id
int64
0
4.52k
code
stringlengths
142
31.2k
answer
stringclasses
7 values
prompt
stringlengths
1.64k
32.6k
test_prompt
stringlengths
1.7k
32.7k
token_length
int64
373
7.8k
__index_level_0__
int64
0
4.5k
4,101
import java.util.*; import java.io.*; import java.awt.Point; import java.math.BigInteger; import static java.lang.Math.*; // Solution is at the bottom of code public class ProblemC_008 implements Runnable{ final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null; BufferedReader in; OutputWriter out; StringTokenizer tok = new StringTokenizer(""); public static void main(String[] args){ new Thread(null, new ProblemC_008(), "", 128 * (1L << 20)).start(); } ///////////////////////////////////////////////////////////////////// void init() throws FileNotFoundException{ Locale.setDefault(Locale.US); if (ONLINE_JUDGE){ in = new BufferedReader(new InputStreamReader(System.in)); out = new OutputWriter(System.out); }else{ in = new BufferedReader(new FileReader("input.txt")); out = new OutputWriter("output.txt"); } } //////////////////////////////////////////////////////////////// long timeBegin, timeEnd; void time(){ timeEnd = System.currentTimeMillis(); System.err.println("Time = " + (timeEnd - timeBegin)); } void debug(Object... objects){ if (ONLINE_JUDGE){ for (Object o: objects){ System.err.println(o.toString()); } } } ///////////////////////////////////////////////////////////////////// public void run(){ try{ timeBegin = System.currentTimeMillis(); Locale.setDefault(Locale.US); init(); solve(); out.close(); time(); }catch (Exception e){ e.printStackTrace(System.err); System.exit(-1); } } ///////////////////////////////////////////////////////////////////// String delim = " "; String readString() throws IOException{ while(!tok.hasMoreTokens()){ try{ tok = new StringTokenizer(in.readLine()); }catch (Exception e){ return null; } } return tok.nextToken(delim); } String readLine() throws IOException{ return in.readLine(); } ///////////////////////////////////////////////////////////////// final char NOT_A_SYMBOL = '\0'; char readChar() throws IOException{ int intValue = in.read(); if (intValue == -1){ return NOT_A_SYMBOL; } return (char) intValue; } char[] readCharArray() throws IOException{ return readLine().toCharArray(); } ///////////////////////////////////////////////////////////////// int readInt() throws IOException{ return Integer.parseInt(readString()); } int[] readIntArray(int size) throws IOException{ int[] array = new int[size]; for (int index = 0; index < size; ++index){ array[index] = readInt(); } return array; } /////////////////////////////////////////////////////////////////// long readLong() throws IOException{ return Long.parseLong(readString()); } long[] readLongArray(int size) throws IOException{ long[] array = new long[size]; for (int index = 0; index < size; ++index){ array[index] = readLong(); } return array; } //////////////////////////////////////////////////////////////////// double readDouble() throws IOException{ return Double.parseDouble(readString()); } double[] readDoubleArray(int size) throws IOException{ double[] array = new double[size]; for (int index = 0; index < size; ++index){ array[index] = readDouble(); } return array; } ///////////////////////////////////////////////////////////////////// Point readPoint() throws IOException{ return new Point(readInt(), readInt()); } Point[] readPointArray(int size) throws IOException{ Point[] array = new Point[size]; for (int index = 0; index < size; ++index){ array[index] = readPoint(); } return array; } ///////////////////////////////////////////////////////////////////// class OutputWriter extends PrintWriter{ final int DEFAULT_PRECISION = 12; int precision; String format, formatWithSpace; { precision = DEFAULT_PRECISION; format = createFormat(precision); formatWithSpace = format + " "; } public OutputWriter(OutputStream out) { super(out); } public OutputWriter(String fileName) throws FileNotFoundException { super(fileName); } public int getPrecision() { return precision; } public void setPrecision(int precision) { this.precision = precision; format = createFormat(precision); formatWithSpace = format + " "; } private String createFormat(int precision){ return "%." + precision + "f"; } @Override public void print(double d){ printf(format, d); } public void printWithSpace(double d){ printf(formatWithSpace, d); } public void printAll(double...d){ for (int i = 0; i < d.length - 1; ++i){ printWithSpace(d[i]); } print(d[d.length - 1]); } @Override public void println(double d){ printlnAll(d); } public void printlnAll(double... d){ printAll(d); println(); } } ///////////////////////////////////////////////////////////////////// int[][] steps = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}}; boolean check(int index, int lim){ return (0 <= index && index < lim); } ///////////////////////////////////////////////////////////////////// void solve() throws IOException{ Point bag = readPoint(); int n = readInt(); Point[] points = new Point[n]; for (int i = 0; i < n; ++i){ points[i] = readPoint(); } int[] dist = new int[n]; for (int i = 0; i < n; ++i){ int dx = points[i].x - bag.x; int dy = points[i].y - bag.y; dist[i] = dx * dx + dy * dy; } int[][] d = new int[n][n]; for (int i = 0; i < n; ++i){ for (int j = 0; j < n; ++j){ int dx = points[i].x - points[j].x; int dy = points[i].y - points[j].y; d[i][j] = dx * dx + dy * dy; d[i][j] += dist[i] + dist[j]; } } int[] singleMasks = new int[n]; for (int i = 0; i < n; ++i){ singleMasks[i] = (1 << i); } int[][] doubleMasks = new int[n][n]; for (int i = 0; i < n; ++i){ for (int j = 0; j < n; ++j){ doubleMasks[i][j] = (singleMasks[i] | singleMasks[j]); } } int lim = (1 << n); int[] dp = new int[lim]; Arrays.fill(dp, Integer.MAX_VALUE); dp[0] = 0; int[] p = new int[lim]; Arrays.fill(p, -1); for (int mask = 0; mask < lim; ++mask){ if (dp[mask] == Integer.MAX_VALUE){ continue; } int minBit = -1; for (int bit = 0; bit < n; ++bit){ if (checkBit(mask, bit)) continue; if (minBit == -1 || (dist[minBit] > dist[bit])){ minBit = bit; } } if (minBit == -1){ continue; } for (int bit = 0; bit < n; ++bit){ if (checkBit(mask, bit)) continue; int newMask = (mask | (1 << minBit) | (1 << bit)); if (dp[newMask] > dp[mask] + d[minBit][bit]){ dp[newMask] = dp[mask] + d[minBit][bit]; p[newMask] = minBit * n + bit; } } } out.println(dp[lim-1]); int curMask = lim - 1; while (p[curMask] != -1){ out.print("0 "); int first = p[curMask] / n; int second = p[curMask] % n; out.print((first + 1) + " "); curMask ^= (1 << first); if (first != second){ out.print((second + 1) + " "); curMask ^= (1 << second); } } out.println("0"); } private boolean checkBit(int mask, int bitNumber) { return (mask & (1 << bitNumber)) != 0; } boolean checkMask(int mask, int innerMask){ return (mask & innerMask) == innerMask; } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; import java.awt.Point; import java.math.BigInteger; import static java.lang.Math.*; // Solution is at the bottom of code public class ProblemC_008 implements Runnable{ final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null; BufferedReader in; OutputWriter out; StringTokenizer tok = new StringTokenizer(""); public static void main(String[] args){ new Thread(null, new ProblemC_008(), "", 128 * (1L << 20)).start(); } ///////////////////////////////////////////////////////////////////// void init() throws FileNotFoundException{ Locale.setDefault(Locale.US); if (ONLINE_JUDGE){ in = new BufferedReader(new InputStreamReader(System.in)); out = new OutputWriter(System.out); }else{ in = new BufferedReader(new FileReader("input.txt")); out = new OutputWriter("output.txt"); } } //////////////////////////////////////////////////////////////// long timeBegin, timeEnd; void time(){ timeEnd = System.currentTimeMillis(); System.err.println("Time = " + (timeEnd - timeBegin)); } void debug(Object... objects){ if (ONLINE_JUDGE){ for (Object o: objects){ System.err.println(o.toString()); } } } ///////////////////////////////////////////////////////////////////// public void run(){ try{ timeBegin = System.currentTimeMillis(); Locale.setDefault(Locale.US); init(); solve(); out.close(); time(); }catch (Exception e){ e.printStackTrace(System.err); System.exit(-1); } } ///////////////////////////////////////////////////////////////////// String delim = " "; String readString() throws IOException{ while(!tok.hasMoreTokens()){ try{ tok = new StringTokenizer(in.readLine()); }catch (Exception e){ return null; } } return tok.nextToken(delim); } String readLine() throws IOException{ return in.readLine(); } ///////////////////////////////////////////////////////////////// final char NOT_A_SYMBOL = '\0'; char readChar() throws IOException{ int intValue = in.read(); if (intValue == -1){ return NOT_A_SYMBOL; } return (char) intValue; } char[] readCharArray() throws IOException{ return readLine().toCharArray(); } ///////////////////////////////////////////////////////////////// int readInt() throws IOException{ return Integer.parseInt(readString()); } int[] readIntArray(int size) throws IOException{ int[] array = new int[size]; for (int index = 0; index < size; ++index){ array[index] = readInt(); } return array; } /////////////////////////////////////////////////////////////////// long readLong() throws IOException{ return Long.parseLong(readString()); } long[] readLongArray(int size) throws IOException{ long[] array = new long[size]; for (int index = 0; index < size; ++index){ array[index] = readLong(); } return array; } //////////////////////////////////////////////////////////////////// double readDouble() throws IOException{ return Double.parseDouble(readString()); } double[] readDoubleArray(int size) throws IOException{ double[] array = new double[size]; for (int index = 0; index < size; ++index){ array[index] = readDouble(); } return array; } ///////////////////////////////////////////////////////////////////// Point readPoint() throws IOException{ return new Point(readInt(), readInt()); } Point[] readPointArray(int size) throws IOException{ Point[] array = new Point[size]; for (int index = 0; index < size; ++index){ array[index] = readPoint(); } return array; } ///////////////////////////////////////////////////////////////////// class OutputWriter extends PrintWriter{ final int DEFAULT_PRECISION = 12; int precision; String format, formatWithSpace; { precision = DEFAULT_PRECISION; format = createFormat(precision); formatWithSpace = format + " "; } public OutputWriter(OutputStream out) { super(out); } public OutputWriter(String fileName) throws FileNotFoundException { super(fileName); } public int getPrecision() { return precision; } public void setPrecision(int precision) { this.precision = precision; format = createFormat(precision); formatWithSpace = format + " "; } private String createFormat(int precision){ return "%." + precision + "f"; } @Override public void print(double d){ printf(format, d); } public void printWithSpace(double d){ printf(formatWithSpace, d); } public void printAll(double...d){ for (int i = 0; i < d.length - 1; ++i){ printWithSpace(d[i]); } print(d[d.length - 1]); } @Override public void println(double d){ printlnAll(d); } public void printlnAll(double... d){ printAll(d); println(); } } ///////////////////////////////////////////////////////////////////// int[][] steps = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}}; boolean check(int index, int lim){ return (0 <= index && index < lim); } ///////////////////////////////////////////////////////////////////// void solve() throws IOException{ Point bag = readPoint(); int n = readInt(); Point[] points = new Point[n]; for (int i = 0; i < n; ++i){ points[i] = readPoint(); } int[] dist = new int[n]; for (int i = 0; i < n; ++i){ int dx = points[i].x - bag.x; int dy = points[i].y - bag.y; dist[i] = dx * dx + dy * dy; } int[][] d = new int[n][n]; for (int i = 0; i < n; ++i){ for (int j = 0; j < n; ++j){ int dx = points[i].x - points[j].x; int dy = points[i].y - points[j].y; d[i][j] = dx * dx + dy * dy; d[i][j] += dist[i] + dist[j]; } } int[] singleMasks = new int[n]; for (int i = 0; i < n; ++i){ singleMasks[i] = (1 << i); } int[][] doubleMasks = new int[n][n]; for (int i = 0; i < n; ++i){ for (int j = 0; j < n; ++j){ doubleMasks[i][j] = (singleMasks[i] | singleMasks[j]); } } int lim = (1 << n); int[] dp = new int[lim]; Arrays.fill(dp, Integer.MAX_VALUE); dp[0] = 0; int[] p = new int[lim]; Arrays.fill(p, -1); for (int mask = 0; mask < lim; ++mask){ if (dp[mask] == Integer.MAX_VALUE){ continue; } int minBit = -1; for (int bit = 0; bit < n; ++bit){ if (checkBit(mask, bit)) continue; if (minBit == -1 || (dist[minBit] > dist[bit])){ minBit = bit; } } if (minBit == -1){ continue; } for (int bit = 0; bit < n; ++bit){ if (checkBit(mask, bit)) continue; int newMask = (mask | (1 << minBit) | (1 << bit)); if (dp[newMask] > dp[mask] + d[minBit][bit]){ dp[newMask] = dp[mask] + d[minBit][bit]; p[newMask] = minBit * n + bit; } } } out.println(dp[lim-1]); int curMask = lim - 1; while (p[curMask] != -1){ out.print("0 "); int first = p[curMask] / n; int second = p[curMask] % n; out.print((first + 1) + " "); curMask ^= (1 << first); if (first != second){ out.print((second + 1) + " "); curMask ^= (1 << second); } } out.println("0"); } private boolean checkBit(int mask, int bitNumber) { return (mask & (1 << bitNumber)) != 0; } boolean checkMask(int mask, int innerMask){ return (mask & innerMask) == innerMask; } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; import java.awt.Point; import java.math.BigInteger; import static java.lang.Math.*; // Solution is at the bottom of code public class ProblemC_008 implements Runnable{ final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null; BufferedReader in; OutputWriter out; StringTokenizer tok = new StringTokenizer(""); public static void main(String[] args){ new Thread(null, new ProblemC_008(), "", 128 * (1L << 20)).start(); } ///////////////////////////////////////////////////////////////////// void init() throws FileNotFoundException{ Locale.setDefault(Locale.US); if (ONLINE_JUDGE){ in = new BufferedReader(new InputStreamReader(System.in)); out = new OutputWriter(System.out); }else{ in = new BufferedReader(new FileReader("input.txt")); out = new OutputWriter("output.txt"); } } //////////////////////////////////////////////////////////////// long timeBegin, timeEnd; void time(){ timeEnd = System.currentTimeMillis(); System.err.println("Time = " + (timeEnd - timeBegin)); } void debug(Object... objects){ if (ONLINE_JUDGE){ for (Object o: objects){ System.err.println(o.toString()); } } } ///////////////////////////////////////////////////////////////////// public void run(){ try{ timeBegin = System.currentTimeMillis(); Locale.setDefault(Locale.US); init(); solve(); out.close(); time(); }catch (Exception e){ e.printStackTrace(System.err); System.exit(-1); } } ///////////////////////////////////////////////////////////////////// String delim = " "; String readString() throws IOException{ while(!tok.hasMoreTokens()){ try{ tok = new StringTokenizer(in.readLine()); }catch (Exception e){ return null; } } return tok.nextToken(delim); } String readLine() throws IOException{ return in.readLine(); } ///////////////////////////////////////////////////////////////// final char NOT_A_SYMBOL = '\0'; char readChar() throws IOException{ int intValue = in.read(); if (intValue == -1){ return NOT_A_SYMBOL; } return (char) intValue; } char[] readCharArray() throws IOException{ return readLine().toCharArray(); } ///////////////////////////////////////////////////////////////// int readInt() throws IOException{ return Integer.parseInt(readString()); } int[] readIntArray(int size) throws IOException{ int[] array = new int[size]; for (int index = 0; index < size; ++index){ array[index] = readInt(); } return array; } /////////////////////////////////////////////////////////////////// long readLong() throws IOException{ return Long.parseLong(readString()); } long[] readLongArray(int size) throws IOException{ long[] array = new long[size]; for (int index = 0; index < size; ++index){ array[index] = readLong(); } return array; } //////////////////////////////////////////////////////////////////// double readDouble() throws IOException{ return Double.parseDouble(readString()); } double[] readDoubleArray(int size) throws IOException{ double[] array = new double[size]; for (int index = 0; index < size; ++index){ array[index] = readDouble(); } return array; } ///////////////////////////////////////////////////////////////////// Point readPoint() throws IOException{ return new Point(readInt(), readInt()); } Point[] readPointArray(int size) throws IOException{ Point[] array = new Point[size]; for (int index = 0; index < size; ++index){ array[index] = readPoint(); } return array; } ///////////////////////////////////////////////////////////////////// class OutputWriter extends PrintWriter{ final int DEFAULT_PRECISION = 12; int precision; String format, formatWithSpace; { precision = DEFAULT_PRECISION; format = createFormat(precision); formatWithSpace = format + " "; } public OutputWriter(OutputStream out) { super(out); } public OutputWriter(String fileName) throws FileNotFoundException { super(fileName); } public int getPrecision() { return precision; } public void setPrecision(int precision) { this.precision = precision; format = createFormat(precision); formatWithSpace = format + " "; } private String createFormat(int precision){ return "%." + precision + "f"; } @Override public void print(double d){ printf(format, d); } public void printWithSpace(double d){ printf(formatWithSpace, d); } public void printAll(double...d){ for (int i = 0; i < d.length - 1; ++i){ printWithSpace(d[i]); } print(d[d.length - 1]); } @Override public void println(double d){ printlnAll(d); } public void printlnAll(double... d){ printAll(d); println(); } } ///////////////////////////////////////////////////////////////////// int[][] steps = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}}; boolean check(int index, int lim){ return (0 <= index && index < lim); } ///////////////////////////////////////////////////////////////////// void solve() throws IOException{ Point bag = readPoint(); int n = readInt(); Point[] points = new Point[n]; for (int i = 0; i < n; ++i){ points[i] = readPoint(); } int[] dist = new int[n]; for (int i = 0; i < n; ++i){ int dx = points[i].x - bag.x; int dy = points[i].y - bag.y; dist[i] = dx * dx + dy * dy; } int[][] d = new int[n][n]; for (int i = 0; i < n; ++i){ for (int j = 0; j < n; ++j){ int dx = points[i].x - points[j].x; int dy = points[i].y - points[j].y; d[i][j] = dx * dx + dy * dy; d[i][j] += dist[i] + dist[j]; } } int[] singleMasks = new int[n]; for (int i = 0; i < n; ++i){ singleMasks[i] = (1 << i); } int[][] doubleMasks = new int[n][n]; for (int i = 0; i < n; ++i){ for (int j = 0; j < n; ++j){ doubleMasks[i][j] = (singleMasks[i] | singleMasks[j]); } } int lim = (1 << n); int[] dp = new int[lim]; Arrays.fill(dp, Integer.MAX_VALUE); dp[0] = 0; int[] p = new int[lim]; Arrays.fill(p, -1); for (int mask = 0; mask < lim; ++mask){ if (dp[mask] == Integer.MAX_VALUE){ continue; } int minBit = -1; for (int bit = 0; bit < n; ++bit){ if (checkBit(mask, bit)) continue; if (minBit == -1 || (dist[minBit] > dist[bit])){ minBit = bit; } } if (minBit == -1){ continue; } for (int bit = 0; bit < n; ++bit){ if (checkBit(mask, bit)) continue; int newMask = (mask | (1 << minBit) | (1 << bit)); if (dp[newMask] > dp[mask] + d[minBit][bit]){ dp[newMask] = dp[mask] + d[minBit][bit]; p[newMask] = minBit * n + bit; } } } out.println(dp[lim-1]); int curMask = lim - 1; while (p[curMask] != -1){ out.print("0 "); int first = p[curMask] / n; int second = p[curMask] % n; out.print((first + 1) + " "); curMask ^= (1 << first); if (first != second){ out.print((second + 1) + " "); curMask ^= (1 << second); } } out.println("0"); } private boolean checkBit(int mask, int bitNumber) { return (mask & (1 << bitNumber)) != 0; } boolean checkMask(int mask, int innerMask){ return (mask & innerMask) == innerMask; } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
2,323
4,090
208
import static java.lang.Integer.parseInt; import static java.lang.Long.parseLong; import static java.lang.Math.min; import static java.lang.System.exit; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class F { static void solve() throws Exception { int n = scanInt(); long l[] = new long[n]; for (int i = 0; i < n; i++) { l[i] = scanLong(); } long e1 = 0, e2 = 0, ans = 0; boolean water = false; String types = scanString(); for (int i = 0; i < n; i++) { long li = l[i], cur; switch (types.charAt(i)) { case 'G': cur = min(e1, li); e1 -= cur; li -= cur; e2 += 2 * cur; ans += 2 * cur; e2 += li; ans += 3 * li; break; case 'W': water = true; e1 += li; ans += 2 * li; break; case 'L': cur = min(e1, li); e1 -= cur; li -= cur; ans += 2 * cur; cur = min(e2, li); e2 -= cur; li -= cur; ans += 3 * cur; ans += (water ? 4 : 6) * li; break; default: throw new AssertionError(); } } out.print(ans); } static int scanInt() throws IOException { return parseInt(scanString()); } static long scanLong() throws IOException { return parseLong(scanString()); } static String scanString() throws IOException { while (tok == null || !tok.hasMoreTokens()) { tok = new StringTokenizer(in.readLine()); } return tok.nextToken(); } static BufferedReader in; static PrintWriter out; static StringTokenizer tok; public static void main(String[] args) { try { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); in.close(); out.close(); } catch (Throwable e) { e.printStackTrace(); exit(1); } } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import static java.lang.Integer.parseInt; import static java.lang.Long.parseLong; import static java.lang.Math.min; import static java.lang.System.exit; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class F { static void solve() throws Exception { int n = scanInt(); long l[] = new long[n]; for (int i = 0; i < n; i++) { l[i] = scanLong(); } long e1 = 0, e2 = 0, ans = 0; boolean water = false; String types = scanString(); for (int i = 0; i < n; i++) { long li = l[i], cur; switch (types.charAt(i)) { case 'G': cur = min(e1, li); e1 -= cur; li -= cur; e2 += 2 * cur; ans += 2 * cur; e2 += li; ans += 3 * li; break; case 'W': water = true; e1 += li; ans += 2 * li; break; case 'L': cur = min(e1, li); e1 -= cur; li -= cur; ans += 2 * cur; cur = min(e2, li); e2 -= cur; li -= cur; ans += 3 * cur; ans += (water ? 4 : 6) * li; break; default: throw new AssertionError(); } } out.print(ans); } static int scanInt() throws IOException { return parseInt(scanString()); } static long scanLong() throws IOException { return parseLong(scanString()); } static String scanString() throws IOException { while (tok == null || !tok.hasMoreTokens()) { tok = new StringTokenizer(in.readLine()); } return tok.nextToken(); } static BufferedReader in; static PrintWriter out; static StringTokenizer tok; public static void main(String[] args) { try { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); in.close(); out.close(); } catch (Throwable e) { e.printStackTrace(); exit(1); } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import static java.lang.Integer.parseInt; import static java.lang.Long.parseLong; import static java.lang.Math.min; import static java.lang.System.exit; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class F { static void solve() throws Exception { int n = scanInt(); long l[] = new long[n]; for (int i = 0; i < n; i++) { l[i] = scanLong(); } long e1 = 0, e2 = 0, ans = 0; boolean water = false; String types = scanString(); for (int i = 0; i < n; i++) { long li = l[i], cur; switch (types.charAt(i)) { case 'G': cur = min(e1, li); e1 -= cur; li -= cur; e2 += 2 * cur; ans += 2 * cur; e2 += li; ans += 3 * li; break; case 'W': water = true; e1 += li; ans += 2 * li; break; case 'L': cur = min(e1, li); e1 -= cur; li -= cur; ans += 2 * cur; cur = min(e2, li); e2 -= cur; li -= cur; ans += 3 * cur; ans += (water ? 4 : 6) * li; break; default: throw new AssertionError(); } } out.print(ans); } static int scanInt() throws IOException { return parseInt(scanString()); } static long scanLong() throws IOException { return parseLong(scanString()); } static String scanString() throws IOException { while (tok == null || !tok.hasMoreTokens()) { tok = new StringTokenizer(in.readLine()); } return tok.nextToken(); } static BufferedReader in; static PrintWriter out; static StringTokenizer tok; public static void main(String[] args) { try { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); in.close(); out.close(); } catch (Throwable e) { e.printStackTrace(); exit(1); } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
865
208
2,440
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.util.HashMap; import java.util.InputMismatchException; import java.io.IOException; import java.util.ArrayList; import java.io.Writer; import java.io.OutputStreamWriter; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author revanth */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); F2SameSumBlocksHard solver = new F2SameSumBlocksHard(); solver.solve(1, in, out); out.close(); } static class F2SameSumBlocksHard { public void solve(int testNumber, InputReader in, OutputWriter out) { int n = in.nextInt(); long[] a = in.nextLongArray(n); HashMap<Long, ArrayList<Pair>> hm = new HashMap<>(); long sum; for (int j = 0; j < n; j++) { sum = 0; for (int i = j; i >= 0; i--) { sum += a[i]; if (!hm.containsKey(sum)) hm.put(sum, new ArrayList<>()); hm.get(sum).add(new Pair(i + 1, j + 1)); } } ArrayList<Pair> al1 = new ArrayList<>(); ArrayList<Pair> al2 = new ArrayList<>(); int prev; for (ArrayList<Pair> al : hm.values()) { prev = 0; al1.clear(); for (Pair p : al) { if (p.x > prev) { al1.add(p); prev = p.y; } } if (al1.size() > al2.size()) al2 = new ArrayList<>(al1); } out.println(al2.size()); for (Pair p : al2) out.println(p.x + " " + p.y); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[8192]; private int curChar; private int snumChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int snext() { if (snumChars == -1) throw new InputMismatchException(); if (curChar >= snumChars) { curChar = 0; try { snumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (snumChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = snext(); while (isSpaceChar(c)) c = snext(); int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = snext(); while (isSpaceChar(c)) c = snext(); int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public long[] nextLongArray(int n) { long a[] = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static class Pair implements Comparable<Pair> { public int x; public int y; public Pair(int x, int y) { this.x = x; this.y = y; } public boolean equals(Object obj) { if (obj == null) return false; if (obj == this) return true; if (!(obj instanceof Pair)) return false; Pair o = (Pair) obj; return o.x == this.x && o.y == this.y; } public int hashCode() { return this.x + this.y; } public int compareTo(Pair p) { if (x == p.x) return Integer.compare(y, p.y); return Integer.compare(x, p.x); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) { writer.print(' '); } writer.print(objects[i]); } } public void println(Object... objects) { print(objects); writer.println(); } public void close() { writer.close(); } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.util.HashMap; import java.util.InputMismatchException; import java.io.IOException; import java.util.ArrayList; import java.io.Writer; import java.io.OutputStreamWriter; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author revanth */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); F2SameSumBlocksHard solver = new F2SameSumBlocksHard(); solver.solve(1, in, out); out.close(); } static class F2SameSumBlocksHard { public void solve(int testNumber, InputReader in, OutputWriter out) { int n = in.nextInt(); long[] a = in.nextLongArray(n); HashMap<Long, ArrayList<Pair>> hm = new HashMap<>(); long sum; for (int j = 0; j < n; j++) { sum = 0; for (int i = j; i >= 0; i--) { sum += a[i]; if (!hm.containsKey(sum)) hm.put(sum, new ArrayList<>()); hm.get(sum).add(new Pair(i + 1, j + 1)); } } ArrayList<Pair> al1 = new ArrayList<>(); ArrayList<Pair> al2 = new ArrayList<>(); int prev; for (ArrayList<Pair> al : hm.values()) { prev = 0; al1.clear(); for (Pair p : al) { if (p.x > prev) { al1.add(p); prev = p.y; } } if (al1.size() > al2.size()) al2 = new ArrayList<>(al1); } out.println(al2.size()); for (Pair p : al2) out.println(p.x + " " + p.y); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[8192]; private int curChar; private int snumChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int snext() { if (snumChars == -1) throw new InputMismatchException(); if (curChar >= snumChars) { curChar = 0; try { snumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (snumChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = snext(); while (isSpaceChar(c)) c = snext(); int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = snext(); while (isSpaceChar(c)) c = snext(); int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public long[] nextLongArray(int n) { long a[] = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static class Pair implements Comparable<Pair> { public int x; public int y; public Pair(int x, int y) { this.x = x; this.y = y; } public boolean equals(Object obj) { if (obj == null) return false; if (obj == this) return true; if (!(obj instanceof Pair)) return false; Pair o = (Pair) obj; return o.x == this.x && o.y == this.y; } public int hashCode() { return this.x + this.y; } public int compareTo(Pair p) { if (x == p.x) return Integer.compare(y, p.y); return Integer.compare(x, p.x); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) { writer.print(' '); } writer.print(objects[i]); } } public void println(Object... objects) { print(objects); writer.println(); } public void close() { writer.close(); } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.util.HashMap; import java.util.InputMismatchException; import java.io.IOException; import java.util.ArrayList; import java.io.Writer; import java.io.OutputStreamWriter; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author revanth */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); F2SameSumBlocksHard solver = new F2SameSumBlocksHard(); solver.solve(1, in, out); out.close(); } static class F2SameSumBlocksHard { public void solve(int testNumber, InputReader in, OutputWriter out) { int n = in.nextInt(); long[] a = in.nextLongArray(n); HashMap<Long, ArrayList<Pair>> hm = new HashMap<>(); long sum; for (int j = 0; j < n; j++) { sum = 0; for (int i = j; i >= 0; i--) { sum += a[i]; if (!hm.containsKey(sum)) hm.put(sum, new ArrayList<>()); hm.get(sum).add(new Pair(i + 1, j + 1)); } } ArrayList<Pair> al1 = new ArrayList<>(); ArrayList<Pair> al2 = new ArrayList<>(); int prev; for (ArrayList<Pair> al : hm.values()) { prev = 0; al1.clear(); for (Pair p : al) { if (p.x > prev) { al1.add(p); prev = p.y; } } if (al1.size() > al2.size()) al2 = new ArrayList<>(al1); } out.println(al2.size()); for (Pair p : al2) out.println(p.x + " " + p.y); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[8192]; private int curChar; private int snumChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int snext() { if (snumChars == -1) throw new InputMismatchException(); if (curChar >= snumChars) { curChar = 0; try { snumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (snumChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = snext(); while (isSpaceChar(c)) c = snext(); int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = snext(); while (isSpaceChar(c)) c = snext(); int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public long[] nextLongArray(int n) { long a[] = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static class Pair implements Comparable<Pair> { public int x; public int y; public Pair(int x, int y) { this.x = x; this.y = y; } public boolean equals(Object obj) { if (obj == null) return false; if (obj == this) return true; if (!(obj instanceof Pair)) return false; Pair o = (Pair) obj; return o.x == this.x && o.y == this.y; } public int hashCode() { return this.x + this.y; } public int compareTo(Pair p) { if (x == p.x) return Integer.compare(y, p.y); return Integer.compare(x, p.x); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) { writer.print(' '); } writer.print(objects[i]); } } public void println(Object... objects) { print(objects); writer.println(); } public void close() { writer.close(); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,631
2,435
1,138
import java.util.*; import java.lang.*; import java.io.*; public class ER23C { static long s; public static void main (String[] args) throws java.lang.Exception { InputReader in = new InputReader(System.in); PrintWriter w = new PrintWriter(System.out); long n = in.nextLong(); s = in.nextLong(); long l = 0, h = n; while (l < h) { long mid = (l + h ) / 2; // System.out.println("mid is : " + mid); // System.out.println("high is : " + h); //System.out.println("low is : " + l); if (Ok(mid)) h = mid; else l = mid + 1; } if (Ok(h)) w.println(n - h + 1); else w.println(n - h); w.close(); } static boolean Ok(long n) { int sum = 0; long temp = n; while (n > 0) { sum += (n % 10); n = n / 10; } //System.out.println("n is :" + n + " sum is : " + sum); return (temp - sum >= s); } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new UnknownError(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new UnknownError(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int peek() { if (numChars == -1) return -1; if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { return -1; } if (numChars <= 0) return -1; } return buf[curChar]; } public void skip(int x) { while (x-- > 0) read(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public String nextString() { return next(); } public String next() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuffer res = new StringBuffer(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public String nextLine() { StringBuffer buf = new StringBuffer(); int c = read(); while (c != '\n' && c != -1) { if (c != '\r') buf.appendCodePoint(c); c = read(); } return buf.toString(); } public double nextDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } public int[] nextIntArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public long[] nextLongArray(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public boolean hasNext() { int value; while (isSpaceChar(value = peek()) && value != -1) read(); return value != -1; } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.lang.*; import java.io.*; public class ER23C { static long s; public static void main (String[] args) throws java.lang.Exception { InputReader in = new InputReader(System.in); PrintWriter w = new PrintWriter(System.out); long n = in.nextLong(); s = in.nextLong(); long l = 0, h = n; while (l < h) { long mid = (l + h ) / 2; // System.out.println("mid is : " + mid); // System.out.println("high is : " + h); //System.out.println("low is : " + l); if (Ok(mid)) h = mid; else l = mid + 1; } if (Ok(h)) w.println(n - h + 1); else w.println(n - h); w.close(); } static boolean Ok(long n) { int sum = 0; long temp = n; while (n > 0) { sum += (n % 10); n = n / 10; } //System.out.println("n is :" + n + " sum is : " + sum); return (temp - sum >= s); } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new UnknownError(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new UnknownError(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int peek() { if (numChars == -1) return -1; if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { return -1; } if (numChars <= 0) return -1; } return buf[curChar]; } public void skip(int x) { while (x-- > 0) read(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public String nextString() { return next(); } public String next() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuffer res = new StringBuffer(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public String nextLine() { StringBuffer buf = new StringBuffer(); int c = read(); while (c != '\n' && c != -1) { if (c != '\r') buf.appendCodePoint(c); c = read(); } return buf.toString(); } public double nextDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } public int[] nextIntArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public long[] nextLongArray(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public boolean hasNext() { int value; while (isSpaceChar(value = peek()) && value != -1) read(); return value != -1; } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.lang.*; import java.io.*; public class ER23C { static long s; public static void main (String[] args) throws java.lang.Exception { InputReader in = new InputReader(System.in); PrintWriter w = new PrintWriter(System.out); long n = in.nextLong(); s = in.nextLong(); long l = 0, h = n; while (l < h) { long mid = (l + h ) / 2; // System.out.println("mid is : " + mid); // System.out.println("high is : " + h); //System.out.println("low is : " + l); if (Ok(mid)) h = mid; else l = mid + 1; } if (Ok(h)) w.println(n - h + 1); else w.println(n - h); w.close(); } static boolean Ok(long n) { int sum = 0; long temp = n; while (n > 0) { sum += (n % 10); n = n / 10; } //System.out.println("n is :" + n + " sum is : " + sum); return (temp - sum >= s); } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new UnknownError(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new UnknownError(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int peek() { if (numChars == -1) return -1; if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { return -1; } if (numChars <= 0) return -1; } return buf[curChar]; } public void skip(int x) { while (x-- > 0) read(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public String nextString() { return next(); } public String next() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuffer res = new StringBuffer(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public String nextLine() { StringBuffer buf = new StringBuffer(); int c = read(); while (c != '\n' && c != -1) { if (c != '\r') buf.appendCodePoint(c); c = read(); } return buf.toString(); } public double nextDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } public int[] nextIntArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public long[] nextLongArray(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public boolean hasNext() { int value; while (isSpaceChar(value = peek()) && value != -1) read(); return value != -1; } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,475
1,137
1,237
