
new E().run();
}
private void run() {
Locale.setDefault(Locale.US);
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
double[][] p = new double[n][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++)
p[i][j] = sc.nextDouble();
}
sc.close();
double[] w = new double[1 << n];
int max = (1 << n) - 1;
w[max] = 1;
for (int mask = max; mask > 0; mask--) {
int count = 0;
for (int i = 0; i < n; i++)
if (((mask >> i) & 1) > 0)
for (int j = i + 1; j < n; j++)
if (((mask >> j) & 1) > 0) {
count++;
}
if (count > 0)
for (int i = 0; i < n; i++)
if (((mask >> i) & 1) > 0)
for (int j = i + 1; j < n; j++)
if (((mask >> j) & 1) > 0) {
w[mask ^ (1 << j)] += w[mask] * p[i][j] / count;
w[mask ^ (1 << i)] += w[mask] * (1 - p[i][j])
/ count;
}
}
for (int i = 0; i < n; i++) {
if (i != 0)
System.out.print(' ');
System.out.printf("%.6f", w[1 << i]);
}
System.out.println();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Locale;
import java.util.Scanner;
public class E {
public static void main(String[] args) {
new E().run();
}
private void run() {
Locale.setDefault(Locale.US);
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
double[][] p = new double[n][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++)
p[i][j] = sc.nextDouble();
}
sc.close();
double[] w = new double[1 << n];
int max = (1 << n) - 1;
w[max] = 1;
for (int mask = max; mask > 0; mask--) {
int count = 0;
for (int i = 0; i < n; i++)
if (((mask >> i) & 1) > 0)
for (int j = i + 1; j < n; j++)
if (((mask >> j) & 1) > 0) {
count++;
}
if (count > 0)
for (int i = 0; i < n; i++)
if (((mask >> i) & 1) > 0)
for (int j = i + 1; j < n; j++)
if (((mask >> j) & 1) > 0) {
w[mask ^ (1 << j)] += w[mask] * p[i][j] / count;
w[mask ^ (1 << i)] += w[mask] * (1 - p[i][j])
/ count;
}
}
for (int i = 0; i < n; i++) {
if (i != 0)
System.out.print(' ');
System.out.printf("%.6f", w[1 << i]);
}
System.out.println();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 753 | 4,192 |
3,471 |
import java.util.Scanner;
public class p23a {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
char[] x = in.next().toCharArray();
int min = 0;
int max = x.length;
while(true) {
if(max-min == 1)
break;
int mid = (max+min)/2;
boolean eq = false;
for (int i = 0; i <= x.length-mid; i++) {
for (int j = 0; j <= x.length-mid; j++) {
if(j == i)
continue;
eq = true;
for (int k = 0; k < mid; k++) {
if(x[i+k] != x[j+k]) {
eq = false;
break;
}
}
if(eq)
break;
}
if(eq) break;
}
if(eq) {
min = mid;
} else {
max = mid;
}
}
System.out.println(min);
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class p23a {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
char[] x = in.next().toCharArray();
int min = 0;
int max = x.length;
while(true) {
if(max-min == 1)
break;
int mid = (max+min)/2;
boolean eq = false;
for (int i = 0; i <= x.length-mid; i++) {
for (int j = 0; j <= x.length-mid; j++) {
if(j == i)
continue;
eq = true;
for (int k = 0; k < mid; k++) {
if(x[i+k] != x[j+k]) {
eq = false;
break;
}
}
if(eq)
break;
}
if(eq) break;
}
if(eq) {
min = mid;
} else {
max = mid;
}
}
System.out.println(min);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class p23a {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
char[] x = in.next().toCharArray();
int min = 0;
int max = x.length;
while(true) {
if(max-min == 1)
break;
int mid = (max+min)/2;
boolean eq = false;
for (int i = 0; i <= x.length-mid; i++) {
for (int j = 0; j <= x.length-mid; j++) {
if(j == i)
continue;
eq = true;
for (int k = 0; k < mid; k++) {
if(x[i+k] != x[j+k]) {
eq = false;
break;
}
}
if(eq)
break;
}
if(eq) break;
}
if(eq) {
min = mid;
} else {
max = mid;
}
}
System.out.println(min);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 565 | 3,465 |
4,496 |
// practice with rainboy
import java.io.*;
import java.util.*;
public class CF1238E extends PrintWriter {
CF1238E() { super(System.out, true); }
Scanner sc = new Scanner(System.in);
public static void main(String[] $) {
CF1238E o = new CF1238E(); o.main(); o.flush();
}
static final int INF = 0x3f3f3f3f;
void main() {
int n = sc.nextInt();
int m = sc.nextInt();
byte[] cc = sc.next().getBytes();
int[] kk = new int[1 << m];
for (int i = 1; i < n; i++) {
int a = cc[i - 1] - 'a';
int b = cc[i] - 'a';
kk[1 << a | 1 << b]++;
}
for (int h = 0; h < m; h++)
for (int b = 0; b < 1 << m; b++)
if ((b & 1 << h) == 0)
kk[b | 1 << h] += kk[b];
int[] dp = new int[1 << m];
int m_ = (1 << m) - 1;
for (int b = 1; b < 1 << m; b++) {
int k = n - 1 - kk[b] - kk[m_ ^ b];
int x = INF;
for (int h = 0; h < m; h++)
if ((b & 1 << h) != 0) {
int b_ = b ^ 1 << h;
x = Math.min(x, dp[b_]);
}
dp[b] = x == INF ? INF : x + k;
}
println(dp[m_]);
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
// practice with rainboy
import java.io.*;
import java.util.*;
public class CF1238E extends PrintWriter {
CF1238E() { super(System.out, true); }
Scanner sc = new Scanner(System.in);
public static void main(String[] $) {
CF1238E o = new CF1238E(); o.main(); o.flush();
}
static final int INF = 0x3f3f3f3f;
void main() {
int n = sc.nextInt();
int m = sc.nextInt();
byte[] cc = sc.next().getBytes();
int[] kk = new int[1 << m];
for (int i = 1; i < n; i++) {
int a = cc[i - 1] - 'a';
int b = cc[i] - 'a';
kk[1 << a | 1 << b]++;
}
for (int h = 0; h < m; h++)
for (int b = 0; b < 1 << m; b++)
if ((b & 1 << h) == 0)
kk[b | 1 << h] += kk[b];
int[] dp = new int[1 << m];
int m_ = (1 << m) - 1;
for (int b = 1; b < 1 << m; b++) {
int k = n - 1 - kk[b] - kk[m_ ^ b];
int x = INF;
for (int h = 0; h < m; h++)
if ((b & 1 << h) != 0) {
int b_ = b ^ 1 << h;
x = Math.min(x, dp[b_]);
}
dp[b] = x == INF ? INF : x + k;
}
println(dp[m_]);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
// practice with rainboy
import java.io.*;
import java.util.*;
public class CF1238E extends PrintWriter {
CF1238E() { super(System.out, true); }
Scanner sc = new Scanner(System.in);
public static void main(String[] $) {
CF1238E o = new CF1238E(); o.main(); o.flush();
}
static final int INF = 0x3f3f3f3f;
void main() {
int n = sc.nextInt();
int m = sc.nextInt();
byte[] cc = sc.next().getBytes();
int[] kk = new int[1 << m];
for (int i = 1; i < n; i++) {
int a = cc[i - 1] - 'a';
int b = cc[i] - 'a';
kk[1 << a | 1 << b]++;
}
for (int h = 0; h < m; h++)
for (int b = 0; b < 1 << m; b++)
if ((b & 1 << h) == 0)
kk[b | 1 << h] += kk[b];
int[] dp = new int[1 << m];
int m_ = (1 << m) - 1;
for (int b = 1; b < 1 << m; b++) {
int k = n - 1 - kk[b] - kk[m_ ^ b];
int x = INF;
for (int h = 0; h < m; h++)
if ((b & 1 << h) != 0) {
int b_ = b ^ 1 << h;
x = Math.min(x, dp[b_]);
}
dp[b] = x == INF ? INF : x + k;
}
println(dp[m_]);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 763 | 4,485 |
2,617 |
import java.io.*;
import java.util.*;
import java.util.Map.Entry;
public class ProblemA {
public static void main (String args[]) throws IOException{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
int n=Integer.parseInt(br.readLine());
String s1=br.readLine();
String[] s=s1.split(" ");
int a[] = new int[n];
for(int i = 0;i<n;i++)
{
a[i]=Integer.parseInt(s[i]);
}
Arrays.sort(a);
System.out.println(findColour(a,n));
}
public static int findColour(int [] a , int n)
{
Map <Integer,Integer> mp = new HashMap<Integer,Integer>();
int f=0;
for(int i = 0; i<n;i++)
{
f=0;
for (Map.Entry<Integer,Integer> entry : mp.entrySet())
{
if(a[i] % entry.getKey()==0)
{
f=1;
break;
}
}
if(f==0)
{
mp.put(a[i],1);
}
}
return mp.size();
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.util.Map.Entry;
public class ProblemA {
public static void main (String args[]) throws IOException{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
int n=Integer.parseInt(br.readLine());
String s1=br.readLine();
String[] s=s1.split(" ");
int a[] = new int[n];
for(int i = 0;i<n;i++)
{
a[i]=Integer.parseInt(s[i]);
}
Arrays.sort(a);
System.out.println(findColour(a,n));
}
public static int findColour(int [] a , int n)
{
Map <Integer,Integer> mp = new HashMap<Integer,Integer>();
int f=0;
for(int i = 0; i<n;i++)
{
f=0;
for (Map.Entry<Integer,Integer> entry : mp.entrySet())
{
if(a[i] % entry.getKey()==0)
{
f=1;
break;
}
}
if(f==0)
{
mp.put(a[i],1);
}
}
return mp.size();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.util.Map.Entry;
public class ProblemA {
public static void main (String args[]) throws IOException{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
int n=Integer.parseInt(br.readLine());
String s1=br.readLine();
String[] s=s1.split(" ");
int a[] = new int[n];
for(int i = 0;i<n;i++)
{
a[i]=Integer.parseInt(s[i]);
}
Arrays.sort(a);
System.out.println(findColour(a,n));
}
public static int findColour(int [] a , int n)
{
Map <Integer,Integer> mp = new HashMap<Integer,Integer>();
int f=0;
for(int i = 0; i<n;i++)
{
f=0;
for (Map.Entry<Integer,Integer> entry : mp.entrySet())
{
if(a[i] % entry.getKey()==0)
{
f=1;
break;
}
}
if(f==0)
{
mp.put(a[i],1);
}
}
return mp.size();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 598 | 2,611 |
3,551 |
import java.io.*;
import java.util.*;
import java.math.*;
public class Main{
public static void main(String[] Args) throws Exception {
Scanner sc = new Scanner(new FileReader("input.txt"));
int n,m,k;
Integer lx,ly;
boolean d[][];
n = sc.nextInt(); m = sc.nextInt(); k = sc.nextInt();
d = new boolean [n+1][m+1];
for(int i=0;i<=n;++i)
for(int j=0;j<=m;++j)
d[i][j]=false;
Queue< pair > q = new LinkedList< pair >();
lx = ly = -1;
for(int i=0;i<k;++i){
int x,y; x = sc.nextInt(); y = sc.nextInt();
q.add(new pair(x,y)); lx = x; ly = y;
d[x][y]=true;
}
int dx [] = {0,0,1,-1};
int dy [] = {-1,1,0,0};
while(!q.isEmpty()){
pair tp = q.remove();
int x = tp.x; int y = tp.y;
for(int i=0;i<4;++i){
int nx = x+dx[i]; int ny = y+dy[i];
if(nx<1 || nx>n || ny<1 || ny>m || d[nx][ny] ) continue;
d[nx][ny]=true;
q.add(new pair(nx,ny));
lx = nx; ly = ny;
}
}
FileWriter fw = new FileWriter("output.txt");
fw.write(lx.toString()); fw.write(" "); fw.write(ly.toString());;
fw.flush();
}
}
class pair {
public int x,y;
public pair(int _x,int _y){ x = _x; y = _y; }
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.*;
public class Main{
public static void main(String[] Args) throws Exception {
Scanner sc = new Scanner(new FileReader("input.txt"));
int n,m,k;
Integer lx,ly;
boolean d[][];
n = sc.nextInt(); m = sc.nextInt(); k = sc.nextInt();
d = new boolean [n+1][m+1];
for(int i=0;i<=n;++i)
for(int j=0;j<=m;++j)
d[i][j]=false;
Queue< pair > q = new LinkedList< pair >();
lx = ly = -1;
for(int i=0;i<k;++i){
int x,y; x = sc.nextInt(); y = sc.nextInt();
q.add(new pair(x,y)); lx = x; ly = y;
d[x][y]=true;
}
int dx [] = {0,0,1,-1};
int dy [] = {-1,1,0,0};
while(!q.isEmpty()){
pair tp = q.remove();
int x = tp.x; int y = tp.y;
for(int i=0;i<4;++i){
int nx = x+dx[i]; int ny = y+dy[i];
if(nx<1 || nx>n || ny<1 || ny>m || d[nx][ny] ) continue;
d[nx][ny]=true;
q.add(new pair(nx,ny));
lx = nx; ly = ny;
}
}
FileWriter fw = new FileWriter("output.txt");
fw.write(lx.toString()); fw.write(" "); fw.write(ly.toString());;
fw.flush();
}
}
class pair {
public int x,y;
public pair(int _x,int _y){ x = _x; y = _y; }
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.*;
public class Main{
public static void main(String[] Args) throws Exception {
Scanner sc = new Scanner(new FileReader("input.txt"));
int n,m,k;
Integer lx,ly;
boolean d[][];
n = sc.nextInt(); m = sc.nextInt(); k = sc.nextInt();
d = new boolean [n+1][m+1];
for(int i=0;i<=n;++i)
for(int j=0;j<=m;++j)
d[i][j]=false;
Queue< pair > q = new LinkedList< pair >();
lx = ly = -1;
for(int i=0;i<k;++i){
int x,y; x = sc.nextInt(); y = sc.nextInt();
q.add(new pair(x,y)); lx = x; ly = y;
d[x][y]=true;
}
int dx [] = {0,0,1,-1};
int dy [] = {-1,1,0,0};
while(!q.isEmpty()){
pair tp = q.remove();
int x = tp.x; int y = tp.y;
for(int i=0;i<4;++i){
int nx = x+dx[i]; int ny = y+dy[i];
if(nx<1 || nx>n || ny<1 || ny>m || d[nx][ny] ) continue;
d[nx][ny]=true;
q.add(new pair(nx,ny));
lx = nx; ly = ny;
}
}
FileWriter fw = new FileWriter("output.txt");
fw.write(lx.toString()); fw.write(" "); fw.write(ly.toString());;
fw.flush();
}
}
class pair {
public int x,y;
public pair(int _x,int _y){ x = _x; y = _y; }
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 749 | 3,544 |
1,984 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
import java.util.Arrays;
public class A {
static class team implements Comparable<team>
{
int problems;
int penalty;
public team(int problems,int penalty)
{
this.penalty=penalty;
this.problems=problems;
}
public int compareTo(team a) {
if (a.problems==this.problems)
return this.penalty - a.penalty;
return a.problems - this.problems;
}
public boolean igual(team a)
{
if (this.problems!=a.problems)
return false;
return (this.penalty==a.penalty);
}
}
static class Scanner
{
BufferedReader rd;
StringTokenizer tk;
public Scanner() throws IOException
{
rd=new BufferedReader(new InputStreamReader(System.in));
tk=new StringTokenizer(rd.readLine());
}
public String next() throws IOException
{
if (!tk.hasMoreTokens())
{
tk=new StringTokenizer(rd.readLine());
return tk.nextToken();
}
return tk.nextToken();
}
public int nextInt() throws NumberFormatException, IOException
{
return Integer.valueOf(this.next());
}
}
static team[] array=new team[100];
static int N,K;
public static void main(String args[]) throws IOException
{
Scanner sc=new Scanner();
N=sc.nextInt();
K=sc.nextInt();
for(int i=0;i<N;i++)
{
array[i]=new team(sc.nextInt(),sc.nextInt());
}
Arrays.sort(array,0,N);
/*
for(int i=0;i<N;i++)
System.out.println(array[i].problems);*/
int shared=0;
for(int i=K-1;i>=0 && array[K-1].igual(array[i]);i--,shared++);
for(int i=K;i<N && array[K-1].igual(array[i]);i++,shared++);
System.out.println(shared);
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
import java.util.Arrays;
public class A {
static class team implements Comparable<team>
{
int problems;
int penalty;
public team(int problems,int penalty)
{
this.penalty=penalty;
this.problems=problems;
}
public int compareTo(team a) {
if (a.problems==this.problems)
return this.penalty - a.penalty;
return a.problems - this.problems;
}
public boolean igual(team a)
{
if (this.problems!=a.problems)
return false;
return (this.penalty==a.penalty);
}
}
static class Scanner
{
BufferedReader rd;
StringTokenizer tk;
public Scanner() throws IOException
{
rd=new BufferedReader(new InputStreamReader(System.in));
tk=new StringTokenizer(rd.readLine());
}
public String next() throws IOException
{
if (!tk.hasMoreTokens())
{
tk=new StringTokenizer(rd.readLine());
return tk.nextToken();
}
return tk.nextToken();
}
public int nextInt() throws NumberFormatException, IOException
{
return Integer.valueOf(this.next());
}
}
static team[] array=new team[100];
static int N,K;
public static void main(String args[]) throws IOException
{
Scanner sc=new Scanner();
N=sc.nextInt();
K=sc.nextInt();
for(int i=0;i<N;i++)
{
array[i]=new team(sc.nextInt(),sc.nextInt());
}
Arrays.sort(array,0,N);
/*
for(int i=0;i<N;i++)
System.out.println(array[i].problems);*/
int shared=0;
for(int i=K-1;i>=0 && array[K-1].igual(array[i]);i--,shared++);
for(int i=K;i<N && array[K-1].igual(array[i]);i++,shared++);
System.out.println(shared);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
import java.util.Arrays;
public class A {
static class team implements Comparable<team>
{
int problems;
int penalty;
public team(int problems,int penalty)
{
this.penalty=penalty;
this.problems=problems;
}
public int compareTo(team a) {
if (a.problems==this.problems)
return this.penalty - a.penalty;
return a.problems - this.problems;
}
public boolean igual(team a)
{
if (this.problems!=a.problems)
return false;
return (this.penalty==a.penalty);
}
}
static class Scanner
{
BufferedReader rd;
StringTokenizer tk;
public Scanner() throws IOException
{
rd=new BufferedReader(new InputStreamReader(System.in));
tk=new StringTokenizer(rd.readLine());
}
public String next() throws IOException
{
if (!tk.hasMoreTokens())
{
tk=new StringTokenizer(rd.readLine());
return tk.nextToken();
}
return tk.nextToken();
}
public int nextInt() throws NumberFormatException, IOException
{
return Integer.valueOf(this.next());
}
}
static team[] array=new team[100];
static int N,K;
public static void main(String args[]) throws IOException
{
Scanner sc=new Scanner();
N=sc.nextInt();
K=sc.nextInt();
for(int i=0;i<N;i++)
{
array[i]=new team(sc.nextInt(),sc.nextInt());
}
Arrays.sort(array,0,N);
/*
for(int i=0;i<N;i++)
System.out.println(array[i].problems);*/
int shared=0;
for(int i=K-1;i>=0 && array[K-1].igual(array[i]);i--,shared++);
for(int i=K;i<N && array[K-1].igual(array[i]);i++,shared++);
System.out.println(shared);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 779 | 1,980 |
3,086 |
import java.util.Scanner;
public class Task1 {
public static void main(String[] args) {
int n = new Scanner(System.in).nextInt();
System.out.println(n*3/2);
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class Task1 {
public static void main(String[] args) {
int n = new Scanner(System.in).nextInt();
System.out.println(n*3/2);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class Task1 {
public static void main(String[] args) {
int n = new Scanner(System.in).nextInt();
System.out.println(n*3/2);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 373 | 3,080 |
4,366 |
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int V = in.nextInt();
int E = in.nextInt();
boolean [][] G = new boolean [V][V];
for (int i = 0; i < E; i++) {
int u = in.nextInt()-1;
int v = in.nextInt()-1;
G[u][v] = true;
G[v][u] = true;
}
int pset = 1 << V;
long [][] dp = new long [pset][V];
long cycles = 0;
for (int set = 1; set < pset; set++) {
int bit = Integer.bitCount(set);
int src = first(set);
if (bit == 1) {
dp[set][src] = 1;
}
else if(bit > 1) {
for (int i = 0; i < V; i++) {
if(i == src) continue;
// Check if i is in set
if ((set & (1 << i)) != 0) {
int S_1 = set ^ (1 << i);
for (int v = 0; v < V; v++) {
if (G[v][i] == true) {
dp[set][i] += dp[S_1][v];
}
}
}
//Count Cycles:
if (bit >= 3 && G[src][i]) {
cycles += dp[set][i];
}
}
}
}
System.out.println(cycles/2);
}
public static int first(int n) {
int cnt = 0;
while ((n & 1) != 1) {
cnt++;
n >>= 1;
}
return cnt;
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int V = in.nextInt();
int E = in.nextInt();
boolean [][] G = new boolean [V][V];
for (int i = 0; i < E; i++) {
int u = in.nextInt()-1;
int v = in.nextInt()-1;
G[u][v] = true;
G[v][u] = true;
}
int pset = 1 << V;
long [][] dp = new long [pset][V];
long cycles = 0;
for (int set = 1; set < pset; set++) {
int bit = Integer.bitCount(set);
int src = first(set);
if (bit == 1) {
dp[set][src] = 1;
}
else if(bit > 1) {
for (int i = 0; i < V; i++) {
if(i == src) continue;
// Check if i is in set
if ((set & (1 << i)) != 0) {
int S_1 = set ^ (1 << i);
for (int v = 0; v < V; v++) {
if (G[v][i] == true) {
dp[set][i] += dp[S_1][v];
}
}
}
//Count Cycles:
if (bit >= 3 && G[src][i]) {
cycles += dp[set][i];
}
}
}
}
System.out.println(cycles/2);
}
public static int first(int n) {
int cnt = 0;
while ((n & 1) != 1) {
cnt++;
n >>= 1;
}
return cnt;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int V = in.nextInt();
int E = in.nextInt();
boolean [][] G = new boolean [V][V];
for (int i = 0; i < E; i++) {
int u = in.nextInt()-1;
int v = in.nextInt()-1;
G[u][v] = true;
G[v][u] = true;
}
int pset = 1 << V;
long [][] dp = new long [pset][V];
long cycles = 0;
for (int set = 1; set < pset; set++) {
int bit = Integer.bitCount(set);
int src = first(set);
if (bit == 1) {
dp[set][src] = 1;
}
else if(bit > 1) {
for (int i = 0; i < V; i++) {
if(i == src) continue;
// Check if i is in set
if ((set & (1 << i)) != 0) {
int S_1 = set ^ (1 << i);
for (int v = 0; v < V; v++) {
if (G[v][i] == true) {
dp[set][i] += dp[S_1][v];
}
}
}
//Count Cycles:
if (bit >= 3 && G[src][i]) {
cycles += dp[set][i];
}
}
}
}
System.out.println(cycles/2);
}
public static int first(int n) {
int cnt = 0;
while ((n & 1) != 1) {
cnt++;
n >>= 1;
}
return cnt;
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 765 | 4,355 |
1,799 |
import java.util.*;
import java.io.*;
public class Main {
public static void main(String[] args) throws Exception {
Scanner in = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
int n = in.nextInt(), m = in.nextInt(), k = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) a[i] = in.nextInt();
Arrays.sort(a);
int ans = 0, r = k, p = n-1;
while (r < m && p >= 0) {
r = r - 1 + a[p];
p--;
ans++;
}
if (r < m) out.println("-1");
else out.println(ans);
out.flush();
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Main {
public static void main(String[] args) throws Exception {
Scanner in = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
int n = in.nextInt(), m = in.nextInt(), k = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) a[i] = in.nextInt();
Arrays.sort(a);
int ans = 0, r = k, p = n-1;
while (r < m && p >= 0) {
r = r - 1 + a[p];
p--;
ans++;
}
if (r < m) out.println("-1");
else out.println(ans);
out.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Main {
public static void main(String[] args) throws Exception {
Scanner in = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
int n = in.nextInt(), m = in.nextInt(), k = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) a[i] = in.nextInt();
Arrays.sort(a);
int ans = 0, r = k, p = n-1;
while (r < m && p >= 0) {
r = r - 1 + a[p];
p--;
ans++;
}
if (r < m) out.println("-1");
else out.println(ans);
out.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 524 | 1,795 |
2,407 |
import java.util.Scanner;
public class D {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int[] a = new int[n];
for(int i = 0; i < n; ++i) {
a[i] = in.nextInt();
}
int ans = 0;
for(int i = 0; i < n; ++i) {
for(int j = i+1; j < n; ++j) {
if(a[i] > a[j]) ans++;
}
}
int m = in.nextInt();
for(int i = 0; i < m; ++i) {
int l = in.nextInt();
int r = in.nextInt();
int size = r-l + 1;
int x = size * size - size;
x = x >> 1;
ans = ans^x;
if(ans%2 == 0) System.out.println("even");
else System.out.println("odd");
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class D {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int[] a = new int[n];
for(int i = 0; i < n; ++i) {
a[i] = in.nextInt();
}
int ans = 0;
for(int i = 0; i < n; ++i) {
for(int j = i+1; j < n; ++j) {
if(a[i] > a[j]) ans++;
}
}
int m = in.nextInt();
for(int i = 0; i < m; ++i) {
int l = in.nextInt();
int r = in.nextInt();
int size = r-l + 1;
int x = size * size - size;
x = x >> 1;
ans = ans^x;
if(ans%2 == 0) System.out.println("even");
else System.out.println("odd");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class D {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int[] a = new int[n];
for(int i = 0; i < n; ++i) {
a[i] = in.nextInt();
}
int ans = 0;
for(int i = 0; i < n; ++i) {
for(int j = i+1; j < n; ++j) {
if(a[i] > a[j]) ans++;
}
}
int m = in.nextInt();
for(int i = 0; i < m; ++i) {
int l = in.nextInt();
int r = in.nextInt();
int size = r-l + 1;
int x = size * size - size;
x = x >> 1;
ans = ans^x;
if(ans%2 == 0) System.out.println("even");
else System.out.println("odd");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 567 | 2,402 |
2,955 |
import java.io.*;
import java.util.*;
public class p343a
{
public static void main(String args[])
{
Scanner sc = new Scanner(System.in);
System.out.println();
long a = sc.nextLong();
long b = sc.nextLong();
if(a==b) System.out.println("1");
else if(b==1) System.out.println(a);
else if(a==1) System.out.println(b);
else if(a>b) System.out.println(count(a,b));
else System.out.println(count(b,a));
}
public static long count(long a,long b)
{
long count = 0;
while(b!=1)
{
long c = a/b;
count += c;
long d = a-(c*b);
a = b;
b = d;
if(b==1)
{
count += a;
break;
}
}
return count;
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class p343a
{
public static void main(String args[])
{
Scanner sc = new Scanner(System.in);
System.out.println();
long a = sc.nextLong();
long b = sc.nextLong();
if(a==b) System.out.println("1");
else if(b==1) System.out.println(a);
else if(a==1) System.out.println(b);
else if(a>b) System.out.println(count(a,b));
else System.out.println(count(b,a));
}
public static long count(long a,long b)
{
long count = 0;
while(b!=1)
{
long c = a/b;
count += c;
long d = a-(c*b);
a = b;
b = d;
if(b==1)
{
count += a;
break;
}
}
return count;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class p343a
{
public static void main(String args[])
{
Scanner sc = new Scanner(System.in);
System.out.println();
long a = sc.nextLong();
long b = sc.nextLong();
if(a==b) System.out.println("1");
else if(b==1) System.out.println(a);
else if(a==1) System.out.println(b);
else if(a>b) System.out.println(count(a,b));
else System.out.println(count(b,a));
}
public static long count(long a,long b)
{
long count = 0;
while(b!=1)
{
long c = a/b;
count += c;
long d = a-(c*b);
a = b;
b = d;
if(b==1)
{
count += a;
break;
}
}
return count;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 553 | 2,949 |
2,193 |
/*
*
* @Author Ajudiya_13(Bhargav Girdharbhai Ajudiya)
* Dhirubhai Ambani Institute of Information And Communication Technology
*
*/
import java.util.*;
import java.io.*;
import java.lang.*;
public class Code3
{
public static void main(String[] args)
{
InputReader in = new InputReader(System.in);
PrintWriter pw = new PrintWriter(System.out);
int n = in.nextInt();
double r = (double)in.nextInt();
double [] a = new double[n];
for(int i=0;i<n;i++)
a[i] = (double)in.nextInt();
double[] ans = new double[n];
ans[0] = r;
for(int i=1;i<n;i++)
{
double max = Double.MIN_VALUE;
for(int j=0;j<i;j++)
{
if(Math.abs(a[i]-a[j])<=2*r)
{
//System.out.println(j);
double cur = 4*r*r;
cur -= ((a[i]-a[j])*(a[i]-a[j]));
cur = Math.sqrt(cur);
cur += ans[j];
//System.out.println(r);
max = Math.max(max, cur);
}
}
if(max == Double.MIN_VALUE)
ans[i] = r;
else
ans[i] = max;
}
for(int i=0;i<n;i++)
pw.print(ans[i] + " ");
pw.flush();
pw.close();
}
static class InputReader
{
private final InputStream stream;
private final byte[] buf = new byte[8192];
private int curChar, snumChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream)
{
this.stream = stream;
}
public int snext()
{
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars)
{
curChar = 0;
try
{
snumChars = stream.read(buf);
}
catch (IOException e)
{
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = snext();
}
int res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = snext();
}
long res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public int[] nextIntArray(int n)
{
int a[] = new int[n];
for (int i = 0; i < n; i++)
{
a[i] = nextInt();
}
return a;
}
public String readString()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = snext();
} while (!isSpaceChar(c));
return res.toString();
}
public String nextLine()
{
int c = snext();
while (isSpaceChar(c))
c = snext();
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = snext();
} while (!isEndOfLine(c));
return res.toString();
}
public boolean isSpaceChar(int c)
{
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c)
{
return c == '\n' || c == '\r' || c == -1;
}
public interface SpaceCharFilter
{
public boolean isSpaceChar(int ch);
}
}
public static long mod = 1000000007;
public static int d;
public static int p;
public static int q;
public static int[] suffle(int[] a,Random gen)
{
int n = a.length;
for(int i=0;i<n;i++)
{
int ind = gen.nextInt(n-i)+i;
int temp = a[ind];
a[ind] = a[i];
a[i] = temp;
}
return a;
}
public static void swap(int a, int b){
int temp = a;
a = b;
b = temp;
}
public static HashSet<Integer> primeFactorization(int n)
{
HashSet<Integer> a =new HashSet<Integer>();
for(int i=2;i*i<=n;i++)
{
while(n%i==0)
{
a.add(i);
n/=i;
}
}
if(n!=1)
a.add(n);
return a;
}
public static void sieve(boolean[] isPrime,int n)
{
for(int i=1;i<n;i++)
isPrime[i] = true;
isPrime[0] = false;
isPrime[1] = false;
for(int i=2;i*i<n;i++)
{
if(isPrime[i] == true)
{
for(int j=(2*i);j<n;j+=i)
isPrime[j] = false;
}
}
}
public static int GCD(int a,int b)
{
if(b==0)
return a;
else
return GCD(b,a%b);
}
public static long GCD(long a,long b)
{
if(b==0)
return a;
else
return GCD(b,a%b);
}
public static void extendedEuclid(int A,int B)
{
if(B==0)
{
d = A;
p = 1 ;
q = 0;
}
else
{
extendedEuclid(B, A%B);
int temp = p;
p = q;
q = temp - (A/B)*q;
}
}
public static long LCM(long a,long b)
{
return (a*b)/GCD(a,b);
}
public static int LCM(int a,int b)
{
return (a*b)/GCD(a,b);
}
public static int binaryExponentiation(int x,int n)
{
int result=1;
while(n>0)
{
if(n % 2 ==1)
result=result * x;
x=x*x;
n=n/2;
}
return result;
}
public static long binaryExponentiation(long x,long n)
{
long result=1;
while(n>0)
{
if(n % 2 ==1)
result=result * x;
x=x*x;
n=n/2;
}
return result;
}
public static int modularExponentiation(int x,int n,int M)
{
int result=1;
while(n>0)
{
if(n % 2 ==1)
result=(result * x)%M;
x=(x*x)%M;
n=n/2;
}
return result;
}
public static long modularExponentiation(long x,long n,long M)
{
long result=1;
while(n>0)
{
if(n % 2 ==1)
result=(result * x)%M;
x=(x*x)%M;
n=n/2;
}
return result;
}
public static int modInverse(int A,int M)
{
return modularExponentiation(A,M-2,M);
}
public static long modInverse(long A,long M)
{
return modularExponentiation(A,M-2,M);
}
public static boolean isPrime(int n)
{
if (n <= 1) return false;
if (n <= 3) return true;
if (n%2 == 0 || n%3 == 0)
return false;
for (int i=5; i*i<=n; i=i+6)
{
if (n%i == 0 || n%(i+2) == 0)
return false;
}
return true;
}
static class pair implements Comparable<pair>
{
Integer x, y;
pair(int x,int y)
{
this.x=x;
this.y=y;
}
public int compareTo(pair o) {
int result = x.compareTo(o.x);
if(result==0)
result = y.compareTo(o.y);
return result;
}
public String toString()
{
return x+" "+y;
}
public boolean equals(Object o)
{
if (o instanceof pair)
{
pair p = (pair)o;
return p.x == x && p.y == y ;
}
return false;
}
public int hashCode()
{
return new Long(x).hashCode()*31 + new Long(y).hashCode();
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
/*
*
* @Author Ajudiya_13(Bhargav Girdharbhai Ajudiya)
* Dhirubhai Ambani Institute of Information And Communication Technology
*
*/
import java.util.*;
import java.io.*;
import java.lang.*;
public class Code3
{
public static void main(String[] args)
{
InputReader in = new InputReader(System.in);
PrintWriter pw = new PrintWriter(System.out);
int n = in.nextInt();
double r = (double)in.nextInt();
double [] a = new double[n];
for(int i=0;i<n;i++)
a[i] = (double)in.nextInt();
double[] ans = new double[n];
ans[0] = r;
for(int i=1;i<n;i++)
{
double max = Double.MIN_VALUE;
for(int j=0;j<i;j++)
{
if(Math.abs(a[i]-a[j])<=2*r)
{
//System.out.println(j);
double cur = 4*r*r;
cur -= ((a[i]-a[j])*(a[i]-a[j]));
cur = Math.sqrt(cur);
cur += ans[j];
//System.out.println(r);
max = Math.max(max, cur);
}
}
if(max == Double.MIN_VALUE)
ans[i] = r;
else
ans[i] = max;
}
for(int i=0;i<n;i++)
pw.print(ans[i] + " ");
pw.flush();
pw.close();
}
static class InputReader
{
private final InputStream stream;
private final byte[] buf = new byte[8192];
private int curChar, snumChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream)
{
this.stream = stream;
}
public int snext()
{
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars)
{
curChar = 0;
try
{
snumChars = stream.read(buf);
}
catch (IOException e)
{
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = snext();
}
int res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = snext();
}
long res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public int[] nextIntArray(int n)
{
int a[] = new int[n];
for (int i = 0; i < n; i++)
{
a[i] = nextInt();
}
return a;
}
public String readString()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = snext();
} while (!isSpaceChar(c));
return res.toString();
}
public String nextLine()
{
int c = snext();
while (isSpaceChar(c))
c = snext();
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = snext();
} while (!isEndOfLine(c));
return res.toString();
}
public boolean isSpaceChar(int c)
{
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c)
{
return c == '\n' || c == '\r' || c == -1;
}
public interface SpaceCharFilter
{
public boolean isSpaceChar(int ch);
}
}
public static long mod = 1000000007;
public static int d;
public static int p;
public static int q;
public static int[] suffle(int[] a,Random gen)
{
int n = a.length;
for(int i=0;i<n;i++)
{
int ind = gen.nextInt(n-i)+i;
int temp = a[ind];
a[ind] = a[i];
a[i] = temp;
}
return a;
}
public static void swap(int a, int b){
int temp = a;
a = b;
b = temp;
}
public static HashSet<Integer> primeFactorization(int n)
{
HashSet<Integer> a =new HashSet<Integer>();
for(int i=2;i*i<=n;i++)
{
while(n%i==0)
{
a.add(i);
n/=i;
}
}
if(n!=1)
a.add(n);
return a;
}
public static void sieve(boolean[] isPrime,int n)
{
for(int i=1;i<n;i++)
isPrime[i] = true;
isPrime[0] = false;
isPrime[1] = false;
for(int i=2;i*i<n;i++)
{
if(isPrime[i] == true)
{
for(int j=(2*i);j<n;j+=i)
isPrime[j] = false;
}
}
}
public static int GCD(int a,int b)
{
if(b==0)
return a;
else
return GCD(b,a%b);
}
public static long GCD(long a,long b)
{
if(b==0)
return a;
else
return GCD(b,a%b);
}
public static void extendedEuclid(int A,int B)
{
if(B==0)
{
d = A;
p = 1 ;
q = 0;
}
else
{
extendedEuclid(B, A%B);
int temp = p;
p = q;
q = temp - (A/B)*q;
}
}
public static long LCM(long a,long b)
{
return (a*b)/GCD(a,b);
}
public static int LCM(int a,int b)
{
return (a*b)/GCD(a,b);
}
public static int binaryExponentiation(int x,int n)
{
int result=1;
while(n>0)
{
if(n % 2 ==1)
result=result * x;
x=x*x;
n=n/2;
}
return result;
}
public static long binaryExponentiation(long x,long n)
{
long result=1;
while(n>0)
{
if(n % 2 ==1)
result=result * x;
x=x*x;
n=n/2;
}
return result;
}
public static int modularExponentiation(int x,int n,int M)
{
int result=1;
while(n>0)
{
if(n % 2 ==1)
result=(result * x)%M;
x=(x*x)%M;
n=n/2;
}
return result;
}
public static long modularExponentiation(long x,long n,long M)
{
long result=1;
while(n>0)
{
if(n % 2 ==1)
result=(result * x)%M;
x=(x*x)%M;
n=n/2;
}
return result;
}
public static int modInverse(int A,int M)
{
return modularExponentiation(A,M-2,M);
}
public static long modInverse(long A,long M)
{
return modularExponentiation(A,M-2,M);
}
public static boolean isPrime(int n)
{
if (n <= 1) return false;
if (n <= 3) return true;
if (n%2 == 0 || n%3 == 0)
return false;
for (int i=5; i*i<=n; i=i+6)
{
if (n%i == 0 || n%(i+2) == 0)
return false;
}
return true;
}
static class pair implements Comparable<pair>
{
Integer x, y;
pair(int x,int y)
{
this.x=x;
this.y=y;
}
public int compareTo(pair o) {
int result = x.compareTo(o.x);
if(result==0)
result = y.compareTo(o.y);
return result;
}
public String toString()
{
return x+" "+y;
}
public boolean equals(Object o)
{
if (o instanceof pair)
{
pair p = (pair)o;
return p.x == x && p.y == y ;
}
return false;
}
public int hashCode()
{
return new Long(x).hashCode()*31 + new Long(y).hashCode();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
/*
*
* @Author Ajudiya_13(Bhargav Girdharbhai Ajudiya)
* Dhirubhai Ambani Institute of Information And Communication Technology
*
*/
import java.util.*;
import java.io.*;
import java.lang.*;
public class Code3
{
public static void main(String[] args)
{
InputReader in = new InputReader(System.in);
PrintWriter pw = new PrintWriter(System.out);
int n = in.nextInt();
double r = (double)in.nextInt();
double [] a = new double[n];
for(int i=0;i<n;i++)
a[i] = (double)in.nextInt();
double[] ans = new double[n];
ans[0] = r;
for(int i=1;i<n;i++)
{
double max = Double.MIN_VALUE;
for(int j=0;j<i;j++)
{
if(Math.abs(a[i]-a[j])<=2*r)
{
//System.out.println(j);
double cur = 4*r*r;
cur -= ((a[i]-a[j])*(a[i]-a[j]));
cur = Math.sqrt(cur);
cur += ans[j];
//System.out.println(r);
max = Math.max(max, cur);
}
}
if(max == Double.MIN_VALUE)
ans[i] = r;
else
ans[i] = max;
}
for(int i=0;i<n;i++)
pw.print(ans[i] + " ");
pw.flush();
pw.close();
}
static class InputReader
{
private final InputStream stream;
private final byte[] buf = new byte[8192];
private int curChar, snumChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream)
{
this.stream = stream;
}
public int snext()
{
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars)
{
curChar = 0;
try
{
snumChars = stream.read(buf);
}
catch (IOException e)
{
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = snext();
}
int res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = snext();
}
long res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public int[] nextIntArray(int n)
{
int a[] = new int[n];
for (int i = 0; i < n; i++)
{
a[i] = nextInt();
}
return a;
}
public String readString()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = snext();
} while (!isSpaceChar(c));
return res.toString();
}
public String nextLine()
{
int c = snext();
while (isSpaceChar(c))
c = snext();
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = snext();
} while (!isEndOfLine(c));
return res.toString();
}
public boolean isSpaceChar(int c)
{
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c)
{
return c == '\n' || c == '\r' || c == -1;
}
public interface SpaceCharFilter
{
public boolean isSpaceChar(int ch);
}
}
public static long mod = 1000000007;
public static int d;
public static int p;
public static int q;
public static int[] suffle(int[] a,Random gen)
{
int n = a.length;
for(int i=0;i<n;i++)
{
int ind = gen.nextInt(n-i)+i;
int temp = a[ind];
a[ind] = a[i];
a[i] = temp;
}
return a;
}
public static void swap(int a, int b){
int temp = a;
a = b;
b = temp;
}
public static HashSet<Integer> primeFactorization(int n)
{
HashSet<Integer> a =new HashSet<Integer>();
for(int i=2;i*i<=n;i++)
{
while(n%i==0)
{
a.add(i);
n/=i;
}
}
if(n!=1)
a.add(n);
return a;
}
public static void sieve(boolean[] isPrime,int n)
{
for(int i=1;i<n;i++)
isPrime[i] = true;
isPrime[0] = false;
isPrime[1] = false;
for(int i=2;i*i<n;i++)
{
if(isPrime[i] == true)
{
for(int j=(2*i);j<n;j+=i)
isPrime[j] = false;
}
}
}
public static int GCD(int a,int b)
{
if(b==0)
return a;
else
return GCD(b,a%b);
}
public static long GCD(long a,long b)
{
if(b==0)
return a;
else
return GCD(b,a%b);
}
public static void extendedEuclid(int A,int B)
{
if(B==0)
{
d = A;
p = 1 ;
q = 0;
}
else
{
extendedEuclid(B, A%B);
int temp = p;
p = q;
q = temp - (A/B)*q;
}
}
public static long LCM(long a,long b)
{
return (a*b)/GCD(a,b);
}
public static int LCM(int a,int b)
{
return (a*b)/GCD(a,b);
}
public static int binaryExponentiation(int x,int n)
{
int result=1;
while(n>0)
{
if(n % 2 ==1)
result=result * x;
x=x*x;
n=n/2;
}
return result;
}
public static long binaryExponentiation(long x,long n)
{
long result=1;
while(n>0)
{
if(n % 2 ==1)
result=result * x;
x=x*x;
n=n/2;
}
return result;
}
public static int modularExponentiation(int x,int n,int M)
{
int result=1;
while(n>0)
{
if(n % 2 ==1)
result=(result * x)%M;
x=(x*x)%M;
n=n/2;
}
return result;
}
public static long modularExponentiation(long x,long n,long M)
{
long result=1;
while(n>0)
{
if(n % 2 ==1)
result=(result * x)%M;
x=(x*x)%M;
n=n/2;
}
return result;
}
public static int modInverse(int A,int M)
{
return modularExponentiation(A,M-2,M);
}
public static long modInverse(long A,long M)
{
return modularExponentiation(A,M-2,M);
}
public static boolean isPrime(int n)
{
if (n <= 1) return false;
if (n <= 3) return true;
if (n%2 == 0 || n%3 == 0)
return false;
for (int i=5; i*i<=n; i=i+6)
{
if (n%i == 0 || n%(i+2) == 0)
return false;
}
return true;
}
static class pair implements Comparable<pair>
{
Integer x, y;
pair(int x,int y)
{
this.x=x;
this.y=y;
}
public int compareTo(pair o) {
int result = x.compareTo(o.x);
if(result==0)
result = y.compareTo(o.y);
return result;
}
public String toString()
{
return x+" "+y;
}
public boolean equals(Object o)
{
if (o instanceof pair)
{
pair p = (pair)o;
return p.x == x && p.y == y ;
}
return false;
}
public int hashCode()
{
return new Long(x).hashCode()*31 + new Long(y).hashCode();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,645 | 2,189 |
4,022 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.io.IOException;
import java.util.ArrayList;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Vaibhav Pulastya
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
G1PlaylistForPolycarpEasyVersion solver = new G1PlaylistForPolycarpEasyVersion();
solver.solve(1, in, out);
out.close();
}
static class G1PlaylistForPolycarpEasyVersion {
long mod = (int) 1e9 + 7;
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int T = in.nextInt();
int[] t = new int[n];
int[] g = new int[n];
for (int i = 0; i < n; i++) {
t[i] = in.nextInt();
g[i] = in.nextInt();
}
long[] fact = new long[n + 1];
fact[0] = 1;
for (int i = 1; i <= n; i++) {
fact[i] = (fact[i - 1] * i) % mod;
}
ArrayList<Integer> masks = new ArrayList<>();
long val = 0;
for (int i = 1; i < (1 << n); i++) {
int time = 0;
int[] count = new int[3];
for (int j = 0; j < n; j++) {
if ((i & (1 << j)) != 0) {
time += t[j];
count[g[j] - 1]++;
}
}
if (time == T) {
masks.add(i);
Arrays.sort(count);
long v = ((fact[count[0]] * fact[count[1]]) % mod * fact[count[2]]) % mod;
val += ((countUtil(count[0], count[1], count[2])) * v) % mod;
}
}
out.println(val%mod);
}
long countWays(int p, int q, int r, int last) {
// if number of balls of any
// color becomes less than 0
// the number of ways arrangements is 0.
if (p < 0 || q < 0 || r < 0)
return 0;
// If last ball required is
// of type P and the number
// of balls of P type is 1
// while number of balls of
// other color is 0 the number
// of ways is 1.
if (p == 1 && q == 0 && r == 0 && last == 0)
return 1;
// Same case as above for 'q' and 'r'
if (p == 0 && q == 1 && r == 0 && last == 1)
return 1;
if (p == 0 && q == 0 && r == 1 && last == 2)
return 1;
// if last ball required is P
// and the number of ways is
// the sum of number of ways
// to form sequence with 'p-1' P
// balls, q Q Balls and r R balls
// ending with Q and R.
if (last == 0)
return (countWays(p - 1, q, r, 1) +
countWays(p - 1, q, r, 2)) % mod;
// Same as above case for 'q' and 'r'
if (last == 1)
return (countWays(p, q - 1, r, 0) +
countWays(p, q - 1, r, 2)) % mod;
if (last == 2)
return (countWays(p, q, r - 1, 0) +
countWays(p, q, r - 1, 1)) % mod;
return 0;
}
long countUtil(int p, int q, int r) {
// Three cases arise:
return ((countWays(p, q, r, 0) +
countWays(p, q, r, 1)) % mod +
countWays(p, q, r, 2)) % mod;
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.io.IOException;
import java.util.ArrayList;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Vaibhav Pulastya
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
G1PlaylistForPolycarpEasyVersion solver = new G1PlaylistForPolycarpEasyVersion();
solver.solve(1, in, out);
out.close();
}
static class G1PlaylistForPolycarpEasyVersion {
long mod = (int) 1e9 + 7;
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int T = in.nextInt();
int[] t = new int[n];
int[] g = new int[n];
for (int i = 0; i < n; i++) {
t[i] = in.nextInt();
g[i] = in.nextInt();
}
long[] fact = new long[n + 1];
fact[0] = 1;
for (int i = 1; i <= n; i++) {
fact[i] = (fact[i - 1] * i) % mod;
}
ArrayList<Integer> masks = new ArrayList<>();
long val = 0;
for (int i = 1; i < (1 << n); i++) {
int time = 0;
int[] count = new int[3];
for (int j = 0; j < n; j++) {
if ((i & (1 << j)) != 0) {
time += t[j];
count[g[j] - 1]++;
}
}
if (time == T) {
masks.add(i);
Arrays.sort(count);
long v = ((fact[count[0]] * fact[count[1]]) % mod * fact[count[2]]) % mod;
val += ((countUtil(count[0], count[1], count[2])) * v) % mod;
}
}
out.println(val%mod);
}
long countWays(int p, int q, int r, int last) {
// if number of balls of any
// color becomes less than 0
// the number of ways arrangements is 0.