import java.io.*; import java.util.*; public class CF { long mod = (long) 1e9 + 9; class Pair { long a, b; public Pair(long a, long b) { super(); this.a = a % mod; this.b = b % mod; } } int k; long pow(long n, long k) { if (k == 0) return 1; long m1 = pow(n, k / 2); m1 = (m1 * m1) % mod; if (k % 2 != 0) m1 = (m1 * n) % mod; return m1; } long st(int n, int m, int k) { int parts = n / k; int used = n - m; if (parts > n - m) { long cur = 0; int counter = 0; int need = parts - (n - m); for (int i = 1; i <= n; i++) { if (counter + 1 == k && need <= 0) { counter = 0; used--; } else { counter++; cur++; if (counter == k) { counter = 0; cur = (cur * 2) % mod; need--; } } } if (used < 0) throw new AssertionError(); return cur; } else { return m; } } long mysol(int n, int m, int k) { this.k = k; int parts = n / k; if (parts > n - m) { long ost = n - (n - m) * k; long power = ost / k; long res = pow(2, power + 1); long cur = ((res - 2 + mod) % mod) * k; cur %= mod; cur += Math.max(0, m - power * k); cur %= mod; return cur; } else { return m; } } void realSolve() throws IOException { int n = in.nextInt(); int m = in.nextInt(); k = in.nextInt(); out.println(mysol(n, m, k)); /*Random rnd = new Random(123); for (int t = 0; t < 10000; t++) { System.err.println(t); int n = rnd.nextInt(100) + 2; int m = rnd.nextInt(n + 1); int k = rnd.nextInt(n - 1) + 2; if (t == 16) { System.err.println("!"); } long r1 = mysol(n, m, k); long r2 = st(n, m, k); if (r1 != r2) throw new AssertionError(r1 + " " + r2); }*/ } private class InputReader { StringTokenizer st; BufferedReader br; public InputReader(File f) { try { br = new BufferedReader(new FileReader(f)); } catch (FileNotFoundException e) { e.printStackTrace(); } } public InputReader(InputStream f) { br = new BufferedReader(new InputStreamReader(f)); } String next() { while (st == null || !st.hasMoreElements()) { String s; try { s = br.readLine(); } catch (IOException e) { return null; } if (s == null) return null; st = new StringTokenizer(s); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } double nextDouble() { return Double.parseDouble(next()); } boolean hasMoreElements() { while (st == null || !st.hasMoreElements()) { String s; try { s = br.readLine(); } catch (IOException e) { return false; } st = new StringTokenizer(s); } return st.hasMoreElements(); } long nextLong() { return Long.parseLong(next()); } } InputReader in; PrintWriter out; void solveIO() throws IOException { in = new InputReader(System.in); out = new PrintWriter(System.out); realSolve(); out.close(); } void solve() throws IOException { in = new InputReader(new File("input.txt")); out = new PrintWriter(new File("output.txt")); realSolve(); out.close(); } public static void main(String[] args) throws IOException { new CF().solveIO(); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class CF { long mod = (long) 1e9 + 9; class Pair { long a, b; public Pair(long a, long b) { super(); this.a = a % mod; this.b = b % mod; } } int k; long pow(long n, long k) { if (k == 0) return 1; long m1 = pow(n, k / 2); m1 = (m1 * m1) % mod; if (k % 2 != 0) m1 = (m1 * n) % mod; return m1; } long st(int n, int m, int k) { int parts = n / k; int used = n - m; if (parts > n - m) { long cur = 0; int counter = 0; int need = parts - (n - m); for (int i = 1; i <= n; i++) { if (counter + 1 == k && need <= 0) { counter = 0; used--; } else { counter++; cur++; if (counter == k) { counter = 0; cur = (cur * 2) % mod; need--; } } } if (used < 0) throw new AssertionError(); return cur; } else { return m; } } long mysol(int n, int m, int k) { this.k = k; int parts = n / k; if (parts > n - m) { long ost = n - (n - m) * k; long power = ost / k; long res = pow(2, power + 1); long cur = ((res - 2 + mod) % mod) * k; cur %= mod; cur += Math.max(0, m - power * k); cur %= mod; return cur; } else { return m; } } void realSolve() throws IOException { int n = in.nextInt(); int m = in.nextInt(); k = in.nextInt(); out.println(mysol(n, m, k)); /*Random rnd = new Random(123); for (int t = 0; t < 10000; t++) { System.err.println(t); int n = rnd.nextInt(100) + 2; int m = rnd.nextInt(n + 1); int k = rnd.nextInt(n - 1) + 2; if (t == 16) { System.err.println("!"); } long r1 = mysol(n, m, k); long r2 = st(n, m, k); if (r1 != r2) throw new AssertionError(r1 + " " + r2); }*/ } private class InputReader { StringTokenizer st; BufferedReader br; public InputReader(File f) { try { br = new BufferedReader(new FileReader(f)); } catch (FileNotFoundException e) { e.printStackTrace(); } } public InputReader(InputStream f) { br = new BufferedReader(new InputStreamReader(f)); } String next() { while (st == null || !st.hasMoreElements()) { String s; try { s = br.readLine(); } catch (IOException e) { return null; } if (s == null) return null; st = new StringTokenizer(s); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } double nextDouble() { return Double.parseDouble(next()); } boolean hasMoreElements() { while (st == null || !st.hasMoreElements()) { String s; try { s = br.readLine(); } catch (IOException e) { return false; } st = new StringTokenizer(s); } return st.hasMoreElements(); } long nextLong() { return Long.parseLong(next()); } } InputReader in; PrintWriter out; void solveIO() throws IOException { in = new InputReader(System.in); out = new PrintWriter(System.out); realSolve(); out.close(); } void solve() throws IOException { in = new InputReader(new File("input.txt")); out = new PrintWriter(new File("output.txt")); realSolve(); out.close(); } public static void main(String[] args) throws IOException { new CF().solveIO(); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class CF { long mod = (long) 1e9 + 9; class Pair { long a, b; public Pair(long a, long b) { super(); this.a = a % mod; this.b = b % mod; } } int k; long pow(long n, long k) { if (k == 0) return 1; long m1 = pow(n, k / 2); m1 = (m1 * m1) % mod; if (k % 2 != 0) m1 = (m1 * n) % mod; return m1; } long st(int n, int m, int k) { int parts = n / k; int used = n - m; if (parts > n - m) { long cur = 0; int counter = 0; int need = parts - (n - m); for (int i = 1; i <= n; i++) { if (counter + 1 == k && need <= 0) { counter = 0; used--; } else { counter++; cur++; if (counter == k) { counter = 0; cur = (cur * 2) % mod; need--; } } } if (used < 0) throw new AssertionError(); return cur; } else { return m; } } long mysol(int n, int m, int k) { this.k = k; int parts = n / k; if (parts > n - m) { long ost = n - (n - m) * k; long power = ost / k; long res = pow(2, power + 1); long cur = ((res - 2 + mod) % mod) * k; cur %= mod; cur += Math.max(0, m - power * k); cur %= mod; return cur; } else { return m; } } void realSolve() throws IOException { int n = in.nextInt(); int m = in.nextInt(); k = in.nextInt(); out.println(mysol(n, m, k)); /*Random rnd = new Random(123); for (int t = 0; t < 10000; t++) { System.err.println(t); int n = rnd.nextInt(100) + 2; int m = rnd.nextInt(n + 1); int k = rnd.nextInt(n - 1) + 2; if (t == 16) { System.err.println("!"); } long r1 = mysol(n, m, k); long r2 = st(n, m, k); if (r1 != r2) throw new AssertionError(r1 + " " + r2); }*/ } private class InputReader { StringTokenizer st; BufferedReader br; public InputReader(File f) { try { br = new BufferedReader(new FileReader(f)); } catch (FileNotFoundException e) { e.printStackTrace(); } } public InputReader(InputStream f) { br = new BufferedReader(new InputStreamReader(f)); } String next() { while (st == null || !st.hasMoreElements()) { String s; try { s = br.readLine(); } catch (IOException e) { return null; } if (s == null) return null; st = new StringTokenizer(s); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } double nextDouble() { return Double.parseDouble(next()); } boolean hasMoreElements() { while (st == null || !st.hasMoreElements()) { String s; try { s = br.readLine(); } catch (IOException e) { return false; } st = new StringTokenizer(s); } return st.hasMoreElements(); } long nextLong() { return Long.parseLong(next()); } } InputReader in; PrintWriter out; void solveIO() throws IOException { in = new InputReader(System.in); out = new PrintWriter(System.out); realSolve(); out.close(); } void solve() throws IOException { in = new InputReader(new File("input.txt")); out = new PrintWriter(new File("output.txt")); realSolve(); out.close(); } public static void main(String[] args) throws IOException { new CF().solveIO(); } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,381
1,236
4,034
import java.io.*; import java.util.*; import static java.lang.Math.*; public class G1 { static int n, T, duration[], type[]; static long dp[][][], mod = (long) 1e9 + 7; public static void main(String[] args) throws Exception { new Thread(null, new Runnable() { public void run() { try { solveIt(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } }, "Main", 1 << 28).start(); } public static void solveIt() throws Exception { Scanner in = new Scanner(System.in); PrintWriter pw = new PrintWriter(System.out); n = in.nextInt(); T = in.nextInt(); dp = new long[4][T + 1][1 << n]; duration = new int[n]; type = new int[n]; for (int i = 0; i < n; i++) { duration[i] = in.nextInt(); type[i] = in.nextInt() - 1; } for (long a[][] : dp) for (long b[] : a) Arrays.fill(b, -1); pw.println(solve(3, T, 0)); pw.close(); } static long solve(int lastType, int rem, int mask) { if (rem == 0) return 1; if (rem < 0) return 0; if (dp[lastType][rem][mask] != -1) return dp[lastType][rem][mask]; long res = 0; for (int i = 0; i < n; i++) { if (!check(mask, i) && lastType != type[i] && rem - duration[i] >= 0) { res += solve(type[i], rem - duration[i], set(mask, i)); if (res >= mod) res -= mod; } } return dp[lastType][rem][mask] = res; } static boolean check(int N, int pos) { return (N & (1 << pos)) != 0; } static int set(int N, int pos) { return N = N | (1 << pos); } static int reset(int N, int pos) { return N = N & ~(1 << pos); } static void debug(Object... obj) { System.err.println(Arrays.deepToString(obj)); } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; import static java.lang.Math.*; public class G1 { static int n, T, duration[], type[]; static long dp[][][], mod = (long) 1e9 + 7; public static void main(String[] args) throws Exception { new Thread(null, new Runnable() { public void run() { try { solveIt(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } }, "Main", 1 << 28).start(); } public static void solveIt() throws Exception { Scanner in = new Scanner(System.in); PrintWriter pw = new PrintWriter(System.out); n = in.nextInt(); T = in.nextInt(); dp = new long[4][T + 1][1 << n]; duration = new int[n]; type = new int[n]; for (int i = 0; i < n; i++) { duration[i] = in.nextInt(); type[i] = in.nextInt() - 1; } for (long a[][] : dp) for (long b[] : a) Arrays.fill(b, -1); pw.println(solve(3, T, 0)); pw.close(); } static long solve(int lastType, int rem, int mask) { if (rem == 0) return 1; if (rem < 0) return 0; if (dp[lastType][rem][mask] != -1) return dp[lastType][rem][mask]; long res = 0; for (int i = 0; i < n; i++) { if (!check(mask, i) && lastType != type[i] && rem - duration[i] >= 0) { res += solve(type[i], rem - duration[i], set(mask, i)); if (res >= mod) res -= mod; } } return dp[lastType][rem][mask] = res; } static boolean check(int N, int pos) { return (N & (1 << pos)) != 0; } static int set(int N, int pos) { return N = N | (1 << pos); } static int reset(int N, int pos) { return N = N & ~(1 << pos); } static void debug(Object... obj) { System.err.println(Arrays.deepToString(obj)); } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; import static java.lang.Math.*; public class G1 { static int n, T, duration[], type[]; static long dp[][][], mod = (long) 1e9 + 7; public static void main(String[] args) throws Exception { new Thread(null, new Runnable() { public void run() { try { solveIt(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } }, "Main", 1 << 28).start(); } public static void solveIt() throws Exception { Scanner in = new Scanner(System.in); PrintWriter pw = new PrintWriter(System.out); n = in.nextInt(); T = in.nextInt(); dp = new long[4][T + 1][1 << n]; duration = new int[n]; type = new int[n]; for (int i = 0; i < n; i++) { duration[i] = in.nextInt(); type[i] = in.nextInt() - 1; } for (long a[][] : dp) for (long b[] : a) Arrays.fill(b, -1); pw.println(solve(3, T, 0)); pw.close(); } static long solve(int lastType, int rem, int mask) { if (rem == 0) return 1; if (rem < 0) return 0; if (dp[lastType][rem][mask] != -1) return dp[lastType][rem][mask]; long res = 0; for (int i = 0; i < n; i++) { if (!check(mask, i) && lastType != type[i] && rem - duration[i] >= 0) { res += solve(type[i], rem - duration[i], set(mask, i)); if (res >= mod) res -= mod; } } return dp[lastType][rem][mask] = res; } static boolean check(int N, int pos) { return (N & (1 << pos)) != 0; } static int set(int N, int pos) { return N = N | (1 << pos); } static int reset(int N, int pos) { return N = N & ~(1 << pos); } static void debug(Object... obj) { System.err.println(Arrays.deepToString(obj)); } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
860
4,023
3,740
import java.io.*; import java.util.*; public class C { int removeSq(int x) { for (int i = 2; i * i <= x; i++) { while (x % (i * i) == 0) { x /= i * i; } } return x; } void submit() { int n = nextInt(); HashMap<Integer, Integer> map = new HashMap<>(); for (int i = 0; i < n; i++) { int x = removeSq(nextInt()); map.merge(x, 1, Integer::sum); } int[] a = new int[map.size()]; int ptr = 0; for (Integer x : map.values()) { a[ptr++] = x; } int ret = go(a); for (int x : a) { ret = (int)((long)ret * fact[x] % P); } out.println(ret); } int go(int[] a) { int[] dp = new int[a[0]]; dp[a[0] - 1] = 1; int places = a[0] + 1; int toInsert = 0; for (int x : a) { toInsert += x; } toInsert -= a[0]; for (int i =1; i < a.length; i++) { int here = a[i]; if (here == 0) { continue; } int[] nxt = new int[dp.length + here]; for (int wasSame = 0; wasSame < dp.length; wasSame++) { if (wasSame > toInsert) { continue; } if (dp[wasSame] == 0) { continue; } int wasDiff = places - wasSame; for (int runsSame = 0; runsSame <= wasSame && runsSame <= here; runsSame++) { for (int runsDiff = 0; runsDiff <= wasDiff && runsSame + runsDiff <= here; runsDiff++) { if (runsSame + runsDiff == 0) { continue; } int delta = (int) ((long) dp[wasSame] * ways[wasSame][runsSame] % P * ways[wasDiff][runsDiff] % P * ways[here - 1][runsSame + runsDiff - 1] % P); if (delta == 0) { continue; } int nxtIdx = (wasSame - runsSame) + (here - runsSame - runsDiff); nxt[nxtIdx] += delta; if (nxt[nxtIdx] >= P) { nxt[nxtIdx] -= P; } } } } dp = nxt; places += here; toInsert -= here; } // System.err.println(Arrays.toString(a) + " " + idx); // System.err.println(Arrays.toString(dp)); return dp[0]; } int[][] ways; int[] fact; static final int N = 350; static final int P = 1_000_000_007; void preCalc() { ways = new int[N][]; for (int i = 0; i < N; i++) { ways[i] = new int[i + 1]; ways[i][0] = ways[i][i] = 1; for (int j = 1; j < i; j++) { ways[i][j] = ways[i - 1][j] + ways[i - 1][j - 1]; if (ways[i][j] >= P) { ways[i][j] -= P; } } } fact = new int[N]; fact[0] = 1; for (int i = 1; i < N; i++) { fact[i] = (int)((long)fact[i - 1] * i % P); } } void stress() { } void test() { } C() throws IOException { br = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); preCalc(); submit(); //stress(); //test(); out.close(); } static final Random rng = new Random(); static int rand(int l, int r) { return l + rng.nextInt(r - l + 1); } public static void main(String[] args) throws IOException { new C(); } BufferedReader br; PrintWriter out; StringTokenizer st; String nextToken() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return st.nextToken(); } String nextString() { try { return br.readLine(); } catch (IOException e) { throw new RuntimeException(e); } } int nextInt() { return Integer.parseInt(nextToken()); } long nextLong() { return Long.parseLong(nextToken()); } double nextDouble() { return Double.parseDouble(nextToken()); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class C { int removeSq(int x) { for (int i = 2; i * i <= x; i++) { while (x % (i * i) == 0) { x /= i * i; } } return x; } void submit() { int n = nextInt(); HashMap<Integer, Integer> map = new HashMap<>(); for (int i = 0; i < n; i++) { int x = removeSq(nextInt()); map.merge(x, 1, Integer::sum); } int[] a = new int[map.size()]; int ptr = 0; for (Integer x : map.values()) { a[ptr++] = x; } int ret = go(a); for (int x : a) { ret = (int)((long)ret * fact[x] % P); } out.println(ret); } int go(int[] a) { int[] dp = new int[a[0]]; dp[a[0] - 1] = 1; int places = a[0] + 1; int toInsert = 0; for (int x : a) { toInsert += x; } toInsert -= a[0]; for (int i =1; i < a.length; i++) { int here = a[i]; if (here == 0) { continue; } int[] nxt = new int[dp.length + here]; for (int wasSame = 0; wasSame < dp.length; wasSame++) { if (wasSame > toInsert) { continue; } if (dp[wasSame] == 0) { continue; } int wasDiff = places - wasSame; for (int runsSame = 0; runsSame <= wasSame && runsSame <= here; runsSame++) { for (int runsDiff = 0; runsDiff <= wasDiff && runsSame + runsDiff <= here; runsDiff++) { if (runsSame + runsDiff == 0) { continue; } int delta = (int) ((long) dp[wasSame] * ways[wasSame][runsSame] % P * ways[wasDiff][runsDiff] % P * ways[here - 1][runsSame + runsDiff - 1] % P); if (delta == 0) { continue; } int nxtIdx = (wasSame - runsSame) + (here - runsSame - runsDiff); nxt[nxtIdx] += delta; if (nxt[nxtIdx] >= P) { nxt[nxtIdx] -= P; } } } } dp = nxt; places += here; toInsert -= here; } // System.err.println(Arrays.toString(a) + " " + idx); // System.err.println(Arrays.toString(dp)); return dp[0]; } int[][] ways; int[] fact; static final int N = 350; static final int P = 1_000_000_007; void preCalc() { ways = new int[N][]; for (int i = 0; i < N; i++) { ways[i] = new int[i + 1]; ways[i][0] = ways[i][i] = 1; for (int j = 1; j < i; j++) { ways[i][j] = ways[i - 1][j] + ways[i - 1][j - 1]; if (ways[i][j] >= P) { ways[i][j] -= P; } } } fact = new int[N]; fact[0] = 1; for (int i = 1; i < N; i++) { fact[i] = (int)((long)fact[i - 1] * i % P); } } void stress() { } void test() { } C() throws IOException { br = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); preCalc(); submit(); //stress(); //test(); out.close(); } static final Random rng = new Random(); static int rand(int l, int r) { return l + rng.nextInt(r - l + 1); } public static void main(String[] args) throws IOException { new C(); } BufferedReader br; PrintWriter out; StringTokenizer st; String nextToken() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return st.nextToken(); } String nextString() { try { return br.readLine(); } catch (IOException e) { throw new RuntimeException(e); } } int nextInt() { return Integer.parseInt(nextToken()); } long nextLong() { return Long.parseLong(nextToken()); } double nextDouble() { return Double.parseDouble(nextToken()); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class C { int removeSq(int x) { for (int i = 2; i * i <= x; i++) { while (x % (i * i) == 0) { x /= i * i; } } return x; } void submit() { int n = nextInt(); HashMap<Integer, Integer> map = new HashMap<>(); for (int i = 0; i < n; i++) { int x = removeSq(nextInt()); map.merge(x, 1, Integer::sum); } int[] a = new int[map.size()]; int ptr = 0; for (Integer x : map.values()) { a[ptr++] = x; } int ret = go(a); for (int x : a) { ret = (int)((long)ret * fact[x] % P); } out.println(ret); } int go(int[] a) { int[] dp = new int[a[0]]; dp[a[0] - 1] = 1; int places = a[0] + 1; int toInsert = 0; for (int x : a) { toInsert += x; } toInsert -= a[0]; for (int i =1; i < a.length; i++) { int here = a[i]; if (here == 0) { continue; } int[] nxt = new int[dp.length + here]; for (int wasSame = 0; wasSame < dp.length; wasSame++) { if (wasSame > toInsert) { continue; } if (dp[wasSame] == 0) { continue; } int wasDiff = places - wasSame; for (int runsSame = 0; runsSame <= wasSame && runsSame <= here; runsSame++) { for (int runsDiff = 0; runsDiff <= wasDiff && runsSame + runsDiff <= here; runsDiff++) { if (runsSame + runsDiff == 0) { continue; } int delta = (int) ((long) dp[wasSame] * ways[wasSame][runsSame] % P * ways[wasDiff][runsDiff] % P * ways[here - 1][runsSame + runsDiff - 1] % P); if (delta == 0) { continue; } int nxtIdx = (wasSame - runsSame) + (here - runsSame - runsDiff); nxt[nxtIdx] += delta; if (nxt[nxtIdx] >= P) { nxt[nxtIdx] -= P; } } } } dp = nxt; places += here; toInsert -= here; } // System.err.println(Arrays.toString(a) + " " + idx); // System.err.println(Arrays.toString(dp)); return dp[0]; } int[][] ways; int[] fact; static final int N = 350; static final int P = 1_000_000_007; void preCalc() { ways = new int[N][]; for (int i = 0; i < N; i++) { ways[i] = new int[i + 1]; ways[i][0] = ways[i][i] = 1; for (int j = 1; j < i; j++) { ways[i][j] = ways[i - 1][j] + ways[i - 1][j - 1]; if (ways[i][j] >= P) { ways[i][j] -= P; } } } fact = new int[N]; fact[0] = 1; for (int i = 1; i < N; i++) { fact[i] = (int)((long)fact[i - 1] * i % P); } } void stress() { } void test() { } C() throws IOException { br = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); preCalc(); submit(); //stress(); //test(); out.close(); } static final Random rng = new Random(); static int rand(int l, int r) { return l + rng.nextInt(r - l + 1); } public static void main(String[] args) throws IOException { new C(); } BufferedReader br; PrintWriter out; StringTokenizer st; String nextToken() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return st.nextToken(); } String nextString() { try { return br.readLine(); } catch (IOException e) { throw new RuntimeException(e); } } int nextInt() { return Integer.parseInt(nextToken()); } long nextLong() { return Long.parseLong(nextToken()); } double nextDouble() { return Double.parseDouble(nextToken()); } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,501
3,732
4,140
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.StringTokenizer; import java.awt.Point; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } static class TaskC { public void solve(int testNumber, InputReader in, PrintWriter out) { Point bag = new Point(in.ni(), in.ni()); int n = in.ni(); Point[] arr = new Point[n]; for (int i = 0; i < n; ++i) arr[i] = new Point(in.ni(), in.ni()); int[] dist = new int[n]; for (int i = 0; i < n; ++i) { int dx = arr[i].x - bag.x; int dy = arr[i].y - bag.y; dist[i] = dx * dx + dy * dy; } int[][] d = new int[n][n]; for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { int dx = arr[i].x - arr[j].x; int dy = arr[i].y - arr[j].y; d[i][j] = dx * dx + dy * dy + dist[i] + dist[j]; } } int lim = (1 << n); int[] dp = new int[lim]; Arrays.fill(dp, Integer.MAX_VALUE); dp[0] = 0; int[] p = new int[lim]; Arrays.fill(p, -1); for (int mask = 0; mask < lim; ++mask) { if (dp[mask] == Integer.MAX_VALUE) continue; int minBit = -1; for (int bit = 0; bit < n; ++bit) { if (checkBit(mask, bit)) continue; if (minBit == -1 || (dist[minBit] > dist[bit])) minBit = bit; } if (minBit == -1) continue; for (int bit = 0; bit < n; ++bit) { if (checkBit(mask, bit)) continue; int newMask = (mask | (1 << minBit) | (1 << bit)); if (dp[newMask] > dp[mask] + d[minBit][bit]) { dp[newMask] = dp[mask] + d[minBit][bit]; p[newMask] = minBit * n + bit; } } } out.println(dp[lim - 1]); int curMask = lim - 1; while (p[curMask] != -1) { out.print("0 "); int first = p[curMask] / n; int second = p[curMask] % n; out.print(first + 1 + " "); curMask ^= (1 << first); if (first != second) { out.print(second + 1 + " "); curMask ^= (1 << second); } } out.println(0); } boolean checkBit(int mask, int bitNumber) { return (mask & (1 << bitNumber)) != 0; } } static class InputReader { BufferedReader br; StringTokenizer st; public InputReader(InputStream inputStream) { br = new BufferedReader(new InputStreamReader(inputStream)); } public String n() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { throw new RuntimeException(); } } return st.nextToken(); } public int ni() { return Integer.parseInt(n()); } } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.StringTokenizer; import java.awt.Point; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } static class TaskC { public void solve(int testNumber, InputReader in, PrintWriter out) { Point bag = new Point(in.ni(), in.ni()); int n = in.ni(); Point[] arr = new Point[n]; for (int i = 0; i < n; ++i) arr[i] = new Point(in.ni(), in.ni()); int[] dist = new int[n]; for (int i = 0; i < n; ++i) { int dx = arr[i].x - bag.x; int dy = arr[i].y - bag.y; dist[i] = dx * dx + dy * dy; } int[][] d = new int[n][n]; for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { int dx = arr[i].x - arr[j].x; int dy = arr[i].y - arr[j].y; d[i][j] = dx * dx + dy * dy + dist[i] + dist[j]; } } int lim = (1 << n); int[] dp = new int[lim]; Arrays.fill(dp, Integer.MAX_VALUE); dp[0] = 0; int[] p = new int[lim]; Arrays.fill(p, -1); for (int mask = 0; mask < lim; ++mask) { if (dp[mask] == Integer.MAX_VALUE) continue; int minBit = -1; for (int bit = 0; bit < n; ++bit) { if (checkBit(mask, bit)) continue; if (minBit == -1 || (dist[minBit] > dist[bit])) minBit = bit; } if (minBit == -1) continue; for (int bit = 0; bit < n; ++bit) { if (checkBit(mask, bit)) continue; int newMask = (mask | (1 << minBit) | (1 << bit)); if (dp[newMask] > dp[mask] + d[minBit][bit]) { dp[newMask] = dp[mask] + d[minBit][bit]; p[newMask] = minBit * n + bit; } } } out.println(dp[lim - 1]); int curMask = lim - 1; while (p[curMask] != -1) { out.print("0 "); int first = p[curMask] / n; int second = p[curMask] % n; out.print(first + 1 + " "); curMask ^= (1 << first); if (first != second) { out.print(second + 1 + " "); curMask ^= (1 << second); } } out.println(0); } boolean checkBit(int mask, int bitNumber) { return (mask & (1 << bitNumber)) != 0; } } static class InputReader { BufferedReader br; StringTokenizer st; public InputReader(InputStream inputStream) { br = new BufferedReader(new InputStreamReader(inputStream)); } public String n() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { throw new RuntimeException(); } } return st.nextToken(); } public int ni() { return Integer.parseInt(n()); } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.StringTokenizer; import java.awt.Point; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } static class TaskC { public void solve(int testNumber, InputReader in, PrintWriter out) { Point bag = new Point(in.ni(), in.ni()); int n = in.ni(); Point[] arr = new Point[n]; for (int i = 0; i < n; ++i) arr[i] = new Point(in.ni(), in.ni()); int[] dist = new int[n]; for (int i = 0; i < n; ++i) { int dx = arr[i].x - bag.x; int dy = arr[i].y - bag.y; dist[i] = dx * dx + dy * dy; } int[][] d = new int[n][n]; for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { int dx = arr[i].x - arr[j].x; int dy = arr[i].y - arr[j].y; d[i][j] = dx * dx + dy * dy + dist[i] + dist[j]; } } int lim = (1 << n); int[] dp = new int[lim]; Arrays.fill(dp, Integer.MAX_VALUE); dp[0] = 0; int[] p = new int[lim]; Arrays.fill(p, -1); for (int mask = 0; mask < lim; ++mask) { if (dp[mask] == Integer.MAX_VALUE) continue; int minBit = -1; for (int bit = 0; bit < n; ++bit) { if (checkBit(mask, bit)) continue; if (minBit == -1 || (dist[minBit] > dist[bit])) minBit = bit; } if (minBit == -1) continue; for (int bit = 0; bit < n; ++bit) { if (checkBit(mask, bit)) continue; int newMask = (mask | (1 << minBit) | (1 << bit)); if (dp[newMask] > dp[mask] + d[minBit][bit]) { dp[newMask] = dp[mask] + d[minBit][bit]; p[newMask] = minBit * n + bit; } } } out.println(dp[lim - 1]); int curMask = lim - 1; while (p[curMask] != -1) { out.print("0 "); int first = p[curMask] / n; int second = p[curMask] % n; out.print(first + 1 + " "); curMask ^= (1 << first); if (first != second) { out.print(second + 1 + " "); curMask ^= (1 << second); } } out.println(0); } boolean checkBit(int mask, int bitNumber) { return (mask & (1 << bitNumber)) != 0; } } static class InputReader { BufferedReader br; StringTokenizer st; public InputReader(InputStream inputStream) { br = new BufferedReader(new InputStreamReader(inputStream)); } public String n() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { throw new RuntimeException(); } } return st.nextToken(); } public int ni() { return Integer.parseInt(n()); } } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,244
4,129
884
import java.io.*; import java.util.*; public class Main { boolean eof; public String nextToken() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception e) { eof = true; return "-1"; } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(nextToken()); } int NOD(int a, int b) { while (a * b > 0) { if (a > b) { a %= b; } else { b %= a; } } return a + b; } void solve() { int n = nextInt(), k= nextInt(); int[] a = new int[n]; for (int i = 0; i < n; ++i){ a[i] = nextInt() - 1; } int[] b = new int[100000]; int p = 0; for (int i = 0; i < n; ++i){ ++b[a[i]]; if (b[a[i]] == 1){ ++p; } if (k == p){ int j; for (j = 0; j <= i; ++j){ if (b[a[j]] > 1){ --b[a[j]]; } else { break; } } out.print((j + 1) + " " + (i + 1)); return; } } out.print("-1 -1"); } BufferedReader br; StringTokenizer st; PrintWriter out; void run() { try { br = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(new OutputStreamWriter(System.out)); // br = new BufferedReader(new FileReader("input.txt")); // out = new PrintWriter(new FileWriter("output.txt")); solve(); br.close(); out.close(); } catch (Throwable e) { e.printStackTrace(); System.exit(1); } } public static void main(String[] args) { new Main().run(); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main { boolean eof; public String nextToken() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception e) { eof = true; return "-1"; } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(nextToken()); } int NOD(int a, int b) { while (a * b > 0) { if (a > b) { a %= b; } else { b %= a; } } return a + b; } void solve() { int n = nextInt(), k= nextInt(); int[] a = new int[n]; for (int i = 0; i < n; ++i){ a[i] = nextInt() - 1; } int[] b = new int[100000]; int p = 0; for (int i = 0; i < n; ++i){ ++b[a[i]]; if (b[a[i]] == 1){ ++p; } if (k == p){ int j; for (j = 0; j <= i; ++j){ if (b[a[j]] > 1){ --b[a[j]]; } else { break; } } out.print((j + 1) + " " + (i + 1)); return; } } out.print("-1 -1"); } BufferedReader br; StringTokenizer st; PrintWriter out; void run() { try { br = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(new OutputStreamWriter(System.out)); // br = new BufferedReader(new FileReader("input.txt")); // out = new PrintWriter(new FileWriter("output.txt")); solve(); br.close(); out.close(); } catch (Throwable e) { e.printStackTrace(); System.exit(1); } } public static void main(String[] args) { new Main().run(); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main { boolean eof; public String nextToken() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception e) { eof = true; return "-1"; } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(nextToken()); } int NOD(int a, int b) { while (a * b > 0) { if (a > b) { a %= b; } else { b %= a; } } return a + b; } void solve() { int n = nextInt(), k= nextInt(); int[] a = new int[n]; for (int i = 0; i < n; ++i){ a[i] = nextInt() - 1; } int[] b = new int[100000]; int p = 0; for (int i = 0; i < n; ++i){ ++b[a[i]]; if (b[a[i]] == 1){ ++p; } if (k == p){ int j; for (j = 0; j <= i; ++j){ if (b[a[j]] > 1){ --b[a[j]]; } else { break; } } out.print((j + 1) + " " + (i + 1)); return; } } out.print("-1 -1"); } BufferedReader br; StringTokenizer st; PrintWriter out; void run() { try { br = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(new OutputStreamWriter(System.out)); // br = new BufferedReader(new FileReader("input.txt")); // out = new PrintWriter(new FileWriter("output.txt")); solve(); br.close(); out.close(); } catch (Throwable e) { e.printStackTrace(); System.exit(1); } } public static void main(String[] args) { new Main().run(); } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
837
883
1,006
import java.util.Scanner; public class A1177 { public static long exponential(long a, long b){ long result = 1; for(int i=0;i<b;i++){ result *= a; } return result; } public static void main(String args[]){ Scanner scanner = new Scanner(System.in); long k = scanner.nextLong(); //int k =21; long sum = 0; long i=1; while(true){ long interval = 9 * exponential(10,i-1) * i; if(sum + interval >= k){ break; } else { i++; sum += interval; } } long t = k-sum; long targetNumber = exponential(10, i-1) + (t-1)/i; String s = "" + targetNumber; int hedef = (int)((t-1)%i); System.out.println(s.charAt(hedef)); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Scanner; public class A1177 { public static long exponential(long a, long b){ long result = 1; for(int i=0;i<b;i++){ result *= a; } return result; } public static void main(String args[]){ Scanner scanner = new Scanner(System.in); long k = scanner.nextLong(); //int k =21; long sum = 0; long i=1; while(true){ long interval = 9 * exponential(10,i-1) * i; if(sum + interval >= k){ break; } else { i++; sum += interval; } } long t = k-sum; long targetNumber = exponential(10, i-1) + (t-1)/i; String s = "" + targetNumber; int hedef = (int)((t-1)%i); System.out.println(s.charAt(hedef)); } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; public class A1177 { public static long exponential(long a, long b){ long result = 1; for(int i=0;i<b;i++){ result *= a; } return result; } public static void main(String args[]){ Scanner scanner = new Scanner(System.in); long k = scanner.nextLong(); //int k =21; long sum = 0; long i=1; while(true){ long interval = 9 * exponential(10,i-1) * i; if(sum + interval >= k){ break; } else { i++; sum += interval; } } long t = k-sum; long targetNumber = exponential(10, i-1) + (t-1)/i; String s = "" + targetNumber; int hedef = (int)((t-1)%i); System.out.println(s.charAt(hedef)); } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
546
1,005
3,247
import java.io.*; import java.util.*; import java.math.*; import static java.lang.Math.*; import static java.lang.Integer.parseInt; import static java.lang.Long.parseLong; import static java.lang.Double.parseDouble; import static java.lang.String.*; public class Main { public static void main(String[] args) throws IOException { BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); //(new FileReader("input.in")); StringBuilder out = new StringBuilder(); StringTokenizer tk; long n = parseLong(in.readLine()); System.out.println("25"); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; import java.math.*; import static java.lang.Math.*; import static java.lang.Integer.parseInt; import static java.lang.Long.parseLong; import static java.lang.Double.parseDouble; import static java.lang.String.*; public class Main { public static void main(String[] args) throws IOException { BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); //(new FileReader("input.in")); StringBuilder out = new StringBuilder(); StringTokenizer tk; long n = parseLong(in.readLine()); System.out.println("25"); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; import java.math.*; import static java.lang.Math.*; import static java.lang.Integer.parseInt; import static java.lang.Long.parseLong; import static java.lang.Double.parseDouble; import static java.lang.String.*; public class Main { public static void main(String[] args) throws IOException { BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); //(new FileReader("input.in")); StringBuilder out = new StringBuilder(); StringTokenizer tk; long n = parseLong(in.readLine()); System.out.println("25"); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
468
3,241
219