if (p < 0 || q < 0 || r < 0)
return 0;
// If last ball required is
// of type P and the number
// of balls of P type is 1
// while number of balls of
// other color is 0 the number
// of ways is 1.
if (p == 1 && q == 0 && r == 0 && last == 0)
return 1;
// Same case as above for 'q' and 'r'
if (p == 0 && q == 1 && r == 0 && last == 1)
return 1;
if (p == 0 && q == 0 && r == 1 && last == 2)
return 1;
// if last ball required is P
// and the number of ways is
// the sum of number of ways
// to form sequence with 'p-1' P
// balls, q Q Balls and r R balls
// ending with Q and R.
if (last == 0)
return (countWays(p - 1, q, r, 1) +
countWays(p - 1, q, r, 2)) % mod;
// Same as above case for 'q' and 'r'
if (last == 1)
return (countWays(p, q - 1, r, 0) +
countWays(p, q - 1, r, 2)) % mod;
if (last == 2)
return (countWays(p, q, r - 1, 0) +
countWays(p, q, r - 1, 1)) % mod;
return 0;
}
long countUtil(int p, int q, int r) {
// Three cases arise:
return ((countWays(p, q, r, 0) +
countWays(p, q, r, 1)) % mod +
countWays(p, q, r, 2)) % mod;
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.io.IOException;
import java.util.ArrayList;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Vaibhav Pulastya
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
G1PlaylistForPolycarpEasyVersion solver = new G1PlaylistForPolycarpEasyVersion();
solver.solve(1, in, out);
out.close();
}
static class G1PlaylistForPolycarpEasyVersion {
long mod = (int) 1e9 + 7;
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int T = in.nextInt();
int[] t = new int[n];
int[] g = new int[n];
for (int i = 0; i < n; i++) {
t[i] = in.nextInt();
g[i] = in.nextInt();
}
long[] fact = new long[n + 1];
fact[0] = 1;
for (int i = 1; i <= n; i++) {
fact[i] = (fact[i - 1] * i) % mod;
}
ArrayList<Integer> masks = new ArrayList<>();
long val = 0;
for (int i = 1; i < (1 << n); i++) {
int time = 0;
int[] count = new int[3];
for (int j = 0; j < n; j++) {
if ((i & (1 << j)) != 0) {
time += t[j];
count[g[j] - 1]++;
}
}
if (time == T) {
masks.add(i);
Arrays.sort(count);
long v = ((fact[count[0]] * fact[count[1]]) % mod * fact[count[2]]) % mod;
val += ((countUtil(count[0], count[1], count[2])) * v) % mod;
}
}
out.println(val%mod);
}
long countWays(int p, int q, int r, int last) {
// if number of balls of any
// color becomes less than 0
// the number of ways arrangements is 0.
if (p < 0 || q < 0 || r < 0)
return 0;
// If last ball required is
// of type P and the number
// of balls of P type is 1
// while number of balls of
// other color is 0 the number
// of ways is 1.
if (p == 1 && q == 0 && r == 0 && last == 0)
return 1;
// Same case as above for 'q' and 'r'
if (p == 0 && q == 1 && r == 0 && last == 1)
return 1;
if (p == 0 && q == 0 && r == 1 && last == 2)
return 1;
// if last ball required is P
// and the number of ways is
// the sum of number of ways
// to form sequence with 'p-1' P
// balls, q Q Balls and r R balls
// ending with Q and R.
if (last == 0)
return (countWays(p - 1, q, r, 1) +
countWays(p - 1, q, r, 2)) % mod;
// Same as above case for 'q' and 'r'
if (last == 1)
return (countWays(p, q - 1, r, 0) +
countWays(p, q - 1, r, 2)) % mod;
if (last == 2)
return (countWays(p, q, r - 1, 0) +
countWays(p, q, r - 1, 1)) % mod;
return 0;
}
long countUtil(int p, int q, int r) {
// Three cases arise:
return ((countWays(p, q, r, 0) +
countWays(p, q, r, 1)) % mod +
countWays(p, q, r, 2)) % mod;
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,669 | 4,011 |
269 |
import java.io.*;
import java.util.*;
public class ayyyyyy
{
public static void main(String[] args) { new ayyyyyy(); }
Scanner in = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
int t, n;
int[] a;
ayyyyyy()
{
t = in.nextInt();
while (t --> 0)
{
a = new int[n = in.nextInt()];
for (int i = 0; i < n; i++)
a[i] = in.nextInt();
shuffle(a);
Arrays.sort(a);
out.println(Math.min(n-2, a[n-2]-1));
}
out.close();
}
void shuffle(int[] x)
{
for (int i = 0; i < n; i++)
{
int swp = (int)(n*Math.random());
int tmp = x[swp];
x[swp] = x[i];
x[i] = tmp;
}
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class ayyyyyy
{
public static void main(String[] args) { new ayyyyyy(); }
Scanner in = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
int t, n;
int[] a;
ayyyyyy()
{
t = in.nextInt();
while (t --> 0)
{
a = new int[n = in.nextInt()];
for (int i = 0; i < n; i++)
a[i] = in.nextInt();
shuffle(a);
Arrays.sort(a);
out.println(Math.min(n-2, a[n-2]-1));
}
out.close();
}
void shuffle(int[] x)
{
for (int i = 0; i < n; i++)
{
int swp = (int)(n*Math.random());
int tmp = x[swp];
x[swp] = x[i];
x[i] = tmp;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class ayyyyyy
{
public static void main(String[] args) { new ayyyyyy(); }
Scanner in = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
int t, n;
int[] a;
ayyyyyy()
{
t = in.nextInt();
while (t --> 0)
{
a = new int[n = in.nextInt()];
for (int i = 0; i < n; i++)
a[i] = in.nextInt();
shuffle(a);
Arrays.sort(a);
out.println(Math.min(n-2, a[n-2]-1));
}
out.close();
}
void shuffle(int[] x)
{
for (int i = 0; i < n; i++)
{
int swp = (int)(n*Math.random());
int tmp = x[swp];
x[swp] = x[i];
x[i] = tmp;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 574 | 269 |
2,975 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class RationalResistance {
public static void main(String args[]) throws IOException{
BufferedReader f= new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out);
StringTokenizer st=new StringTokenizer(f.readLine());
long a=Long.parseLong(st.nextToken());
long b=Long.parseLong(st.nextToken());
long sum = 0;
while(a!= 0 && b!= 0){
if (a > b){
long val = a / b;
sum += val;
a -= val * b;
}
else{
long val = b / a;
sum += val;
b -= val * a;
}
}
out.println(sum);
out.close();
System.exit(0);
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class RationalResistance {
public static void main(String args[]) throws IOException{
BufferedReader f= new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out);
StringTokenizer st=new StringTokenizer(f.readLine());
long a=Long.parseLong(st.nextToken());
long b=Long.parseLong(st.nextToken());
long sum = 0;
while(a!= 0 && b!= 0){
if (a > b){
long val = a / b;
sum += val;
a -= val * b;
}
else{
long val = b / a;
sum += val;
b -= val * a;
}
}
out.println(sum);
out.close();
System.exit(0);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class RationalResistance {
public static void main(String args[]) throws IOException{
BufferedReader f= new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out);
StringTokenizer st=new StringTokenizer(f.readLine());
long a=Long.parseLong(st.nextToken());
long b=Long.parseLong(st.nextToken());
long sum = 0;
while(a!= 0 && b!= 0){
if (a > b){
long val = a / b;
sum += val;
a -= val * b;
}
else{
long val = b / a;
sum += val;
b -= val * a;
}
}
out.println(sum);
out.close();
System.exit(0);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 519 | 2,969 |
2,041 |
/*
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/
//package a_vtoray_poriadkovay_statistika;
import java.util.Arrays;
import java.util.Scanner;
/**
*
* @author kal1sha
*/
public class Main {
/**
* @param args the command line arguments
*/
public static void main(String[] args) {
// TODO code application logic hereSc
int n, i;
boolean status = false;
int answer;
Scanner in = new Scanner(System.in);
n = in.nextInt();
int a[] = new int[n];
for (i = 0; i < n; i++) {
a[i] = in.nextInt();
}
Arrays.sort(a);
answer = a[0];
for (i = 1; i < n; i++) {
if (a[i] != answer) {
answer = a[i];
status = true;
i = n + 1;
}
}
if (status) {
System.out.println(answer);
} else {
System.out.println("NO");
}
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
/*
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/
//package a_vtoray_poriadkovay_statistika;
import java.util.Arrays;
import java.util.Scanner;
/**
*
* @author kal1sha
*/
public class Main {
/**
* @param args the command line arguments
*/
public static void main(String[] args) {
// TODO code application logic hereSc
int n, i;
boolean status = false;
int answer;
Scanner in = new Scanner(System.in);
n = in.nextInt();
int a[] = new int[n];
for (i = 0; i < n; i++) {
a[i] = in.nextInt();
}
Arrays.sort(a);
answer = a[0];
for (i = 1; i < n; i++) {
if (a[i] != answer) {
answer = a[i];
status = true;
i = n + 1;
}
}
if (status) {
System.out.println(answer);
} else {
System.out.println("NO");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
/*
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/
//package a_vtoray_poriadkovay_statistika;
import java.util.Arrays;
import java.util.Scanner;
/**
*
* @author kal1sha
*/
public class Main {
/**
* @param args the command line arguments
*/
public static void main(String[] args) {
// TODO code application logic hereSc
int n, i;
boolean status = false;
int answer;
Scanner in = new Scanner(System.in);
n = in.nextInt();
int a[] = new int[n];
for (i = 0; i < n; i++) {
a[i] = in.nextInt();
}
Arrays.sort(a);
answer = a[0];
for (i = 1; i < n; i++) {
if (a[i] != answer) {
answer = a[i];
status = true;
i = n + 1;
}
}
if (status) {
System.out.println(answer);
} else {
System.out.println("NO");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 598 | 2,037 |
3,099 |
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
public class A {
private static StreamTokenizer in;
private static PrintWriter out;
private static int nextInt() throws Exception{
in.nextToken();
return (int)in.nval;
}
private static String nextString() throws Exception{
in.nextToken();
return in.sval;
}
static{
in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
out = new PrintWriter(System.out);
}
public static void main(String[] args)throws Exception{
int n = nextInt();
out.println(n*3/2);
out.flush();
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
public class A {
private static StreamTokenizer in;
private static PrintWriter out;
private static int nextInt() throws Exception{
in.nextToken();
return (int)in.nval;
}
private static String nextString() throws Exception{
in.nextToken();
return in.sval;
}
static{
in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
out = new PrintWriter(System.out);
}
public static void main(String[] args)throws Exception{
int n = nextInt();
out.println(n*3/2);
out.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
public class A {
private static StreamTokenizer in;
private static PrintWriter out;
private static int nextInt() throws Exception{
in.nextToken();
return (int)in.nval;
}
private static String nextString() throws Exception{
in.nextToken();
return in.sval;
}
static{
in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
out = new PrintWriter(System.out);
}
public static void main(String[] args)throws Exception{
int n = nextInt();
out.println(n*3/2);
out.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 502 | 3,093 |
3,845 |
import java.io.*;
import java.util.*;
public class C {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
static FastReader s = new FastReader();
static PrintWriter out = new PrintWriter(System.out);
private static int[] rai(int n) {
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = s.nextInt();
}
return arr;
}
private static int[][] rai(int n, int m) {
int[][] arr = new int[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
arr[i][j] = s.nextInt();
}
}
return arr;
}
private static long[] ral(int n) {
long[] arr = new long[n];
for (int i = 0; i < n; i++) {
arr[i] = s.nextLong();
}
return arr;
}
private static long[][] ral(int n, int m) {
long[][] arr = new long[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
arr[i][j] = s.nextLong();
}
}
return arr;
}
private static int ri() {
return s.nextInt();
}
private static long rl() {
return s.nextLong();
}
private static String rs() {
return s.next();
}
static long gcd(long a,long b)
{
if(b==0)
{
return a;
}
return gcd(b,a%b);
}
static int gcd(int a,int b)
{
if(b==0)
{
return a;
}
return gcd(b,a%b);
}
static boolean isPrime(int n) {
//check if n is a multiple of 2
if (n % 2 == 0) return false;
//if not, then just check the odds
for (int i = 3; i <= Math.sqrt(n); i += 2) {
if (n % i == 0)
return false;
}
return true;
}
static int MOD=1000000007;
static long mpow(long base,long pow)
{
long res=1;
while(pow>0)
{
if(pow%2==1)
{
res=(res*base)%MOD;
}
pow>>=1;
base=(base*base)%MOD;
}
return res;
}
public static void main(String[] args) {
StringBuilder ans = new StringBuilder();
int t = ri();
// int t = 1;
while (t-- > 0)
{
int n=ri();
int[] arr=rai(n);
List<Integer> list = new ArrayList<>();
for(int i:arr)
{
if(i==1)
{
list.add(i);
}
else
{
int ind = list.size()-1;
while(list.size()>0 && list.get(ind)+1!=i )
{
list.remove(list.size()-1);
ind=list.size()-1;
}
if(list.size()>0)
{
list.remove(list.size()-1);
}
list.add(i);
}
for(int j=0;j<list.size()-1;j++)
{
ans.append(list.get(j)).append(".");
}
ans.append(list.get(list.size()-1)).append("\n");
}
}
out.print(ans.toString());
out.flush();
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class C {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
static FastReader s = new FastReader();
static PrintWriter out = new PrintWriter(System.out);
private static int[] rai(int n) {
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = s.nextInt();
}
return arr;
}
private static int[][] rai(int n, int m) {
int[][] arr = new int[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
arr[i][j] = s.nextInt();
}
}
return arr;
}
private static long[] ral(int n) {
long[] arr = new long[n];
for (int i = 0; i < n; i++) {
arr[i] = s.nextLong();
}
return arr;
}
private static long[][] ral(int n, int m) {
long[][] arr = new long[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
arr[i][j] = s.nextLong();
}
}
return arr;
}
private static int ri() {
return s.nextInt();
}
private static long rl() {
return s.nextLong();
}
private static String rs() {
return s.next();
}
static long gcd(long a,long b)
{
if(b==0)
{
return a;
}
return gcd(b,a%b);
}
static int gcd(int a,int b)
{
if(b==0)
{
return a;
}
return gcd(b,a%b);
}
static boolean isPrime(int n) {
//check if n is a multiple of 2
if (n % 2 == 0) return false;
//if not, then just check the odds
for (int i = 3; i <= Math.sqrt(n); i += 2) {
if (n % i == 0)
return false;
}
return true;
}
static int MOD=1000000007;
static long mpow(long base,long pow)
{
long res=1;
while(pow>0)
{
if(pow%2==1)
{
res=(res*base)%MOD;
}
pow>>=1;
base=(base*base)%MOD;
}
return res;
}
public static void main(String[] args) {
StringBuilder ans = new StringBuilder();
int t = ri();
// int t = 1;
while (t-- > 0)
{
int n=ri();
int[] arr=rai(n);
List<Integer> list = new ArrayList<>();
for(int i:arr)
{
if(i==1)
{
list.add(i);
}
else
{
int ind = list.size()-1;
while(list.size()>0 && list.get(ind)+1!=i )
{
list.remove(list.size()-1);
ind=list.size()-1;
}
if(list.size()>0)
{
list.remove(list.size()-1);
}
list.add(i);
}
for(int j=0;j<list.size()-1;j++)
{
ans.append(list.get(j)).append(".");
}
ans.append(list.get(list.size()-1)).append("\n");
}
}
out.print(ans.toString());
out.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class C {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
static FastReader s = new FastReader();
static PrintWriter out = new PrintWriter(System.out);
private static int[] rai(int n) {
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = s.nextInt();
}
return arr;
}
private static int[][] rai(int n, int m) {
int[][] arr = new int[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
arr[i][j] = s.nextInt();
}
}
return arr;
}
private static long[] ral(int n) {
long[] arr = new long[n];
for (int i = 0; i < n; i++) {
arr[i] = s.nextLong();
}
return arr;
}
private static long[][] ral(int n, int m) {
long[][] arr = new long[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
arr[i][j] = s.nextLong();
}
}
return arr;
}
private static int ri() {
return s.nextInt();
}
private static long rl() {
return s.nextLong();
}
private static String rs() {
return s.next();
}
static long gcd(long a,long b)
{
if(b==0)
{
return a;
}
return gcd(b,a%b);
}
static int gcd(int a,int b)
{
if(b==0)
{
return a;
}
return gcd(b,a%b);
}
static boolean isPrime(int n) {
//check if n is a multiple of 2
if (n % 2 == 0) return false;
//if not, then just check the odds
for (int i = 3; i <= Math.sqrt(n); i += 2) {
if (n % i == 0)
return false;
}
return true;
}
static int MOD=1000000007;
static long mpow(long base,long pow)
{
long res=1;
while(pow>0)
{
if(pow%2==1)
{
res=(res*base)%MOD;
}
pow>>=1;
base=(base*base)%MOD;
}
return res;
}
public static void main(String[] args) {
StringBuilder ans = new StringBuilder();
int t = ri();
// int t = 1;
while (t-- > 0)
{
int n=ri();
int[] arr=rai(n);
List<Integer> list = new ArrayList<>();
for(int i:arr)
{
if(i==1)
{
list.add(i);
}
else
{
int ind = list.size()-1;
while(list.size()>0 && list.get(ind)+1!=i )
{
list.remove(list.size()-1);
ind=list.size()-1;
}
if(list.size()>0)
{
list.remove(list.size()-1);
}
list.add(i);
}
for(int j=0;j<list.size()-1;j++)
{
ans.append(list.get(j)).append(".");
}
ans.append(list.get(list.size()-1)).append("\n");
}
}
out.print(ans.toString());
out.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,300 | 3,835 |
2,575 |
import java.io.*;
import java.util.*;
public class Solution {
public static void main(String[] args) {
FastReader in = new FastReader();
int n = in.nextInt();
int[] a = new int[101];
for (int i = 0; i < n; i++) {
a[in.nextInt()]++;
}
int count = 0;
for (int i = 1; i < 101; i++) {
if (a[i] > 0) {
count++;
for (int j = i; j < 101; j += i) {
a[j] = 0;
}
}
}
System.out.println(count);
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new
InputStreamReader(System.in));
}
public int[] nextIntArray(int n) {
int[] array = new int[n];
for (int i = 0; i < n; ++i) array[i] = nextInt();
return array;
}
public int[] nextSortedIntArray(int n) {
int array[] = nextIntArray(n);
Arrays.sort(array);
return array;
}
public int[] nextSumIntArray(int n) {
int[] array = new int[n];
array[0] = nextInt();
for (int i = 1; i < n; ++i) array[i] = array[i - 1] + nextInt();
return array;
}
public long[] nextLongArray(int n) {
long[] array = new long[n];
for (int i = 0; i < n; ++i) array[i] = nextLong();
return array;
}
public long[] nextSumLongArray(int n) {
long[] array = new long[n];
array[0] = nextInt();
for (int i = 1; i < n; ++i) array[i] = array[i - 1] + nextInt();
return array;
}
public long[] nextSortedLongArray(int n) {
long array[] = nextLongArray(n);
Arrays.sort(array);
return array;
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Solution {
public static void main(String[] args) {
FastReader in = new FastReader();
int n = in.nextInt();
int[] a = new int[101];
for (int i = 0; i < n; i++) {
a[in.nextInt()]++;
}
int count = 0;
for (int i = 1; i < 101; i++) {
if (a[i] > 0) {
count++;
for (int j = i; j < 101; j += i) {
a[j] = 0;
}
}
}
System.out.println(count);
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new
InputStreamReader(System.in));
}
public int[] nextIntArray(int n) {
int[] array = new int[n];
for (int i = 0; i < n; ++i) array[i] = nextInt();
return array;
}
public int[] nextSortedIntArray(int n) {
int array[] = nextIntArray(n);
Arrays.sort(array);
return array;
}
public int[] nextSumIntArray(int n) {
int[] array = new int[n];
array[0] = nextInt();
for (int i = 1; i < n; ++i) array[i] = array[i - 1] + nextInt();
return array;
}
public long[] nextLongArray(int n) {
long[] array = new long[n];
for (int i = 0; i < n; ++i) array[i] = nextLong();
return array;
}
public long[] nextSumLongArray(int n) {
long[] array = new long[n];
array[0] = nextInt();
for (int i = 1; i < n; ++i) array[i] = array[i - 1] + nextInt();
return array;
}
public long[] nextSortedLongArray(int n) {
long array[] = nextLongArray(n);
Arrays.sort(array);
return array;
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Solution {
public static void main(String[] args) {
FastReader in = new FastReader();
int n = in.nextInt();
int[] a = new int[101];
for (int i = 0; i < n; i++) {
a[in.nextInt()]++;
}
int count = 0;
for (int i = 1; i < 101; i++) {
if (a[i] > 0) {
count++;
for (int j = i; j < 101; j += i) {
a[j] = 0;
}
}
}
System.out.println(count);
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new
InputStreamReader(System.in));
}
public int[] nextIntArray(int n) {
int[] array = new int[n];
for (int i = 0; i < n; ++i) array[i] = nextInt();
return array;
}
public int[] nextSortedIntArray(int n) {
int array[] = nextIntArray(n);
Arrays.sort(array);
return array;
}
public int[] nextSumIntArray(int n) {
int[] array = new int[n];
array[0] = nextInt();
for (int i = 1; i < n; ++i) array[i] = array[i - 1] + nextInt();
return array;
}
public long[] nextLongArray(int n) {
long[] array = new long[n];
for (int i = 0; i < n; ++i) array[i] = nextLong();
return array;
}
public long[] nextSumLongArray(int n) {
long[] array = new long[n];
array[0] = nextInt();
for (int i = 1; i < n; ++i) array[i] = array[i - 1] + nextInt();
return array;
}
public long[] nextSortedLongArray(int n) {
long array[] = nextLongArray(n);
Arrays.sort(array);
return array;
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 951 | 2,569 |
305 |
import java.util.*;
import java.io.*;
public class Solution
{
public static void main(String [] args) throws IOException
{
PrintWriter pw=new PrintWriter(System.out);//use pw.println() not pw.write();
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer(br.readLine());
/*
inputCopy
5 3
xyabd
outputCopy
29
inputCopy
7 4
problem
outputCopy
34
inputCopy
2 2
ab
outputCopy
-1
inputCopy
12 1
abaabbaaabbb
outputCopy
1
*/
int n=Integer.parseInt(st.nextToken());
int k=Integer.parseInt(st.nextToken());
st=new StringTokenizer(br.readLine());
String str=st.nextToken();
char [] arr=str.toCharArray();
Arrays.sort(arr);
int weight=arr[0]-96;
char a=arr[0];
int included=1;
for(int i=1;i<arr.length;++i)
{
if(included==k)
break;
char c=arr[i];
if(c-a<2)
continue;
weight+=arr[i]-96;
++included;
a=arr[i];
}
if(included==k)
pw.println(weight);
else
pw.println(-1);
pw.close();//Do not forget to write it after every program return statement !!
}
}
/*
→Judgement Protocol
Test: #1, time: 77 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
5 3
xyabd
Output
29
Answer
29
Checker Log
ok 1 number(s): "29"
Test: #2, time: 78 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
7 4
problem
Output
34
Answer
34
Checker Log
ok 1 number(s): "34"
Test: #3, time: 139 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
2 2
ab
Output
-1
Answer
-1
Checker Log
ok 1 number(s): "-1"
Test: #4, time: 124 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
12 1
abaabbaaabbb
Output
1
Answer
1
Checker Log
ok 1 number(s): "1"
Test: #5, time: 124 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
50 13
qwertyuiopasdfghjklzxcvbnmaaaaaaaaaaaaaaaaaaaaaaaa
Output
169
Answer
169
Checker Log
ok 1 number(s): "169"
Test: #6, time: 108 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
50 14
qwertyuiopasdfghjklzxcvbnmaaaaaaaaaaaaaaaaaaaaaaaa
Output
-1
Answer
-1
Checker Log
ok 1 number(s): "-1"
Test: #7, time: 93 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
1 1
a
Output
1
Answer
1
Checker Log
ok 1 number(s): "1"
Test: #8, time: 108 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
50 1
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Output
1
Answer
1
Checker Log
ok 1 number(s): "1"
Test: #9, time: 77 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
50 2
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Output
-1
Answer
-1
Checker Log
ok 1 number(s): "-1"
Test: #10, time: 92 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
13 13
uwgmkyqeiaocs
Output
169
Answer
169
Checker Log
ok 1 number(s): "169"
Test: #11, time: 124 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
13 13
hzdxpbfvrltnj
Output
182
Answer
182
Checker Log
ok 1 number(s): "182"
Test: #12, time: 93 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
1 1
n
Output
14
Answer
14
Checker Log
ok 1 number(s): "14"
Test: #13, time: 92 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
10 8
smzeblyjqw
Output
113
Answer
113
Checker Log
ok 1 number(s): "113"
Test: #14, time: 78 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
20 20
tzmvhskkyugkuuxpvtbh
Output
-1
Answer
-1
Checker Log
ok 1 number(s): "-1"
Test: #15, time: 109 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
30 15
wjzolzzkfulwgioksfxmcxmnnjtoav
Output
-1
Answer
-1
Checker Log
ok 1 number(s): "-1"
Test: #16, time: 93 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
40 30
xumfrflllrrgswehqtsskefixhcxjrxbjmrpsshv
Output
-1
Answer
-1
Checker Log
ok 1 number(s): "-1"
Test: #17, time: 124 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
50 31
ahbyyoxltryqdmvenemaqnbakglgqolxnaifnqtoclnnqiabpz
Output
-1
Answer
-1
Checker Log
ok 1 number(s): "-1"
Test: #18, time: 124 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
10 7
iuiukrxcml
Output
99
Answer
99
Checker Log
ok 1 number(s): "99"
Test: #19, time: 109 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
38 2
vjzarfykmrsrvwbwfwldsulhxtykmjbnwmdufa
Output
5
Answer
5
Checker Log
ok 1 number(s): "5"
Test: #20, time: 77 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
12 6
fwseyrarkwcd
Output
61
Answer
61
Checker Log
ok 1 number(s): "61"
Test: #21, time: 109 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
2 2
ac
Output
4
Answer
4
Checker Log
ok 1 number(s): "4"
Test: #22, time: 108 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
1 1
c
Output
3
Answer
3
Checker Log
ok 1 number(s): "3"
Test: #23, time: 124 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
2 2
ad
Output
5
Answer
5
Checker Log
ok 1 number(s): "5"
Test: #24, time: 77 ms., memory: 0 KB, exit code: 0, checker exit code: 1, verdict: WRONG_ANSWER
Input
2 1
ac
Output
-1
Answer
1
Checker Log
wrong answer 1st number
*/
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Solution
{
public static void main(String [] args) throws IOException
{
PrintWriter pw=new PrintWriter(System.out);//use pw.println() not pw.write();
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer(br.readLine());
/*
inputCopy
5 3
xyabd
outputCopy
29
inputCopy
7 4
problem
outputCopy
34
inputCopy
2 2
ab
outputCopy
-1
inputCopy
12 1
abaabbaaabbb
outputCopy
1
*/
int n=Integer.parseInt(st.nextToken());
int k=Integer.parseInt(st.nextToken());
st=new StringTokenizer(br.readLine());
String str=st.nextToken();
char [] arr=str.toCharArray();
Arrays.sort(arr);
int weight=arr[0]-96;
char a=arr[0];
int included=1;
for(int i=1;i<arr.length;++i)
{
if(included==k)
break;
char c=arr[i];
if(c-a<2)
continue;
weight+=arr[i]-96;
++included;
a=arr[i];
}
if(included==k)
pw.println(weight);
else
pw.println(-1);
pw.close();//Do not forget to write it after every program return statement !!
}
}
/*
→Judgement Protocol
Test: #1, time: 77 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
5 3
xyabd
Output
29
Answer
29
Checker Log
ok 1 number(s): "29"
Test: #2, time: 78 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
7 4
problem
Output
34
Answer
34
Checker Log
ok 1 number(s): "34"
Test: #3, time: 139 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
2 2
ab
Output
-1
Answer
-1
Checker Log
ok 1 number(s): "-1"
Test: #4, time: 124 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
12 1
abaabbaaabbb
Output
1
Answer
1
Checker Log
ok 1 number(s): "1"
Test: #5, time: 124 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
50 13
qwertyuiopasdfghjklzxcvbnmaaaaaaaaaaaaaaaaaaaaaaaa
Output
169
Answer
169
Checker Log
ok 1 number(s): "169"
Test: #6, time: 108 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
50 14
qwertyuiopasdfghjklzxcvbnmaaaaaaaaaaaaaaaaaaaaaaaa
Output
-1
Answer
-1
Checker Log
ok 1 number(s): "-1"
Test: #7, time: 93 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
1 1
a
Output
1
Answer
1
Checker Log
ok 1 number(s): "1"
Test: #8, time: 108 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
50 1
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Output
1
Answer
1
Checker Log
ok 1 number(s): "1"
Test: #9, time: 77 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
50 2
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Output
-1
Answer
-1
Checker Log
ok 1 number(s): "-1"
Test: #10, time: 92 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
13 13
uwgmkyqeiaocs
Output
169
Answer
169
Checker Log
ok 1 number(s): "169"
Test: #11, time: 124 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
13 13
hzdxpbfvrltnj
Output
182
Answer
182
Checker Log
ok 1 number(s): "182"
Test: #12, time: 93 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
1 1
n
Output
14
Answer
14
Checker Log
ok 1 number(s): "14"
Test: #13, time: 92 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
10 8
smzeblyjqw
Output
113
Answer
113
Checker Log
ok 1 number(s): "113"
Test: #14, time: 78 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
20 20
tzmvhskkyugkuuxpvtbh
Output
-1
Answer
-1
Checker Log
ok 1 number(s): "-1"
Test: #15, time: 109 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
30 15
wjzolzzkfulwgioksfxmcxmnnjtoav
Output
-1
Answer
-1
Checker Log
ok 1 number(s): "-1"
Test: #16, time: 93 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
40 30
xumfrflllrrgswehqtsskefixhcxjrxbjmrpsshv
Output
-1
Answer
-1
Checker Log
ok 1 number(s): "-1"
Test: #17, time: 124 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
50 31
ahbyyoxltryqdmvenemaqnbakglgqolxnaifnqtoclnnqiabpz
Output
-1
Answer
-1
Checker Log
ok 1 number(s): "-1"
Test: #18, time: 124 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
10 7
iuiukrxcml
Output
99
Answer
99
Checker Log
ok 1 number(s): "99"
Test: #19, time: 109 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
38 2
vjzarfykmrsrvwbwfwldsulhxtykmjbnwmdufa
Output
5
Answer
5
Checker Log
ok 1 number(s): "5"
Test: #20, time: 77 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
12 6
fwseyrarkwcd
Output
61
Answer
61
Checker Log
ok 1 number(s): "61"
Test: #21, time: 109 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
2 2
ac
Output
4
Answer
4
Checker Log
ok 1 number(s): "4"
Test: #22, time: 108 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
1 1
c
Output
3
Answer
3
Checker Log
ok 1 number(s): "3"
Test: #23, time: 124 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
2 2
ad
Output
5
Answer
5
Checker Log
ok 1 number(s): "5"
Test: #24, time: 77 ms., memory: 0 KB, exit code: 0, checker exit code: 1, verdict: WRONG_ANSWER
Input
2 1
ac
Output
-1
Answer
1
Checker Log
wrong answer 1st number
*/
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Solution
{
public static void main(String [] args) throws IOException
{
PrintWriter pw=new PrintWriter(System.out);//use pw.println() not pw.write();
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer(br.readLine());
/*
inputCopy
5 3
xyabd
outputCopy
29
inputCopy
7 4
problem
outputCopy
34
inputCopy
2 2
ab
outputCopy
-1
inputCopy
12 1
abaabbaaabbb
outputCopy
1
*/
int n=Integer.parseInt(st.nextToken());
int k=Integer.parseInt(st.nextToken());
st=new StringTokenizer(br.readLine());
String str=st.nextToken();
char [] arr=str.toCharArray();
Arrays.sort(arr);
int weight=arr[0]-96;
char a=arr[0];
int included=1;
for(int i=1;i<arr.length;++i)
{
if(included==k)
break;
char c=arr[i];
if(c-a<2)
continue;
weight+=arr[i]-96;
++included;
a=arr[i];
}
if(included==k)
pw.println(weight);
else
pw.println(-1);
pw.close();//Do not forget to write it after every program return statement !!
}
}
/*
→Judgement Protocol
Test: #1, time: 77 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
5 3
xyabd
Output
29
Answer
29
Checker Log
ok 1 number(s): "29"
Test: #2, time: 78 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
7 4
problem
Output
34
Answer
34
Checker Log
ok 1 number(s): "34"
Test: #3, time: 139 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
2 2
ab
Output
-1
Answer
-1
Checker Log
ok 1 number(s): "-1"
Test: #4, time: 124 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
12 1
abaabbaaabbb
Output
1
Answer
1
Checker Log
ok 1 number(s): "1"
Test: #5, time: 124 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
50 13
qwertyuiopasdfghjklzxcvbnmaaaaaaaaaaaaaaaaaaaaaaaa
Output
169
Answer
169
Checker Log
ok 1 number(s): "169"
Test: #6, time: 108 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
50 14
qwertyuiopasdfghjklzxcvbnmaaaaaaaaaaaaaaaaaaaaaaaa
Output
-1
Answer
-1
Checker Log
ok 1 number(s): "-1"
Test: #7, time: 93 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
1 1
a
Output
1
Answer
1
Checker Log
ok 1 number(s): "1"
Test: #8, time: 108 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
50 1
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Output
1
Answer
1
Checker Log
ok 1 number(s): "1"
Test: #9, time: 77 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
50 2
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Output
-1
Answer
-1
Checker Log
ok 1 number(s): "-1"
Test: #10, time: 92 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
13 13
uwgmkyqeiaocs
Output
169
Answer
169
Checker Log
ok 1 number(s): "169"
Test: #11, time: 124 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
13 13
hzdxpbfvrltnj
Output
182
Answer
182
Checker Log
ok 1 number(s): "182"
Test: #12, time: 93 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
1 1
n
Output
14
Answer
14
Checker Log
ok 1 number(s): "14"
Test: #13, time: 92 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
10 8
smzeblyjqw
Output
113
Answer
113
Checker Log
ok 1 number(s): "113"
Test: #14, time: 78 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
20 20
tzmvhskkyugkuuxpvtbh
Output
-1
Answer
-1
Checker Log
ok 1 number(s): "-1"
Test: #15, time: 109 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
30 15
wjzolzzkfulwgioksfxmcxmnnjtoav
Output
-1
Answer
-1
Checker Log
ok 1 number(s): "-1"
Test: #16, time: 93 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
40 30
xumfrflllrrgswehqtsskefixhcxjrxbjmrpsshv
Output
-1
Answer
-1
Checker Log
ok 1 number(s): "-1"
Test: #17, time: 124 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
50 31
ahbyyoxltryqdmvenemaqnbakglgqolxnaifnqtoclnnqiabpz
Output
-1
Answer
-1
Checker Log
ok 1 number(s): "-1"
Test: #18, time: 124 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
10 7
iuiukrxcml
Output
99
Answer
99
Checker Log
ok 1 number(s): "99"
Test: #19, time: 109 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
38 2
vjzarfykmrsrvwbwfwldsulhxtykmjbnwmdufa
Output
5
Answer
5
Checker Log
ok 1 number(s): "5"
Test: #20, time: 77 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
12 6
fwseyrarkwcd
Output
61
Answer
61
Checker Log
ok 1 number(s): "61"
Test: #21, time: 109 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
2 2
ac
Output
4
Answer
4
Checker Log
ok 1 number(s): "4"
Test: #22, time: 108 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
1 1
c
Output
3
Answer
3
Checker Log
ok 1 number(s): "3"
Test: #23, time: 124 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK
Input
2 2
ad
Output
5
Answer
5
Checker Log
ok 1 number(s): "5"
Test: #24, time: 77 ms., memory: 0 KB, exit code: 0, checker exit code: 1, verdict: WRONG_ANSWER
Input
2 1
ac
Output
-1
Answer
1
Checker Log
wrong answer 1st number
*/
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,447 | 305 |
3,818 |
import java.util.*;
import java.lang.*;
import java.io.*;
public class Main {
static class Fast {
StringTokenizer st;
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
}
static BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out));
static Fast scn = new Fast();
public static void main(String args[]) throws Exception {
int t = 1;
while(t-- > 0){
func();
}
bw.close();
}
private static void func() throws Exception{
int n = scn.nextInt();
int m = scn.nextInt();
int k = scn.nextInt();
int[][] hori = new int[n][m - 1];
int[][] vert = new int[n - 1][m];
for(int i = 0; i < n; i++){
for(int j = 0; j < m - 1; j++){
hori[i][j] = scn.nextInt();
}
}
for(int i = 0; i < n - 1; i++){
for(int j = 0; j < m; j++){
vert[i][j] = scn.nextInt();
}
}
if(k % 2 != 0){
for(int i = 0; i < n; i++){
for(int j = 0; j < m; j++){
bw.append(-1 + " ");
}
bw.append("\n");
}
return;
}
int[][][] strg = new int[n][m][k + 1];
// for(int i = 0; i < n; i++){
// for(int j = 0; j < m; j++){
// for(int x = 0; x < k; x++)
// }
// }
int[][] answer = new int[n][m];
for(int i = 0; i < n; i++){
for(int j = 0; j < m; j++){
answer[i][j] = steps(i, j, hori, vert, k, strg);
}
}
for(int i = 0; i < n; i++){
for(int j = 0; j < m; j++){
bw.append(answer[i][j] + " ");
}
bw.append("\n");
}
}
static int steps(int x, int y, int[][] hori, int[][] vert, int k, int[][][] strg){
if(k == 0)
return 0;
if(strg[x][y][k] != 0)
return strg[x][y][k];
int xmove = x;
int ymove = y;
int ans = 0;
int val = Integer.MAX_VALUE;
if(y < hori[0].length){
xmove = x;
ymove = y + 1;
val = Math.min(val, steps(xmove, ymove, hori, vert, k - 2, strg) + (2 * hori[x][y]));
}
if(y - 1 >= 0){
xmove = x;
ymove = y - 1;
val = Math.min(val, steps(xmove, ymove, hori, vert, k - 2, strg) + (2 * hori[x][y - 1]));
// val = hori[x][y - 1];
}
if(x - 1 >= 0){
xmove = x - 1;
ymove = y;
val = Math.min(val, steps(xmove, ymove, hori, vert, k - 2, strg) + (2 * vert[x - 1][y]));
// val = vert[x - 1][y];
}
if(x < vert.length){
xmove = x + 1;
ymove = y;
val = Math.min(val, steps(xmove, ymove, hori, vert, k - 2, strg) + (2 * vert[x][y]));
// val = vert[x + 1][y];
}
// System.out.println(val);
ans += val;
return strg[x][y][k] = ans;
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.lang.*;
import java.io.*;
public class Main {
static class Fast {
StringTokenizer st;
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
}
static BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out));
static Fast scn = new Fast();
public static void main(String args[]) throws Exception {
int t = 1;
while(t-- > 0){
func();
}
bw.close();
}
private static void func() throws Exception{
int n = scn.nextInt();
int m = scn.nextInt();
int k = scn.nextInt();
int[][] hori = new int[n][m - 1];
int[][] vert = new int[n - 1][m];
for(int i = 0; i < n; i++){
for(int j = 0; j < m - 1; j++){
hori[i][j] = scn.nextInt();
}
}
for(int i = 0; i < n - 1; i++){
for(int j = 0; j < m; j++){
vert[i][j] = scn.nextInt();
}
}
if(k % 2 != 0){
for(int i = 0; i < n; i++){
for(int j = 0; j < m; j++){
bw.append(-1 + " ");
}
bw.append("\n");
}
return;
}
int[][][] strg = new int[n][m][k + 1];
// for(int i = 0; i < n; i++){
// for(int j = 0; j < m; j++){
// for(int x = 0; x < k; x++)
// }
// }
int[][] answer = new int[n][m];
for(int i = 0; i < n; i++){
for(int j = 0; j < m; j++){
answer[i][j] = steps(i, j, hori, vert, k, strg);
}
}
for(int i = 0; i < n; i++){
for(int j = 0; j < m; j++){
bw.append(answer[i][j] + " ");
}
bw.append("\n");
}
}
static int steps(int x, int y, int[][] hori, int[][] vert, int k, int[][][] strg){
if(k == 0)
return 0;
if(strg[x][y][k] != 0)
return strg[x][y][k];
int xmove = x;
int ymove = y;
int ans = 0;
int val = Integer.MAX_VALUE;
if(y < hori[0].length){
xmove = x;
ymove = y + 1;
val = Math.min(val, steps(xmove, ymove, hori, vert, k - 2, strg) + (2 * hori[x][y]));
}
if(y - 1 >= 0){
xmove = x;
ymove = y - 1;
val = Math.min(val, steps(xmove, ymove, hori, vert, k - 2, strg) + (2 * hori[x][y - 1]));
// val = hori[x][y - 1];
}
if(x - 1 >= 0){
xmove = x - 1;
ymove = y;
val = Math.min(val, steps(xmove, ymove, hori, vert, k - 2, strg) + (2 * vert[x - 1][y]));
// val = vert[x - 1][y];
}
if(x < vert.length){
xmove = x + 1;
ymove = y;
val = Math.min(val, steps(xmove, ymove, hori, vert, k - 2, strg) + (2 * vert[x][y]));
// val = vert[x + 1][y];
}
// System.out.println(val);
ans += val;
return strg[x][y][k] = ans;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.lang.*;
import java.io.*;
public class Main {
static class Fast {
StringTokenizer st;
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
}
static BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out));
static Fast scn = new Fast();
public static void main(String args[]) throws Exception {
int t = 1;
while(t-- > 0){
func();
}
bw.close();
}
private static void func() throws Exception{
int n = scn.nextInt();
int m = scn.nextInt();
int k = scn.nextInt();
int[][] hori = new int[n][m - 1];
int[][] vert = new int[n - 1][m];
for(int i = 0; i < n; i++){
for(int j = 0; j < m - 1; j++){
hori[i][j] = scn.nextInt();
}
}
for(int i = 0; i < n - 1; i++){
for(int j = 0; j < m; j++){
vert[i][j] = scn.nextInt();
}
}
if(k % 2 != 0){
for(int i = 0; i < n; i++){
for(int j = 0; j < m; j++){
bw.append(-1 + " ");
}
bw.append("\n");
}
return;
}
int[][][] strg = new int[n][m][k + 1];
// for(int i = 0; i < n; i++){
// for(int j = 0; j < m; j++){
// for(int x = 0; x < k; x++)
// }
// }
int[][] answer = new int[n][m];
for(int i = 0; i < n; i++){
for(int j = 0; j < m; j++){
answer[i][j] = steps(i, j, hori, vert, k, strg);
}
}
for(int i = 0; i < n; i++){
for(int j = 0; j < m; j++){
bw.append(answer[i][j] + " ");
}
bw.append("\n");
}
}
static int steps(int x, int y, int[][] hori, int[][] vert, int k, int[][][] strg){
if(k == 0)
return 0;
if(strg[x][y][k] != 0)
return strg[x][y][k];
int xmove = x;
int ymove = y;
int ans = 0;
int val = Integer.MAX_VALUE;
if(y < hori[0].length){
xmove = x;
ymove = y + 1;
val = Math.min(val, steps(xmove, ymove, hori, vert, k - 2, strg) + (2 * hori[x][y]));
}
if(y - 1 >= 0){
xmove = x;
ymove = y - 1;
val = Math.min(val, steps(xmove, ymove, hori, vert, k - 2, strg) + (2 * hori[x][y - 1]));
// val = hori[x][y - 1];
}
if(x - 1 >= 0){
xmove = x - 1;
ymove = y;
val = Math.min(val, steps(xmove, ymove, hori, vert, k - 2, strg) + (2 * vert[x - 1][y]));
// val = vert[x - 1][y];
}
if(x < vert.length){
xmove = x + 1;
ymove = y;
val = Math.min(val, steps(xmove, ymove, hori, vert, k - 2, strg) + (2 * vert[x][y]));
// val = vert[x + 1][y];
}
// System.out.println(val);
ans += val;
return strg[x][y][k] = ans;
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,319 | 3,808 |
1,315 |
import java.math.*;
import java.util.*;
import java.io.*;
public class Main {
void solve() {
long x=nl(),k=nl();
if(x==0) {
pw.println(0);
return;
}
long d=modpow(2,k,M);
long ans=mul(2,d,M);
ans=mul(ans,x,M)%M;
ans++;
ans%=M;
ans=(ans-d+M)%M;
pw.println(ans);
}
// long mul(long a, long b,long M)
// {
// return (a*1L*b)%M;
// }
long mul(long x, long y, long m) {
long ans = 0;
while (y>0) {
if ((y & 1)>0) {
ans += x;
if (ans >= m) ans -= m;
}
x = x + x;
if (x >= m) x -= m;
y >>= 1;
}
return ans;
}
long modpow(long a, long b,long M)
{
long r=1;
while(b>0)
{
if((b&1)>0) r=mul(r,a,M);
a=mul(a,a,M);
b>>=1;
}
return r;
}
long M=(long)1e9+7;
InputStream is;
PrintWriter pw;
String INPUT = "";
void run() throws Exception {
is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes());
pw = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
pw.flush();
if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception { new Main().run(); }
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte() {
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns() {
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n) {
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m) {
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n) {
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni() {
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl() {
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private void tr(Object... o) { if(INPUT.length() > 0)System.out.println(Arrays.deepToString(o)); }
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.math.*;
import java.util.*;
import java.io.*;
public class Main {
void solve() {
long x=nl(),k=nl();
if(x==0) {
pw.println(0);
return;
}
long d=modpow(2,k,M);
long ans=mul(2,d,M);
ans=mul(ans,x,M)%M;
ans++;
ans%=M;
ans=(ans-d+M)%M;
pw.println(ans);
}
// long mul(long a, long b,long M)
// {
// return (a*1L*b)%M;
// }
long mul(long x, long y, long m) {
long ans = 0;
while (y>0) {
if ((y & 1)>0) {
ans += x;
if (ans >= m) ans -= m;
}
x = x + x;
if (x >= m) x -= m;
y >>= 1;
}
return ans;
}
long modpow(long a, long b,long M)
{
long r=1;
while(b>0)
{
if((b&1)>0) r=mul(r,a,M);
a=mul(a,a,M);
b>>=1;
}
return r;
}
long M=(long)1e9+7;
InputStream is;
PrintWriter pw;
String INPUT = "";
void run() throws Exception {
is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes());
pw = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
pw.flush();
if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception { new Main().run(); }
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte() {
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns() {
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n) {
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m) {
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n) {
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni() {
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl() {
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private void tr(Object... o) { if(INPUT.length() > 0)System.out.println(Arrays.deepToString(o)); }
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.math.*;
import java.util.*;
import java.io.*;
public class Main {
void solve() {
long x=nl(),k=nl();
if(x==0) {
pw.println(0);
return;
}
long d=modpow(2,k,M);
long ans=mul(2,d,M);
ans=mul(ans,x,M)%M;
ans++;
ans%=M;
ans=(ans-d+M)%M;
pw.println(ans);
}
// long mul(long a, long b,long M)
// {
// return (a*1L*b)%M;
// }
long mul(long x, long y, long m) {
long ans = 0;
while (y>0) {
if ((y & 1)>0) {
ans += x;
if (ans >= m) ans -= m;
}
x = x + x;
if (x >= m) x -= m;
y >>= 1;
}
return ans;
}
long modpow(long a, long b,long M)
{
long r=1;
while(b>0)
{
if((b&1)>0) r=mul(r,a,M);
a=mul(a,a,M);
b>>=1;
}
return r;
}
long M=(long)1e9+7;
InputStream is;
PrintWriter pw;
String INPUT = "";
void run() throws Exception {
is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes());
pw = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
pw.flush();
if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception { new Main().run(); }
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte() {
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns() {
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n) {
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m) {
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n) {
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni() {
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl() {
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private void tr(Object... o) { if(INPUT.length() > 0)System.out.println(Arrays.deepToString(o)); }