import java.io.BufferedReader; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.util.StringTokenizer; public class cf2 { static final double EPS = 1e-9; public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); //rec int xr1=sc.nextInt(), yr1=sc.nextInt(), xr2=sc.nextInt(),yr2=sc.nextInt(); int xr3=sc.nextInt(), yr3=sc.nextInt(), xr4=sc.nextInt(),yr4=sc.nextInt(); Point pr1 = new Point(xr1, yr1); Point pr2 = new Point(xr2, yr2); Point pr3 = new Point(xr3, yr3); Point pr4 = new Point(xr4, yr4); LineSegment lr1 = new LineSegment(pr1, pr2); LineSegment lr2 = new LineSegment(pr2, pr3); LineSegment lr3 = new LineSegment(pr3, pr4); LineSegment lr4 = new LineSegment(pr4, pr1); //diamond int xd1=sc.nextInt(), yd1=sc.nextInt(), xd2=sc.nextInt(),yd2=sc.nextInt(); int xd3=sc.nextInt(), yd3=sc.nextInt(), xd4=sc.nextInt(),yd4=sc.nextInt(); Point p1 = new Point(xd1, yd1); Point p2 = new Point(xd2, yd2); Point p3 = new Point(xd3, yd3); Point p4 = new Point(xd4, yd4); Point [] pt = new Point [5]; pt[0]=p1; pt[1]=p2; pt[2]=p3; pt[3]=p4; pt[4]=p1; Polygon pg = new Polygon(pt); if(pg.inside(pr1)||pg.inside(pr2)||pg.inside(pr3)||pg.inside(pr4)) { System.out.println("YES"); return; } LineSegment ld1 = new LineSegment(p1, p2); LineSegment ld2 = new LineSegment(p2, p3); LineSegment ld3 = new LineSegment(p3, p4); LineSegment ld4 = new LineSegment(p4, p1); Rectangle rec = new Rectangle(new Point(Math.min(Math.min(xr3,xr4),Math.min(xr1,xr2)), Math.min(Math.min(yr3,yr4),Math.min(yr1,yr2))), new Point(Math.max(Math.max(xr3,xr4),Math.max(xr1,xr2)), Math.max(Math.max(yr3,yr4),Math.max(yr1,yr2))) ); if(rec.contains(p1)||rec.contains(p2)||rec.contains(p3)||rec.contains(p4)) { System.out.println("YES"); return; } if(ld1.intersect(lr1)||ld1.intersect(lr3)||ld1.intersect(lr3)||ld1.intersect(lr4)) { System.out.println("YES"); return; } if(ld2.intersect(lr1)||ld2.intersect(lr3)||ld2.intersect(lr3)||ld2.intersect(lr4)) { System.out.println("YES"); return; } if(ld3.intersect(lr1)||ld3.intersect(lr3)||ld3.intersect(lr3)||ld3.intersect(lr4)) { System.out.println("YES"); return; } if(ld4.intersect(lr1)||ld4.intersect(lr3)||ld4.intersect(lr3)||ld4.intersect(lr4)) { System.out.println("YES"); return; } System.out.println("NO"); } public static class Polygon { // Cases to handle: collinear points, polygons with n < 3 static final double EPS = 1e-9; Point[] g; //first point = last point, counter-clockwise representation Polygon(Point[] o) { g = o; } double perimeter() { double sum = 0.0; for(int i = 0; i < g.length - 1; ++i) sum += g[i].dist(g[i+1]); return sum; } double area() //clockwise/anti-clockwise check, for convex/concave polygons { double area = 0.0; for(int i = 0; i < g.length - 1; ++i) area += g[i].x * g[i+1].y - g[i].y * g[i+1].x; return Math.abs(area) / 2.0; //negative value in case of clockwise } boolean inside(Point p) //for convex/concave polygons - winding number algorithm { double sum = 0.0; for(int i = 0; i < g.length - 1; ++i) { double angle = Point.angle(g[i], p, g[i+1]); if((Math.abs(angle) < EPS || Math.abs(angle - Math.PI) < EPS) && p.between(g[i], g[i+1])) return true; if(Point.ccw(p, g[i], g[i+1])) sum += angle; else sum -= angle; } return Math.abs(2 * Math.PI - Math.abs(sum)) < EPS; //abs makes it work for clockwise } /* * Another way if the polygon is convex * 1. Triangulate the poylgon through p * 2. Check if sum areas == poygon area * 3. Handle empty polygon */ Point centroid() //center of mass { double cx = 0.0, cy = 0.0; for(int i = 0; i < g.length - 1; i++) { double x1 = g[i].x, y1 = g[i].y; double x2 = g[i+1].x, y2 = g[i+1].y; double f = x1 * y2 - x2 * y1; cx += (x1 + x2) * f; cy += (y1 + y2) * f; } double area = area(); //remove abs cx /= 6.0 * area; cy /= 6.0 * area; return new Point(cx, cy); } } static class LineSegment { Point p, q; LineSegment(Point a, Point b) { p = a; q = b; } boolean intersect(LineSegment ls) { Line l1 = new Line(p, q), l2 = new Line(ls.p, ls.q); if(l1.parallel(l2)) { if(l1.same(l2)) return p.between(ls.p, ls.q) || q.between(ls.p, ls.q) || ls.p.between(p, q) || ls.q.between(p, q); return false; } Point c = l1.intersect(l2); return c.between(p, q) && c.between(ls.p, ls.q); } } static class Rectangle { static final double EPS = 1e-9; Point ll, ur; Rectangle(Point a, Point b) { ll = a; ur = b; } double area() { return (ur.x - ll.x) * (ur.y - ll.y); } boolean contains(Point p) { return p.x <= ur.x + EPS && p.x + EPS >= ll.x && p.y <= ur.y + EPS && p.y + EPS >= ll.y; } Rectangle intersect(Rectangle r) { Point ll = new Point(Math.max(this.ll.x, r.ll.x), Math.max(this.ll.y, r.ll.y)); Point ur = new Point(Math.min(this.ur.x, r.ur.x), Math.min(this.ur.y, r.ur.y)); if(Math.abs(ur.x - ll.x) > EPS && Math.abs(ur.y - ll.y) > EPS && this.contains(ll) && this.contains(ur) && r.contains(ll) && r.contains(ur)) return new Rectangle(ll, ur); return null; } } static class Line { static final double INF = 1e9, EPS = 1e-9; double a, b, c; Line(Point p, Point q) { if(Math.abs(p.x - q.x) < EPS) { a = 1; b = 0; c = -p.x; } else { a = (p.y - q.y) / (q.x - p.x); b = 1.0; c = -(a * p.x + p.y); } } Line(Point p, double m) { a = -m; b = 1; c = -(a * p.x + p.y); } boolean parallel(Line l) { return Math.abs(a - l.a) < EPS && Math.abs(b - l.b) < EPS; } boolean same(Line l) { return parallel(l) && Math.abs(c - l.c) < EPS; } Point intersect(Line l) { if(parallel(l)) return null; double x = (b * l.c - c * l.b) / (a * l.b - b * l.a); double y; if(Math.abs(b) < EPS) y = -l.a * x - l.c; else y = -a * x - c; return new Point(x, y); } Point closestPoint(Point p) { if(Math.abs(b) < EPS) return new Point(-c, p.y); if(Math.abs(a) < EPS) return new Point(p.x, -c); return intersect(new Line(p, 1 / a)); } } public static class Vector { double x, y; Vector(double a, double b) { x = a; y = b; } Vector(Point a, Point b) { this(b.x - a.x, b.y - a.y); } Vector scale(double s) { return new Vector(x * s, y * s); } //s is a non-negative value double dot(Vector v) { return (x * v.x + y * v.y); } double cross(Vector v) { return x * v.y - y * v.x; } double norm2() { return x * x + y * y; } Vector reverse() { return new Vector(-x, -y); } Vector normalize() { double d = Math.sqrt(norm2()); return scale(1 / d); } } static class Point implements Comparable<Point>{ static final double EPS = 1e-9; double x, y; Point(double a, double b) { x = a; y = b; } public int compareTo(Point p) { if(Math.abs(x - p.x) > EPS) return x > p.x ? 1 : -1; if(Math.abs(y - p.y) > EPS) return y > p.y ? 1 : -1; return 0; } static double angle(Point a, Point o, Point b) // angle AOB { Vector oa = new Vector(o, a), ob = new Vector(o, b); return Math.acos(oa.dot(ob) / Math.sqrt(oa.norm2() * ob.norm2())); } static boolean ccw(Point p, Point q, Point r) { return new Vector(p, q).cross(new Vector(p, r)) > 0; } public double dist(Point p) { return Math.sqrt(sq(x - p.x) + sq(y - p.y)); } static double sq(double x) { return x * x; } Point rotate(double angle) { double c = Math.cos(angle), s = Math.sin(angle); return new Point(x * c - y * s, x * s + y * c); } // for integer points and rotation by 90 (counterclockwise) : swap x and y, negate x boolean between(Point p, Point q) { return x < Math.max(p.x, q.x) + EPS && x + EPS > Math.min(p.x, q.x) && y < Math.max(p.y, q.y) + EPS && y + EPS > Math.min(p.y, q.y); } //returns true if it is on the line defined by a and b //returns true if it is on the ray whose start point is a and passes through b // Another way: find closest point and calculate the distance between it and p } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public Scanner(String file) throws FileNotFoundException { br = new BufferedReader(new FileReader(file)); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public long nextlong() throws IOException { String x = next(); StringBuilder sb = new StringBuilder("0"); long res = 0, f = 1; boolean dec = false, neg = false; int start = 0; if (x.charAt(0) == '-') { neg = true; start++; } for (int i = start; i < x.length(); i++) if (x.charAt(i) == '.') { res = Long.parseLong(sb.toString()); sb = new StringBuilder("0"); dec = true; } else { sb.append(x.charAt(i)); if (dec) f *= 10; } res += Long.parseLong(sb.toString()) / f; return res * (neg ? -1 : 1); } public boolean ready() throws IOException { return br.ready(); } } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.util.StringTokenizer; public class cf2 { static final double EPS = 1e-9; public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); //rec int xr1=sc.nextInt(), yr1=sc.nextInt(), xr2=sc.nextInt(),yr2=sc.nextInt(); int xr3=sc.nextInt(), yr3=sc.nextInt(), xr4=sc.nextInt(),yr4=sc.nextInt(); Point pr1 = new Point(xr1, yr1); Point pr2 = new Point(xr2, yr2); Point pr3 = new Point(xr3, yr3); Point pr4 = new Point(xr4, yr4); LineSegment lr1 = new LineSegment(pr1, pr2); LineSegment lr2 = new LineSegment(pr2, pr3); LineSegment lr3 = new LineSegment(pr3, pr4); LineSegment lr4 = new LineSegment(pr4, pr1); //diamond int xd1=sc.nextInt(), yd1=sc.nextInt(), xd2=sc.nextInt(),yd2=sc.nextInt(); int xd3=sc.nextInt(), yd3=sc.nextInt(), xd4=sc.nextInt(),yd4=sc.nextInt(); Point p1 = new Point(xd1, yd1); Point p2 = new Point(xd2, yd2); Point p3 = new Point(xd3, yd3); Point p4 = new Point(xd4, yd4); Point [] pt = new Point [5]; pt[0]=p1; pt[1]=p2; pt[2]=p3; pt[3]=p4; pt[4]=p1; Polygon pg = new Polygon(pt); if(pg.inside(pr1)||pg.inside(pr2)||pg.inside(pr3)||pg.inside(pr4)) { System.out.println("YES"); return; } LineSegment ld1 = new LineSegment(p1, p2); LineSegment ld2 = new LineSegment(p2, p3); LineSegment ld3 = new LineSegment(p3, p4); LineSegment ld4 = new LineSegment(p4, p1); Rectangle rec = new Rectangle(new Point(Math.min(Math.min(xr3,xr4),Math.min(xr1,xr2)), Math.min(Math.min(yr3,yr4),Math.min(yr1,yr2))), new Point(Math.max(Math.max(xr3,xr4),Math.max(xr1,xr2)), Math.max(Math.max(yr3,yr4),Math.max(yr1,yr2))) ); if(rec.contains(p1)||rec.contains(p2)||rec.contains(p3)||rec.contains(p4)) { System.out.println("YES"); return; } if(ld1.intersect(lr1)||ld1.intersect(lr3)||ld1.intersect(lr3)||ld1.intersect(lr4)) { System.out.println("YES"); return; } if(ld2.intersect(lr1)||ld2.intersect(lr3)||ld2.intersect(lr3)||ld2.intersect(lr4)) { System.out.println("YES"); return; } if(ld3.intersect(lr1)||ld3.intersect(lr3)||ld3.intersect(lr3)||ld3.intersect(lr4)) { System.out.println("YES"); return; } if(ld4.intersect(lr1)||ld4.intersect(lr3)||ld4.intersect(lr3)||ld4.intersect(lr4)) { System.out.println("YES"); return; } System.out.println("NO"); } public static class Polygon { // Cases to handle: collinear points, polygons with n < 3 static final double EPS = 1e-9; Point[] g; //first point = last point, counter-clockwise representation Polygon(Point[] o) { g = o; } double perimeter() { double sum = 0.0; for(int i = 0; i < g.length - 1; ++i) sum += g[i].dist(g[i+1]); return sum; } double area() //clockwise/anti-clockwise check, for convex/concave polygons { double area = 0.0; for(int i = 0; i < g.length - 1; ++i) area += g[i].x * g[i+1].y - g[i].y * g[i+1].x; return Math.abs(area) / 2.0; //negative value in case of clockwise } boolean inside(Point p) //for convex/concave polygons - winding number algorithm { double sum = 0.0; for(int i = 0; i < g.length - 1; ++i) { double angle = Point.angle(g[i], p, g[i+1]); if((Math.abs(angle) < EPS || Math.abs(angle - Math.PI) < EPS) && p.between(g[i], g[i+1])) return true; if(Point.ccw(p, g[i], g[i+1])) sum += angle; else sum -= angle; } return Math.abs(2 * Math.PI - Math.abs(sum)) < EPS; //abs makes it work for clockwise } /* * Another way if the polygon is convex * 1. Triangulate the poylgon through p * 2. Check if sum areas == poygon area * 3. Handle empty polygon */ Point centroid() //center of mass { double cx = 0.0, cy = 0.0; for(int i = 0; i < g.length - 1; i++) { double x1 = g[i].x, y1 = g[i].y; double x2 = g[i+1].x, y2 = g[i+1].y; double f = x1 * y2 - x2 * y1; cx += (x1 + x2) * f; cy += (y1 + y2) * f; } double area = area(); //remove abs cx /= 6.0 * area; cy /= 6.0 * area; return new Point(cx, cy); } } static class LineSegment { Point p, q; LineSegment(Point a, Point b) { p = a; q = b; } boolean intersect(LineSegment ls) { Line l1 = new Line(p, q), l2 = new Line(ls.p, ls.q); if(l1.parallel(l2)) { if(l1.same(l2)) return p.between(ls.p, ls.q) || q.between(ls.p, ls.q) || ls.p.between(p, q) || ls.q.between(p, q); return false; } Point c = l1.intersect(l2); return c.between(p, q) && c.between(ls.p, ls.q); } } static class Rectangle { static final double EPS = 1e-9; Point ll, ur; Rectangle(Point a, Point b) { ll = a; ur = b; } double area() { return (ur.x - ll.x) * (ur.y - ll.y); } boolean contains(Point p) { return p.x <= ur.x + EPS && p.x + EPS >= ll.x && p.y <= ur.y + EPS && p.y + EPS >= ll.y; } Rectangle intersect(Rectangle r) { Point ll = new Point(Math.max(this.ll.x, r.ll.x), Math.max(this.ll.y, r.ll.y)); Point ur = new Point(Math.min(this.ur.x, r.ur.x), Math.min(this.ur.y, r.ur.y)); if(Math.abs(ur.x - ll.x) > EPS && Math.abs(ur.y - ll.y) > EPS && this.contains(ll) && this.contains(ur) && r.contains(ll) && r.contains(ur)) return new Rectangle(ll, ur); return null; } } static class Line { static final double INF = 1e9, EPS = 1e-9; double a, b, c; Line(Point p, Point q) { if(Math.abs(p.x - q.x) < EPS) { a = 1; b = 0; c = -p.x; } else { a = (p.y - q.y) / (q.x - p.x); b = 1.0; c = -(a * p.x + p.y); } } Line(Point p, double m) { a = -m; b = 1; c = -(a * p.x + p.y); } boolean parallel(Line l) { return Math.abs(a - l.a) < EPS && Math.abs(b - l.b) < EPS; } boolean same(Line l) { return parallel(l) && Math.abs(c - l.c) < EPS; } Point intersect(Line l) { if(parallel(l)) return null; double x = (b * l.c - c * l.b) / (a * l.b - b * l.a); double y; if(Math.abs(b) < EPS) y = -l.a * x - l.c; else y = -a * x - c; return new Point(x, y); } Point closestPoint(Point p) { if(Math.abs(b) < EPS) return new Point(-c, p.y); if(Math.abs(a) < EPS) return new Point(p.x, -c); return intersect(new Line(p, 1 / a)); } } public static class Vector { double x, y; Vector(double a, double b) { x = a; y = b; } Vector(Point a, Point b) { this(b.x - a.x, b.y - a.y); } Vector scale(double s) { return new Vector(x * s, y * s); } //s is a non-negative value double dot(Vector v) { return (x * v.x + y * v.y); } double cross(Vector v) { return x * v.y - y * v.x; } double norm2() { return x * x + y * y; } Vector reverse() { return new Vector(-x, -y); } Vector normalize() { double d = Math.sqrt(norm2()); return scale(1 / d); } } static class Point implements Comparable<Point>{ static final double EPS = 1e-9; double x, y; Point(double a, double b) { x = a; y = b; } public int compareTo(Point p) { if(Math.abs(x - p.x) > EPS) return x > p.x ? 1 : -1; if(Math.abs(y - p.y) > EPS) return y > p.y ? 1 : -1; return 0; } static double angle(Point a, Point o, Point b) // angle AOB { Vector oa = new Vector(o, a), ob = new Vector(o, b); return Math.acos(oa.dot(ob) / Math.sqrt(oa.norm2() * ob.norm2())); } static boolean ccw(Point p, Point q, Point r) { return new Vector(p, q).cross(new Vector(p, r)) > 0; } public double dist(Point p) { return Math.sqrt(sq(x - p.x) + sq(y - p.y)); } static double sq(double x) { return x * x; } Point rotate(double angle) { double c = Math.cos(angle), s = Math.sin(angle); return new Point(x * c - y * s, x * s + y * c); } // for integer points and rotation by 90 (counterclockwise) : swap x and y, negate x boolean between(Point p, Point q) { return x < Math.max(p.x, q.x) + EPS && x + EPS > Math.min(p.x, q.x) && y < Math.max(p.y, q.y) + EPS && y + EPS > Math.min(p.y, q.y); } //returns true if it is on the line defined by a and b //returns true if it is on the ray whose start point is a and passes through b // Another way: find closest point and calculate the distance between it and p } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public Scanner(String file) throws FileNotFoundException { br = new BufferedReader(new FileReader(file)); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public long nextlong() throws IOException { String x = next(); StringBuilder sb = new StringBuilder("0"); long res = 0, f = 1; boolean dec = false, neg = false; int start = 0; if (x.charAt(0) == '-') { neg = true; start++; } for (int i = start; i < x.length(); i++) if (x.charAt(i) == '.') { res = Long.parseLong(sb.toString()); sb = new StringBuilder("0"); dec = true; } else { sb.append(x.charAt(i)); if (dec) f *= 10; } res += Long.parseLong(sb.toString()) / f; return res * (neg ? -1 : 1); } public boolean ready() throws IOException { return br.ready(); } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.util.StringTokenizer; public class cf2 { static final double EPS = 1e-9; public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); //rec int xr1=sc.nextInt(), yr1=sc.nextInt(), xr2=sc.nextInt(),yr2=sc.nextInt(); int xr3=sc.nextInt(), yr3=sc.nextInt(), xr4=sc.nextInt(),yr4=sc.nextInt(); Point pr1 = new Point(xr1, yr1); Point pr2 = new Point(xr2, yr2); Point pr3 = new Point(xr3, yr3); Point pr4 = new Point(xr4, yr4); LineSegment lr1 = new LineSegment(pr1, pr2); LineSegment lr2 = new LineSegment(pr2, pr3); LineSegment lr3 = new LineSegment(pr3, pr4); LineSegment lr4 = new LineSegment(pr4, pr1); //diamond int xd1=sc.nextInt(), yd1=sc.nextInt(), xd2=sc.nextInt(),yd2=sc.nextInt(); int xd3=sc.nextInt(), yd3=sc.nextInt(), xd4=sc.nextInt(),yd4=sc.nextInt(); Point p1 = new Point(xd1, yd1); Point p2 = new Point(xd2, yd2); Point p3 = new Point(xd3, yd3); Point p4 = new Point(xd4, yd4); Point [] pt = new Point [5]; pt[0]=p1; pt[1]=p2; pt[2]=p3; pt[3]=p4; pt[4]=p1; Polygon pg = new Polygon(pt); if(pg.inside(pr1)||pg.inside(pr2)||pg.inside(pr3)||pg.inside(pr4)) { System.out.println("YES"); return; } LineSegment ld1 = new LineSegment(p1, p2); LineSegment ld2 = new LineSegment(p2, p3); LineSegment ld3 = new LineSegment(p3, p4); LineSegment ld4 = new LineSegment(p4, p1); Rectangle rec = new Rectangle(new Point(Math.min(Math.min(xr3,xr4),Math.min(xr1,xr2)), Math.min(Math.min(yr3,yr4),Math.min(yr1,yr2))), new Point(Math.max(Math.max(xr3,xr4),Math.max(xr1,xr2)), Math.max(Math.max(yr3,yr4),Math.max(yr1,yr2))) ); if(rec.contains(p1)||rec.contains(p2)||rec.contains(p3)||rec.contains(p4)) { System.out.println("YES"); return; } if(ld1.intersect(lr1)||ld1.intersect(lr3)||ld1.intersect(lr3)||ld1.intersect(lr4)) { System.out.println("YES"); return; } if(ld2.intersect(lr1)||ld2.intersect(lr3)||ld2.intersect(lr3)||ld2.intersect(lr4)) { System.out.println("YES"); return; } if(ld3.intersect(lr1)||ld3.intersect(lr3)||ld3.intersect(lr3)||ld3.intersect(lr4)) { System.out.println("YES"); return; } if(ld4.intersect(lr1)||ld4.intersect(lr3)||ld4.intersect(lr3)||ld4.intersect(lr4)) { System.out.println("YES"); return; } System.out.println("NO"); } public static class Polygon { // Cases to handle: collinear points, polygons with n < 3 static final double EPS = 1e-9; Point[] g; //first point = last point, counter-clockwise representation Polygon(Point[] o) { g = o; } double perimeter() { double sum = 0.0; for(int i = 0; i < g.length - 1; ++i) sum += g[i].dist(g[i+1]); return sum; } double area() //clockwise/anti-clockwise check, for convex/concave polygons { double area = 0.0; for(int i = 0; i < g.length - 1; ++i) area += g[i].x * g[i+1].y - g[i].y * g[i+1].x; return Math.abs(area) / 2.0; //negative value in case of clockwise } boolean inside(Point p) //for convex/concave polygons - winding number algorithm { double sum = 0.0; for(int i = 0; i < g.length - 1; ++i) { double angle = Point.angle(g[i], p, g[i+1]); if((Math.abs(angle) < EPS || Math.abs(angle - Math.PI) < EPS) && p.between(g[i], g[i+1])) return true; if(Point.ccw(p, g[i], g[i+1])) sum += angle; else sum -= angle; } return Math.abs(2 * Math.PI - Math.abs(sum)) < EPS; //abs makes it work for clockwise } /* * Another way if the polygon is convex * 1. Triangulate the poylgon through p * 2. Check if sum areas == poygon area * 3. Handle empty polygon */ Point centroid() //center of mass { double cx = 0.0, cy = 0.0; for(int i = 0; i < g.length - 1; i++) { double x1 = g[i].x, y1 = g[i].y; double x2 = g[i+1].x, y2 = g[i+1].y; double f = x1 * y2 - x2 * y1; cx += (x1 + x2) * f; cy += (y1 + y2) * f; } double area = area(); //remove abs cx /= 6.0 * area; cy /= 6.0 * area; return new Point(cx, cy); } } static class LineSegment { Point p, q; LineSegment(Point a, Point b) { p = a; q = b; } boolean intersect(LineSegment ls) { Line l1 = new Line(p, q), l2 = new Line(ls.p, ls.q); if(l1.parallel(l2)) { if(l1.same(l2)) return p.between(ls.p, ls.q) || q.between(ls.p, ls.q) || ls.p.between(p, q) || ls.q.between(p, q); return false; } Point c = l1.intersect(l2); return c.between(p, q) && c.between(ls.p, ls.q); } } static class Rectangle { static final double EPS = 1e-9; Point ll, ur; Rectangle(Point a, Point b) { ll = a; ur = b; } double area() { return (ur.x - ll.x) * (ur.y - ll.y); } boolean contains(Point p) { return p.x <= ur.x + EPS && p.x + EPS >= ll.x && p.y <= ur.y + EPS && p.y + EPS >= ll.y; } Rectangle intersect(Rectangle r) { Point ll = new Point(Math.max(this.ll.x, r.ll.x), Math.max(this.ll.y, r.ll.y)); Point ur = new Point(Math.min(this.ur.x, r.ur.x), Math.min(this.ur.y, r.ur.y)); if(Math.abs(ur.x - ll.x) > EPS && Math.abs(ur.y - ll.y) > EPS && this.contains(ll) && this.contains(ur) && r.contains(ll) && r.contains(ur)) return new Rectangle(ll, ur); return null; } } static class Line { static final double INF = 1e9, EPS = 1e-9; double a, b, c; Line(Point p, Point q) { if(Math.abs(p.x - q.x) < EPS) { a = 1; b = 0; c = -p.x; } else { a = (p.y - q.y) / (q.x - p.x); b = 1.0; c = -(a * p.x + p.y); } } Line(Point p, double m) { a = -m; b = 1; c = -(a * p.x + p.y); } boolean parallel(Line l) { return Math.abs(a - l.a) < EPS && Math.abs(b - l.b) < EPS; } boolean same(Line l) { return parallel(l) && Math.abs(c - l.c) < EPS; } Point intersect(Line l) { if(parallel(l)) return null; double x = (b * l.c - c * l.b) / (a * l.b - b * l.a); double y; if(Math.abs(b) < EPS) y = -l.a * x - l.c; else y = -a * x - c; return new Point(x, y); } Point closestPoint(Point p) { if(Math.abs(b) < EPS) return new Point(-c, p.y); if(Math.abs(a) < EPS) return new Point(p.x, -c); return intersect(new Line(p, 1 / a)); } } public static class Vector { double x, y; Vector(double a, double b) { x = a; y = b; } Vector(Point a, Point b) { this(b.x - a.x, b.y - a.y); } Vector scale(double s) { return new Vector(x * s, y * s); } //s is a non-negative value double dot(Vector v) { return (x * v.x + y * v.y); } double cross(Vector v) { return x * v.y - y * v.x; } double norm2() { return x * x + y * y; } Vector reverse() { return new Vector(-x, -y); } Vector normalize() { double d = Math.sqrt(norm2()); return scale(1 / d); } } static class Point implements Comparable<Point>{ static final double EPS = 1e-9; double x, y; Point(double a, double b) { x = a; y = b; } public int compareTo(Point p) { if(Math.abs(x - p.x) > EPS) return x > p.x ? 1 : -1; if(Math.abs(y - p.y) > EPS) return y > p.y ? 1 : -1; return 0; } static double angle(Point a, Point o, Point b) // angle AOB { Vector oa = new Vector(o, a), ob = new Vector(o, b); return Math.acos(oa.dot(ob) / Math.sqrt(oa.norm2() * ob.norm2())); } static boolean ccw(Point p, Point q, Point r) { return new Vector(p, q).cross(new Vector(p, r)) > 0; } public double dist(Point p) { return Math.sqrt(sq(x - p.x) + sq(y - p.y)); } static double sq(double x) { return x * x; } Point rotate(double angle) { double c = Math.cos(angle), s = Math.sin(angle); return new Point(x * c - y * s, x * s + y * c); } // for integer points and rotation by 90 (counterclockwise) : swap x and y, negate x boolean between(Point p, Point q) { return x < Math.max(p.x, q.x) + EPS && x + EPS > Math.min(p.x, q.x) && y < Math.max(p.y, q.y) + EPS && y + EPS > Math.min(p.y, q.y); } //returns true if it is on the line defined by a and b //returns true if it is on the ray whose start point is a and passes through b // Another way: find closest point and calculate the distance between it and p } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public Scanner(String file) throws FileNotFoundException { br = new BufferedReader(new FileReader(file)); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public long nextlong() throws IOException { String x = next(); StringBuilder sb = new StringBuilder("0"); long res = 0, f = 1; boolean dec = false, neg = false; int start = 0; if (x.charAt(0) == '-') { neg = true; start++; } for (int i = start; i < x.length(); i++) if (x.charAt(i) == '.') { res = Long.parseLong(sb.toString()); sb = new StringBuilder("0"); dec = true; } else { sb.append(x.charAt(i)); if (dec) f *= 10; } res += Long.parseLong(sb.toString()) / f; return res * (neg ? -1 : 1); } public boolean ready() throws IOException { return br.ready(); } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
3,566
219
1,514
import java.util.Scanner; public class Main2 { public static void main(String args[]){ Scanner input = new Scanner(System.in); long s = input.nextLong(); long e = input.nextLong(); System.out.println(count(s,e)); } public static long count(long s,long e){ int ncount = 0; long es = e; while(es != 0){ es /= 2; ncount++; } while(ncount >= 0){ if(((s>>ncount-1)&1) == 1 && ((e>>ncount-1)&1) == 0 || ((s>>ncount-1)&1) == 0 && ((e>>ncount-1)&1) == 1){ break; } ncount--; } if(ncount >= 0){ return (long)Math.pow(2, ncount)-1; }else{ return 0; } } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; public class Main2 { public static void main(String args[]){ Scanner input = new Scanner(System.in); long s = input.nextLong(); long e = input.nextLong(); System.out.println(count(s,e)); } public static long count(long s,long e){ int ncount = 0; long es = e; while(es != 0){ es /= 2; ncount++; } while(ncount >= 0){ if(((s>>ncount-1)&1) == 1 && ((e>>ncount-1)&1) == 0 || ((s>>ncount-1)&1) == 0 && ((e>>ncount-1)&1) == 1){ break; } ncount--; } if(ncount >= 0){ return (long)Math.pow(2, ncount)-1; }else{ return 0; } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; public class Main2 { public static void main(String args[]){ Scanner input = new Scanner(System.in); long s = input.nextLong(); long e = input.nextLong(); System.out.println(count(s,e)); } public static long count(long s,long e){ int ncount = 0; long es = e; while(es != 0){ es /= 2; ncount++; } while(ncount >= 0){ if(((s>>ncount-1)&1) == 1 && ((e>>ncount-1)&1) == 0 || ((s>>ncount-1)&1) == 0 && ((e>>ncount-1)&1) == 1){ break; } ncount--; } if(ncount >= 0){ return (long)Math.pow(2, ncount)-1; }else{ return 0; } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
568
1,512
382
import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.HashMap; import java.util.InputMismatchException; import java.util.Map; /** * Created by hama_du on 2014/09/21. */ public class ProblemB { public static void main(String[] args) { InputReader in = new InputReader(System.in); PrintWriter out = new PrintWriter(System.out); int n = in.nextInt(); long a = in.nextLong(); long b = in.nextLong(); long[] x = new long[n]; for (int i = 0; i < n; i++) { x[i] = in.nextLong(); } Map<Long,Integer> idxmap = new HashMap<>(); for (int i = 0; i < n; i++) { idxmap.put(x[i], i); } if (a == b) { solve1(x, a, idxmap, out); return; } int[] mark = new int[n]; Arrays.fill(mark, -1); boolean isok = true; for (int i = 0 ; i < n ; i++) { if (mark[i] != -1) { continue; } long w = x[i]; long aw = a - w; long bw = b - w; if (idxmap.containsKey(aw) && idxmap.containsKey(bw)) { continue; } else if (idxmap.containsKey(bw)) { long w1 = w; long w2 = bw; while (true) { if (!idxmap.containsKey(w1) || !idxmap.containsKey(w2)) { break; } int i1 = idxmap.get(w1); int i2 = idxmap.get(w2); if (mark[i1] == 0 || mark[i2] == 0) { isok = false; } mark[i1] = 1; mark[i2] = 1; if (w1 + a - b == w2) { break; } w1 += (a - b); w2 += (b - a); } } else if (idxmap.containsKey(aw)){ long w1 = w; long w2 = aw; while (true) { if (!idxmap.containsKey(w1) || !idxmap.containsKey(w2)) { break; } int i1 = idxmap.get(w1); int i2 = idxmap.get(w2); if (mark[i1] == 1 || mark[i2] == 1) { isok = false; } mark[i1] = 0; mark[i2] = 0; if (w1 + b - a == w2) { break; } w1 += (b - a); w2 += (a - b); } } } for (int i = 0 ; i < n ; i++) { if (mark[i] == -1) { isok = false; break; } } if (isok) { printAnswer(mark, out); } else { out.println("NO"); } out.flush(); } private static void printAnswer(int[] mark, PrintWriter out) { out.println("YES"); StringBuilder ln = new StringBuilder(); for (int m : mark) { ln.append(' ').append(m); } out.println(ln.substring(1)); } private static void solve1(long[] x, long a, Map<Long, Integer> idxmap, PrintWriter out) { int[] mark = new int[x.length]; for (int i = 0 ; i < x.length ; i++) { if (mark[i] == 1) { continue; } long w = x[i]; long wp = a - w; if (idxmap.containsKey(wp)) { mark[i] = mark[idxmap.get(wp)] = 1; } } boolean isok = true; for (int i = 0 ; i < x.length ; i++) { if (mark[i] == 0) { isok = false; break; } } if (isok) { printAnswer(mark, out); } else { out.println("NO"); } out.flush(); } public static void debug(Object... o) { System.err.println(Arrays.deepToString(o)); } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int next() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = next(); while (isSpaceChar(c)) c = next(); int sgn = 1; if (c == '-') { sgn = -1; c = next(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = next(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = next(); while (isSpaceChar(c)) c = next(); long sgn = 1; if (c == '-') { sgn = -1; c = next(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = next(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.HashMap; import java.util.InputMismatchException; import java.util.Map; /** * Created by hama_du on 2014/09/21. */ public class ProblemB { public static void main(String[] args) { InputReader in = new InputReader(System.in); PrintWriter out = new PrintWriter(System.out); int n = in.nextInt(); long a = in.nextLong(); long b = in.nextLong(); long[] x = new long[n]; for (int i = 0; i < n; i++) { x[i] = in.nextLong(); } Map<Long,Integer> idxmap = new HashMap<>(); for (int i = 0; i < n; i++) { idxmap.put(x[i], i); } if (a == b) { solve1(x, a, idxmap, out); return; } int[] mark = new int[n]; Arrays.fill(mark, -1); boolean isok = true; for (int i = 0 ; i < n ; i++) { if (mark[i] != -1) { continue; } long w = x[i]; long aw = a - w; long bw = b - w; if (idxmap.containsKey(aw) && idxmap.containsKey(bw)) { continue; } else if (idxmap.containsKey(bw)) { long w1 = w; long w2 = bw; while (true) { if (!idxmap.containsKey(w1) || !idxmap.containsKey(w2)) { break; } int i1 = idxmap.get(w1); int i2 = idxmap.get(w2); if (mark[i1] == 0 || mark[i2] == 0) { isok = false; } mark[i1] = 1; mark[i2] = 1; if (w1 + a - b == w2) { break; } w1 += (a - b); w2 += (b - a); } } else if (idxmap.containsKey(aw)){ long w1 = w; long w2 = aw; while (true) { if (!idxmap.containsKey(w1) || !idxmap.containsKey(w2)) { break; } int i1 = idxmap.get(w1); int i2 = idxmap.get(w2); if (mark[i1] == 1 || mark[i2] == 1) { isok = false; } mark[i1] = 0; mark[i2] = 0; if (w1 + b - a == w2) { break; } w1 += (b - a); w2 += (a - b); } } } for (int i = 0 ; i < n ; i++) { if (mark[i] == -1) { isok = false; break; } } if (isok) { printAnswer(mark, out); } else { out.println("NO"); } out.flush(); } private static void printAnswer(int[] mark, PrintWriter out) { out.println("YES"); StringBuilder ln = new StringBuilder(); for (int m : mark) { ln.append(' ').append(m); } out.println(ln.substring(1)); } private static void solve1(long[] x, long a, Map<Long, Integer> idxmap, PrintWriter out) { int[] mark = new int[x.length]; for (int i = 0 ; i < x.length ; i++) { if (mark[i] == 1) { continue; } long w = x[i]; long wp = a - w; if (idxmap.containsKey(wp)) { mark[i] = mark[idxmap.get(wp)] = 1; } } boolean isok = true; for (int i = 0 ; i < x.length ; i++) { if (mark[i] == 0) { isok = false; break; } } if (isok) { printAnswer(mark, out); } else { out.println("NO"); } out.flush(); } public static void debug(Object... o) { System.err.println(Arrays.deepToString(o)); } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int next() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = next(); while (isSpaceChar(c)) c = next(); int sgn = 1; if (c == '-') { sgn = -1; c = next(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = next(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = next(); while (isSpaceChar(c)) c = next(); long sgn = 1; if (c == '-') { sgn = -1; c = next(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = next(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.HashMap; import java.util.InputMismatchException; import java.util.Map; /** * Created by hama_du on 2014/09/21. */ public class ProblemB { public static void main(String[] args) { InputReader in = new InputReader(System.in); PrintWriter out = new PrintWriter(System.out); int n = in.nextInt(); long a = in.nextLong(); long b = in.nextLong(); long[] x = new long[n]; for (int i = 0; i < n; i++) { x[i] = in.nextLong(); } Map<Long,Integer> idxmap = new HashMap<>(); for (int i = 0; i < n; i++) { idxmap.put(x[i], i); } if (a == b) { solve1(x, a, idxmap, out); return; } int[] mark = new int[n]; Arrays.fill(mark, -1); boolean isok = true; for (int i = 0 ; i < n ; i++) { if (mark[i] != -1) { continue; } long w = x[i]; long aw = a - w; long bw = b - w; if (idxmap.containsKey(aw) && idxmap.containsKey(bw)) { continue; } else if (idxmap.containsKey(bw)) { long w1 = w; long w2 = bw; while (true) { if (!idxmap.containsKey(w1) || !idxmap.containsKey(w2)) { break; } int i1 = idxmap.get(w1); int i2 = idxmap.get(w2); if (mark[i1] == 0 || mark[i2] == 0) { isok = false; } mark[i1] = 1; mark[i2] = 1; if (w1 + a - b == w2) { break; } w1 += (a - b); w2 += (b - a); } } else if (idxmap.containsKey(aw)){ long w1 = w; long w2 = aw; while (true) { if (!idxmap.containsKey(w1) || !idxmap.containsKey(w2)) { break; } int i1 = idxmap.get(w1); int i2 = idxmap.get(w2); if (mark[i1] == 1 || mark[i2] == 1) { isok = false; } mark[i1] = 0; mark[i2] = 0; if (w1 + b - a == w2) { break; } w1 += (b - a); w2 += (a - b); } } } for (int i = 0 ; i < n ; i++) { if (mark[i] == -1) { isok = false; break; } } if (isok) { printAnswer(mark, out); } else { out.println("NO"); } out.flush(); } private static void printAnswer(int[] mark, PrintWriter out) { out.println("YES"); StringBuilder ln = new StringBuilder(); for (int m : mark) { ln.append(' ').append(m); } out.println(ln.substring(1)); } private static void solve1(long[] x, long a, Map<Long, Integer> idxmap, PrintWriter out) { int[] mark = new int[x.length]; for (int i = 0 ; i < x.length ; i++) { if (mark[i] == 1) { continue; } long w = x[i]; long wp = a - w; if (idxmap.containsKey(wp)) { mark[i] = mark[idxmap.get(wp)] = 1; } } boolean isok = true; for (int i = 0 ; i < x.length ; i++) { if (mark[i] == 0) { isok = false; break; } } if (isok) { printAnswer(mark, out); } else { out.println("NO"); } out.flush(); } public static void debug(Object... o) { System.err.println(Arrays.deepToString(o)); } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int next() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = next(); while (isSpaceChar(c)) c = next(); int sgn = 1; if (c == '-') { sgn = -1; c = next(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = next(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = next(); while (isSpaceChar(c)) c = next(); long sgn = 1; if (c == '-') { sgn = -1; c = next(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = next(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,788
381
522
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; import static java.lang.Math.*; public class Main { private FastScanner scanner = new FastScanner(); public static void main(String[] args) { new Main().solve(); } private void solve() { int n = scanner.nextInt(); Map<Integer, Integer> cnt = new HashMap<>(); for (int i = 0; i < n; i++) { String s = scanner.nextLine(); LinkedList<Character> st = new LinkedList<>(); for (char c : s.toCharArray()) { if (c == ')' && !st.isEmpty() && st.getLast() == '(') { st.pollLast(); continue; } st.addLast(c); } int t = st.size(); Set<Character> set = new HashSet<>(st); if (set.size() > 1) { continue; } if (set.isEmpty()) { cnt.put(0, cnt.getOrDefault(0, 0) + 1); continue; } if (st.getLast() == '(') { cnt.put(t, cnt.getOrDefault(t, 0) + 1); } else { cnt.put(-t, cnt.getOrDefault(-t, 0) + 1); } } long ans = 0; for (int next : cnt.keySet()) { if (next == 0) { ans += (long) cnt.get(next) * (cnt.get(next) - 1) + cnt.get(next); } else if (next > 0) { int t = next * -1; if (cnt.containsKey(t)) { ans += (long) cnt.get(next) * cnt.get(t); } } } System.out.print(ans); } class FastScanner { BufferedReader reader; StringTokenizer tokenizer; FastScanner() { reader = new BufferedReader(new InputStreamReader(System.in), 32768); tokenizer = null; } String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } int nextInt() { return Integer.parseInt(next()); } Integer[] nextA(int n) { Integer a[] = new Integer[n]; for (int i = 0; i < n; i++) { a[i] = scanner.nextInt(); } return a; } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } public String nextLine() { try { return reader.readLine(); } catch (IOException e) { throw new RuntimeException(e); } } } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; import static java.lang.Math.*; public class Main { private FastScanner scanner = new FastScanner(); public static void main(String[] args) { new Main().solve(); } private void solve() { int n = scanner.nextInt(); Map<Integer, Integer> cnt = new HashMap<>(); for (int i = 0; i < n; i++) { String s = scanner.nextLine(); LinkedList<Character> st = new LinkedList<>(); for (char c : s.toCharArray()) { if (c == ')' && !st.isEmpty() && st.getLast() == '(') { st.pollLast(); continue; } st.addLast(c); } int t = st.size(); Set<Character> set = new HashSet<>(st); if (set.size() > 1) { continue; } if (set.isEmpty()) { cnt.put(0, cnt.getOrDefault(0, 0) + 1); continue; } if (st.getLast() == '(') { cnt.put(t, cnt.getOrDefault(t, 0) + 1); } else { cnt.put(-t, cnt.getOrDefault(-t, 0) + 1); } } long ans = 0; for (int next : cnt.keySet()) { if (next == 0) { ans += (long) cnt.get(next) * (cnt.get(next) - 1) + cnt.get(next); } else if (next > 0) { int t = next * -1; if (cnt.containsKey(t)) { ans += (long) cnt.get(next) * cnt.get(t); } } } System.out.print(ans); } class FastScanner { BufferedReader reader; StringTokenizer tokenizer; FastScanner() { reader = new BufferedReader(new InputStreamReader(System.in), 32768); tokenizer = null; } String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } int nextInt() { return Integer.parseInt(next()); } Integer[] nextA(int n) { Integer a[] = new Integer[n]; for (int i = 0; i < n; i++) { a[i] = scanner.nextInt(); } return a; } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } public String nextLine() { try { return reader.readLine(); } catch (IOException e) { throw new RuntimeException(e); } } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; import static java.lang.Math.*; public class Main { private FastScanner scanner = new FastScanner(); public static void main(String[] args) { new Main().solve(); } private void solve() { int n = scanner.nextInt(); Map<Integer, Integer> cnt = new HashMap<>(); for (int i = 0; i < n; i++) { String s = scanner.nextLine(); LinkedList<Character> st = new LinkedList<>(); for (char c : s.toCharArray()) { if (c == ')' && !st.isEmpty() && st.getLast() == '(') { st.pollLast(); continue; } st.addLast(c); } int t = st.size(); Set<Character> set = new HashSet<>(st); if (set.size() > 1) { continue; } if (set.isEmpty()) { cnt.put(0, cnt.getOrDefault(0, 0) + 1); continue; } if (st.getLast() == '(') { cnt.put(t, cnt.getOrDefault(t, 0) + 1); } else { cnt.put(-t, cnt.getOrDefault(-t, 0) + 1); } } long ans = 0; for (int next : cnt.keySet()) { if (next == 0) { ans += (long) cnt.get(next) * (cnt.get(next) - 1) + cnt.get(next); } else if (next > 0) { int t = next * -1; if (cnt.containsKey(t)) { ans += (long) cnt.get(next) * cnt.get(t); } } } System.out.print(ans); } class FastScanner { BufferedReader reader; StringTokenizer tokenizer; FastScanner() { reader = new BufferedReader(new InputStreamReader(System.in), 32768); tokenizer = null; } String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } int nextInt() { return Integer.parseInt(next()); } Integer[] nextA(int n) { Integer a[] = new Integer[n]; for (int i = 0; i < n; i++) { a[i] = scanner.nextInt(); } return a; } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } public String nextLine() { try { return reader.readLine(); } catch (IOException e) { throw new RuntimeException(e); } } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
964
521
4,486
import java.util.*; import java.io.*; public class EdA { static long[] mods = {1000000007, 998244353, 1000000009}; static long mod = mods[0]; public static MyScanner sc; public static PrintWriter out; public static void main(String[] omkar) throws Exception{ // TODO Auto-generated method stub sc = new MyScanner(); out = new PrintWriter(System.out); int n = sc.nextInt(); int m = sc.nextInt(); int[][]cnt = new int[m][m]; String s = sc.next(); for(int j =0;j<n-1;j++){ if (s.charAt(j) != s.charAt(j+1)){ cnt[s.charAt(j)-'a'][s.charAt(j+1)-'a']++; cnt[s.charAt(j+1)-'a'][s.charAt(j)-'a']++; } } int[] st = new int[m+1]; for(int j = 0;j<=m;j++){ st[j] = (1<<j); } int[][] arr = new int[m][1<<m]; for(int j = 0;j<m;j++){ for(int k = 1;k<(1<<m);k++){ int z = Integer.lowestOneBit(k); int count = 0; while(z!=0 && z%2==0){ z/=2; count++; } arr[j][k] = arr[j][k^(Integer.lowestOneBit(k))] + cnt[j][count]; } } int[] dp = new int[1<<m]; Arrays.fill(dp, Integer.MAX_VALUE); dp[0] = 0; for(int j = 1;j<st[m];j++){ for(int k = 0;k<m;k++){ int y = st[k]; if ((y&j) != 0){ int sum = 2*arr[k][j] - arr[k][(1<<m)-1]; // for(int t = 0;t<m;t++){ // if (t!= k){ // if ((st[t]&j) != 0) // sum+=cnt[t][k]; // else // sum-=cnt[t][k]; // } // } dp[j] = Math.min(dp[j], dp[y^j]+sum*Integer.bitCount(j)); } } } out.println(dp[(1<<m)-1]); out.close(); } public static void sort(int[] array){ ArrayList<Integer> copy = new ArrayList<Integer>(); for (int i : array) copy.add(i); Collections.sort(copy); for(int i = 0;i<array.length;i++) array[i] = copy.get(i); } static String[] readArrayString(int n){ String[] array = new String[n]; for(int j =0 ;j<n;j++) array[j] = sc.next(); return array; } static int[] readArrayInt(int n){ int[] array = new int[n]; for(int j = 0;j<n;j++) array[j] = sc.nextInt(); return array; } static int[] readArrayInt1(int n){ int[] array = new int[n+1]; for(int j = 1;j<=n;j++){ array[j] = sc.nextInt(); } return array; } static long[] readArrayLong(int n){ long[] array = new long[n]; for(int j =0 ;j<n;j++) array[j] = sc.nextLong(); return array; } static double[] readArrayDouble(int n){ double[] array = new double[n]; for(int j =0 ;j<n;j++) array[j] = sc.nextDouble(); return array; } static int minIndex(int[] array){ int minValue = Integer.MAX_VALUE; int minIndex = -1; for(int j = 0;j<array.length;j++){ if (array[j] < minValue){ minValue = array[j]; minIndex = j; } } return minIndex; } static int minIndex(long[] array){ long minValue = Long.MAX_VALUE; int minIndex = -1; for(int j = 0;j<array.length;j++){ if (array[j] < minValue){ minValue = array[j]; minIndex = j; } } return minIndex; } static int minIndex(double[] array){ double minValue = Double.MAX_VALUE; int minIndex = -1; for(int j = 0;j<array.length;j++){ if (array[j] < minValue){ minValue = array[j]; minIndex = j; } } return minIndex; } static long power(long x, long y){ if (y == 0) return 1; if (y%2 == 1) return (x*power(x, y-1))%mod; return power((x*x)%mod, y/2)%mod; } static void verdict(boolean a){ out.println(a ? "YES" : "NO"); } public static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try{ str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } } //StringJoiner sj = new StringJoiner(" "); //sj.add(strings) //sj.toString() gives string of those stuff w spaces or whatever that sequence is
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class EdA { static long[] mods = {1000000007, 998244353, 1000000009}; static long mod = mods[0]; public static MyScanner sc; public static PrintWriter out; public static void main(String[] omkar) throws Exception{ // TODO Auto-generated method stub sc = new MyScanner(); out = new PrintWriter(System.out); int n = sc.nextInt(); int m = sc.nextInt(); int[][]cnt = new int[m][m]; String s = sc.next(); for(int j =0;j<n-1;j++){ if (s.charAt(j) != s.charAt(j+1)){ cnt[s.charAt(j)-'a'][s.charAt(j+1)-'a']++; cnt[s.charAt(j+1)-'a'][s.charAt(j)-'a']++; } } int[] st = new int[m+1]; for(int j = 0;j<=m;j++){ st[j] = (1<<j); } int[][] arr = new int[m][1<<m]; for(int j = 0;j<m;j++){ for(int k = 1;k<(1<<m);k++){ int z = Integer.lowestOneBit(k); int count = 0; while(z!=0 && z%2==0){ z/=2; count++; } arr[j][k] = arr[j][k^(Integer.lowestOneBit(k))] + cnt[j][count]; } } int[] dp = new int[1<<m]; Arrays.fill(dp, Integer.MAX_VALUE); dp[0] = 0; for(int j = 1;j<st[m];j++){ for(int k = 0;k<m;k++){ int y = st[k]; if ((y&j) != 0){ int sum = 2*arr[k][j] - arr[k][(1<<m)-1]; // for(int t = 0;t<m;t++){ // if (t!= k){ // if ((st[t]&j) != 0) // sum+=cnt[t][k]; // else // sum-=cnt[t][k]; // } // } dp[j] = Math.min(dp[j], dp[y^j]+sum*Integer.bitCount(j)); } } } out.println(dp[(1<<m)-1]); out.close(); } public static void sort(int[] array){ ArrayList<Integer> copy = new ArrayList<Integer>(); for (int i : array) copy.add(i); Collections.sort(copy); for(int i = 0;i<array.length;i++) array[i] = copy.get(i); } static String[] readArrayString(int n){ String[] array = new String[n]; for(int j =0 ;j<n;j++) array[j] = sc.next(); return array; } static int[] readArrayInt(int n){ int[] array = new int[n]; for(int j = 0;j<n;j++) array[j] = sc.nextInt(); return array; } static int[] readArrayInt1(int n){ int[] array = new int[n+1]; for(int j = 1;j<=n;j++){ array[j] = sc.nextInt(); } return array; } static long[] readArrayLong(int n){ long[] array = new long[n]; for(int j =0 ;j<n;j++) array[j] = sc.nextLong(); return array; } static double[] readArrayDouble(int n){ double[] array = new double[n]; for(int j =0 ;j<n;j++) array[j] = sc.nextDouble(); return array; } static int minIndex(int[] array){ int minValue = Integer.MAX_VALUE; int minIndex = -1; for(int j = 0;j<array.length;j++){ if (array[j] < minValue){ minValue = array[j]; minIndex = j; } } return minIndex; } static int minIndex(long[] array){ long minValue = Long.MAX_VALUE; int minIndex = -1; for(int j = 0;j<array.length;j++){ if (array[j] < minValue){ minValue = array[j]; minIndex = j; } } return minIndex; } static int minIndex(double[] array){ double minValue = Double.MAX_VALUE; int minIndex = -1; for(int j = 0;j<array.length;j++){ if (array[j] < minValue){ minValue = array[j]; minIndex = j; } } return minIndex; } static long power(long x, long y){ if (y == 0) return 1; if (y%2 == 1) return (x*power(x, y-1))%mod; return power((x*x)%mod, y/2)%mod; } static void verdict(boolean a){ out.println(a ? "YES" : "NO"); } public static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try{ str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } } //StringJoiner sj = new StringJoiner(" "); //sj.add(strings) //sj.toString() gives string of those stuff w spaces or whatever that sequence is </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class EdA { static long[] mods = {1000000007, 998244353, 1000000009}; static long mod = mods[0]; public static MyScanner sc; public static PrintWriter out; public static void main(String[] omkar) throws Exception{ // TODO Auto-generated method stub sc = new MyScanner(); out = new PrintWriter(System.out); int n = sc.nextInt(); int m = sc.nextInt(); int[][]cnt = new int[m][m]; String s = sc.next(); for(int j =0;j<n-1;j++){ if (s.charAt(j) != s.charAt(j+1)){ cnt[s.charAt(j)-'a'][s.charAt(j+1)-'a']++; cnt[s.charAt(j+1)-'a'][s.charAt(j)-'a']++; } } int[] st = new int[m+1]; for(int j = 0;j<=m;j++){ st[j] = (1<<j); } int[][] arr = new int[m][1<<m]; for(int j = 0;j<m;j++){ for(int k = 1;k<(1<<m);k++){ int z = Integer.lowestOneBit(k); int count = 0; while(z!=0 && z%2==0){ z/=2; count++; } arr[j][k] = arr[j][k^(Integer.lowestOneBit(k))] + cnt[j][count]; } } int[] dp = new int[1<<m]; Arrays.fill(dp, Integer.MAX_VALUE); dp[0] = 0; for(int j = 1;j<st[m];j++){ for(int k = 0;k<m;k++){ int y = st[k]; if ((y&j) != 0){ int sum = 2*arr[k][j] - arr[k][(1<<m)-1]; // for(int t = 0;t<m;t++){ // if (t!= k){ // if ((st[t]&j) != 0) // sum+=cnt[t][k]; // else // sum-=cnt[t][k]; // } // } dp[j] = Math.min(dp[j], dp[y^j]+sum*Integer.bitCount(j)); } } } out.println(dp[(1<<m)-1]); out.close(); } public static void sort(int[] array){ ArrayList<Integer> copy = new ArrayList<Integer>(); for (int i : array) copy.add(i); Collections.sort(copy); for(int i = 0;i<array.length;i++) array[i] = copy.get(i); } static String[] readArrayString(int n){ String[] array = new String[n]; for(int j =0 ;j<n;j++) array[j] = sc.next(); return array; } static int[] readArrayInt(int n){ int[] array = new int[n]; for(int j = 0;j<n;j++) array[j] = sc.nextInt(); return array; } static int[] readArrayInt1(int n){ int[] array = new int[n+1]; for(int j = 1;j<=n;j++){ array[j] = sc.nextInt(); } return array; } static long[] readArrayLong(int n){ long[] array = new long[n]; for(int j =0 ;j<n;j++) array[j] = sc.nextLong(); return array; } static double[] readArrayDouble(int n){ double[] array = new double[n]; for(int j =0 ;j<n;j++) array[j] = sc.nextDouble(); return array; } static int minIndex(int[] array){ int minValue = Integer.MAX_VALUE; int minIndex = -1; for(int j = 0;j<array.length;j++){ if (array[j] < minValue){ minValue = array[j]; minIndex = j; } } return minIndex; } static int minIndex(long[] array){ long minValue = Long.MAX_VALUE; int minIndex = -1; for(int j = 0;j<array.length;j++){ if (array[j] < minValue){ minValue = array[j]; minIndex = j; } } return minIndex; } static int minIndex(double[] array){ double minValue = Double.MAX_VALUE; int minIndex = -1; for(int j = 0;j<array.length;j++){ if (array[j] < minValue){ minValue = array[j]; minIndex = j; } } return minIndex; } static long power(long x, long y){ if (y == 0) return 1; if (y%2 == 1) return (x*power(x, y-1))%mod; return power((x*x)%mod, y/2)%mod; } static void verdict(boolean a){ out.println(a ? "YES" : "NO"); } public static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try{ str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } } //StringJoiner sj = new StringJoiner(" "); //sj.add(strings) //sj.toString() gives string of those stuff w spaces or whatever that sequence is </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,711
4,475
1,533
import java.util.*; import java.io.*; public class a { public static void main(String[] args) throws IOException { input.init(System.in); int n = input.nextInt(), k = input.nextInt(); TreeSet<Integer> ts = new TreeSet<Integer>(); int[] data = new int[n]; for(int i = 0; i<n; i++) { data[i] = input.nextInt(); } Arrays.sort(data); if(n>1 && k==1.*data[n-1]/data[0]) System.out.println(n-1); else { for(int i = 0; i<n; i++) { if(data[i]%k != 0) ts.add(data[i]); else { if(!ts.contains(data[i]/k)) ts.add(data[i]); } } System.out.println(ts.size()); } } public static class input { static BufferedReader reader; static StringTokenizer tokenizer; /** call this method to initialize reader for InputStream */ static void init(InputStream input) { reader = new BufferedReader( new InputStreamReader(input) ); tokenizer = new StringTokenizer(""); } /** get next word */ static String next() throws IOException { while ( ! tokenizer.hasMoreTokens() ) { //TODO add check for eof if necessary tokenizer = new StringTokenizer( reader.readLine() ); } return tokenizer.nextToken(); } static int nextInt() throws IOException { return Integer.parseInt( next() ); } static double nextDouble() throws IOException { return Double.parseDouble( next() ); } static long nextLong() throws IOException { return Long.parseLong( next() ); } } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class a { public static void main(String[] args) throws IOException { input.init(System.in); int n = input.nextInt(), k = input.nextInt(); TreeSet<Integer> ts = new TreeSet<Integer>(); int[] data = new int[n]; for(int i = 0; i<n; i++) { data[i] = input.nextInt(); } Arrays.sort(data); if(n>1 && k==1.*data[n-1]/data[0]) System.out.println(n-1); else { for(int i = 0; i<n; i++) { if(data[i]%k != 0) ts.add(data[i]); else { if(!ts.contains(data[i]/k)) ts.add(data[i]); } } System.out.println(ts.size()); } } public static class input { static BufferedReader reader; static StringTokenizer tokenizer; /** call this method to initialize reader for InputStream */ static void init(InputStream input) { reader = new BufferedReader( new InputStreamReader(input) ); tokenizer = new StringTokenizer(""); } /** get next word */ static String next() throws IOException { while ( ! tokenizer.hasMoreTokens() ) { //TODO add check for eof if necessary tokenizer = new StringTokenizer( reader.readLine() ); } return tokenizer.nextToken(); } static int nextInt() throws IOException { return Integer.parseInt( next() ); } static double nextDouble() throws IOException { return Double.parseDouble( next() ); } static long nextLong() throws IOException { return Long.parseLong( next() ); } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class a { public static void main(String[] args) throws IOException { input.init(System.in); int n = input.nextInt(), k = input.nextInt(); TreeSet<Integer> ts = new TreeSet<Integer>(); int[] data = new int[n]; for(int i = 0; i<n; i++) { data[i] = input.nextInt(); } Arrays.sort(data); if(n>1 && k==1.*data[n-1]/data[0]) System.out.println(n-1); else { for(int i = 0; i<n; i++) { if(data[i]%k != 0) ts.add(data[i]); else { if(!ts.contains(data[i]/k)) ts.add(data[i]); } } System.out.println(ts.size()); } } public static class input { static BufferedReader reader; static StringTokenizer tokenizer; /** call this method to initialize reader for InputStream */ static void init(InputStream input) { reader = new BufferedReader( new InputStreamReader(input) ); tokenizer = new StringTokenizer(""); } /** get next word */ static String next() throws IOException { while ( ! tokenizer.hasMoreTokens() ) { //TODO add check for eof if necessary tokenizer = new StringTokenizer( reader.readLine() ); } return tokenizer.nextToken(); } static int nextInt() throws IOException { return Integer.parseInt( next() ); } static double nextDouble() throws IOException { return Double.parseDouble( next() ); } static long nextLong() throws IOException { return Long.parseLong( next() ); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
686
1,531
1,227
import java.util.*; import java.io.*; public class A2 { /* */ public static void main(String[] args) throws Exception { uu.s1(); uu.out.close(); } public static class uu { public static BR in = new BR(); public static PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); public static boolean bg = true; public static MOD m1 = new MOD(1000000000+9); public static long mod = 1000000000+9; public static void s1() throws Exception { long n = in.ni(); long m = in.ni(); long k = in.ni(); long lose = n - m; long aval = m / (k - 1l); long times1 = Math.min(lose, aval); long notused = times1 * (k - 1l); long used = m - notused; long blocks = used / k; long left = used % k; long k1 = 0; if (blocks != 0){ k1 = m1.pow(2, blocks+1); k1 = m1.s(k1, 2); } long ans = (m1.t(k, k1)+left + notused)%mod; pn(ans); } public static void geom(long f1){ } public static void s2() throws Exception { } public static void s3() throws Exception { } private static void pn(Object... o1) { for (int i = 0; i < o1.length; i++){ if (i!= 0) out.print(" "); out.print(o1[i]); } out.println(); } public static boolean allTrue(boolean ... l1){ for (boolean e: l1) if (!e) return false; return true; } public static boolean allFalse(boolean ... l1){ for (boolean e: l1) if (e) return false; return true; } } private static class MOD { public long mod = -1; public MOD(long k1) { mod = k1; } public long cl(long n1){ long fin = n1%mod; if (fin<0) fin+= mod; return fin; } public long s(long n1, long n2) { long k1 = (n1 - n2) % mod; if (k1 < 0) k1 += mod; return k1; } public long t(long n1, long n2) { long k1 = (n1 * n2) % mod; if (k1 < 0) k1 += mod; return k1; } public static long xgcd(long n1, long n2) { long k1 = n1; long k2 = n2; long[] l1 = { 1, 0 }; long[] l2 = { 0, 1 }; for (;;) { long f1 = k1 / k2; long f2 = k1 % k2; if (f2 == 0) break; long[] l3 = { 0, 0 }; l3[0] = l1[0] - f1 * l2[0]; l3[1] = l1[1] - f1 * l2[1]; l1 = l2; l2 = l3; k1 = k2; k2 = f2; } long fin = l2[1] % n1; if (fin < 0) { fin += n1; } return fin; } public long pow(long n1, long pow) { if (pow == 0) return 1; else if (pow == 1) return t(1l, n1); else if ((pow & 1) == 0) { long half = pow(n1, pow >> 1); return t(half, half); } else { long half = pow(n1, pow >> 1); return t(half, t(half, n1)); } } public long factorial(long k1, long n1) { long fin = 1; long q1 = k1; for (int i = 0; i < n1; i++) { fin = t(fin, q1); q1--; if (q1 <= 0) break; } return cl(fin); } } private static class BR { BufferedReader k1 = null; StringTokenizer k2 = null; public BR() { k1 = new BufferedReader(new InputStreamReader(System.in)); } public String nx() throws Exception { for (;;) { if (k2 == null || !k2.hasMoreTokens()) { String temp = k1.readLine(); if (temp == null) return null; k2 = new StringTokenizer(temp); } else break; } return k2.nextToken(); } public int ni() throws Exception { return Integer.parseInt(nx()); } } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; public class A2 { /* */ public static void main(String[] args) throws Exception { uu.s1(); uu.out.close(); } public static class uu { public static BR in = new BR(); public static PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); public static boolean bg = true; public static MOD m1 = new MOD(1000000000+9); public static long mod = 1000000000+9; public static void s1() throws Exception { long n = in.ni(); long m = in.ni(); long k = in.ni(); long lose = n - m; long aval = m / (k - 1l); long times1 = Math.min(lose, aval); long notused = times1 * (k - 1l); long used = m - notused; long blocks = used / k; long left = used % k; long k1 = 0; if (blocks != 0){ k1 = m1.pow(2, blocks+1); k1 = m1.s(k1, 2); } long ans = (m1.t(k, k1)+left + notused)%mod; pn(ans); } public static void geom(long f1){ } public static void s2() throws Exception { } public static void s3() throws Exception { } private static void pn(Object... o1) { for (int i = 0; i < o1.length; i++){ if (i!= 0) out.print(" "); out.print(o1[i]); } out.println(); } public static boolean allTrue(boolean ... l1){ for (boolean e: l1) if (!e) return false; return true; } public static boolean allFalse(boolean ... l1){ for (boolean e: l1) if (e) return false; return true; } } private static class MOD { public long mod = -1; public MOD(long k1) { mod = k1; } public long cl(long n1){ long fin = n1%mod; if (fin<0) fin+= mod; return fin; } public long s(long n1, long n2) { long k1 = (n1 - n2) % mod; if (k1 < 0) k1 += mod; return k1; } public long t(long n1, long n2) { long k1 = (n1 * n2) % mod; if (k1 < 0) k1 += mod; return k1; } public static long xgcd(long n1, long n2) { long k1 = n1; long k2 = n2; long[] l1 = { 1, 0 }; long[] l2 = { 0, 1 }; for (;;) { long f1 = k1 / k2; long f2 = k1 % k2; if (f2 == 0) break; long[] l3 = { 0, 0 }; l3[0] = l1[0] - f1 * l2[0]; l3[1] = l1[1] - f1 * l2[1]; l1 = l2; l2 = l3; k1 = k2; k2 = f2; } long fin = l2[1] % n1; if (fin < 0) { fin += n1; } return fin; } public long pow(long n1, long pow) { if (pow == 0) return 1; else if (pow == 1) return t(1l, n1); else if ((pow & 1) == 0) { long half = pow(n1, pow >> 1); return t(half, half); } else { long half = pow(n1, pow >> 1); return t(half, t(half, n1)); } } public long factorial(long k1, long n1) { long fin = 1; long q1 = k1; for (int i = 0; i < n1; i++) { fin = t(fin, q1); q1--; if (q1 <= 0) break; } return cl(fin); } } private static class BR { BufferedReader k1 = null; StringTokenizer k2 = null; public BR() { k1 = new BufferedReader(new InputStreamReader(System.in)); } public String nx() throws Exception { for (;;) { if (k2 == null || !k2.hasMoreTokens()) { String temp = k1.readLine(); if (temp == null) return null; k2 = new StringTokenizer(temp); } else break; } return k2.nextToken(); } public int ni() throws Exception { return Integer.parseInt(nx()); } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class A2 { /* */ public static void main(String[] args) throws Exception { uu.s1(); uu.out.close(); } public static class uu { public static BR in = new BR(); public static PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); public static boolean bg = true; public static MOD m1 = new MOD(1000000000+9); public static long mod = 1000000000+9; public static void s1() throws Exception { long n = in.ni(); long m = in.ni(); long k = in.ni(); long lose = n - m; long aval = m / (k - 1l); long times1 = Math.min(lose, aval); long notused = times1 * (k - 1l); long used = m - notused; long blocks = used / k; long left = used % k; long k1 = 0; if (blocks != 0){ k1 = m1.pow(2, blocks+1); k1 = m1.s(k1, 2); } long ans = (m1.t(k, k1)+left + notused)%mod; pn(ans); } public static void geom(long f1){ } public static void s2() throws Exception { } public static void s3() throws Exception { } private static void pn(Object... o1) { for (int i = 0; i < o1.length; i++){ if (i!= 0) out.print(" "); out.print(o1[i]); } out.println(); } public static boolean allTrue(boolean ... l1){ for (boolean e: l1) if (!e) return false; return true; } public static boolean allFalse(boolean ... l1){ for (boolean e: l1) if (e) return false; return true; } } private static class MOD { public long mod = -1; public MOD(long k1) { mod = k1; } public long cl(long n1){ long fin = n1%mod; if (fin<0) fin+= mod; return fin; } public long s(long n1, long n2) { long k1 = (n1 - n2) % mod; if (k1 < 0) k1 += mod; return k1; } public long t(long n1, long n2) { long k1 = (n1 * n2) % mod; if (k1 < 0) k1 += mod; return k1; } public static long xgcd(long n1, long n2) { long k1 = n1; long k2 = n2; long[] l1 = { 1, 0 }; long[] l2 = { 0, 1 }; for (;;) { long f1 = k1 / k2; long f2 = k1 % k2; if (f2 == 0) break; long[] l3 = { 0, 0 }; l3[0] = l1[0] - f1 * l2[0]; l3[1] = l1[1] - f1 * l2[1]; l1 = l2; l2 = l3; k1 = k2; k2 = f2; } long fin = l2[1] % n1; if (fin < 0) { fin += n1; } return fin; } public long pow(long n1, long pow) { if (pow == 0) return 1; else if (pow == 1) return t(1l, n1); else if ((pow & 1) == 0) { long half = pow(n1, pow >> 1); return t(half, half); } else { long half = pow(n1, pow >> 1); return t(half, t(half, n1)); } } public long factorial(long k1, long n1) { long fin = 1; long q1 = k1; for (int i = 0; i < n1; i++) { fin = t(fin, q1); q1--; if (q1 <= 0) break; } return cl(fin); } } private static class BR { BufferedReader k1 = null; StringTokenizer k2 = null; public BR() { k1 = new BufferedReader(new InputStreamReader(System.in)); } public String nx() throws Exception { for (;;) { if (k2 == null || !k2.hasMoreTokens()) { String temp = k1.readLine(); if (temp == null) return null; k2 = new StringTokenizer(temp); } else break; } return k2.nextToken(); } public int ni() throws Exception { return Integer.parseInt(nx()); } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,519
1,226
2,409
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Liavontsi Brechka */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskD solver = new TaskD(); solver.solve(1, in, out); out.close(); } static @SuppressWarnings("Duplicates") class TaskD { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int[] a = in.nextIntArray(n); int m = in.nextInt(); int count = 0; for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { if (a[i] > a[j]) count = (count + 1) % 2; } } StringBuilder res = new StringBuilder(); int l, r; while (m-- > 0) { l = in.nextInt() - 1; r = in.nextInt() - 1; count = count ^ (((r - l + 1) * (r - l) / 2) % 2); res.append(count == 1 ? "odd" : "even").append('\n'); } out.print(res); } } static class InputReader { private final BufferedReader reader; private StringTokenizer tokenizer; public InputReader(InputStream in) { reader = new BufferedReader(new InputStreamReader(in)); } public int[] nextIntArray(int size) { int[] array = new int[size]; for (int i = 0; i < size; ++i) { array[i] = nextInt(); } return array; } public int nextInt() { return Integer.parseInt(next()); } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(readLine()); } return tokenizer.nextToken(); } public String readLine() { String line; try { line = reader.readLine(); } catch (IOException e) { throw new RuntimeException(e); } return line; } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Liavontsi Brechka */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskD solver = new TaskD(); solver.solve(1, in, out); out.close(); } static @SuppressWarnings("Duplicates") class TaskD { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int[] a = in.nextIntArray(n); int m = in.nextInt(); int count = 0; for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { if (a[i] > a[j]) count = (count + 1) % 2; } } StringBuilder res = new StringBuilder(); int l, r; while (m-- > 0) { l = in.nextInt() - 1; r = in.nextInt() - 1; count = count ^ (((r - l + 1) * (r - l) / 2) % 2); res.append(count == 1 ? "odd" : "even").append('\n'); } out.print(res); } } static class InputReader { private final BufferedReader reader; private StringTokenizer tokenizer; public InputReader(InputStream in) { reader = new BufferedReader(new InputStreamReader(in)); } public int[] nextIntArray(int size) { int[] array = new int[size]; for (int i = 0; i < size; ++i) { array[i] = nextInt(); } return array; } public int nextInt() { return Integer.parseInt(next()); } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(readLine()); } return tokenizer.nextToken(); } public String readLine() { String line; try { line = reader.readLine(); } catch (IOException e) { throw new RuntimeException(e); } return line; } } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Liavontsi Brechka */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskD solver = new TaskD(); solver.solve(1, in, out); out.close(); } static @SuppressWarnings("Duplicates") class TaskD { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int[] a = in.nextIntArray(n); int m = in.nextInt(); int count = 0; for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { if (a[i] > a[j]) count = (count + 1) % 2; } } StringBuilder res = new StringBuilder(); int l, r; while (m-- > 0) { l = in.nextInt() - 1; r = in.nextInt() - 1; count = count ^ (((r - l + 1) * (r - l) / 2) % 2); res.append(count == 1 ? "odd" : "even").append('\n'); } out.print(res); } } static class InputReader { private final BufferedReader reader; private StringTokenizer tokenizer; public InputReader(InputStream in) { reader = new BufferedReader(new InputStreamReader(in)); } public int[] nextIntArray(int size) { int[] array = new int[size]; for (int i = 0; i < size; ++i) { array[i] = nextInt(); } return array; } public int nextInt() { return Integer.parseInt(next()); } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(readLine()); } return tokenizer.nextToken(); } public String readLine() { String line; try { line = reader.readLine(); } catch (IOException e) { throw new RuntimeException(e); } return line; } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
904
2,404
3,142
import static java.lang.Math.*; import static java.util.Arrays.*; import java.io.*; import java.util.*; public class Main { static boolean LOCAL = System.getSecurityManager() == null; Scanner sc = new Scanner(System.in); void run() { double a = sc.nextDouble(), v = sc.nextDouble(); double L = sc.nextDouble(), d = sc.nextDouble(), w = sc.nextDouble(); w = min(w, v); double t = 0; if (w * w / (2 * a) <= d) { if ((v * v + 2 * v * (v - w) - (v - w) * (v - w)) / (2 * a) <= d) { t = (2 * v - w) / a + (d - (v * v + 2 * v * (v - w) - (v - w) * (v - w)) / (2 * a)) / v; } else { double A = a, B = w, C = (w * w) / (2 * a) - d; t = w / a + (-B + sqrt(max(0, B * B - A * C))) / A * 2; } if ((2 * w * (v - w) + (v - w) * (v - w)) / (2 * a) <= L - d) { t += (v - w) / a + (L - d - (2 * w * (v - w) + (v - w) * (v - w)) / (2 * a)) / v; } else { double A = a, B = w, C = -2 * (L - d); t += (-B + sqrt(max(0, B * B - A * C))) / A; } } else if (v * v / (2 * a) <= L) { t = v / a + (L - (v * v / (2 * a))) / v; } else { t = sqrt(2 * L / a); } System.out.printf("%.10f%n", t); } class Scanner { BufferedReader br; StringTokenizer st; Scanner(InputStream in) { br = new BufferedReader(new InputStreamReader(in)); eat(""); } void eat(String s) { st = new StringTokenizer(s); } String nextLine() { try { return br.readLine(); } catch (IOException e) { throw new RuntimeException(e); } } boolean hasNext() { while (!st.hasMoreTokens()) { String s = nextLine(); if (s == null) return false; eat(s); } return true; } String next() { hasNext(); return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } } void debug(Object...os) { System.err.println(deepToString(os)); } public static void main(String[] args) { if (LOCAL) { try { System.setIn(new FileInputStream("in.txt")); } catch (Throwable e) { LOCAL = false; } } if (!LOCAL) { try { Locale.setDefault(Locale.US); System.setOut(new PrintStream(new BufferedOutputStream(System.out))); } catch (Throwable e) { } } new Main().run(); System.out.flush(); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import static java.lang.Math.*; import static java.util.Arrays.*; import java.io.*; import java.util.*; public class Main { static boolean LOCAL = System.getSecurityManager() == null; Scanner sc = new Scanner(System.in); void run() { double a = sc.nextDouble(), v = sc.nextDouble(); double L = sc.nextDouble(), d = sc.nextDouble(), w = sc.nextDouble(); w = min(w, v); double t = 0; if (w * w / (2 * a) <= d) { if ((v * v + 2 * v * (v - w) - (v - w) * (v - w)) / (2 * a) <= d) { t = (2 * v - w) / a + (d - (v * v + 2 * v * (v - w) - (v - w) * (v - w)) / (2 * a)) / v; } else { double A = a, B = w, C = (w * w) / (2 * a) - d; t = w / a + (-B + sqrt(max(0, B * B - A * C))) / A * 2; } if ((2 * w * (v - w) + (v - w) * (v - w)) / (2 * a) <= L - d) { t += (v - w) / a + (L - d - (2 * w * (v - w) + (v - w) * (v - w)) / (2 * a)) / v; } else { double A = a, B = w, C = -2 * (L - d); t += (-B + sqrt(max(0, B * B - A * C))) / A; } } else if (v * v / (2 * a) <= L) { t = v / a + (L - (v * v / (2 * a))) / v; } else { t = sqrt(2 * L / a); } System.out.printf("%.10f%n", t); } class Scanner { BufferedReader br; StringTokenizer st; Scanner(InputStream in) { br = new BufferedReader(new InputStreamReader(in)); eat(""); } void eat(String s) { st = new StringTokenizer(s); } String nextLine() { try { return br.readLine(); } catch (IOException e) { throw new RuntimeException(e); } } boolean hasNext() { while (!st.hasMoreTokens()) { String s = nextLine(); if (s == null) return false; eat(s); } return true; } String next() { hasNext(); return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } } void debug(Object...os) { System.err.println(deepToString(os)); } public static void main(String[] args) { if (LOCAL) { try { System.setIn(new FileInputStream("in.txt")); } catch (Throwable e) { LOCAL = false; } } if (!LOCAL) { try { Locale.setDefault(Locale.US); System.setOut(new PrintStream(new BufferedOutputStream(System.out))); } catch (Throwable e) { } } new Main().run(); System.out.flush(); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import static java.lang.Math.*; import static java.util.Arrays.*; import java.io.*; import java.util.*; public class Main { static boolean LOCAL = System.getSecurityManager() == null; Scanner sc = new Scanner(System.in); void run() { double a = sc.nextDouble(), v = sc.nextDouble(); double L = sc.nextDouble(), d = sc.nextDouble(), w = sc.nextDouble(); w = min(w, v); double t = 0; if (w * w / (2 * a) <= d) { if ((v * v + 2 * v * (v - w) - (v - w) * (v - w)) / (2 * a) <= d) { t = (2 * v - w) / a + (d - (v * v + 2 * v * (v - w) - (v - w) * (v - w)) / (2 * a)) / v; } else { double A = a, B = w, C = (w * w) / (2 * a) - d; t = w / a + (-B + sqrt(max(0, B * B - A * C))) / A * 2; } if ((2 * w * (v - w) + (v - w) * (v - w)) / (2 * a) <= L - d) { t += (v - w) / a + (L - d - (2 * w * (v - w) + (v - w) * (v - w)) / (2 * a)) / v; } else { double A = a, B = w, C = -2 * (L - d); t += (-B + sqrt(max(0, B * B - A * C))) / A; } } else if (v * v / (2 * a) <= L) { t = v / a + (L - (v * v / (2 * a))) / v; } else { t = sqrt(2 * L / a); } System.out.printf("%.10f%n", t); } class Scanner { BufferedReader br; StringTokenizer st; Scanner(InputStream in) { br = new BufferedReader(new InputStreamReader(in)); eat(""); } void eat(String s) { st = new StringTokenizer(s); } String nextLine() { try { return br.readLine(); } catch (IOException e) { throw new RuntimeException(e); } } boolean hasNext() { while (!st.hasMoreTokens()) { String s = nextLine(); if (s == null) return false; eat(s); } return true; } String next() { hasNext(); return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } } void debug(Object...os) { System.err.println(deepToString(os)); } public static void main(String[] args) { if (LOCAL) { try { System.setIn(new FileInputStream("in.txt")); } catch (Throwable e) { LOCAL = false; } } if (!LOCAL) { try { Locale.setDefault(Locale.US); System.setOut(new PrintStream(new BufferedOutputStream(System.out))); } catch (Throwable e) { } } new Main().run(); System.out.flush(); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,126
3,136
2,095
import java.io.BufferedOutputStream; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.Scanner; public class ProblemA { private void solve() throws IOException { Scanner stdin = new Scanner(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out)); int n = Integer.valueOf(stdin.nextInt()); int[] p = new int[n]; for (int i = 0; i < n; i++) { p[i] = stdin.nextInt(); } Arrays.sort(p); if (p[n-1] == 1) { p[n-1] = 2; } else { p[n-1] = 1; out.print(p[n-1] + " "); n--; } for (int i = 0; i < n; i++) { out.print(p[i] + " "); } out.flush(); out.close(); } public static void main(String[] args) throws IOException { ProblemA solver = new ProblemA(); solver.solve(); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedOutputStream; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.Scanner; public class ProblemA { private void solve() throws IOException { Scanner stdin = new Scanner(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out)); int n = Integer.valueOf(stdin.nextInt()); int[] p = new int[n]; for (int i = 0; i < n; i++) { p[i] = stdin.nextInt(); } Arrays.sort(p); if (p[n-1] == 1) { p[n-1] = 2; } else { p[n-1] = 1; out.print(p[n-1] + " "); n--; } for (int i = 0; i < n; i++) { out.print(p[i] + " "); } out.flush(); out.close(); } public static void main(String[] args) throws IOException { ProblemA solver = new ProblemA(); solver.solve(); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedOutputStream; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.Scanner; public class ProblemA { private void solve() throws IOException { Scanner stdin = new Scanner(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out)); int n = Integer.valueOf(stdin.nextInt()); int[] p = new int[n]; for (int i = 0; i < n; i++) { p[i] = stdin.nextInt(); } Arrays.sort(p); if (p[n-1] == 1) { p[n-1] = 2; } else { p[n-1] = 1; out.print(p[n-1] + " "); n--; } for (int i = 0; i < n; i++) { out.print(p[i] + " "); } out.flush(); out.close(); } public static void main(String[] args) throws IOException { ProblemA solver = new ProblemA(); solver.solve(); } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
575
2,091
3,629
import java.io.*; import java.util.*; public class Main { static BufferedReader br; static PrintWriter out; static StringTokenizer st; static int[][] moves = new int[][]{{0, 1}, {1, 0}, {-1, 0}, {0, -1}}; static boolean correct(int x, int y, int n, int m) { return (x >= 0 && x < n && y >= 0 && y < m); } static void solve() throws Exception { int n = nextInt(); int m = nextInt(); int k = nextInt(); int[][] order = new int[n][m]; boolean[][] used = new boolean[n][m]; Queue<Integer[]> q = new LinkedList<>(); Set<String> set = new HashSet<String>(); for(int i = 0; i < k; i++) { int x = nextInt() - 1; int y = nextInt() - 1; order[x][y] = 1; used[x][y] = true; q.add(new Integer[] {x, y}); set.add(x + "" + y); } while(!q.isEmpty()) { Integer[] v = q.remove(); for(int[] move : moves) { int x = v[0] + move[0]; int y = v[1] + move[1]; // if(set.contains(x + "" + y)) { // continue; // } if(correct(x, y, n, m) && !used[x][y]) { q.add(new Integer[] {x, y}); used[x][y] = true; order[x][y] = order[v[0]][v[1]] + 1; } } } int max = Integer.MIN_VALUE; int maxI = -1; int maxJ = -1; for(int i = 0; i < n; i++) { for(int j = 0; j < m; j++) { if(order[i][j] > max) { max = order[i][j]; maxI = i; maxJ = j; } } } maxI++; maxJ++; out.println(maxI + " " + maxJ); } static int nextInt() throws IOException { return Integer.parseInt(next()); } static long nextLong() throws IOException { return Long.parseLong(next()); } static double nextDouble() throws IOException { return Double.parseDouble(next()); } static String next() throws IOException { while (st == null || !st.hasMoreTokens()) { String line = br.readLine(); if (line == null) { return null; } st = new StringTokenizer(line); } return st.nextToken(); } public static void main(String[] args) { try { InputStream input = System.in; OutputStream output = System.out; br = new BufferedReader(new InputStreamReader(new FileInputStream(new File("input.txt")))); out = new PrintWriter(new PrintStream(new File("output.txt"))); solve(); out.close(); br.close(); } catch (Throwable t) { t.printStackTrace(); } } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main { static BufferedReader br; static PrintWriter out; static StringTokenizer st; static int[][] moves = new int[][]{{0, 1}, {1, 0}, {-1, 0}, {0, -1}}; static boolean correct(int x, int y, int n, int m) { return (x >= 0 && x < n && y >= 0 && y < m); } static void solve() throws Exception { int n = nextInt(); int m = nextInt(); int k = nextInt(); int[][] order = new int[n][m]; boolean[][] used = new boolean[n][m]; Queue<Integer[]> q = new LinkedList<>(); Set<String> set = new HashSet<String>(); for(int i = 0; i < k; i++) { int x = nextInt() - 1; int y = nextInt() - 1; order[x][y] = 1; used[x][y] = true; q.add(new Integer[] {x, y}); set.add(x + "" + y); } while(!q.isEmpty()) { Integer[] v = q.remove(); for(int[] move : moves) { int x = v[0] + move[0]; int y = v[1] + move[1]; // if(set.contains(x + "" + y)) { // continue; // } if(correct(x, y, n, m) && !used[x][y]) { q.add(new Integer[] {x, y}); used[x][y] = true; order[x][y] = order[v[0]][v[1]] + 1; } } } int max = Integer.MIN_VALUE; int maxI = -1; int maxJ = -1; for(int i = 0; i < n; i++) { for(int j = 0; j < m; j++) { if(order[i][j] > max) { max = order[i][j]; maxI = i; maxJ = j; } } } maxI++; maxJ++; out.println(maxI + " " + maxJ); } static int nextInt() throws IOException { return Integer.parseInt(next()); } static long nextLong() throws IOException { return Long.parseLong(next()); } static double nextDouble() throws IOException { return Double.parseDouble(next()); } static String next() throws IOException { while (st == null || !st.hasMoreTokens()) { String line = br.readLine(); if (line == null) { return null; } st = new StringTokenizer(line); } return st.nextToken(); } public static void main(String[] args) { try { InputStream input = System.in; OutputStream output = System.out; br = new BufferedReader(new InputStreamReader(new FileInputStream(new File("input.txt")))); out = new PrintWriter(new PrintStream(new File("output.txt"))); solve(); out.close(); br.close(); } catch (Throwable t) { t.printStackTrace(); } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main { static BufferedReader br; static PrintWriter out; static StringTokenizer st; static int[][] moves = new int[][]{{0, 1}, {1, 0}, {-1, 0}, {0, -1}}; static boolean correct(int x, int y, int n, int m) { return (x >= 0 && x < n && y >= 0 && y < m); } static void solve() throws Exception { int n = nextInt(); int m = nextInt(); int k = nextInt(); int[][] order = new int[n][m]; boolean[][] used = new boolean[n][m]; Queue<Integer[]> q = new LinkedList<>(); Set<String> set = new HashSet<String>(); for(int i = 0; i < k; i++) { int x = nextInt() - 1; int y = nextInt() - 1; order[x][y] = 1; used[x][y] = true; q.add(new Integer[] {x, y}); set.add(x + "" + y); } while(!q.isEmpty()) { Integer[] v = q.remove(); for(int[] move : moves) { int x = v[0] + move[0]; int y = v[1] + move[1]; // if(set.contains(x + "" + y)) { // continue; // } if(correct(x, y, n, m) && !used[x][y]) { q.add(new Integer[] {x, y}); used[x][y] = true; order[x][y] = order[v[0]][v[1]] + 1; } } } int max = Integer.MIN_VALUE; int maxI = -1; int maxJ = -1; for(int i = 0; i < n; i++) { for(int j = 0; j < m; j++) { if(order[i][j] > max) { max = order[i][j]; maxI = i; maxJ = j; } } } maxI++; maxJ++; out.println(maxI + " " + maxJ); } static int nextInt() throws IOException { return Integer.parseInt(next()); } static long nextLong() throws IOException { return Long.parseLong(next()); } static double nextDouble() throws IOException { return Double.parseDouble(next()); } static String next() throws IOException { while (st == null || !st.hasMoreTokens()) { String line = br.readLine(); if (line == null) { return null; } st = new StringTokenizer(line); } return st.nextToken(); } public static void main(String[] args) { try { InputStream input = System.in; OutputStream output = System.out; br = new BufferedReader(new InputStreamReader(new FileInputStream(new File("input.txt")))); out = new PrintWriter(new PrintStream(new File("output.txt"))); solve(); out.close(); br.close(); } catch (Throwable t) { t.printStackTrace(); } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,047
3,621
3,162
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; public class A { static class Scanner{ BufferedReader br=null; StringTokenizer tk=null; public Scanner(){ br=new BufferedReader(new InputStreamReader(System.in)); } public String next() throws IOException{ while(tk==null || !tk.hasMoreTokens()) tk=new StringTokenizer(br.readLine()); return tk.nextToken(); } public int nextInt() throws NumberFormatException, IOException{ return Integer.valueOf(next()); } public double nextDouble() throws NumberFormatException, IOException{ return Double.valueOf(next()); } } public static void main(String args[]) throws NumberFormatException, IOException{ Scanner sc = new Scanner(); int T = sc.nextInt(); if ( T > 0) System.out.println(T); else{ String cad = (T + ""); int min = Math.min(cad.charAt(cad.length() - 1) - '0', cad.charAt(cad.length() - 2) - '0'); if (min == 0 && cad.length() == 3) System.out.println(0); else System.out.println(cad.substring(0, cad.length() - 2) + "" + min); } } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; public class A { static class Scanner{ BufferedReader br=null; StringTokenizer tk=null; public Scanner(){ br=new BufferedReader(new InputStreamReader(System.in)); } public String next() throws IOException{ while(tk==null || !tk.hasMoreTokens()) tk=new StringTokenizer(br.readLine()); return tk.nextToken(); } public int nextInt() throws NumberFormatException, IOException{ return Integer.valueOf(next()); } public double nextDouble() throws NumberFormatException, IOException{ return Double.valueOf(next()); } } public static void main(String args[]) throws NumberFormatException, IOException{ Scanner sc = new Scanner(); int T = sc.nextInt(); if ( T > 0) System.out.println(T); else{ String cad = (T + ""); int min = Math.min(cad.charAt(cad.length() - 1) - '0', cad.charAt(cad.length() - 2) - '0'); if (min == 0 && cad.length() == 3) System.out.println(0); else System.out.println(cad.substring(0, cad.length() - 2) + "" + min); } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; public class A { static class Scanner{ BufferedReader br=null; StringTokenizer tk=null; public Scanner(){ br=new BufferedReader(new InputStreamReader(System.in)); } public String next() throws IOException{ while(tk==null || !tk.hasMoreTokens()) tk=new StringTokenizer(br.readLine()); return tk.nextToken(); } public int nextInt() throws NumberFormatException, IOException{ return Integer.valueOf(next()); } public double nextDouble() throws NumberFormatException, IOException{ return Double.valueOf(next()); } } public static void main(String args[]) throws NumberFormatException, IOException{ Scanner sc = new Scanner(); int T = sc.nextInt(); if ( T > 0) System.out.println(T); else{ String cad = (T + ""); int min = Math.min(cad.charAt(cad.length() - 1) - '0', cad.charAt(cad.length() - 2) - '0'); if (min == 0 && cad.length() == 3) System.out.println(0); else System.out.println(cad.substring(0, cad.length() - 2) + "" + min); } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