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,450 | 1,313 |
695 |
import java.io.*;
import java.util.*;
public class Solution {
private BufferedReader in;
private PrintWriter out;
private StringTokenizer st;
void solve() throws IOException {
String s = next();
int u = s.indexOf('R');
int v = s.indexOf('C');
if (u == 0 && v != -1 && u < v) {
String a = s.substring(u + 1, v);
String b = s.substring(v + 1);
try {
int aa = Integer.parseInt(a);
int bb = Integer.parseInt(b) - 1;
int pow = 26, len = 1;
while (bb >= pow) {
bb -= pow;
pow *= 26;
++len;
}
String r = "";
for (int i = 0; i < len; ++i) {
r = ((char)(bb % 26 + 'A')) + r;
bb /= 26;
}
out.println(r + aa);
return;
} catch (NumberFormatException e) {
}
}
u = 0;
while (u < s.length() && Character.isLetter(s.charAt(u))) {
++u;
}
String a = s.substring(0, u);
String b = s.substring(u);
out.println("R" + b + "C" + toInt(a));
}
private int toInt(String a) {
int r = 0;
for (int i = 0; i < a.length(); ++i) {
r *= 26;
r += a.charAt(i) - 'A';
}
int pow = 1;
for (int i = 0; i < a.length(); ++i) {
r += pow;
pow *= 26;
}
return r;
}
Solution() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
eat("");
int tests = nextInt();
for (int test = 0; test < tests; ++test) {
solve();
}
in.close();
out.close();
}
private void eat(String str) {
st = new StringTokenizer(str);
}
String next() throws IOException {
while (!st.hasMoreTokens()) {
String line = in.readLine();
if (line == null) {
return null;
}
eat(line);
}
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(next());
}
long nextLong() throws IOException {
return Long.parseLong(next());
}
double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public static void main(String[] args) throws IOException {
new Solution();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Solution {
private BufferedReader in;
private PrintWriter out;
private StringTokenizer st;
void solve() throws IOException {
String s = next();
int u = s.indexOf('R');
int v = s.indexOf('C');
if (u == 0 && v != -1 && u < v) {
String a = s.substring(u + 1, v);
String b = s.substring(v + 1);
try {
int aa = Integer.parseInt(a);
int bb = Integer.parseInt(b) - 1;
int pow = 26, len = 1;
while (bb >= pow) {
bb -= pow;
pow *= 26;
++len;
}
String r = "";
for (int i = 0; i < len; ++i) {
r = ((char)(bb % 26 + 'A')) + r;
bb /= 26;
}
out.println(r + aa);
return;
} catch (NumberFormatException e) {
}
}
u = 0;
while (u < s.length() && Character.isLetter(s.charAt(u))) {
++u;
}
String a = s.substring(0, u);
String b = s.substring(u);
out.println("R" + b + "C" + toInt(a));
}
private int toInt(String a) {
int r = 0;
for (int i = 0; i < a.length(); ++i) {
r *= 26;
r += a.charAt(i) - 'A';
}
int pow = 1;
for (int i = 0; i < a.length(); ++i) {
r += pow;
pow *= 26;
}
return r;
}
Solution() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
eat("");
int tests = nextInt();
for (int test = 0; test < tests; ++test) {
solve();
}
in.close();
out.close();
}
private void eat(String str) {
st = new StringTokenizer(str);
}
String next() throws IOException {
while (!st.hasMoreTokens()) {
String line = in.readLine();
if (line == null) {
return null;
}
eat(line);
}
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(next());
}
long nextLong() throws IOException {
return Long.parseLong(next());
}
double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public static void main(String[] args) throws IOException {
new Solution();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Solution {
private BufferedReader in;
private PrintWriter out;
private StringTokenizer st;
void solve() throws IOException {
String s = next();
int u = s.indexOf('R');
int v = s.indexOf('C');
if (u == 0 && v != -1 && u < v) {
String a = s.substring(u + 1, v);
String b = s.substring(v + 1);
try {
int aa = Integer.parseInt(a);
int bb = Integer.parseInt(b) - 1;
int pow = 26, len = 1;
while (bb >= pow) {
bb -= pow;
pow *= 26;
++len;
}
String r = "";
for (int i = 0; i < len; ++i) {
r = ((char)(bb % 26 + 'A')) + r;
bb /= 26;
}
out.println(r + aa);
return;
} catch (NumberFormatException e) {
}
}
u = 0;
while (u < s.length() && Character.isLetter(s.charAt(u))) {
++u;
}
String a = s.substring(0, u);
String b = s.substring(u);
out.println("R" + b + "C" + toInt(a));
}
private int toInt(String a) {
int r = 0;
for (int i = 0; i < a.length(); ++i) {
r *= 26;
r += a.charAt(i) - 'A';
}
int pow = 1;
for (int i = 0; i < a.length(); ++i) {
r += pow;
pow *= 26;
}
return r;
}
Solution() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
eat("");
int tests = nextInt();
for (int test = 0; test < tests; ++test) {
solve();
}
in.close();
out.close();
}
private void eat(String str) {
st = new StringTokenizer(str);
}
String next() throws IOException {
while (!st.hasMoreTokens()) {
String line = in.readLine();
if (line == null) {
return null;
}
eat(line);
}
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(next());
}
long nextLong() throws IOException {
return Long.parseLong(next());
}
double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public static void main(String[] args) throws IOException {
new Solution();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 945 | 694 |
385 |
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.util.Arrays;
import java.io.BufferedWriter;
import java.util.Set;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.Writer;
import java.util.HashSet;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author Mahmoud Aladdin <aladdin3>
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskD solver = new TaskD();
solver.solve(1, in, out);
out.close();
}
}
class TaskD {
public void solve(int testNumber, InputReader jin, OutputWriter jout) {
int n = jin.int32();
int a = jin.int32();
int b = jin.int32();
Set<Integer> present = new HashSet<Integer>();
int[] arr = new int[n];
int[] sarr = new int[n];
for(int i = 0; i < n; i++) {
sarr[i] = arr[i] = jin.int32();
present.add(arr[i]);
}
boolean rev = b < a;
if(b < a) {b ^= a; a ^= b; b ^= a; }
Arrays.sort(sarr);
Set<Integer> set1 = new HashSet<Integer>();
Set<Integer> set2 = new HashSet<Integer>();
for(int i = 0; i < n; i++) {
if(set1.contains(sarr)) continue;
if(set2.contains(sarr)) continue;
int comp1 = b - sarr[i];
if(present.contains(comp1)) {
set2.add(sarr[i]);
set2.add(comp1);
present.remove(comp1);
} else {
int comp2 = a - sarr[i];
if(present.contains(comp2)) {
set1.add(sarr[i]);
set1.add(comp2);
present.remove(comp2);
} else {
jout.println("NO");
return;
}
}
}
jout.println("YES");
for(int i = 0; i < n; i++) {
if(i != 0) jout.print(' ');
if(rev) jout.print(set2.contains(arr[i])? 0 : 1);
else jout.print(set1.contains(arr[i])? 0 : 1);
}
}
}
class InputReader {
private static final int bufferMaxLength = 1024;
private InputStream in;
private byte[] buffer;
private int currentBufferSize;
private int currentBufferTop;
private static final String tokenizers = " \t\r\f\n";
public InputReader(InputStream stream) {
this.in = stream;
buffer = new byte[bufferMaxLength];
currentBufferSize = 0;
currentBufferTop = 0;
}
private boolean refill() {
try {
this.currentBufferSize = this.in.read(this.buffer);
this.currentBufferTop = 0;
} catch(Exception e) {}
return this.currentBufferSize > 0;
}
private Byte readChar() {
if(currentBufferTop < currentBufferSize) {
return this.buffer[this.currentBufferTop++];
} else {
if(!this.refill()) {
return null;
} else {
return readChar();
}
}
}
public String token() {
StringBuffer tok = new StringBuffer();
Byte first;
while((first = readChar()) != null && (tokenizers.indexOf((char) first.byteValue()) != -1));
if(first == null) return null;
tok.append((char)first.byteValue());
while((first = readChar()) != null && (tokenizers.indexOf((char) first.byteValue()) == -1)) {
tok.append((char)first.byteValue());
}
return tok.toString();
}
public Integer int32() throws NumberFormatException {
String tok = token();
return tok == null? null : Integer.parseInt(tok);
}
}
class OutputWriter {
private final int bufferMaxOut = 1024;
private PrintWriter out;
private StringBuilder output;
private boolean forceFlush = false;
public OutputWriter(OutputStream outStream) {
out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outStream)));
output = new StringBuilder(2 * bufferMaxOut);
}
public OutputWriter(Writer writer) {
forceFlush = true;
out = new PrintWriter(writer);
output = new StringBuilder(2 * bufferMaxOut);
}
private void autoFlush() {
if(forceFlush || output.length() >= bufferMaxOut) {
flush();
}
}
public void print(Object... tokens) {
for(int i = 0; i < tokens.length; i++) {
if(i != 0) output.append(' ');
output.append(tokens[i]);
}
autoFlush();
}
public void println(Object... tokens) {
print(tokens);
output.append('\n');
autoFlush();
}
public void flush() {
out.print(output);
output.setLength(0);
}
public void close() {
flush();
out.close();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.util.Arrays;
import java.io.BufferedWriter;
import java.util.Set;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.Writer;
import java.util.HashSet;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author Mahmoud Aladdin <aladdin3>
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskD solver = new TaskD();
solver.solve(1, in, out);
out.close();
}
}
class TaskD {
public void solve(int testNumber, InputReader jin, OutputWriter jout) {
int n = jin.int32();
int a = jin.int32();
int b = jin.int32();
Set<Integer> present = new HashSet<Integer>();
int[] arr = new int[n];
int[] sarr = new int[n];
for(int i = 0; i < n; i++) {
sarr[i] = arr[i] = jin.int32();
present.add(arr[i]);
}
boolean rev = b < a;
if(b < a) {b ^= a; a ^= b; b ^= a; }
Arrays.sort(sarr);
Set<Integer> set1 = new HashSet<Integer>();
Set<Integer> set2 = new HashSet<Integer>();
for(int i = 0; i < n; i++) {
if(set1.contains(sarr)) continue;
if(set2.contains(sarr)) continue;
int comp1 = b - sarr[i];
if(present.contains(comp1)) {
set2.add(sarr[i]);
set2.add(comp1);
present.remove(comp1);
} else {
int comp2 = a - sarr[i];
if(present.contains(comp2)) {
set1.add(sarr[i]);
set1.add(comp2);
present.remove(comp2);
} else {
jout.println("NO");
return;
}
}
}
jout.println("YES");
for(int i = 0; i < n; i++) {
if(i != 0) jout.print(' ');
if(rev) jout.print(set2.contains(arr[i])? 0 : 1);
else jout.print(set1.contains(arr[i])? 0 : 1);
}
}
}
class InputReader {
private static final int bufferMaxLength = 1024;
private InputStream in;
private byte[] buffer;
private int currentBufferSize;
private int currentBufferTop;
private static final String tokenizers = " \t\r\f\n";
public InputReader(InputStream stream) {
this.in = stream;
buffer = new byte[bufferMaxLength];
currentBufferSize = 0;
currentBufferTop = 0;
}
private boolean refill() {
try {
this.currentBufferSize = this.in.read(this.buffer);
this.currentBufferTop = 0;
} catch(Exception e) {}
return this.currentBufferSize > 0;
}
private Byte readChar() {
if(currentBufferTop < currentBufferSize) {
return this.buffer[this.currentBufferTop++];
} else {
if(!this.refill()) {
return null;
} else {
return readChar();
}
}
}
public String token() {
StringBuffer tok = new StringBuffer();
Byte first;
while((first = readChar()) != null && (tokenizers.indexOf((char) first.byteValue()) != -1));
if(first == null) return null;
tok.append((char)first.byteValue());
while((first = readChar()) != null && (tokenizers.indexOf((char) first.byteValue()) == -1)) {
tok.append((char)first.byteValue());
}
return tok.toString();
}
public Integer int32() throws NumberFormatException {
String tok = token();
return tok == null? null : Integer.parseInt(tok);
}
}
class OutputWriter {
private final int bufferMaxOut = 1024;
private PrintWriter out;
private StringBuilder output;
private boolean forceFlush = false;
public OutputWriter(OutputStream outStream) {
out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outStream)));
output = new StringBuilder(2 * bufferMaxOut);
}
public OutputWriter(Writer writer) {
forceFlush = true;
out = new PrintWriter(writer);
output = new StringBuilder(2 * bufferMaxOut);
}
private void autoFlush() {
if(forceFlush || output.length() >= bufferMaxOut) {
flush();
}
}
public void print(Object... tokens) {
for(int i = 0; i < tokens.length; i++) {
if(i != 0) output.append(' ');
output.append(tokens[i]);
}
autoFlush();
}
public void println(Object... tokens) {
print(tokens);
output.append('\n');
autoFlush();
}
public void flush() {
out.print(output);
output.setLength(0);
}
public void close() {
flush();
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.util.Arrays;
import java.io.BufferedWriter;
import java.util.Set;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.Writer;
import java.util.HashSet;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author Mahmoud Aladdin <aladdin3>
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskD solver = new TaskD();
solver.solve(1, in, out);
out.close();
}
}
class TaskD {
public void solve(int testNumber, InputReader jin, OutputWriter jout) {
int n = jin.int32();
int a = jin.int32();
int b = jin.int32();
Set<Integer> present = new HashSet<Integer>();
int[] arr = new int[n];
int[] sarr = new int[n];
for(int i = 0; i < n; i++) {
sarr[i] = arr[i] = jin.int32();
present.add(arr[i]);
}
boolean rev = b < a;
if(b < a) {b ^= a; a ^= b; b ^= a; }
Arrays.sort(sarr);
Set<Integer> set1 = new HashSet<Integer>();
Set<Integer> set2 = new HashSet<Integer>();
for(int i = 0; i < n; i++) {
if(set1.contains(sarr)) continue;
if(set2.contains(sarr)) continue;
int comp1 = b - sarr[i];
if(present.contains(comp1)) {
set2.add(sarr[i]);
set2.add(comp1);
present.remove(comp1);
} else {
int comp2 = a - sarr[i];
if(present.contains(comp2)) {
set1.add(sarr[i]);
set1.add(comp2);
present.remove(comp2);
} else {
jout.println("NO");
return;
}
}
}
jout.println("YES");
for(int i = 0; i < n; i++) {
if(i != 0) jout.print(' ');
if(rev) jout.print(set2.contains(arr[i])? 0 : 1);
else jout.print(set1.contains(arr[i])? 0 : 1);
}
}
}
class InputReader {
private static final int bufferMaxLength = 1024;
private InputStream in;
private byte[] buffer;
private int currentBufferSize;
private int currentBufferTop;
private static final String tokenizers = " \t\r\f\n";
public InputReader(InputStream stream) {
this.in = stream;
buffer = new byte[bufferMaxLength];
currentBufferSize = 0;
currentBufferTop = 0;
}
private boolean refill() {
try {
this.currentBufferSize = this.in.read(this.buffer);
this.currentBufferTop = 0;
} catch(Exception e) {}
return this.currentBufferSize > 0;
}
private Byte readChar() {
if(currentBufferTop < currentBufferSize) {
return this.buffer[this.currentBufferTop++];
} else {
if(!this.refill()) {
return null;
} else {
return readChar();
}
}
}
public String token() {
StringBuffer tok = new StringBuffer();
Byte first;
while((first = readChar()) != null && (tokenizers.indexOf((char) first.byteValue()) != -1));
if(first == null) return null;
tok.append((char)first.byteValue());
while((first = readChar()) != null && (tokenizers.indexOf((char) first.byteValue()) == -1)) {
tok.append((char)first.byteValue());
}
return tok.toString();
}
public Integer int32() throws NumberFormatException {
String tok = token();
return tok == null? null : Integer.parseInt(tok);
}
}
class OutputWriter {
private final int bufferMaxOut = 1024;
private PrintWriter out;
private StringBuilder output;
private boolean forceFlush = false;
public OutputWriter(OutputStream outStream) {
out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outStream)));
output = new StringBuilder(2 * bufferMaxOut);
}
public OutputWriter(Writer writer) {
forceFlush = true;
out = new PrintWriter(writer);
output = new StringBuilder(2 * bufferMaxOut);
}
private void autoFlush() {
if(forceFlush || output.length() >= bufferMaxOut) {
flush();
}
}
public void print(Object... tokens) {
for(int i = 0; i < tokens.length; i++) {
if(i != 0) output.append(' ');
output.append(tokens[i]);
}
autoFlush();
}
public void println(Object... tokens) {
print(tokens);
output.append('\n');
autoFlush();
}
public void flush() {
out.print(output);
output.setLength(0);
}
public void close() {
flush();
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,480 | 384 |
1,000 |
import java.util.*;
public class global{
public static void main(String s[]){
Scanner sc = new Scanner(System.in);
long n = sc.nextLong();
String st = String.valueOf(n);
if(st.length()==1){
System.out.println(n);
}else{
long val = 1;
long prev=9;
long total=9;
long late=9;
for(int i=2;i<=12;i++){
val*=10;
total+=i*(val*9);
if(n<=total){
long diff = n-late;
long div = diff/i;
long mod = diff%i;
if(mod==0){
prev+=div;
System.out.println((prev)%10);
break;
}else{
prev+=div+1;
String fg = String.valueOf(prev);
System.out.println(fg.charAt((int)mod-1));
break;
}
}
prev+=(9*val);
late=total;
}
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
public class global{
public static void main(String s[]){
Scanner sc = new Scanner(System.in);
long n = sc.nextLong();
String st = String.valueOf(n);
if(st.length()==1){
System.out.println(n);
}else{
long val = 1;
long prev=9;
long total=9;
long late=9;
for(int i=2;i<=12;i++){
val*=10;
total+=i*(val*9);
if(n<=total){
long diff = n-late;
long div = diff/i;
long mod = diff%i;
if(mod==0){
prev+=div;
System.out.println((prev)%10);
break;
}else{
prev+=div+1;
String fg = String.valueOf(prev);
System.out.println(fg.charAt((int)mod-1));
break;
}
}
prev+=(9*val);
late=total;
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class global{
public static void main(String s[]){
Scanner sc = new Scanner(System.in);
long n = sc.nextLong();
String st = String.valueOf(n);
if(st.length()==1){
System.out.println(n);
}else{
long val = 1;
long prev=9;
long total=9;
long late=9;
for(int i=2;i<=12;i++){
val*=10;
total+=i*(val*9);
if(n<=total){
long diff = n-late;
long div = diff/i;
long mod = diff%i;
if(mod==0){
prev+=div;
System.out.println((prev)%10);
break;
}else{
prev+=div+1;
String fg = String.valueOf(prev);
System.out.println(fg.charAt((int)mod-1));
break;
}
}
prev+=(9*val);
late=total;
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 583 | 999 |
3,012 |
import java.io.*;
import java.util.*;
public class Main{
public static void main(String[] args) throws IOException{
BufferedReader buffer = new BufferedReader(new InputStreamReader(System.in));
String a=buffer.readLine();
int b=Integer.parseInt(a);
if(b%4==0 || b%7==0 || b%44==0 || b%47==0 || b%74==0 || b%77==0 || b%444==0 || b%447==0 || b%474==0 || b%477==0 || b%744==0 || b%747==0 || b%774==0 || b%777==0)
System.out.println("YES");
else
System.out.println("NO");
}}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main{
public static void main(String[] args) throws IOException{
BufferedReader buffer = new BufferedReader(new InputStreamReader(System.in));
String a=buffer.readLine();
int b=Integer.parseInt(a);
if(b%4==0 || b%7==0 || b%44==0 || b%47==0 || b%74==0 || b%77==0 || b%444==0 || b%447==0 || b%474==0 || b%477==0 || b%744==0 || b%747==0 || b%774==0 || b%777==0)
System.out.println("YES");
else
System.out.println("NO");
}}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main{
public static void main(String[] args) throws IOException{
BufferedReader buffer = new BufferedReader(new InputStreamReader(System.in));
String a=buffer.readLine();
int b=Integer.parseInt(a);
if(b%4==0 || b%7==0 || b%44==0 || b%47==0 || b%74==0 || b%77==0 || b%444==0 || b%447==0 || b%474==0 || b%477==0 || b%744==0 || b%747==0 || b%774==0 || b%777==0)
System.out.println("YES");
else
System.out.println("NO");
}}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 517 | 3,006 |
508 |
import java.io.*;
import java.util.*;
public class Main {
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner() {
try {
br = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer(br.readLine());
} catch (Exception e){e.printStackTrace();}
}
public String next() {
if (st.hasMoreTokens()) return st.nextToken();
try {st = new StringTokenizer(br.readLine());}
catch (Exception e) {e.printStackTrace();}
return st.nextToken();
}
public int nextInt() {return Integer.parseInt(next());}
public long nextLong() {return Long.parseLong(next());}
public double nextDouble() {return Double.parseDouble(next());}
public String nextLine() {
String line = "";
if(st.hasMoreTokens()) line = st.nextToken();
else try {return br.readLine();}catch(IOException e){e.printStackTrace();}
while(st.hasMoreTokens()) line += " "+st.nextToken();
return line;
}
}
public static void main(String[] args) {
FastScanner sc = new FastScanner();
PrintWriter pw = new PrintWriter(System.out);
int n = sc.nextInt();
int best = 1;
int bestTime = Integer.MAX_VALUE;
for(int i=0;i<n;i++) {
int time;
int a = sc.nextInt();
time = (a%n==0 || a%n<=i) ? a/n : (a+n)/n;
if(time < bestTime) {
best = i + 1;
bestTime = time;
}
}
pw.println(best);
pw.close();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner() {
try {
br = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer(br.readLine());
} catch (Exception e){e.printStackTrace();}
}
public String next() {
if (st.hasMoreTokens()) return st.nextToken();
try {st = new StringTokenizer(br.readLine());}
catch (Exception e) {e.printStackTrace();}
return st.nextToken();
}
public int nextInt() {return Integer.parseInt(next());}
public long nextLong() {return Long.parseLong(next());}
public double nextDouble() {return Double.parseDouble(next());}
public String nextLine() {
String line = "";
if(st.hasMoreTokens()) line = st.nextToken();
else try {return br.readLine();}catch(IOException e){e.printStackTrace();}
while(st.hasMoreTokens()) line += " "+st.nextToken();
return line;
}
}
public static void main(String[] args) {
FastScanner sc = new FastScanner();
PrintWriter pw = new PrintWriter(System.out);
int n = sc.nextInt();
int best = 1;
int bestTime = Integer.MAX_VALUE;
for(int i=0;i<n;i++) {
int time;
int a = sc.nextInt();
time = (a%n==0 || a%n<=i) ? a/n : (a+n)/n;
if(time < bestTime) {
best = i + 1;
bestTime = time;
}
}
pw.println(best);
pw.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner() {
try {
br = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer(br.readLine());
} catch (Exception e){e.printStackTrace();}
}
public String next() {
if (st.hasMoreTokens()) return st.nextToken();
try {st = new StringTokenizer(br.readLine());}
catch (Exception e) {e.printStackTrace();}
return st.nextToken();
}
public int nextInt() {return Integer.parseInt(next());}
public long nextLong() {return Long.parseLong(next());}
public double nextDouble() {return Double.parseDouble(next());}
public String nextLine() {
String line = "";
if(st.hasMoreTokens()) line = st.nextToken();
else try {return br.readLine();}catch(IOException e){e.printStackTrace();}
while(st.hasMoreTokens()) line += " "+st.nextToken();
return line;
}
}
public static void main(String[] args) {
FastScanner sc = new FastScanner();
PrintWriter pw = new PrintWriter(System.out);
int n = sc.nextInt();
int best = 1;
int bestTime = Integer.MAX_VALUE;
for(int i=0;i<n;i++) {
int time;
int a = sc.nextInt();
time = (a%n==0 || a%n<=i) ? a/n : (a+n)/n;
if(time < bestTime) {
best = i + 1;
bestTime = time;
}
}
pw.println(best);
pw.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 675 | 507 |
4,007 |
/**
* BaZ :D
*/
import java.util.*;
import java.io.*;
import static java.lang.Math.*;
public class ACMIND
{
static FastReader scan;
static PrintWriter pw;
static long MOD = 1_000_000_007;
static long INF = 1_000_000_000_000_000_000L;
static long inf = 2_000_000_000;
public static void main(String[] args) {
new Thread(null,null,"BaZ",1<<25)
{
public void run()
{
try
{
solve();
}
catch(Exception e)
{
e.printStackTrace();
System.exit(1);
}
}
}.start();
}
static int n, g[], t[], T;
static int dp[][];
static void solve() throws IOException
{
scan = new FastReader();
pw = new PrintWriter(System.out,true);
StringBuilder fast = new StringBuilder();
n = ni();
T = ni();
g = new int[n];
t = new int[n];
for(int i=0;i<n;++i) {
t[i] = ni();
g[i] = ni();
}
int MAX = (1<<n);
dp = new int[MAX][4];
for(int i=0;i<MAX;++i) {
for(int j=0;j<4;++j) {
dp[i][j] = -1;
}
}
pl(f((1<<n)-1,0));
pw.flush();
pw.close();
}
static int f(int mask, int prev) {
if(dp[mask][prev]!=-1) {
return dp[mask][prev];
}
int left = T;
for(int i=0;i<n;++i) {
if((mask&(1<<i))==0) {
left-=t[i];
}
}
if(left==0) {
return 1;
}
int cnt = 0;
for(int i=0;i<n;++i) {
if((mask&(1<<i))!=0) {
if(g[i]!=prev && left>=t[i]) {
cnt+=f(mask^(1<<i), g[i]);
if(cnt>=MOD) {
cnt-=MOD;
}
}
}
}
return dp[mask][prev] = cnt;
}
static int ni() throws IOException
{
return scan.nextInt();
}
static long nl() throws IOException
{
return scan.nextLong();
}
static double nd() throws IOException
{
return scan.nextDouble();
}
static void pl()
{
pw.println();
}
static void p(Object o)
{
pw.print(o+" ");
}
static void pl(Object o)
{
pw.println(o);
}
static void psb(StringBuilder sb)
{
pw.print(sb);
}
static void pa(String arrayName, Object arr[])
{
pl(arrayName+" : ");
for(Object o : arr)
p(o);
pl();
}
static void pa(String arrayName, int arr[])
{
pl(arrayName+" : ");
for(int o : arr)
p(o);
pl();
}
static void pa(String arrayName, long arr[])
{
pl(arrayName+" : ");
for(long o : arr)
p(o);
pl();
}
static void pa(String arrayName, double arr[])
{
pl(arrayName+" : ");
for(double o : arr)
p(o);
pl();
}
static void pa(String arrayName, char arr[])
{
pl(arrayName+" : ");
for(char o : arr)
p(o);
pl();
}
static void pa(String listName, List list)
{
pl(listName+" : ");
for(Object o : list)
p(o);
pl();
}
static void pa(String arrayName, Object[][] arr) {
pl(arrayName+" : ");
for(int i=0;i<arr.length;++i) {
for(Object o : arr[i])
p(o);
pl();
}
}
static void pa(String arrayName, int[][] arr) {
pl(arrayName+" : ");
for(int i=0;i<arr.length;++i) {
for(int o : arr[i])
p(o);
pl();
}
}
static void pa(String arrayName, long[][] arr) {
pl(arrayName+" : ");
for(int i=0;i<arr.length;++i) {
for(long o : arr[i])
p(o);
pl();
}
}
static void pa(String arrayName, char[][] arr) {
pl(arrayName+" : ");
for(int i=0;i<arr.length;++i) {
for(char o : arr[i])
p(o);
pl();
}
}
static void pa(String arrayName, double[][] arr) {
pl(arrayName+" : ");
for(int i=0;i<arr.length;++i) {
for(double o : arr[i])
p(o);
pl();
}
}
static class FastReader {
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public FastReader() {
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public FastReader(String file_name) throws IOException {
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException {
byte[] buf = new byte[1000000];
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n') break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException {
int ret = 0;
byte c = read();
while (c <= ' ') c = read();
boolean neg = (c == '-');
if (neg) c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg) return -ret;
return ret;
}
public long nextLong() throws IOException {
long ret = 0;
byte c = read();
while (c <= ' ') c = read();
boolean neg = (c == '-');
if (neg) c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg) return -ret;
return ret;
}
public double nextDouble() throws IOException {
double ret = 0, div = 1;
byte c = read();
while (c <= ' ') c = read();
boolean neg = (c == '-');
if (neg) c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (c == '.') while ((c = read()) >= '0' && c <= '9') ret += (c - '0') / (div *= 10);
if (neg) return -ret;
return ret;
}
private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1) buffer[0] = -1;
}
private byte read() throws IOException {
if (bufferPointer == bytesRead) fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException {
if (din == null) return;
din.close();
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
/**
* BaZ :D
*/
import java.util.*;
import java.io.*;
import static java.lang.Math.*;
public class ACMIND
{
static FastReader scan;
static PrintWriter pw;
static long MOD = 1_000_000_007;
static long INF = 1_000_000_000_000_000_000L;
static long inf = 2_000_000_000;
public static void main(String[] args) {
new Thread(null,null,"BaZ",1<<25)
{
public void run()
{
try
{
solve();
}
catch(Exception e)
{
e.printStackTrace();
System.exit(1);
}
}
}.start();
}
static int n, g[], t[], T;
static int dp[][];
static void solve() throws IOException
{
scan = new FastReader();
pw = new PrintWriter(System.out,true);
StringBuilder fast = new StringBuilder();
n = ni();
T = ni();
g = new int[n];
t = new int[n];
for(int i=0;i<n;++i) {
t[i] = ni();
g[i] = ni();
}
int MAX = (1<<n);
dp = new int[MAX][4];
for(int i=0;i<MAX;++i) {
for(int j=0;j<4;++j) {
dp[i][j] = -1;
}
}
pl(f((1<<n)-1,0));
pw.flush();
pw.close();
}
static int f(int mask, int prev) {
if(dp[mask][prev]!=-1) {
return dp[mask][prev];
}
int left = T;
for(int i=0;i<n;++i) {
if((mask&(1<<i))==0) {
left-=t[i];
}
}
if(left==0) {
return 1;
}
int cnt = 0;
for(int i=0;i<n;++i) {
if((mask&(1<<i))!=0) {
if(g[i]!=prev && left>=t[i]) {
cnt+=f(mask^(1<<i), g[i]);
if(cnt>=MOD) {
cnt-=MOD;
}
}
}
}
return dp[mask][prev] = cnt;
}
static int ni() throws IOException
{
return scan.nextInt();
}
static long nl() throws IOException
{
return scan.nextLong();
}
static double nd() throws IOException
{
return scan.nextDouble();
}
static void pl()
{
pw.println();
}
static void p(Object o)
{
pw.print(o+" ");
}
static void pl(Object o)
{
pw.println(o);
}
static void psb(StringBuilder sb)
{
pw.print(sb);
}
static void pa(String arrayName, Object arr[])
{
pl(arrayName+" : ");
for(Object o : arr)
p(o);
pl();
}
static void pa(String arrayName, int arr[])
{
pl(arrayName+" : ");
for(int o : arr)
p(o);
pl();
}
static void pa(String arrayName, long arr[])
{
pl(arrayName+" : ");
for(long o : arr)
p(o);
pl();
}
static void pa(String arrayName, double arr[])
{
pl(arrayName+" : ");
for(double o : arr)
p(o);
pl();
}
static void pa(String arrayName, char arr[])
{
pl(arrayName+" : ");
for(char o : arr)
p(o);
pl();
}
static void pa(String listName, List list)
{
pl(listName+" : ");
for(Object o : list)
p(o);
pl();
}
static void pa(String arrayName, Object[][] arr) {
pl(arrayName+" : ");
for(int i=0;i<arr.length;++i) {
for(Object o : arr[i])
p(o);
pl();
}
}
static void pa(String arrayName, int[][] arr) {
pl(arrayName+" : ");
for(int i=0;i<arr.length;++i) {
for(int o : arr[i])
p(o);
pl();
}
}
static void pa(String arrayName, long[][] arr) {
pl(arrayName+" : ");
for(int i=0;i<arr.length;++i) {
for(long o : arr[i])
p(o);
pl();
}
}
static void pa(String arrayName, char[][] arr) {
pl(arrayName+" : ");
for(int i=0;i<arr.length;++i) {
for(char o : arr[i])
p(o);
pl();
}
}
static void pa(String arrayName, double[][] arr) {
pl(arrayName+" : ");
for(int i=0;i<arr.length;++i) {
for(double o : arr[i])
p(o);
pl();
}
}
static class FastReader {
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public FastReader() {
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public FastReader(String file_name) throws IOException {
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException {
byte[] buf = new byte[1000000];
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n') break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException {
int ret = 0;
byte c = read();
while (c <= ' ') c = read();
boolean neg = (c == '-');
if (neg) c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg) return -ret;
return ret;
}
public long nextLong() throws IOException {
long ret = 0;
byte c = read();
while (c <= ' ') c = read();
boolean neg = (c == '-');
if (neg) c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg) return -ret;
return ret;
}
public double nextDouble() throws IOException {
double ret = 0, div = 1;
byte c = read();
while (c <= ' ') c = read();
boolean neg = (c == '-');
if (neg) c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (c == '.') while ((c = read()) >= '0' && c <= '9') ret += (c - '0') / (div *= 10);
if (neg) return -ret;
return ret;
}
private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1) buffer[0] = -1;
}
private byte read() throws IOException {
if (bufferPointer == bytesRead) fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException {
if (din == null) return;
din.close();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
/**
* BaZ :D
*/
import java.util.*;
import java.io.*;
import static java.lang.Math.*;
public class ACMIND
{
static FastReader scan;
static PrintWriter pw;
static long MOD = 1_000_000_007;
static long INF = 1_000_000_000_000_000_000L;
static long inf = 2_000_000_000;
public static void main(String[] args) {
new Thread(null,null,"BaZ",1<<25)
{
public void run()
{
try
{
solve();
}
catch(Exception e)
{
e.printStackTrace();
System.exit(1);
}
}
}.start();
}
static int n, g[], t[], T;
static int dp[][];
static void solve() throws IOException
{
scan = new FastReader();
pw = new PrintWriter(System.out,true);
StringBuilder fast = new StringBuilder();
n = ni();
T = ni();
g = new int[n];
t = new int[n];
for(int i=0;i<n;++i) {
t[i] = ni();
g[i] = ni();
}
int MAX = (1<<n);
dp = new int[MAX][4];
for(int i=0;i<MAX;++i) {
for(int j=0;j<4;++j) {
dp[i][j] = -1;
}
}
pl(f((1<<n)-1,0));
pw.flush();
pw.close();
}
static int f(int mask, int prev) {
if(dp[mask][prev]!=-1) {
return dp[mask][prev];
}
int left = T;
for(int i=0;i<n;++i) {
if((mask&(1<<i))==0) {
left-=t[i];
}
}
if(left==0) {
return 1;
}
int cnt = 0;
for(int i=0;i<n;++i) {
if((mask&(1<<i))!=0) {
if(g[i]!=prev && left>=t[i]) {
cnt+=f(mask^(1<<i), g[i]);
if(cnt>=MOD) {
cnt-=MOD;
}
}
}
}
return dp[mask][prev] = cnt;
}
static int ni() throws IOException
{
return scan.nextInt();
}
static long nl() throws IOException
{
return scan.nextLong();
}
static double nd() throws IOException
{
return scan.nextDouble();
}
static void pl()
{
pw.println();
}
static void p(Object o)
{
pw.print(o+" ");
}
static void pl(Object o)
{
pw.println(o);
}
static void psb(StringBuilder sb)
{
pw.print(sb);
}
static void pa(String arrayName, Object arr[])
{
pl(arrayName+" : ");
for(Object o : arr)
p(o);
pl();
}
static void pa(String arrayName, int arr[])
{
pl(arrayName+" : ");
for(int o : arr)
p(o);
pl();
}
static void pa(String arrayName, long arr[])
{
pl(arrayName+" : ");
for(long o : arr)
p(o);
pl();
}
static void pa(String arrayName, double arr[])
{
pl(arrayName+" : ");
for(double o : arr)
p(o);
pl();
}
static void pa(String arrayName, char arr[])
{
pl(arrayName+" : ");
for(char o : arr)
p(o);
pl();
}
static void pa(String listName, List list)
{
pl(listName+" : ");
for(Object o : list)
p(o);
pl();
}
static void pa(String arrayName, Object[][] arr) {
pl(arrayName+" : ");
for(int i=0;i<arr.length;++i) {
for(Object o : arr[i])
p(o);
pl();
}
}
static void pa(String arrayName, int[][] arr) {
pl(arrayName+" : ");
for(int i=0;i<arr.length;++i) {
for(int o : arr[i])
p(o);
pl();
}
}
static void pa(String arrayName, long[][] arr) {
pl(arrayName+" : ");
for(int i=0;i<arr.length;++i) {
for(long o : arr[i])
p(o);
pl();
}
}
static void pa(String arrayName, char[][] arr) {
pl(arrayName+" : ");
for(int i=0;i<arr.length;++i) {
for(char o : arr[i])
p(o);
pl();
}
}
static void pa(String arrayName, double[][] arr) {
pl(arrayName+" : ");
for(int i=0;i<arr.length;++i) {
for(double o : arr[i])
p(o);
pl();
}
}
static class FastReader {
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public FastReader() {
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public FastReader(String file_name) throws IOException {
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException {
byte[] buf = new byte[1000000];
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n') break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException {
int ret = 0;
byte c = read();
while (c <= ' ') c = read();
boolean neg = (c == '-');
if (neg) c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg) return -ret;
return ret;
}
public long nextLong() throws IOException {
long ret = 0;
byte c = read();
while (c <= ' ') c = read();
boolean neg = (c == '-');
if (neg) c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg) return -ret;
return ret;
}
public double nextDouble() throws IOException {
double ret = 0, div = 1;
byte c = read();
while (c <= ' ') c = read();
boolean neg = (c == '-');
if (neg) c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (c == '.') while ((c = read()) >= '0' && c <= '9') ret += (c - '0') / (div *= 10);
if (neg) return -ret;
return ret;
}
private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1) buffer[0] = -1;
}
private byte read() throws IOException {
if (bufferPointer == bytesRead) fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException {
if (din == null) return;
din.close();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,129 | 3,996 |
3,319 |
import java.io.IOException;
import java.io.InputStream;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.util.LinkedList;
public class D {
static LinkedList<Integer>[] E;
static int[] M;
static boolean[] visited;
static int n;
static int center;
public static boolean match(int x) {
if (visited[x])
return false;
visited[x] = true;
for (int y : E[x])
if (y != center && (M[y] == -1 || match(M[y]))) {
M[y] = x;
return true;
}
return false;
}
public static int maxMatch() {
int res = 0;
Arrays.fill(M, -1);
for (int i = 0; i < n; i++) {
Arrays.fill(visited, false);
if (i != center && match(i))
res++;
}
return res;
}
public static void main(String[] args) {
InputReader in = new InputReader(System.in);
n = in.readInt();
int m = in.readInt();
E = new LinkedList[n];
M = new int[n];
boolean[][] C = new boolean[n][n];
visited = new boolean[n];
for (int i = 0; i < n; i++)
E[i] = new LinkedList<Integer>();
for (int i = 0; i < m; i++) {
int x = in.readInt() - 1;
int y = in.readInt() - 1;
C[x][y] = true;
E[x].add(y);
}
int min = Integer.MAX_VALUE;
for (int i = 0; i < n; i++) {
int res = 0;
int all = 0;
for (int j = 0; j < n; j++)
if (j != i) {
all += E[j].size();
if (!C[i][j])
res++;
if (!C[j][i])
res++;
else
all--;
}
if (!C[i][i])
res++;
center = i;
int match = maxMatch();
res += (all - match) + (n - match - 1);
min = Math.min(min, res);
}
System.out.println(min);
}
}
class InputReader {
private InputStream stream;
private byte[] buf = new byte[1000];
private int curChar, numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
private int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long readLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuffer res = new StringBuffer();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private String readLine0() {
StringBuffer buf = new StringBuffer();
int c = read();
while (c != '\n' && c != -1) {
buf.appendCodePoint(c);
c = read();
}
return buf.toString();
}
public String readLine() {
String s = readLine0();
while (s.trim().length() == 0)
s = readLine0();
return s;
}
public String readLine(boolean ignoreEmptyLines) {
if (ignoreEmptyLines)
return readLine();
else
return readLine0();
}
public char readCharacter() {
int c = read();
while (isSpaceChar(c))
c = read();
return (char) c;
}
public double readDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, readInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E')
return res * Math.pow(10, readInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.InputStream;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.util.LinkedList;
public class D {
static LinkedList<Integer>[] E;
static int[] M;
static boolean[] visited;
static int n;
static int center;
public static boolean match(int x) {
if (visited[x])
return false;
visited[x] = true;
for (int y : E[x])
if (y != center && (M[y] == -1 || match(M[y]))) {
M[y] = x;
return true;
}
return false;
}
public static int maxMatch() {
int res = 0;
Arrays.fill(M, -1);
for (int i = 0; i < n; i++) {
Arrays.fill(visited, false);
if (i != center && match(i))
res++;
}
return res;
}
public static void main(String[] args) {
InputReader in = new InputReader(System.in);
n = in.readInt();
int m = in.readInt();
E = new LinkedList[n];
M = new int[n];
boolean[][] C = new boolean[n][n];
visited = new boolean[n];
for (int i = 0; i < n; i++)
E[i] = new LinkedList<Integer>();
for (int i = 0; i < m; i++) {
int x = in.readInt() - 1;
int y = in.readInt() - 1;
C[x][y] = true;
E[x].add(y);
}
int min = Integer.MAX_VALUE;
for (int i = 0; i < n; i++) {
int res = 0;
int all = 0;
for (int j = 0; j < n; j++)
if (j != i) {
all += E[j].size();
if (!C[i][j])
res++;
if (!C[j][i])
res++;
else
all--;
}
if (!C[i][i])
res++;
center = i;
int match = maxMatch();
res += (all - match) + (n - match - 1);
min = Math.min(min, res);
}
System.out.println(min);
}
}
class InputReader {
private InputStream stream;
private byte[] buf = new byte[1000];
private int curChar, numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
private int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long readLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuffer res = new StringBuffer();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private String readLine0() {
StringBuffer buf = new StringBuffer();
int c = read();
while (c != '\n' && c != -1) {
buf.appendCodePoint(c);
c = read();
}
return buf.toString();
}
public String readLine() {
String s = readLine0();
while (s.trim().length() == 0)
s = readLine0();
return s;
}
public String readLine(boolean ignoreEmptyLines) {
if (ignoreEmptyLines)
return readLine();
else
return readLine0();
}
public char readCharacter() {
int c = read();
while (isSpaceChar(c))
c = read();
return (char) c;
}
public double readDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, readInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E')
return res * Math.pow(10, readInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.InputStream;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.util.LinkedList;
public class D {
static LinkedList<Integer>[] E;
static int[] M;
static boolean[] visited;
static int n;
static int center;
public static boolean match(int x) {
if (visited[x])
return false;
visited[x] = true;
for (int y : E[x])
if (y != center && (M[y] == -1 || match(M[y]))) {
M[y] = x;
return true;
}
return false;
}
public static int maxMatch() {
int res = 0;
Arrays.fill(M, -1);
for (int i = 0; i < n; i++) {
Arrays.fill(visited, false);
if (i != center && match(i))
res++;
}
return res;
}
public static void main(String[] args) {
InputReader in = new InputReader(System.in);
n = in.readInt();
int m = in.readInt();
E = new LinkedList[n];
M = new int[n];
boolean[][] C = new boolean[n][n];
visited = new boolean[n];
for (int i = 0; i < n; i++)
E[i] = new LinkedList<Integer>();
for (int i = 0; i < m; i++) {
int x = in.readInt() - 1;
int y = in.readInt() - 1;
C[x][y] = true;
E[x].add(y);
}
int min = Integer.MAX_VALUE;
for (int i = 0; i < n; i++) {
int res = 0;
int all = 0;
for (int j = 0; j < n; j++)
if (j != i) {
all += E[j].size();
if (!C[i][j])
res++;
if (!C[j][i])
res++;
else
all--;
}
if (!C[i][i])
res++;
center = i;
int match = maxMatch();
res += (all - match) + (n - match - 1);
min = Math.min(min, res);
}
System.out.println(min);
}
}
class InputReader {
private InputStream stream;
private byte[] buf = new byte[1000];
private int curChar, numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
private int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long readLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuffer res = new StringBuffer();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private String readLine0() {
StringBuffer buf = new StringBuffer();
int c = read();
while (c != '\n' && c != -1) {
buf.appendCodePoint(c);
c = read();
}
return buf.toString();
}
public String readLine() {
String s = readLine0();
while (s.trim().length() == 0)
s = readLine0();
return s;
}
public String readLine(boolean ignoreEmptyLines) {
if (ignoreEmptyLines)
return readLine();
else
return readLine0();
}
public char readCharacter() {
int c = read();
while (isSpaceChar(c))
c = read();
return (char) c;
}
public double readDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, readInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E')
return res * Math.pow(10, readInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,754 | 3,313 |
741 |
/*
* To change this license header, choose License Headers in Project Properties.
* To change this template file, choose Tools | Templates
* and open the template in the editor.
*/
import java.util.ArrayList;
import java.util.Scanner;
/**
*
* @author Ahmed
*/
public class Watermelon {
static class Passengers {
public int floor ;
public int time;
public Passengers( int floor , int time){
this.floor =floor;
this.time =time;
}
}
/**
* @param args the command line arguments
*/
public static void main(String[] args) {
// TODO code application logic here
Scanner in = new Scanner(System.in);
int x = in.nextInt() , y = in.nextInt();
ArrayList<Passengers> list = new ArrayList<>();
for(int i = 1 ; i <= x ; ++i){
list.add(new Passengers(in.nextInt(), in.nextInt()));
}
int sum = 0 ;
for(int i = list.size() - 1 ; i >= 0 ; --i)
{
int s = y - list.get(i).floor;
sum = sum + s ;
if(sum < list.get(i).time)
{
sum = sum + ( list.get(i).time - sum);
}
y = list.get(i).floor;
}
if( list.get(list.size() - 1).floor != 0){
sum = sum + (list.get(0).floor);
}
System.out.println(sum);
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
/*
* To change this license header, choose License Headers in Project Properties.
* To change this template file, choose Tools | Templates
* and open the template in the editor.
*/
import java.util.ArrayList;
import java.util.Scanner;
/**
*
* @author Ahmed
*/
public class Watermelon {
static class Passengers {
public int floor ;
public int time;
public Passengers( int floor , int time){
this.floor =floor;
this.time =time;
}
}
/**
* @param args the command line arguments
*/
public static void main(String[] args) {
// TODO code application logic here
Scanner in = new Scanner(System.in);
int x = in.nextInt() , y = in.nextInt();
ArrayList<Passengers> list = new ArrayList<>();
for(int i = 1 ; i <= x ; ++i){
list.add(new Passengers(in.nextInt(), in.nextInt()));
}
int sum = 0 ;
for(int i = list.size() - 1 ; i >= 0 ; --i)
{
int s = y - list.get(i).floor;
sum = sum + s ;
if(sum < list.get(i).time)
{
sum = sum + ( list.get(i).time - sum);
}
y = list.get(i).floor;
}
if( list.get(list.size() - 1).floor != 0){
sum = sum + (list.get(0).floor);
}
System.out.println(sum);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
/*
* To change this license header, choose License Headers in Project Properties.
* To change this template file, choose Tools | Templates
* and open the template in the editor.
*/
import java.util.ArrayList;
import java.util.Scanner;
/**
*
* @author Ahmed
*/
public class Watermelon {
static class Passengers {
public int floor ;
public int time;
public Passengers( int floor , int time){
this.floor =floor;
this.time =time;
}
}
/**
* @param args the command line arguments
*/
public static void main(String[] args) {
// TODO code application logic here
Scanner in = new Scanner(System.in);
int x = in.nextInt() , y = in.nextInt();
ArrayList<Passengers> list = new ArrayList<>();
for(int i = 1 ; i <= x ; ++i){
list.add(new Passengers(in.nextInt(), in.nextInt()));
}
int sum = 0 ;
for(int i = list.size() - 1 ; i >= 0 ; --i)
{
int s = y - list.get(i).floor;
sum = sum + s ;
if(sum < list.get(i).time)
{
sum = sum + ( list.get(i).time - sum);
}
y = list.get(i).floor;
}
if( list.get(list.size() - 1).floor != 0){
sum = sum + (list.get(0).floor);
}
System.out.println(sum);
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 675 | 740 |
1,731 |
import java.io.*;
import java.util.*;
import java.math.*;
public class Main {
Scanner in;
PrintWriter out;
static class House implements Comparable <House>{
int len;
int pos;
House(Scanner in){
pos = in.nextInt() * 2;
len = in.nextInt() * 2;
}
public int compareTo(House arg0) {
return this.pos-arg0.pos;
}
}
void solve(){
int n = in.nextInt();
int size = in.nextInt();
House []h = new House[n];
for (int i = 0; i < h.length; i++){
h[i] = new House(in);
}
Arrays.sort(h);
int ans = 2;
for (int i = 0; i < h.length - 1; i++){
int next = i + 1;
int sz = h[next].pos - h[i].pos - (h[next].len + h[i].len) / 2;
if (sz == size * 2) {
ans ++;
} else if (sz > size * 2) {
ans += 2;
}
}
out.println(ans);
}
public void run(){
in = new Scanner(System.in);
out = new PrintWriter(System.out);
try {
solve();
} finally {
out.close();
}
}
void asserT(boolean e){
if (!e){
throw new Error();
}
}
public static void main(String[] args) {
new Main().run();
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.*;
public class Main {
Scanner in;
PrintWriter out;
static class House implements Comparable <House>{
int len;
int pos;
House(Scanner in){
pos = in.nextInt() * 2;
len = in.nextInt() * 2;
}
public int compareTo(House arg0) {
return this.pos-arg0.pos;
}
}
void solve(){
int n = in.nextInt();
int size = in.nextInt();
House []h = new House[n];
for (int i = 0; i < h.length; i++){
h[i] = new House(in);
}
Arrays.sort(h);
int ans = 2;
for (int i = 0; i < h.length - 1; i++){
int next = i + 1;
int sz = h[next].pos - h[i].pos - (h[next].len + h[i].len) / 2;
if (sz == size * 2) {
ans ++;
} else if (sz > size * 2) {
ans += 2;
}
}
out.println(ans);
}
public void run(){
in = new Scanner(System.in);
out = new PrintWriter(System.out);
try {
solve();
} finally {
out.close();
}
}
void asserT(boolean e){
if (!e){
throw new Error();
}
}
public static void main(String[] args) {
new Main().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.*;
public class Main {
Scanner in;
PrintWriter out;
static class House implements Comparable <House>{
int len;
int pos;
House(Scanner in){
pos = in.nextInt() * 2;
len = in.nextInt() * 2;
}
public int compareTo(House arg0) {
return this.pos-arg0.pos;
}
}
void solve(){
int n = in.nextInt();
int size = in.nextInt();
House []h = new House[n];
for (int i = 0; i < h.length; i++){
h[i] = new House(in);
}
Arrays.sort(h);
int ans = 2;
for (int i = 0; i < h.length - 1; i++){
int next = i + 1;
int sz = h[next].pos - h[i].pos - (h[next].len + h[i].len) / 2;
if (sz == size * 2) {
ans ++;
} else if (sz > size * 2) {
ans += 2;
}
}
out.println(ans);
}
public void run(){
in = new Scanner(System.in);
out = new PrintWriter(System.out);
try {
solve();
} finally {
out.close();
}
}
void asserT(boolean e){
if (!e){
throw new Error();
}
}
public static void main(String[] args) {
new Main().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 701 | 1,727 |
3,943 |
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.Reader;
import java.io.IOException;
import java.util.StringTokenizer;
/*
* @author Tnascimento
*/
public class MaeDosDragoes {
public static PrintWriter saida = new PrintWriter(System.out, false);
public static class Escanear {
BufferedReader reader;
StringTokenizer tokenizer;
public Escanear() {
this(new InputStreamReader(System.in));
}
public Escanear(Reader in) {
reader = new BufferedReader(in);
}
String proximo() {
if (tokenizer == null || !tokenizer.hasMoreElements()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return tokenizer.nextToken();
}
int nextInt() {
return Integer.parseInt(proximo());
}
}
public static void main(String[] args) {
Escanear fastScanner = new Escanear();
int proximoInt = fastScanner.nextInt();
double proximoDouble = fastScanner.nextInt();
long[] graph = new long[proximoInt];
for(Integer i = 0; i < proximoInt; i++) {
for(Integer j =0; j < proximoInt; j++) {
Integer val = fastScanner.nextInt();
if (val.equals(1) || i.equals(j)) {
graph[i] |= 1L << j;
}
}
}
int szLeft = proximoInt/2;
int szRight = proximoInt - szLeft;
int[] dp = new int[1 << szLeft];
int maxMask = 1 << szLeft;
for(int mask = 1; mask <maxMask; mask++) {
int curMask = mask;
for(int j = 0; j < szLeft; j++) {
if (((1 << j) & mask) > 0) {
curMask &= graph[j + szRight] >> szRight;
dp[mask] = Math.max(dp[mask], dp[mask ^ (1 << j)]);
}
}
if (mask == curMask) {
dp[mask] = Math.max(dp[mask],Integer.bitCount(mask));
}
}
int ans = 0;
int rmaxMask = 1 << szRight;
for(int mask = 0; mask < rmaxMask; mask++) {
int curMask = mask;
int oMask = maxMask -1;
for(int j = 0; j < szRight; j++) {
if (((1 << j) & mask) > 0) {
curMask &= (graph[j] & (rmaxMask-1));
oMask &= graph[j] >> szRight;
}
}
if (curMask != mask) continue;
ans = Math.max(ans, Integer.bitCount(mask) + dp[oMask]);
}
proximoDouble/=ans;
saida.println(proximoDouble * proximoDouble * (ans * (ans-1))/2);
saida.flush();
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.Reader;
import java.io.IOException;
import java.util.StringTokenizer;
/*
* @author Tnascimento
*/
public class MaeDosDragoes {
public static PrintWriter saida = new PrintWriter(System.out, false);
public static class Escanear {
BufferedReader reader;
StringTokenizer tokenizer;
public Escanear() {
this(new InputStreamReader(System.in));
}
public Escanear(Reader in) {
reader = new BufferedReader(in);
}
String proximo() {
if (tokenizer == null || !tokenizer.hasMoreElements()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return tokenizer.nextToken();
}
int nextInt() {
return Integer.parseInt(proximo());
}
}
public static void main(String[] args) {
Escanear fastScanner = new Escanear();
int proximoInt = fastScanner.nextInt();
double proximoDouble = fastScanner.nextInt();
long[] graph = new long[proximoInt];
for(Integer i = 0; i < proximoInt; i++) {
for(Integer j =0; j < proximoInt; j++) {
Integer val = fastScanner.nextInt();
if (val.equals(1) || i.equals(j)) {
graph[i] |= 1L << j;
}
}
}
int szLeft = proximoInt/2;
int szRight = proximoInt - szLeft;
int[] dp = new int[1 << szLeft];
int maxMask = 1 << szLeft;
for(int mask = 1; mask <maxMask; mask++) {
int curMask = mask;
for(int j = 0; j < szLeft; j++) {
if (((1 << j) & mask) > 0) {
curMask &= graph[j + szRight] >> szRight;
dp[mask] = Math.max(dp[mask], dp[mask ^ (1 << j)]);
}
}
if (mask == curMask) {
dp[mask] = Math.max(dp[mask],Integer.bitCount(mask));
}
}
int ans = 0;
int rmaxMask = 1 << szRight;
for(int mask = 0; mask < rmaxMask; mask++) {
int curMask = mask;
int oMask = maxMask -1;
for(int j = 0; j < szRight; j++) {
if (((1 << j) & mask) > 0) {
curMask &= (graph[j] & (rmaxMask-1));
oMask &= graph[j] >> szRight;
}
}
if (curMask != mask) continue;
ans = Math.max(ans, Integer.bitCount(mask) + dp[oMask]);
}
proximoDouble/=ans;
saida.println(proximoDouble * proximoDouble * (ans * (ans-1))/2);
saida.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.Reader;
import java.io.IOException;
import java.util.StringTokenizer;
/*
* @author Tnascimento
*/
public class MaeDosDragoes {
public static PrintWriter saida = new PrintWriter(System.out, false);
public static class Escanear {
BufferedReader reader;
StringTokenizer tokenizer;
public Escanear() {
this(new InputStreamReader(System.in));
}
public Escanear(Reader in) {
reader = new BufferedReader(in);
}
String proximo() {
if (tokenizer == null || !tokenizer.hasMoreElements()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return tokenizer.nextToken();
}
int nextInt() {
return Integer.parseInt(proximo());
}
}
public static void main(String[] args) {
Escanear fastScanner = new Escanear();
int proximoInt = fastScanner.nextInt();
double proximoDouble = fastScanner.nextInt();
long[] graph = new long[proximoInt];
for(Integer i = 0; i < proximoInt; i++) {
for(Integer j =0; j < proximoInt; j++) {
Integer val = fastScanner.nextInt();
if (val.equals(1) || i.equals(j)) {
graph[i] |= 1L << j;
}
}
}
int szLeft = proximoInt/2;
int szRight = proximoInt - szLeft;
int[] dp = new int[1 << szLeft];
int maxMask = 1 << szLeft;
for(int mask = 1; mask <maxMask; mask++) {
int curMask = mask;
for(int j = 0; j < szLeft; j++) {
if (((1 << j) & mask) > 0) {
curMask &= graph[j + szRight] >> szRight;
dp[mask] = Math.max(dp[mask], dp[mask ^ (1 << j)]);
}
}
if (mask == curMask) {
dp[mask] = Math.max(dp[mask],Integer.bitCount(mask));
}
}
int ans = 0;
int rmaxMask = 1 << szRight;
for(int mask = 0; mask < rmaxMask; mask++) {
int curMask = mask;
int oMask = maxMask -1;
for(int j = 0; j < szRight; j++) {
if (((1 << j) & mask) > 0) {
curMask &= (graph[j] & (rmaxMask-1));
oMask &= graph[j] >> szRight;
}
}
if (curMask != mask) continue;
ans = Math.max(ans, Integer.bitCount(mask) + dp[oMask]);
}
proximoDouble/=ans;
saida.println(proximoDouble * proximoDouble * (ans * (ans-1))/2);
saida.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 986 | 3,932 |
985 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class Main {
public static void main(String[] args) throws IOException {
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer tokenizer = new StringTokenizer(reader.readLine());
int n = Integer.parseInt(tokenizer.nextToken());
int k = Integer.parseInt(tokenizer.nextToken());
System.out.println((int)(n-(-3.0+Math.sqrt(9.0+8.0*(n+k)))/2.0));
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class Main {
public static void main(String[] args) throws IOException {
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer tokenizer = new StringTokenizer(reader.readLine());
int n = Integer.parseInt(tokenizer.nextToken());
int k = Integer.parseInt(tokenizer.nextToken());
System.out.println((int)(n-(-3.0+Math.sqrt(9.0+8.0*(n+k)))/2.0));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class Main {
public static void main(String[] args) throws IOException {
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer tokenizer = new StringTokenizer(reader.readLine());
int n = Integer.parseInt(tokenizer.nextToken());
int k = Integer.parseInt(tokenizer.nextToken());
System.out.println((int)(n-(-3.0+Math.sqrt(9.0+8.0*(n+k)))/2.0));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 445 | 984 |
356 |
import com.sun.org.apache.xpath.internal.axes.SubContextList;
import java.util.Scanner;
/**
*
* @author Madi
*/
public class Round42CC {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = Integer.parseInt(sc.nextLine());
String s = sc.nextLine();
int k = 0;
for (int i = 0; i < n; i++) {
if (s.charAt(i) == 'H') {
k++;
}
}
s = s + s.substring(0, k);
String ss = "";
int max = 0;
for (int i = 0; i < s.length() - k; i++) {
ss = s.substring(i, i + k);
int count = 0;
for (int j = 0; j < ss.length(); j++) {
if (ss.charAt(j) == 'H') {
count++;
}
}
if (count > max) {
max = count;
}
}
System.out.println(k - max);
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import com.sun.org.apache.xpath.internal.axes.SubContextList;
import java.util.Scanner;
/**
*
* @author Madi
*/
public class Round42CC {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = Integer.parseInt(sc.nextLine());
String s = sc.nextLine();
int k = 0;
for (int i = 0; i < n; i++) {
if (s.charAt(i) == 'H') {
k++;
}
}
s = s + s.substring(0, k);
String ss = "";
int max = 0;
for (int i = 0; i < s.length() - k; i++) {
ss = s.substring(i, i + k);
int count = 0;
for (int j = 0; j < ss.length(); j++) {
if (ss.charAt(j) == 'H') {
count++;
}
}
if (count > max) {
max = count;
}
}
System.out.println(k - max);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import com.sun.org.apache.xpath.internal.axes.SubContextList;
import java.util.Scanner;
/**
*
* @author Madi
*/
public class Round42CC {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = Integer.parseInt(sc.nextLine());
String s = sc.nextLine();
int k = 0;
for (int i = 0; i < n; i++) {
if (s.charAt(i) == 'H') {
k++;
}
}
s = s + s.substring(0, k);
String ss = "";
int max = 0;
for (int i = 0; i < s.length() - k; i++) {
ss = s.substring(i, i + k);
int count = 0;
for (int j = 0; j < ss.length(); j++) {
if (ss.charAt(j) == 'H') {
count++;
}
}
if (count > max) {
max = count;
}
}
System.out.println(k - max);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 569 | 355 |
190 |
import java.util.Scanner;
public class NickAndArray {
public static void main(String args[])
{
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
int array[]=new int[n];
int max=Integer.MAX_VALUE;
int index=0;
for(int i=0;i<n;i++)
{
int k=sc.nextInt();
array[i]=k;
if(array[i]>=0)
{
array[i]=-array[i]-1;
}
if(array[i]<max)
{
max=array[i];
index=i;
}
}
if(n%2!=0)
{
array[index]=-array[index]-1;
}
for(int i=0;i<n;i++)
{
System.out.print(array[i]+" " );
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class NickAndArray {
public static void main(String args[])
{
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
int array[]=new int[n];
int max=Integer.MAX_VALUE;
int index=0;
for(int i=0;i<n;i++)
{
int k=sc.nextInt();
array[i]=k;
if(array[i]>=0)
{
array[i]=-array[i]-1;
}
if(array[i]<max)
{
max=array[i];
index=i;
}
}
if(n%2!=0)
{
array[index]=-array[index]-1;
}
for(int i=0;i<n;i++)
{
System.out.print(array[i]+" " );
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class NickAndArray {
public static void main(String args[])
{
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
int array[]=new int[n];
int max=Integer.MAX_VALUE;
int index=0;
for(int i=0;i<n;i++)
{
int k=sc.nextInt();
array[i]=k;
if(array[i]>=0)
{
array[i]=-array[i]-1;
}
if(array[i]<max)
{
max=array[i];
index=i;
}
}
if(n%2!=0)
{
array[index]=-array[index]-1;
}
for(int i=0;i<n;i++)
{
System.out.print(array[i]+" " );
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 499 | 190 |
2,293 |
import java.io.*;
import java.util.*;
public final class PythonIndentation
{
public static void main(String[] args)
{
new PythonIndentation(System.in, System.out);
}
static class Solver implements Runnable
{
static final int MOD = (int) 1e9 + 7;
int n;
char[] arr;
long[][] dp;
BufferedReader in;
PrintWriter out;
void solve() throws IOException
{
n = Integer.parseInt(in.readLine());
arr = new char[n];
dp = new long[n + 1][n + 1];
for (int i = 0; i < n; i++)
arr[i] = in.readLine().charAt(0);
for (int i = 0; i <= n; i++)
Arrays.fill(dp[i], -1);
dp[0][0] = 1;
if (arr[0] == 's')
out.println(find(1, 0));
else
out.println(find(1, 1));
}
long find(int curr, int backIndents)
{
if (backIndents < 0)
return 0;
if (curr == n)
return 1;
if (dp[curr][backIndents] != -1)
return dp[curr][backIndents];
long ans;
if (arr[curr] == 's')
ans = find(curr + 1, backIndents);
else
ans = find(curr + 1, backIndents + 1);
if (arr[curr - 1] != 'f')
ans = CMath.mod(ans + find(curr, backIndents - 1), MOD);
return dp[curr][backIndents] = ans;
}
public Solver(BufferedReader in, PrintWriter out)
{
this.in = in;
this.out = out;
}
@Override public void run()
{
try
{
solve();
}
catch (IOException e)
{
e.printStackTrace();
}
}
}
static class CMath
{
static long mod(long number, long mod)
{
return number - (number / mod) * mod;
}
}
private PythonIndentation(InputStream inputStream, OutputStream outputStream)
{
BufferedReader in = new BufferedReader(new InputStreamReader(inputStream));
PrintWriter out = new PrintWriter(outputStream);
Thread thread = new Thread(null, new Solver(in, out), "PythonIndentation", 1 << 29);
try
{
thread.start();
thread.join();
}
catch (InterruptedException e)
{
e.printStackTrace();
}
finally
{
try
{
in.close();
}
catch (IOException e)
{
e.printStackTrace();
}
out.flush();
out.close();
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public final class PythonIndentation
{
public static void main(String[] args)
{
new PythonIndentation(System.in, System.out);
}
static class Solver implements Runnable
{
static final int MOD = (int) 1e9 + 7;
int n;
char[] arr;
long[][] dp;
BufferedReader in;
PrintWriter out;
void solve() throws IOException
{
n = Integer.parseInt(in.readLine());
arr = new char[n];
dp = new long[n + 1][n + 1];
for (int i = 0; i < n; i++)
arr[i] = in.readLine().charAt(0);
for (int i = 0; i <= n; i++)
Arrays.fill(dp[i], -1);
dp[0][0] = 1;
if (arr[0] == 's')
out.println(find(1, 0));
else
out.println(find(1, 1));
}
long find(int curr, int backIndents)
{
if (backIndents < 0)
return 0;
if (curr == n)
return 1;
if (dp[curr][backIndents] != -1)
return dp[curr][backIndents];
long ans;
if (arr[curr] == 's')
ans = find(curr + 1, backIndents);
else
ans = find(curr + 1, backIndents + 1);
if (arr[curr - 1] != 'f')
ans = CMath.mod(ans + find(curr, backIndents - 1), MOD);
return dp[curr][backIndents] = ans;
}
public Solver(BufferedReader in, PrintWriter out)
{
this.in = in;
this.out = out;
}
@Override public void run()
{
try
{
solve();
}
catch (IOException e)
{
e.printStackTrace();
}
}
}
static class CMath
{
static long mod(long number, long mod)
{
return number - (number / mod) * mod;
}
}
private PythonIndentation(InputStream inputStream, OutputStream outputStream)
{
BufferedReader in = new BufferedReader(new InputStreamReader(inputStream));
PrintWriter out = new PrintWriter(outputStream);
Thread thread = new Thread(null, new Solver(in, out), "PythonIndentation", 1 << 29);
try
{
thread.start();
thread.join();
}
catch (InterruptedException e)
{
e.printStackTrace();
}
finally
{
try
{
in.close();
}
catch (IOException e)
{
e.printStackTrace();
}
out.flush();
out.close();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public final class PythonIndentation
{
public static void main(String[] args)
{
new PythonIndentation(System.in, System.out);
}
static class Solver implements Runnable
{
static final int MOD = (int) 1e9 + 7;
int n;
char[] arr;
long[][] dp;
BufferedReader in;
PrintWriter out;
void solve() throws IOException
{
n = Integer.parseInt(in.readLine());
arr = new char[n];
dp = new long[n + 1][n + 1];
for (int i = 0; i < n; i++)
arr[i] = in.readLine().charAt(0);
for (int i = 0; i <= n; i++)
Arrays.fill(dp[i], -1);
dp[0][0] = 1;
if (arr[0] == 's')
out.println(find(1, 0));
else
out.println(find(1, 1));
}
long find(int curr, int backIndents)
{
if (backIndents < 0)
return 0;
if (curr == n)
return 1;
if (dp[curr][backIndents] != -1)
return dp[curr][backIndents];
long ans;
if (arr[curr] == 's')
ans = find(curr + 1, backIndents);
else
ans = find(curr + 1, backIndents + 1);
if (arr[curr - 1] != 'f')
ans = CMath.mod(ans + find(curr, backIndents - 1), MOD);
return dp[curr][backIndents] = ans;
}
public Solver(BufferedReader in, PrintWriter out)
{
this.in = in;
this.out = out;
}
@Override public void run()
{
try
{
solve();
}
catch (IOException e)
{
e.printStackTrace();
}
}
}
static class CMath
{
static long mod(long number, long mod)
{
return number - (number / mod) * mod;
}
}
private PythonIndentation(InputStream inputStream, OutputStream outputStream)
{
BufferedReader in = new BufferedReader(new InputStreamReader(inputStream));
PrintWriter out = new PrintWriter(outputStream);
Thread thread = new Thread(null, new Solver(in, out), "PythonIndentation", 1 << 29);
try
{
thread.start();
thread.join();
}
catch (InterruptedException e)
{
e.printStackTrace();
}
finally
{
try
{
in.close();
}
catch (IOException e)
{
e.printStackTrace();
}
out.flush();
out.close();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 985 | 2,288 |
3,598 |
/*
If you want to aim high, aim high
Don't let that studying and grades consume you
Just live life young
******************************
What do you think? What do you think?
1st on Billboard, what do you think of it
Next is a Grammy, what do you think of it
However you think, I’m sorry, but shit, I have no fcking interest
*******************************
I'm standing on top of my Monopoly board
That means I'm on top of my game and it don't stop
til my hip don't hop anymore
https://www.a2oj.com/Ladder16.html
*******************************
300iq as writer = Sad!
*/
import java.util.*;
import java.io.*;
import java.math.*;
public class x35C
{
public static void main(String hi[]) throws Exception
{
BufferedReader infile = new BufferedReader(new FileReader("input.txt"));
StringTokenizer st = new StringTokenizer(infile.readLine());
int N = Integer.parseInt(st.nextToken());
int M = Integer.parseInt(st.nextToken());
int K = Integer.parseInt(infile.readLine());
int[][] grid = new int[N][M];
for(int i=0; i < N; i++)
Arrays.fill(grid[i], -1);
ArrayDeque<Integer> q = new ArrayDeque<Integer>();
st = new StringTokenizer(infile.readLine());
while(K-->0)
{
int a = Integer.parseInt(st.nextToken())-1;
int b = Integer.parseInt(st.nextToken())-1;
grid[a][b] = 0;
q.add(a); q.add(b);
}
while(q.size() > 0)
{
int x = q.poll();
int y = q.poll();
if(x > 0 && grid[x-1][y] == -1)
{
grid[x-1][y] = grid[x][y]+1;
q.add(x-1); q.add(y);
}
if(y > 0 && grid[x][y-1] == -1)
{
grid[x][y-1] = grid[x][y]+1;
q.add(x); q.add(y-1);
}
if(x+1 < N && grid[x+1][y] == -1)
{
grid[x+1][y] = grid[x][y]+1;
q.add(x+1); q.add(y);
}
if(y+1 < M && grid[x][y+1] == -1)
{
grid[x][y+1] = grid[x][y]+1;
q.add(x); q.add(y+1);
}
}
int r = 0;
int c = 0;
for(int i=0; i < N; i++)
for(int j=0; j < M; j++)
if(grid[r][c] < grid[i][j])
{
r = i;
c = j;
}
r++; c++;
System.setOut(new PrintStream(new File("output.txt")));
System.out.println(r+" "+c);
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
/*
If you want to aim high, aim high
Don't let that studying and grades consume you
Just live life young
******************************
What do you think? What do you think?
1st on Billboard, what do you think of it
Next is a Grammy, what do you think of it
However you think, I’m sorry, but shit, I have no fcking interest
*******************************
I'm standing on top of my Monopoly board
That means I'm on top of my game and it don't stop
til my hip don't hop anymore
https://www.a2oj.com/Ladder16.html
*******************************
300iq as writer = Sad!
*/
import java.util.*;
import java.io.*;
import java.math.*;
public class x35C
{
public static void main(String hi[]) throws Exception
{
BufferedReader infile = new BufferedReader(new FileReader("input.txt"));
StringTokenizer st = new StringTokenizer(infile.readLine());
int N = Integer.parseInt(st.nextToken());
int M = Integer.parseInt(st.nextToken());
int K = Integer.parseInt(infile.readLine());
int[][] grid = new int[N][M];
for(int i=0; i < N; i++)
Arrays.fill(grid[i], -1);
ArrayDeque<Integer> q = new ArrayDeque<Integer>();
st = new StringTokenizer(infile.readLine());
while(K-->0)
{
int a = Integer.parseInt(st.nextToken())-1;
int b = Integer.parseInt(st.nextToken())-1;
grid[a][b] = 0;
q.add(a); q.add(b);
}
while(q.size() > 0)
{
int x = q.poll();
int y = q.poll();
if(x > 0 && grid[x-1][y] == -1)
{
grid[x-1][y] = grid[x][y]+1;
q.add(x-1); q.add(y);
}
if(y > 0 && grid[x][y-1] == -1)
{
grid[x][y-1] = grid[x][y]+1;
q.add(x); q.add(y-1);
}
if(x+1 < N && grid[x+1][y] == -1)
{
grid[x+1][y] = grid[x][y]+1;
q.add(x+1); q.add(y);
}
if(y+1 < M && grid[x][y+1] == -1)
{
grid[x][y+1] = grid[x][y]+1;
q.add(x); q.add(y+1);
}
}
int r = 0;
int c = 0;
for(int i=0; i < N; i++)
for(int j=0; j < M; j++)
if(grid[r][c] < grid[i][j])
{
r = i;
c = j;
}
r++; c++;
System.setOut(new PrintStream(new File("output.txt")));
System.out.println(r+" "+c);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
/*
If you want to aim high, aim high
Don't let that studying and grades consume you
Just live life young
******************************
What do you think? What do you think?
1st on Billboard, what do you think of it
Next is a Grammy, what do you think of it
However you think, I’m sorry, but shit, I have no fcking interest
*******************************
I'm standing on top of my Monopoly board
That means I'm on top of my game and it don't stop
til my hip don't hop anymore
https://www.a2oj.com/Ladder16.html
*******************************
300iq as writer = Sad!
*/
import java.util.*;
import java.io.*;
import java.math.*;
public class x35C
{
public static void main(String hi[]) throws Exception
{
BufferedReader infile = new BufferedReader(new FileReader("input.txt"));
StringTokenizer st = new StringTokenizer(infile.readLine());
int N = Integer.parseInt(st.nextToken());
int M = Integer.parseInt(st.nextToken());
int K = Integer.parseInt(infile.readLine());
int[][] grid = new int[N][M];
for(int i=0; i < N; i++)
Arrays.fill(grid[i], -1);
ArrayDeque<Integer> q = new ArrayDeque<Integer>();
st = new StringTokenizer(infile.readLine());
while(K-->0)
{
int a = Integer.parseInt(st.nextToken())-1;
int b = Integer.parseInt(st.nextToken())-1;
grid[a][b] = 0;
q.add(a); q.add(b);
}
while(q.size() > 0)
{
int x = q.poll();
int y = q.poll();
if(x > 0 && grid[x-1][y] == -1)
{
grid[x-1][y] = grid[x][y]+1;
q.add(x-1); q.add(y);
}
if(y > 0 && grid[x][y-1] == -1)
{
grid[x][y-1] = grid[x][y]+1;
q.add(x); q.add(y-1);
}
if(x+1 < N && grid[x+1][y] == -1)
{
grid[x+1][y] = grid[x][y]+1;
q.add(x+1); q.add(y);
}
if(y+1 < M && grid[x][y+1] == -1)
{
grid[x][y+1] = grid[x][y]+1;
q.add(x); q.add(y+1);
}
}
int r = 0;
int c = 0;
for(int i=0; i < N; i++)
for(int j=0; j < M; j++)
if(grid[r][c] < grid[i][j])
{
r = i;
c = j;
}
r++; c++;
System.setOut(new PrintStream(new File("output.txt")));
System.out.println(r+" "+c);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 990 | 3,590 |
1,490 |
import java.awt.Point;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.HashSet;
import java.util.StringTokenizer;
import static java.lang.Math.*;
import static java.lang.Integer.*;
import static java.lang.Long.*;
import static java.lang.Character.*;
import static java.lang.String.*;
@SuppressWarnings("unused")
public class round169D {
static PrintWriter out = new PrintWriter(System.out);
static BufferedReader br = new BufferedReader(new InputStreamReader(
System.in));
static StringTokenizer st = new StringTokenizer("");
static int nextInt() throws Exception {
return Integer.parseInt(next());
}
static String next() throws Exception {
while (true) {
if (st.hasMoreTokens()) {
return st.nextToken();
}
String s = br.readLine();
if (s == null) {
return null;
}
st = new StringTokenizer(s);
}
}
public static void main(String[] args)throws Exception {
long l = parseLong(next());
long r = parseLong(next());
long [] min = new long [61];
for(int i = 1 ; i <= 60 ; ++i){//(2^i)-1 is obtained by min[i]^min[i]+1
min[i] = (long) pow(2, i - 1) - 1;
}
for(int i = 60 ; i >= 0 ; --i){//try to get 2^i-1 as answer.
if(min[i] >= r)
continue;
if(min[i] >= l && min[i] + 1 <= r){
out.println((long) pow(2, i) - 1);
out.flush();
return;
}
if(min[i] < l){
long one_jump = (long) pow(2, i);
long jumps = (long) ceil((l - min[i]) / (one_jump * 1.0));
long cur = min[i] + (jumps * one_jump);
if(cur >= l && cur + 1 <= r){
out.println((long) pow(2, i) - 1);
out.flush();
return;
}
}
}
out.println(0);
out.flush();
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.awt.Point;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.HashSet;
import java.util.StringTokenizer;
import static java.lang.Math.*;
import static java.lang.Integer.*;
import static java.lang.Long.*;
import static java.lang.Character.*;
import static java.lang.String.*;
@SuppressWarnings("unused")
public class round169D {
static PrintWriter out = new PrintWriter(System.out);
static BufferedReader br = new BufferedReader(new InputStreamReader(
System.in));
static StringTokenizer st = new StringTokenizer("");
static int nextInt() throws Exception {
return Integer.parseInt(next());
}
static String next() throws Exception {
while (true) {
if (st.hasMoreTokens()) {
return st.nextToken();
}
String s = br.readLine();
if (s == null) {
return null;
}
st = new StringTokenizer(s);
}
}
public static void main(String[] args)throws Exception {
long l = parseLong(next());
long r = parseLong(next());
long [] min = new long [61];
for(int i = 1 ; i <= 60 ; ++i){//(2^i)-1 is obtained by min[i]^min[i]+1
min[i] = (long) pow(2, i - 1) - 1;
}
for(int i = 60 ; i >= 0 ; --i){//try to get 2^i-1 as answer.
if(min[i] >= r)
continue;
if(min[i] >= l && min[i] + 1 <= r){
out.println((long) pow(2, i) - 1);
out.flush();
return;
}
if(min[i] < l){
long one_jump = (long) pow(2, i);
long jumps = (long) ceil((l - min[i]) / (one_jump * 1.0));
long cur = min[i] + (jumps * one_jump);
if(cur >= l && cur + 1 <= r){
out.println((long) pow(2, i) - 1);
out.flush();
return;
}
}
}
out.println(0);
out.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.awt.Point;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.HashSet;
import java.util.StringTokenizer;
import static java.lang.Math.*;
import static java.lang.Integer.*;
import static java.lang.Long.*;
import static java.lang.Character.*;
import static java.lang.String.*;
@SuppressWarnings("unused")
public class round169D {
static PrintWriter out = new PrintWriter(System.out);
static BufferedReader br = new BufferedReader(new InputStreamReader(
System.in));
static StringTokenizer st = new StringTokenizer("");
static int nextInt() throws Exception {
return Integer.parseInt(next());
}
static String next() throws Exception {
while (true) {
if (st.hasMoreTokens()) {
return st.nextToken();
}
String s = br.readLine();
if (s == null) {
return null;
}
st = new StringTokenizer(s);
}
}
public static void main(String[] args)throws Exception {
long l = parseLong(next());
long r = parseLong(next());
long [] min = new long [61];
for(int i = 1 ; i <= 60 ; ++i){//(2^i)-1 is obtained by min[i]^min[i]+1
min[i] = (long) pow(2, i - 1) - 1;
}
for(int i = 60 ; i >= 0 ; --i){//try to get 2^i-1 as answer.
if(min[i] >= r)
continue;
if(min[i] >= l && min[i] + 1 <= r){
out.println((long) pow(2, i) - 1);
out.flush();
return;
}
if(min[i] < l){
long one_jump = (long) pow(2, i);
long jumps = (long) ceil((l - min[i]) / (one_jump * 1.0));
long cur = min[i] + (jumps * one_jump);
if(cur >= l && cur + 1 <= r){
out.println((long) pow(2, i) - 1);
out.flush();
return;
}
}
}
out.println(0);
out.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 817 | 1,488 |
1,462 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.HashMap;
import java.util.Map;
import java.util.StringTokenizer;
public class Solver {
StringTokenizer st;
BufferedReader in;
PrintWriter out;
public static void main(String[] args) throws NumberFormatException,
IOException {
Solver solver = new Solver();
solver.open();
solver.solve();
solver.close();
}
public void open() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}
public String nextToken() throws IOException {
while (st == null || !st.hasMoreTokens()) {
String line = in.readLine();
if (line == null)
return null;
st = new StringTokenizer(line);
}
return st.nextToken();
}
public int nextInt() throws NumberFormatException, IOException {
return Integer.parseInt(nextToken());
}
public long nextLong() throws NumberFormatException, IOException {
return Long.parseLong(nextToken());
}
public double nextDouble() throws NumberFormatException, IOException {
return Double.parseDouble(nextToken());
}
int n;
class Otr {
int x1, y1, x2, y2;
int dx, dy;
public Otr(int x, int y, int dx, int dy) {
super();
this.x1 = x;
this.y1 = y;
this.x2 = x;
this.y2 = y;
this.dx = dx;
this.dy = dy;
}
int getAns() {
if (x1 == x2 && y1 == y2) {
int nx1 = x1 + dx;
int ny2 = y2 + dy;
if ((nx1 <= 0 || nx1 > n) && (ny2 <= 0 || ny2 > n)) {
return 0;
}
}
x1 += dx;
if (x1 <= 0) {
x1 = 1;
y1 += dy;
}
if (x1 > n) {
x1 = n;
y1 += dy;
}
y2 += dy;
if (y2 <= 0) {
y2 = 1;
x2 += dx;
}
if (y2 > n) {
y2 = n;
x2 += dx;
}
return Math.abs(x1 - x2) + 1;
}
@Override
public String toString() {
return "(" + x1 + "," + y1 + ")->(" + x2 + "," + y2 + ")";
}
}
int[] dxs = { -1, -1, 1, 1 };
int[] dys = { -1, 1, -1, 1 };
public void solve() throws NumberFormatException, IOException {
n = nextInt();
int x = nextInt();
int y = nextInt();
long c = nextLong();
long now = 1;
Otr[] otr = new Otr[4];
for (int i = 0; i < 4; i++) {
otr[i] = new Otr(x, y, dxs[i], dys[i]);
}
int result = 0;
while (now < c) {
for (int i = 0; i < 4; i++) {
now += otr[i].getAns();
}
for (int i = 0; i < 3; i++) {
for (int j = i + 1; j < 4; j++) {
Otr o1 = otr[i];
Otr o2 = otr[j];
if (o1.x1!=o1.x2 || o1.y1!=o1.y2){
if (o2.x1!=o2.x2 || o2.y1!=o2.y2){
if (o1.x1 == o2.x1 && o1.y1 == o2.y1) {
now--;
}
if (o1.x1 == o2.x2 && o1.y1 == o2.y2) {
now--;
}
if (o1.x2 == o2.x1 && o1.y2 == o2.y1) {
now--;
}
if (o1.x2 == o2.x2 && o1.y2 == o2.y2) {
now--;
}
}else{
if (o1.x1 == o2.x1 && o1.y1 == o2.y1) {
now--;
}
if (o1.x2 == o2.x1 && o1.y2 == o2.y1) {
now--;
}
}
}else{
if (o2.x1!=o2.x2 || o2.y1!=o2.y2){
if (o1.x2 == o2.x1 && o1.y2 == o2.y1) {
now--;
}
if (o1.x2 == o2.x2 && o1.y2 == o2.y2) {
now--;
}
}else{
if (o1.x1 == o2.x1 && o1.y1 == o2.y1) {
now--;
}
}
}
}
}
result++;
}
out.println(result);
}
public void close() {
out.flush();
out.close();
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.HashMap;
import java.util.Map;
import java.util.StringTokenizer;
public class Solver {
StringTokenizer st;
BufferedReader in;
PrintWriter out;
public static void main(String[] args) throws NumberFormatException,
IOException {
Solver solver = new Solver();
solver.open();
solver.solve();
solver.close();
}
public void open() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}
public String nextToken() throws IOException {
while (st == null || !st.hasMoreTokens()) {
String line = in.readLine();
if (line == null)
return null;
st = new StringTokenizer(line);
}
return st.nextToken();
}
public int nextInt() throws NumberFormatException, IOException {
return Integer.parseInt(nextToken());
}
public long nextLong() throws NumberFormatException, IOException {
return Long.parseLong(nextToken());
}
public double nextDouble() throws NumberFormatException, IOException {
return Double.parseDouble(nextToken());
}
int n;
class Otr {
int x1, y1, x2, y2;
int dx, dy;
public Otr(int x, int y, int dx, int dy) {
super();
this.x1 = x;
this.y1 = y;
this.x2 = x;
this.y2 = y;
this.dx = dx;
this.dy = dy;
}
int getAns() {
if (x1 == x2 && y1 == y2) {
int nx1 = x1 + dx;
int ny2 = y2 + dy;
if ((nx1 <= 0 || nx1 > n) && (ny2 <= 0 || ny2 > n)) {
return 0;
}
}
x1 += dx;
if (x1 <= 0) {
x1 = 1;
y1 += dy;
}
if (x1 > n) {
x1 = n;
y1 += dy;
}
y2 += dy;
if (y2 <= 0) {
y2 = 1;
x2 += dx;
}
if (y2 > n) {
y2 = n;
x2 += dx;
}
return Math.abs(x1 - x2) + 1;
}
@Override
public String toString() {
return "(" + x1 + "," + y1 + ")->(" + x2 + "," + y2 + ")";
}
}
int[] dxs = { -1, -1, 1, 1 };
int[] dys = { -1, 1, -1, 1 };
public void solve() throws NumberFormatException, IOException {
n = nextInt();
int x = nextInt();
int y = nextInt();
long c = nextLong();
long now = 1;
Otr[] otr = new Otr[4];
for (int i = 0; i < 4; i++) {
otr[i] = new Otr(x, y, dxs[i], dys[i]);
}
int result = 0;
while (now < c) {
for (int i = 0; i < 4; i++) {
now += otr[i].getAns();
}
for (int i = 0; i < 3; i++) {
for (int j = i + 1; j < 4; j++) {
Otr o1 = otr[i];
Otr o2 = otr[j];
if (o1.x1!=o1.x2 || o1.y1!=o1.y2){
if (o2.x1!=o2.x2 || o2.y1!=o2.y2){
if (o1.x1 == o2.x1 && o1.y1 == o2.y1) {
now--;
}
if (o1.x1 == o2.x2 && o1.y1 == o2.y2) {
now--;
}
if (o1.x2 == o2.x1 && o1.y2 == o2.y1) {
now--;
}
if (o1.x2 == o2.x2 && o1.y2 == o2.y2) {
now--;
}
}else{
if (o1.x1 == o2.x1 && o1.y1 == o2.y1) {
now--;
}
if (o1.x2 == o2.x1 && o1.y2 == o2.y1) {
now--;
}
}
}else{
if (o2.x1!=o2.x2 || o2.y1!=o2.y2){
if (o1.x2 == o2.x1 && o1.y2 == o2.y1) {
now--;
}
if (o1.x2 == o2.x2 && o1.y2 == o2.y2) {
now--;
}
}else{
if (o1.x1 == o2.x1 && o1.y1 == o2.y1) {
now--;
}
}
}
}
}
result++;
}
out.println(result);
}
public void close() {
out.flush();
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.HashMap;
import java.util.Map;
import java.util.StringTokenizer;
public class Solver {
StringTokenizer st;
BufferedReader in;
PrintWriter out;
public static void main(String[] args) throws NumberFormatException,
IOException {
Solver solver = new Solver();
solver.open();
solver.solve();
solver.close();
}
public void open() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}
public String nextToken() throws IOException {
while (st == null || !st.hasMoreTokens()) {
String line = in.readLine();
if (line == null)
return null;
st = new StringTokenizer(line);
}
return st.nextToken();
}
public int nextInt() throws NumberFormatException, IOException {
return Integer.parseInt(nextToken());
}
public long nextLong() throws NumberFormatException, IOException {
return Long.parseLong(nextToken());
}
public double nextDouble() throws NumberFormatException, IOException {
return Double.parseDouble(nextToken());
}
int n;
class Otr {
int x1, y1, x2, y2;
int dx, dy;
public Otr(int x, int y, int dx, int dy) {
super();
this.x1 = x;
this.y1 = y;
this.x2 = x;
this.y2 = y;
this.dx = dx;
this.dy = dy;
}
int getAns() {
if (x1 == x2 && y1 == y2) {
int nx1 = x1 + dx;
int ny2 = y2 + dy;
if ((nx1 <= 0 || nx1 > n) && (ny2 <= 0 || ny2 > n)) {
return 0;
}
}
x1 += dx;
if (x1 <= 0) {
x1 = 1;
y1 += dy;
}
if (x1 > n) {
x1 = n;
y1 += dy;
}
y2 += dy;
if (y2 <= 0) {
y2 = 1;
x2 += dx;
}
if (y2 > n) {
y2 = n;
x2 += dx;
}
return Math.abs(x1 - x2) + 1;
}
@Override
public String toString() {
return "(" + x1 + "," + y1 + ")->(" + x2 + "," + y2 + ")";
}
}
int[] dxs = { -1, -1, 1, 1 };
int[] dys = { -1, 1, -1, 1 };
public void solve() throws NumberFormatException, IOException {
n = nextInt();
int x = nextInt();
int y = nextInt();
long c = nextLong();
long now = 1;
Otr[] otr = new Otr[4];
for (int i = 0; i < 4; i++) {
otr[i] = new Otr(x, y, dxs[i], dys[i]);
}
int result = 0;
while (now < c) {
for (int i = 0; i < 4; i++) {
now += otr[i].getAns();
}
for (int i = 0; i < 3; i++) {
for (int j = i + 1; j < 4; j++) {
Otr o1 = otr[i];
Otr o2 = otr[j];
if (o1.x1!=o1.x2 || o1.y1!=o1.y2){
if (o2.x1!=o2.x2 || o2.y1!=o2.y2){
if (o1.x1 == o2.x1 && o1.y1 == o2.y1) {
now--;
}
if (o1.x1 == o2.x2 && o1.y1 == o2.y2) {
now--;
}
if (o1.x2 == o2.x1 && o1.y2 == o2.y1) {
now--;
}
if (o1.x2 == o2.x2 && o1.y2 == o2.y2) {
now--;
}
}else{
if (o1.x1 == o2.x1 && o1.y1 == o2.y1) {
now--;
}
if (o1.x2 == o2.x1 && o1.y2 == o2.y1) {
now--;
}
}
}else{
if (o2.x1!=o2.x2 || o2.y1!=o2.y2){
if (o1.x2 == o2.x1 && o1.y2 == o2.y1) {
now--;
}
if (o1.x2 == o2.x2 && o1.y2 == o2.y2) {
now--;
}
}else{
if (o1.x1 == o2.x1 && o1.y1 == o2.y1) {
now--;
}
}
}
}
}
result++;
}
out.println(result);
}
public void close() {
out.flush();
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,514 | 1,460 |
3,600 |
import java.io.*;
import java.util.*;
import java.lang.*;
public class Main {
public static void main(String[] args) throws IOException {
InputStream input = System.in;
OutputStream output = System.out;
InputReader in = new InputReader(new FileReader(new File("input.txt")));
PrintWriter out = new PrintWriter(new BufferedWriter(new FileWriter("output.txt")));
Solution s = new Solution();
s.solve(1, in, out);
out.close();
}
static class Solution {
static int[][] grid;
static int[] dx = {0, 0, 1, -1};
static int[] dy = {1, -1, 0, 0};
static int n, m;
public void solve(int cs, InputReader in, PrintWriter out) {
n = in.nextInt();
m = in.nextInt();
int k = in.nextInt();
grid = new int[n][m];
for (int[] d : grid)
Arrays.fill(d, -1);
for (int i = 0; i < k; i++) {
Pair tree = new Pair(in.nextInt()-1, in.nextInt()-1);
bfs(tree);
}
int max = 0, idx1 = 0, idx2 = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (grid[i][j] > max) {
max = grid[i][j];
idx1 = i;
idx2 = j;
}
}
}
out.printf("%d %d%n", idx1+1, idx2+1);
}
public boolean isValid(int i, int j) {
return i >= 0 && i < n && j >= 0 && j < m;
}
static class Pair {
int x, y;
public Pair(int x, int y) {
this.x = x;
this.y = y;
}
}
public void bfs(Pair src) {
Queue<Pair> q = new LinkedList<>();
grid[src.x][src.y] = 0;
q.add(src);
while (!q.isEmpty()) {
Pair p = q.poll();
for (int k = 0; k < 4; k++) {
int nx = p.x+dx[k];
int ny = p.y+dy[k];
if (isValid(nx, ny)) {
if (grid[nx][ny] > grid[p.x][p.y]+1 || grid[nx][ny] == -1) {
grid[nx][ny] = grid[p.x][p.y] + 1;
q.add(new Pair(nx, ny));
}
}
}
}
}
}
static class InputReader {
BufferedReader br;
StringTokenizer st;
public InputReader(InputStream i) {
br = new BufferedReader(new InputStreamReader(i), 32768);
st = null;
}
public InputReader(FileReader s) {
br = new BufferedReader(s);
st = null;
}
public String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.lang.*;
public class Main {
public static void main(String[] args) throws IOException {
InputStream input = System.in;
OutputStream output = System.out;
InputReader in = new InputReader(new FileReader(new File("input.txt")));
PrintWriter out = new PrintWriter(new BufferedWriter(new FileWriter("output.txt")));
Solution s = new Solution();
s.solve(1, in, out);
out.close();
}
static class Solution {
static int[][] grid;
static int[] dx = {0, 0, 1, -1};
static int[] dy = {1, -1, 0, 0};
static int n, m;
public void solve(int cs, InputReader in, PrintWriter out) {
n = in.nextInt();
m = in.nextInt();
int k = in.nextInt();
grid = new int[n][m];
for (int[] d : grid)
Arrays.fill(d, -1);
for (int i = 0; i < k; i++) {
Pair tree = new Pair(in.nextInt()-1, in.nextInt()-1);
bfs(tree);
}
int max = 0, idx1 = 0, idx2 = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (grid[i][j] > max) {
max = grid[i][j];
idx1 = i;
idx2 = j;
}
}
}
out.printf("%d %d%n", idx1+1, idx2+1);
}
public boolean isValid(int i, int j) {
return i >= 0 && i < n && j >= 0 && j < m;
}
static class Pair {
int x, y;
public Pair(int x, int y) {
this.x = x;
this.y = y;
}
}
public void bfs(Pair src) {
Queue<Pair> q = new LinkedList<>();
grid[src.x][src.y] = 0;
q.add(src);
while (!q.isEmpty()) {
Pair p = q.poll();
for (int k = 0; k < 4; k++) {
int nx = p.x+dx[k];
int ny = p.y+dy[k];
if (isValid(nx, ny)) {
if (grid[nx][ny] > grid[p.x][p.y]+1 || grid[nx][ny] == -1) {
grid[nx][ny] = grid[p.x][p.y] + 1;
q.add(new Pair(nx, ny));
}
}
}
}
}
}
static class InputReader {
BufferedReader br;
StringTokenizer st;
public InputReader(InputStream i) {
br = new BufferedReader(new InputStreamReader(i), 32768);
st = null;
}
public InputReader(FileReader s) {
br = new BufferedReader(s);
st = null;
}
public String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.lang.*;
public class Main {
public static void main(String[] args) throws IOException {
InputStream input = System.in;
OutputStream output = System.out;
InputReader in = new InputReader(new FileReader(new File("input.txt")));
PrintWriter out = new PrintWriter(new BufferedWriter(new FileWriter("output.txt")));
Solution s = new Solution();
s.solve(1, in, out);
out.close();
}
static class Solution {
static int[][] grid;
static int[] dx = {0, 0, 1, -1};
static int[] dy = {1, -1, 0, 0};
static int n, m;
public void solve(int cs, InputReader in, PrintWriter out) {
n = in.nextInt();
m = in.nextInt();
int k = in.nextInt();
grid = new int[n][m];
for (int[] d : grid)
Arrays.fill(d, -1);
for (int i = 0; i < k; i++) {
Pair tree = new Pair(in.nextInt()-1, in.nextInt()-1);
bfs(tree);
}
int max = 0, idx1 = 0, idx2 = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (grid[i][j] > max) {
max = grid[i][j];
idx1 = i;
idx2 = j;
}
}
}
out.printf("%d %d%n", idx1+1, idx2+1);
}
public boolean isValid(int i, int j) {
return i >= 0 && i < n && j >= 0 && j < m;
}
static class Pair {
int x, y;
public Pair(int x, int y) {
this.x = x;
this.y = y;
}
}
public void bfs(Pair src) {
Queue<Pair> q = new LinkedList<>();
grid[src.x][src.y] = 0;
q.add(src);
while (!q.isEmpty()) {
Pair p = q.poll();
for (int k = 0; k < 4; k++) {
int nx = p.x+dx[k];
int ny = p.y+dy[k];
if (isValid(nx, ny)) {
if (grid[nx][ny] > grid[p.x][p.y]+1 || grid[nx][ny] == -1) {
grid[nx][ny] = grid[p.x][p.y] + 1;
q.add(new Pair(nx, ny));
}
}
}
}
}
}
static class InputReader {
BufferedReader br;
StringTokenizer st;
public InputReader(InputStream i) {
br = new BufferedReader(new InputStreamReader(i), 32768);
st = null;
}
public InputReader(FileReader s) {
br = new BufferedReader(s);
st = null;
}
public String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,126 | 3,592 |
4,141 |
import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.HashMap;
import java.util.StringTokenizer;
public class CF8C {
static int n;
static int[] mem;
static HashMap<Integer, String> map;
static int INF = (int) 1e9;
static StringBuilder sb;
public static void main(String[] args) throws IOException {
MyScanner sc = new MyScanner(System.in);
String s = sc.nextLine();
n = sc.nextInt();
mem = new int[1 << n];
Arrays.fill(mem, -1);
map = new HashMap<>();
map.put(0, s);
for (int i = 1; i <= n; i++) {
map.put(i, sc.nextLine());
}
int val = dp(0);
PrintWriter pw = new PrintWriter(System.out);
pw.println(val);
sb = new StringBuilder();
sb.append("0 ");
build(0);
pw.println(sb);
pw.flush();
}
// node == 0 -- > count 0 // state == 0 has 1 // state == 1 has 2
private static int dp(int msk) {
if (msk == (1 << n) - 1)
return 0;
if(mem[msk] != -1)
return mem[msk];
boolean foundFirst = false;
int val = (int)1e9;
int mark = -1;
for (int i = 1; i <= n; i++) {
if ((msk & 1 << (i - 1)) == 0){
if(!foundFirst){
foundFirst = true;
mark = i;
val = dist(0, mark)*2 + dp(msk | 1 << (mark - 1));
}else{
val = Math.min(val, dist(0, mark) + dist(mark, i) + dist(i, 0) + dp((msk|1 << (mark - 1))|1 << (i - 1)));
}
}
}
return mem[msk] = val;
}
private static int dist(int node, int i) {
String from = map.get(i);
String to = map.get(node);
String[] fromco = from.split(" ");
String[] toco = to.split(" ");
int xs = Integer.parseInt(fromco[0]);
int ys = Integer.parseInt(fromco[1]);
int xf = Integer.parseInt(toco[0]);
int yf = Integer.parseInt(toco[1]);
return (xs - xf) * (xs - xf) + (ys - yf) * (ys - yf);
}
private static void build(int msk) {
if (msk == (1 << n) - 1)
return;
boolean foundFirst = false;
int ans = dp(msk);
int mark = -1;
int val = (int)1e9;
for (int i = 1; i <= n; i++) {
if ((msk & 1 << (i - 1)) == 0){
if(!foundFirst){
foundFirst = true;
mark = i;
val = dist(0, mark)*2 + dp(msk | 1 << (mark - 1));
if(val == ans){
sb.append(mark + " 0 ");
build(msk | 1 << (mark - 1));
return;
}
}else{
val = dist(0, mark) + dist(mark, i) + dist(i, 0) + dp(msk|1 << (mark - 1)|1 << (i - 1));
if(val == ans){
sb.append(mark + " " + i + " 0 ");
build(msk|1 << (mark - 1)|1 << (i - 1));
return;
}
}
}
}
}
static class MyScanner {
StringTokenizer st;
BufferedReader br;
public MyScanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public MyScanner(String s) throws FileNotFoundException {
br = new BufferedReader(new FileReader(new File(s)));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public boolean ready() throws IOException {
return br.ready();
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.HashMap;
import java.util.StringTokenizer;
public class CF8C {
static int n;
static int[] mem;
static HashMap<Integer, String> map;
static int INF = (int) 1e9;
static StringBuilder sb;
public static void main(String[] args) throws IOException {
MyScanner sc = new MyScanner(System.in);
String s = sc.nextLine();
n = sc.nextInt();
mem = new int[1 << n];
Arrays.fill(mem, -1);
map = new HashMap<>();
map.put(0, s);
for (int i = 1; i <= n; i++) {
map.put(i, sc.nextLine());
}
int val = dp(0);
PrintWriter pw = new PrintWriter(System.out);
pw.println(val);
sb = new StringBuilder();
sb.append("0 ");
build(0);
pw.println(sb);
pw.flush();
}
// node == 0 -- > count 0 // state == 0 has 1 // state == 1 has 2
private static int dp(int msk) {
if (msk == (1 << n) - 1)
return 0;
if(mem[msk] != -1)
return mem[msk];
boolean foundFirst = false;
int val = (int)1e9;
int mark = -1;
for (int i = 1; i <= n; i++) {
if ((msk & 1 << (i - 1)) == 0){
if(!foundFirst){
foundFirst = true;
mark = i;
val = dist(0, mark)*2 + dp(msk | 1 << (mark - 1));
}else{
val = Math.min(val, dist(0, mark) + dist(mark, i) + dist(i, 0) + dp((msk|1 << (mark - 1))|1 << (i - 1)));
}
}
}
return mem[msk] = val;
}
private static int dist(int node, int i) {
String from = map.get(i);
String to = map.get(node);
String[] fromco = from.split(" ");
String[] toco = to.split(" ");
int xs = Integer.parseInt(fromco[0]);
int ys = Integer.parseInt(fromco[1]);
int xf = Integer.parseInt(toco[0]);
int yf = Integer.parseInt(toco[1]);
return (xs - xf) * (xs - xf) + (ys - yf) * (ys - yf);
}
private static void build(int msk) {
if (msk == (1 << n) - 1)
return;
boolean foundFirst = false;
int ans = dp(msk);
int mark = -1;
int val = (int)1e9;
for (int i = 1; i <= n; i++) {
if ((msk & 1 << (i - 1)) == 0){
if(!foundFirst){
foundFirst = true;
mark = i;
val = dist(0, mark)*2 + dp(msk | 1 << (mark - 1));
if(val == ans){
sb.append(mark + " 0 ");
build(msk | 1 << (mark - 1));
return;
}
}else{
val = dist(0, mark) + dist(mark, i) + dist(i, 0) + dp(msk|1 << (mark - 1)|1 << (i - 1));
if(val == ans){
sb.append(mark + " " + i + " 0 ");
build(msk|1 << (mark - 1)|1 << (i - 1));
return;
}
}
}
}
}
static class MyScanner {
StringTokenizer st;