629
3,156
1,353
//package round371; import java.io.PrintWriter; import java.util.Arrays; import java.util.Scanner; public class BT { Scanner in; PrintWriter out; String INPUT = ""; int q(int r1, int c1, int r2, int c2) { out.printf("? %d %d %d %d\n", r1+1, c1+1, r2+1, c2+1); out.flush(); return ni(); } void e(int r1, int c1, int r2, int c2, int r3, int c3, int r4, int c4) { out.printf("! %d %d %d %d %d %d %d %d\n", r1+1, c1+1, r2+1, c2+1, r3+1, c3+1, r4+1, c4+1 ); out.flush(); } void solve() { int n = ni(); int cu = -1, cv = -1; { int low = -1, high = n-1; while(high - low > 1){ int h = high+low>>1; if(q(0, 0, n-1, h) >= 2){ high = h; }else{ low = h; } } cu = high; } { int low = -1, high = n-1; while(high - low > 1){ int h = high+low>>1; if(q(0, 0, n-1, h) >= 1){ high = h; }else{ low = h; } } cv = high; } int du = -1, dv = -1; { int low = 0, high = n; while(high - low > 1){ int h = high+low>>1; if(q(0, h, n-1, n-1) >= 2){ low = h; }else{ high = h; } } du = low; } { int low = 0, high = n; while(high - low > 1){ int h = high+low>>1; if(q(0, h, n-1, n-1) >= 1){ low = h; }else{ high = h; } } dv= low; } int eu = -1, ev = -1; { int low = -1, high = n-1; while(high - low > 1){ int h = high+low>>1; if(q(0, 0, h, n-1) >= 2){ high = h; }else{ low = h; } } eu = high; } { int low = -1, high = n-1; while(high - low > 1){ int h = high+low>>1; if(q(0, 0, h, n-1) >= 1){ high = h; }else{ low = h; } } ev = high; } int fu = -1, fv = -1; { int low = 0, high = n; while(high - low > 1){ int h = high+low>>1; if(q(h, 0, n-1, n-1) >= 2){ low = h; }else{ high = h; } } fu = low; } { int low = 0, high = n; while(high - low > 1){ int h = high+low>>1; if(q(h, 0, n-1, n-1) >= 1){ low = h; }else{ high = h; } } fv= low; } // cv <= cu // du <= dv int[][][] canc = { {{du, cu}, {dv, cv}}, {{du, cv}, {dv, cu}} }; int[][][] canr = { {{fu, eu}, {fv, ev}}, {{fu, ev}, {fv, eu}} }; for(int[][] cr : canr){ if(cr[0][0] > cr[0][1])continue; if(cr[1][0] > cr[1][1])continue; for(int[][] cc : canc){ if(cc[0][0] > cc[0][1])continue; if(cc[1][0] > cc[1][1])continue; for(int z = 0;z < 2;z++){ if( q(cr[0][0], cc[0^z][0], cr[0][1], cc[0^z][1]) == 1 && q(cr[1][0], cc[1^z][0], cr[1][1], cc[1^z][1]) == 1){ e(cr[0][0], cc[0^z][0], cr[0][1], cc[0^z][1], cr[1][0], cc[1^z][0], cr[1][1], cc[1^z][1]); return; } } } } throw new RuntimeException(); } void run() throws Exception { in = oj ? new Scanner(System.in) : new Scanner(INPUT); out = new PrintWriter(System.out); long s = System.currentTimeMillis(); solve(); out.flush(); tr(System.currentTimeMillis()-s+"ms"); } public static void main(String[] args) throws Exception { new BT().run(); } int ni() { return Integer.parseInt(in.next()); } long nl() { return Long.parseLong(in.next()); } double nd() { return Double.parseDouble(in.next()); } boolean oj = System.getProperty("ONLINE_JUDGE") != null; void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> //package round371; import java.io.PrintWriter; import java.util.Arrays; import java.util.Scanner; public class BT { Scanner in; PrintWriter out; String INPUT = ""; int q(int r1, int c1, int r2, int c2) { out.printf("? %d %d %d %d\n", r1+1, c1+1, r2+1, c2+1); out.flush(); return ni(); } void e(int r1, int c1, int r2, int c2, int r3, int c3, int r4, int c4) { out.printf("! %d %d %d %d %d %d %d %d\n", r1+1, c1+1, r2+1, c2+1, r3+1, c3+1, r4+1, c4+1 ); out.flush(); } void solve() { int n = ni(); int cu = -1, cv = -1; { int low = -1, high = n-1; while(high - low > 1){ int h = high+low>>1; if(q(0, 0, n-1, h) >= 2){ high = h; }else{ low = h; } } cu = high; } { int low = -1, high = n-1; while(high - low > 1){ int h = high+low>>1; if(q(0, 0, n-1, h) >= 1){ high = h; }else{ low = h; } } cv = high; } int du = -1, dv = -1; { int low = 0, high = n; while(high - low > 1){ int h = high+low>>1; if(q(0, h, n-1, n-1) >= 2){ low = h; }else{ high = h; } } du = low; } { int low = 0, high = n; while(high - low > 1){ int h = high+low>>1; if(q(0, h, n-1, n-1) >= 1){ low = h; }else{ high = h; } } dv= low; } int eu = -1, ev = -1; { int low = -1, high = n-1; while(high - low > 1){ int h = high+low>>1; if(q(0, 0, h, n-1) >= 2){ high = h; }else{ low = h; } } eu = high; } { int low = -1, high = n-1; while(high - low > 1){ int h = high+low>>1; if(q(0, 0, h, n-1) >= 1){ high = h; }else{ low = h; } } ev = high; } int fu = -1, fv = -1; { int low = 0, high = n; while(high - low > 1){ int h = high+low>>1; if(q(h, 0, n-1, n-1) >= 2){ low = h; }else{ high = h; } } fu = low; } { int low = 0, high = n; while(high - low > 1){ int h = high+low>>1; if(q(h, 0, n-1, n-1) >= 1){ low = h; }else{ high = h; } } fv= low; } // cv <= cu // du <= dv int[][][] canc = { {{du, cu}, {dv, cv}}, {{du, cv}, {dv, cu}} }; int[][][] canr = { {{fu, eu}, {fv, ev}}, {{fu, ev}, {fv, eu}} }; for(int[][] cr : canr){ if(cr[0][0] > cr[0][1])continue; if(cr[1][0] > cr[1][1])continue; for(int[][] cc : canc){ if(cc[0][0] > cc[0][1])continue; if(cc[1][0] > cc[1][1])continue; for(int z = 0;z < 2;z++){ if( q(cr[0][0], cc[0^z][0], cr[0][1], cc[0^z][1]) == 1 && q(cr[1][0], cc[1^z][0], cr[1][1], cc[1^z][1]) == 1){ e(cr[0][0], cc[0^z][0], cr[0][1], cc[0^z][1], cr[1][0], cc[1^z][0], cr[1][1], cc[1^z][1]); return; } } } } throw new RuntimeException(); } void run() throws Exception { in = oj ? new Scanner(System.in) : new Scanner(INPUT); out = new PrintWriter(System.out); long s = System.currentTimeMillis(); solve(); out.flush(); tr(System.currentTimeMillis()-s+"ms"); } public static void main(String[] args) throws Exception { new BT().run(); } int ni() { return Integer.parseInt(in.next()); } long nl() { return Long.parseLong(in.next()); } double nd() { return Double.parseDouble(in.next()); } boolean oj = System.getProperty("ONLINE_JUDGE") != null; void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> //package round371; import java.io.PrintWriter; import java.util.Arrays; import java.util.Scanner; public class BT { Scanner in; PrintWriter out; String INPUT = ""; int q(int r1, int c1, int r2, int c2) { out.printf("? %d %d %d %d\n", r1+1, c1+1, r2+1, c2+1); out.flush(); return ni(); } void e(int r1, int c1, int r2, int c2, int r3, int c3, int r4, int c4) { out.printf("! %d %d %d %d %d %d %d %d\n", r1+1, c1+1, r2+1, c2+1, r3+1, c3+1, r4+1, c4+1 ); out.flush(); } void solve() { int n = ni(); int cu = -1, cv = -1; { int low = -1, high = n-1; while(high - low > 1){ int h = high+low>>1; if(q(0, 0, n-1, h) >= 2){ high = h; }else{ low = h; } } cu = high; } { int low = -1, high = n-1; while(high - low > 1){ int h = high+low>>1; if(q(0, 0, n-1, h) >= 1){ high = h; }else{ low = h; } } cv = high; } int du = -1, dv = -1; { int low = 0, high = n; while(high - low > 1){ int h = high+low>>1; if(q(0, h, n-1, n-1) >= 2){ low = h; }else{ high = h; } } du = low; } { int low = 0, high = n; while(high - low > 1){ int h = high+low>>1; if(q(0, h, n-1, n-1) >= 1){ low = h; }else{ high = h; } } dv= low; } int eu = -1, ev = -1; { int low = -1, high = n-1; while(high - low > 1){ int h = high+low>>1; if(q(0, 0, h, n-1) >= 2){ high = h; }else{ low = h; } } eu = high; } { int low = -1, high = n-1; while(high - low > 1){ int h = high+low>>1; if(q(0, 0, h, n-1) >= 1){ high = h; }else{ low = h; } } ev = high; } int fu = -1, fv = -1; { int low = 0, high = n; while(high - low > 1){ int h = high+low>>1; if(q(h, 0, n-1, n-1) >= 2){ low = h; }else{ high = h; } } fu = low; } { int low = 0, high = n; while(high - low > 1){ int h = high+low>>1; if(q(h, 0, n-1, n-1) >= 1){ low = h; }else{ high = h; } } fv= low; } // cv <= cu // du <= dv int[][][] canc = { {{du, cu}, {dv, cv}}, {{du, cv}, {dv, cu}} }; int[][][] canr = { {{fu, eu}, {fv, ev}}, {{fu, ev}, {fv, eu}} }; for(int[][] cr : canr){ if(cr[0][0] > cr[0][1])continue; if(cr[1][0] > cr[1][1])continue; for(int[][] cc : canc){ if(cc[0][0] > cc[0][1])continue; if(cc[1][0] > cc[1][1])continue; for(int z = 0;z < 2;z++){ if( q(cr[0][0], cc[0^z][0], cr[0][1], cc[0^z][1]) == 1 && q(cr[1][0], cc[1^z][0], cr[1][1], cc[1^z][1]) == 1){ e(cr[0][0], cc[0^z][0], cr[0][1], cc[0^z][1], cr[1][0], cc[1^z][0], cr[1][1], cc[1^z][1]); return; } } } } throw new RuntimeException(); } void run() throws Exception { in = oj ? new Scanner(System.in) : new Scanner(INPUT); out = new PrintWriter(System.out); long s = System.currentTimeMillis(); solve(); out.flush(); tr(System.currentTimeMillis()-s+"ms"); } public static void main(String[] args) throws Exception { new BT().run(); } int ni() { return Integer.parseInt(in.next()); } long nl() { return Long.parseLong(in.next()); } double nd() { return Double.parseDouble(in.next()); } boolean oj = System.getProperty("ONLINE_JUDGE") != null; void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,766
1,351
3,664
import java.io.OutputStream; import java.io.FileOutputStream; import java.io.IOException; import java.io.FileInputStream; import java.io.InputStream; import java.io.PrintWriter; import java.io.OutputStream; import java.io.IOException; import java.io.InputStreamReader; import java.io.File; import java.io.FileNotFoundException; import java.util.StringTokenizer; import java.io.Writer; import java.io.BufferedReader; import java.io.FileReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author zodiacLeo */ public class Main { public static void main(String[] args) { InputStream inputStream; try { inputStream = new FileInputStream("input.txt"); } catch (IOException e) { throw new RuntimeException(e); } OutputStream outputStream; try { outputStream = new FileOutputStream("output.txt"); } catch (IOException e) { throw new RuntimeException(e); } FastScanner in = new FastScanner(inputStream); FastPrinter out = new FastPrinter(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } static class TaskC { public void solve(int testNumber, FastScanner in, FastPrinter out) { int n = in.nextInt(); int m = in.nextInt(); int p = in.nextInt(); int[] x = new int[p]; int[] y = new int[p]; for (int i = 0; i < p; i++) { x[i] = in.nextInt(); y[i] = in.nextInt(); } int X = x[0]; int Y = y[0]; int D = -1; for (int dx = 1; dx <= n; dx++) { int x1 = dx; int y1 = 1; int xx = 0; int yy = 0; int minD = Integer.MAX_VALUE; for (int j = 0; j < p; j++) { int d = Math.abs(x1 - x[j]) + Math.abs(y1 - y[j]); if (d < minD) { minD = d; xx = x1; yy = y1; } } if (D < minD && minD != 0 && minD != Integer.MAX_VALUE) { D = minD; X = xx; Y = yy; } } for (int dx = 1; dx <= n; dx++) { int x1 = dx; int y1 = m; int xx = 0; int yy = 0; int minD = Integer.MAX_VALUE; for (int j = 0; j < p; j++) { int d = Math.abs(x1 - x[j]) + Math.abs(y1 - y[j]); if (d < minD) { minD = d; xx = x1; yy = y1; } } if (D < minD && minD != 0 && minD != Integer.MAX_VALUE) { D = minD; X = xx; Y = yy; } } for (int dy = 1; dy <= m; dy++) { int x1 = 1; int y1 = dy; int xx = 0; int yy = 0; int minD = Integer.MAX_VALUE; for (int j = 0; j < p; j++) { int d = Math.abs(x1 - x[j]) + Math.abs(y1 - y[j]); if (d < minD) { minD = d; xx = x1; yy = y1; } } if (D < minD && minD != 0 && minD != Integer.MAX_VALUE) { D = minD; X = xx; Y = yy; } } for (int dy = 1; dy <= m; dy++) { int x1 = n; int y1 = dy; int xx = 0; int yy = 0; int minD = Integer.MAX_VALUE; for (int j = 0; j < p; j++) { int d = Math.abs(x1 - x[j]) + Math.abs(y1 - y[j]); if (d < minD) { minD = d; xx = x1; yy = y1; } } if (D < minD && minD != 0 && minD != Integer.MAX_VALUE) { D = minD; X = xx; Y = yy; } } for (int i = 1; i <= Math.min(m, n); i++) { int x1 = i; int y1 = i; int xx = 0; int yy = 0; int minD = Integer.MAX_VALUE; for (int j = 0; j < p; j++) { int d = Math.abs(x1 - x[j]) + Math.abs(y1 - y[j]); if (d < minD) { minD = d; xx = x1; yy = y1; } } if (D < minD && minD != 0 && minD != Integer.MAX_VALUE) { D = minD; X = xx; Y = yy; } } for (int i = 1, ii = m; i <= n && ii >= 1; i++, ii--) { int x1 = i; int y1 = ii; int xx = 0; int yy = 0; int minD = Integer.MAX_VALUE; for (int j = 0; j < p; j++) { int d = Math.abs(x1 - x[j]) + Math.abs(y1 - y[j]); if (d < minD) { minD = d; xx = x1; yy = y1; } } if (D < minD && minD != 0 && minD != Integer.MAX_VALUE) { D = minD; X = xx; Y = yy; } } out.println(X + " " + Y); } } static class FastScanner { public BufferedReader br; public StringTokenizer st; public FastScanner(InputStream is) { br = new BufferedReader(new InputStreamReader(is)); } public FastScanner(File f) { try { br = new BufferedReader(new FileReader(f)); } catch (FileNotFoundException e) { e.printStackTrace(); } } public String next() { while (st == null || !st.hasMoreElements()) { String s = null; try { s = br.readLine(); } catch (IOException e) { e.printStackTrace(); } if (s == null) return null; st = new StringTokenizer(s); } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } static class FastPrinter extends PrintWriter { public FastPrinter(OutputStream out) { super(out); } public FastPrinter(Writer out) { super(out); } } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.FileOutputStream; import java.io.IOException; import java.io.FileInputStream; import java.io.InputStream; import java.io.PrintWriter; import java.io.OutputStream; import java.io.IOException; import java.io.InputStreamReader; import java.io.File; import java.io.FileNotFoundException; import java.util.StringTokenizer; import java.io.Writer; import java.io.BufferedReader; import java.io.FileReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author zodiacLeo */ public class Main { public static void main(String[] args) { InputStream inputStream; try { inputStream = new FileInputStream("input.txt"); } catch (IOException e) { throw new RuntimeException(e); } OutputStream outputStream; try { outputStream = new FileOutputStream("output.txt"); } catch (IOException e) { throw new RuntimeException(e); } FastScanner in = new FastScanner(inputStream); FastPrinter out = new FastPrinter(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } static class TaskC { public void solve(int testNumber, FastScanner in, FastPrinter out) { int n = in.nextInt(); int m = in.nextInt(); int p = in.nextInt(); int[] x = new int[p]; int[] y = new int[p]; for (int i = 0; i < p; i++) { x[i] = in.nextInt(); y[i] = in.nextInt(); } int X = x[0]; int Y = y[0]; int D = -1; for (int dx = 1; dx <= n; dx++) { int x1 = dx; int y1 = 1; int xx = 0; int yy = 0; int minD = Integer.MAX_VALUE; for (int j = 0; j < p; j++) { int d = Math.abs(x1 - x[j]) + Math.abs(y1 - y[j]); if (d < minD) { minD = d; xx = x1; yy = y1; } } if (D < minD && minD != 0 && minD != Integer.MAX_VALUE) { D = minD; X = xx; Y = yy; } } for (int dx = 1; dx <= n; dx++) { int x1 = dx; int y1 = m; int xx = 0; int yy = 0; int minD = Integer.MAX_VALUE; for (int j = 0; j < p; j++) { int d = Math.abs(x1 - x[j]) + Math.abs(y1 - y[j]); if (d < minD) { minD = d; xx = x1; yy = y1; } } if (D < minD && minD != 0 && minD != Integer.MAX_VALUE) { D = minD; X = xx; Y = yy; } } for (int dy = 1; dy <= m; dy++) { int x1 = 1; int y1 = dy; int xx = 0; int yy = 0; int minD = Integer.MAX_VALUE; for (int j = 0; j < p; j++) { int d = Math.abs(x1 - x[j]) + Math.abs(y1 - y[j]); if (d < minD) { minD = d; xx = x1; yy = y1; } } if (D < minD && minD != 0 && minD != Integer.MAX_VALUE) { D = minD; X = xx; Y = yy; } } for (int dy = 1; dy <= m; dy++) { int x1 = n; int y1 = dy; int xx = 0; int yy = 0; int minD = Integer.MAX_VALUE; for (int j = 0; j < p; j++) { int d = Math.abs(x1 - x[j]) + Math.abs(y1 - y[j]); if (d < minD) { minD = d; xx = x1; yy = y1; } } if (D < minD && minD != 0 && minD != Integer.MAX_VALUE) { D = minD; X = xx; Y = yy; } } for (int i = 1; i <= Math.min(m, n); i++) { int x1 = i; int y1 = i; int xx = 0; int yy = 0; int minD = Integer.MAX_VALUE; for (int j = 0; j < p; j++) { int d = Math.abs(x1 - x[j]) + Math.abs(y1 - y[j]); if (d < minD) { minD = d; xx = x1; yy = y1; } } if (D < minD && minD != 0 && minD != Integer.MAX_VALUE) { D = minD; X = xx; Y = yy; } } for (int i = 1, ii = m; i <= n && ii >= 1; i++, ii--) { int x1 = i; int y1 = ii; int xx = 0; int yy = 0; int minD = Integer.MAX_VALUE; for (int j = 0; j < p; j++) { int d = Math.abs(x1 - x[j]) + Math.abs(y1 - y[j]); if (d < minD) { minD = d; xx = x1; yy = y1; } } if (D < minD && minD != 0 && minD != Integer.MAX_VALUE) { D = minD; X = xx; Y = yy; } } out.println(X + " " + Y); } } static class FastScanner { public BufferedReader br; public StringTokenizer st; public FastScanner(InputStream is) { br = new BufferedReader(new InputStreamReader(is)); } public FastScanner(File f) { try { br = new BufferedReader(new FileReader(f)); } catch (FileNotFoundException e) { e.printStackTrace(); } } public String next() { while (st == null || !st.hasMoreElements()) { String s = null; try { s = br.readLine(); } catch (IOException e) { e.printStackTrace(); } if (s == null) return null; st = new StringTokenizer(s); } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } static class FastPrinter extends PrintWriter { public FastPrinter(OutputStream out) { super(out); } public FastPrinter(Writer out) { super(out); } } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.FileOutputStream; import java.io.IOException; import java.io.FileInputStream; import java.io.InputStream; import java.io.PrintWriter; import java.io.OutputStream; import java.io.IOException; import java.io.InputStreamReader; import java.io.File; import java.io.FileNotFoundException; import java.util.StringTokenizer; import java.io.Writer; import java.io.BufferedReader; import java.io.FileReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author zodiacLeo */ public class Main { public static void main(String[] args) { InputStream inputStream; try { inputStream = new FileInputStream("input.txt"); } catch (IOException e) { throw new RuntimeException(e); } OutputStream outputStream; try { outputStream = new FileOutputStream("output.txt"); } catch (IOException e) { throw new RuntimeException(e); } FastScanner in = new FastScanner(inputStream); FastPrinter out = new FastPrinter(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } static class TaskC { public void solve(int testNumber, FastScanner in, FastPrinter out) { int n = in.nextInt(); int m = in.nextInt(); int p = in.nextInt(); int[] x = new int[p]; int[] y = new int[p]; for (int i = 0; i < p; i++) { x[i] = in.nextInt(); y[i] = in.nextInt(); } int X = x[0]; int Y = y[0]; int D = -1; for (int dx = 1; dx <= n; dx++) { int x1 = dx; int y1 = 1; int xx = 0; int yy = 0; int minD = Integer.MAX_VALUE; for (int j = 0; j < p; j++) { int d = Math.abs(x1 - x[j]) + Math.abs(y1 - y[j]); if (d < minD) { minD = d; xx = x1; yy = y1; } } if (D < minD && minD != 0 && minD != Integer.MAX_VALUE) { D = minD; X = xx; Y = yy; } } for (int dx = 1; dx <= n; dx++) { int x1 = dx; int y1 = m; int xx = 0; int yy = 0; int minD = Integer.MAX_VALUE; for (int j = 0; j < p; j++) { int d = Math.abs(x1 - x[j]) + Math.abs(y1 - y[j]); if (d < minD) { minD = d; xx = x1; yy = y1; } } if (D < minD && minD != 0 && minD != Integer.MAX_VALUE) { D = minD; X = xx; Y = yy; } } for (int dy = 1; dy <= m; dy++) { int x1 = 1; int y1 = dy; int xx = 0; int yy = 0; int minD = Integer.MAX_VALUE; for (int j = 0; j < p; j++) { int d = Math.abs(x1 - x[j]) + Math.abs(y1 - y[j]); if (d < minD) { minD = d; xx = x1; yy = y1; } } if (D < minD && minD != 0 && minD != Integer.MAX_VALUE) { D = minD; X = xx; Y = yy; } } for (int dy = 1; dy <= m; dy++) { int x1 = n; int y1 = dy; int xx = 0; int yy = 0; int minD = Integer.MAX_VALUE; for (int j = 0; j < p; j++) { int d = Math.abs(x1 - x[j]) + Math.abs(y1 - y[j]); if (d < minD) { minD = d; xx = x1; yy = y1; } } if (D < minD && minD != 0 && minD != Integer.MAX_VALUE) { D = minD; X = xx; Y = yy; } } for (int i = 1; i <= Math.min(m, n); i++) { int x1 = i; int y1 = i; int xx = 0; int yy = 0; int minD = Integer.MAX_VALUE; for (int j = 0; j < p; j++) { int d = Math.abs(x1 - x[j]) + Math.abs(y1 - y[j]); if (d < minD) { minD = d; xx = x1; yy = y1; } } if (D < minD && minD != 0 && minD != Integer.MAX_VALUE) { D = minD; X = xx; Y = yy; } } for (int i = 1, ii = m; i <= n && ii >= 1; i++, ii--) { int x1 = i; int y1 = ii; int xx = 0; int yy = 0; int minD = Integer.MAX_VALUE; for (int j = 0; j < p; j++) { int d = Math.abs(x1 - x[j]) + Math.abs(y1 - y[j]); if (d < minD) { minD = d; xx = x1; yy = y1; } } if (D < minD && minD != 0 && minD != Integer.MAX_VALUE) { D = minD; X = xx; Y = yy; } } out.println(X + " " + Y); } } static class FastScanner { public BufferedReader br; public StringTokenizer st; public FastScanner(InputStream is) { br = new BufferedReader(new InputStreamReader(is)); } public FastScanner(File f) { try { br = new BufferedReader(new FileReader(f)); } catch (FileNotFoundException e) { e.printStackTrace(); } } public String next() { while (st == null || !st.hasMoreElements()) { String s = null; try { s = br.readLine(); } catch (IOException e) { e.printStackTrace(); } if (s == null) return null; st = new StringTokenizer(s); } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } static class FastPrinter extends PrintWriter { public FastPrinter(OutputStream out) { super(out); } public FastPrinter(Writer out) { super(out); } } } </CODE> <EVALUATION_RUBRIC> - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,947
3,656
3,321
import java.io.*; import java.util.*; public class CF387D { static class A { ArrayList<Integer> list = new ArrayList<>(); int u, v, d; } static final int INF = Integer.MAX_VALUE; static boolean bfs(A[] aa, int n) { ArrayDeque<Integer> q = new ArrayDeque<>(); for (int u = 1; u <= n; u++) if (aa[u].v > 0) aa[u].d = INF; else { aa[u].d = 0; q.addLast(u); } aa[0].d = INF; while (!q.isEmpty()) { int u = q.removeFirst(); for (int v : aa[u].list) { int w = aa[v].u; if (aa[w].d == INF) { aa[w].d = aa[u].d + 1; if (w == 0) return true; q.addLast(w); } } } return false; } static boolean dfs(A[] aa, int n, int u) { if (u == 0) return true; for (int v : aa[u].list) { int w = aa[v].u; if (aa[w].d == aa[u].d + 1 && dfs(aa, n, w)) { aa[u].v = v; aa[v].u = u; return true; } } aa[u].d = INF; return false; } static int matchings(A[] aa, int n) { int cnt = 0; while (bfs(aa, n)) for (int u = 1; u <= n; u++) if (aa[u].v == 0 && dfs(aa, n, u)) cnt++; return cnt; } public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); int m = Integer.parseInt(st.nextToken()); int[] eu = new int[m]; int[] ev = new int[m]; for (int j = 0; j < m; j++) { st = new StringTokenizer(br.readLine()); eu[j] = Integer.parseInt(st.nextToken()); ev[j] = Integer.parseInt(st.nextToken()); } A[] aa = new A[n + 1]; int min = m + n * 3; for (int ctr = 1; ctr <= n; ctr++) { boolean loop = false; boolean[] ci = new boolean[n + 1]; boolean[] co = new boolean[n + 1]; for (int i = 0; i <= n; i++) aa[i] = new A(); int m_ = 0; for (int j = 0; j < m; j++) { int u = eu[j]; int v = ev[j]; if (u == ctr && v == ctr) loop = true; else if (u == ctr && v != ctr) ci[v] = true; else if (u != ctr && v == ctr) co[u] = true; else { aa[u].list.add(v); m_++; } } int cnt = loop ? 0 : 1; for (int i = 1; i <= n; i++) if (i != ctr) { if (!ci[i]) cnt++; if (!co[i]) cnt++; } int m2 = matchings(aa, n); cnt += (m_ - m2) + (n - 1 - m2); if (min > cnt) min = cnt; } System.out.println(min); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class CF387D { static class A { ArrayList<Integer> list = new ArrayList<>(); int u, v, d; } static final int INF = Integer.MAX_VALUE; static boolean bfs(A[] aa, int n) { ArrayDeque<Integer> q = new ArrayDeque<>(); for (int u = 1; u <= n; u++) if (aa[u].v > 0) aa[u].d = INF; else { aa[u].d = 0; q.addLast(u); } aa[0].d = INF; while (!q.isEmpty()) { int u = q.removeFirst(); for (int v : aa[u].list) { int w = aa[v].u; if (aa[w].d == INF) { aa[w].d = aa[u].d + 1; if (w == 0) return true; q.addLast(w); } } } return false; } static boolean dfs(A[] aa, int n, int u) { if (u == 0) return true; for (int v : aa[u].list) { int w = aa[v].u; if (aa[w].d == aa[u].d + 1 && dfs(aa, n, w)) { aa[u].v = v; aa[v].u = u; return true; } } aa[u].d = INF; return false; } static int matchings(A[] aa, int n) { int cnt = 0; while (bfs(aa, n)) for (int u = 1; u <= n; u++) if (aa[u].v == 0 && dfs(aa, n, u)) cnt++; return cnt; } public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); int m = Integer.parseInt(st.nextToken()); int[] eu = new int[m]; int[] ev = new int[m]; for (int j = 0; j < m; j++) { st = new StringTokenizer(br.readLine()); eu[j] = Integer.parseInt(st.nextToken()); ev[j] = Integer.parseInt(st.nextToken()); } A[] aa = new A[n + 1]; int min = m + n * 3; for (int ctr = 1; ctr <= n; ctr++) { boolean loop = false; boolean[] ci = new boolean[n + 1]; boolean[] co = new boolean[n + 1]; for (int i = 0; i <= n; i++) aa[i] = new A(); int m_ = 0; for (int j = 0; j < m; j++) { int u = eu[j]; int v = ev[j]; if (u == ctr && v == ctr) loop = true; else if (u == ctr && v != ctr) ci[v] = true; else if (u != ctr && v == ctr) co[u] = true; else { aa[u].list.add(v); m_++; } } int cnt = loop ? 0 : 1; for (int i = 1; i <= n; i++) if (i != ctr) { if (!ci[i]) cnt++; if (!co[i]) cnt++; } int m2 = matchings(aa, n); cnt += (m_ - m2) + (n - 1 - m2); if (min > cnt) min = cnt; } System.out.println(min); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class CF387D { static class A { ArrayList<Integer> list = new ArrayList<>(); int u, v, d; } static final int INF = Integer.MAX_VALUE; static boolean bfs(A[] aa, int n) { ArrayDeque<Integer> q = new ArrayDeque<>(); for (int u = 1; u <= n; u++) if (aa[u].v > 0) aa[u].d = INF; else { aa[u].d = 0; q.addLast(u); } aa[0].d = INF; while (!q.isEmpty()) { int u = q.removeFirst(); for (int v : aa[u].list) { int w = aa[v].u; if (aa[w].d == INF) { aa[w].d = aa[u].d + 1; if (w == 0) return true; q.addLast(w); } } } return false; } static boolean dfs(A[] aa, int n, int u) { if (u == 0) return true; for (int v : aa[u].list) { int w = aa[v].u; if (aa[w].d == aa[u].d + 1 && dfs(aa, n, w)) { aa[u].v = v; aa[v].u = u; return true; } } aa[u].d = INF; return false; } static int matchings(A[] aa, int n) { int cnt = 0; while (bfs(aa, n)) for (int u = 1; u <= n; u++) if (aa[u].v == 0 && dfs(aa, n, u)) cnt++; return cnt; } public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); int m = Integer.parseInt(st.nextToken()); int[] eu = new int[m]; int[] ev = new int[m]; for (int j = 0; j < m; j++) { st = new StringTokenizer(br.readLine()); eu[j] = Integer.parseInt(st.nextToken()); ev[j] = Integer.parseInt(st.nextToken()); } A[] aa = new A[n + 1]; int min = m + n * 3; for (int ctr = 1; ctr <= n; ctr++) { boolean loop = false; boolean[] ci = new boolean[n + 1]; boolean[] co = new boolean[n + 1]; for (int i = 0; i <= n; i++) aa[i] = new A(); int m_ = 0; for (int j = 0; j < m; j++) { int u = eu[j]; int v = ev[j]; if (u == ctr && v == ctr) loop = true; else if (u == ctr && v != ctr) ci[v] = true; else if (u != ctr && v == ctr) co[u] = true; else { aa[u].list.add(v); m_++; } } int cnt = loop ? 0 : 1; for (int i = 1; i <= n; i++) if (i != ctr) { if (!ci[i]) cnt++; if (!co[i]) cnt++; } int m2 = matchings(aa, n); cnt += (m_ - m2) + (n - 1 - m2); if (min > cnt) min = cnt; } System.out.println(min); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,181
3,315
3,503
import java.io.*; import java.math.*; import java.security.*; import java.text.*; import java.util.*; import java.util.concurrent.*; import java.util.function.*; import java.util.regex.*; import java.util.stream.*; import static java.util.stream.Collectors.joining; import static java.util.stream.Collectors.toList; public class Main{ static long MOD = 1_000_000_007L; //static long MOD = 998_244_353L; //static long MOD = 1_000_000_033L; static long inv2 = (MOD + 1) / 2; static int[][] dir = new int[][]{{1, 0}, {0, 1}, {-1, 0}, {0, -1}}; static long lMax = 0x3f3f3f3f3f3f3f3fL; static int iMax = 0x3f3f3f3f; static HashMap <Long, Long> memo = new HashMap(); static MyScanner sc = new MyScanner(); //static ArrayList <Integer> primes; static int nn = 300000; static long[] pow2; static long [] fac; static long [] pow; static long [] inv; static long [] facInv; static int[] base; static int[] numOfDiffDiv; static int[] numOfDiv; static ArrayList <Integer> primes; //static int[] primes; static int ptr = 0; static boolean[] isPrime; //-----------PrintWriter for faster output--------------------------------- public static PrintWriter out; public static void main(String[] args) { out = new PrintWriter(new BufferedOutputStream(System.out)); // Start writing your solution here. ------------------------------------- /*fac = new long[nn + 1]; fac[1] = 1; for(int i = 2; i <= nn; i++) fac[i] = fac[i - 1] * i % MOD;*/ /*pow2 = new long[nn + 1]; pow2[0] = 1L; for(int i = 1; i <= nn; i++) pow2[i] = pow2[i - 1] * 2L;*/ /*inv = new long[nn + 1]; inv[1] = 1; for (int i = 2; i <= nn; ++i) inv[i] = (MOD - MOD / i) * inv[(int)(MOD % i)] % MOD;*/ /*facInv = new long[nn + 1]; facInv[0] = facInv[1] = 1; for (int i = 2; i <= nn; ++i) facInv[i] = facInv[i - 1] * inv[i] % MOD;*/ /*numOfDiffDiv = new int[nn + 1]; for(int i = 2; i <= nn; i++) if(numOfDiffDiv[i] == 0) for(int j = i; j <= nn; j += i) numOfDiv[j] ++;*/ /*numOfDiv = new int[nn + 1]; numOfDiv[1] = 1; for(int i = 2; i <= nn; i++) { for(int j = 2; j * j <= i; j++) { if(i % j == 0) { numOfDiv[i] = numOfDiv[i / j] + 1; break; } } }*/ //primes = sieveOfEratosthenes(100001); /* int t = 1; //t = sc.ni(); while(t-- > 0) { //boolean res = solve(); //out.println(res ? "YES" : "NO"); long res = solve(); out.println(res); }*/ int t = 1, tt = 0; //t = sc.ni(); for(int i = 1; i <40000; i++) squares.add(i * i); while(tt++ < t) { boolean res = solve(); //out.println("Case #" + tt + ": " + res); //out.println(res ? "YES" : "NO"); } out.close(); } static HashSet <Integer> squares = new HashSet(); static boolean solve() { /*String s = sc.nextLine(); char[] c = s.toCharArray(); int n = c.length;*/ //int n = sc.ni(); //long[] a = new long[n]; //for(int i = 0; i < n; i++) a[i] = sc.nl(); long res = 0; int n = sc.ni(); long m = sc.nl(); long[][][] dp = new long[2][5][5]; long[][][] dp2 = new long[2][5][5]; dp[0][2][1] = dp[1][2][2] = dp2[0][1][1] = 1L; for(int i = 3; i <= n; i++) { long[][] bef = dp[0]; long[][] aft = dp[1]; long[][] nbef = new long[i + 3][i + 3]; long[][] naft = new long[i + 3][i + 3]; for(int len = 1; len <= i; len++) { for(int ind = 1; ind <= len; ind++) { nbef[len + 1][1] += bef[len][ind]; nbef[len + 1][ind + 1] -= bef[len][ind]; naft[len + 1][ind + 1] += bef[len][ind]; //naft[len + 1][len + 2] -= bef[len][ind]; naft[len + 1][ind + 1] += aft[len][ind]; //naft[len + 1][len + 2] -= aft[len][ind]; nbef[len + 1][1] += dp2[0][len][ind] + dp2[1][len][ind]; //nbef[len + 1][len + 2] -= dp2[0][len][ind] + dp2[1][len][ind]; } } for(int len = 1; len <= i; len++) { for(int ind = 1; ind <= len; ind ++) { nbef[len][ind] = (nbef[len][ind] + nbef[len][ind - 1] + 10000000L * m) % m; naft[len][ind] = (naft[len][ind] + naft[len][ind - 1] + 10000000L * m) % m; } } dp2 = dp; dp = new long[][][]{nbef, naft}; } for(long[] row: dp[0]) for(long i : row) res += i; for(long[] row: dp[1]) for(long i : row) res += i; out.println(res % m); return false; } // edges to adjacency list by uwi public static int[][] packU(int n, int[] from, int[] to) { return packU(n, from, to, from.length); } public static int[][] packU(int n, int[] from, int[] to, int sup) { int[][] g = new int[n][]; int[] p = new int[n]; for (int i = 0; i < sup; i++) p[from[i]]++; for (int i = 0; i < sup; i++) p[to[i]]++; for (int i = 0; i < n; i++) g[i] = new int[p[i]]; for (int i = 0; i < sup; i++) { g[from[i]][--p[from[i]]] = to[i]; g[to[i]][--p[to[i]]] = from[i]; } return g; } // tree diameter by uwi public static int[] diameter(int[][] g) { int n = g.length; int f0 = -1, f1 = -1, d01 = -1; int[] q = new int[n]; boolean[] ved = new boolean[n]; { int qp = 0; q[qp++] = 0; ved[0] = true; for(int i = 0;i < qp;i++){ int cur = q[i]; for(int e : g[cur]){ if(!ved[e]){ ved[e] = true; q[qp++] = e; continue; } } } f0 = q[n-1]; } { int[] d = new int[n]; int qp = 0; Arrays.fill(ved, false); q[qp++] = f0; ved[f0] = true; for(int i = 0;i < qp;i++){ int cur = q[i]; for(int e : g[cur]){ if(!ved[e]){ ved[e] = true; q[qp++] = e; d[e] = d[cur] + 1; continue; } } } f1 = q[n-1]; d01 = d[f1]; } return new int[]{d01, f0, f1}; } public static long c(int n, int k) { return (fac[n] * facInv[k] % MOD) * facInv[n - k] % MOD; } // SegmentTree range min/max query by uwi public static class SegmentTreeRMQ { public int M, H, N; public int[] st; public SegmentTreeRMQ(int n) { N = n; M = Integer.highestOneBit(Math.max(N-1, 1))<<2; H = M>>>1; st = new int[M]; Arrays.fill(st, 0, M, Integer.MAX_VALUE); } public SegmentTreeRMQ(int[] a) { N = a.length; M = Integer.highestOneBit(Math.max(N-1, 1))<<2; H = M>>>1; st = new int[M]; for(int i = 0;i < N;i++){ st[H+i] = a[i]; } Arrays.fill(st, H+N, M, Integer.MAX_VALUE); for(int i = H-1;i >= 1;i--)propagate(i); } public void update(int pos, int x) { st[H+pos] = x; for(int i = (H+pos)>>>1;i >= 1;i >>>= 1)propagate(i); } private void propagate(int i) { st[i] = Math.min(st[2*i], st[2*i+1]); } public int minx(int l, int r){ int min = Integer.MAX_VALUE; if(l >= r)return min; while(l != 0){ int f = l&-l; if(l+f > r)break; int v = st[(H+l)/f]; if(v < min)min = v; l += f; } while(l < r){ int f = r&-r; int v = st[(H+r)/f-1]; if(v < min)min = v; r -= f; } return min; } public int min(int l, int r){ return l >= r ? 0 : min(l, r, 0, H, 1);} private int min(int l, int r, int cl, int cr, int cur) { if(l <= cl && cr <= r){ return st[cur]; }else{ int mid = cl+cr>>>1; int ret = Integer.MAX_VALUE; if(cl < r && l < mid){ ret = Math.min(ret, min(l, r, cl, mid, 2*cur)); } if(mid < r && l < cr){ ret = Math.min(ret, min(l, r, mid, cr, 2*cur+1)); } return ret; } } } public static char[] rev(char[] a){char[] b = new char[a.length];for(int i = 0;i < a.length;i++)b[a.length-1-i] = a[i];return b;} public static double dist(double a, double b){ return Math.sqrt(a * a + b * b); } public static long inv(long a){ return quickPOW(a, MOD - 2); } public class Interval { int start; int end; public Interval(int start, int end) { this.start = start; this.end = end; } } public static ArrayList<Integer> sieveOfEratosthenes(int n) { boolean prime[] = new boolean[n + 1]; Arrays.fill(prime, true); for (int p = 2; p * p <= n; p++) { if (prime[p]) { for (int i = p * 2; i <= n; i += p) { prime[i] = false; } } } ArrayList<Integer> primeNumbers = new ArrayList<>(); for (int i = 2; i <= n; i++) { if (prime[i]) { primeNumbers.add(i); } } return primeNumbers; } public static int lowerBound(int[] a, int v){ return lowerBound(a, 0, a.length, v); } public static int lowerBound(int[] a, int l, int r, int v) { if(l > r || l < 0 || r > a.length)throw new IllegalArgumentException(); int low = l-1, high = r; while(high-low > 1){ int h = high+low>>>1; if(a[h] >= v){ high = h; }else{ low = h; } } return high; } public static int rlowerBound(int[] a, int v){ return lowerBound(a, 0, a.length, v); } public static int rlowerBound(int[] a, int l, int r, int v) { if(l > r || l < 0 || r > a.length)throw new IllegalArgumentException(); int low = l-1, high = r; while(high-low > 1){ int h = high+low>>>1; if(a[h] <= v){ high = h; }else{ low = h; } } return high; } public static long C(int n, int m) { if(m == 0 || m == n) return 1l; if(m > n || m < 0) return 0l; long res = fac[n] * quickPOW((fac[m] * fac[n - m]) % MOD, MOD - 2) % MOD; return res; } public static long quickPOW(long n, long m) { long ans = 1l; while(m > 0) { if(m % 2 == 1) ans = (ans * n) % MOD; n = (n * n) % MOD; m >>= 1; } return ans; } public static long quickPOW(long n, long m, long mod) { long ans = 1l; while(m > 0) { if(m % 2 == 1) ans = (ans * n) % mod; n = (n * n) % mod; m >>= 1; } return ans; } public static int gcd(int a, int b) { if(a % b == 0) return b; return gcd(b, a % b); } public static long gcd(long a, long b) { if(a % b == 0) return b; return gcd(b, a % b); } static class Randomized { public static void shuffle(int[] data) { shuffle(data, 0, data.length - 1); } public static void shuffle(int[] data, int from, int to) { to--; for (int i = from; i <= to; i++) { int s = nextInt(i, to); int tmp = data[i]; data[i] = data[s]; data[s] = tmp; } } public static void shuffle(long[] data) { shuffle(data, 0, data.length - 1); } public static void shuffle(long[] data, int from, int to) { to--; for (int i = from; i <= to; i++) { int s = nextInt(i, to); long tmp = data[i]; data[i] = data[s]; data[s] = tmp; } } public static int nextInt(int l, int r) { return RandomWrapper.INSTANCE.nextInt(l, r); } } static class RandomWrapper { private Random random; public static final RandomWrapper INSTANCE = new RandomWrapper(new Random()); public RandomWrapper() { this(new Random()); } public RandomWrapper(Random random) { this.random = random; } public int nextInt(int l, int r) { return random.nextInt(r - l + 1) + l; } } //-----------MyScanner class for faster input---------- public static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int ni() { return Integer.parseInt(next()); } long nl() { return Long.parseLong(next()); } double nd() { return Double.parseDouble(next()); } String nextLine(){ String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } //-------------------------------------------------------- }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.math.*; import java.security.*; import java.text.*; import java.util.*; import java.util.concurrent.*; import java.util.function.*; import java.util.regex.*; import java.util.stream.