BufferedReader br;
public MyScanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public MyScanner(String s) throws FileNotFoundException {
br = new BufferedReader(new FileReader(new File(s)));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public boolean ready() throws IOException {
return br.ready();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.HashMap;
import java.util.StringTokenizer;
public class CF8C {
static int n;
static int[] mem;
static HashMap<Integer, String> map;
static int INF = (int) 1e9;
static StringBuilder sb;
public static void main(String[] args) throws IOException {
MyScanner sc = new MyScanner(System.in);
String s = sc.nextLine();
n = sc.nextInt();
mem = new int[1 << n];
Arrays.fill(mem, -1);
map = new HashMap<>();
map.put(0, s);
for (int i = 1; i <= n; i++) {
map.put(i, sc.nextLine());
}
int val = dp(0);
PrintWriter pw = new PrintWriter(System.out);
pw.println(val);
sb = new StringBuilder();
sb.append("0 ");
build(0);
pw.println(sb);
pw.flush();
}
// node == 0 -- > count 0 // state == 0 has 1 // state == 1 has 2
private static int dp(int msk) {
if (msk == (1 << n) - 1)
return 0;
if(mem[msk] != -1)
return mem[msk];
boolean foundFirst = false;
int val = (int)1e9;
int mark = -1;
for (int i = 1; i <= n; i++) {
if ((msk & 1 << (i - 1)) == 0){
if(!foundFirst){
foundFirst = true;
mark = i;
val = dist(0, mark)*2 + dp(msk | 1 << (mark - 1));
}else{
val = Math.min(val, dist(0, mark) + dist(mark, i) + dist(i, 0) + dp((msk|1 << (mark - 1))|1 << (i - 1)));
}
}
}
return mem[msk] = val;
}
private static int dist(int node, int i) {
String from = map.get(i);
String to = map.get(node);
String[] fromco = from.split(" ");
String[] toco = to.split(" ");
int xs = Integer.parseInt(fromco[0]);
int ys = Integer.parseInt(fromco[1]);
int xf = Integer.parseInt(toco[0]);
int yf = Integer.parseInt(toco[1]);
return (xs - xf) * (xs - xf) + (ys - yf) * (ys - yf);
}
private static void build(int msk) {
if (msk == (1 << n) - 1)
return;
boolean foundFirst = false;
int ans = dp(msk);
int mark = -1;
int val = (int)1e9;
for (int i = 1; i <= n; i++) {
if ((msk & 1 << (i - 1)) == 0){
if(!foundFirst){
foundFirst = true;
mark = i;
val = dist(0, mark)*2 + dp(msk | 1 << (mark - 1));
if(val == ans){
sb.append(mark + " 0 ");
build(msk | 1 << (mark - 1));
return;
}
}else{
val = dist(0, mark) + dist(mark, i) + dist(i, 0) + dp(msk|1 << (mark - 1)|1 << (i - 1));
if(val == ans){
sb.append(mark + " " + i + " 0 ");
build(msk|1 << (mark - 1)|1 << (i - 1));
return;
}
}
}
}
}
static class MyScanner {
StringTokenizer st;
BufferedReader br;
public MyScanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public MyScanner(String s) throws FileNotFoundException {
br = new BufferedReader(new FileReader(new File(s)));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public boolean ready() throws IOException {
return br.ready();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,567 | 4,130 |
2,863 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class Main {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String [] line = br.readLine().split(" ");
long l = Long.parseLong(line[0]);
long r = Long.parseLong(line[1]);
if(r-l < 2 || ((r-l == 2) && (l % 2 == 1)))
System.out.println("-1");
else
{
Long start = l + (l%2);
System.out.println(start + " " + (start + 1) + " " + (start + 2));
}
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class Main {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String [] line = br.readLine().split(" ");
long l = Long.parseLong(line[0]);
long r = Long.parseLong(line[1]);
if(r-l < 2 || ((r-l == 2) && (l % 2 == 1)))
System.out.println("-1");
else
{
Long start = l + (l%2);
System.out.println(start + " " + (start + 1) + " " + (start + 2));
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class Main {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String [] line = br.readLine().split(" ");
long l = Long.parseLong(line[0]);
long r = Long.parseLong(line[1]);
if(r-l < 2 || ((r-l == 2) && (l % 2 == 1)))
System.out.println("-1");
else
{
Long start = l + (l%2);
System.out.println(start + " " + (start + 1) + " " + (start + 2));
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 504 | 2,857 |
4,388 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.StringTokenizer;
public class Main {
static long[][] memo;
static boolean[][] adjMat;
static int N, endNode;
static ArrayList<Integer>[] bits;
static long dp(int idx, int msk) //complexity = N * 2^(N + 1)
{
if(memo[idx][msk] != -1)
return memo[idx][msk];
long ret = adjMat[idx][endNode] ? 1 : 0;
for(int i = 0, sz = bits[msk].size(); i < sz; ++i)
{
int j = bits[msk].get(i);
if(j > endNode)
break;
if(adjMat[idx][j])
ret += dp(j, msk | 1 << j);
}
return memo[idx][msk] = ret;
}
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
N = sc.nextInt();
adjMat = new boolean[N][N];
bits = new ArrayList[1 << N];
for(int i = 0; i < 1 << N; ++i)
{
bits[i] = new ArrayList<>(1);
for(int j = 0; j < N; ++j)
if((i & 1 << j) == 0)
bits[i].add(j);
}
int M = sc.nextInt();
while(M-->0)
{
int u = sc.nextInt() - 1, v = sc.nextInt() - 1;
adjMat[u][v] = adjMat[v][u] = true;
}
long ans = 0;
for(int i = N; i > 1; --i)
{
memo = new long[i][1 << i];
for(long[] x: memo)
Arrays.fill(x, -1);
ans += dp(endNode = i - 1, 1 << endNode);
}
for(int i = 0; i < N; ++i)
for(int j = i + 1; j < N; ++j)
if(adjMat[i][j])
--ans;
out.println(ans >> 1);
out.flush();
out.close();
}
static class Scanner
{
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s){ br = new BufferedReader(new InputStreamReader(s));}
public String next() throws IOException
{
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {return Integer.parseInt(next());}
public long nextLong() throws IOException {return Long.parseLong(next());}
public String nextLine() throws IOException {return br.readLine();}
public double nextDouble() throws IOException { return Double.parseDouble(next()); }
public boolean ready() throws IOException {return br.ready();}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.StringTokenizer;
public class Main {
static long[][] memo;
static boolean[][] adjMat;
static int N, endNode;
static ArrayList<Integer>[] bits;
static long dp(int idx, int msk) //complexity = N * 2^(N + 1)
{
if(memo[idx][msk] != -1)
return memo[idx][msk];
long ret = adjMat[idx][endNode] ? 1 : 0;
for(int i = 0, sz = bits[msk].size(); i < sz; ++i)
{
int j = bits[msk].get(i);
if(j > endNode)
break;
if(adjMat[idx][j])
ret += dp(j, msk | 1 << j);
}
return memo[idx][msk] = ret;
}
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
N = sc.nextInt();
adjMat = new boolean[N][N];
bits = new ArrayList[1 << N];
for(int i = 0; i < 1 << N; ++i)
{
bits[i] = new ArrayList<>(1);
for(int j = 0; j < N; ++j)
if((i & 1 << j) == 0)
bits[i].add(j);
}
int M = sc.nextInt();
while(M-->0)
{
int u = sc.nextInt() - 1, v = sc.nextInt() - 1;
adjMat[u][v] = adjMat[v][u] = true;
}
long ans = 0;
for(int i = N; i > 1; --i)
{
memo = new long[i][1 << i];
for(long[] x: memo)
Arrays.fill(x, -1);
ans += dp(endNode = i - 1, 1 << endNode);
}
for(int i = 0; i < N; ++i)
for(int j = i + 1; j < N; ++j)
if(adjMat[i][j])
--ans;
out.println(ans >> 1);
out.flush();
out.close();
}
static class Scanner
{
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s){ br = new BufferedReader(new InputStreamReader(s));}
public String next() throws IOException
{
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {return Integer.parseInt(next());}
public long nextLong() throws IOException {return Long.parseLong(next());}
public String nextLine() throws IOException {return br.readLine();}
public double nextDouble() throws IOException { return Double.parseDouble(next()); }
public boolean ready() throws IOException {return br.ready();}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.StringTokenizer;
public class Main {
static long[][] memo;
static boolean[][] adjMat;
static int N, endNode;
static ArrayList<Integer>[] bits;
static long dp(int idx, int msk) //complexity = N * 2^(N + 1)
{
if(memo[idx][msk] != -1)
return memo[idx][msk];
long ret = adjMat[idx][endNode] ? 1 : 0;
for(int i = 0, sz = bits[msk].size(); i < sz; ++i)
{
int j = bits[msk].get(i);
if(j > endNode)
break;
if(adjMat[idx][j])
ret += dp(j, msk | 1 << j);
}
return memo[idx][msk] = ret;
}
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
N = sc.nextInt();
adjMat = new boolean[N][N];
bits = new ArrayList[1 << N];
for(int i = 0; i < 1 << N; ++i)
{
bits[i] = new ArrayList<>(1);
for(int j = 0; j < N; ++j)
if((i & 1 << j) == 0)
bits[i].add(j);
}
int M = sc.nextInt();
while(M-->0)
{
int u = sc.nextInt() - 1, v = sc.nextInt() - 1;
adjMat[u][v] = adjMat[v][u] = true;
}
long ans = 0;
for(int i = N; i > 1; --i)
{
memo = new long[i][1 << i];
for(long[] x: memo)
Arrays.fill(x, -1);
ans += dp(endNode = i - 1, 1 << endNode);
}
for(int i = 0; i < N; ++i)
for(int j = i + 1; j < N; ++j)
if(adjMat[i][j])
--ans;
out.println(ans >> 1);
out.flush();
out.close();
}
static class Scanner
{
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s){ br = new BufferedReader(new InputStreamReader(s));}
public String next() throws IOException
{
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {return Integer.parseInt(next());}
public long nextLong() throws IOException {return Long.parseLong(next());}
public String nextLine() throws IOException {return br.readLine();}
public double nextDouble() throws IOException { return Double.parseDouble(next()); }
public boolean ready() throws IOException {return br.ready();}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,050 | 4,377 |
740 |
import java.util.Scanner;
public class Main {
public static void main(String args[]) {
Scanner in=new Scanner(System.in);
String str=in.next();
int cnt=0;
for(int i=0;i<str.length();++i) {
if(str.charAt(i)=='1') {
++cnt;
}
}
int i=0;
for(;i<str.length();++i) {
if(str.charAt(i)=='0') {
System.out.print("0");
}
else if(str.charAt(i)=='2') {
while(cnt-->0) {//
System.out.print("1");
}
System.out.print("2");
}
}
while(cnt-->0) {
System.out.print("1");
}
in.close();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class Main {
public static void main(String args[]) {
Scanner in=new Scanner(System.in);
String str=in.next();
int cnt=0;
for(int i=0;i<str.length();++i) {
if(str.charAt(i)=='1') {
++cnt;
}
}
int i=0;
for(;i<str.length();++i) {
if(str.charAt(i)=='0') {
System.out.print("0");
}
else if(str.charAt(i)=='2') {
while(cnt-->0) {//
System.out.print("1");
}
System.out.print("2");
}
}
while(cnt-->0) {
System.out.print("1");
}
in.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class Main {
public static void main(String args[]) {
Scanner in=new Scanner(System.in);
String str=in.next();
int cnt=0;
for(int i=0;i<str.length();++i) {
if(str.charAt(i)=='1') {
++cnt;
}
}
int i=0;
for(;i<str.length();++i) {
if(str.charAt(i)=='0') {
System.out.print("0");
}
else if(str.charAt(i)=='2') {
while(cnt-->0) {//
System.out.print("1");
}
System.out.print("2");
}
}
while(cnt-->0) {
System.out.print("1");
}
in.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 504 | 739 |
2,474 |
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] arr = new int[n];
arr[0] = sc.nextInt();
for (int i = 1; i < n; i++) {
arr[i] = arr[i - 1] + sc.nextInt();
}
HashMap<Integer, List<Pair>> map = new HashMap<>();
for (int i = 0; i < n; i++) {
if (map.containsKey(arr[i])) map.get(arr[i]).add(new Pair(0, i));
else {
List<Pair> l = new ArrayList<>();
l.add(new Pair(0, i));
map.put(arr[i], l);
}
for (int j = 1; j <= i; j++) {
int ss = arr[i] - arr[j - 1];
if (map.containsKey(ss)) map.get(ss).add(new Pair(j, i));
else {
List<Pair> l = new ArrayList<>();
l.add(new Pair(j, i));
map.put(ss, l);
}
}
}
List<Pair> el = null;
for (List<Pair> value : map.values()) {
value.sort(Comparator.comparingInt(Pair::getStart));
ArrayList<Pair> ps = new ArrayList<>();
Pair last = value.get(0);
for (int i = 1; i < value.size(); i++) {
if (last.getEnd() < value.get(i).getStart()) {
ps.add(last);
last = value.get(i);
}
else if (last.getEnd() > value.get(i).getEnd()) last = value.get(i);
}
ps.add(last);
if (el == null) el = ps;
else if (ps.size() > el.size()) el = ps;
}
System.out.println(el.size());
for (Pair pair : el) {
System.out.println((pair.getStart() + 1) + " " + (pair.getEnd() + 1));
}
}
}
class Pair {
private final int start;
private final int end;
public int getStart() {
return start;
}
public int getEnd() {
return end;
}
public Pair(int start, int end) {
this.start = start;
this.end = end;
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] arr = new int[n];
arr[0] = sc.nextInt();
for (int i = 1; i < n; i++) {
arr[i] = arr[i - 1] + sc.nextInt();
}
HashMap<Integer, List<Pair>> map = new HashMap<>();
for (int i = 0; i < n; i++) {
if (map.containsKey(arr[i])) map.get(arr[i]).add(new Pair(0, i));
else {
List<Pair> l = new ArrayList<>();
l.add(new Pair(0, i));
map.put(arr[i], l);
}
for (int j = 1; j <= i; j++) {
int ss = arr[i] - arr[j - 1];
if (map.containsKey(ss)) map.get(ss).add(new Pair(j, i));
else {
List<Pair> l = new ArrayList<>();
l.add(new Pair(j, i));
map.put(ss, l);
}
}
}
List<Pair> el = null;
for (List<Pair> value : map.values()) {
value.sort(Comparator.comparingInt(Pair::getStart));
ArrayList<Pair> ps = new ArrayList<>();
Pair last = value.get(0);
for (int i = 1; i < value.size(); i++) {
if (last.getEnd() < value.get(i).getStart()) {
ps.add(last);
last = value.get(i);
}
else if (last.getEnd() > value.get(i).getEnd()) last = value.get(i);
}
ps.add(last);
if (el == null) el = ps;
else if (ps.size() > el.size()) el = ps;
}
System.out.println(el.size());
for (Pair pair : el) {
System.out.println((pair.getStart() + 1) + " " + (pair.getEnd() + 1));
}
}
}
class Pair {
private final int start;
private final int end;
public int getStart() {
return start;
}
public int getEnd() {
return end;
}
public Pair(int start, int end) {
this.start = start;
this.end = end;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] arr = new int[n];
arr[0] = sc.nextInt();
for (int i = 1; i < n; i++) {
arr[i] = arr[i - 1] + sc.nextInt();
}
HashMap<Integer, List<Pair>> map = new HashMap<>();
for (int i = 0; i < n; i++) {
if (map.containsKey(arr[i])) map.get(arr[i]).add(new Pair(0, i));
else {
List<Pair> l = new ArrayList<>();
l.add(new Pair(0, i));
map.put(arr[i], l);
}
for (int j = 1; j <= i; j++) {
int ss = arr[i] - arr[j - 1];
if (map.containsKey(ss)) map.get(ss).add(new Pair(j, i));
else {
List<Pair> l = new ArrayList<>();
l.add(new Pair(j, i));
map.put(ss, l);
}
}
}
List<Pair> el = null;
for (List<Pair> value : map.values()) {
value.sort(Comparator.comparingInt(Pair::getStart));
ArrayList<Pair> ps = new ArrayList<>();
Pair last = value.get(0);
for (int i = 1; i < value.size(); i++) {
if (last.getEnd() < value.get(i).getStart()) {
ps.add(last);
last = value.get(i);
}
else if (last.getEnd() > value.get(i).getEnd()) last = value.get(i);
}
ps.add(last);
if (el == null) el = ps;
else if (ps.size() > el.size()) el = ps;
}
System.out.println(el.size());
for (Pair pair : el) {
System.out.println((pair.getStart() + 1) + " " + (pair.getEnd() + 1));
}
}
}
class Pair {
private final int start;
private final int end;
public int getStart() {
return start;
}
public int getEnd() {
return end;
}
public Pair(int start, int end) {
this.start = start;
this.end = end;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 864 | 2,469 |
1,200 |
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.InputMismatchException;
public class CFFF {
static PrintWriter out;
static final int oo = 987654321;
static final long mod = (long)(1e9)+9;
public static void main(String[] args) {
MScanner sc = new MScanner();
out = new PrintWriter(System.out);
long N = sc.nextLong();
long M = sc.nextLong();
long K = sc.nextLong();
if(M<=N-N/K)
out.println(M);
else{
long ans = (fastModExpo(2,M-(N-N%K)/K*(K-1)-N%K+1,mod)-2)*K+M-(M-(N-N%K)/K*(K-1)-N%K)*K;
out.println((mod+ans)%mod);
}
out.close();
}
static long fastModExpo(int base, long pow, long mod) {
if (pow == 0)
return 1L;
if ((pow & 1) == 1)
return (base*fastModExpo(base, pow - 1,mod))%mod;
long temp = fastModExpo(base, pow / 2, mod);
return (temp*temp)%mod;
}
static class MScanner {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public MScanner() {
stream = System.in;
// stream = new FileInputStream(new File("dec.in"));
}
int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
boolean isEndline(int c) {
return c == '\n' || c == '\r' || c == -1;
}
int nextInt() {
return Integer.parseInt(next());
}
int[] nextInt(int N) {
int[] ret = new int[N];
for (int a = 0; a < N; a++)
ret[a] = nextInt();
return ret;
}
int[][] nextInt(int N, int M) {
int[][] ret = new int[N][M];
for (int a = 0; a < N; a++)
ret[a] = nextInt(M);
return ret;
}
long nextLong() {
return Long.parseLong(next());
}
long[] nextLong(int N) {
long[] ret = new long[N];
for (int a = 0; a < N; a++)
ret[a] = nextLong();
return ret;
}
double nextDouble() {
return Double.parseDouble(next());
}
double[] nextDouble(int N) {
double[] ret = new double[N];
for (int a = 0; a < N; a++)
ret[a] = nextDouble();
return ret;
}
String next() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
String[] next(int N) {
String[] ret = new String[N];
for (int a = 0; a < N; a++)
ret[a] = next();
return ret;
}
String nextLine() {
int c = read();
while (isEndline(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndline(c));
return res.toString();
}
String[] nextLine(int N) {
String[] ret = new String[N];
for (int a = 0; a < N; a++)
ret[a] = nextLine();
return ret;
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.InputMismatchException;
public class CFFF {
static PrintWriter out;
static final int oo = 987654321;
static final long mod = (long)(1e9)+9;
public static void main(String[] args) {
MScanner sc = new MScanner();
out = new PrintWriter(System.out);
long N = sc.nextLong();
long M = sc.nextLong();
long K = sc.nextLong();
if(M<=N-N/K)
out.println(M);
else{
long ans = (fastModExpo(2,M-(N-N%K)/K*(K-1)-N%K+1,mod)-2)*K+M-(M-(N-N%K)/K*(K-1)-N%K)*K;
out.println((mod+ans)%mod);
}
out.close();
}
static long fastModExpo(int base, long pow, long mod) {
if (pow == 0)
return 1L;
if ((pow & 1) == 1)
return (base*fastModExpo(base, pow - 1,mod))%mod;
long temp = fastModExpo(base, pow / 2, mod);
return (temp*temp)%mod;
}
static class MScanner {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public MScanner() {
stream = System.in;
// stream = new FileInputStream(new File("dec.in"));
}
int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
boolean isEndline(int c) {
return c == '\n' || c == '\r' || c == -1;
}
int nextInt() {
return Integer.parseInt(next());
}
int[] nextInt(int N) {
int[] ret = new int[N];
for (int a = 0; a < N; a++)
ret[a] = nextInt();
return ret;
}
int[][] nextInt(int N, int M) {
int[][] ret = new int[N][M];
for (int a = 0; a < N; a++)
ret[a] = nextInt(M);
return ret;
}
long nextLong() {
return Long.parseLong(next());
}
long[] nextLong(int N) {
long[] ret = new long[N];
for (int a = 0; a < N; a++)
ret[a] = nextLong();
return ret;
}
double nextDouble() {
return Double.parseDouble(next());
}
double[] nextDouble(int N) {
double[] ret = new double[N];
for (int a = 0; a < N; a++)
ret[a] = nextDouble();
return ret;
}
String next() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
String[] next(int N) {
String[] ret = new String[N];
for (int a = 0; a < N; a++)
ret[a] = next();
return ret;
}
String nextLine() {
int c = read();
while (isEndline(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndline(c));
return res.toString();
}
String[] nextLine(int N) {
String[] ret = new String[N];
for (int a = 0; a < N; a++)
ret[a] = nextLine();
return ret;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.InputMismatchException;
public class CFFF {
static PrintWriter out;
static final int oo = 987654321;
static final long mod = (long)(1e9)+9;
public static void main(String[] args) {
MScanner sc = new MScanner();
out = new PrintWriter(System.out);
long N = sc.nextLong();
long M = sc.nextLong();
long K = sc.nextLong();
if(M<=N-N/K)
out.println(M);
else{
long ans = (fastModExpo(2,M-(N-N%K)/K*(K-1)-N%K+1,mod)-2)*K+M-(M-(N-N%K)/K*(K-1)-N%K)*K;
out.println((mod+ans)%mod);
}
out.close();
}
static long fastModExpo(int base, long pow, long mod) {
if (pow == 0)
return 1L;
if ((pow & 1) == 1)
return (base*fastModExpo(base, pow - 1,mod))%mod;
long temp = fastModExpo(base, pow / 2, mod);
return (temp*temp)%mod;
}
static class MScanner {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public MScanner() {
stream = System.in;
// stream = new FileInputStream(new File("dec.in"));
}
int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
boolean isEndline(int c) {
return c == '\n' || c == '\r' || c == -1;
}
int nextInt() {
return Integer.parseInt(next());
}
int[] nextInt(int N) {
int[] ret = new int[N];
for (int a = 0; a < N; a++)
ret[a] = nextInt();
return ret;
}
int[][] nextInt(int N, int M) {
int[][] ret = new int[N][M];
for (int a = 0; a < N; a++)
ret[a] = nextInt(M);
return ret;
}
long nextLong() {
return Long.parseLong(next());
}
long[] nextLong(int N) {
long[] ret = new long[N];
for (int a = 0; a < N; a++)
ret[a] = nextLong();
return ret;
}
double nextDouble() {
return Double.parseDouble(next());
}
double[] nextDouble(int N) {
double[] ret = new double[N];
for (int a = 0; a < N; a++)
ret[a] = nextDouble();
return ret;
}
String next() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
String[] next(int N) {
String[] ret = new String[N];
for (int a = 0; a < N; a++)
ret[a] = next();
return ret;
}
String nextLine() {
int c = read();
while (isEndline(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndline(c));
return res.toString();
}
String[] nextLine(int N) {
String[] ret = new String[N];
for (int a = 0; a < N; a++)
ret[a] = nextLine();
return ret;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,348 | 1,199 |
3,608 |
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;
public class Main {
static class Point {
int x;
int y;
Point(int a, int b) {
x = a;
y = b;
}
@Override
public String toString() {
return "Point{" +
"x=" + x +
", y=" + y +
'}';
}
}
public static void main(String[] args) throws IOException {
File f = new File("input.txt");
Scanner sc = new Scanner(f);
BufferedWriter bw = new BufferedWriter(new FileWriter(new File("output.txt")));
int n = sc.nextInt();
int m = sc.nextInt();
boolean[][] board = new boolean[n][m];
int count = sc.nextInt();
Point[] burningTrees = new Point[count];
for (int i=0; i<count; i++) {
burningTrees[i] = new Point(sc.nextInt() - 1,sc.nextInt() - 1);
}
Point last = findLastPoint(board,burningTrees);
bw.append((last.x + 1) + " " + (last.y + 1) + "\n");
bw.flush();
bw.close();
sc.close();
}
public static Point findLastPoint(boolean[][] board, Point[] burningTree){
Queue<Point> queue = new LinkedList<Point>();
for(int i = 0; i <burningTree.length; i++ ) {
queue.add(burningTree[i]);
board[burningTree[i].x][burningTree[i].y] = true;
}
Point lastPoint = new Point(-1,-1);
while (!queue.isEmpty()) {
Point p = queue.poll();
lastPoint = p;
ArrayList<Point> neighbours = getNeighbours(p,board);
for(int i = 0; i <neighbours.size(); i++ ) {
queue.add(neighbours.get(i));
board[neighbours.get(i).x][neighbours.get(i).y] = true;
}
}
return lastPoint;
}
public static ArrayList<Point> getNeighbours(Point p, boolean[][] board){
ArrayList<Point> neighbours = new ArrayList<>();
for(int i = -1; i <=1; i++ ){
for(int j = -1; j <= 1; j++ ){
if(Math.abs(i) != Math.abs(j)) {
int x = p.x + i;
int y = p.y + j;
if (x >= 0 && x < board.length && y >= 0 && y < board[0].length) {
if (board[x][y] == false) {
neighbours.add(new Point(x,y));
}
}
}
}
}
return neighbours;
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;
public class Main {
static class Point {
int x;
int y;
Point(int a, int b) {
x = a;
y = b;
}
@Override
public String toString() {
return "Point{" +
"x=" + x +
", y=" + y +
'}';
}
}
public static void main(String[] args) throws IOException {
File f = new File("input.txt");
Scanner sc = new Scanner(f);
BufferedWriter bw = new BufferedWriter(new FileWriter(new File("output.txt")));
int n = sc.nextInt();
int m = sc.nextInt();
boolean[][] board = new boolean[n][m];
int count = sc.nextInt();
Point[] burningTrees = new Point[count];
for (int i=0; i<count; i++) {
burningTrees[i] = new Point(sc.nextInt() - 1,sc.nextInt() - 1);
}
Point last = findLastPoint(board,burningTrees);
bw.append((last.x + 1) + " " + (last.y + 1) + "\n");
bw.flush();
bw.close();
sc.close();
}
public static Point findLastPoint(boolean[][] board, Point[] burningTree){
Queue<Point> queue = new LinkedList<Point>();
for(int i = 0; i <burningTree.length; i++ ) {
queue.add(burningTree[i]);
board[burningTree[i].x][burningTree[i].y] = true;
}
Point lastPoint = new Point(-1,-1);
while (!queue.isEmpty()) {
Point p = queue.poll();
lastPoint = p;
ArrayList<Point> neighbours = getNeighbours(p,board);
for(int i = 0; i <neighbours.size(); i++ ) {
queue.add(neighbours.get(i));
board[neighbours.get(i).x][neighbours.get(i).y] = true;
}
}
return lastPoint;
}
public static ArrayList<Point> getNeighbours(Point p, boolean[][] board){
ArrayList<Point> neighbours = new ArrayList<>();
for(int i = -1; i <=1; i++ ){
for(int j = -1; j <= 1; j++ ){
if(Math.abs(i) != Math.abs(j)) {
int x = p.x + i;
int y = p.y + j;
if (x >= 0 && x < board.length && y >= 0 && y < board[0].length) {
if (board[x][y] == false) {
neighbours.add(new Point(x,y));
}
}
}
}
}
return neighbours;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;
public class Main {
static class Point {
int x;
int y;
Point(int a, int b) {
x = a;
y = b;
}
@Override
public String toString() {
return "Point{" +
"x=" + x +
", y=" + y +
'}';
}
}
public static void main(String[] args) throws IOException {
File f = new File("input.txt");
Scanner sc = new Scanner(f);
BufferedWriter bw = new BufferedWriter(new FileWriter(new File("output.txt")));
int n = sc.nextInt();
int m = sc.nextInt();
boolean[][] board = new boolean[n][m];
int count = sc.nextInt();
Point[] burningTrees = new Point[count];
for (int i=0; i<count; i++) {
burningTrees[i] = new Point(sc.nextInt() - 1,sc.nextInt() - 1);
}
Point last = findLastPoint(board,burningTrees);
bw.append((last.x + 1) + " " + (last.y + 1) + "\n");
bw.flush();
bw.close();
sc.close();
}
public static Point findLastPoint(boolean[][] board, Point[] burningTree){
Queue<Point> queue = new LinkedList<Point>();
for(int i = 0; i <burningTree.length; i++ ) {
queue.add(burningTree[i]);
board[burningTree[i].x][burningTree[i].y] = true;
}
Point lastPoint = new Point(-1,-1);
while (!queue.isEmpty()) {
Point p = queue.poll();
lastPoint = p;
ArrayList<Point> neighbours = getNeighbours(p,board);
for(int i = 0; i <neighbours.size(); i++ ) {
queue.add(neighbours.get(i));
board[neighbours.get(i).x][neighbours.get(i).y] = true;
}
}
return lastPoint;
}
public static ArrayList<Point> getNeighbours(Point p, boolean[][] board){
ArrayList<Point> neighbours = new ArrayList<>();
for(int i = -1; i <=1; i++ ){
for(int j = -1; j <= 1; j++ ){
if(Math.abs(i) != Math.abs(j)) {
int x = p.x + i;
int y = p.y + j;
if (x >= 0 && x < board.length && y >= 0 && y < board[0].length) {
if (board[x][y] == false) {
neighbours.add(new Point(x,y));
}
}
}
}
}
return neighbours;
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 968 | 3,600 |
610 |
import java.util.Arrays;
import java.util.Scanner;
public class SonyaAndHotels {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int d = sc.nextInt();
int[] locs = new int[n];
for (int i = 0; i < n; i++) {
locs[i] = sc.nextInt();
}
Arrays.sort(locs);
int count = 2;
for (int i = 0; i < locs.length-1; i++) {
if(locs[i+1]-locs[i]==2*d){
count++;
}else if(locs[i+1]-locs[i]>2*d){
count+=2;
}
}
System.out.println(count);
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
public class SonyaAndHotels {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int d = sc.nextInt();
int[] locs = new int[n];
for (int i = 0; i < n; i++) {
locs[i] = sc.nextInt();
}
Arrays.sort(locs);
int count = 2;
for (int i = 0; i < locs.length-1; i++) {
if(locs[i+1]-locs[i]==2*d){
count++;
}else if(locs[i+1]-locs[i]>2*d){
count+=2;
}
}
System.out.println(count);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
public class SonyaAndHotels {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int d = sc.nextInt();
int[] locs = new int[n];
for (int i = 0; i < n; i++) {
locs[i] = sc.nextInt();
}
Arrays.sort(locs);
int count = 2;
for (int i = 0; i < locs.length-1; i++) {
if(locs[i+1]-locs[i]==2*d){
count++;
}else if(locs[i+1]-locs[i]>2*d){
count+=2;
}
}
System.out.println(count);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 523 | 609 |
195 |
import java.io.BufferedOutputStream;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class Equator {
public static BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
public static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out));
public static StringTokenizer st;
public static void main(String[] args) throws IOException {
int n = nextInt();
int[] a = intArray(n);
long s = 0;
for (int x : a)
s += x;
long m = 0;
for (int i = 0; i < n; i++) {
m += a[i];
if (m*2 >= s) {
System.out.println(i+1);
return;
}
}
}
public static String nextLine() throws IOException {
return in.readLine();
}
public static String nextString() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(in.readLine());
return st.nextToken();
}
public static int nextInt() throws IOException {
return Integer.parseInt(nextString());
}
public static long nextLong() throws IOException {
return Long.parseLong(nextString());
}
public static int[] intArray(int n) throws IOException {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public static int[][] intArray(int n, int m) throws IOException {
int[][] a = new int[n][m];
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
a[i][j] = nextInt();
return a;
}
public static long[] longArray(int n) throws IOException {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedOutputStream;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class Equator {
public static BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
public static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out));
public static StringTokenizer st;
public static void main(String[] args) throws IOException {
int n = nextInt();
int[] a = intArray(n);
long s = 0;
for (int x : a)
s += x;
long m = 0;
for (int i = 0; i < n; i++) {
m += a[i];
if (m*2 >= s) {
System.out.println(i+1);
return;
}
}
}
public static String nextLine() throws IOException {
return in.readLine();
}
public static String nextString() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(in.readLine());
return st.nextToken();
}
public static int nextInt() throws IOException {
return Integer.parseInt(nextString());
}
public static long nextLong() throws IOException {
return Long.parseLong(nextString());
}
public static int[] intArray(int n) throws IOException {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public static int[][] intArray(int n, int m) throws IOException {
int[][] a = new int[n][m];
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
a[i][j] = nextInt();
return a;
}
public static long[] longArray(int n) throws IOException {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedOutputStream;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class Equator {
public static BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
public static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out));
public static StringTokenizer st;
public static void main(String[] args) throws IOException {
int n = nextInt();
int[] a = intArray(n);
long s = 0;
for (int x : a)
s += x;
long m = 0;
for (int i = 0; i < n; i++) {
m += a[i];
if (m*2 >= s) {
System.out.println(i+1);
return;
}
}
}
public static String nextLine() throws IOException {
return in.readLine();
}
public static String nextString() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(in.readLine());
return st.nextToken();
}
public static int nextInt() throws IOException {
return Integer.parseInt(nextString());
}
public static long nextLong() throws IOException {
return Long.parseLong(nextString());
}
public static int[] intArray(int n) throws IOException {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public static int[][] intArray(int n, int m) throws IOException {
int[][] a = new int[n][m];
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
a[i][j] = nextInt();
return a;
}
public static long[] longArray(int n) throws IOException {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 766 | 195 |
120 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in Actual solution is at the top
*
* @author @Ziklon
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
ABirthday solver = new ABirthday();
solver.solve(1, in, out);
out.close();
}
static class ABirthday {
public void solve(int testNumber, InputReader in, OutputWriter out) {
long N = in.readLong(), M = in.readLong(), K = in.readLong(), L = in.readLong();
long ans = ((L + K) - 1) / M + 1;
if (ans * M > N || ans * M - K < L) out.printLine(-1);
else out.printLine(ans);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void printLine(long i) {
writer.println(i);
}
public void printLine(int i) {
writer.println(i);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public long readLong() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in Actual solution is at the top
*
* @author @Ziklon
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
ABirthday solver = new ABirthday();
solver.solve(1, in, out);
out.close();
}
static class ABirthday {
public void solve(int testNumber, InputReader in, OutputWriter out) {
long N = in.readLong(), M = in.readLong(), K = in.readLong(), L = in.readLong();
long ans = ((L + K) - 1) / M + 1;
if (ans * M > N || ans * M - K < L) out.printLine(-1);
else out.printLine(ans);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void printLine(long i) {
writer.println(i);
}
public void printLine(int i) {
writer.println(i);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public long readLong() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in Actual solution is at the top
*
* @author @Ziklon
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
ABirthday solver = new ABirthday();
solver.solve(1, in, out);
out.close();
}
static class ABirthday {
public void solve(int testNumber, InputReader in, OutputWriter out) {
long N = in.readLong(), M = in.readLong(), K = in.readLong(), L = in.readLong();
long ans = ((L + K) - 1) / M + 1;
if (ans * M > N || ans * M - K < L) out.printLine(-1);
else out.printLine(ans);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void printLine(long i) {
writer.println(i);
}
public void printLine(int i) {
writer.println(i);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public long readLong() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,100 | 120 |
1,026 |
import java.io.*;
import java.util.*;
public class digits {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
long k = Long.parseLong(br.readLine());
long temp = 9 * (int)Math.pow(10,0);
int count = 0;
long initial = 0;
while(k > temp) {
count++;
initial = temp;
temp += 9 * (long)Math.pow(10,count)*(count+1);
}
long index = (k-initial-1)%(count+1);
long num = (long)Math.pow(10,count) + (k-initial-1)/(count+1);
System.out.println((num+"").charAt((int)index));
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class digits {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
long k = Long.parseLong(br.readLine());
long temp = 9 * (int)Math.pow(10,0);
int count = 0;
long initial = 0;
while(k > temp) {
count++;
initial = temp;
temp += 9 * (long)Math.pow(10,count)*(count+1);
}
long index = (k-initial-1)%(count+1);
long num = (long)Math.pow(10,count) + (k-initial-1)/(count+1);
System.out.println((num+"").charAt((int)index));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class digits {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
long k = Long.parseLong(br.readLine());
long temp = 9 * (int)Math.pow(10,0);
int count = 0;
long initial = 0;
while(k > temp) {
count++;
initial = temp;
temp += 9 * (long)Math.pow(10,count)*(count+1);
}
long index = (k-initial-1)%(count+1);
long num = (long)Math.pow(10,count) + (k-initial-1)/(count+1);
System.out.println((num+"").charAt((int)index));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 518 | 1,025 |
2,324 |
import java.util.Scanner;
public class Main {
public static void main(String[] args){
long MOD = 1000000007;
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
long[][]dp = new long[n][5010];
char[] program = new char[n];
for(int i = 0; i < n; i++){
program[i] = sc.next().charAt(0);
}
dp[0][0] = 1;
long[] acc = new long[5010];
acc[0] = 1;
for(int i = 1 ; i < n; i++){
for(int j = 0; j< 5010; j++){
if(program[i-1] == 'f'){
if(j - 1 >= 0){
dp[i][j] = dp[i-1][j-1];
}
}else{
dp[i][j] = acc[j];
}
}
acc[5009] = dp[i][5009];
for(int j = 5008; j >= 0; j--){
acc[j] = (acc[j + 1] + dp[i][j]) % MOD;
}
}
System.out.println(acc[0]);
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class Main {
public static void main(String[] args){
long MOD = 1000000007;
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
long[][]dp = new long[n][5010];
char[] program = new char[n];
for(int i = 0; i < n; i++){
program[i] = sc.next().charAt(0);
}
dp[0][0] = 1;
long[] acc = new long[5010];
acc[0] = 1;
for(int i = 1 ; i < n; i++){
for(int j = 0; j< 5010; j++){
if(program[i-1] == 'f'){
if(j - 1 >= 0){
dp[i][j] = dp[i-1][j-1];
}
}else{
dp[i][j] = acc[j];
}
}
acc[5009] = dp[i][5009];
for(int j = 5008; j >= 0; j--){
acc[j] = (acc[j + 1] + dp[i][j]) % MOD;
}
}
System.out.println(acc[0]);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class Main {
public static void main(String[] args){
long MOD = 1000000007;
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
long[][]dp = new long[n][5010];
char[] program = new char[n];
for(int i = 0; i < n; i++){
program[i] = sc.next().charAt(0);
}
dp[0][0] = 1;
long[] acc = new long[5010];
acc[0] = 1;
for(int i = 1 ; i < n; i++){
for(int j = 0; j< 5010; j++){
if(program[i-1] == 'f'){
if(j - 1 >= 0){
dp[i][j] = dp[i-1][j-1];
}
}else{
dp[i][j] = acc[j];
}
}
acc[5009] = dp[i][5009];
for(int j = 5008; j >= 0; j--){
acc[j] = (acc[j + 1] + dp[i][j]) % MOD;
}
}
System.out.println(acc[0]);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 640 | 2,319 |
1,177 |
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.InputMismatchException;
import java.util.*;
public class ed817Q3 {
public static void main(String[] args){
InputReader in = new InputReader(System.in);
PrintWriter out = new PrintWriter(System.out);
int t = 1;
for(int zxz=0;zxz<t;zxz++){
// my code starts here
long n = in.nextLong();
long s = in.nextLong();
long start=s,end=n;
long ans=n+1;
while(start<=end){
long mid = start+(end-start)/2;
if(mid-digitSum(mid)>=s){
ans = mid;
end = mid-1;
}
else{
start=mid+1;
}
}
System.out.println(n-ans+1);
// my code ends here
}
}
static int digitSum(long n){
int sum=0;
while(n>0){
sum+=n%10;
n=n/10;
}
return sum;
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[8192];
private int curChar, snumChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int snext() {
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars) {
curChar = 0;
try {
snumChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = snext();
while (isSpaceChar(c))
c = snext();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = snext();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = snext();
while (isSpaceChar(c))
c = snext();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = snext();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public int[] nextIntArray(int n) {
int a[] = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public String readString() {
int c = snext();
while (isSpaceChar(c))
c = snext();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = snext();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.InputMismatchException;
import java.util.*;
public class ed817Q3 {
public static void main(String[] args){
InputReader in = new InputReader(System.in);
PrintWriter out = new PrintWriter(System.out);
int t = 1;
for(int zxz=0;zxz<t;zxz++){
// my code starts here
long n = in.nextLong();
long s = in.nextLong();
long start=s,end=n;
long ans=n+1;
while(start<=end){
long mid = start+(end-start)/2;
if(mid-digitSum(mid)>=s){
ans = mid;
end = mid-1;
}
else{
start=mid+1;
}
}
System.out.println(n-ans+1);
// my code ends here
}
}
static int digitSum(long n){
int sum=0;
while(n>0){
sum+=n%10;
n=n/10;
}
return sum;
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[8192];
private int curChar, snumChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int snext() {
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars) {
curChar = 0;
try {
snumChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = snext();
while (isSpaceChar(c))
c = snext();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = snext();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = snext();
while (isSpaceChar(c))
c = snext();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = snext();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public int[] nextIntArray(int n) {
int a[] = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public String readString() {
int c = snext();
while (isSpaceChar(c))
c = snext();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = snext();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.InputMismatchException;
import java.util.*;
public class ed817Q3 {
public static void main(String[] args){
InputReader in = new InputReader(System.in);
PrintWriter out = new PrintWriter(System.out);
int t = 1;
for(int zxz=0;zxz<t;zxz++){
// my code starts here
long n = in.nextLong();
long s = in.nextLong();
long start=s,end=n;
long ans=n+1;
while(start<=end){
long mid = start+(end-start)/2;
if(mid-digitSum(mid)>=s){
ans = mid;
end = mid-1;
}
else{
start=mid+1;
}
}
System.out.println(n-ans+1);
// my code ends here
}
}
static int digitSum(long n){
int sum=0;
while(n>0){
sum+=n%10;
n=n/10;
}
return sum;
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[8192];
private int curChar, snumChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int snext() {
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars) {
curChar = 0;
try {
snumChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = snext();
while (isSpaceChar(c))
c = snext();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = snext();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = snext();
while (isSpaceChar(c))
c = snext();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = snext();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public int[] nextIntArray(int n) {
int a[] = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public String readString() {
int c = snext();
while (isSpaceChar(c))
c = snext();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = snext();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,190 | 1,176 |
1,903 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.InputMismatchException;
public class R111_D2_A {
public static void main(String[] args) {
InputReader in = new InputReader(System.in);
// BufferedReader in = new BufferedReader(new
// InputStreamReader(System.in));
int n = in.readInt();
int[] inp = new int[n];
for (int i = 0; i < inp.length; i++) {
inp[i] = in.readInt();
}
Arrays.sort(inp);
int sum1 = 0;
int res = 0;
for (int i = inp.length - 1; i >= 0; i--) {
sum1 += inp[i];
res++;
int sum2 = 0;
for (int j = 0; j < i; j++) {
sum2 += inp[j];
}
if (sum1 > sum2) {
break;
}
}
System.out.println(res);
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1000];
private int curChar, numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
private int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long readLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuffer res = new StringBuffer();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private String readLine0() {
StringBuffer buf = new StringBuffer();
int c = read();
while (c != '\n' && c != -1) {
buf.appendCodePoint(c);
c = read();
}
return buf.toString();
}
public String readLine() {
String s = readLine0();
while (s.trim().length() == 0)
s = readLine0();
return s;
}
public String readLine(boolean ignoreEmptyLines) {
if (ignoreEmptyLines)
return readLine();
else
return readLine0();
}
public char readCharacter() {
int c = read();
while (isSpaceChar(c))
c = read();
return (char) c;
}
public double readDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, readInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E')
return res * Math.pow(10, readInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.InputMismatchException;
public class R111_D2_A {
public static void main(String[] args) {
InputReader in = new InputReader(System.in);
// BufferedReader in = new BufferedReader(new
// InputStreamReader(System.in));
int n = in.readInt();
int[] inp = new int[n];
for (int i = 0; i < inp.length; i++) {
inp[i] = in.readInt();
}
Arrays.sort(inp);
int sum1 = 0;
int res = 0;
for (int i = inp.length - 1; i >= 0; i--) {
sum1 += inp[i];
res++;
int sum2 = 0;
for (int j = 0; j < i; j++) {
sum2 += inp[j];
}
if (sum1 > sum2) {
break;
}
}
System.out.println(res);
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1000];
private int curChar, numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
private int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long readLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuffer res = new StringBuffer();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private String readLine0() {
StringBuffer buf = new StringBuffer();
int c = read();
while (c != '\n' && c != -1) {
buf.appendCodePoint(c);
c = read();
}
return buf.toString();
}
public String readLine() {
String s = readLine0();
while (s.trim().length() == 0)
s = readLine0();
return s;
}
public String readLine(boolean ignoreEmptyLines) {
if (ignoreEmptyLines)
return readLine();
else
return readLine0();
}
public char readCharacter() {
int c = read();
while (isSpaceChar(c))
c = read();
return (char) c;
}
public double readDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, readInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E')
return res * Math.pow(10, readInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.InputMismatchException;
public class R111_D2_A {
public static void main(String[] args) {
InputReader in = new InputReader(System.in);
// BufferedReader in = new BufferedReader(new
// InputStreamReader(System.in));
int n = in.readInt();
int[] inp = new int[n];
for (int i = 0; i < inp.length; i++) {
inp[i] = in.readInt();
}
Arrays.sort(inp);
int sum1 = 0;
int res = 0;
for (int i = inp.length - 1; i >= 0; i--) {
sum1 += inp[i];
res++;
int sum2 = 0;
for (int j = 0; j < i; j++) {
sum2 += inp[j];
}
if (sum1 > sum2) {
break;
}
}
System.out.println(res);
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1000];
private int curChar, numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
private int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long readLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuffer res = new StringBuffer();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private String readLine0() {
StringBuffer buf = new StringBuffer();
int c = read();
while (c != '\n' && c != -1) {
buf.appendCodePoint(c);
c = read();
}
return buf.toString();
}
public String readLine() {
String s = readLine0();
while (s.trim().length() == 0)
s = readLine0();
return s;
}
public String readLine(boolean ignoreEmptyLines) {
if (ignoreEmptyLines)
return readLine();
else
return readLine0();
}
public char readCharacter() {
int c = read();
while (isSpaceChar(c))
c = read();
return (char) c;
}
public double readDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, readInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E')
return res * Math.pow(10, readInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,502 | 1,899 |
1,251 |
import java.io.*;
import java.math.BigInteger;
import java.util.StringTokenizer;
public class C {
public static void main(String[] args) throws IOException {
init(System.in);
BigInteger x = new BigInteger(next());
if (x.compareTo(BigInteger.ZERO) == 0) {
System.out.println(0);
return;
}
BigInteger k = new BigInteger(next());
BigInteger mod = new BigInteger("1000000007");
BigInteger two = BigInteger.ONE.add(BigInteger.ONE);
BigInteger ans = two.modPow(k, mod);
ans = ans.multiply(two.multiply(x).subtract(BigInteger.ONE)).add(BigInteger.ONE).mod(mod);
System.out.println(ans);
}
//Input Reader
private static BufferedReader reader;
private static StringTokenizer tokenizer;
private static void init(InputStream inputStream) {
reader = new BufferedReader(new InputStreamReader(inputStream));
tokenizer = new StringTokenizer("");
}
private static String next() throws IOException {
String read;
while (!tokenizer.hasMoreTokens()) {
read = reader.readLine();
if (read == null || read.equals(""))
return "-1";
tokenizer = new StringTokenizer(read);
}
return tokenizer.nextToken();
}
// private static int nextInt() throws IOException {
// return Integer.parseInt(next());
// }
// private static long nextLong() throws IOException {
// return Long.parseLong(next());
// }
//
// // Get a whole line.