*; import static java.util.stream.Collectors.joining; import static java.util.stream.Collectors.toList; public class Main{ static long MOD = 1_000_000_007L; //static long MOD = 998_244_353L; //static long MOD = 1_000_000_033L; static long inv2 = (MOD + 1) / 2; static int[][] dir = new int[][]{{1, 0}, {0, 1}, {-1, 0}, {0, -1}}; static long lMax = 0x3f3f3f3f3f3f3f3fL; static int iMax = 0x3f3f3f3f; static HashMap <Long, Long> memo = new HashMap(); static MyScanner sc = new MyScanner(); //static ArrayList <Integer> primes; static int nn = 300000; static long[] pow2; static long [] fac; static long [] pow; static long [] inv; static long [] facInv; static int[] base; static int[] numOfDiffDiv; static int[] numOfDiv; static ArrayList <Integer> primes; //static int[] primes; static int ptr = 0; static boolean[] isPrime; //-----------PrintWriter for faster output--------------------------------- public static PrintWriter out; public static void main(String[] args) { out = new PrintWriter(new BufferedOutputStream(System.out)); // Start writing your solution here. ------------------------------------- /*fac = new long[nn + 1]; fac[1] = 1; for(int i = 2; i <= nn; i++) fac[i] = fac[i - 1] * i % MOD;*/ /*pow2 = new long[nn + 1]; pow2[0] = 1L; for(int i = 1; i <= nn; i++) pow2[i] = pow2[i - 1] * 2L;*/ /*inv = new long[nn + 1]; inv[1] = 1; for (int i = 2; i <= nn; ++i) inv[i] = (MOD - MOD / i) * inv[(int)(MOD % i)] % MOD;*/ /*facInv = new long[nn + 1]; facInv[0] = facInv[1] = 1; for (int i = 2; i <= nn; ++i) facInv[i] = facInv[i - 1] * inv[i] % MOD;*/ /*numOfDiffDiv = new int[nn + 1]; for(int i = 2; i <= nn; i++) if(numOfDiffDiv[i] == 0) for(int j = i; j <= nn; j += i) numOfDiv[j] ++;*/ /*numOfDiv = new int[nn + 1]; numOfDiv[1] = 1; for(int i = 2; i <= nn; i++) { for(int j = 2; j * j <= i; j++) { if(i % j == 0) { numOfDiv[i] = numOfDiv[i / j] + 1; break; } } }*/ //primes = sieveOfEratosthenes(100001); /* int t = 1; //t = sc.ni(); while(t-- > 0) { //boolean res = solve(); //out.println(res ? "YES" : "NO"); long res = solve(); out.println(res); }*/ int t = 1, tt = 0; //t = sc.ni(); for(int i = 1; i <40000; i++) squares.add(i * i); while(tt++ < t) { boolean res = solve(); //out.println("Case #" + tt + ": " + res); //out.println(res ? "YES" : "NO"); } out.close(); } static HashSet <Integer> squares = new HashSet(); static boolean solve() { /*String s = sc.nextLine(); char[] c = s.toCharArray(); int n = c.length;*/ //int n = sc.ni(); //long[] a = new long[n]; //for(int i = 0; i < n; i++) a[i] = sc.nl(); long res = 0; int n = sc.ni(); long m = sc.nl(); long[][][] dp = new long[2][5][5]; long[][][] dp2 = new long[2][5][5]; dp[0][2][1] = dp[1][2][2] = dp2[0][1][1] = 1L; for(int i = 3; i <= n; i++) { long[][] bef = dp[0]; long[][] aft = dp[1]; long[][] nbef = new long[i + 3][i + 3]; long[][] naft = new long[i + 3][i + 3]; for(int len = 1; len <= i; len++) { for(int ind = 1; ind <= len; ind++) { nbef[len + 1][1] += bef[len][ind]; nbef[len + 1][ind + 1] -= bef[len][ind]; naft[len + 1][ind + 1] += bef[len][ind]; //naft[len + 1][len + 2] -= bef[len][ind]; naft[len + 1][ind + 1] += aft[len][ind]; //naft[len + 1][len + 2] -= aft[len][ind]; nbef[len + 1][1] += dp2[0][len][ind] + dp2[1][len][ind]; //nbef[len + 1][len + 2] -= dp2[0][len][ind] + dp2[1][len][ind]; } } for(int len = 1; len <= i; len++) { for(int ind = 1; ind <= len; ind ++) { nbef[len][ind] = (nbef[len][ind] + nbef[len][ind - 1] + 10000000L * m) % m; naft[len][ind] = (naft[len][ind] + naft[len][ind - 1] + 10000000L * m) % m; } } dp2 = dp; dp = new long[][][]{nbef, naft}; } for(long[] row: dp[0]) for(long i : row) res += i; for(long[] row: dp[1]) for(long i : row) res += i; out.println(res % m); return false; } // edges to adjacency list by uwi public static int[][] packU(int n, int[] from, int[] to) { return packU(n, from, to, from.length); } public static int[][] packU(int n, int[] from, int[] to, int sup) { int[][] g = new int[n][]; int[] p = new int[n]; for (int i = 0; i < sup; i++) p[from[i]]++; for (int i = 0; i < sup; i++) p[to[i]]++; for (int i = 0; i < n; i++) g[i] = new int[p[i]]; for (int i = 0; i < sup; i++) { g[from[i]][--p[from[i]]] = to[i]; g[to[i]][--p[to[i]]] = from[i]; } return g; } // tree diameter by uwi public static int[] diameter(int[][] g) { int n = g.length; int f0 = -1, f1 = -1, d01 = -1; int[] q = new int[n]; boolean[] ved = new boolean[n]; { int qp = 0; q[qp++] = 0; ved[0] = true; for(int i = 0;i < qp;i++){ int cur = q[i]; for(int e : g[cur]){ if(!ved[e]){ ved[e] = true; q[qp++] = e; continue; } } } f0 = q[n-1]; } { int[] d = new int[n]; int qp = 0; Arrays.fill(ved, false); q[qp++] = f0; ved[f0] = true; for(int i = 0;i < qp;i++){ int cur = q[i]; for(int e : g[cur]){ if(!ved[e]){ ved[e] = true; q[qp++] = e; d[e] = d[cur] + 1; continue; } } } f1 = q[n-1]; d01 = d[f1]; } return new int[]{d01, f0, f1}; } public static long c(int n, int k) { return (fac[n] * facInv[k] % MOD) * facInv[n - k] % MOD; } // SegmentTree range min/max query by uwi public static class SegmentTreeRMQ { public int M, H, N; public int[] st; public SegmentTreeRMQ(int n) { N = n; M = Integer.highestOneBit(Math.max(N-1, 1))<<2; H = M>>>1; st = new int[M]; Arrays.fill(st, 0, M, Integer.MAX_VALUE); } public SegmentTreeRMQ(int[] a) { N = a.length; M = Integer.highestOneBit(Math.max(N-1, 1))<<2; H = M>>>1; st = new int[M]; for(int i = 0;i < N;i++){ st[H+i] = a[i]; } Arrays.fill(st, H+N, M, Integer.MAX_VALUE); for(int i = H-1;i >= 1;i--)propagate(i); } public void update(int pos, int x) { st[H+pos] = x; for(int i = (H+pos)>>>1;i >= 1;i >>>= 1)propagate(i); } private void propagate(int i) { st[i] = Math.min(st[2*i], st[2*i+1]); } public int minx(int l, int r){ int min = Integer.MAX_VALUE; if(l >= r)return min; while(l != 0){ int f = l&-l; if(l+f > r)break; int v = st[(H+l)/f]; if(v < min)min = v; l += f; } while(l < r){ int f = r&-r; int v = st[(H+r)/f-1]; if(v < min)min = v; r -= f; } return min; } public int min(int l, int r){ return l >= r ? 0 : min(l, r, 0, H, 1);} private int min(int l, int r, int cl, int cr, int cur) { if(l <= cl && cr <= r){ return st[cur]; }else{ int mid = cl+cr>>>1; int ret = Integer.MAX_VALUE; if(cl < r && l < mid){ ret = Math.min(ret, min(l, r, cl, mid, 2*cur)); } if(mid < r && l < cr){ ret = Math.min(ret, min(l, r, mid, cr, 2*cur+1)); } return ret; } } } public static char[] rev(char[] a){char[] b = new char[a.length];for(int i = 0;i < a.length;i++)b[a.length-1-i] = a[i];return b;} public static double dist(double a, double b){ return Math.sqrt(a * a + b * b); } public static long inv(long a){ return quickPOW(a, MOD - 2); } public class Interval { int start; int end; public Interval(int start, int end) { this.start = start; this.end = end; } } public static ArrayList<Integer> sieveOfEratosthenes(int n) { boolean prime[] = new boolean[n + 1]; Arrays.fill(prime, true); for (int p = 2; p * p <= n; p++) { if (prime[p]) { for (int i = p * 2; i <= n; i += p) { prime[i] = false; } } } ArrayList<Integer> primeNumbers = new ArrayList<>(); for (int i = 2; i <= n; i++) { if (prime[i]) { primeNumbers.add(i); } } return primeNumbers; } public static int lowerBound(int[] a, int v){ return lowerBound(a, 0, a.length, v); } public static int lowerBound(int[] a, int l, int r, int v) { if(l > r || l < 0 || r > a.length)throw new IllegalArgumentException(); int low = l-1, high = r; while(high-low > 1){ int h = high+low>>>1; if(a[h] >= v){ high = h; }else{ low = h; } } return high; } public static int rlowerBound(int[] a, int v){ return lowerBound(a, 0, a.length, v); } public static int rlowerBound(int[] a, int l, int r, int v) { if(l > r || l < 0 || r > a.length)throw new IllegalArgumentException(); int low = l-1, high = r; while(high-low > 1){ int h = high+low>>>1; if(a[h] <= v){ high = h; }else{ low = h; } } return high; } public static long C(int n, int m) { if(m == 0 || m == n) return 1l; if(m > n || m < 0) return 0l; long res = fac[n] * quickPOW((fac[m] * fac[n - m]) % MOD, MOD - 2) % MOD; return res; } public static long quickPOW(long n, long m) { long ans = 1l; while(m > 0) { if(m % 2 == 1) ans = (ans * n) % MOD; n = (n * n) % MOD; m >>= 1; } return ans; } public static long quickPOW(long n, long m, long mod) { long ans = 1l; while(m > 0) { if(m % 2 == 1) ans = (ans * n) % mod; n = (n * n) % mod; m >>= 1; } return ans; } public static int gcd(int a, int b) { if(a % b == 0) return b; return gcd(b, a % b); } public static long gcd(long a, long b) { if(a % b == 0) return b; return gcd(b, a % b); } static class Randomized { public static void shuffle(int[] data) { shuffle(data, 0, data.length - 1); } public static void shuffle(int[] data, int from, int to) { to--; for (int i = from; i <= to; i++) { int s = nextInt(i, to); int tmp = data[i]; data[i] = data[s]; data[s] = tmp; } } public static void shuffle(long[] data) { shuffle(data, 0, data.length - 1); } public static void shuffle(long[] data, int from, int to) { to--; for (int i = from; i <= to; i++) { int s = nextInt(i, to); long tmp = data[i]; data[i] = data[s]; data[s] = tmp; } } public static int nextInt(int l, int r) { return RandomWrapper.INSTANCE.nextInt(l, r); } } static class RandomWrapper { private Random random; public static final RandomWrapper INSTANCE = new RandomWrapper(new Random()); public RandomWrapper() { this(new Random()); } public RandomWrapper(Random random) { this.random = random; } public int nextInt(int l, int r) { return random.nextInt(r - l + 1) + l; } } //-----------MyScanner class for faster input---------- public static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int ni() { return Integer.parseInt(next()); } long nl() { return Long.parseLong(next()); } double nd() { return Double.parseDouble(next()); } String nextLine(){ String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } //-------------------------------------------------------- } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.math.*; import java.security.*; import java.text.*; import java.util.*; import java.util.concurrent.*; import java.util.function.*; import java.util.regex.*; import java.util.stream.*; import static java.util.stream.Collectors.joining; import static java.util.stream.Collectors.toList; public class Main{ static long MOD = 1_000_000_007L; //static long MOD = 998_244_353L; //static long MOD = 1_000_000_033L; static long inv2 = (MOD + 1) / 2; static int[][] dir = new int[][]{{1, 0}, {0, 1}, {-1, 0}, {0, -1}}; static long lMax = 0x3f3f3f3f3f3f3f3fL; static int iMax = 0x3f3f3f3f; static HashMap <Long, Long> memo = new HashMap(); static MyScanner sc = new MyScanner(); //static ArrayList <Integer> primes; static int nn = 300000; static long[] pow2; static long [] fac; static long [] pow; static long [] inv; static long [] facInv; static int[] base; static int[] numOfDiffDiv; static int[] numOfDiv; static ArrayList <Integer> primes; //static int[] primes; static int ptr = 0; static boolean[] isPrime; //-----------PrintWriter for faster output--------------------------------- public static PrintWriter out; public static void main(String[] args) { out = new PrintWriter(new BufferedOutputStream(System.out)); // Start writing your solution here. ------------------------------------- /*fac = new long[nn + 1]; fac[1] = 1; for(int i = 2; i <= nn; i++) fac[i] = fac[i - 1] * i % MOD;*/ /*pow2 = new long[nn + 1]; pow2[0] = 1L; for(int i = 1; i <= nn; i++) pow2[i] = pow2[i - 1] * 2L;*/ /*inv = new long[nn + 1]; inv[1] = 1; for (int i = 2; i <= nn; ++i) inv[i] = (MOD - MOD / i) * inv[(int)(MOD % i)] % MOD;*/ /*facInv = new long[nn + 1]; facInv[0] = facInv[1] = 1; for (int i = 2; i <= nn; ++i) facInv[i] = facInv[i - 1] * inv[i] % MOD;*/ /*numOfDiffDiv = new int[nn + 1]; for(int i = 2; i <= nn; i++) if(numOfDiffDiv[i] == 0) for(int j = i; j <= nn; j += i) numOfDiv[j] ++;*/ /*numOfDiv = new int[nn + 1]; numOfDiv[1] = 1; for(int i = 2; i <= nn; i++) { for(int j = 2; j * j <= i; j++) { if(i % j == 0) { numOfDiv[i] = numOfDiv[i / j] + 1; break; } } }*/ //primes = sieveOfEratosthenes(100001); /* int t = 1; //t = sc.ni(); while(t-- > 0) { //boolean res = solve(); //out.println(res ? "YES" : "NO"); long res = solve(); out.println(res); }*/ int t = 1, tt = 0; //t = sc.ni(); for(int i = 1; i <40000; i++) squares.add(i * i); while(tt++ < t) { boolean res = solve(); //out.println("Case #" + tt + ": " + res); //out.println(res ? "YES" : "NO"); } out.close(); } static HashSet <Integer> squares = new HashSet(); static boolean solve() { /*String s = sc.nextLine(); char[] c = s.toCharArray(); int n = c.length;*/ //int n = sc.ni(); //long[] a = new long[n]; //for(int i = 0; i < n; i++) a[i] = sc.nl(); long res = 0; int n = sc.ni(); long m = sc.nl(); long[][][] dp = new long[2][5][5]; long[][][] dp2 = new long[2][5][5]; dp[0][2][1] = dp[1][2][2] = dp2[0][1][1] = 1L; for(int i = 3; i <= n; i++) { long[][] bef = dp[0]; long[][] aft = dp[1]; long[][] nbef = new long[i + 3][i + 3]; long[][] naft = new long[i + 3][i + 3]; for(int len = 1; len <= i; len++) { for(int ind = 1; ind <= len; ind++) { nbef[len + 1][1] += bef[len][ind]; nbef[len + 1][ind + 1] -= bef[len][ind]; naft[len + 1][ind + 1] += bef[len][ind]; //naft[len + 1][len + 2] -= bef[len][ind]; naft[len + 1][ind + 1] += aft[len][ind]; //naft[len + 1][len + 2] -= aft[len][ind]; nbef[len + 1][1] += dp2[0][len][ind] + dp2[1][len][ind]; //nbef[len + 1][len + 2] -= dp2[0][len][ind] + dp2[1][len][ind]; } } for(int len = 1; len <= i; len++) { for(int ind = 1; ind <= len; ind ++) { nbef[len][ind] = (nbef[len][ind] + nbef[len][ind - 1] + 10000000L * m) % m; naft[len][ind] = (naft[len][ind] + naft[len][ind - 1] + 10000000L * m) % m; } } dp2 = dp; dp = new long[][][]{nbef, naft}; } for(long[] row: dp[0]) for(long i : row) res += i; for(long[] row: dp[1]) for(long i : row) res += i; out.println(res % m); return false; } // edges to adjacency list by uwi public static int[][] packU(int n, int[] from, int[] to) { return packU(n, from, to, from.length); } public static int[][] packU(int n, int[] from, int[] to, int sup) { int[][] g = new int[n][]; int[] p = new int[n]; for (int i = 0; i < sup; i++) p[from[i]]++; for (int i = 0; i < sup; i++) p[to[i]]++; for (int i = 0; i < n; i++) g[i] = new int[p[i]]; for (int i = 0; i < sup; i++) { g[from[i]][--p[from[i]]] = to[i]; g[to[i]][--p[to[i]]] = from[i]; } return g; } // tree diameter by uwi public static int[] diameter(int[][] g) { int n = g.length; int f0 = -1, f1 = -1, d01 = -1; int[] q = new int[n]; boolean[] ved = new boolean[n]; { int qp = 0; q[qp++] = 0; ved[0] = true; for(int i = 0;i < qp;i++){ int cur = q[i]; for(int e : g[cur]){ if(!ved[e]){ ved[e] = true; q[qp++] = e; continue; } } } f0 = q[n-1]; } { int[] d = new int[n]; int qp = 0; Arrays.fill(ved, false); q[qp++] = f0; ved[f0] = true; for(int i = 0;i < qp;i++){ int cur = q[i]; for(int e : g[cur]){ if(!ved[e]){ ved[e] = true; q[qp++] = e; d[e] = d[cur] + 1; continue; } } } f1 = q[n-1]; d01 = d[f1]; } return new int[]{d01, f0, f1}; } public static long c(int n, int k) { return (fac[n] * facInv[k] % MOD) * facInv[n - k] % MOD; } // SegmentTree range min/max query by uwi public static class SegmentTreeRMQ { public int M, H, N; public int[] st; public SegmentTreeRMQ(int n) { N = n; M = Integer.highestOneBit(Math.max(N-1, 1))<<2; H = M>>>1; st = new int[M]; Arrays.fill(st, 0, M, Integer.MAX_VALUE); } public SegmentTreeRMQ(int[] a) { N = a.length; M = Integer.highestOneBit(Math.max(N-1, 1))<<2; H = M>>>1; st = new int[M]; for(int i = 0;i < N;i++){ st[H+i] = a[i]; } Arrays.fill(st, H+N, M, Integer.MAX_VALUE); for(int i = H-1;i >= 1;i--)propagate(i); } public void update(int pos, int x) { st[H+pos] = x; for(int i = (H+pos)>>>1;i >= 1;i >>>= 1)propagate(i); } private void propagate(int i) { st[i] = Math.min(st[2*i], st[2*i+1]); } public int minx(int l, int r){ int min = Integer.MAX_VALUE; if(l >= r)return min; while(l != 0){ int f = l&-l; if(l+f > r)break; int v = st[(H+l)/f]; if(v < min)min = v; l += f; } while(l < r){ int f = r&-r; int v = st[(H+r)/f-1]; if(v < min)min = v; r -= f; } return min; } public int min(int l, int r){ return l >= r ? 0 : min(l, r, 0, H, 1);} private int min(int l, int r, int cl, int cr, int cur) { if(l <= cl && cr <= r){ return st[cur]; }else{ int mid = cl+cr>>>1; int ret = Integer.MAX_VALUE; if(cl < r && l < mid){ ret = Math.min(ret, min(l, r, cl, mid, 2*cur)); } if(mid < r && l < cr){ ret = Math.min(ret, min(l, r, mid, cr, 2*cur+1)); } return ret; } } } public static char[] rev(char[] a){char[] b = new char[a.length];for(int i = 0;i < a.length;i++)b[a.length-1-i] = a[i];return b;} public static double dist(double a, double b){ return Math.sqrt(a * a + b * b); } public static long inv(long a){ return quickPOW(a, MOD - 2); } public class Interval { int start; int end; public Interval(int start, int end) { this.start = start; this.end = end; } } public static ArrayList<Integer> sieveOfEratosthenes(int n) { boolean prime[] = new boolean[n + 1]; Arrays.fill(prime, true); for (int p = 2; p * p <= n; p++) { if (prime[p]) { for (int i = p * 2; i <= n; i += p) { prime[i] = false; } } } ArrayList<Integer> primeNumbers = new ArrayList<>(); for (int i = 2; i <= n; i++) { if (prime[i]) { primeNumbers.add(i); } } return primeNumbers; } public static int lowerBound(int[] a, int v){ return lowerBound(a, 0, a.length, v); } public static int lowerBound(int[] a, int l, int r, int v) { if(l > r || l < 0 || r > a.length)throw new IllegalArgumentException(); int low = l-1, high = r; while(high-low > 1){ int h = high+low>>>1; if(a[h] >= v){ high = h; }else{ low = h; } } return high; } public static int rlowerBound(int[] a, int v){ return lowerBound(a, 0, a.length, v); } public static int rlowerBound(int[] a, int l, int r, int v) { if(l > r || l < 0 || r > a.length)throw new IllegalArgumentException(); int low = l-1, high = r; while(high-low > 1){ int h = high+low>>>1; if(a[h] <= v){ high = h; }else{ low = h; } } return high; } public static long C(int n, int m) { if(m == 0 || m == n) return 1l; if(m > n || m < 0) return 0l; long res = fac[n] * quickPOW((fac[m] * fac[n - m]) % MOD, MOD - 2) % MOD; return res; } public static long quickPOW(long n, long m) { long ans = 1l; while(m > 0) { if(m % 2 == 1) ans = (ans * n) % MOD; n = (n * n) % MOD; m >>= 1; } return ans; } public static long quickPOW(long n, long m, long mod) { long ans = 1l; while(m > 0) { if(m % 2 == 1) ans = (ans * n) % mod; n = (n * n) % mod; m >>= 1; } return ans; } public static int gcd(int a, int b) { if(a % b == 0) return b; return gcd(b, a % b); } public static long gcd(long a, long b) { if(a % b == 0) return b; return gcd(b, a % b); } static class Randomized { public static void shuffle(int[] data) { shuffle(data, 0, data.length - 1); } public static void shuffle(int[] data, int from, int to) { to--; for (int i = from; i <= to; i++) { int s = nextInt(i, to); int tmp = data[i]; data[i] = data[s]; data[s] = tmp; } } public static void shuffle(long[] data) { shuffle(data, 0, data.length - 1); } public static void shuffle(long[] data, int from, int to) { to--; for (int i = from; i <= to; i++) { int s = nextInt(i, to); long tmp = data[i]; data[i] = data[s]; data[s] = tmp; } } public static int nextInt(int l, int r) { return RandomWrapper.INSTANCE.nextInt(l, r); } } static class RandomWrapper { private Random random; public static final RandomWrapper INSTANCE = new RandomWrapper(new Random()); public RandomWrapper() { this(new Random()); } public RandomWrapper(Random random) { this.random = random; } public int nextInt(int l, int r) { return random.nextInt(r - l + 1) + l; } } //-----------MyScanner class for faster input---------- public static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int ni() { return Integer.parseInt(next()); } long nl() { return Long.parseLong(next()); } double nd() { return Double.parseDouble(next()); } String nextLine(){ String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } //-------------------------------------------------------- } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
4,428
3,497
4,203
import java.util.Locale; import java.util.Scanner; public class E { public static void main(String[] args) { new E().run(); } private void run() { Locale.setDefault(Locale.US); Scanner sc = new Scanner(System.in); int n = sc.nextInt(); double[][] p = new double[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) p[i][j] = sc.nextDouble(); } sc.close(); double[] w = new double[1 << n]; int max = (1 << n) - 1; w[max] = 1; for (int mask = max; mask > 0; mask--) { int count = 0; for (int i = 0; i < n; i++) if (((mask >> i) & 1) > 0) for (int j = i + 1; j < n; j++) if (((mask >> j) & 1) > 0) { count++; } if (count > 0) for (int i = 0; i < n; i++) if (((mask >> i) & 1) > 0) for (int j = i + 1; j < n; j++) if (((mask >> j) & 1) > 0) { w[mask ^ (1 << j)] += w[mask] * p[i][j] / count; w[mask ^ (1 << i)] += w[mask] * (1 - p[i][j]) / count; } } for (int i = 0; i < n; i++) { if (i != 0) System.out.print(' '); System.out.printf("%.6f", w[1 << i]); } System.out.println(); } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Locale; import java.util.Scanner; public class E { public static void main(String[] args) { new E().run(); } private void run() { Locale.setDefault(Locale.US); Scanner sc = new Scanner(System.in); int n = sc.nextInt(); double[][] p = new double[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) p[i][j] = sc.nextDouble(); } sc.close(); double[] w = new double[1 << n]; int max = (1 << n) - 1; w[max] = 1; for (int mask = max; mask > 0; mask--) { int count = 0; for (int i = 0; i < n; i++) if (((mask >> i) & 1) > 0) for (int j = i + 1; j < n; j++) if (((mask >> j) & 1) > 0) { count++; } if (count > 0) for (int i = 0; i < n; i++) if (((mask >> i) & 1) > 0) for (int j = i + 1; j < n; j++) if (((mask >> j) & 1) > 0) { w[mask ^ (1 << j)] += w[mask] * p[i][j] / count; w[mask ^ (1 << i)] += w[mask] * (1 - p[i][j]) / count; } } for (int i = 0; i < n; i++) { if (i != 0) System.out.print(' '); System.out.printf("%.6f", w[1 << i]); } System.out.println(); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Locale; import java.util.Scanner; public class E { public static void main(String[] args) { new E().run(); } private void run() { Locale.setDefault(Locale.US); Scanner sc = new Scanner(System.in); int n = sc.nextInt(); double[][] p = new double[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) p[i][j] = sc.nextDouble(); } sc.close(); double[] w = new double[1 << n]; int max = (1 << n) - 1; w[max] = 1; for (int mask = max; mask > 0; mask--) { int count = 0; for (int i = 0; i < n; i++) if (((mask >> i) & 1) > 0) for (int j = i + 1; j < n; j++) if (((mask >> j) & 1) > 0) { count++; } if (count > 0) for (int i = 0; i < n; i++) if (((mask >> i) & 1) > 0) for (int j = i + 1; j < n; j++) if (((mask >> j) & 1) > 0) { w[mask ^ (1 << j)] += w[mask] * p[i][j] / count; w[mask ^ (1 << i)] += w[mask] * (1 - p[i][j]) / count; } } for (int i = 0; i < n; i++) { if (i != 0) System.out.print(' '); System.out.printf("%.6f", w[1 << i]); } System.out.println(); } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
753
4,192
3,471
import java.util.Scanner; public class p23a { public static void main(String[] args) { Scanner in = new Scanner(System.in); char[] x = in.next().toCharArray(); int min = 0; int max = x.length; while(true) { if(max-min == 1) break; int mid = (max+min)/2; boolean eq = false; for (int i = 0; i <= x.length-mid; i++) { for (int j = 0; j <= x.length-mid; j++) { if(j == i) continue; eq = true; for (int k = 0; k < mid; k++) { if(x[i+k] != x[j+k]) { eq = false; break; } } if(eq) break; } if(eq) break; } if(eq) { min = mid; } else { max = mid; } } System.out.println(min); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Scanner; public class p23a { public static void main(String[] args) { Scanner in = new Scanner(System.in); char[] x = in.next().toCharArray(); int min = 0; int max = x.length; while(true) { if(max-min == 1) break; int mid = (max+min)/2; boolean eq = false; for (int i = 0; i <= x.length-mid; i++) { for (int j = 0; j <= x.length-mid; j++) { if(j == i) continue; eq = true; for (int k = 0; k < mid; k++) { if(x[i+k] != x[j+k]) { eq = false; break; } } if(eq) break; } if(eq) break; } if(eq) { min = mid; } else { max = mid; } } System.out.println(min); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; public class p23a { public static void main(String[] args) { Scanner in = new Scanner(System.in); char[] x = in.next().toCharArray(); int min = 0; int max = x.length; while(true) { if(max-min == 1) break; int mid = (max+min)/2; boolean eq = false; for (int i = 0; i <= x.length-mid; i++) { for (int j = 0; j <= x.length-mid; j++) { if(j == i) continue; eq = true; for (int k = 0; k < mid; k++) { if(x[i+k] != x[j+k]) { eq = false; break; } } if(eq) break; } if(eq) break; } if(eq) { min = mid; } else { max = mid; } } System.out.println(min); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
565
3,465
4,496
// practice with rainboy import java.io.*; import java.util.*; public class CF1238E extends PrintWriter { CF1238E() { super(System.out, true); } Scanner sc = new Scanner(System.in); public static void main(String[] $) { CF1238E o = new CF1238E(); o.main(); o.flush(); } static final int INF = 0x3f3f3f3f; void main() { int n = sc.nextInt(); int m = sc.nextInt(); byte[] cc = sc.next().getBytes(); int[] kk = new int[1 << m]; for (int i = 1; i < n; i++) { int a = cc[i - 1] - 'a'; int b = cc[i] - 'a'; kk[1 << a | 1 << b]++; } for (int h = 0; h < m; h++) for (int b = 0; b < 1 << m; b++) if ((b & 1 << h) == 0) kk[b | 1 << h] += kk[b]; int[] dp = new int[1 << m]; int m_ = (1 << m) - 1; for (int b = 1; b < 1 << m; b++) { int k = n - 1 - kk[b] - kk[m_ ^ b]; int x = INF; for (int h = 0; h < m; h++) if ((b & 1 << h) != 0) { int b_ = b ^ 1 << h; x = Math.min(x, dp[b_]); } dp[b] = x == INF ? INF : x + k; } println(dp[m_]); } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> // practice with rainboy import java.io.*; import java.util.*; public class CF1238E extends PrintWriter { CF1238E() { super(System.out, true); } Scanner sc = new Scanner(System.in); public static void main(String[] $) { CF1238E o = new CF1238E(); o.main(); o.flush(); } static final int INF = 0x3f3f3f3f; void main() { int n = sc.nextInt(); int m = sc.nextInt(); byte[] cc = sc.next().getBytes(); int[] kk = new int[1 << m]; for (int i = 1; i < n; i++) { int a = cc[i - 1] - 'a'; int b = cc[i] - 'a'; kk[1 << a | 1 << b]++; } for (int h = 0; h < m; h++) for (int b = 0; b < 1 << m; b++) if ((b & 1 << h) == 0) kk[b | 1 << h] += kk[b]; int[] dp = new int[1 << m]; int m_ = (1 << m) - 1; for (int b = 1; b < 1 << m; b++) { int k = n - 1 - kk[b] - kk[m_ ^ b]; int x = INF; for (int h = 0; h < m; h++) if ((b & 1 << h) != 0) { int b_ = b ^ 1 << h; x = Math.min(x, dp[b_]); } dp[b] = x == INF ? INF : x + k; } println(dp[m_]); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> // practice with rainboy import java.io.*; import java.util.*; public class CF1238E extends PrintWriter { CF1238E() { super(System.out, true); } Scanner sc = new Scanner(System.in); public static void main(String[] $) { CF1238E o = new CF1238E(); o.main(); o.flush(); } static final int INF = 0x3f3f3f3f; void main() { int n = sc.nextInt(); int m = sc.nextInt(); byte[] cc = sc.next().getBytes(); int[] kk = new int[1 << m]; for (int i = 1; i < n; i++) { int a = cc[i - 1] - 'a'; int b = cc[i] - 'a'; kk[1 << a | 1 << b]++; } for (int h = 0; h < m; h++) for (int b = 0; b < 1 << m; b++) if ((b & 1 << h) == 0) kk[b | 1 << h] += kk[b]; int[] dp = new int[1 << m]; int m_ = (1 << m) - 1; for (int b = 1; b < 1 << m; b++) { int k = n - 1 - kk[b] - kk[m_ ^ b]; int x = INF; for (int h = 0; h < m; h++) if ((b & 1 << h) != 0) { int b_ = b ^ 1 << h; x = Math.min(x, dp[b_]); } dp[b] = x == INF ? INF : x + k; } println(dp[m_]); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
763
4,485
2,617
import java.io.*; import java.util.*; import java.util.Map.Entry; public class ProblemA { public static void main (String args[]) throws IOException{ BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); int n=Integer.parseInt(br.readLine()); String s1=br.readLine(); String[] s=s1.split(" "); int a[] = new int[n]; for(int i = 0;i<n;i++) { a[i]=Integer.parseInt(s[i]); } Arrays.sort(a); System.out.println(findColour(a,n)); } public static int findColour(int [] a , int n) { Map <Integer,Integer> mp = new HashMap<Integer,Integer>(); int f=0; for(int i = 0; i<n;i++) { f=0; for (Map.Entry<Integer,Integer> entry : mp.entrySet()) { if(a[i] % entry.getKey()==0) { f=1; break; } } if(f==0) { mp.put(a[i],1); } } return mp.size(); } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; import java.util.Map.Entry; public class ProblemA { public static void main (String args[]) throws IOException{ BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); int n=Integer.parseInt(br.readLine()); String s1=br.readLine(); String[] s=s1.split(" "); int a[] = new int[n]; for(int i = 0;i<n;i++) { a[i]=Integer.parseInt(s[i]); } Arrays.sort(a); System.out.println(findColour(a,n)); } public static int findColour(int [] a , int n) { Map <Integer,Integer> mp = new HashMap<Integer,Integer>(); int f=0; for(int i = 0; i<n;i++) { f=0; for (Map.Entry<Integer,Integer> entry : mp.entrySet()) { if(a[i] % entry.getKey()==0) { f=1; break; } } if(f==0) { mp.put(a[i],1); } } return mp.size(); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; import java.util.Map.Entry; public class ProblemA { public static void main (String args[]) throws IOException{ BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); int n=Integer.parseInt(br.readLine()); String s1=br.readLine(); String[] s=s1.split(" "); int a[] = new int[n]; for(int i = 0;i<n;i++) { a[i]=Integer.parseInt(s[i]); } Arrays.sort(a); System.out.println(findColour(a,n)); } public static int findColour(int [] a , int n) { Map <Integer,Integer> mp = new HashMap<Integer,Integer>(); int f=0; for(int i = 0; i<n;i++) { f=0; for (Map.Entry<Integer,Integer> entry : mp.entrySet()) { if(a[i] % entry.getKey()==0) { f=1; break; } } if(f==0) { mp.put(a[i],1); } } return mp.size(); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
598
2,611
3,551
import java.io.*; import java.util.*; import java.math.*; public class Main{ public static void main(String[] Args) throws Exception { Scanner sc = new Scanner(new FileReader("input.txt")); int n,m,k; Integer lx,ly; boolean d[][]; n = sc.nextInt(); m = sc.nextInt(); k = sc.nextInt(); d = new boolean [n+1][m+1]; for(int i=0;i<=n;++i) for(int j=0;j<=m;++j) d[i][j]=false; Queue< pair > q = new LinkedList< pair >(); lx = ly = -1; for(int i=0;i<k;++i){ int x,y; x = sc.nextInt(); y = sc.nextInt(); q.add(new pair(x,y)); lx = x; ly = y; d[x][y]=true; } int dx [] = {0,0,1,-1}; int dy [] = {-1,1,0,0}; while(!q.isEmpty()){ pair tp = q.remove(); int x = tp.x; int y = tp.y; for(int i=0;i<4;++i){ int nx = x+dx[i]; int ny = y+dy[i]; if(nx<1 || nx>n || ny<1 || ny>m || d[nx][ny] ) continue; d[nx][ny]=true; q.add(new pair(nx,ny)); lx = nx; ly = ny; } } FileWriter fw = new FileWriter("output.txt"); fw.write(lx.toString()); fw.write(" "); fw.write(ly.toString());; fw.flush(); } } class pair { public int x,y; public pair(int _x,int _y){ x = _x; y = _y; } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; import java.math.*; public class Main{ public static void main(String[] Args) throws Exception { Scanner sc = new Scanner(new FileReader("input.txt")); int n,m,k; Integer lx,ly; boolean d[][]; n = sc.nextInt(); m = sc.nextInt(); k = sc.nextInt(); d = new boolean [n+1][m+1]; for(int i=0;i<=n;++i) for(int j=0;j<=m;++j) d[i][j]=false; Queue< pair > q = new LinkedList< pair >(); lx = ly = -1; for(int i=0;i<k;++i){ int x,y; x = sc.nextInt(); y = sc.nextInt(); q.add(new pair(x,y)); lx = x; ly = y; d[x][y]=true; } int dx [] = {0,0,1,-1}; int dy [] = {-1,1,0,0}; while(!q.isEmpty()){ pair tp = q.remove(); int x = tp.x; int y = tp.y; for(int i=0;i<4;++i){ int nx = x+dx[i]; int ny = y+dy[i]; if(nx<1 || nx>n || ny<1 || ny>m || d[nx][ny] ) continue; d[nx][ny]=true; q.add(new pair(nx,ny)); lx = nx; ly = ny; } } FileWriter fw = new FileWriter("output.txt"); fw.write(lx.toString()); fw.write(" "); fw.write(ly.toString());; fw.flush(); } } class pair { public int x,y; public pair(int _x,int _y){ x = _x; y = _y; } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; import java.math.*; public class Main{ public static void main(String[] Args) throws Exception { Scanner sc = new Scanner(new FileReader("input.txt")); int n,m,k; Integer lx,ly; boolean d[][]; n = sc.nextInt(); m = sc.nextInt(); k = sc.nextInt(); d = new boolean [n+1][m+1]; for(int i=0;i<=n;++i) for(int j=0;j<=m;++j) d[i][j]=false; Queue< pair > q = new LinkedList< pair >(); lx = ly = -1; for(int i=0;i<k;++i){ int x,y; x = sc.nextInt(); y = sc.nextInt(); q.add(new pair(x,y)); lx = x; ly = y; d[x][y]=true; } int dx [] = {0,0,1,-1}; int dy [] = {-1,1,0,0}; while(!q.isEmpty()){ pair tp = q.remove(); int x = tp.x; int y = tp.y; for(int i=0;i<4;++i){ int nx = x+dx[i]; int ny = y+dy[i]; if(nx<1 || nx>n || ny<1 || ny>m || d[nx][ny] ) continue; d[nx][ny]=true; q.add(new pair(nx,ny)); lx = nx; ly = ny; } } FileWriter fw = new FileWriter("output.txt"); fw.write(lx.toString()); fw.write(" "); fw.write(ly.toString());; fw.flush(); } } class pair { public int x,y; public pair(int _x,int _y){ x = _x; y = _y; } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
749
3,544
1,984
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; import java.util.Arrays; public class A { static class team implements Comparable<team> { int problems; int penalty; public team(int problems,int penalty) { this.penalty=penalty; this.problems=problems; } public int compareTo(team a) { if (a.problems==this.problems) return this.penalty - a.penalty; return a.problems - this.problems; } public boolean igual(team a) { if (this.problems!=a.problems) return false; return (this.penalty==a.penalty); } } static class Scanner { BufferedReader rd; StringTokenizer tk; public Scanner() throws IOException { rd=new BufferedReader(new InputStreamReader(System.in)); tk=new StringTokenizer(rd.readLine()); } public String next() throws IOException { if (!tk.hasMoreTokens()) { tk=new StringTokenizer(rd.readLine()); return tk.nextToken(); } return tk.nextToken(); } public int nextInt() throws NumberFormatException, IOException { return Integer.valueOf(this.next()); } } static team[] array=new team[100]; static int N,K; public static void main(String args[]) throws IOException { Scanner sc=new Scanner(); N=sc.nextInt(); K=sc.nextInt(); for(int i=0;i<N;i++) { array[i]=new team(sc.nextInt(),sc.nextInt()); } Arrays.sort(array,0,N); /* for(int i=0;i<N;i++) System.out.println(array[i].problems);*/ int shared=0; for(int i=K-1;i>=0 && array[K-1].igual(array[i]);i--,shared++); for(int i=K;i<N && array[K-1].igual(array[i]);i++,shared++); System.out.println(shared); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; import java.util.Arrays; public class A { static class team implements Comparable<team> { int problems; int penalty; public team(int problems,int penalty) { this.penalty=penalty; this.problems=problems; } public int compareTo(team a) { if (a.problems==this.problems) return this.penalty - a.penalty; return a.problems - this.problems; } public boolean igual(team a) { if (this.problems!=a.problems) return false; return (this.penalty==a.penalty); } } static class Scanner { BufferedReader rd; StringTokenizer tk; public Scanner() throws IOException { rd=new BufferedReader(new InputStreamReader(System.in)); tk=new StringTokenizer(rd.readLine()); } public String next() throws IOException { if (!tk.hasMoreTokens()) { tk=new StringTokenizer(rd.readLine()); return tk.nextToken(); } return tk.nextToken(); } public int nextInt() throws NumberFormatException, IOException { return Integer.valueOf(this.next()); } } static team[] array=new team[100]; static int N,K; public static void main(String args[]) throws IOException { Scanner sc=new Scanner(); N=sc.nextInt(); K=sc.nextInt(); for(int i=0;i<N;i++) { array[i]=new team(sc.nextInt(),sc.nextInt()); } Arrays.sort(array,0,N); /* for(int i=0;i<N;i++) System.out.println(array[i].problems);*/ int shared=0; for(int i=K-1;i>=0 && array[K-1].igual(array[i]);i--,shared++); for(int i=K;i<N && array[K-1].igual(array[i]);i++,shared++); System.out.println(shared); } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; import java.util.Arrays; public class A { static class team implements Comparable<team> { int problems; int penalty; public team(int problems,int penalty) { this.penalty=penalty; this.problems=problems; } public int compareTo(team a) { if (a.problems==this.problems) return this.penalty - a.penalty; return a.problems - this.problems; } public boolean igual(team a) { if (this.problems!=a.problems) return false; return (this.penalty==a.penalty); } } static class Scanner { BufferedReader rd; StringTokenizer tk; public Scanner() throws IOException { rd=new BufferedReader(new InputStreamReader(System.in)); tk=new StringTokenizer(rd.readLine()); } public String next() throws IOException { if (!tk.hasMoreTokens()) { tk=new StringTokenizer(rd.readLine()); return tk.nextToken(); } return tk.nextToken(); } public int nextInt() throws NumberFormatException, IOException { return Integer.valueOf(this.next()); } } static team[] array=new team[100]; static int N,K; public static void main(String args[]) throws IOException { Scanner sc=new Scanner(); N=sc.nextInt(); K=sc.nextInt(); for(int i=0;i<N;i++) { array[i]=new team(sc.nextInt(),sc.nextInt()); } Arrays.sort(array,0,N); /* for(int i=0;i<N;i++) System.out.println(array[i].problems);*/ int shared=0; for(int i=K-1;i>=0 && array[K-1].igual(array[i]);i--,shared++); for(int i=K;i<N && array[K-1].igual(array[i]);i++,shared++); System.out.println(shared); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
779
1,980
3,086
import java.util.Scanner; public class Task1 { public static void main(String[] args) { int n = new Scanner(System.in).nextInt(); System.out.println(n*3/2); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; public class Task1 { public static void main(String[] args) { int n = new Scanner(System.in).nextInt(); System.out.println(n*3/2); } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Scanner; public class Task1 { public static void main(String[] args) { int n = new Scanner(System.in).nextInt(); System.out.println(n*3/2); } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
373
3,080
4,366
import java.util.*; public class Main { public static void main(String[] args) { Scanner in = new Scanner(System.in); int V = in.nextInt(); int E = in.nextInt(); boolean [][] G = new boolean [V][V]; for (int i = 0; i < E; i++) { int u = in.nextInt()-1; int v = in.nextInt()-1; G[u][v] = true; G[v][u] = true; } int pset = 1 << V; long [][] dp = new long [pset][V]; long cycles = 0; for (int set = 1; set < pset; set++) { int bit = Integer.bitCount(set); int src = first(set); if (bit == 1) { dp[set][src] = 1; } else if(bit > 1) { for (int i = 0; i < V; i++) { if(i == src) continue; // Check if i is in set if ((set & (1 << i)) != 0) { int S_1 = set ^ (1 << i); for (int v = 0; v < V; v++) { if (G[v][i] == true) { dp[set][i] += dp[S_1][v]; } } } //Count Cycles: if (bit >= 3 && G[src][i]) { cycles += dp[set][i]; } } } } System.out.println(cycles/2); } public static int first(int n) { int cnt = 0; while ((n & 1) != 1) { cnt++; n >>= 1; } return cnt; } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; public class Main { public static void main(String[] args) { Scanner in = new Scanner(System.in); int V = in.nextInt(); int E = in.nextInt(); boolean [][] G = new boolean [V][V]; for (int i = 0; i < E; i++) { int u = in.nextInt()-1; int v = in.nextInt()-1; G[u][v] = true; G[v][u] = true; } int pset = 1 << V; long [][] dp = new long [pset][V]; long cycles = 0; for (int set = 1; set < pset; set++) { int bit = Integer.bitCount(set); int src = first(set); if (bit == 1) { dp[set][src] = 1; } else if(bit > 1) { for (int i = 0; i < V; i++) { if(i == src) continue; // Check if i is in set if ((set & (1 << i)) != 0) { int S_1 = set ^ (1 << i); for (int v = 0; v < V; v++) { if (G[v][i] == true) { dp[set][i] += dp[S_1][v]; } } } //Count Cycles: if (bit >= 3 && G[src][i]) { cycles += dp[set][i]; } } } } System.out.println(cycles/2); } public static int first(int n) { int cnt = 0; while ((n & 1) != 1) { cnt++; n >>= 1; } return cnt; } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; public class Main { public static void main(String[] args) { Scanner in = new Scanner(System.in); int V = in.nextInt(); int E = in.nextInt(); boolean [][] G = new boolean [V][V]; for (int i = 0; i < E; i++) { int u = in.nextInt()-1; int v = in.nextInt()-1; G[u][v] = true; G[v][u] = true; } int pset = 1 << V; long [][] dp = new long [pset][V]; long cycles = 0; for (int set = 1; set < pset; set++) { int bit = Integer.bitCount(set); int src = first(set); if (bit == 1) { dp[set][src] = 1; } else if(bit > 1) { for (int i = 0; i < V; i++) { if(i == src) continue; // Check if i is in set if ((set & (1 << i)) != 0) { int S_1 = set ^ (1 << i); for (int v = 0; v < V; v++) { if (G[v][i] == true) { dp[set][i] += dp[S_1][v]; } } } //Count Cycles: if (bit >= 3 && G[src][i]) { cycles += dp[set][i]; } } } } System.out.println(cycles/2); } public static int first(int n) { int cnt = 0; while ((n & 1) != 1) { cnt++; n >>= 1; } return cnt; } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