// private static String line() throws IOException {
// return reader.readLine();
// }
//
// private static double nextDouble() throws IOException {
// return Double.parseDouble(next());
// }
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.math.BigInteger;
import java.util.StringTokenizer;
public class C {
public static void main(String[] args) throws IOException {
init(System.in);
BigInteger x = new BigInteger(next());
if (x.compareTo(BigInteger.ZERO) == 0) {
System.out.println(0);
return;
}
BigInteger k = new BigInteger(next());
BigInteger mod = new BigInteger("1000000007");
BigInteger two = BigInteger.ONE.add(BigInteger.ONE);
BigInteger ans = two.modPow(k, mod);
ans = ans.multiply(two.multiply(x).subtract(BigInteger.ONE)).add(BigInteger.ONE).mod(mod);
System.out.println(ans);
}
//Input Reader
private static BufferedReader reader;
private static StringTokenizer tokenizer;
private static void init(InputStream inputStream) {
reader = new BufferedReader(new InputStreamReader(inputStream));
tokenizer = new StringTokenizer("");
}
private static String next() throws IOException {
String read;
while (!tokenizer.hasMoreTokens()) {
read = reader.readLine();
if (read == null || read.equals(""))
return "-1";
tokenizer = new StringTokenizer(read);
}
return tokenizer.nextToken();
}
// private static int nextInt() throws IOException {
// return Integer.parseInt(next());
// }
// private static long nextLong() throws IOException {
// return Long.parseLong(next());
// }
//
// // Get a whole line.
// private static String line() throws IOException {
// return reader.readLine();
// }
//
// private static double nextDouble() throws IOException {
// return Double.parseDouble(next());
// }
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.math.BigInteger;
import java.util.StringTokenizer;
public class C {
public static void main(String[] args) throws IOException {
init(System.in);
BigInteger x = new BigInteger(next());
if (x.compareTo(BigInteger.ZERO) == 0) {
System.out.println(0);
return;
}
BigInteger k = new BigInteger(next());
BigInteger mod = new BigInteger("1000000007");
BigInteger two = BigInteger.ONE.add(BigInteger.ONE);
BigInteger ans = two.modPow(k, mod);
ans = ans.multiply(two.multiply(x).subtract(BigInteger.ONE)).add(BigInteger.ONE).mod(mod);
System.out.println(ans);
}
//Input Reader
private static BufferedReader reader;
private static StringTokenizer tokenizer;
private static void init(InputStream inputStream) {
reader = new BufferedReader(new InputStreamReader(inputStream));
tokenizer = new StringTokenizer("");
}
private static String next() throws IOException {
String read;
while (!tokenizer.hasMoreTokens()) {
read = reader.readLine();
if (read == null || read.equals(""))
return "-1";
tokenizer = new StringTokenizer(read);
}
return tokenizer.nextToken();
}
// private static int nextInt() throws IOException {
// return Integer.parseInt(next());
// }
// private static long nextLong() throws IOException {
// return Long.parseLong(next());
// }
//
// // Get a whole line.
// private static String line() throws IOException {
// return reader.readLine();
// }
//
// private static double nextDouble() throws IOException {
// return Double.parseDouble(next());
// }
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 669 | 1,250 |
3,787 |
// package com.company.codeforces;
import java.util.*;
public class Solution {
static int n,m,h[][],v[][];
public static void main(String[] args) {
Scanner input=new Scanner(System.in);
n=input.nextInt();
m=input.nextInt();
int k=input.nextInt();
h=new int[n][m-1];
for (int i = 0; i <n ; i++) {
for (int j = 0; j <m-1 ; j++) {
h[i][j]=input.nextInt();
}
}
v=new int[n][m];
for (int i = 0; i <n-1 ; i++) {
for (int j = 0; j <m ; j++) {
v[i][j]=input.nextInt();
}
}
int ans[][]=new int[n][m];
dp=new int[501][501][11];
for (int aa[]:ans
) { Arrays.fill(aa,-1);
}
if (k%2==0) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
ans[i][j] = dfs(i, j, k / 2) * 2;
}
}
}
for (int i = 0; i <n ; i++) {
for (int j = 0; j <m ; j++) {
System.out.print(ans[i][j]+" ");
}
System.out.println();
}
}
static int dp[][][];
private static int dfs(int i, int j, int k) {
if (k==0) return 0;
if (dp[i][j][k]!=0){
// System.out.println("hit");
return dp[i][j][k];
}
//left
int ans=Integer.MAX_VALUE;
if (j-1>=0)
ans=dfs(i, j-1, k-1)+h[i][j-1];
if (i<n-1)
ans=Math.min(ans,dfs(i+1, j, k-1)+v[i][j]);
if (i>0)
ans=Math.min(ans,dfs(i-1, j, k-1)+v[i-1][j]);
if (j<m-1)
ans=Math.min(ans,dfs(i, j+1, k-1)+h[i][j]);
return dp[i][j][k]= ans;
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
// package com.company.codeforces;
import java.util.*;
public class Solution {
static int n,m,h[][],v[][];
public static void main(String[] args) {
Scanner input=new Scanner(System.in);
n=input.nextInt();
m=input.nextInt();
int k=input.nextInt();
h=new int[n][m-1];
for (int i = 0; i <n ; i++) {
for (int j = 0; j <m-1 ; j++) {
h[i][j]=input.nextInt();
}
}
v=new int[n][m];
for (int i = 0; i <n-1 ; i++) {
for (int j = 0; j <m ; j++) {
v[i][j]=input.nextInt();
}
}
int ans[][]=new int[n][m];
dp=new int[501][501][11];
for (int aa[]:ans
) { Arrays.fill(aa,-1);
}
if (k%2==0) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
ans[i][j] = dfs(i, j, k / 2) * 2;
}
}
}
for (int i = 0; i <n ; i++) {
for (int j = 0; j <m ; j++) {
System.out.print(ans[i][j]+" ");
}
System.out.println();
}
}
static int dp[][][];
private static int dfs(int i, int j, int k) {
if (k==0) return 0;
if (dp[i][j][k]!=0){
// System.out.println("hit");
return dp[i][j][k];
}
//left
int ans=Integer.MAX_VALUE;
if (j-1>=0)
ans=dfs(i, j-1, k-1)+h[i][j-1];
if (i<n-1)
ans=Math.min(ans,dfs(i+1, j, k-1)+v[i][j]);
if (i>0)
ans=Math.min(ans,dfs(i-1, j, k-1)+v[i-1][j]);
if (j<m-1)
ans=Math.min(ans,dfs(i, j+1, k-1)+h[i][j]);
return dp[i][j][k]= ans;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
// package com.company.codeforces;
import java.util.*;
public class Solution {
static int n,m,h[][],v[][];
public static void main(String[] args) {
Scanner input=new Scanner(System.in);
n=input.nextInt();
m=input.nextInt();
int k=input.nextInt();
h=new int[n][m-1];
for (int i = 0; i <n ; i++) {
for (int j = 0; j <m-1 ; j++) {
h[i][j]=input.nextInt();
}
}
v=new int[n][m];
for (int i = 0; i <n-1 ; i++) {
for (int j = 0; j <m ; j++) {
v[i][j]=input.nextInt();
}
}
int ans[][]=new int[n][m];
dp=new int[501][501][11];
for (int aa[]:ans
) { Arrays.fill(aa,-1);
}
if (k%2==0) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
ans[i][j] = dfs(i, j, k / 2) * 2;
}
}
}
for (int i = 0; i <n ; i++) {
for (int j = 0; j <m ; j++) {
System.out.print(ans[i][j]+" ");
}
System.out.println();
}
}
static int dp[][][];
private static int dfs(int i, int j, int k) {
if (k==0) return 0;
if (dp[i][j][k]!=0){
// System.out.println("hit");
return dp[i][j][k];
}
//left
int ans=Integer.MAX_VALUE;
if (j-1>=0)
ans=dfs(i, j-1, k-1)+h[i][j-1];
if (i<n-1)
ans=Math.min(ans,dfs(i+1, j, k-1)+v[i][j]);
if (i>0)
ans=Math.min(ans,dfs(i-1, j, k-1)+v[i-1][j]);
if (j<m-1)
ans=Math.min(ans,dfs(i, j+1, k-1)+h[i][j]);
return dp[i][j][k]= ans;
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 880 | 3,779 |
1,867 |
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.*;
public class D {
static HashMap<Long, Integer> comp = new HashMap<Long, Integer>();
static HashMap<Integer, Long> rev = new HashMap<Integer, Long>();
static long freq[];
public static void main(String[] args) {
FastScanner in = new FastScanner();
int n = in.nextInt();
long a[] = new long[n];
long copy[] = new long[n];
long sum = 0;
for(int i = 0; i < n; i++){
a[i] = in.nextLong();
copy[i] = a[i];
sum+=a[i];
}
Arrays.sort(copy);
for(int i = 0; i < n; i++) //Compress values to be 1-indexed
if(!comp.containsKey(copy[i])){
comp.put(copy[i], (comp.size()+1));
//rev.put(comp.get(copy[i]), copy[i]);
}
// BIT bit = new BIT(n);
freq = new long[n+1];
Arrays.fill(freq, 0);
for(int i = 0; i < n; i++){
int v = comp.get(a[i]);
freq[v]++;
}
long res = 0;
BigInteger res2 = new BigInteger("0");
for(int i = 0; i < n; i++){ //Go through each element in the array
long x = a[i];
//freq[comp.get(x)]--;
//Find the amount of values equal to (x-1), x, and (x+1);
long below = getFreq(x-1);
long eq = getFreq(x);
long above = getFreq(x+1);
long other = (n-i)-below-eq-above;
// System.out.println("x= "+x+" b:"+below+" e:"+eq+" a:"+above);
long leaveOut = below*(x-1) + eq*(x) + above*(x+1);
long cur = (sum-leaveOut)-(x*other);
// System.out.println("sum:"+sum+" leave:"+leaveOut+" oth:"+other+" cur:"+cur+"\n");
res2 = res2.add(new BigInteger(""+cur));
res += cur;
sum -= x;
freq[comp.get(x)]--;
}
System.out.println(res2);
}
static long getFreq(long n){
if(!comp.containsKey(n)) return 0;
else return freq[comp.get(n)];
}
static class FastScanner{
BufferedReader br;
StringTokenizer st;
public FastScanner(String s) {
try{
br = new BufferedReader(new FileReader(s));
}
catch(FileNotFoundException e) {
e.printStackTrace();
}
}
public FastScanner(){
br = new BufferedReader(new InputStreamReader(System.in));
}
String nextToken() {
while(st == null ||!st.hasMoreElements()){
try {
st = new StringTokenizer(br.readLine());}
catch(IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(nextToken());
}
long nextLong() {
return Long.parseLong(nextToken());
}
double nextDouble() {
return Double.parseDouble(nextToken());
}
String next() {
return nextToken();
}
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.*;
public class D {
static HashMap<Long, Integer> comp = new HashMap<Long, Integer>();
static HashMap<Integer, Long> rev = new HashMap<Integer, Long>();
static long freq[];
public static void main(String[] args) {
FastScanner in = new FastScanner();
int n = in.nextInt();
long a[] = new long[n];
long copy[] = new long[n];
long sum = 0;
for(int i = 0; i < n; i++){
a[i] = in.nextLong();
copy[i] = a[i];
sum+=a[i];
}
Arrays.sort(copy);
for(int i = 0; i < n; i++) //Compress values to be 1-indexed
if(!comp.containsKey(copy[i])){
comp.put(copy[i], (comp.size()+1));
//rev.put(comp.get(copy[i]), copy[i]);
}
// BIT bit = new BIT(n);
freq = new long[n+1];
Arrays.fill(freq, 0);
for(int i = 0; i < n; i++){
int v = comp.get(a[i]);
freq[v]++;
}
long res = 0;
BigInteger res2 = new BigInteger("0");
for(int i = 0; i < n; i++){ //Go through each element in the array
long x = a[i];
//freq[comp.get(x)]--;
//Find the amount of values equal to (x-1), x, and (x+1);
long below = getFreq(x-1);
long eq = getFreq(x);
long above = getFreq(x+1);
long other = (n-i)-below-eq-above;
// System.out.println("x= "+x+" b:"+below+" e:"+eq+" a:"+above);
long leaveOut = below*(x-1) + eq*(x) + above*(x+1);
long cur = (sum-leaveOut)-(x*other);
// System.out.println("sum:"+sum+" leave:"+leaveOut+" oth:"+other+" cur:"+cur+"\n");
res2 = res2.add(new BigInteger(""+cur));
res += cur;
sum -= x;
freq[comp.get(x)]--;
}
System.out.println(res2);
}
static long getFreq(long n){
if(!comp.containsKey(n)) return 0;
else return freq[comp.get(n)];
}
static class FastScanner{
BufferedReader br;
StringTokenizer st;
public FastScanner(String s) {
try{
br = new BufferedReader(new FileReader(s));
}
catch(FileNotFoundException e) {
e.printStackTrace();
}
}
public FastScanner(){
br = new BufferedReader(new InputStreamReader(System.in));
}
String nextToken() {
while(st == null ||!st.hasMoreElements()){
try {
st = new StringTokenizer(br.readLine());}
catch(IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(nextToken());
}
long nextLong() {
return Long.parseLong(nextToken());
}
double nextDouble() {
return Double.parseDouble(nextToken());
}
String next() {
return nextToken();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.*;
public class D {
static HashMap<Long, Integer> comp = new HashMap<Long, Integer>();
static HashMap<Integer, Long> rev = new HashMap<Integer, Long>();
static long freq[];
public static void main(String[] args) {
FastScanner in = new FastScanner();
int n = in.nextInt();
long a[] = new long[n];
long copy[] = new long[n];
long sum = 0;
for(int i = 0; i < n; i++){
a[i] = in.nextLong();
copy[i] = a[i];
sum+=a[i];
}
Arrays.sort(copy);
for(int i = 0; i < n; i++) //Compress values to be 1-indexed
if(!comp.containsKey(copy[i])){
comp.put(copy[i], (comp.size()+1));
//rev.put(comp.get(copy[i]), copy[i]);
}
// BIT bit = new BIT(n);
freq = new long[n+1];
Arrays.fill(freq, 0);
for(int i = 0; i < n; i++){
int v = comp.get(a[i]);
freq[v]++;
}
long res = 0;
BigInteger res2 = new BigInteger("0");
for(int i = 0; i < n; i++){ //Go through each element in the array
long x = a[i];
//freq[comp.get(x)]--;
//Find the amount of values equal to (x-1), x, and (x+1);
long below = getFreq(x-1);
long eq = getFreq(x);
long above = getFreq(x+1);
long other = (n-i)-below-eq-above;
// System.out.println("x= "+x+" b:"+below+" e:"+eq+" a:"+above);
long leaveOut = below*(x-1) + eq*(x) + above*(x+1);
long cur = (sum-leaveOut)-(x*other);
// System.out.println("sum:"+sum+" leave:"+leaveOut+" oth:"+other+" cur:"+cur+"\n");
res2 = res2.add(new BigInteger(""+cur));
res += cur;
sum -= x;
freq[comp.get(x)]--;
}
System.out.println(res2);
}
static long getFreq(long n){
if(!comp.containsKey(n)) return 0;
else return freq[comp.get(n)];
}
static class FastScanner{
BufferedReader br;
StringTokenizer st;
public FastScanner(String s) {
try{
br = new BufferedReader(new FileReader(s));
}
catch(FileNotFoundException e) {
e.printStackTrace();
}
}
public FastScanner(){
br = new BufferedReader(new InputStreamReader(System.in));
}
String nextToken() {
while(st == null ||!st.hasMoreElements()){
try {
st = new StringTokenizer(br.readLine());}
catch(IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(nextToken());
}
long nextLong() {
return Long.parseLong(nextToken());
}
double nextDouble() {
return Double.parseDouble(nextToken());
}
String next() {
return nextToken();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,117 | 1,863 |
3,137 |
import java.util.*;
import java.io.*;
public class Traffic extends Template{
public double search1(int a, int w, int d){
double s = 0;
double l = 2*w+2*a*d;
int repeat = 100;
while( repeat-- > 0 ){
double x = (s+l)/2;
if( a*a*x*x + 2*a*w*x - w*w - 4*a*d > 0 ){
l = x;
} else {
s = x;
}
}
return l;
}
public double search2(int a, double lim, int k){
double s = 0;
double l = lim + 2*a*k;
int repeat = 100;
while( repeat-- > 0 ){
double x = (s+l)/2;
if( a*x*x + 2*lim*x - 2*k > 0 ){
l = x;
} else {
s = x;
}
}
return l;
}
public void solve() throws IOException {
int a = nextInt();
int v = nextInt();
int l = nextInt();
int d = nextInt();
int w = nextInt();
if( w > v ){
w = v;
}
double time_max = Math.sqrt((double)2*d/a);
double time_d = search1(a,w,d);
// writer.println(time_max*a < w); writer.println(v <= (w+a*time_d)/2); writer.println(w < v);
double t1 = (time_max*a < w) ? time_max : (v >= (w+a*time_d)/2) ? time_d : (w < v) ? (double)(2*v*v-2*v*w+2*a*d+w*w)/(2*a*v) : (double)v/a + (double)(d-(double)v*v/(2*a))/v;
double lim = (time_max*a < w) ? time_max*a : w;
double t3 = Math.min((double)(v-lim)/a, search2(a, lim, l-d));
// double t = (Math.sqrt(limit*limit+2*a*(l-d))-limit)/a;
double dist2 = (l-d) - t3*t3*a/2 - t3*lim;
double t4 = dist2/v;
// writer.println("t1 = " + t1);
// writer.println("dist1 = " + dist1);
// writer.println("t3 = " + t3);
// writer.println("dist2 = " + dist2);
// writer.println("t4 = " + t4);
writer.println((t1+t3+t4));
}
public static void main(String[] args){
new Traffic().run();
}
}
abstract class Template implements Runnable{
public abstract void solve() throws IOException;
BufferedReader reader;
StringTokenizer tokenizer;
PrintWriter writer;
public void run(){
try{
reader = new BufferedReader(new InputStreamReader(System.in));
tokenizer = null;
writer = new PrintWriter(System.out);
solve();
reader.close();
writer.close();
} catch(Exception e){
e.printStackTrace();
System.exit(1);
}
}
public int nextInt() throws IOException{
return Integer.parseInt(nextToken());
}
public String nextToken() throws IOException{
while( tokenizer == null || !tokenizer.hasMoreTokens() ){
tokenizer = new StringTokenizer(reader.readLine());
}
return tokenizer.nextToken();
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Traffic extends Template{
public double search1(int a, int w, int d){
double s = 0;
double l = 2*w+2*a*d;
int repeat = 100;
while( repeat-- > 0 ){
double x = (s+l)/2;
if( a*a*x*x + 2*a*w*x - w*w - 4*a*d > 0 ){
l = x;
} else {
s = x;
}
}
return l;
}
public double search2(int a, double lim, int k){
double s = 0;
double l = lim + 2*a*k;
int repeat = 100;
while( repeat-- > 0 ){
double x = (s+l)/2;
if( a*x*x + 2*lim*x - 2*k > 0 ){
l = x;
} else {
s = x;
}
}
return l;
}
public void solve() throws IOException {
int a = nextInt();
int v = nextInt();
int l = nextInt();
int d = nextInt();
int w = nextInt();
if( w > v ){
w = v;
}
double time_max = Math.sqrt((double)2*d/a);
double time_d = search1(a,w,d);
// writer.println(time_max*a < w); writer.println(v <= (w+a*time_d)/2); writer.println(w < v);
double t1 = (time_max*a < w) ? time_max : (v >= (w+a*time_d)/2) ? time_d : (w < v) ? (double)(2*v*v-2*v*w+2*a*d+w*w)/(2*a*v) : (double)v/a + (double)(d-(double)v*v/(2*a))/v;
double lim = (time_max*a < w) ? time_max*a : w;
double t3 = Math.min((double)(v-lim)/a, search2(a, lim, l-d));
// double t = (Math.sqrt(limit*limit+2*a*(l-d))-limit)/a;
double dist2 = (l-d) - t3*t3*a/2 - t3*lim;
double t4 = dist2/v;
// writer.println("t1 = " + t1);
// writer.println("dist1 = " + dist1);
// writer.println("t3 = " + t3);
// writer.println("dist2 = " + dist2);
// writer.println("t4 = " + t4);
writer.println((t1+t3+t4));
}
public static void main(String[] args){
new Traffic().run();
}
}
abstract class Template implements Runnable{
public abstract void solve() throws IOException;
BufferedReader reader;
StringTokenizer tokenizer;
PrintWriter writer;
public void run(){
try{
reader = new BufferedReader(new InputStreamReader(System.in));
tokenizer = null;
writer = new PrintWriter(System.out);
solve();
reader.close();
writer.close();
} catch(Exception e){
e.printStackTrace();
System.exit(1);
}
}
public int nextInt() throws IOException{
return Integer.parseInt(nextToken());
}
public String nextToken() throws IOException{
while( tokenizer == null || !tokenizer.hasMoreTokens() ){
tokenizer = new StringTokenizer(reader.readLine());
}
return tokenizer.nextToken();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Traffic extends Template{
public double search1(int a, int w, int d){
double s = 0;
double l = 2*w+2*a*d;
int repeat = 100;
while( repeat-- > 0 ){
double x = (s+l)/2;
if( a*a*x*x + 2*a*w*x - w*w - 4*a*d > 0 ){
l = x;
} else {
s = x;
}
}
return l;
}
public double search2(int a, double lim, int k){
double s = 0;
double l = lim + 2*a*k;
int repeat = 100;
while( repeat-- > 0 ){
double x = (s+l)/2;
if( a*x*x + 2*lim*x - 2*k > 0 ){
l = x;
} else {
s = x;
}
}
return l;
}
public void solve() throws IOException {
int a = nextInt();
int v = nextInt();
int l = nextInt();
int d = nextInt();
int w = nextInt();
if( w > v ){
w = v;
}
double time_max = Math.sqrt((double)2*d/a);
double time_d = search1(a,w,d);
// writer.println(time_max*a < w); writer.println(v <= (w+a*time_d)/2); writer.println(w < v);
double t1 = (time_max*a < w) ? time_max : (v >= (w+a*time_d)/2) ? time_d : (w < v) ? (double)(2*v*v-2*v*w+2*a*d+w*w)/(2*a*v) : (double)v/a + (double)(d-(double)v*v/(2*a))/v;
double lim = (time_max*a < w) ? time_max*a : w;
double t3 = Math.min((double)(v-lim)/a, search2(a, lim, l-d));
// double t = (Math.sqrt(limit*limit+2*a*(l-d))-limit)/a;
double dist2 = (l-d) - t3*t3*a/2 - t3*lim;
double t4 = dist2/v;
// writer.println("t1 = " + t1);
// writer.println("dist1 = " + dist1);
// writer.println("t3 = " + t3);
// writer.println("dist2 = " + dist2);
// writer.println("t4 = " + t4);
writer.println((t1+t3+t4));
}
public static void main(String[] args){
new Traffic().run();
}
}
abstract class Template implements Runnable{
public abstract void solve() throws IOException;
BufferedReader reader;
StringTokenizer tokenizer;
PrintWriter writer;
public void run(){
try{
reader = new BufferedReader(new InputStreamReader(System.in));
tokenizer = null;
writer = new PrintWriter(System.out);
solve();
reader.close();
writer.close();
} catch(Exception e){
e.printStackTrace();
System.exit(1);
}
}
public int nextInt() throws IOException{
return Integer.parseInt(nextToken());
}
public String nextToken() throws IOException{
while( tokenizer == null || !tokenizer.hasMoreTokens() ){
tokenizer = new StringTokenizer(reader.readLine());
}
return tokenizer.nextToken();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,119 | 3,131 |
4,033 |
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.math.BigInteger;
import java.nio.charset.Charset;
import java.util.*;
public class CFContest {
public static void main(String[] args) throws Exception {
boolean local = System.getProperty("ONLINE_JUDGE") == null;
boolean async = false;
Charset charset = Charset.forName("ascii");
FastIO io = local ? new FastIO(new FileInputStream("D:\\DATABASE\\TESTCASE\\Code.in"), System.out, charset) : new FastIO(System.in, System.out, charset);
Task task = new Task(io, new Debug(local));
if (async) {
Thread t = new Thread(null, task, "dalt", 1 << 27);
t.setPriority(Thread.MAX_PRIORITY);
t.start();
t.join();
} else {
task.run();
}
if (local) {
io.cache.append("\n\n--memory -- \n" + ((Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory()) >> 20) + "M");
}
io.flush();
}
public static class Task implements Runnable {
final FastIO io;
final Debug debug;
int inf = (int) 1e9 + 2;
BitOperator bitOperator = new BitOperator();
Modular modular = new Modular((int) 1e9 + 7);
public Task(FastIO io, Debug debug) {
this.io = io;
this.debug = debug;
}
@Override
public void run() {
solve();
}
int[][][] f;
int n;
int t;
int[] songTimes;
int[] songTypes;
int mask;
public void solve() {
n = io.readInt();
t = io.readInt();
mask = 1 << n;
f = new int[4][mask][t + 1];
for (int i = 0; i < 4; i++) {
for (int j = 0; j < mask; j++) {
for (int k = 0; k <= t; k++) {
f[i][j][k] = -1;
}
}
}
songTimes = new int[n + 1];
songTypes = new int[n + 1];
for (int i = 1; i <= n; i++) {
songTimes[i] = io.readInt();
songTypes[i] = io.readInt();
}
int ans = 0;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < mask; j++) {
ans = modular.plus(ans, f(i, j, t));
}
}
io.cache.append(ans);
}
int f(int i, int j, int k) {
if (j == 0) {
return k == 0 && i == 0 ? 1 : 0;
}
if (k < 0) {
return 0;
}
if (f[i][j][k] == -1) {
f[i][j][k] = 0;
for (int x = 1; x <= n; x++) {
if (songTypes[x] != i || bitOperator.bitAt(j, x - 1) == 0) {
continue;
}
for (int y = 0; y < 4; y++) {
if (y == i) {
continue;
}
f[i][j][k] = modular.plus(f[i][j][k], f(y, bitOperator.setBit(j, x - 1, false), k - songTimes[x]));
}
}
}
return f[i][j][k];
}
}
/**
* 模运算
*/
public static class Modular {
int m;
public Modular(int m) {
this.m = m;
}
public int valueOf(int x) {
x %= m;
if (x < 0) {
x += m;
}
return x;
}
public int valueOf(long x) {
x %= m;
if (x < 0) {
x += m;
}
return (int) x;
}
public int mul(int x, int y) {
return valueOf((long) x * y);
}
public int plus(int x, int y) {
return valueOf(x + y);
}
@Override
public String toString() {
return "mod " + m;
}
}
public static class BitOperator {
public int bitAt(int x, int i) {
return (x >> i) & 1;
}
public int bitAt(long x, int i) {
return (int) ((x >> i) & 1);
}
public int setBit(int x, int i, boolean v) {
if (v) {
x |= 1 << i;
} else {
x &= ~(1 << i);
}
return x;
}
public long setBit(long x, int i, boolean v) {
if (v) {
x |= 1L << i;
} else {
x &= ~(1L << i);
}
return x;
}
/**
* Determine whether x is subset of y
*/
public boolean subset(long x, long y) {
return intersect(x, y) == x;
}
/**
* Merge two set
*/
public long merge(long x, long y) {
return x | y;
}
public long intersect(long x, long y) {
return x & y;
}
public long differ(long x, long y) {
return x - intersect(x, y);
}
}
public static class Randomized {
static Random random = new Random();
public static double nextDouble(double min, double max) {
return random.nextDouble() * (max - min) + min;
}
public static void randomizedArray(int[] data, int from, int to) {
to--;
for (int i = from; i <= to; i++) {
int s = nextInt(i, to);
int tmp = data[i];
data[i] = data[s];
data[s] = tmp;
}
}
public static void randomizedArray(long[] data, int from, int to) {
to--;
for (int i = from; i <= to; i++) {
int s = nextInt(i, to);
long tmp = data[i];
data[i] = data[s];
data[s] = tmp;
}
}
public static void randomizedArray(double[] data, int from, int to) {
to--;
for (int i = from; i <= to; i++) {
int s = nextInt(i, to);
double tmp = data[i];
data[i] = data[s];
data[s] = tmp;
}
}
public static void randomizedArray(float[] data, int from, int to) {
to--;
for (int i = from; i <= to; i++) {
int s = nextInt(i, to);
float tmp = data[i];
data[i] = data[s];
data[s] = tmp;
}
}
public static <T> void randomizedArray(T[] data, int from, int to) {
to--;
for (int i = from; i <= to; i++) {
int s = nextInt(i, to);
T tmp = data[i];
data[i] = data[s];
data[s] = tmp;
}
}
public static int nextInt(int l, int r) {
return random.nextInt(r - l + 1) + l;
}
}
public static class Splay implements Cloneable {
public static final Splay NIL = new Splay();
static {
NIL.left = NIL;
NIL.right = NIL;
NIL.father = NIL;
NIL.size = 0;
NIL.key = Integer.MIN_VALUE;
NIL.sum = 0;
}
Splay left = NIL;
Splay right = NIL;
Splay father = NIL;
int size = 1;
int key;
long sum;
public static void splay(Splay x) {
if (x == NIL) {
return;
}
Splay y, z;
while ((y = x.father) != NIL) {
if ((z = y.father) == NIL) {
y.pushDown();
x.pushDown();
if (x == y.left) {
zig(x);
} else {
zag(x);
}
} else {
z.pushDown();
y.pushDown();
x.pushDown();
if (x == y.left) {
if (y == z.left) {
zig(y);
zig(x);
} else {
zig(x);
zag(x);
}
} else {
if (y == z.left) {
zag(x);
zig(x);
} else {
zag(y);
zag(x);
}
}
}
}
x.pushDown();
x.pushUp();
}
public static void zig(Splay x) {
Splay y = x.father;
Splay z = y.father;
Splay b = x.right;
y.setLeft(b);
x.setRight(y);
z.changeChild(y, x);
y.pushUp();
}
public static void zag(Splay x) {
Splay y = x.father;
Splay z = y.father;
Splay b = x.left;
y.setRight(b);
x.setLeft(y);
z.changeChild(y, x);
y.pushUp();
}
public void setLeft(Splay x) {
left = x;
x.father = this;
}
public void setRight(Splay x) {
right = x;
x.father = this;
}
public void changeChild(Splay y, Splay x) {
if (left == y) {
setLeft(x);
} else {
setRight(x);
}
}
public void pushUp() {
if (this == NIL) {
return;
}
size = left.size + right.size + 1;
sum = left.sum + right.sum + key;
}
public void pushDown() {
}
public static int toArray(Splay root, int[] data, int offset) {
if (root == NIL) {
return offset;
}
offset = toArray(root.left, data, offset);
data[offset++] = root.key;
offset = toArray(root.right, data, offset);
return offset;
}
public static void toString(Splay root, StringBuilder builder) {
if (root == NIL) {
return;
}
root.pushDown();
toString(root.left, builder);
builder.append(root.key).append(',');
toString(root.right, builder);
}
public Splay clone() {
try {
return (Splay) super.clone();
} catch (CloneNotSupportedException e) {
throw new RuntimeException(e);
}
}
public static Splay cloneTree(Splay splay) {
if (splay == NIL) {
return NIL;
}
splay = splay.clone();
splay.left = cloneTree(splay.left);
splay.right = cloneTree(splay.right);
return splay;
}
public static Splay add(Splay root, Splay node) {
if (root == NIL) {
return node;
}
Splay p = root;
while (root != NIL) {
p = root;
root.pushDown();
if (root.key < node.key) {
root = root.right;
} else {
root = root.left;
}
}
if (p.key < node.key) {
p.setRight(node);
} else {
p.setLeft(node);
}
p.pushUp();
splay(node);
return node;
}
/**
* Make the node with the minimum key as the root of tree
*/
public static Splay selectMinAsRoot(Splay root) {
if (root == NIL) {
return root;
}
root.pushDown();
while (root.left != NIL) {
root = root.left;
root.pushDown();
}
splay(root);
return root;
}
/**
* Make the node with the maximum key as the root of tree
*/
public static Splay selectMaxAsRoot(Splay root) {
if (root == NIL) {
return root;
}
root.pushDown();
while (root.right != NIL) {
root = root.right;
root.pushDown();
}
splay(root);
return root;
}
/**
* delete root of tree, then merge remain nodes into a new tree, and return the new root
*/
public static Splay deleteRoot(Splay root) {
root.pushDown();
Splay left = splitLeft(root);
Splay right = splitRight(root);
return merge(left, right);
}
/**
* detach the left subtree from root and return the root of left subtree
*/
public static Splay splitLeft(Splay root) {
root.pushDown();
Splay left = root.left;
left.father = NIL;
root.setLeft(NIL);
root.pushUp();
return left;
}
/**
* detach the right subtree from root and return the root of right subtree
*/
public static Splay splitRight(Splay root) {
root.pushDown();
Splay right = root.right;
right.father = NIL;
root.setRight(NIL);
root.pushUp();
return right;
}
public static Splay merge(Splay a, Splay b) {
if (a == NIL) {
return b;
}
if (b == NIL) {
return a;
}
a = selectMaxAsRoot(a);
a.setRight(b);
a.pushUp();
return a;
}
public static Splay selectKthAsRoot(Splay root, int k) {
if (root == NIL) {
return NIL;
}
Splay trace = root;
Splay father = NIL;
while (trace != NIL) {
father = trace;
trace.pushDown();
if (trace.left.size >= k) {
trace = trace.left;
} else {
k -= trace.left.size + 1;
if (k == 0) {
break;
} else {
trace = trace.right;
}
}
}
splay(father);
return father;
}
public static Splay selectKeyAsRoot(Splay root, int k) {
if (root == NIL) {
return NIL;
}
Splay trace = root;
Splay father = NIL;
Splay find = NIL;
while (trace != NIL) {
father = trace;
trace.pushDown();
if (trace.key > k) {
trace = trace.left;
} else {
if (trace.key == k) {
find = trace;
trace = trace.left;
} else {
trace = trace.right;
}
}
}
splay(father);
if (find != NIL) {
splay(find);
return find;
}
return father;
}
public static Splay bruteForceMerge(Splay a, Splay b) {
if (a == NIL) {
return b;
} else if (b == NIL) {
return a;
}
if (a.size < b.size) {
Splay tmp = a;
a = b;
b = tmp;
}
a = selectMaxAsRoot(a);
int k = a.key;
while (b != NIL) {
b = selectMinAsRoot(b);
if (b.key >= k) {
break;
}
Splay kickedOut = b;
b = deleteRoot(b);
a = add(a, kickedOut);
}
return merge(a, b);
}
public static Splay[] split(Splay root, int key) {
if (root == NIL) {
return new Splay[]{NIL, NIL};
}
Splay p = root;
while (root != NIL) {
p = root;
root.pushDown();
if (root.key > key) {
root = root.left;
} else {
root = root.right;
}
}
splay(p);
if (p.key <= key) {
return new Splay[]{p, splitRight(p)};
} else {
return new Splay[]{splitLeft(p), p};
}
}
@Override
public String toString() {
StringBuilder builder = new StringBuilder().append(key).append(":");
toString(cloneTree(this), builder);
return builder.toString();
}
}
public static class FastIO {
public final StringBuilder cache = new StringBuilder();
private final InputStream is;
private final OutputStream os;
private final Charset charset;
private StringBuilder defaultStringBuf = new StringBuilder(1 << 8);
private byte[] buf = new byte[1 << 13];
private int bufLen;
private int bufOffset;
private int next;
public FastIO(InputStream is, OutputStream os, Charset charset) {
this.is = is;
this.os = os;
this.charset = charset;
}
public FastIO(InputStream is, OutputStream os) {
this(is, os, Charset.forName("ascii"));
}
private int read() {
while (bufLen == bufOffset) {
bufOffset = 0;
try {
bufLen = is.read(buf);
} catch (IOException e) {
throw new RuntimeException(e);
}
if (bufLen == -1) {
return -1;
}
}
return buf[bufOffset++];
}
public void skipBlank() {
while (next >= 0 && next <= 32) {
next = read();
}
}
public int readInt() {
int sign = 1;
skipBlank();
if (next == '+' || next == '-') {
sign = next == '+' ? 1 : -1;
next = read();
}
int val = 0;
if (sign == 1) {
while (next >= '0' && next <= '9') {
val = val * 10 + next - '0';
next = read();
}
} else {
while (next >= '0' && next <= '9') {
val = val * 10 - next + '0';
next = read();
}
}
return val;
}
public long readLong() {
int sign = 1;
skipBlank();
if (next == '+' || next == '-') {
sign = next == '+' ? 1 : -1;
next = read();
}
long val = 0;
if (sign == 1) {
while (next >= '0' && next <= '9') {
val = val * 10 + next - '0';
next = read();
}
} else {
while (next >= '0' && next <= '9') {
val = val * 10 - next + '0';
next = read();
}
}
return val;
}
public double readDouble() {
boolean sign = true;
skipBlank();
if (next == '+' || next == '-') {
sign = next == '+';
next = read();
}
long val = 0;
while (next >= '0' && next <= '9') {
val = val * 10 + next - '0';
next = read();
}
if (next != '.') {
return sign ? val : -val;
}
next = read();
long radix = 1;
long point = 0;
while (next >= '0' && next <= '9') {
point = point * 10 + next - '0';
radix = radix * 10;
next = read();
}
double result = val + (double) point / radix;
return sign ? result : -result;
}
public String readString(StringBuilder builder) {
skipBlank();
while (next > 32) {
builder.append((char) next);
next = read();
}
return builder.toString();
}
public String readString() {
defaultStringBuf.setLength(0);
return readString(defaultStringBuf);
}
public int readLine(char[] data, int offset) {
int originalOffset = offset;
while (next != -1 && next != '\n') {
data[offset++] = (char) next;
next = read();
}
return offset - originalOffset;
}
public int readString(char[] data, int offset) {
skipBlank();
int originalOffset = offset;
while (next > 32) {
data[offset++] = (char) next;
next = read();
}
return offset - originalOffset;
}
public int readString(byte[] data, int offset) {
skipBlank();
int originalOffset = offset;
while (next > 32) {
data[offset++] = (byte) next;
next = read();
}
return offset - originalOffset;
}
public char readChar() {
skipBlank();
char c = (char) next;
next = read();
return c;
}
public void flush() {
try {
os.write(cache.toString().getBytes(charset));
os.flush();
cache.setLength(0);
} catch (IOException e) {
throw new RuntimeException(e);
}
}
public boolean hasMore() {
skipBlank();
return next != -1;
}
}
public static class Debug {
private boolean allowDebug;
public Debug(boolean allowDebug) {
this.allowDebug = allowDebug;
}
public void assertTrue(boolean flag) {
if (!allowDebug) {
return;
}
if (!flag) {
fail();
}
}
public void fail() {
throw new RuntimeException();
}
public void assertFalse(boolean flag) {
if (!allowDebug) {
return;
}
if (flag) {
fail();
}
}
private void outputName(String name) {
System.out.print(name + " = ");
}
public void debug(String name, int x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println("" + x);
}
public void debug(String name, long x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println("" + x);
}
public void debug(String name, double x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println("" + x);
}
public void debug(String name, int[] x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println(Arrays.toString(x));
}
public void debug(String name, long[] x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println(Arrays.toString(x));
}
public void debug(String name, double[] x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println(Arrays.toString(x));
}
public void debug(String name, Object x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println("" + x);
}
public void debug(String name, Object... x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println(Arrays.deepToString(x));
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.math.BigInteger;
import java.nio.charset.Charset;
import java.util.*;
public class CFContest {
public static void main(String[] args) throws Exception {
boolean local = System.getProperty("ONLINE_JUDGE") == null;
boolean async = false;
Charset charset = Charset.forName("ascii");
FastIO io = local ? new FastIO(new FileInputStream("D:\\DATABASE\\TESTCASE\\Code.in"), System.out, charset) : new FastIO(System.in, System.out, charset);
Task task = new Task(io, new Debug(local));
if (async) {
Thread t = new Thread(null, task, "dalt", 1 << 27);
t.setPriority(Thread.MAX_PRIORITY);
t.start();
t.join();
} else {
task.run();
}
if (local) {
io.cache.append("\n\n--memory -- \n" + ((Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory()) >> 20) + "M");
}
io.flush();
}
public static class Task implements Runnable {
final FastIO io;
final Debug debug;
int inf = (int) 1e9 + 2;
BitOperator bitOperator = new BitOperator();
Modular modular = new Modular((int) 1e9 + 7);
public Task(FastIO io, Debug debug) {
this.io = io;
this.debug = debug;
}
@Override
public void run() {
solve();
}
int[][][] f;
int n;
int t;
int[] songTimes;
int[] songTypes;
int mask;
public void solve() {
n = io.readInt();
t = io.readInt();
mask = 1 << n;
f = new int[4][mask][t + 1];
for (int i = 0; i < 4; i++) {
for (int j = 0; j < mask; j++) {
for (int k = 0; k <= t; k++) {
f[i][j][k] = -1;
}
}
}
songTimes = new int[n + 1];
songTypes = new int[n + 1];
for (int i = 1; i <= n; i++) {
songTimes[i] = io.readInt();
songTypes[i] = io.readInt();
}
int ans = 0;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < mask; j++) {
ans = modular.plus(ans, f(i, j, t));
}
}
io.cache.append(ans);
}
int f(int i, int j, int k) {
if (j == 0) {
return k == 0 && i == 0 ? 1 : 0;
}
if (k < 0) {
return 0;
}
if (f[i][j][k] == -1) {
f[i][j][k] = 0;
for (int x = 1; x <= n; x++) {
if (songTypes[x] != i || bitOperator.bitAt(j, x - 1) == 0) {
continue;
}
for (int y = 0; y < 4; y++) {
if (y == i) {
continue;
}
f[i][j][k] = modular.plus(f[i][j][k], f(y, bitOperator.setBit(j, x - 1, false), k - songTimes[x]));
}
}
}
return f[i][j][k];
}
}
/**
* 模运算
*/
public static class Modular {
int m;
public Modular(int m) {
this.m = m;
}
public int valueOf(int x) {
x %= m;
if (x < 0) {
x += m;
}
return x;
}
public int valueOf(long x) {
x %= m;
if (x < 0) {
x += m;
}
return (int) x;
}
public int mul(int x, int y) {
return valueOf((long) x * y);
}
public int plus(int x, int y) {
return valueOf(x + y);
}
@Override
public String toString() {
return "mod " + m;
}
}
public static class BitOperator {
public int bitAt(int x, int i) {
return (x >> i) & 1;
}
public int bitAt(long x, int i) {
return (int) ((x >> i) & 1);
}
public int setBit(int x, int i, boolean v) {
if (v) {
x |= 1 << i;
} else {
x &= ~(1 << i);
}
return x;
}
public long setBit(long x, int i, boolean v) {
if (v) {
x |= 1L << i;
} else {
x &= ~(1L << i);
}
return x;
}
/**
* Determine whether x is subset of y
*/
public boolean subset(long x, long y) {
return intersect(x, y) == x;
}
/**
* Merge two set
*/
public long merge(long x, long y) {
return x | y;
}
public long intersect(long x, long y) {
return x & y;
}
public long differ(long x, long y) {
return x - intersect(x, y);
}
}
public static class Randomized {
static Random random = new Random();
public static double nextDouble(double min, double max) {
return random.nextDouble() * (max - min) + min;
}
public static void randomizedArray(int[] data, int from, int to) {
to--;
for (int i = from; i <= to; i++) {
int s = nextInt(i, to);
int tmp = data[i];
data[i] = data[s];
data[s] = tmp;
}
}
public static void randomizedArray(long[] data, int from, int to) {
to--;
for (int i = from; i <= to; i++) {
int s = nextInt(i, to);
long tmp = data[i];
data[i] = data[s];
data[s] = tmp;
}
}
public static void randomizedArray(double[] data, int from, int to) {
to--;
for (int i = from; i <= to; i++) {
int s = nextInt(i, to);
double tmp = data[i];
data[i] = data[s];
data[s] = tmp;
}
}
public static void randomizedArray(float[] data, int from, int to) {
to--;
for (int i = from; i <= to; i++) {
int s = nextInt(i, to);
float tmp = data[i];
data[i] = data[s];
data[s] = tmp;
}
}
public static <T> void randomizedArray(T[] data, int from, int to) {
to--;
for (int i = from; i <= to; i++) {
int s = nextInt(i, to);
T tmp = data[i];
data[i] = data[s];
data[s] = tmp;
}
}
public static int nextInt(int l, int r) {
return random.nextInt(r - l + 1) + l;
}
}
public static class Splay implements Cloneable {
public static final Splay NIL = new Splay();
static {
NIL.left = NIL;
NIL.right = NIL;
NIL.father = NIL;
NIL.size = 0;
NIL.key = Integer.MIN_VALUE;
NIL.sum = 0;
}
Splay left = NIL;
Splay right = NIL;
Splay father = NIL;
int size = 1;
int key;
long sum;
public static void splay(Splay x) {
if (x == NIL) {
return;
}
Splay y, z;
while ((y = x.father) != NIL) {
if ((z = y.father) == NIL) {
y.pushDown();
x.pushDown();
if (x == y.left) {
zig(x);
} else {
zag(x);
}
} else {
z.pushDown();
y.pushDown();
x.pushDown();
if (x == y.left) {
if (y == z.left) {
zig(y);
zig(x);
} else {
zig(x);
zag(x);
}
} else {
if (y == z.left) {
zag(x);
zig(x);
} else {
zag(y);
zag(x);
}
}
}
}
x.pushDown();
x.pushUp();
}
public static void zig(Splay x) {
Splay y = x.father;
Splay z = y.father;
Splay b = x.right;
y.setLeft(b);
x.setRight(y);
z.changeChild(y, x);
y.pushUp();
}
public static void zag(Splay x) {
Splay y = x.father;
Splay z = y.father;
Splay b = x.left;
y.setRight(b);
x.setLeft(y);
z.changeChild(y, x);
y.pushUp();
}
public void setLeft(Splay x) {
left = x;
x.father = this;
}
public void setRight(Splay x) {
right = x;
x.father = this;
}
public void changeChild(Splay y, Splay x) {
if (left == y) {
setLeft(x);
} else {
setRight(x);
}
}
public void pushUp() {
if (this == NIL) {
return;
}
size = left.size + right.size + 1;
sum = left.sum + right.sum + key;
}
public void pushDown() {
}
public static int toArray(Splay root, int[] data, int offset) {
if (root == NIL) {
return offset;
}
offset = toArray(root.left, data, offset);
data[offset++] = root.key;
offset = toArray(root.right, data, offset);
return offset;
}
public static void toString(Splay root, StringBuilder builder) {
if (root == NIL) {
return;
}
root.pushDown();
toString(root.left, builder);
builder.append(root.key).append(',');
toString(root.right, builder);
}
public Splay clone() {
try {
return (Splay) super.clone();
} catch (CloneNotSupportedException e) {
throw new RuntimeException(e);
}
}
public static Splay cloneTree(Splay splay) {
if (splay == NIL) {
return NIL;
}
splay = splay.clone();
splay.left = cloneTree(splay.left);
splay.right = cloneTree(splay.right);
return splay;
}
public static Splay add(Splay root, Splay node) {
if (root == NIL) {
return node;
}
Splay p = root;
while (root != NIL) {
p = root;
root.pushDown();
if (root.key < node.key) {
root = root.right;
} else {
root = root.left;
}
}
if (p.key < node.key) {
p.setRight(node);
} else {
p.setLeft(node);
}
p.pushUp();
splay(node);
return node;
}
/**
* Make the node with the minimum key as the root of tree
*/
public static Splay selectMinAsRoot(Splay root) {
if (root == NIL) {
return root;
}
root.pushDown();
while (root.left != NIL) {
root = root.left;
root.pushDown();
}
splay(root);
return root;
}
/**
* Make the node with the maximum key as the root of tree
*/
public static Splay selectMaxAsRoot(Splay root) {
if (root == NIL) {
return root;
}
root.pushDown();
while (root.right != NIL) {
root = root.right;
root.pushDown();
}
splay(root);
return root;
}
/**
* delete root of tree, then merge remain nodes into a new tree, and return the new root
*/
public static Splay deleteRoot(Splay root) {
root.pushDown();
Splay left = splitLeft(root);
Splay right = splitRight(root);
return merge(left, right);
}
/**
* detach the left subtree from root and return the root of left subtree
*/
public static Splay splitLeft(Splay root) {
root.pushDown();
Splay left = root.left;
left.father = NIL;
root.setLeft(NIL);
root.pushUp();
return left;
}
/**
* detach the right subtree from root and return the root of right subtree
*/
public static Splay splitRight(Splay root) {
root.pushDown();
Splay right = root.right;
right.father = NIL;
root.setRight(NIL);
root.pushUp();
return right;
}
public static Splay merge(Splay a, Splay b) {
if (a == NIL) {
return b;
}
if (b == NIL) {
return a;
}
a = selectMaxAsRoot(a);
a.setRight(b);
a.pushUp();
return a;
}
public static Splay selectKthAsRoot(Splay root, int k) {
if (root == NIL) {
return NIL;
}
Splay trace = root;
Splay father = NIL;
while (trace != NIL) {
father = trace;
trace.pushDown();
if (trace.left.size >= k) {
trace = trace.left;
} else {
k -= trace.left.size + 1;
if (k == 0) {
break;
} else {
trace = trace.right;
}
}
}
splay(father);
return father;
}
public static Splay selectKeyAsRoot(Splay root, int k) {
if (root == NIL) {
return NIL;
}
Splay trace = root;
Splay father = NIL;
Splay find = NIL;
while (trace != NIL) {
father = trace;
trace.pushDown();
if (trace.key > k) {
trace = trace.left;
} else {
if (trace.key == k) {
find = trace;
trace = trace.left;
} else {
trace = trace.right;
}
}
}
splay(father);
if (find != NIL) {
splay(find);
return find;
}
return father;
}
public static Splay bruteForceMerge(Splay a, Splay b) {
if (a == NIL) {
return b;
} else if (b == NIL) {
return a;
}
if (a.size < b.size) {
Splay tmp = a;
a = b;
b = tmp;
}
a = selectMaxAsRoot(a);
int k = a.key;
while (b != NIL) {
b = selectMinAsRoot(b);
if (b.key >= k) {
break;
}
Splay kickedOut = b;
b = deleteRoot(b);
a = add(a, kickedOut);
}
return merge(a, b);
}
public static Splay[] split(Splay root, int key) {
if (root == NIL) {
return new Splay[]{NIL, NIL};
}
Splay p = root;
while (root != NIL) {
p = root;
root.pushDown();
if (root.key > key) {
root = root.left;
} else {
root = root.right;
}
}
splay(p);
if (p.key <= key) {
return new Splay[]{p, splitRight(p)};
} else {
return new Splay[]{splitLeft(p), p};
}
}
@Override
public String toString() {
StringBuilder builder = new StringBuilder().append(key).append(":");
toString(cloneTree(this), builder);
return builder.toString();
}
}
public static class FastIO {
public final StringBuilder cache = new StringBuilder();
private final InputStream is;
private final OutputStream os;
private final Charset charset;
private StringBuilder defaultStringBuf = new StringBuilder(1 << 8);
private byte[] buf = new byte[1 << 13];
private int bufLen;
private int bufOffset;
private int next;
public FastIO(InputStream is, OutputStream os, Charset charset) {
this.is = is;
this.os = os;
this.charset = charset;
}
public FastIO(InputStream is, OutputStream os) {
this(is, os, Charset.forName("ascii"));
}
private int read() {
while (bufLen == bufOffset) {
bufOffset = 0;
try {
bufLen = is.read(buf);
} catch (IOException e) {
throw new RuntimeException(e);
}
if (bufLen == -1) {
return -1;
}
}
return buf[bufOffset++];
}
public void skipBlank() {
while (next >= 0 && next <= 32) {
next = read();
}
}
public int readInt() {
int sign = 1;
skipBlank();
if (next == '+' || next == '-') {
sign = next == '+' ? 1 : -1;
next = read();
}
int val = 0;
if (sign == 1) {
while (next >= '0' && next <= '9') {
val = val * 10 + next - '0';
next = read();
}
} else {
while (next >= '0' && next <= '9') {
val = val * 10 - next + '0';
next = read();
}
}
return val;
}
public long readLong() {
int sign = 1;
skipBlank();
if (next == '+' || next == '-') {
sign = next == '+' ? 1 : -1;
next = read();
}
long val = 0;
if (sign == 1) {
while (next >= '0' && next <= '9') {
val = val * 10 + next - '0';
next = read();
}
} else {
while (next >= '0' && next <= '9') {
val = val * 10 - next + '0';
next = read();
}
}
return val;
}
public double readDouble() {
boolean sign = true;
skipBlank();
if (next == '+' || next == '-') {
sign = next == '+';
next = read();
}
long val = 0;
while (next >= '0' && next <= '9') {
val = val * 10 + next - '0';
next = read();
}
if (next != '.') {
return sign ? val : -val;
}
next = read();
long radix = 1;
long point = 0;
while (next >= '0' && next <= '9') {
point = point * 10 + next - '0';
radix = radix * 10;
next = read();
}
double result = val + (double) point / radix;
return sign ? result : -result;
}
public String readString(StringBuilder builder) {
skipBlank();
while (next > 32) {
builder.append((char) next);
next = read();
}
return builder.toString();
}
public String readString() {
defaultStringBuf.setLength(0);
return readString(defaultStringBuf);
}
public int readLine(char[] data, int offset) {
int originalOffset = offset;
while (next != -1 && next != '\n') {
data[offset++] = (char) next;
next = read();
}
return offset - originalOffset;
}
public int readString(char[] data, int offset) {
skipBlank();
int originalOffset = offset;
while (next > 32) {
data[offset++] = (char) next;
next = read();
}
return offset - originalOffset;
}
public int readString(byte[] data, int offset) {
skipBlank();
int originalOffset = offset;
while (next > 32) {
data[offset++] = (byte) next;
next = read();
}
return offset - originalOffset;
}
public char readChar() {
skipBlank();
char c = (char) next;
next = read();
return c;
}
public void flush() {
try {
os.write(cache.toString().getBytes(charset));
os.flush();
cache.setLength(0);
} catch (IOException e) {
throw new RuntimeException(e);
}
}
public boolean hasMore() {
skipBlank();
return next != -1;
}
}
public static class Debug {
private boolean allowDebug;
public Debug(boolean allowDebug) {
this.allowDebug = allowDebug;
}
public void assertTrue(boolean flag) {
if (!allowDebug) {
return;
}
if (!flag) {
fail();
}
}
public void fail() {
throw new RuntimeException();
}
public void assertFalse(boolean flag) {
if (!allowDebug) {
return;
}
if (flag) {
fail();
}
}
private void outputName(String name) {
System.out.print(name + " = ");
}
public void debug(String name, int x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println("" + x);
}
public void debug(String name, long x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println("" + x);
}
public void debug(String name, double x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println("" + x);
}
public void debug(String name, int[] x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println(Arrays.toString(x));
}
public void debug(String name, long[] x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println(Arrays.toString(x));
}
public void debug(String name, double[] x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println(Arrays.toString(x));
}
public void debug(String name, Object x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println("" + x);
}
public void debug(String name, Object... x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println(Arrays.deepToString(x));
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.math.BigInteger;
import java.nio.charset.Charset;
import java.util.*;
public class CFContest {
public static void main(String[] args) throws Exception {
boolean local = System.getProperty("ONLINE_JUDGE") == null;
boolean async = false;
Charset charset = Charset.forName("ascii");
FastIO io = local ? new FastIO(new FileInputStream("D:\\DATABASE\\TESTCASE\\Code.in"), System.out, charset) : new FastIO(System.in, System.out, charset);
Task task = new Task(io, new Debug(local));
if (async) {
Thread t = new Thread(null, task, "dalt", 1 << 27);
t.setPriority(Thread.MAX_PRIORITY);
t.start();
t.join();
} else {
task.run();
}
if (local) {
io.cache.append("\n\n--memory -- \n" + ((Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory()) >> 20) + "M");
}
io.flush();
}
public static class Task implements Runnable {
final FastIO io;
final Debug debug;
int inf = (int) 1e9 + 2;
BitOperator bitOperator = new BitOperator();
Modular modular = new Modular((int) 1e9 + 7);
public Task(FastIO io, Debug debug) {
this.io = io;
this.debug = debug;
}
@Override
public void run() {
solve();
}
int[][][] f;
int n;
int t;
int[] songTimes;
int[] songTypes;
int mask;
public void solve() {
n = io.readInt();
t = io.readInt();
mask = 1 << n;
f = new int[4][mask][t + 1];
for (int i = 0; i < 4; i++) {
for (int j = 0; j < mask; j++) {
for (int k = 0; k <= t; k++) {
f[i][j][k] = -1;
}
}
}
songTimes = new int[n + 1];
songTypes = new int[n + 1];
for (int i = 1; i <= n; i++) {
songTimes[i] = io.readInt();
songTypes[i] = io.readInt();
}
int ans = 0;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < mask; j++) {
ans = modular.plus(ans, f(i, j, t));
}
}
io.cache.append(ans);
}
int f(int i, int j, int k) {
if (j == 0) {
return k == 0 && i == 0 ? 1 : 0;
}
if (k < 0) {
return 0;
}
if (f[i][j][k] == -1) {
f[i][j][k] = 0;
for (int x = 1; x <= n; x++) {
if (songTypes[x] != i || bitOperator.bitAt(j, x - 1) == 0) {
continue;
}
for (int y = 0; y < 4; y++) {
if (y == i) {
continue;
}
f[i][j][k] = modular.plus(f[i][j][k], f(y, bitOperator.setBit(j, x - 1, false), k - songTimes[x]));
}
}
}
return f[i][j][k];
}
}
/**
* 模运算
*/
public static class Modular {
int m;
public Modular(int m) {
this.m = m;
}
public int valueOf(int x) {
x %= m;
if (x < 0) {
x += m;
}
return x;
}
public int valueOf(long x) {
x %= m;
if (x < 0) {
x += m;
}
return (int) x;
}
public int mul(int x, int y) {
return valueOf((long) x * y);
}
public int plus(int x, int y) {
return valueOf(x + y);
}
@Override
public String toString() {
return "mod " + m;
}
}
public static class BitOperator {
public int bitAt(int x, int i) {
return (x >> i) & 1;
}
public int bitAt(long x, int i) {
return (int) ((x >> i) & 1);
}
public int setBit(int x, int i, boolean v) {
if (v) {
x |= 1 << i;
} else {
x &= ~(1 << i);
}
return x;
}
public long setBit(long x, int i, boolean v) {
if (v) {
x |= 1L << i;
} else {
x &= ~(1L << i);
}
return x;
}
/**
* Determine whether x is subset of y
*/
public boolean subset(long x, long y) {
return intersect(x, y) == x;
}
/**
* Merge two set
*/
public long merge(long x, long y) {
return x | y;
}
public long intersect(long x, long y) {
return x & y;
}
public long differ(long x, long y) {
return x - intersect(x, y);
}
}
public static class Randomized {
static Random random = new Random();
public static double nextDouble(double min, double max) {
return random.nextDouble() * (max - min) + min;
}
public static void randomizedArray(int[] data, int from, int to) {
to--;
for (int i = from; i <= to; i++) {
int s = nextInt(i, to);
int tmp = data[i];
data[i] = data[s];
data[s] = tmp;
}
}
public static void randomizedArray(long[] data, int from, int to) {
to--;
for (int i = from; i <= to; i++) {
int s = nextInt(i, to);
long tmp = data[i];
data[i] = data[s];
data[s] = tmp;
}
}
public static void randomizedArray(double[] data, int from, int to) {
to--;
for (int i = from; i <= to; i++) {
int s = nextInt(i, to);
double tmp = data[i];
data[i] = data[s];
data[s] = tmp;
}
}
public static void randomizedArray(float[] data, int from, int to) {
to--;
for (int i = from; i <= to; i++) {
int s = nextInt(i, to);
float tmp = data[i];
data[i] = data[s];
data[s] = tmp;
}
}
public static <T> void randomizedArray(T[] data, int from, int to) {
to--;
for (int i = from; i <= to; i++) {
int s = nextInt(i, to);
T tmp = data[i];
data[i] = data[s];
data[s] = tmp;
}
}
public static int nextInt(int l, int r) {
return random.nextInt(r - l + 1) + l;
}
}
public static class Splay implements Cloneable {
public static final Splay NIL = new Splay();
static {
NIL.left = NIL;
NIL.right = NIL;
NIL.father = NIL;
NIL.size = 0;
NIL.key = Integer.MIN_VALUE;
NIL.sum = 0;
}
Splay left = NIL;
Splay right = NIL;
Splay father = NIL;
int size = 1;
int key;
long sum;
public static void splay(Splay x) {
if (x == NIL) {
return;
}
Splay y, z;
while ((y = x.father) != NIL) {
if ((z = y.father) == NIL) {
y.pushDown();
x.pushDown();
if (x == y.left) {
zig(x);
} else {
zag(x);
}
} else {
z.pushDown();
y.pushDown();
x.pushDown();
if (x == y.left) {
if (y == z.left) {
zig(y);
zig(x);
} else {
zig(x);
zag(x);
}
} else {
if (y == z.left) {
zag(x);
zig(x);
} else {
zag(y);
zag(x);
}
}
}
}
x.pushDown();
x.pushUp();
}
public static void zig(Splay x) {
Splay y = x.father;
Splay z = y.father;
Splay b = x.right;
y.setLeft(b);
x.setRight(y);
z.changeChild(y, x);
y.pushUp();
}
public static void zag(Splay x) {
Splay y = x.father;
Splay z = y.father;
Splay b = x.left;
y.setRight(b);
x.setLeft(y);
z.changeChild(y, x);
y.pushUp();
}
public void setLeft(Splay x) {
left = x;
x.father = this;
}
public void setRight(Splay x) {
right = x;
x.father = this;
}
public void changeChild(Splay y, Splay x) {
if (left == y) {
setLeft(x);
} else {
setRight(x);
}
}
public void pushUp() {
if (this == NIL) {
return;
}
size = left.size + right.size + 1;
sum = left.sum + right.sum + key;
}
public void pushDown() {
}
public static int toArray(Splay root, int[] data, int offset) {
if (root == NIL) {
return offset;
}
offset = toArray(root.left, data, offset);
data[offset++] = root.key;
offset = toArray(root.right, data, offset);
return offset;
}
public static void toString(Splay root, StringBuilder builder) {
if (root == NIL) {
return;
}
root.pushDown();
toString(root.left, builder);
builder.append(root.key).append(',');
toString(root.right, builder);
}
public Splay clone() {
try {
return (Splay) super.clone();
} catch (CloneNotSupportedException e) {
throw new RuntimeException(e);
}
}
public static Splay cloneTree(Splay splay) {
if (splay == NIL) {
return NIL;
}
splay = splay.clone();
splay.left = cloneTree(splay.left);
splay.right = cloneTree(splay.right);
return splay;
}
public static Splay add(Splay root, Splay node) {
if (root == NIL) {
return node;
}
Splay p = root;
while (root != NIL) {
p = root;
root.pushDown();
if (root.key < node.key) {
root = root.right;
} else {
root = root.left;
}
}
if (p.key < node.key) {
p.setRight(node);
} else {
p.setLeft(node);
}
p.pushUp();
splay(node);
return node;
}
/**
* Make the node with the minimum key as the root of tree
*/
public static Splay selectMinAsRoot(Splay root) {
if (root == NIL) {
return root;
}
root.pushDown();
while (root.left != NIL) {
root = root.left;
root.pushDown();
}
splay(root);
return root;
}
/**
* Make the node with the maximum key as the root of tree
*/
public static Splay selectMaxAsRoot(Splay root) {
if (root == NIL) {
return root;
}
root.pushDown();
while (root.right != NIL) {
root = root.right;
root.pushDown();
}
splay(root);
return root;
}
/**
* delete root of tree, then merge remain nodes into a new tree, and return the new root
*/
public static Splay deleteRoot(Splay root) {
root.pushDown();
Splay left = splitLeft(root);
Splay right = splitRight(root);
return merge(left, right);
}
/**
* detach the left subtree from root and return the root of left subtree
*/
public static Splay splitLeft(Splay root) {
root.pushDown();
Splay left = root.left;
left.father = NIL;
root.setLeft(NIL);
root.pushUp();
return left;
}
/**
* detach the right subtree from root and return the root of right subtree
*/
public static Splay splitRight(Splay root) {
root.pushDown();
Splay right = root.right;
right.father = NIL;
root.setRight(NIL);
root.pushUp();
return right;
}
public static Splay merge(Splay a, Splay b) {
if (a == NIL) {
return b;
}
if (b == NIL) {
return a;
}
a = selectMaxAsRoot(a);
a.setRight(b);
a.pushUp();
return a;
}
public static Splay selectKthAsRoot(Splay root, int k) {
if (root == NIL) {
return NIL;
}
Splay trace = root;
Splay father = NIL;
while (trace != NIL) {
father = trace;
trace.pushDown();
if (trace.left.size >= k) {
trace = trace.left;
} else {
k -= trace.left.size + 1;
if (k == 0) {
break;
} else {
trace = trace.right;
}
}
}
splay(father);
return father;
}
public static Splay selectKeyAsRoot(Splay root, int k) {
if (root == NIL) {
return NIL;
}
Splay trace = root;
Splay father = NIL;
Splay find = NIL;
while (trace != NIL) {
father = trace;
trace.pushDown();
if (trace.key > k) {
trace = trace.left;
} else {
if (trace.key == k) {
find = trace;
trace = trace.left;
} else {
trace = trace.right;
}
}
}
splay(father);
if (find != NIL) {
splay(find);
return find;
}
return father;
}
public static Splay bruteForceMerge(Splay a, Splay b) {
if (a == NIL) {
return b;
} else if (b == NIL) {
return a;
}
if (a.size < b.size) {
Splay tmp = a;
a = b;
b = tmp;
}
a = selectMaxAsRoot(a);
int k = a.key;
while (b != NIL) {
b = selectMinAsRoot(b);
if (b.key >= k) {
break;
}
Splay kickedOut = b;
b = deleteRoot(b);
a = add(a, kickedOut);
}
return merge(a, b);
}
public static Splay[] split(Splay root, int key) {
if (root == NIL) {
return new Splay[]{NIL, NIL};
}
Splay p = root;
while (root != NIL) {
p = root;
root.pushDown();
if (root.key > key) {
root = root.left;
} else {
root = root.right;
}
}
splay(p);
if (p.key <= key) {
return new Splay[]{p, splitRight(p)};
} else {
return new Splay[]{splitLeft(p), p};
}
}
@Override
public String toString() {
StringBuilder builder = new StringBuilder().append(key).append(":");
toString(cloneTree(this), builder);
return builder.toString();
}
}
public static class FastIO {
public final StringBuilder cache = new StringBuilder();
private final InputStream is;
private final OutputStream os;
private final Charset charset;
private StringBuilder defaultStringBuf = new StringBuilder(1 << 8);
private byte[] buf = new byte[1 << 13];
private int bufLen;
private int bufOffset;
private int next;
public FastIO(InputStream is, OutputStream os, Charset charset) {
this.is = is;
this.os = os;
this.charset = charset;
}
public FastIO(InputStream is, OutputStream os) {
this(is, os, Charset.forName("ascii"));
}
private int read() {
while (bufLen == bufOffset) {
bufOffset = 0;
try {
bufLen = is.read(buf);
} catch (IOException e) {
throw new RuntimeException(e);
}
if (bufLen == -1) {
return -1;
}
}
return buf[bufOffset++];
}
public void skipBlank() {
while (next >= 0 && next <= 32) {
next = read();
}
}
public int readInt() {
int sign = 1;
skipBlank();
if (next == '+' || next == '-') {
sign = next == '+' ? 1 : -1;
next = read();
}
int val = 0;
if (sign == 1) {
while (next >= '0' && next <= '9') {
val = val * 10 + next - '0';
next = read();
}
} else {
while (next >= '0' && next <= '9') {
val = val * 10 - next + '0';
next = read();
}
}
return val;
}
public long readLong() {
int sign = 1;
skipBlank();
if (next == '+' || next == '-') {
sign = next == '+' ? 1 : -1;
next = read();
}
long val = 0;
if (sign == 1) {
while (next >= '0' && next <= '9') {
val = val * 10 + next - '0';
next = read();
}
} else {
while (next >= '0' && next <= '9') {
val = val * 10 - next + '0';
next = read();
}
}
return val;
}
public double readDouble() {
boolean sign = true;
skipBlank();
if (next == '+' || next == '-') {
sign = next == '+';
next = read();
}
long val = 0;
while (next >= '0' && next <= '9') {
val = val * 10 + next - '0';
next = read();
}
if (next != '.') {
return sign ? val : -val;
}
next = read();
long radix = 1;
long point = 0;
while (next >= '0' && next <= '9') {
point = point * 10 + next - '0';
radix = radix * 10;
next = read();
}
double result = val + (double) point / radix;
return sign ? result : -result;
}
public String readString(StringBuilder builder) {
skipBlank();
while (next > 32) {
builder.append((char) next);
next = read();
}
return builder.toString();
}
public String readString() {
defaultStringBuf.setLength(0);
return readString(defaultStringBuf);
}
public int readLine(char[] data, int offset) {
int originalOffset = offset;
while (next != -1 && next != '\n') {
data[offset++] = (char) next;
next = read();
}
return offset - originalOffset;
}
public int readString(char[] data, int offset) {
skipBlank();
int originalOffset = offset;
while (next > 32) {
data[offset++] = (char) next;
next = read();
}
return offset - originalOffset;
}
public int readString(byte[] data, int offset) {
skipBlank();
int originalOffset = offset;
while (next > 32) {
data[offset++] = (byte) next;
next = read();
}
return offset - originalOffset;
}
public char readChar() {
skipBlank();
char c = (char) next;
next = read();
return c;
}
public void flush() {
try {
os.write(cache.toString().getBytes(charset));
os.flush();
cache.setLength(0);
} catch (IOException e) {
throw new RuntimeException(e);
}
}
public boolean hasMore() {
skipBlank();
return next != -1;
}
}
public static class Debug {
private boolean allowDebug;
public Debug(boolean allowDebug) {
this.allowDebug = allowDebug;
}
public void assertTrue(boolean flag) {
if (!allowDebug) {
return;
}
if (!flag) {
fail();
}
}
public void fail() {
throw new RuntimeException();
}
public void assertFalse(boolean flag) {
if (!allowDebug) {
return;
}
if (flag) {
fail();
}
}
private void outputName(String name) {
System.out.print(name + " = ");
}
public void debug(String name, int x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println("" + x);
}
public void debug(String name, long x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println("" + x);
}
public void debug(String name, double x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println("" + x);
}
public void debug(String name, int[] x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println(Arrays.toString(x));
}
public void debug(String name, long[] x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println(Arrays.toString(x));
}
public void debug(String name, double[] x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println(Arrays.toString(x));
}
public void debug(String name, Object x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println("" + x);
}
public void debug(String name, Object... x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println(Arrays.deepToString(x));
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 5,583 | 4,022 |
2,571 |
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Scanner;
public class a1 {
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
int n = s.nextInt();
int a[] = new int[n];
HashMap<Integer,ArrayList<Integer>> h = new HashMap<>();
boolean visited[] = new boolean[n];
for(int i=0;i<n;i++)
{
a[i] = s.nextInt();
}
Arrays.sort(a);
for(int i=0;i<n;i++) {
if(h.containsKey(a[i])) {
ArrayList<Integer> temp = h.get(a[i]);
temp.add(i);
h.put(a[i],temp);
}
else {
ArrayList<Integer> k =new ArrayList<>();
k.add(i);
h.put(a[i], k);
}
}
int ctr=0;
for(int i=0;i<n;i++) {
if(!visited[i]) {
//System.out.println(a[i]);
ctr++;
for(int j=a[i];j<=100;j+=a[i]) {
if(h.containsKey(j)) {
ArrayList<Integer> m = h.get(j);
for(int k=0;k<m.size();k++) {
visited[m.get(k)]=true;
}
h.remove(j);
}
}
}
}
System.out.println(ctr);
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Scanner;
public class a1 {
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
int n = s.nextInt();
int a[] = new int[n];
HashMap<Integer,ArrayList<Integer>> h = new HashMap<>();
boolean visited[] = new boolean[n];
for(int i=0;i<n;i++)
{
a[i] = s.nextInt();
}
Arrays.sort(a);
for(int i=0;i<n;i++) {
if(h.containsKey(a[i])) {
ArrayList<Integer> temp = h.get(a[i]);
temp.add(i);
h.put(a[i],temp);
}
else {
ArrayList<Integer> k =new ArrayList<>();
k.add(i);
h.put(a[i], k);
}
}
int ctr=0;
for(int i=0;i<n;i++) {
if(!visited[i]) {
//System.out.println(a[i]);
ctr++;
for(int j=a[i];j<=100;j+=a[i]) {
if(h.containsKey(j)) {
ArrayList<Integer> m = h.get(j);
for(int k=0;k<m.size();k++) {
visited[m.get(k)]=true;
}
h.remove(j);
}
}
}
}
System.out.println(ctr);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Scanner;
public class a1 {
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
int n = s.nextInt();
int a[] = new int[n];
HashMap<Integer,ArrayList<Integer>> h = new HashMap<>();
boolean visited[] = new boolean[n];
for(int i=0;i<n;i++)
{
a[i] = s.nextInt();
}
Arrays.sort(a);
for(int i=0;i<n;i++) {
if(h.containsKey(a[i])) {
ArrayList<Integer> temp = h.get(a[i]);
temp.add(i);
h.put(a[i],temp);
}
else {
ArrayList<Integer> k =new ArrayList<>();
k.add(i);
h.put(a[i], k);
}
}
int ctr=0;
for(int i=0;i<n;i++) {
if(!visited[i]) {
//System.out.println(a[i]);
ctr++;
for(int j=a[i];j<=100;j+=a[i]) {
if(h.containsKey(j)) {
ArrayList<Integer> m = h.get(j);
for(int k=0;k<m.size();k++) {
visited[m.get(k)]=true;
}
h.remove(j);
}
}
}
}
System.out.println(ctr);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 643 | 2,565 |
4,367 |
import java.util.*;
import java.io.*;
public class Main implements Runnable {
private void solution() throws IOException {
int n = in.nextInt();
int m = in.nextInt();
boolean[][] adj = new boolean[n][n];
long res = 0;
for (int i = 0; i < m; ++i) {
int x = in.nextInt();
int y = in.nextInt();
adj[x - 1][y - 1] = true;
adj[y - 1][x - 1] = true;
}
for (int i = 0; i < n; ++i) {
for (int j = i + 1; j < n; ++j) {
if (adj[i][j]) {
--res;
}
}
}
final long[][] dp = new long[1 << n][n];
for (int i = 0; i < n; ++i) {
for (int mask = 0; mask < (1 << (n - i)); ++mask) {
for (int j = 0; j < n - i; ++j) {
dp[mask][j] = 0;
}
}
dp[0][0] = 1;
for (int mask = 0; mask < (1 << (n - i)); ++mask) {
for (int j = 0; j < n - i; ++j) {
if (dp[mask][j] != 0) {
for (int k = 0; k < n - i; ++k) {
if (((mask >> k) & 1) == 0 && adj[j + i][k + i]) {
dp[mask | (1 << k)][k] += dp[mask][j];
}
}
}
}
if (((mask >> 0) & 1) != 0) {
res += dp[mask][0];
}
}
}
out.println(res / 2);
}
public void run() {
try {
solution();
in.reader.close();
out.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
private class Scanner {
BufferedReader reader;
StringTokenizer tokenizer;
public Scanner(Reader reader) {
this.reader = new BufferedReader(reader);
this.tokenizer = new StringTokenizer("");
}
public boolean hasNext() throws IOException {
while (!tokenizer.hasMoreTokens()) {
String next = reader.readLine();
if (next == null) {
return false;
}
tokenizer = new StringTokenizer(next);
}
return true;
}
public String next() throws IOException {
hasNext();
return tokenizer.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public String nextLine() throws IOException {
tokenizer = new StringTokenizer("");
return reader.readLine();
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
}
public static void main(String[] args) throws IOException {
new Thread(null, new Main(), "", 1 << 28).start();
}
PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
Scanner in = new Scanner(new InputStreamReader(System.in));
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Main implements Runnable {
private void solution() throws IOException {
int n = in.nextInt();
int m = in.nextInt();
boolean[][] adj = new boolean[n][n];
long res = 0;
for (int i = 0; i < m; ++i) {
int x = in.nextInt();
int y = in.nextInt();
adj[x - 1][y - 1] = true;
adj[y - 1][x - 1] = true;
}
for (int i = 0; i < n; ++i) {
for (int j = i + 1; j < n; ++j) {
if (adj[i][j]) {
--res;
}
}
}
final long[][] dp = new long[1 << n][n];
for (int i = 0; i < n; ++i) {
for (int mask = 0; mask < (1 << (n - i)); ++mask) {
for (int j = 0; j < n - i; ++j) {
dp[mask][j] = 0;
}
}
dp[0][0] = 1;
for (int mask = 0; mask < (1 << (n - i)); ++mask) {
for (int j = 0; j < n - i; ++j) {
if (dp[mask][j] != 0) {
for (int k = 0; k < n - i; ++k) {
if (((mask >> k) & 1) == 0 && adj[j + i][k + i]) {
dp[mask | (1 << k)][k] += dp[mask][j];
}
}
}
}
if (((mask >> 0) & 1) != 0) {
res += dp[mask][0];
}
}
}
out.println(res / 2);
}
public void run() {
try {
solution();
in.reader.close();
out.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
private class Scanner {
BufferedReader reader;
StringTokenizer tokenizer;
public Scanner(Reader reader) {
this.reader = new BufferedReader(reader);
this.tokenizer = new StringTokenizer("");
}
public boolean hasNext() throws IOException {
while (!tokenizer.hasMoreTokens()) {
String next = reader.readLine();
if (next == null) {
return false;
}
tokenizer = new StringTokenizer(next);
}
return true;
}
public String next() throws IOException {
hasNext();
return tokenizer.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public String nextLine() throws IOException {
tokenizer = new StringTokenizer("");
return reader.readLine();
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
}
public static void main(String[] args) throws IOException {
new Thread(null, new Main(), "", 1 << 28).start();
}
PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
Scanner in = new Scanner(new InputStreamReader(System.in));
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Main implements Runnable {
private void solution() throws IOException {
int n = in.nextInt();
int m = in.nextInt();
boolean[][] adj = new boolean[n][n];
long res = 0;
for (int i = 0; i < m; ++i) {
int x = in.nextInt();
int y = in.nextInt();
adj[x - 1][y - 1] = true;
adj[y - 1][x - 1] = true;
}
for (int i = 0; i < n; ++i) {
for (int j = i + 1; j < n; ++j) {
if (adj[i][j]) {
--res;
}
}
}
final long[][] dp = new long[1 << n][n];
for (int i = 0; i < n; ++i) {
for (int mask = 0; mask < (1 << (n - i)); ++mask) {
for (int j = 0; j < n - i; ++j) {
dp[mask][j] = 0;
}
}
dp[0][0] = 1;
for (int mask = 0; mask < (1 << (n - i)); ++mask) {
for (int j = 0; j < n - i; ++j) {
if (dp[mask][j] != 0) {
for (int k = 0; k < n - i; ++k) {
if (((mask >> k) & 1) == 0 && adj[j + i][k + i]) {
dp[mask | (1 << k)][k] += dp[mask][j];
}
}
}
}
if (((mask >> 0) & 1) != 0) {
res += dp[mask][0];
}
}
}
out.println(res / 2);
}
public void run() {
try {
solution();
in.reader.close();
out.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
private class Scanner {
BufferedReader reader;
StringTokenizer tokenizer;
public Scanner(Reader reader) {
this.reader = new BufferedReader(reader);
this.tokenizer = new StringTokenizer("");
}
public boolean hasNext() throws IOException {
while (!tokenizer.hasMoreTokens()) {
String next = reader.readLine();
if (next == null) {
return false;
}
tokenizer = new StringTokenizer(next);
}
return true;
}
public String next() throws IOException {
hasNext();
return tokenizer.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public String nextLine() throws IOException {
tokenizer = new StringTokenizer("");
return reader.readLine();
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
}
public static void main(String[] args) throws IOException {
new Thread(null, new Main(), "", 1 << 28).start();
}
PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
Scanner in = new Scanner(new InputStreamReader(System.in));
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,062 | 4,356 |
2,981 |
import java.util.*;
public class c {
public static void main(String[] args)
{
Scanner input = new Scanner(System.in);
long a = input.nextLong(), b = input.nextLong();
System.out.println(gcd(a, b));
}
static long gcd(long a, long b)
{
if(b==1) return a;
if(a==1) return b;
if(a>b) return a/b + gcd(b, a%b);
return b/a + gcd(a, b%a);
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
public class c {
public static void main(String[] args)
{
Scanner input = new Scanner(System.in);
long a = input.nextLong(), b = input.nextLong();
System.out.println(gcd(a, b));
}
static long gcd(long a, long b)
{
if(b==1) return a;
if(a==1) return b;
if(a>b) return a/b + gcd(b, a%b);
return b/a + gcd(a, b%a);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class c {
public static void main(String[] args)
{
Scanner input = new Scanner(System.in);
long a = input.nextLong(), b = input.nextLong();
System.out.println(gcd(a, b));
}
static long gcd(long a, long b)
{
if(b==1) return a;
if(a==1) return b;
if(a>b) return a/b + gcd(b, a%b);
return b/a + gcd(a, b%a);
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 438 | 2,975 |
290 |
import java.io.*;
import java.util.*;
public class Main {
private static void solve(InputReader in, OutputWriter out) {
int n = in.nextInt();
if (n < 6) {
out.println(-1);
} else {
int m = (n - 2);
for (int i = 2; i <= m; i++) {
out.println("1 " + i);
}
out.println(m + " " + (m + 1));
out.println(m + " " + (m + 2));
}
for (int i = 2; i <= n; i++) {
out.println("1 " + i);
}
}
private static void shuffleArray(int[] array) {
int index;
Random random = new Random();
for (int i = array.length - 1; i > 0; i--) {
index = random.nextInt(i + 1);
if (index != i) {
array[index] ^= array[i];
array[i] ^= array[index];
array[index] ^= array[i];
}
}
}
public static void main(String[] args) {
InputReader in = new InputReader(System.in);
OutputWriter out = new OutputWriter(System.out);
solve(in, out);
in.close();
out.close();
}
private static class InputReader {
private BufferedReader br;
private StringTokenizer st;
InputReader(InputStream is) {
br = new BufferedReader(new InputStreamReader(is));
st = null;
}
String nextLine() {
String line = null;
try {
line = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return line;
}
String next() {
while (st == null || !st.hasMoreTokens()) {
String line = nextLine();
if (line == null) return null;
st = new StringTokenizer(line);
}
return st.nextToken();
}
byte nextByte() {
return Byte.parseByte(next());
}
short nextShort() {
return Short.parseShort(next());
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
void close() {
try {
br.close();
} catch (IOException e) {
e.printStackTrace();
}
}
}
private static class OutputWriter {
BufferedWriter bw;
OutputWriter(OutputStream os) {
bw = new BufferedWriter(new OutputStreamWriter(os));
}
void print(int i) {
print(Integer.toString(i));
}
void println(int i) {
println(Integer.toString(i));
}
void print(long l) {
print(Long.toString(l));
}
void println(long l) {
println(Long.toString(l));
}
void print(double d) {
print(Double.toString(d));
}
void println(double d) {
println(Double.toString(d));
}
void print(boolean b) {
print(Boolean.toString(b));
}
void println(boolean b) {
println(Boolean.toString(b));
}
void print(char c) {
try {
bw.write(c);
} catch (IOException e) {
e.printStackTrace();
}
}
void println(char c) {
println(Character.toString(c));
}
void print(String s) {
try {
bw.write(s);
} catch (IOException e) {
e.printStackTrace();
}
}
void println(String s) {
print(s);
print('\n');
}
void close() {
try {
bw.close();
} catch (IOException e) {
e.printStackTrace();
}
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
private static void solve(InputReader in, OutputWriter out) {
int n = in.nextInt();
if (n < 6) {
out.println(-1);
} else {
int m = (n - 2);
for (int i = 2; i <= m; i++) {
out.println("1 " + i);
}
out.println(m + " " + (m + 1));
out.println(m + " " + (m + 2));
}
for (int i = 2; i <= n; i++) {
out.println("1 " + i);
}
}
private static void shuffleArray(int[] array) {
int index;
Random random = new Random();
for (int i = array.length - 1; i > 0; i--) {
index = random.nextInt(i + 1);
if (index != i) {
array[index] ^= array[i];
array[i] ^= array[index];
array[index] ^= array[i];
}
}
}
public static void main(String[] args) {
InputReader in = new InputReader(System.in);
OutputWriter out = new OutputWriter(System.out);
solve(in, out);
in.close();
out.close();
}
private static class InputReader {
private BufferedReader br;
private StringTokenizer st;
InputReader(InputStream is) {
br = new BufferedReader(new InputStreamReader(is));
st = null;
}
String nextLine() {
String line = null;
try {
line = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return line;
}
String next() {
while (st == null || !st.hasMoreTokens()) {
String line = nextLine();
if (line == null) return null;
st = new StringTokenizer(line);
}
return st.nextToken();
}
byte nextByte() {
return Byte.parseByte(next());
}
short nextShort() {
return Short.parseShort(next());
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
void close() {
try {
br.close();
} catch (IOException e) {
e.printStackTrace();
}
}
}
private static class OutputWriter {
BufferedWriter bw;
OutputWriter(OutputStream os) {
bw = new BufferedWriter(new OutputStreamWriter(os));
}
void print(int i) {
print(Integer.toString(i));
}
void println(int i) {
println(Integer.toString(i));
}
void print(long l) {
print(Long.toString(l));
}
void println(long l) {
println(Long.toString(l));
}
void print(double d) {
print(Double.toString(d));
}
void println(double d) {
println(Double.toString(d));
}
void print(boolean b) {
print(Boolean.toString(b));
}
void println(boolean b) {
println(Boolean.toString(b));
}
void print(char c) {
try {
bw.write(c);
} catch (IOException e) {
e.printStackTrace();
}
}
void println(char c) {
println(Character.toString(c));
}
void print(String s) {
try {
bw.write(s);
} catch (IOException e) {
e.printStackTrace();
}
}
void println(String s) {
print(s);
print('\n');
}
void close() {
try {
bw.close();
} catch (IOException e) {
e.printStackTrace();
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
private static void solve(InputReader in, OutputWriter out) {
int n = in.nextInt();
if (n < 6) {
out.println(-1);
} else {
int m = (n - 2);
for (int i = 2; i <= m; i++) {
out.println("1 " + i);
}
out.println(m + " " + (m + 1));
out.println(m + " " + (m + 2));
}
for (int i = 2; i <= n; i++) {
out.println("1 " + i);
}
}
private static void shuffleArray(int[] array) {
int index;
Random random = new Random();
for (int i = array.length - 1; i > 0; i--) {
index = random.nextInt(i + 1);
if (index != i) {
array[index] ^= array[i];
array[i] ^= array[index];
array[index] ^= array[i];
}
}
}
public static void main(String[] args) {
InputReader in = new InputReader(System.in);
OutputWriter out = new OutputWriter(System.out);
solve(in, out);
in.close();
out.close();
}
private static class InputReader {
private BufferedReader br;
private StringTokenizer st;
InputReader(InputStream is) {
br = new BufferedReader(new InputStreamReader(is));
st = null;
}
String nextLine() {
String line = null;
try {
line = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return line;
}
String next() {
while (st == null || !st.hasMoreTokens()) {
String line = nextLine();
if (line == null) return null;
st = new StringTokenizer(line);
}
return st.nextToken();
}
byte nextByte() {
return Byte.parseByte(next());
}
short nextShort() {
return Short.parseShort(next());
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
void close() {
try {
br.close();
} catch (IOException e) {
e.printStackTrace();
}
}
}
private static class OutputWriter {
BufferedWriter bw;
OutputWriter(OutputStream os) {
bw = new BufferedWriter(new OutputStreamWriter(os));
}
void print(int i) {
print(Integer.toString(i));
}
void println(int i) {
println(Integer.toString(i));
}
void print(long l) {
print(Long.toString(l));
}
void println(long l) {
println(Long.toString(l));
}
void print(double d) {
print(Double.toString(d));
}
void println(double d) {
println(Double.toString(d));
}
void print(boolean b) {
print(Boolean.toString(b));
}
void println(boolean b) {
println(Boolean.toString(b));
}
void print(char c) {
try {
bw.write(c);
} catch (IOException e) {
e.printStackTrace();
}
}
void println(char c) {
println(Character.toString(c));
}
void print(String s) {
try {
bw.write(s);
} catch (IOException e) {
e.printStackTrace();
}
}
void println(String s) {
print(s);
print('\n');
}
void close() {
try {
bw.close();
} catch (IOException e) {
e.printStackTrace();
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,148 | 290 |
3,043 |
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
if (((n % 4) == 0) || ((n % 7) == 0) || ((n % 44) == 0) || ((n % 47) == 0) || ((n % 74) == 0) || ((n % 77) == 0) || ((n % 444) == 0) || ((n % 447) == 0) || ((n % 474) == 0) || ((n % 477) == 0) || ((n % 744) == 0) || ((n % 747) == 0) || ((n % 774) == 0) || ((n % 777) == 0))
System.out.print("YES");
else
System.out.print("NO");