765
4,355
1,799
import java.util.*; import java.io.*; public class Main { public static void main(String[] args) throws Exception { Scanner in = new Scanner(System.in); PrintWriter out = new PrintWriter(System.out); int n = in.nextInt(), m = in.nextInt(), k = in.nextInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = in.nextInt(); Arrays.sort(a); int ans = 0, r = k, p = n-1; while (r < m && p >= 0) { r = r - 1 + a[p]; p--; ans++; } if (r < m) out.println("-1"); else out.println(ans); out.flush(); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; public class Main { public static void main(String[] args) throws Exception { Scanner in = new Scanner(System.in); PrintWriter out = new PrintWriter(System.out); int n = in.nextInt(), m = in.nextInt(), k = in.nextInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = in.nextInt(); Arrays.sort(a); int ans = 0, r = k, p = n-1; while (r < m && p >= 0) { r = r - 1 + a[p]; p--; ans++; } if (r < m) out.println("-1"); else out.println(ans); out.flush(); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; public class Main { public static void main(String[] args) throws Exception { Scanner in = new Scanner(System.in); PrintWriter out = new PrintWriter(System.out); int n = in.nextInt(), m = in.nextInt(), k = in.nextInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = in.nextInt(); Arrays.sort(a); int ans = 0, r = k, p = n-1; while (r < m && p >= 0) { r = r - 1 + a[p]; p--; ans++; } if (r < m) out.println("-1"); else out.println(ans); out.flush(); } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit to any of the given categories or is ambiguous. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
524
1,795
2,407
import java.util.Scanner; public class D { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); int[] a = new int[n]; for(int i = 0; i < n; ++i) { a[i] = in.nextInt(); } int ans = 0; for(int i = 0; i < n; ++i) { for(int j = i+1; j < n; ++j) { if(a[i] > a[j]) ans++; } } int m = in.nextInt(); for(int i = 0; i < m; ++i) { int l = in.nextInt(); int r = in.nextInt(); int size = r-l + 1; int x = size * size - size; x = x >> 1; ans = ans^x; if(ans%2 == 0) System.out.println("even"); else System.out.println("odd"); } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; public class D { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); int[] a = new int[n]; for(int i = 0; i < n; ++i) { a[i] = in.nextInt(); } int ans = 0; for(int i = 0; i < n; ++i) { for(int j = i+1; j < n; ++j) { if(a[i] > a[j]) ans++; } } int m = in.nextInt(); for(int i = 0; i < m; ++i) { int l = in.nextInt(); int r = in.nextInt(); int size = r-l + 1; int x = size * size - size; x = x >> 1; ans = ans^x; if(ans%2 == 0) System.out.println("even"); else System.out.println("odd"); } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; public class D { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); int[] a = new int[n]; for(int i = 0; i < n; ++i) { a[i] = in.nextInt(); } int ans = 0; for(int i = 0; i < n; ++i) { for(int j = i+1; j < n; ++j) { if(a[i] > a[j]) ans++; } } int m = in.nextInt(); for(int i = 0; i < m; ++i) { int l = in.nextInt(); int r = in.nextInt(); int size = r-l + 1; int x = size * size - size; x = x >> 1; ans = ans^x; if(ans%2 == 0) System.out.println("even"); else System.out.println("odd"); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
567
2,402
2,955
import java.io.*; import java.util.*; public class p343a { public static void main(String args[]) { Scanner sc = new Scanner(System.in); System.out.println(); long a = sc.nextLong(); long b = sc.nextLong(); if(a==b) System.out.println("1"); else if(b==1) System.out.println(a); else if(a==1) System.out.println(b); else if(a>b) System.out.println(count(a,b)); else System.out.println(count(b,a)); } public static long count(long a,long b) { long count = 0; while(b!=1) { long c = a/b; count += c; long d = a-(c*b); a = b; b = d; if(b==1) { count += a; break; } } return count; } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class p343a { public static void main(String args[]) { Scanner sc = new Scanner(System.in); System.out.println(); long a = sc.nextLong(); long b = sc.nextLong(); if(a==b) System.out.println("1"); else if(b==1) System.out.println(a); else if(a==1) System.out.println(b); else if(a>b) System.out.println(count(a,b)); else System.out.println(count(b,a)); } public static long count(long a,long b) { long count = 0; while(b!=1) { long c = a/b; count += c; long d = a-(c*b); a = b; b = d; if(b==1) { count += a; break; } } return count; } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class p343a { public static void main(String args[]) { Scanner sc = new Scanner(System.in); System.out.println(); long a = sc.nextLong(); long b = sc.nextLong(); if(a==b) System.out.println("1"); else if(b==1) System.out.println(a); else if(a==1) System.out.println(b); else if(a>b) System.out.println(count(a,b)); else System.out.println(count(b,a)); } public static long count(long a,long b) { long count = 0; while(b!=1) { long c = a/b; count += c; long d = a-(c*b); a = b; b = d; if(b==1) { count += a; break; } } return count; } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
553
2,949
2,193
/* * * @Author Ajudiya_13(Bhargav Girdharbhai Ajudiya) * Dhirubhai Ambani Institute of Information And Communication Technology * */ import java.util.*; import java.io.*; import java.lang.*; public class Code3 { public static void main(String[] args) { InputReader in = new InputReader(System.in); PrintWriter pw = new PrintWriter(System.out); int n = in.nextInt(); double r = (double)in.nextInt(); double [] a = new double[n]; for(int i=0;i<n;i++) a[i] = (double)in.nextInt(); double[] ans = new double[n]; ans[0] = r; for(int i=1;i<n;i++) { double max = Double.MIN_VALUE; for(int j=0;j<i;j++) { if(Math.abs(a[i]-a[j])<=2*r) { //System.out.println(j); double cur = 4*r*r; cur -= ((a[i]-a[j])*(a[i]-a[j])); cur = Math.sqrt(cur); cur += ans[j]; //System.out.println(r); max = Math.max(max, cur); } } if(max == Double.MIN_VALUE) ans[i] = r; else ans[i] = max; } for(int i=0;i<n;i++) pw.print(ans[i] + " "); pw.flush(); pw.close(); } static class InputReader { private final InputStream stream; private final byte[] buf = new byte[8192]; private int curChar, snumChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int snext() { if (snumChars == -1) throw new InputMismatchException(); if (curChar >= snumChars) { curChar = 0; try { snumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (snumChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public int[] nextIntArray(int n) { int a[] = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } public String readString() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = snext(); } while (!isSpaceChar(c)); return res.toString(); } public String nextLine() { int c = snext(); while (isSpaceChar(c)) c = snext(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = snext(); } while (!isEndOfLine(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } public static long mod = 1000000007; public static int d; public static int p; public static int q; public static int[] suffle(int[] a,Random gen) { int n = a.length; for(int i=0;i<n;i++) { int ind = gen.nextInt(n-i)+i; int temp = a[ind]; a[ind] = a[i]; a[i] = temp; } return a; } public static void swap(int a, int b){ int temp = a; a = b; b = temp; } public static HashSet<Integer> primeFactorization(int n) { HashSet<Integer> a =new HashSet<Integer>(); for(int i=2;i*i<=n;i++) { while(n%i==0) { a.add(i); n/=i; } } if(n!=1) a.add(n); return a; } public static void sieve(boolean[] isPrime,int n) { for(int i=1;i<n;i++) isPrime[i] = true; isPrime[0] = false; isPrime[1] = false; for(int i=2;i*i<n;i++) { if(isPrime[i] == true) { for(int j=(2*i);j<n;j+=i) isPrime[j] = false; } } } public static int GCD(int a,int b) { if(b==0) return a; else return GCD(b,a%b); } public static long GCD(long a,long b) { if(b==0) return a; else return GCD(b,a%b); } public static void extendedEuclid(int A,int B) { if(B==0) { d = A; p = 1 ; q = 0; } else { extendedEuclid(B, A%B); int temp = p; p = q; q = temp - (A/B)*q; } } public static long LCM(long a,long b) { return (a*b)/GCD(a,b); } public static int LCM(int a,int b) { return (a*b)/GCD(a,b); } public static int binaryExponentiation(int x,int n) { int result=1; while(n>0) { if(n % 2 ==1) result=result * x; x=x*x; n=n/2; } return result; } public static long binaryExponentiation(long x,long n) { long result=1; while(n>0) { if(n % 2 ==1) result=result * x; x=x*x; n=n/2; } return result; } public static int modularExponentiation(int x,int n,int M) { int result=1; while(n>0) { if(n % 2 ==1) result=(result * x)%M; x=(x*x)%M; n=n/2; } return result; } public static long modularExponentiation(long x,long n,long M) { long result=1; while(n>0) { if(n % 2 ==1) result=(result * x)%M; x=(x*x)%M; n=n/2; } return result; } public static int modInverse(int A,int M) { return modularExponentiation(A,M-2,M); } public static long modInverse(long A,long M) { return modularExponentiation(A,M-2,M); } public static boolean isPrime(int n) { if (n <= 1) return false; if (n <= 3) return true; if (n%2 == 0 || n%3 == 0) return false; for (int i=5; i*i<=n; i=i+6) { if (n%i == 0 || n%(i+2) == 0) return false; } return true; } static class pair implements Comparable<pair> { Integer x, y; pair(int x,int y) { this.x=x; this.y=y; } public int compareTo(pair o) { int result = x.compareTo(o.x); if(result==0) result = y.compareTo(o.y); return result; } public String toString() { return x+" "+y; } public boolean equals(Object o) { if (o instanceof pair) { pair p = (pair)o; return p.x == x && p.y == y ; } return false; } public int hashCode() { return new Long(x).hashCode()*31 + new Long(y).hashCode(); } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> /* * * @Author Ajudiya_13(Bhargav Girdharbhai Ajudiya) * Dhirubhai Ambani Institute of Information And Communication Technology * */ import java.util.*; import java.io.*; import java.lang.*; public class Code3 { public static void main(String[] args) { InputReader in = new InputReader(System.in); PrintWriter pw = new PrintWriter(System.out); int n = in.nextInt(); double r = (double)in.nextInt(); double [] a = new double[n]; for(int i=0;i<n;i++) a[i] = (double)in.nextInt(); double[] ans = new double[n]; ans[0] = r; for(int i=1;i<n;i++) { double max = Double.MIN_VALUE; for(int j=0;j<i;j++) { if(Math.abs(a[i]-a[j])<=2*r) { //System.out.println(j); double cur = 4*r*r; cur -= ((a[i]-a[j])*(a[i]-a[j])); cur = Math.sqrt(cur); cur += ans[j]; //System.out.println(r); max = Math.max(max, cur); } } if(max == Double.MIN_VALUE) ans[i] = r; else ans[i] = max; } for(int i=0;i<n;i++) pw.print(ans[i] + " "); pw.flush(); pw.close(); } static class InputReader { private final InputStream stream; private final byte[] buf = new byte[8192]; private int curChar, snumChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int snext() { if (snumChars == -1) throw new InputMismatchException(); if (curChar >= snumChars) { curChar = 0; try { snumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (snumChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public int[] nextIntArray(int n) { int a[] = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } public String readString() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = snext(); } while (!isSpaceChar(c)); return res.toString(); } public String nextLine() { int c = snext(); while (isSpaceChar(c)) c = snext(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = snext(); } while (!isEndOfLine(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } public static long mod = 1000000007; public static int d; public static int p; public static int q; public static int[] suffle(int[] a,Random gen) { int n = a.length; for(int i=0;i<n;i++) { int ind = gen.nextInt(n-i)+i; int temp = a[ind]; a[ind] = a[i]; a[i] = temp; } return a; } public static void swap(int a, int b){ int temp = a; a = b; b = temp; } public static HashSet<Integer> primeFactorization(int n) { HashSet<Integer> a =new HashSet<Integer>(); for(int i=2;i*i<=n;i++) { while(n%i==0) { a.add(i); n/=i; } } if(n!=1) a.add(n); return a; } public static void sieve(boolean[] isPrime,int n) { for(int i=1;i<n;i++) isPrime[i] = true; isPrime[0] = false; isPrime[1] = false; for(int i=2;i*i<n;i++) { if(isPrime[i] == true) { for(int j=(2*i);j<n;j+=i) isPrime[j] = false; } } } public static int GCD(int a,int b) { if(b==0) return a; else return GCD(b,a%b); } public static long GCD(long a,long b) { if(b==0) return a; else return GCD(b,a%b); } public static void extendedEuclid(int A,int B) { if(B==0) { d = A; p = 1 ; q = 0; } else { extendedEuclid(B, A%B); int temp = p; p = q; q = temp - (A/B)*q; } } public static long LCM(long a,long b) { return (a*b)/GCD(a,b); } public static int LCM(int a,int b) { return (a*b)/GCD(a,b); } public static int binaryExponentiation(int x,int n) { int result=1; while(n>0) { if(n % 2 ==1) result=result * x; x=x*x; n=n/2; } return result; } public static long binaryExponentiation(long x,long n) { long result=1; while(n>0) { if(n % 2 ==1) result=result * x; x=x*x; n=n/2; } return result; } public static int modularExponentiation(int x,int n,int M) { int result=1; while(n>0) { if(n % 2 ==1) result=(result * x)%M; x=(x*x)%M; n=n/2; } return result; } public static long modularExponentiation(long x,long n,long M) { long result=1; while(n>0) { if(n % 2 ==1) result=(result * x)%M; x=(x*x)%M; n=n/2; } return result; } public static int modInverse(int A,int M) { return modularExponentiation(A,M-2,M); } public static long modInverse(long A,long M) { return modularExponentiation(A,M-2,M); } public static boolean isPrime(int n) { if (n <= 1) return false; if (n <= 3) return true; if (n%2 == 0 || n%3 == 0) return false; for (int i=5; i*i<=n; i=i+6) { if (n%i == 0 || n%(i+2) == 0) return false; } return true; } static class pair implements Comparable<pair> { Integer x, y; pair(int x,int y) { this.x=x; this.y=y; } public int compareTo(pair o) { int result = x.compareTo(o.x); if(result==0) result = y.compareTo(o.y); return result; } public String toString() { return x+" "+y; } public boolean equals(Object o) { if (o instanceof pair) { pair p = (pair)o; return p.x == x && p.y == y ; } return false; } public int hashCode() { return new Long(x).hashCode()*31 + new Long(y).hashCode(); } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> /* * * @Author Ajudiya_13(Bhargav Girdharbhai Ajudiya) * Dhirubhai Ambani Institute of Information And Communication Technology * */ import java.util.*; import java.io.*; import java.lang.*; public class Code3 { public static void main(String[] args) { InputReader in = new InputReader(System.in); PrintWriter pw = new PrintWriter(System.out); int n = in.nextInt(); double r = (double)in.nextInt(); double [] a = new double[n]; for(int i=0;i<n;i++) a[i] = (double)in.nextInt(); double[] ans = new double[n]; ans[0] = r; for(int i=1;i<n;i++) { double max = Double.MIN_VALUE; for(int j=0;j<i;j++) { if(Math.abs(a[i]-a[j])<=2*r) { //System.out.println(j); double cur = 4*r*r; cur -= ((a[i]-a[j])*(a[i]-a[j])); cur = Math.sqrt(cur); cur += ans[j]; //System.out.println(r); max = Math.max(max, cur); } } if(max == Double.MIN_VALUE) ans[i] = r; else ans[i] = max; } for(int i=0;i<n;i++) pw.print(ans[i] + " "); pw.flush(); pw.close(); } static class InputReader { private final InputStream stream; private final byte[] buf = new byte[8192]; private int curChar, snumChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int snext() { if (snumChars == -1) throw new InputMismatchException(); if (curChar >= snumChars) { curChar = 0; try { snumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (snumChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public int[] nextIntArray(int n) { int a[] = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } public String readString() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = snext(); } while (!isSpaceChar(c)); return res.toString(); } public String nextLine() { int c = snext(); while (isSpaceChar(c)) c = snext(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = snext(); } while (!isEndOfLine(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } public static long mod = 1000000007; public static int d; public static int p; public static int q; public static int[] suffle(int[] a,Random gen) { int n = a.length; for(int i=0;i<n;i++) { int ind = gen.nextInt(n-i)+i; int temp = a[ind]; a[ind] = a[i]; a[i] = temp; } return a; } public static void swap(int a, int b){ int temp = a; a = b; b = temp; } public static HashSet<Integer> primeFactorization(int n) { HashSet<Integer> a =new HashSet<Integer>(); for(int i=2;i*i<=n;i++) { while(n%i==0) { a.add(i); n/=i; } } if(n!=1) a.add(n); return a; } public static void sieve(boolean[] isPrime,int n) { for(int i=1;i<n;i++) isPrime[i] = true; isPrime[0] = false; isPrime[1] = false; for(int i=2;i*i<n;i++) { if(isPrime[i] == true) { for(int j=(2*i);j<n;j+=i) isPrime[j] = false; } } } public static int GCD(int a,int b) { if(b==0) return a; else return GCD(b,a%b); } public static long GCD(long a,long b) { if(b==0) return a; else return GCD(b,a%b); } public static void extendedEuclid(int A,int B) { if(B==0) { d = A; p = 1 ; q = 0; } else { extendedEuclid(B, A%B); int temp = p; p = q; q = temp - (A/B)*q; } } public static long LCM(long a,long b) { return (a*b)/GCD(a,b); } public static int LCM(int a,int b) { return (a*b)/GCD(a,b); } public static int binaryExponentiation(int x,int n) { int result=1; while(n>0) { if(n % 2 ==1) result=result * x; x=x*x; n=n/2; } return result; } public static long binaryExponentiation(long x,long n) { long result=1; while(n>0) { if(n % 2 ==1) result=result * x; x=x*x; n=n/2; } return result; } public static int modularExponentiation(int x,int n,int M) { int result=1; while(n>0) { if(n % 2 ==1) result=(result * x)%M; x=(x*x)%M; n=n/2; } return result; } public static long modularExponentiation(long x,long n,long M) { long result=1; while(n>0) { if(n % 2 ==1) result=(result * x)%M; x=(x*x)%M; n=n/2; } return result; } public static int modInverse(int A,int M) { return modularExponentiation(A,M-2,M); } public static long modInverse(long A,long M) { return modularExponentiation(A,M-2,M); } public static boolean isPrime(int n) { if (n <= 1) return false; if (n <= 3) return true; if (n%2 == 0 || n%3 == 0) return false; for (int i=5; i*i<=n; i=i+6) { if (n%i == 0 || n%(i+2) == 0) return false; } return true; } static class pair implements Comparable<pair> { Integer x, y; pair(int x,int y) { this.x=x; this.y=y; } public int compareTo(pair o) { int result = x.compareTo(o.x); if(result==0) result = y.compareTo(o.y); return result; } public String toString() { return x+" "+y; } public boolean equals(Object o) { if (o instanceof pair) { pair p = (pair)o; return p.x == x && p.y == y ; } return false; } public int hashCode() { return new Long(x).hashCode()*31 + new Long(y).hashCode(); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
2,645
2,189
4,022
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.InputMismatchException; import java.io.IOException; import java.util.ArrayList; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Vaibhav Pulastya */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); G1PlaylistForPolycarpEasyVersion solver = new G1PlaylistForPolycarpEasyVersion(); solver.solve(1, in, out); out.close(); } static class G1PlaylistForPolycarpEasyVersion { long mod = (int) 1e9 + 7; public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int T = in.nextInt(); int[] t = new int[n]; int[] g = new int[n]; for (int i = 0; i < n; i++) { t[i] = in.nextInt(); g[i] = in.nextInt(); } long[] fact = new long[n + 1]; fact[0] = 1; for (int i = 1; i <= n; i++) { fact[i] = (fact[i - 1] * i) % mod; } ArrayList<Integer> masks = new ArrayList<>(); long val = 0; for (int i = 1; i < (1 << n); i++) { int time = 0; int[] count = new int[3]; for (int j = 0; j < n; j++) { if ((i & (1 << j)) != 0) { time += t[j]; count[g[j] - 1]++; } } if (time == T) { masks.add(i); Arrays.sort(count); long v = ((fact[count[0]] * fact[count[1]]) % mod * fact[count[2]]) % mod; val += ((countUtil(count[0], count[1], count[2])) * v) % mod; } } out.println(val%mod); } long countWays(int p, int q, int r, int last) { // if number of balls of any // color becomes less than 0 // the number of ways arrangements is 0. if (p < 0 || q < 0 || r < 0) return 0; // If last ball required is // of type P and the number // of balls of P type is 1 // while number of balls of // other color is 0 the number // of ways is 1. if (p == 1 && q == 0 && r == 0 && last == 0) return 1; // Same case as above for 'q' and 'r' if (p == 0 && q == 1 && r == 0 && last == 1) return 1; if (p == 0 && q == 0 && r == 1 && last == 2) return 1; // if last ball required is P // and the number of ways is // the sum of number of ways // to form sequence with 'p-1' P // balls, q Q Balls and r R balls // ending with Q and R. if (last == 0) return (countWays(p - 1, q, r, 1) + countWays(p - 1, q, r, 2)) % mod; // Same as above case for 'q' and 'r' if (last == 1) return (countWays(p, q - 1, r, 0) + countWays(p, q - 1, r, 2)) % mod; if (last == 2) return (countWays(p, q, r - 1, 0) + countWays(p, q, r - 1, 1)) % mod; return 0; } long countUtil(int p, int q, int r) { // Three cases arise: return ((countWays(p, q, r, 0) + countWays(p, q, r, 1)) % mod + countWays(p, q, r, 2)) % mod; } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.InputMismatchException; import java.io.IOException; import java.util.ArrayList; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Vaibhav Pulastya */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); G1PlaylistForPolycarpEasyVersion solver = new G1PlaylistForPolycarpEasyVersion(); solver.solve(1, in, out); out.close(); } static class G1PlaylistForPolycarpEasyVersion { long mod = (int) 1e9 + 7; public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int T = in.nextInt(); int[] t = new int[n]; int[] g = new int[n]; for (int i = 0; i < n; i++) { t[i] = in.nextInt(); g[i] = in.nextInt(); } long[] fact = new long[n + 1]; fact[0] = 1; for (int i = 1; i <= n; i++) { fact[i] = (fact[i - 1] * i) % mod; } ArrayList<Integer> masks = new ArrayList<>(); long val = 0; for (int i = 1; i < (1 << n); i++) { int time = 0; int[] count = new int[3]; for (int j = 0; j < n; j++) { if ((i & (1 << j)) != 0) { time += t[j]; count[g[j] - 1]++; } } if (time == T) { masks.add(i); Arrays.sort(count); long v = ((fact[count[0]] * fact[count[1]]) % mod * fact[count[2]]) % mod; val += ((countUtil(count[0], count[1], count[2])) * v) % mod; } } out.println(val%mod); } long countWays(int p, int q, int r, int last) { // if number of balls of any // color becomes less than 0 // the number of ways arrangements is 0. if (p < 0 || q < 0 || r < 0) return 0; // If last ball required is // of type P and the number // of balls of P type is 1 // while number of balls of // other color is 0 the number // of ways is 1. if (p == 1 && q == 0 && r == 0 && last == 0) return 1; // Same case as above for 'q' and 'r' if (p == 0 && q == 1 && r == 0 && last == 1) return 1; if (p == 0 && q == 0 && r == 1 && last == 2) return 1; // if last ball required is P // and the number of ways is // the sum of number of ways // to form sequence with 'p-1' P // balls, q Q Balls and r R balls // ending with Q and R. if (last == 0) return (countWays(p - 1, q, r, 1) + countWays(p - 1, q, r, 2)) % mod; // Same as above case for 'q' and 'r' if (last == 1) return (countWays(p, q - 1, r, 0) + countWays(p, q - 1, r, 2)) % mod; if (last == 2) return (countWays(p, q, r - 1, 0) + countWays(p, q, r - 1, 1)) % mod; return 0; } long countUtil(int p, int q, int r) { // Three cases arise: return ((countWays(p, q, r, 0) + countWays(p, q, r, 1)) % mod + countWays(p, q, r, 2)) % mod; } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.InputMismatchException; import java.io.IOException; import java.util.ArrayList; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Vaibhav Pulastya */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); G1PlaylistForPolycarpEasyVersion solver = new G1PlaylistForPolycarpEasyVersion(); solver.solve(1, in, out); out.close(); } static class G1PlaylistForPolycarpEasyVersion { long mod = (int) 1e9 + 7; public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int T = in.nextInt(); int[] t = new int[n]; int[] g = new int[n]; for (int i = 0; i < n; i++) { t[i] = in.nextInt(); g[i] = in.nextInt(); } long[] fact = new long[n + 1]; fact[0] = 1; for (int i = 1; i <= n; i++) { fact[i] = (fact[i - 1] * i) % mod; } ArrayList<Integer> masks = new ArrayList<>(); long val = 0; for (int i = 1; i < (1 << n); i++) { int time = 0; int[] count = new int[3]; for (int j = 0; j < n; j++) { if ((i & (1 << j)) != 0) { time += t[j]; count[g[j] - 1]++; } } if (time == T) { masks.add(i); Arrays.sort(count); long v = ((fact[count[0]] * fact[count[1]]) % mod * fact[count[2]]) % mod; val += ((countUtil(count[0], count[1], count[2])) * v) % mod; } } out.println(val%mod); } long countWays(int p, int q, int r, int last) { // if number of balls of any // color becomes less than 0 // the number of ways arrangements is 0. if (p < 0 || q < 0 || r < 0) return 0; // If last ball required is // of type P and the number // of balls of P type is 1 // while number of balls of // other color is 0 the number // of ways is 1. if (p == 1 && q == 0 && r == 0 && last == 0) return 1; // Same case as above for 'q' and 'r' if (p == 0 && q == 1 && r == 0 && last == 1) return 1; if (p == 0 && q == 0 && r == 1 && last == 2) return 1; // if last ball required is P // and the number of ways is // the sum of number of ways // to form sequence with 'p-1' P // balls, q Q Balls and r R balls // ending with Q and R. if (last == 0) return (countWays(p - 1, q, r, 1) + countWays(p - 1, q, r, 2)) % mod; // Same as above case for 'q' and 'r' if (last == 1) return (countWays(p, q - 1, r, 0) + countWays(p, q - 1, r, 2)) % mod; if (last == 2) return (countWays(p, q, r - 1, 0) + countWays(p, q, r - 1, 1)) % mod; return 0; } long countUtil(int p, int q, int r) { // Three cases arise: return ((countWays(p, q, r, 0) + countWays(p, q, r, 1)) % mod + countWays(p, q, r, 2)) % mod; } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,669
4,011
269
import java.io.*; import java.util.*; public class ayyyyyy { public static void main(String[] args) { new ayyyyyy(); } Scanner in = new Scanner(System.in); PrintWriter out = new PrintWriter(System.out); int t, n; int[] a; ayyyyyy() { t = in.nextInt(); while (t --> 0) { a = new int[n = in.nextInt()]; for (int i = 0; i < n; i++) a[i] = in.nextInt(); shuffle(a); Arrays.sort(a); out.println(Math.min(n-2, a[n-2]-1)); } out.close(); } void shuffle(int[] x) { for (int i = 0; i < n; i++) { int swp = (int)(n*Math.random()); int tmp = x[swp]; x[swp] = x[i]; x[i] = tmp; } } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class ayyyyyy { public static void main(String[] args) { new ayyyyyy(); } Scanner in = new Scanner(System.in); PrintWriter out = new PrintWriter(System.out); int t, n; int[] a; ayyyyyy() { t = in.nextInt(); while (t --> 0) { a = new int[n = in.nextInt()]; for (int i = 0; i < n; i++) a[i] = in.nextInt(); shuffle(a); Arrays.sort(a); out.println(Math.min(n-2, a[n-2]-1)); } out.close(); } void shuffle(int[] x) { for (int i = 0; i < n; i++) { int swp = (int)(n*Math.random()); int tmp = x[swp]; x[swp] = x[i]; x[i] = tmp; } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class ayyyyyy { public static void main(String[] args) { new ayyyyyy(); } Scanner in = new Scanner(System.in); PrintWriter out = new PrintWriter(System.out); int t, n; int[] a; ayyyyyy() { t = in.nextInt(); while (t --> 0) { a = new int[n = in.nextInt()]; for (int i = 0; i < n; i++) a[i] = in.nextInt(); shuffle(a); Arrays.sort(a); out.println(Math.min(n-2, a[n-2]-1)); } out.close(); } void shuffle(int[] x) { for (int i = 0; i < n; i++) { int swp = (int)(n*Math.random()); int tmp = x[swp]; x[swp] = x[i]; x[i] = tmp; } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
574
269
2,975
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class RationalResistance { public static void main(String args[]) throws IOException{ BufferedReader f= new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(System.out); StringTokenizer st=new StringTokenizer(f.readLine()); long a=Long.parseLong(st.nextToken()); long b=Long.parseLong(st.nextToken()); long sum = 0; while(a!= 0 && b!= 0){ if (a > b){ long val = a / b; sum += val; a -= val * b; } else{ long val = b / a; sum += val; b -= val * a; } } out.println(sum); out.close(); System.exit(0); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class RationalResistance { public static void main(String args[]) throws IOException{ BufferedReader f= new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(System.out); StringTokenizer st=new StringTokenizer(f.readLine()); long a=Long.parseLong(st.nextToken()); long b=Long.parseLong(st.nextToken()); long sum = 0; while(a!= 0 && b!= 0){ if (a > b){ long val = a / b; sum += val; a -= val * b; } else{ long val = b / a; sum += val; b -= val * a; } } out.println(sum); out.close(); System.exit(0); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class RationalResistance { public static void main(String args[]) throws IOException{ BufferedReader f= new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(System.out); StringTokenizer st=new StringTokenizer(f.readLine()); long a=Long.parseLong(st.nextToken()); long b=Long.parseLong(st.nextToken()); long sum = 0; while(a!= 0 && b!= 0){ if (a > b){ long val = a / b; sum += val; a -= val * b; } else{ long val = b / a; sum += val; b -= val * a; } } out.println(sum); out.close(); System.exit(0); } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
519
2,969
2,041
/* * To change this template, choose Tools | Templates * and open the template in the editor. */ //package a_vtoray_poriadkovay_statistika; import java.util.Arrays; import java.util.Scanner; /** * * @author kal1sha */ public class Main { /** * @param args the command line arguments */ public static void main(String[] args) { // TODO code application logic hereSc int n, i; boolean status = false; int answer; Scanner in = new Scanner(System.in); n = in.nextInt(); int a[] = new int[n]; for (i = 0; i < n; i++) { a[i] = in.nextInt(); } Arrays.sort(a); answer = a[0]; for (i = 1; i < n; i++) { if (a[i] != answer) { answer = a[i]; status = true; i = n + 1; } } if (status) { System.out.println(answer); } else { System.out.println("NO"); } } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> /* * To change this template, choose Tools | Templates * and open the template in the editor. */ //package a_vtoray_poriadkovay_statistika; import java.util.Arrays; import java.util.Scanner; /** * * @author kal1sha */ public class Main { /** * @param args the command line arguments */ public static void main(String[] args) { // TODO code application logic hereSc int n, i; boolean status = false; int answer; Scanner in = new Scanner(System.in); n = in.nextInt(); int a[] = new int[n]; for (i = 0; i < n; i++) { a[i] = in.nextInt(); } Arrays.sort(a); answer = a[0]; for (i = 1; i < n; i++) { if (a[i] != answer) { answer = a[i]; status = true; i = n + 1; } } if (status) { System.out.println(answer); } else { System.out.println("NO"); } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> /* * To change this template, choose Tools | Templates * and open the template in the editor. */ //package a_vtoray_poriadkovay_statistika; import java.util.Arrays; import java.util.Scanner; /** * * @author kal1sha */ public class Main { /** * @param args the command line arguments */ public static void main(String[] args) { // TODO code application logic hereSc int n, i; boolean status = false; int answer; Scanner in = new Scanner(System.in); n = in.nextInt(); int a[] = new int[n]; for (i = 0; i < n; i++) { a[i] = in.nextInt(); } Arrays.sort(a); answer = a[0]; for (i = 1; i < n; i++) { if (a[i] != answer) { answer = a[i]; status = true; i = n + 1; } } if (status) { System.out.println(answer); } else { System.out.println("NO"); } } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
598
2,037
3,099
import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.StreamTokenizer; public class A { private static StreamTokenizer in; private static PrintWriter out; private static int nextInt() throws Exception{ in.nextToken(); return (int)in.nval; } private static String nextString() throws Exception{ in.nextToken(); return in.sval; } static{ in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in))); out = new PrintWriter(System.out); } public static void main(String[] args)throws Exception{ int n = nextInt(); out.println(n*3/2); out.flush(); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.StreamTokenizer; public class A { private static StreamTokenizer in; private static PrintWriter out; private static int nextInt() throws Exception{ in.nextToken(); return (int)in.nval; } private static String nextString() throws Exception{ in.nextToken(); return in.sval; } static{ in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in))); out = new PrintWriter(System.out); } public static void main(String[] args)throws Exception{ int n = nextInt(); out.println(n*3/2); out.flush(); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.StreamTokenizer; public class A { private static StreamTokenizer in; private static PrintWriter out; private static int nextInt() throws Exception{ in.nextToken(); return (int)in.nval; } private static String nextString() throws Exception{ in.nextToken(); return in.sval; } static{ in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in))); out = new PrintWriter(System.out); } public static void main(String[] args)throws Exception{ int n = nextInt(); out.println(n*3/2); out.flush(); } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
502
3,093
3,845
import java.io.*; import java.util.*; public class C { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static FastReader s = new FastReader(); static PrintWriter out = new PrintWriter(System.out); private static int[] rai(int n) { int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = s.nextInt(); } return arr; } private static int[][] rai(int n, int m) { int[][] arr = new int[n][m]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { arr[i][j] = s.nextInt(); } } return arr; } private static long[] ral(int n) { long[] arr = new long[n]; for (int i = 0; i < n; i++) { arr[i] = s.nextLong(); } return arr; } private static long[][] ral(int n, int m) { long[][] arr = new long[n][m]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { arr[i][j] = s.nextLong(); } } return arr; } private static int ri() { return s.nextInt(); } private static long rl() { return s.nextLong(); } private static String rs() { return s.next(); } static long gcd(long a,long b) { if(b==0) { return a; } return gcd(b,a%b); } static int gcd(int a,int b) { if(b==0) { return a; } return gcd(b,a%b); } static boolean isPrime(int n) { //check if n is a multiple of 2 if (n % 2 == 0) return false; //if not, then just check the odds for (int i = 3; i <= Math.sqrt(n); i += 2) { if (n % i == 0) return false; } return true; } static int MOD=1000000007; static long mpow(long base,long pow) { long res=1; while(pow>0) { if(pow%2==1) { res=(res*base)%MOD; } pow>>=1; base=(base*base)%MOD; } return res; } public static void main(String[] args) { StringBuilder ans = new StringBuilder(); int t = ri(); // int t = 1; while (t-- > 0) { int n=ri(); int[] arr=rai(n); List<Integer> list = new ArrayList<>(); for(int i:arr) { if(i==1) { list.add(i); } else { int ind = list.size()-1; while(list.size()>0 && list.get(ind)+1!=i ) { list.remove(list.size()-1); ind=list.size()-1; } if(list.size()>0) { list.remove(list.size()-1); } list.add(i); } for(int j=0;j<list.size()-1;j++) { ans.append(list.get(j)).append("."); } ans.append(list.get(list.size()-1)).append("\n"); } } out.print(ans.toString()); out.flush(); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class C { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static FastReader s = new FastReader(); static PrintWriter out = new PrintWriter(System.out); private static int[] rai(int n) { int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = s.nextInt(); } return arr; } private static int[][] rai(int n, int m) { int[][] arr = new int[n][m]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { arr[i][j] = s.nextInt(); } } return arr; } private static long[] ral(int n) { long[] arr = new long[n]; for (int i = 0; i < n; i++) { arr[i] = s.nextLong(); } return arr; } private static long[][] ral(int n, int m) { long[][] arr = new long[n][m]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { arr[i][j] = s.nextLong(); } } return arr; } private static int ri() { return s.nextInt(); } private static long rl() { return s.nextLong(); } private static String rs() { return s.next(); } static long gcd(long a,long b) { if(b==0) { return a; } return gcd(b,a%b); } static int gcd(int a,int b) { if(b==0) { return a; } return gcd(b,a%b); } static boolean isPrime(int n) { //check if n is a multiple of 2 if (n % 2 == 0) return false; //if not, then just check the odds for (int i = 3; i <= Math.sqrt(n); i += 2) { if (n % i == 0) return false; } return true; } static int MOD=1000000007; static long mpow(long base,long pow) { long res=1; while(pow>0) { if(pow%2==1) { res=(res*base)%MOD; } pow>>=1; base=(base*base)%MOD; } return res; } public static void main(String[] args) { StringBuilder ans = new StringBuilder(); int t = ri(); // int t = 1; while (t-- > 0) { int n=ri(); int[] arr=rai(n); List<Integer> list = new ArrayList<>(); for(int i:arr) { if(i==1) { list.add(i); } else { int ind = list.size()-1; while(list.size()>0 && list.get(ind)+1!=i ) { list.remove(list.size()-1); ind=list.size()-1; } if(list.size()>0) { list.remove(list.size()-1); } list.add(i); } for(int j=0;j<list.size()-1;j++) { ans.append(list.get(j)).append("."); } ans.append(list.get(list.size()-1)).append("\n"); } } out.print(ans.toString()); out.flush(); } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class C { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static FastReader s = new FastReader(); static PrintWriter out = new PrintWriter(System.out); private static int[] rai(int n) { int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = s.nextInt(); } return arr; } private static int[][] rai(int n, int m) { int[][] arr = new int[n][m]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { arr[i][j] = s.nextInt(); } } return arr; } private static long[] ral(int n) { long[] arr = new long[n]; for (int i = 0; i < n; i++) { arr[i] = s.nextLong(); } return arr; } private static long[][] ral(int n, int m) { long[][] arr = new long[n][m]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { arr[i][j] = s.nextLong(); } } return arr; } private static int ri() { return s.nextInt(); } private static long rl() { return s.nextLong(); } private static String rs() { return s.next(); } static long gcd(long a,long b) { if(b==0) { return a; } return gcd(b,a%b); } static int gcd(int a,int b) { if(b==0) { return a; } return gcd(b,a%b); } static boolean isPrime(int n) { //check if n is a multiple of 2 if (n % 2 == 0) return false; //if not, then just check the odds for (int i = 3; i <= Math.sqrt(n); i += 2) { if (n % i == 0) return false; } return true; } static int MOD=1000000007; static long mpow(long base,long pow) { long res=1; while(pow>0) { if(pow%2==1) { res=(res*base)%MOD; } pow>>=1; base=(base*base)%MOD; } return res; } public static void main(String[] args) { StringBuilder ans = new StringBuilder(); int t = ri(); // int t = 1; while (t-- > 0) { int n=ri(); int[] arr=rai(n); List<Integer> list = new ArrayList<>(); for(int i:arr) { if(i==1) { list.add(i); } else { int ind = list.size()-1; while(list.size()>0 && list.get(ind)+1!=i ) { list.remove(list.size()-1); ind=list.size()-1; } if(list.size()>0) { list.remove(list.size()-1); } list.add(i); } for(int j=0;j<list.size()-1;j++) { ans.append(list.get(j)).append("."); } ans.append(list.get(list.size()-1)).append("\n"); } } out.print(ans.toString()); out.flush(); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,300