in.close();
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
if (((n % 4) == 0) || ((n % 7) == 0) || ((n % 44) == 0) || ((n % 47) == 0) || ((n % 74) == 0) || ((n % 77) == 0) || ((n % 444) == 0) || ((n % 447) == 0) || ((n % 474) == 0) || ((n % 477) == 0) || ((n % 744) == 0) || ((n % 747) == 0) || ((n % 774) == 0) || ((n % 777) == 0))
System.out.print("YES");
else
System.out.print("NO");
in.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
if (((n % 4) == 0) || ((n % 7) == 0) || ((n % 44) == 0) || ((n % 47) == 0) || ((n % 74) == 0) || ((n % 77) == 0) || ((n % 444) == 0) || ((n % 447) == 0) || ((n % 474) == 0) || ((n % 477) == 0) || ((n % 744) == 0) || ((n % 747) == 0) || ((n % 774) == 0) || ((n % 777) == 0))
System.out.print("YES");
else
System.out.print("NO");
in.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 565 | 3,037 |
3,511 |
// Main Code at the Bottom
import java.util.*;
import java.io.*;
public class Main{
//Fast IO class
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
boolean env=System.getProperty("ONLINE_JUDGE") != null;
//env=true;
if(!env) {
try {
br=new BufferedReader(new FileReader("src\\input.txt"));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
else br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
static long MOD=(long)1e9+7;
//debug
static void debug(Object... o) {
System.out.println(Arrays.deepToString(o));
}
static FastReader sc=new FastReader();
static PrintWriter out=new PrintWriter(System.out);
//Global variables and functions
static long memo[];
static long C[][];
static long exp(long a,long x) {
if(x==0) return 1;
if(x%2==0) return exp((a*a)%MOD,x/2)%MOD;
return ((a%MOD)*((exp((a*a)%MOD,x/2))%MOD))%MOD;
}
static void fill(int n) {
C = new long[n+1][n+1];
for(int i = 1; i<=n;i++) C[i][0]=C[i][i]=1;
for(int i=2;i<=n;i++) {
for(int j=1;j<=n;j++) {
C[i][j]=(C[i-1][j]+C[i-1][j-1])%MOD;
}
}
}
//Main function(The main code starts from here)
public static void main (String[] args) throws java.lang.Exception {
int test=1;
//test=sc.nextInt();
while(test-->0) {
int n = sc.nextInt();
MOD = sc.nextLong();
memo = new long[n+1];
fill(n);
long dp[][] = new long[n+5][n+5];
for(int i=1;i<=n;i++) dp[i][i]=exp(2,i-1);
for(int i = 2; i <= n; i++) {
for(int j = 1; j < i; j++) {
for(int k = 1; k <= j; k++) {
long val = (dp[i-k-1][j-k]*C[j][k])%MOD;
if(memo[k-1] ==0) memo[k-1] = exp(2, k-1);
val=(val*memo[k-1])%MOD;
dp[i][j]=(dp[i][j]+val)%MOD;
}
}
}
long ans = 0;
for(int i=0;i<=n;i++) ans=(ans+dp[n][i])%MOD;
out.println(ans);
}
out.flush();
out.close();
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
// Main Code at the Bottom
import java.util.*;
import java.io.*;
public class Main{
//Fast IO class
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
boolean env=System.getProperty("ONLINE_JUDGE") != null;
//env=true;
if(!env) {
try {
br=new BufferedReader(new FileReader("src\\input.txt"));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
else br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
static long MOD=(long)1e9+7;
//debug
static void debug(Object... o) {
System.out.println(Arrays.deepToString(o));
}
static FastReader sc=new FastReader();
static PrintWriter out=new PrintWriter(System.out);
//Global variables and functions
static long memo[];
static long C[][];
static long exp(long a,long x) {
if(x==0) return 1;
if(x%2==0) return exp((a*a)%MOD,x/2)%MOD;
return ((a%MOD)*((exp((a*a)%MOD,x/2))%MOD))%MOD;
}
static void fill(int n) {
C = new long[n+1][n+1];
for(int i = 1; i<=n;i++) C[i][0]=C[i][i]=1;
for(int i=2;i<=n;i++) {
for(int j=1;j<=n;j++) {
C[i][j]=(C[i-1][j]+C[i-1][j-1])%MOD;
}
}
}
//Main function(The main code starts from here)
public static void main (String[] args) throws java.lang.Exception {
int test=1;
//test=sc.nextInt();
while(test-->0) {
int n = sc.nextInt();
MOD = sc.nextLong();
memo = new long[n+1];
fill(n);
long dp[][] = new long[n+5][n+5];
for(int i=1;i<=n;i++) dp[i][i]=exp(2,i-1);
for(int i = 2; i <= n; i++) {
for(int j = 1; j < i; j++) {
for(int k = 1; k <= j; k++) {
long val = (dp[i-k-1][j-k]*C[j][k])%MOD;
if(memo[k-1] ==0) memo[k-1] = exp(2, k-1);
val=(val*memo[k-1])%MOD;
dp[i][j]=(dp[i][j]+val)%MOD;
}
}
}
long ans = 0;
for(int i=0;i<=n;i++) ans=(ans+dp[n][i])%MOD;
out.println(ans);
}
out.flush();
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
// Main Code at the Bottom
import java.util.*;
import java.io.*;
public class Main{
//Fast IO class
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
boolean env=System.getProperty("ONLINE_JUDGE") != null;
//env=true;
if(!env) {
try {
br=new BufferedReader(new FileReader("src\\input.txt"));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
else br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
static long MOD=(long)1e9+7;
//debug
static void debug(Object... o) {
System.out.println(Arrays.deepToString(o));
}
static FastReader sc=new FastReader();
static PrintWriter out=new PrintWriter(System.out);
//Global variables and functions
static long memo[];
static long C[][];
static long exp(long a,long x) {
if(x==0) return 1;
if(x%2==0) return exp((a*a)%MOD,x/2)%MOD;
return ((a%MOD)*((exp((a*a)%MOD,x/2))%MOD))%MOD;
}
static void fill(int n) {
C = new long[n+1][n+1];
for(int i = 1; i<=n;i++) C[i][0]=C[i][i]=1;
for(int i=2;i<=n;i++) {
for(int j=1;j<=n;j++) {
C[i][j]=(C[i-1][j]+C[i-1][j-1])%MOD;
}
}
}
//Main function(The main code starts from here)
public static void main (String[] args) throws java.lang.Exception {
int test=1;
//test=sc.nextInt();
while(test-->0) {
int n = sc.nextInt();
MOD = sc.nextLong();
memo = new long[n+1];
fill(n);
long dp[][] = new long[n+5][n+5];
for(int i=1;i<=n;i++) dp[i][i]=exp(2,i-1);
for(int i = 2; i <= n; i++) {
for(int j = 1; j < i; j++) {
for(int k = 1; k <= j; k++) {
long val = (dp[i-k-1][j-k]*C[j][k])%MOD;
if(memo[k-1] ==0) memo[k-1] = exp(2, k-1);
val=(val*memo[k-1])%MOD;
dp[i][j]=(dp[i][j]+val)%MOD;
}
}
}
long ans = 0;
for(int i=0;i<=n;i++) ans=(ans+dp[n][i])%MOD;
out.println(ans);
}
out.flush();
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,152 | 3,505 |
97 |
import java.io.*;
import java.util.*;
public class cf {
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner() {
try {
br = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer(br.readLine());
} catch (Exception e){e.printStackTrace();}
}
public String next() {
if (st.hasMoreTokens()) return st.nextToken();
try {st = new StringTokenizer(br.readLine());}
catch (Exception e) {e.printStackTrace();}
return st.nextToken();
}
public int nextInt() {return Integer.parseInt(next());}
public long nextLong() {return Long.parseLong(next());}
public double nextDouble() {return Double.parseDouble(next());}
public String nextLine() {
String line = "";
if(st.hasMoreTokens()) line = st.nextToken();
else try {return br.readLine();}catch(IOException e){e.printStackTrace();}
while(st.hasMoreTokens()) line += " "+st.nextToken();
return line;
}
}
public static void main(String[] args) {
FastScanner sc = new FastScanner();
PrintWriter pw = new PrintWriter(System.out);
int n = sc.nextInt();
pw.println(n/2+1);
pw.close();
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class cf {
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner() {
try {
br = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer(br.readLine());
} catch (Exception e){e.printStackTrace();}
}
public String next() {
if (st.hasMoreTokens()) return st.nextToken();
try {st = new StringTokenizer(br.readLine());}
catch (Exception e) {e.printStackTrace();}
return st.nextToken();
}
public int nextInt() {return Integer.parseInt(next());}
public long nextLong() {return Long.parseLong(next());}
public double nextDouble() {return Double.parseDouble(next());}
public String nextLine() {
String line = "";
if(st.hasMoreTokens()) line = st.nextToken();
else try {return br.readLine();}catch(IOException e){e.printStackTrace();}
while(st.hasMoreTokens()) line += " "+st.nextToken();
return line;
}
}
public static void main(String[] args) {
FastScanner sc = new FastScanner();
PrintWriter pw = new PrintWriter(System.out);
int n = sc.nextInt();
pw.println(n/2+1);
pw.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class cf {
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner() {
try {
br = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer(br.readLine());
} catch (Exception e){e.printStackTrace();}
}
public String next() {
if (st.hasMoreTokens()) return st.nextToken();
try {st = new StringTokenizer(br.readLine());}
catch (Exception e) {e.printStackTrace();}
return st.nextToken();
}
public int nextInt() {return Integer.parseInt(next());}
public long nextLong() {return Long.parseLong(next());}
public double nextDouble() {return Double.parseDouble(next());}
public String nextLine() {
String line = "";
if(st.hasMoreTokens()) line = st.nextToken();
else try {return br.readLine();}catch(IOException e){e.printStackTrace();}
while(st.hasMoreTokens()) line += " "+st.nextToken();
return line;
}
}
public static void main(String[] args) {
FastScanner sc = new FastScanner();
PrintWriter pw = new PrintWriter(System.out);
int n = sc.nextInt();
pw.println(n/2+1);
pw.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 591 | 97 |
1,728 |
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashSet;
import java.util.List;
import java.util.Scanner;
import java.util.Set;
public class R015A {
final double EPS = 1e-9;
boolean isEqual(double x, double y) {
return Math.abs(x-y) <= EPS * Math.max(Math.abs(x), Math.abs(y));
}
class Pair implements Comparable<Pair>{
double left;
double right;
Pair(double left, double right) {
this.left = left;
this.right = right;
}
public String toString() {
return "(" + left + "," + right + ")";
}
public int hashCode() {
return (int)(left * 17 + right * 31);
}
public boolean equals(Object o) {
if(!(o instanceof Pair)) return false;
Pair that = (Pair)o;
return isEqual(this.left, that.left) && isEqual(this.right, that.right);
}
public int compareTo(Pair that) {
if(this.left != that.left)
return (int)(this.left - that.left);
return (int)(this.right - that.right);
}
}
public R015A() {
}
private void process() {
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
int t = scanner.nextInt();
int[] x = new int[n];
int[] a = new int[n];
for(int i=0; i<n; i++) {
x[i] = scanner.nextInt();
a[i] = scanner.nextInt();
}
List<Pair> pairs = new ArrayList<Pair>();
for(int i=0; i<n; i++) {
double left = x[i] - a[i] / 2.0;
double right= x[i] + a[i] / 2.0;
pairs.add(new Pair(left, right));
}
Collections.sort(pairs);
Set<Pair> newPairs = new HashSet<Pair>();
newPairs.add(new Pair(pairs.get(0).left - t, pairs.get(0).left));
for(int i=0; i<pairs.size()-1; i++) {
if(pairs.get(i+1).left - pairs.get(i).right >= t) {
newPairs.add(new Pair(pairs.get(i).right, pairs.get(i).right + t));
newPairs.add(new Pair(pairs.get(i+1).left - t, pairs.get(i+1).left));
}
}
newPairs.add(new Pair(pairs.get(pairs.size()-1).right, pairs.get(pairs.size()-1).right + t));
System.out.println(newPairs.size());
}
public static void main(String[] args) {
new R015A().process();
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashSet;
import java.util.List;
import java.util.Scanner;
import java.util.Set;
public class R015A {
final double EPS = 1e-9;
boolean isEqual(double x, double y) {
return Math.abs(x-y) <= EPS * Math.max(Math.abs(x), Math.abs(y));
}
class Pair implements Comparable<Pair>{
double left;
double right;
Pair(double left, double right) {
this.left = left;
this.right = right;
}
public String toString() {
return "(" + left + "," + right + ")";
}
public int hashCode() {
return (int)(left * 17 + right * 31);
}
public boolean equals(Object o) {
if(!(o instanceof Pair)) return false;
Pair that = (Pair)o;
return isEqual(this.left, that.left) && isEqual(this.right, that.right);
}
public int compareTo(Pair that) {
if(this.left != that.left)
return (int)(this.left - that.left);
return (int)(this.right - that.right);
}
}
public R015A() {
}
private void process() {
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
int t = scanner.nextInt();
int[] x = new int[n];
int[] a = new int[n];
for(int i=0; i<n; i++) {
x[i] = scanner.nextInt();
a[i] = scanner.nextInt();
}
List<Pair> pairs = new ArrayList<Pair>();
for(int i=0; i<n; i++) {
double left = x[i] - a[i] / 2.0;
double right= x[i] + a[i] / 2.0;
pairs.add(new Pair(left, right));
}
Collections.sort(pairs);
Set<Pair> newPairs = new HashSet<Pair>();
newPairs.add(new Pair(pairs.get(0).left - t, pairs.get(0).left));
for(int i=0; i<pairs.size()-1; i++) {
if(pairs.get(i+1).left - pairs.get(i).right >= t) {
newPairs.add(new Pair(pairs.get(i).right, pairs.get(i).right + t));
newPairs.add(new Pair(pairs.get(i+1).left - t, pairs.get(i+1).left));
}
}
newPairs.add(new Pair(pairs.get(pairs.size()-1).right, pairs.get(pairs.size()-1).right + t));
System.out.println(newPairs.size());
}
public static void main(String[] args) {
new R015A().process();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashSet;
import java.util.List;
import java.util.Scanner;
import java.util.Set;
public class R015A {
final double EPS = 1e-9;
boolean isEqual(double x, double y) {
return Math.abs(x-y) <= EPS * Math.max(Math.abs(x), Math.abs(y));
}
class Pair implements Comparable<Pair>{
double left;
double right;
Pair(double left, double right) {
this.left = left;
this.right = right;
}
public String toString() {
return "(" + left + "," + right + ")";
}
public int hashCode() {
return (int)(left * 17 + right * 31);
}
public boolean equals(Object o) {
if(!(o instanceof Pair)) return false;
Pair that = (Pair)o;
return isEqual(this.left, that.left) && isEqual(this.right, that.right);
}
public int compareTo(Pair that) {
if(this.left != that.left)
return (int)(this.left - that.left);
return (int)(this.right - that.right);
}
}
public R015A() {
}
private void process() {
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
int t = scanner.nextInt();
int[] x = new int[n];
int[] a = new int[n];
for(int i=0; i<n; i++) {
x[i] = scanner.nextInt();
a[i] = scanner.nextInt();
}
List<Pair> pairs = new ArrayList<Pair>();
for(int i=0; i<n; i++) {
double left = x[i] - a[i] / 2.0;
double right= x[i] + a[i] / 2.0;
pairs.add(new Pair(left, right));
}
Collections.sort(pairs);
Set<Pair> newPairs = new HashSet<Pair>();
newPairs.add(new Pair(pairs.get(0).left - t, pairs.get(0).left));
for(int i=0; i<pairs.size()-1; i++) {
if(pairs.get(i+1).left - pairs.get(i).right >= t) {
newPairs.add(new Pair(pairs.get(i).right, pairs.get(i).right + t));
newPairs.add(new Pair(pairs.get(i+1).left - t, pairs.get(i+1).left));
}
}
newPairs.add(new Pair(pairs.get(pairs.size()-1).right, pairs.get(pairs.size()-1).right + t));
System.out.println(newPairs.size());
}
public static void main(String[] args) {
new R015A().process();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 929 | 1,724 |
505 |
//package contese_476;
import java.util.*;
public class q1
{
int m=(int)1e9+7;
public class Node
{
int a;
int b;
public void Node(int a,int b)
{
this.a=a;
this.b=b;
}
}
public int mul(int a ,int b)
{
a=a%m;
b=b%m;
return((a*b)%m);
}
public int pow(int a,int b)
{
int x=1;
while(b>0)
{
if(b%2!=0)
x=mul(x,a);
a=mul(a,a);
b=b/2;
}
return x;
}
public static long gcd(long a,long b)
{
if(b==0)
return a;
else
return gcd(b,a%b);
}
public static void main(String[] args)
{
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
HashMap<Integer,Integer> h=new HashMap();
//HashMap<Integer,Integer> h1=new HashMap();
int[] a=new int[n];
int x=sc.nextInt();
for(int i=0;i<n;i++)
{
a[i]=sc.nextInt();
if(h.get(a[i])==null)
{
h.put(a[i], 1);
//h1.put(a[i],i);
}
else
{
System.out.print(0);
System.exit(0);
}
}
for(int i=0;i<n;i++)
{
int num=a[i]&x;
if(num==a[i])
continue;
if(h.get(num)==null)
continue;
else
{
System.out.print(1);
System.exit(0);
}
}
for(int i=0;i<n;i++)
{
int num=a[i]&x;
if(num==a[i])
continue;
if(h.get(num)==null)
h.put(num, 1);
else
{
System.out.print(2);
System.exit(0);
}
}
System.out.print(-1);
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
//package contese_476;
import java.util.*;
public class q1
{
int m=(int)1e9+7;
public class Node
{
int a;
int b;
public void Node(int a,int b)
{
this.a=a;
this.b=b;
}
}
public int mul(int a ,int b)
{
a=a%m;
b=b%m;
return((a*b)%m);
}
public int pow(int a,int b)
{
int x=1;
while(b>0)
{
if(b%2!=0)
x=mul(x,a);
a=mul(a,a);
b=b/2;
}
return x;
}
public static long gcd(long a,long b)
{
if(b==0)
return a;
else
return gcd(b,a%b);
}
public static void main(String[] args)
{
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
HashMap<Integer,Integer> h=new HashMap();
//HashMap<Integer,Integer> h1=new HashMap();
int[] a=new int[n];
int x=sc.nextInt();
for(int i=0;i<n;i++)
{
a[i]=sc.nextInt();
if(h.get(a[i])==null)
{
h.put(a[i], 1);
//h1.put(a[i],i);
}
else
{
System.out.print(0);
System.exit(0);
}
}
for(int i=0;i<n;i++)
{
int num=a[i]&x;
if(num==a[i])
continue;
if(h.get(num)==null)
continue;
else
{
System.out.print(1);
System.exit(0);
}
}
for(int i=0;i<n;i++)
{
int num=a[i]&x;
if(num==a[i])
continue;
if(h.get(num)==null)
h.put(num, 1);
else
{
System.out.print(2);
System.exit(0);
}
}
System.out.print(-1);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
//package contese_476;
import java.util.*;
public class q1
{
int m=(int)1e9+7;
public class Node
{
int a;
int b;
public void Node(int a,int b)
{
this.a=a;
this.b=b;
}
}
public int mul(int a ,int b)
{
a=a%m;
b=b%m;
return((a*b)%m);
}
public int pow(int a,int b)
{
int x=1;
while(b>0)
{
if(b%2!=0)
x=mul(x,a);
a=mul(a,a);
b=b/2;
}
return x;
}
public static long gcd(long a,long b)
{
if(b==0)
return a;
else
return gcd(b,a%b);
}
public static void main(String[] args)
{
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
HashMap<Integer,Integer> h=new HashMap();
//HashMap<Integer,Integer> h1=new HashMap();
int[] a=new int[n];
int x=sc.nextInt();
for(int i=0;i<n;i++)
{
a[i]=sc.nextInt();
if(h.get(a[i])==null)
{
h.put(a[i], 1);
//h1.put(a[i],i);
}
else
{
System.out.print(0);
System.exit(0);
}
}
for(int i=0;i<n;i++)
{
int num=a[i]&x;
if(num==a[i])
continue;
if(h.get(num)==null)
continue;
else
{
System.out.print(1);
System.exit(0);
}
}
for(int i=0;i<n;i++)
{
int num=a[i]&x;
if(num==a[i])
continue;
if(h.get(num)==null)
h.put(num, 1);
else
{
System.out.print(2);
System.exit(0);
}
}
System.out.print(-1);
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 781 | 504 |
1,323 |
import java.util.Scanner;
public class CF489_C {
static long mod = 1000000007;
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
long x = s.nextLong(), k = s.nextLong();
if (x == 0) {
System.out.println(0);
return;
}
long max = x % mod;
long temp = power(2, k, mod);
temp %= mod;
max = (max % mod) * (temp % mod);
max %= mod;
long min = max % mod;
min = mod(min - (temp - 1));
min %= mod;
long num = mod(max - min + 1);
long n = num % mod;
n = (n % mod) * (min % mod + max % mod);
n = n % mod;
n %= mod;
long ans = n % mod * modInverse(num, mod);
System.out.println(ans % mod);
}
static long modInverse(long a, long m) {
long m0 = m;
long y = 0, x = 1;
if (m == 1)
return 0;
while (a > 1) {
// q is quotient
long q = a / m;
long t = m;
// m is remainder now, process same as
// Euclid's algo
m = a % m;
a = t;
t = y;
// Update y and x
y = x - q * y;
x = t;
}
// Make x positive
if (x < 0)
x += m0;
return x;
}
static long mod(long val) {
val %= mod;
if (val < 0)
val += mod;
return val;
}
static long power(long x, long y, long p) {
// Initialize result
long res = 1;
// Update x if it is more
// than or equal to p
x = x % p;
while (y > 0) {
// If y is odd, multiply x
// with result
if ((y & 1) == 1)
res = (res * x) % p;
// y must be even now
// y = y / 2
y = y >> 1;
x = (x * x) % p;
}
return res;
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class CF489_C {
static long mod = 1000000007;
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
long x = s.nextLong(), k = s.nextLong();
if (x == 0) {
System.out.println(0);
return;
}
long max = x % mod;
long temp = power(2, k, mod);
temp %= mod;
max = (max % mod) * (temp % mod);
max %= mod;
long min = max % mod;
min = mod(min - (temp - 1));
min %= mod;
long num = mod(max - min + 1);
long n = num % mod;
n = (n % mod) * (min % mod + max % mod);
n = n % mod;
n %= mod;
long ans = n % mod * modInverse(num, mod);
System.out.println(ans % mod);
}
static long modInverse(long a, long m) {
long m0 = m;
long y = 0, x = 1;
if (m == 1)
return 0;
while (a > 1) {
// q is quotient
long q = a / m;
long t = m;
// m is remainder now, process same as
// Euclid's algo
m = a % m;
a = t;
t = y;
// Update y and x
y = x - q * y;
x = t;
}
// Make x positive
if (x < 0)
x += m0;
return x;
}
static long mod(long val) {
val %= mod;
if (val < 0)
val += mod;
return val;
}
static long power(long x, long y, long p) {
// Initialize result
long res = 1;
// Update x if it is more
// than or equal to p
x = x % p;
while (y > 0) {
// If y is odd, multiply x
// with result
if ((y & 1) == 1)
res = (res * x) % p;
// y must be even now
// y = y / 2
y = y >> 1;
x = (x * x) % p;
}
return res;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class CF489_C {
static long mod = 1000000007;
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
long x = s.nextLong(), k = s.nextLong();
if (x == 0) {
System.out.println(0);
return;
}
long max = x % mod;
long temp = power(2, k, mod);
temp %= mod;
max = (max % mod) * (temp % mod);
max %= mod;
long min = max % mod;
min = mod(min - (temp - 1));
min %= mod;
long num = mod(max - min + 1);
long n = num % mod;
n = (n % mod) * (min % mod + max % mod);
n = n % mod;
n %= mod;
long ans = n % mod * modInverse(num, mod);
System.out.println(ans % mod);
}
static long modInverse(long a, long m) {
long m0 = m;
long y = 0, x = 1;
if (m == 1)
return 0;
while (a > 1) {
// q is quotient
long q = a / m;
long t = m;
// m is remainder now, process same as
// Euclid's algo
m = a % m;
a = t;
t = y;
// Update y and x
y = x - q * y;
x = t;
}
// Make x positive
if (x < 0)
x += m0;
return x;
}
static long mod(long val) {
val %= mod;
if (val < 0)
val += mod;
return val;
}
static long power(long x, long y, long p) {
// Initialize result
long res = 1;
// Update x if it is more
// than or equal to p
x = x % p;
while (y > 0) {
// If y is odd, multiply x
// with result
if ((y & 1) == 1)
res = (res * x) % p;
// y must be even now
// y = y / 2
y = y >> 1;
x = (x * x) % p;
}
return res;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 919 | 1,321 |
3,675 |
//package C;
import java.io.*;
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.Queue;
public class Fire_Again {
static int N;
static int M;
static int K;
private class Pos {
public int r;
public int c;
int last;
public Pos(int r,int c, int last) {
this.r = r;
this.c = c;
this.last = last;
}
}
static ArrayList<Pos> pos = new ArrayList<>();
static boolean[][] used;// = new boolean[2001][2001];
static int[] rows = {-1,1,0,0};
static int[] cols = {0,0,-1,1};
int LAST = 0;
int lastRow = 1;
int lastCol = 1;
public static void main(String[] args) throws IOException {
Fire_Again fire_again = new Fire_Again();
BufferedReader bufferedReader =
new BufferedReader(new FileReader("input.txt"));
String[] nm = bufferedReader.readLine().split(" ");
N = Integer.parseInt(nm[0]) + 1;
M = Integer.parseInt(nm[1]) + 1;
K = Integer.parseInt(bufferedReader.readLine());
used = new boolean[N][M];
String[] rc = bufferedReader.readLine().split(" ");
for(int k = 0;k < rc.length;k+=2) {
int r = Integer.parseInt(rc[k]);
int c = Integer.parseInt(rc[k+1]);
pos.add(fire_again.new Pos(r,c,0));
}
fire_again.bfs();
PrintStream ps = new PrintStream("output.txt");
ps.printf("%d %d\n",fire_again.lastRow,fire_again.lastCol);
ps.flush();
ps.close();
}
Queue<Pos> queue = new LinkedList<>();
private void bfs() {
queue.addAll(pos);
for(Pos p : pos) {
used[p.r][p.c] = true;
// System.out.println("r = "+(p.r) + " c = " + (p.c));
}
while(!queue.isEmpty()) {
Pos p = queue.poll();
if(p.last > LAST) {
LAST = p.last;
lastRow = p.r;
lastCol = p.c;
}
for(int i = 0;i < rows.length;i++) {
int currR = p.r;
int currC = p.c;
if(currR + rows[i] >= 1 && currR + rows[i] < N &&
currC + cols[i] >= 1 && currC + cols[i] < M &&
!used[currR + rows[i] ] [currC + cols[i] ] ) {
// System.out.println("r = "+(currR+rows[i]) + " c = " + (currC+cols[i]));
queue.add(new Pos(currR+rows[i],currC+cols[i],p.last+1));
used[currR + rows[i] ] [currC + cols[i] ] = true;
}
}
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
//package C;
import java.io.*;
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.Queue;
public class Fire_Again {
static int N;
static int M;
static int K;
private class Pos {
public int r;
public int c;
int last;
public Pos(int r,int c, int last) {
this.r = r;
this.c = c;
this.last = last;
}
}
static ArrayList<Pos> pos = new ArrayList<>();
static boolean[][] used;// = new boolean[2001][2001];
static int[] rows = {-1,1,0,0};
static int[] cols = {0,0,-1,1};
int LAST = 0;
int lastRow = 1;
int lastCol = 1;
public static void main(String[] args) throws IOException {
Fire_Again fire_again = new Fire_Again();
BufferedReader bufferedReader =
new BufferedReader(new FileReader("input.txt"));
String[] nm = bufferedReader.readLine().split(" ");
N = Integer.parseInt(nm[0]) + 1;
M = Integer.parseInt(nm[1]) + 1;
K = Integer.parseInt(bufferedReader.readLine());
used = new boolean[N][M];
String[] rc = bufferedReader.readLine().split(" ");
for(int k = 0;k < rc.length;k+=2) {
int r = Integer.parseInt(rc[k]);
int c = Integer.parseInt(rc[k+1]);
pos.add(fire_again.new Pos(r,c,0));
}
fire_again.bfs();
PrintStream ps = new PrintStream("output.txt");
ps.printf("%d %d\n",fire_again.lastRow,fire_again.lastCol);
ps.flush();
ps.close();
}
Queue<Pos> queue = new LinkedList<>();
private void bfs() {
queue.addAll(pos);
for(Pos p : pos) {
used[p.r][p.c] = true;
// System.out.println("r = "+(p.r) + " c = " + (p.c));
}
while(!queue.isEmpty()) {
Pos p = queue.poll();
if(p.last > LAST) {
LAST = p.last;
lastRow = p.r;
lastCol = p.c;
}
for(int i = 0;i < rows.length;i++) {
int currR = p.r;
int currC = p.c;
if(currR + rows[i] >= 1 && currR + rows[i] < N &&
currC + cols[i] >= 1 && currC + cols[i] < M &&
!used[currR + rows[i] ] [currC + cols[i] ] ) {
// System.out.println("r = "+(currR+rows[i]) + " c = " + (currC+cols[i]));
queue.add(new Pos(currR+rows[i],currC+cols[i],p.last+1));
used[currR + rows[i] ] [currC + cols[i] ] = true;
}
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
//package C;
import java.io.*;
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.Queue;
public class Fire_Again {
static int N;
static int M;
static int K;
private class Pos {
public int r;
public int c;
int last;
public Pos(int r,int c, int last) {
this.r = r;
this.c = c;
this.last = last;
}
}
static ArrayList<Pos> pos = new ArrayList<>();
static boolean[][] used;// = new boolean[2001][2001];
static int[] rows = {-1,1,0,0};
static int[] cols = {0,0,-1,1};
int LAST = 0;
int lastRow = 1;
int lastCol = 1;
public static void main(String[] args) throws IOException {
Fire_Again fire_again = new Fire_Again();
BufferedReader bufferedReader =
new BufferedReader(new FileReader("input.txt"));
String[] nm = bufferedReader.readLine().split(" ");
N = Integer.parseInt(nm[0]) + 1;
M = Integer.parseInt(nm[1]) + 1;
K = Integer.parseInt(bufferedReader.readLine());
used = new boolean[N][M];
String[] rc = bufferedReader.readLine().split(" ");
for(int k = 0;k < rc.length;k+=2) {
int r = Integer.parseInt(rc[k]);
int c = Integer.parseInt(rc[k+1]);
pos.add(fire_again.new Pos(r,c,0));
}
fire_again.bfs();
PrintStream ps = new PrintStream("output.txt");
ps.printf("%d %d\n",fire_again.lastRow,fire_again.lastCol);
ps.flush();
ps.close();
}
Queue<Pos> queue = new LinkedList<>();
private void bfs() {
queue.addAll(pos);
for(Pos p : pos) {
used[p.r][p.c] = true;
// System.out.println("r = "+(p.r) + " c = " + (p.c));
}
while(!queue.isEmpty()) {
Pos p = queue.poll();
if(p.last > LAST) {
LAST = p.last;
lastRow = p.r;
lastCol = p.c;
}
for(int i = 0;i < rows.length;i++) {
int currR = p.r;
int currC = p.c;
if(currR + rows[i] >= 1 && currR + rows[i] < N &&
currC + cols[i] >= 1 && currC + cols[i] < M &&
!used[currR + rows[i] ] [currC + cols[i] ] ) {
// System.out.println("r = "+(currR+rows[i]) + " c = " + (currC+cols[i]));
queue.add(new Pos(currR+rows[i],currC+cols[i],p.last+1));
used[currR + rows[i] ] [currC + cols[i] ] = true;
}
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 998 | 3,667 |
3,497 |
//make sure to make new file!
import java.io.*;
import java.util.*;
public class EG14{
public static long MOD;
public static int MAX = 405;
public static long[] fac;
public static long[] ifac;
public static void main(String[] args)throws IOException{
BufferedReader f = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out);
StringTokenizer st = new StringTokenizer(f.readLine());
int n = Integer.parseInt(st.nextToken());
MOD = Long.parseLong(st.nextToken());
long[] pow2 = new long[MAX];
pow2[0] = 1L;
for(int k = 1; k < MAX; k++){
pow2[k] = (2L*pow2[k-1] + MOD)%MOD;
}
fac = new long[MAX];
ifac = new long[MAX];
fac[0] = 1L;
ifac[0] = 1L;
for(int k = 1; k < MAX; k++){
fac[k] = ((long)k*fac[k-1] + MOD)%MOD;
ifac[k] = modInverse(fac[k],MOD);
}
long[][] dp = new long[n][n+1]; //what n you're on, what how many computers you've turned on manually
//initial
for(int k = 0; k < n; k++){
dp[k][k+1] = pow2[k];
}
for(int k = 2; k < n; k++){
for(int j = 1; j <= n; j++){
if(dp[k-2][j-1] == 0) continue;
long start = dp[k-2][j-1]; //number for part up to previous block
for(int add = 1; ; add++){
if(k+add-1 >= n || j+add-1 > n) break;
long adder = (start * pow2[add-1] + MOD)%MOD;
adder = (adder * choose(j+add-1,j-1) + MOD)%MOD;
dp[k+add-1][j+add-1] = (dp[k+add-1][j+add-1] + adder + MOD)%MOD;
}
}
}
long answer = 0L;
for(int k = 1; k <= n; k++){
answer = (answer + dp[n-1][k] + MOD)%MOD;
}
out.println(answer);
out.close();
}
//a choose b
public static long choose(int a, int b){
long prod = (fac[a]*ifac[b] + MOD)%MOD;
return (prod*ifac[a-b] + MOD)%MOD;
}
//from geeksforgeeks
public static long modInverse(long a, long m)
{
long m0 = m;
long y = 0L;
long x = 1L;
if (m == 1L)
return 0L;
while (a > 1L)
{
// q is quotient
long q = a / m;
long t = m;
// m is remainder now, process same as
// Euclid's algo
m = a % m;
a = t;
t = y;
// Update y and x
y = x - q * y;
x = t;
}
// Make x positive
if (x < 0L)
x += m0;
return x;
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
//make sure to make new file!
import java.io.*;
import java.util.*;
public class EG14{
public static long MOD;
public static int MAX = 405;
public static long[] fac;
public static long[] ifac;
public static void main(String[] args)throws IOException{
BufferedReader f = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out);
StringTokenizer st = new StringTokenizer(f.readLine());
int n = Integer.parseInt(st.nextToken());
MOD = Long.parseLong(st.nextToken());
long[] pow2 = new long[MAX];
pow2[0] = 1L;
for(int k = 1; k < MAX; k++){
pow2[k] = (2L*pow2[k-1] + MOD)%MOD;
}
fac = new long[MAX];
ifac = new long[MAX];
fac[0] = 1L;
ifac[0] = 1L;
for(int k = 1; k < MAX; k++){
fac[k] = ((long)k*fac[k-1] + MOD)%MOD;
ifac[k] = modInverse(fac[k],MOD);
}
long[][] dp = new long[n][n+1]; //what n you're on, what how many computers you've turned on manually
//initial
for(int k = 0; k < n; k++){
dp[k][k+1] = pow2[k];
}
for(int k = 2; k < n; k++){
for(int j = 1; j <= n; j++){
if(dp[k-2][j-1] == 0) continue;
long start = dp[k-2][j-1]; //number for part up to previous block
for(int add = 1; ; add++){
if(k+add-1 >= n || j+add-1 > n) break;
long adder = (start * pow2[add-1] + MOD)%MOD;
adder = (adder * choose(j+add-1,j-1) + MOD)%MOD;
dp[k+add-1][j+add-1] = (dp[k+add-1][j+add-1] + adder + MOD)%MOD;
}
}
}
long answer = 0L;
for(int k = 1; k <= n; k++){
answer = (answer + dp[n-1][k] + MOD)%MOD;
}
out.println(answer);
out.close();
}
//a choose b
public static long choose(int a, int b){
long prod = (fac[a]*ifac[b] + MOD)%MOD;
return (prod*ifac[a-b] + MOD)%MOD;
}
//from geeksforgeeks
public static long modInverse(long a, long m)
{
long m0 = m;
long y = 0L;
long x = 1L;
if (m == 1L)
return 0L;
while (a > 1L)
{
// q is quotient
long q = a / m;
long t = m;
// m is remainder now, process same as
// Euclid's algo
m = a % m;
a = t;
t = y;
// Update y and x
y = x - q * y;
x = t;
}
// Make x positive
if (x < 0L)
x += m0;
return x;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
//make sure to make new file!
import java.io.*;
import java.util.*;
public class EG14{
public static long MOD;
public static int MAX = 405;
public static long[] fac;
public static long[] ifac;
public static void main(String[] args)throws IOException{
BufferedReader f = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out);
StringTokenizer st = new StringTokenizer(f.readLine());
int n = Integer.parseInt(st.nextToken());
MOD = Long.parseLong(st.nextToken());
long[] pow2 = new long[MAX];
pow2[0] = 1L;
for(int k = 1; k < MAX; k++){
pow2[k] = (2L*pow2[k-1] + MOD)%MOD;
}
fac = new long[MAX];
ifac = new long[MAX];
fac[0] = 1L;
ifac[0] = 1L;
for(int k = 1; k < MAX; k++){
fac[k] = ((long)k*fac[k-1] + MOD)%MOD;
ifac[k] = modInverse(fac[k],MOD);
}
long[][] dp = new long[n][n+1]; //what n you're on, what how many computers you've turned on manually
//initial
for(int k = 0; k < n; k++){
dp[k][k+1] = pow2[k];
}
for(int k = 2; k < n; k++){
for(int j = 1; j <= n; j++){
if(dp[k-2][j-1] == 0) continue;
long start = dp[k-2][j-1]; //number for part up to previous block
for(int add = 1; ; add++){
if(k+add-1 >= n || j+add-1 > n) break;
long adder = (start * pow2[add-1] + MOD)%MOD;
adder = (adder * choose(j+add-1,j-1) + MOD)%MOD;
dp[k+add-1][j+add-1] = (dp[k+add-1][j+add-1] + adder + MOD)%MOD;
}
}
}
long answer = 0L;
for(int k = 1; k <= n; k++){
answer = (answer + dp[n-1][k] + MOD)%MOD;
}
out.println(answer);
out.close();
}
//a choose b
public static long choose(int a, int b){
long prod = (fac[a]*ifac[b] + MOD)%MOD;
return (prod*ifac[a-b] + MOD)%MOD;
}
//from geeksforgeeks
public static long modInverse(long a, long m)
{
long m0 = m;
long y = 0L;
long x = 1L;
if (m == 1L)
return 0L;
while (a > 1L)
{
// q is quotient
long q = a / m;
long t = m;
// m is remainder now, process same as
// Euclid's algo
m = a % m;
a = t;
t = y;
// Update y and x
y = x - q * y;
x = t;
}
// Make x positive
if (x < 0L)
x += m0;
return x;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,176 | 3,491 |
2,305 |
import java.awt.*;
import java.io.*;
import java.math.*;
import java.util.*;
public class TaskC {
public static void main(String[] args) {
new TaskC().run();
}
void solve(){
int n = in.nextInt();
String s[] = new String[n];
for(int i = 0; i < n; i++) s[i] = in.next();
if(s[n-1].compareTo("f") == 0){
out.println(0);
return;
}
int dp[] = new int[n+2];
int mod = 1000*1000*1000+7;
dp[0] = 1;
for(int i = n-1; i >= 0; i--){
if(s[i].compareTo("s") == 0){
int ss = 0;
for(int j = 0; j <= n; j++){
ss += dp[j];
if(ss>=mod) ss -= mod;
dp[j] = ss;
}
}else{
for(int j = 0; j < n;j++){
dp[j] = dp[j+1];
}
dp[n] = 0;
}
}
out.println(dp[0]);
}
FastScanner in;
PrintWriter out;
void run() {
in = new FastScanner(System.in);
out = new PrintWriter(System.out);
int tests = 1;//in.nextInt();
while(tests > 0){
solve();
tests--;
}
out.close();
}
class Pair implements Comparable<Pair>{
Integer x, y;
public Pair(int x, int y){
this.x = x;
this.y = y;
}
@Override
public int compareTo(Pair o) {
if(x.compareTo(o.x) == 0) return y.compareTo(o.y);
return x.compareTo(o.x);
}
}
class FastScanner {
StringTokenizer st;
BufferedReader bf;
public FastScanner(InputStream is) {
bf = new BufferedReader(new InputStreamReader(is));
}
public FastScanner(File f){
try{
bf = new BufferedReader(new FileReader(f));
}
catch(IOException ex){
ex.printStackTrace();
}
}
String next(){
while(st == null || !st.hasMoreTokens()){
try{
st = new StringTokenizer(bf.readLine());
}
catch(Exception ex){
ex.printStackTrace();
}
}
return st.nextToken();
}
int nextInt(){
return Integer.parseInt(next());
}
long nextLong(){
return Long.parseLong(next());
}
double nextDouble(){
return Double.parseDouble(next());
}
int[] readArray(int n){
int[] a = new int[n];
for(int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.awt.*;
import java.io.*;
import java.math.*;
import java.util.*;
public class TaskC {
public static void main(String[] args) {
new TaskC().run();
}
void solve(){
int n = in.nextInt();
String s[] = new String[n];
for(int i = 0; i < n; i++) s[i] = in.next();
if(s[n-1].compareTo("f") == 0){
out.println(0);
return;
}
int dp[] = new int[n+2];
int mod = 1000*1000*1000+7;
dp[0] = 1;
for(int i = n-1; i >= 0; i--){
if(s[i].compareTo("s") == 0){
int ss = 0;
for(int j = 0; j <= n; j++){
ss += dp[j];
if(ss>=mod) ss -= mod;
dp[j] = ss;
}
}else{
for(int j = 0; j < n;j++){
dp[j] = dp[j+1];
}
dp[n] = 0;
}
}
out.println(dp[0]);
}
FastScanner in;
PrintWriter out;
void run() {
in = new FastScanner(System.in);
out = new PrintWriter(System.out);
int tests = 1;//in.nextInt();
while(tests > 0){
solve();
tests--;
}
out.close();
}
class Pair implements Comparable<Pair>{
Integer x, y;
public Pair(int x, int y){
this.x = x;
this.y = y;
}
@Override
public int compareTo(Pair o) {
if(x.compareTo(o.x) == 0) return y.compareTo(o.y);
return x.compareTo(o.x);
}
}
class FastScanner {
StringTokenizer st;
BufferedReader bf;
public FastScanner(InputStream is) {
bf = new BufferedReader(new InputStreamReader(is));
}
public FastScanner(File f){
try{
bf = new BufferedReader(new FileReader(f));
}
catch(IOException ex){
ex.printStackTrace();
}
}
String next(){
while(st == null || !st.hasMoreTokens()){
try{
st = new StringTokenizer(bf.readLine());
}
catch(Exception ex){
ex.printStackTrace();
}
}
return st.nextToken();
}
int nextInt(){
return Integer.parseInt(next());
}
long nextLong(){
return Long.parseLong(next());
}
double nextDouble(){
return Double.parseDouble(next());
}
int[] readArray(int n){
int[] a = new int[n];
for(int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.awt.*;
import java.io.*;
import java.math.*;
import java.util.*;
public class TaskC {
public static void main(String[] args) {
new TaskC().run();
}
void solve(){
int n = in.nextInt();
String s[] = new String[n];
for(int i = 0; i < n; i++) s[i] = in.next();
if(s[n-1].compareTo("f") == 0){
out.println(0);
return;
}
int dp[] = new int[n+2];
int mod = 1000*1000*1000+7;
dp[0] = 1;
for(int i = n-1; i >= 0; i--){
if(s[i].compareTo("s") == 0){
int ss = 0;
for(int j = 0; j <= n; j++){
ss += dp[j];
if(ss>=mod) ss -= mod;
dp[j] = ss;
}
}else{
for(int j = 0; j < n;j++){
dp[j] = dp[j+1];
}
dp[n] = 0;
}
}
out.println(dp[0]);
}
FastScanner in;
PrintWriter out;
void run() {
in = new FastScanner(System.in);
out = new PrintWriter(System.out);
int tests = 1;//in.nextInt();
while(tests > 0){
solve();
tests--;
}
out.close();
}
class Pair implements Comparable<Pair>{
Integer x, y;
public Pair(int x, int y){
this.x = x;
this.y = y;
}
@Override
public int compareTo(Pair o) {
if(x.compareTo(o.x) == 0) return y.compareTo(o.y);
return x.compareTo(o.x);
}
}
class FastScanner {
StringTokenizer st;
BufferedReader bf;
public FastScanner(InputStream is) {
bf = new BufferedReader(new InputStreamReader(is));
}
public FastScanner(File f){
try{
bf = new BufferedReader(new FileReader(f));
}
catch(IOException ex){
ex.printStackTrace();
}
}
String next(){
while(st == null || !st.hasMoreTokens()){
try{
st = new StringTokenizer(bf.readLine());
}
catch(Exception ex){
ex.printStackTrace();
}
}
return st.nextToken();
}
int nextInt(){
return Integer.parseInt(next());
}
long nextLong(){
return Long.parseLong(next());
}
double nextDouble(){
return Double.parseDouble(next());
}
int[] readArray(int n){
int[] a = new int[n];
for(int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 980 | 2,300 |
2,902 |
/*
* To change this license header, choose License Headers in Project Properties.
* To change this template file, choose Tools | Templates
* and open the template in the editor.
*/
import java.util.Scanner;
/**
*
* @author RezaM
*/
public class A {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
int n = scan.nextInt();
if (n % 2 == 0) {
System.out.println(4 + " " + (n - 4));
} else {
System.out.println(9 + " " + (n - 9));
}
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
/*
* To change this license header, choose License Headers in Project Properties.
* To change this template file, choose Tools | Templates
* and open the template in the editor.
*/
import java.util.Scanner;
/**
*
* @author RezaM
*/
public class A {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
int n = scan.nextInt();
if (n % 2 == 0) {
System.out.println(4 + " " + (n - 4));
} else {
System.out.println(9 + " " + (n - 9));
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
/*
* To change this license header, choose License Headers in Project Properties.
* To change this template file, choose Tools | Templates
* and open the template in the editor.
*/
import java.util.Scanner;
/**
*
* @author RezaM
*/
public class A {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
int n = scan.nextInt();
if (n % 2 == 0) {
System.out.println(4 + " " + (n - 4));
} else {
System.out.println(9 + " " + (n - 9));
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 467 | 2,896 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.