3,835
2,575
import java.io.*; import java.util.*; public class Solution { public static void main(String[] args) { FastReader in = new FastReader(); int n = in.nextInt(); int[] a = new int[101]; for (int i = 0; i < n; i++) { a[in.nextInt()]++; } int count = 0; for (int i = 1; i < 101; i++) { if (a[i] > 0) { count++; for (int j = i; j < 101; j += i) { a[j] = 0; } } } System.out.println(count); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } public int[] nextIntArray(int n) { int[] array = new int[n]; for (int i = 0; i < n; ++i) array[i] = nextInt(); return array; } public int[] nextSortedIntArray(int n) { int array[] = nextIntArray(n); Arrays.sort(array); return array; } public int[] nextSumIntArray(int n) { int[] array = new int[n]; array[0] = nextInt(); for (int i = 1; i < n; ++i) array[i] = array[i - 1] + nextInt(); return array; } public long[] nextLongArray(int n) { long[] array = new long[n]; for (int i = 0; i < n; ++i) array[i] = nextLong(); return array; } public long[] nextSumLongArray(int n) { long[] array = new long[n]; array[0] = nextInt(); for (int i = 1; i < n; ++i) array[i] = array[i - 1] + nextInt(); return array; } public long[] nextSortedLongArray(int n) { long array[] = nextLongArray(n); Arrays.sort(array); return array; } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Solution { public static void main(String[] args) { FastReader in = new FastReader(); int n = in.nextInt(); int[] a = new int[101]; for (int i = 0; i < n; i++) { a[in.nextInt()]++; } int count = 0; for (int i = 1; i < 101; i++) { if (a[i] > 0) { count++; for (int j = i; j < 101; j += i) { a[j] = 0; } } } System.out.println(count); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } public int[] nextIntArray(int n) { int[] array = new int[n]; for (int i = 0; i < n; ++i) array[i] = nextInt(); return array; } public int[] nextSortedIntArray(int n) { int array[] = nextIntArray(n); Arrays.sort(array); return array; } public int[] nextSumIntArray(int n) { int[] array = new int[n]; array[0] = nextInt(); for (int i = 1; i < n; ++i) array[i] = array[i - 1] + nextInt(); return array; } public long[] nextLongArray(int n) { long[] array = new long[n]; for (int i = 0; i < n; ++i) array[i] = nextLong(); return array; } public long[] nextSumLongArray(int n) { long[] array = new long[n]; array[0] = nextInt(); for (int i = 1; i < n; ++i) array[i] = array[i - 1] + nextInt(); return array; } public long[] nextSortedLongArray(int n) { long array[] = nextLongArray(n); Arrays.sort(array); return array; } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Solution { public static void main(String[] args) { FastReader in = new FastReader(); int n = in.nextInt(); int[] a = new int[101]; for (int i = 0; i < n; i++) { a[in.nextInt()]++; } int count = 0; for (int i = 1; i < 101; i++) { if (a[i] > 0) { count++; for (int j = i; j < 101; j += i) { a[j] = 0; } } } System.out.println(count); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } public int[] nextIntArray(int n) { int[] array = new int[n]; for (int i = 0; i < n; ++i) array[i] = nextInt(); return array; } public int[] nextSortedIntArray(int n) { int array[] = nextIntArray(n); Arrays.sort(array); return array; } public int[] nextSumIntArray(int n) { int[] array = new int[n]; array[0] = nextInt(); for (int i = 1; i < n; ++i) array[i] = array[i - 1] + nextInt(); return array; } public long[] nextLongArray(int n) { long[] array = new long[n]; for (int i = 0; i < n; ++i) array[i] = nextLong(); return array; } public long[] nextSumLongArray(int n) { long[] array = new long[n]; array[0] = nextInt(); for (int i = 1; i < n; ++i) array[i] = array[i - 1] + nextInt(); return array; } public long[] nextSortedLongArray(int n) { long array[] = nextLongArray(n); Arrays.sort(array); return array; } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
951
2,569
305
import java.util.*; import java.io.*; public class Solution { public static void main(String [] args) throws IOException { PrintWriter pw=new PrintWriter(System.out);//use pw.println() not pw.write(); BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(br.readLine()); /* inputCopy 5 3 xyabd outputCopy 29 inputCopy 7 4 problem outputCopy 34 inputCopy 2 2 ab outputCopy -1 inputCopy 12 1 abaabbaaabbb outputCopy 1 */ int n=Integer.parseInt(st.nextToken()); int k=Integer.parseInt(st.nextToken()); st=new StringTokenizer(br.readLine()); String str=st.nextToken(); char [] arr=str.toCharArray(); Arrays.sort(arr); int weight=arr[0]-96; char a=arr[0]; int included=1; for(int i=1;i<arr.length;++i) { if(included==k) break; char c=arr[i]; if(c-a<2) continue; weight+=arr[i]-96; ++included; a=arr[i]; } if(included==k) pw.println(weight); else pw.println(-1); pw.close();//Do not forget to write it after every program return statement !! } } /* →Judgement Protocol Test: #1, time: 77 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 5 3 xyabd Output 29 Answer 29 Checker Log ok 1 number(s): "29" Test: #2, time: 78 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 7 4 problem Output 34 Answer 34 Checker Log ok 1 number(s): "34" Test: #3, time: 139 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 2 2 ab Output -1 Answer -1 Checker Log ok 1 number(s): "-1" Test: #4, time: 124 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 12 1 abaabbaaabbb Output 1 Answer 1 Checker Log ok 1 number(s): "1" Test: #5, time: 124 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 50 13 qwertyuiopasdfghjklzxcvbnmaaaaaaaaaaaaaaaaaaaaaaaa Output 169 Answer 169 Checker Log ok 1 number(s): "169" Test: #6, time: 108 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 50 14 qwertyuiopasdfghjklzxcvbnmaaaaaaaaaaaaaaaaaaaaaaaa Output -1 Answer -1 Checker Log ok 1 number(s): "-1" Test: #7, time: 93 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 1 1 a Output 1 Answer 1 Checker Log ok 1 number(s): "1" Test: #8, time: 108 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 50 1 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa Output 1 Answer 1 Checker Log ok 1 number(s): "1" Test: #9, time: 77 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 50 2 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa Output -1 Answer -1 Checker Log ok 1 number(s): "-1" Test: #10, time: 92 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 13 13 uwgmkyqeiaocs Output 169 Answer 169 Checker Log ok 1 number(s): "169" Test: #11, time: 124 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 13 13 hzdxpbfvrltnj Output 182 Answer 182 Checker Log ok 1 number(s): "182" Test: #12, time: 93 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 1 1 n Output 14 Answer 14 Checker Log ok 1 number(s): "14" Test: #13, time: 92 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 10 8 smzeblyjqw Output 113 Answer 113 Checker Log ok 1 number(s): "113" Test: #14, time: 78 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 20 20 tzmvhskkyugkuuxpvtbh Output -1 Answer -1 Checker Log ok 1 number(s): "-1" Test: #15, time: 109 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 30 15 wjzolzzkfulwgioksfxmcxmnnjtoav Output -1 Answer -1 Checker Log ok 1 number(s): "-1" Test: #16, time: 93 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 40 30 xumfrflllrrgswehqtsskefixhcxjrxbjmrpsshv Output -1 Answer -1 Checker Log ok 1 number(s): "-1" Test: #17, time: 124 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 50 31 ahbyyoxltryqdmvenemaqnbakglgqolxnaifnqtoclnnqiabpz Output -1 Answer -1 Checker Log ok 1 number(s): "-1" Test: #18, time: 124 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 10 7 iuiukrxcml Output 99 Answer 99 Checker Log ok 1 number(s): "99" Test: #19, time: 109 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 38 2 vjzarfykmrsrvwbwfwldsulhxtykmjbnwmdufa Output 5 Answer 5 Checker Log ok 1 number(s): "5" Test: #20, time: 77 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 12 6 fwseyrarkwcd Output 61 Answer 61 Checker Log ok 1 number(s): "61" Test: #21, time: 109 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 2 2 ac Output 4 Answer 4 Checker Log ok 1 number(s): "4" Test: #22, time: 108 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 1 1 c Output 3 Answer 3 Checker Log ok 1 number(s): "3" Test: #23, time: 124 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 2 2 ad Output 5 Answer 5 Checker Log ok 1 number(s): "5" Test: #24, time: 77 ms., memory: 0 KB, exit code: 0, checker exit code: 1, verdict: WRONG_ANSWER Input 2 1 ac Output -1 Answer 1 Checker Log wrong answer 1st number */
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; public class Solution { public static void main(String [] args) throws IOException { PrintWriter pw=new PrintWriter(System.out);//use pw.println() not pw.write(); BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(br.readLine()); /* inputCopy 5 3 xyabd outputCopy 29 inputCopy 7 4 problem outputCopy 34 inputCopy 2 2 ab outputCopy -1 inputCopy 12 1 abaabbaaabbb outputCopy 1 */ int n=Integer.parseInt(st.nextToken()); int k=Integer.parseInt(st.nextToken()); st=new StringTokenizer(br.readLine()); String str=st.nextToken(); char [] arr=str.toCharArray(); Arrays.sort(arr); int weight=arr[0]-96; char a=arr[0]; int included=1; for(int i=1;i<arr.length;++i) { if(included==k) break; char c=arr[i]; if(c-a<2) continue; weight+=arr[i]-96; ++included; a=arr[i]; } if(included==k) pw.println(weight); else pw.println(-1); pw.close();//Do not forget to write it after every program return statement !! } } /* →Judgement Protocol Test: #1, time: 77 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 5 3 xyabd Output 29 Answer 29 Checker Log ok 1 number(s): "29" Test: #2, time: 78 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 7 4 problem Output 34 Answer 34 Checker Log ok 1 number(s): "34" Test: #3, time: 139 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 2 2 ab Output -1 Answer -1 Checker Log ok 1 number(s): "-1" Test: #4, time: 124 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 12 1 abaabbaaabbb Output 1 Answer 1 Checker Log ok 1 number(s): "1" Test: #5, time: 124 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 50 13 qwertyuiopasdfghjklzxcvbnmaaaaaaaaaaaaaaaaaaaaaaaa Output 169 Answer 169 Checker Log ok 1 number(s): "169" Test: #6, time: 108 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 50 14 qwertyuiopasdfghjklzxcvbnmaaaaaaaaaaaaaaaaaaaaaaaa Output -1 Answer -1 Checker Log ok 1 number(s): "-1" Test: #7, time: 93 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 1 1 a Output 1 Answer 1 Checker Log ok 1 number(s): "1" Test: #8, time: 108 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 50 1 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa Output 1 Answer 1 Checker Log ok 1 number(s): "1" Test: #9, time: 77 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 50 2 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa Output -1 Answer -1 Checker Log ok 1 number(s): "-1" Test: #10, time: 92 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 13 13 uwgmkyqeiaocs Output 169 Answer 169 Checker Log ok 1 number(s): "169" Test: #11, time: 124 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 13 13 hzdxpbfvrltnj Output 182 Answer 182 Checker Log ok 1 number(s): "182" Test: #12, time: 93 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 1 1 n Output 14 Answer 14 Checker Log ok 1 number(s): "14" Test: #13, time: 92 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 10 8 smzeblyjqw Output 113 Answer 113 Checker Log ok 1 number(s): "113" Test: #14, time: 78 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 20 20 tzmvhskkyugkuuxpvtbh Output -1 Answer -1 Checker Log ok 1 number(s): "-1" Test: #15, time: 109 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 30 15 wjzolzzkfulwgioksfxmcxmnnjtoav Output -1 Answer -1 Checker Log ok 1 number(s): "-1" Test: #16, time: 93 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 40 30 xumfrflllrrgswehqtsskefixhcxjrxbjmrpsshv Output -1 Answer -1 Checker Log ok 1 number(s): "-1" Test: #17, time: 124 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 50 31 ahbyyoxltryqdmvenemaqnbakglgqolxnaifnqtoclnnqiabpz Output -1 Answer -1 Checker Log ok 1 number(s): "-1" Test: #18, time: 124 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 10 7 iuiukrxcml Output 99 Answer 99 Checker Log ok 1 number(s): "99" Test: #19, time: 109 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 38 2 vjzarfykmrsrvwbwfwldsulhxtykmjbnwmdufa Output 5 Answer 5 Checker Log ok 1 number(s): "5" Test: #20, time: 77 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 12 6 fwseyrarkwcd Output 61 Answer 61 Checker Log ok 1 number(s): "61" Test: #21, time: 109 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 2 2 ac Output 4 Answer 4 Checker Log ok 1 number(s): "4" Test: #22, time: 108 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 1 1 c Output 3 Answer 3 Checker Log ok 1 number(s): "3" Test: #23, time: 124 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 2 2 ad Output 5 Answer 5 Checker Log ok 1 number(s): "5" Test: #24, time: 77 ms., memory: 0 KB, exit code: 0, checker exit code: 1, verdict: WRONG_ANSWER Input 2 1 ac Output -1 Answer 1 Checker Log wrong answer 1st number */ </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class Solution { public static void main(String [] args) throws IOException { PrintWriter pw=new PrintWriter(System.out);//use pw.println() not pw.write(); BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(br.readLine()); /* inputCopy 5 3 xyabd outputCopy 29 inputCopy 7 4 problem outputCopy 34 inputCopy 2 2 ab outputCopy -1 inputCopy 12 1 abaabbaaabbb outputCopy 1 */ int n=Integer.parseInt(st.nextToken()); int k=Integer.parseInt(st.nextToken()); st=new StringTokenizer(br.readLine()); String str=st.nextToken(); char [] arr=str.toCharArray(); Arrays.sort(arr); int weight=arr[0]-96; char a=arr[0]; int included=1; for(int i=1;i<arr.length;++i) { if(included==k) break; char c=arr[i]; if(c-a<2) continue; weight+=arr[i]-96; ++included; a=arr[i]; } if(included==k) pw.println(weight); else pw.println(-1); pw.close();//Do not forget to write it after every program return statement !! } } /* →Judgement Protocol Test: #1, time: 77 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 5 3 xyabd Output 29 Answer 29 Checker Log ok 1 number(s): "29" Test: #2, time: 78 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 7 4 problem Output 34 Answer 34 Checker Log ok 1 number(s): "34" Test: #3, time: 139 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 2 2 ab Output -1 Answer -1 Checker Log ok 1 number(s): "-1" Test: #4, time: 124 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 12 1 abaabbaaabbb Output 1 Answer 1 Checker Log ok 1 number(s): "1" Test: #5, time: 124 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 50 13 qwertyuiopasdfghjklzxcvbnmaaaaaaaaaaaaaaaaaaaaaaaa Output 169 Answer 169 Checker Log ok 1 number(s): "169" Test: #6, time: 108 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 50 14 qwertyuiopasdfghjklzxcvbnmaaaaaaaaaaaaaaaaaaaaaaaa Output -1 Answer -1 Checker Log ok 1 number(s): "-1" Test: #7, time: 93 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 1 1 a Output 1 Answer 1 Checker Log ok 1 number(s): "1" Test: #8, time: 108 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 50 1 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa Output 1 Answer 1 Checker Log ok 1 number(s): "1" Test: #9, time: 77 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 50 2 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa Output -1 Answer -1 Checker Log ok 1 number(s): "-1" Test: #10, time: 92 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 13 13 uwgmkyqeiaocs Output 169 Answer 169 Checker Log ok 1 number(s): "169" Test: #11, time: 124 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 13 13 hzdxpbfvrltnj Output 182 Answer 182 Checker Log ok 1 number(s): "182" Test: #12, time: 93 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 1 1 n Output 14 Answer 14 Checker Log ok 1 number(s): "14" Test: #13, time: 92 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 10 8 smzeblyjqw Output 113 Answer 113 Checker Log ok 1 number(s): "113" Test: #14, time: 78 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 20 20 tzmvhskkyugkuuxpvtbh Output -1 Answer -1 Checker Log ok 1 number(s): "-1" Test: #15, time: 109 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 30 15 wjzolzzkfulwgioksfxmcxmnnjtoav Output -1 Answer -1 Checker Log ok 1 number(s): "-1" Test: #16, time: 93 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 40 30 xumfrflllrrgswehqtsskefixhcxjrxbjmrpsshv Output -1 Answer -1 Checker Log ok 1 number(s): "-1" Test: #17, time: 124 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 50 31 ahbyyoxltryqdmvenemaqnbakglgqolxnaifnqtoclnnqiabpz Output -1 Answer -1 Checker Log ok 1 number(s): "-1" Test: #18, time: 124 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 10 7 iuiukrxcml Output 99 Answer 99 Checker Log ok 1 number(s): "99" Test: #19, time: 109 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 38 2 vjzarfykmrsrvwbwfwldsulhxtykmjbnwmdufa Output 5 Answer 5 Checker Log ok 1 number(s): "5" Test: #20, time: 77 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 12 6 fwseyrarkwcd Output 61 Answer 61 Checker Log ok 1 number(s): "61" Test: #21, time: 109 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 2 2 ac Output 4 Answer 4 Checker Log ok 1 number(s): "4" Test: #22, time: 108 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 1 1 c Output 3 Answer 3 Checker Log ok 1 number(s): "3" Test: #23, time: 124 ms., memory: 0 KB, exit code: 0, checker exit code: 0, verdict: OK Input 2 2 ad Output 5 Answer 5 Checker Log ok 1 number(s): "5" Test: #24, time: 77 ms., memory: 0 KB, exit code: 0, checker exit code: 1, verdict: WRONG_ANSWER Input 2 1 ac Output -1 Answer 1 Checker Log wrong answer 1st number */ </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
2,447
305
3,818
import java.util.*; import java.lang.*; import java.io.*; public class Main { static class Fast { StringTokenizer st; BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } } static BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out)); static Fast scn = new Fast(); public static void main(String args[]) throws Exception { int t = 1; while(t-- > 0){ func(); } bw.close(); } private static void func() throws Exception{ int n = scn.nextInt(); int m = scn.nextInt(); int k = scn.nextInt(); int[][] hori = new int[n][m - 1]; int[][] vert = new int[n - 1][m]; for(int i = 0; i < n; i++){ for(int j = 0; j < m - 1; j++){ hori[i][j] = scn.nextInt(); } } for(int i = 0; i < n - 1; i++){ for(int j = 0; j < m; j++){ vert[i][j] = scn.nextInt(); } } if(k % 2 != 0){ for(int i = 0; i < n; i++){ for(int j = 0; j < m; j++){ bw.append(-1 + " "); } bw.append("\n"); } return; } int[][][] strg = new int[n][m][k + 1]; // for(int i = 0; i < n; i++){ // for(int j = 0; j < m; j++){ // for(int x = 0; x < k; x++) // } // } int[][] answer = new int[n][m]; for(int i = 0; i < n; i++){ for(int j = 0; j < m; j++){ answer[i][j] = steps(i, j, hori, vert, k, strg); } } for(int i = 0; i < n; i++){ for(int j = 0; j < m; j++){ bw.append(answer[i][j] + " "); } bw.append("\n"); } } static int steps(int x, int y, int[][] hori, int[][] vert, int k, int[][][] strg){ if(k == 0) return 0; if(strg[x][y][k] != 0) return strg[x][y][k]; int xmove = x; int ymove = y; int ans = 0; int val = Integer.MAX_VALUE; if(y < hori[0].length){ xmove = x; ymove = y + 1; val = Math.min(val, steps(xmove, ymove, hori, vert, k - 2, strg) + (2 * hori[x][y])); } if(y - 1 >= 0){ xmove = x; ymove = y - 1; val = Math.min(val, steps(xmove, ymove, hori, vert, k - 2, strg) + (2 * hori[x][y - 1])); // val = hori[x][y - 1]; } if(x - 1 >= 0){ xmove = x - 1; ymove = y; val = Math.min(val, steps(xmove, ymove, hori, vert, k - 2, strg) + (2 * vert[x - 1][y])); // val = vert[x - 1][y]; } if(x < vert.length){ xmove = x + 1; ymove = y; val = Math.min(val, steps(xmove, ymove, hori, vert, k - 2, strg) + (2 * vert[x][y])); // val = vert[x + 1][y]; } // System.out.println(val); ans += val; return strg[x][y][k] = ans; } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.lang.*; import java.io.*; public class Main { static class Fast { StringTokenizer st; BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } } static BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out)); static Fast scn = new Fast(); public static void main(String args[]) throws Exception { int t = 1; while(t-- > 0){ func(); } bw.close(); } private static void func() throws Exception{ int n = scn.nextInt(); int m = scn.nextInt(); int k = scn.nextInt(); int[][] hori = new int[n][m - 1]; int[][] vert = new int[n - 1][m]; for(int i = 0; i < n; i++){ for(int j = 0; j < m - 1; j++){ hori[i][j] = scn.nextInt(); } } for(int i = 0; i < n - 1; i++){ for(int j = 0; j < m; j++){ vert[i][j] = scn.nextInt(); } } if(k % 2 != 0){ for(int i = 0; i < n; i++){ for(int j = 0; j < m; j++){ bw.append(-1 + " "); } bw.append("\n"); } return; } int[][][] strg = new int[n][m][k + 1]; // for(int i = 0; i < n; i++){ // for(int j = 0; j < m; j++){ // for(int x = 0; x < k; x++) // } // } int[][] answer = new int[n][m]; for(int i = 0; i < n; i++){ for(int j = 0; j < m; j++){ answer[i][j] = steps(i, j, hori, vert, k, strg); } } for(int i = 0; i < n; i++){ for(int j = 0; j < m; j++){ bw.append(answer[i][j] + " "); } bw.append("\n"); } } static int steps(int x, int y, int[][] hori, int[][] vert, int k, int[][][] strg){ if(k == 0) return 0; if(strg[x][y][k] != 0) return strg[x][y][k]; int xmove = x; int ymove = y; int ans = 0; int val = Integer.MAX_VALUE; if(y < hori[0].length){ xmove = x; ymove = y + 1; val = Math.min(val, steps(xmove, ymove, hori, vert, k - 2, strg) + (2 * hori[x][y])); } if(y - 1 >= 0){ xmove = x; ymove = y - 1; val = Math.min(val, steps(xmove, ymove, hori, vert, k - 2, strg) + (2 * hori[x][y - 1])); // val = hori[x][y - 1]; } if(x - 1 >= 0){ xmove = x - 1; ymove = y; val = Math.min(val, steps(xmove, ymove, hori, vert, k - 2, strg) + (2 * vert[x - 1][y])); // val = vert[x - 1][y]; } if(x < vert.length){ xmove = x + 1; ymove = y; val = Math.min(val, steps(xmove, ymove, hori, vert, k - 2, strg) + (2 * vert[x][y])); // val = vert[x + 1][y]; } // System.out.println(val); ans += val; return strg[x][y][k] = ans; } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.lang.*; import java.io.*; public class Main { static class Fast { StringTokenizer st; BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } } static BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out)); static Fast scn = new Fast(); public static void main(String args[]) throws Exception { int t = 1; while(t-- > 0){ func(); } bw.close(); } private static void func() throws Exception{ int n = scn.nextInt(); int m = scn.nextInt(); int k = scn.nextInt(); int[][] hori = new int[n][m - 1]; int[][] vert = new int[n - 1][m]; for(int i = 0; i < n; i++){ for(int j = 0; j < m - 1; j++){ hori[i][j] = scn.nextInt(); } } for(int i = 0; i < n - 1; i++){ for(int j = 0; j < m; j++){ vert[i][j] = scn.nextInt(); } } if(k % 2 != 0){ for(int i = 0; i < n; i++){ for(int j = 0; j < m; j++){ bw.append(-1 + " "); } bw.append("\n"); } return; } int[][][] strg = new int[n][m][k + 1]; // for(int i = 0; i < n; i++){ // for(int j = 0; j < m; j++){ // for(int x = 0; x < k; x++) // } // } int[][] answer = new int[n][m]; for(int i = 0; i < n; i++){ for(int j = 0; j < m; j++){ answer[i][j] = steps(i, j, hori, vert, k, strg); } } for(int i = 0; i < n; i++){ for(int j = 0; j < m; j++){ bw.append(answer[i][j] + " "); } bw.append("\n"); } } static int steps(int x, int y, int[][] hori, int[][] vert, int k, int[][][] strg){ if(k == 0) return 0; if(strg[x][y][k] != 0) return strg[x][y][k]; int xmove = x; int ymove = y; int ans = 0; int val = Integer.MAX_VALUE; if(y < hori[0].length){ xmove = x; ymove = y + 1; val = Math.min(val, steps(xmove, ymove, hori, vert, k - 2, strg) + (2 * hori[x][y])); } if(y - 1 >= 0){ xmove = x; ymove = y - 1; val = Math.min(val, steps(xmove, ymove, hori, vert, k - 2, strg) + (2 * hori[x][y - 1])); // val = hori[x][y - 1]; } if(x - 1 >= 0){ xmove = x - 1; ymove = y; val = Math.min(val, steps(xmove, ymove, hori, vert, k - 2, strg) + (2 * vert[x - 1][y])); // val = vert[x - 1][y]; } if(x < vert.length){ xmove = x + 1; ymove = y; val = Math.min(val, steps(xmove, ymove, hori, vert, k - 2, strg) + (2 * vert[x][y])); // val = vert[x + 1][y]; } // System.out.println(val); ans += val; return strg[x][y][k] = ans; } } </CODE> <EVALUATION_RUBRIC> - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,319
3,808
1,315
import java.math.*; import java.util.*; import java.io.*; public class Main { void solve() { long x=nl(),k=nl(); if(x==0) { pw.println(0); return; } long d=modpow(2,k,M); long ans=mul(2,d,M); ans=mul(ans,x,M)%M; ans++; ans%=M; ans=(ans-d+M)%M; pw.println(ans); } // long mul(long a, long b,long M) // { // return (a*1L*b)%M; // } long mul(long x, long y, long m) { long ans = 0; while (y>0) { if ((y & 1)>0) { ans += x; if (ans >= m) ans -= m; } x = x + x; if (x >= m) x -= m; y >>= 1; } return ans; } long modpow(long a, long b,long M) { long r=1; while(b>0) { if((b&1)>0) r=mul(r,a,M); a=mul(a,a,M); b>>=1; } return r; } long M=(long)1e9+7; InputStream is; PrintWriter pw; String INPUT = ""; void run() throws Exception { is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes()); pw = new PrintWriter(System.out); long s = System.currentTimeMillis(); solve(); pw.flush(); if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms"); } public static void main(String[] args) throws Exception { new Main().run(); } private byte[] inbuf = new byte[1024]; public int lenbuf = 0, ptrbuf = 0; private int readByte() { if(lenbuf == -1)throw new InputMismatchException(); if(ptrbuf >= lenbuf){ ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if(lenbuf <= 0)return -1; } return inbuf[ptrbuf++]; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; } private double nd() { return Double.parseDouble(ns()); } private char nc() { return (char)skip(); } private String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } private char[] ns(int n) { char[] buf = new char[n]; int b = skip(), p = 0; while(p < n && !(isSpaceChar(b))){ buf[p++] = (char)b; b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p); } private char[][] nm(int n, int m) { char[][] map = new char[n][]; for(int i = 0;i < n;i++)map[i] = ns(m); return map; } private int[] na(int n) { int[] a = new int[n]; for(int i = 0;i < n;i++)a[i] = ni(); return a; } private int ni() { int num = 0, b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private long nl() { long num = 0; int b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private void tr(Object... o) { if(INPUT.length() > 0)System.out.println(Arrays.deepToString(o)); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.math.*; import java.util.*; import java.io.*; public class Main { void solve() { long x=nl(),k=nl(); if(x==0) { pw.println(0); return; } long d=modpow(2,k,M); long ans=mul(2,d,M); ans=mul(ans,x,M)%M; ans++; ans%=M; ans=(ans-d+M)%M; pw.println(ans); } // long mul(long a, long b,long M) // { // return (a*1L*b)%M; // } long mul(long x, long y, long m) { long ans = 0; while (y>0) { if ((y & 1)>0) { ans += x; if (ans >= m) ans -= m; } x = x + x; if (x >= m) x -= m; y >>= 1; } return ans; } long modpow(long a, long b,long M) { long r=1; while(b>0) { if((b&1)>0) r=mul(r,a,M); a=mul(a,a,M); b>>=1; } return r; } long M=(long)1e9+7; InputStream is; PrintWriter pw; String INPUT = ""; void run() throws Exception { is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes()); pw = new PrintWriter(System.out); long s = System.currentTimeMillis(); solve(); pw.flush(); if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms"); } public static void main(String[] args) throws Exception { new Main().run(); } private byte[] inbuf = new byte[1024]; public int lenbuf = 0, ptrbuf = 0; private int readByte() { if(lenbuf == -1)throw new InputMismatchException(); if(ptrbuf >= lenbuf){ ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if(lenbuf <= 0)return -1; } return inbuf[ptrbuf++]; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; } private double nd() { return Double.parseDouble(ns()); } private char nc() { return (char)skip(); } private String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } private char[] ns(int n) { char[] buf = new char[n]; int b = skip(), p = 0; while(p < n && !(isSpaceChar(b))){ buf[p++] = (char)b; b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p); } private char[][] nm(int n, int m) { char[][] map = new char[n][]; for(int i = 0;i < n;i++)map[i] = ns(m); return map; } private int[] na(int n) { int[] a = new int[n]; for(int i = 0;i < n;i++)a[i] = ni(); return a; } private int ni() { int num = 0, b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private long nl() { long num = 0; int b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private void tr(Object... o) { if(INPUT.length() > 0)System.out.println(Arrays.deepToString(o)); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.math.*; import java.util.*; import java.io.*; public class Main { void solve() { long x=nl(),k=nl(); if(x==0) { pw.println(0); return; } long d=modpow(2,k,M); long ans=mul(2,d,M); ans=mul(ans,x,M)%M; ans++; ans%=M; ans=(ans-d+M)%M; pw.println(ans); } // long mul(long a, long b,long M) // { // return (a*1L*b)%M; // } long mul(long x, long y, long m) { long ans = 0; while (y>0) { if ((y & 1)>0) { ans += x; if (ans >= m) ans -= m; } x = x + x; if (x >= m) x -= m; y >>= 1; } return ans; } long modpow(long a, long b,long M) { long r=1; while(b>0) { if((b&1)>0) r=mul(r,a,M); a=mul(a,a,M); b>>=1; } return r; } long M=(long)1e9+7; InputStream is; PrintWriter pw; String INPUT = ""; void run() throws Exception { is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes()); pw = new PrintWriter(System.out); long s = System.currentTimeMillis(); solve(); pw.flush(); if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms"); } public static void main(String[] args) throws Exception { new Main().run(); } private byte[] inbuf = new byte[1024]; public int lenbuf = 0, ptrbuf = 0; private int readByte() { if(lenbuf == -1)throw new InputMismatchException(); if(ptrbuf >= lenbuf){ ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if(lenbuf <= 0)return -1; } return inbuf[ptrbuf++]; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; } private double nd() { return Double.parseDouble(ns()); } private char nc() { return (char)skip(); } private String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } private char[] ns(int n) { char[] buf = new char[n]; int b = skip(), p = 0; while(p < n && !(isSpaceChar(b))){ buf[p++] = (char)b; b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p); } private char[][] nm(int n, int m) { char[][] map = new char[n][]; for(int i = 0;i < n;i++)map[i] = ns(m); return map; } private int[] na(int n) { int[] a = new int[n]; for(int i = 0;i < n;i++)a[i] = ni(); return a; } private int ni() { int num = 0, b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private long nl() { long num = 0; int b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private void tr(Object... o) { if(INPUT.length() > 0)System.out.println(Arrays.deepToString(o)); } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,450
1,313
695
import java.io.*; import java.util.*; public class Solution { private BufferedReader in; private PrintWriter out; private StringTokenizer st; void solve() throws IOException { String s = next(); int u = s.indexOf('R'); int v = s.indexOf('C'); if (u == 0 && v != -1 && u < v) { String a = s.substring(u + 1, v); String b = s.substring(v + 1); try { int aa = Integer.parseInt(a); int bb = Integer.parseInt(b) - 1; int pow = 26, len = 1; while (bb >= pow) { bb -= pow; pow *= 26; ++len; } String r = ""; for (int i = 0; i < len; ++i) { r = ((char)(bb % 26 + 'A')) + r; bb /= 26; } out.println(r + aa); return; } catch (NumberFormatException e) { } } u = 0; while (u < s.length() && Character.isLetter(s.charAt(u))) { ++u; } String a = s.substring(0, u); String b = s.substring(u); out.println("R" + b + "C" + toInt(a)); } private int toInt(String a) { int r = 0; for (int i = 0; i < a.length(); ++i) { r *= 26; r += a.charAt(i) - 'A'; } int pow = 1; for (int i = 0; i < a.length(); ++i) { r += pow; pow *= 26; } return r; } Solution() throws IOException { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); eat(""); int tests = nextInt(); for (int test = 0; test < tests; ++test) { solve(); } in.close(); out.close(); } private void eat(String str) { st = new StringTokenizer(str); } String next() throws IOException { while (!st.hasMoreTokens()) { String line = in.readLine(); if (line == null) { return null; } eat(line); } return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(next()); } long nextLong() throws IOException { return Long.parseLong(next()); } double nextDouble() throws IOException { return Double.parseDouble(next()); } public static void main(String[] args) throws IOException { new Solution(); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Solution { private BufferedReader in; private PrintWriter out; private StringTokenizer st; void solve() throws IOException { String s = next(); int u = s.indexOf('R'); int v = s.indexOf('C'); if (u == 0 && v != -1 && u < v) { String a = s.substring(u + 1, v); String b = s.substring(v + 1); try { int aa = Integer.parseInt(a); int bb = Integer.parseInt(b) - 1; int pow = 26, len = 1; while (bb >= pow) { bb -= pow; pow *= 26; ++len; } String r = ""; for (int i = 0; i < len; ++i) { r = ((char)(bb % 26 + 'A')) + r; bb /= 26; } out.println(r + aa); return; } catch (NumberFormatException e) { } } u = 0; while (u < s.length() && Character.isLetter(s.charAt(u))) { ++u; } String a = s.substring(0, u); String b = s.substring(u); out.println("R" + b + "C" + toInt(a)); } private int toInt(String a) { int r = 0; for (int i = 0; i < a.length(); ++i) { r *= 26; r += a.charAt(i) - 'A'; } int pow = 1; for (int i = 0; i < a.length(); ++i) { r += pow; pow *= 26; } return r; } Solution() throws IOException { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); eat(""); int tests = nextInt(); for (int test = 0; test < tests; ++test) { solve(); } in.close(); out.close(); } private void eat(String str) { st = new StringTokenizer(str); } String next() throws IOException { while (!st.hasMoreTokens()) { String line = in.readLine(); if (line == null) { return null; } eat(line); } return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(next()); } long nextLong() throws IOException { return Long.parseLong(next()); } double nextDouble() throws IOException { return Double.parseDouble(next()); } public static void main(String[] args) throws IOException { new Solution(); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Solution { private BufferedReader in; private PrintWriter out; private StringTokenizer st; void solve() throws IOException { String s = next(); int u = s.indexOf('R'); int v = s.indexOf('C'); if (u == 0 && v != -1 && u < v) { String a = s.substring(u + 1, v); String b = s.substring(v + 1); try { int aa = Integer.parseInt(a); int bb = Integer.parseInt(b) - 1; int pow = 26, len = 1; while (bb >= pow) { bb -= pow; pow *= 26; ++len; } String r = ""; for (int i = 0; i < len; ++i) { r = ((char)(bb % 26 + 'A')) + r; bb /= 26; } out.println(r + aa); return; } catch (NumberFormatException e) { } } u = 0; while (u < s.length() && Character.isLetter(s.charAt(u))) { ++u; } String a = s.substring(0, u); String b = s.substring(u); out.println("R" + b + "C" + toInt(a)); } private int toInt(String a) { int r = 0; for (int i = 0; i < a.length(); ++i) { r *= 26; r += a.charAt(i) - 'A'; } int pow = 1; for (int i = 0; i < a.length(); ++i) { r += pow; pow *= 26; } return r; } Solution() throws IOException { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); eat(""); int tests = nextInt(); for (int test = 0; test < tests; ++test) { solve(); } in.close(); out.close(); } private void eat(String str) { st = new StringTokenizer(str); } String next() throws IOException { while (!st.hasMoreTokens()) { String line = in.readLine(); if (line == null) { return null; } eat(line); } return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(next()); } long nextLong() throws IOException { return Long.parseLong(next()); } double nextDouble() throws IOException { return Double.parseDouble(next()); } public static void main(String[] args) throws IOException { new Solution(); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
945
694
385
import java.io.IOException; import java.io.OutputStreamWriter; import java.util.Arrays; import java.io.BufferedWriter; import java.util.Set; import java.io.OutputStream; import java.io.PrintWriter; import java.io.Writer; import java.util.HashSet; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author Mahmoud Aladdin <aladdin3> */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskD solver = new TaskD(); solver.solve(1, in, out); out.close(); } } class TaskD { public void solve(int testNumber, InputReader jin, OutputWriter jout) { int n = jin.int32(); int a = jin.int32(); int b = jin.int32(); Set<Integer> present = new HashSet<Integer>(); int[] arr = new int[n]; int[] sarr = new int[n]; for(int i = 0; i < n; i++) { sarr[i] = arr[i] = jin.int32(); present.add(arr[i]); } boolean rev = b < a; if(b < a) {b ^= a; a ^= b; b ^= a; } Arrays.sort(sarr); Set<Integer> set1 = new HashSet<Integer>(); Set<Integer> set2 = new HashSet<Integer>(); for(int i = 0; i < n; i++) { if(set1.contains(sarr)) continue; if(set2.contains(sarr)) continue; int comp1 = b - sarr[i]; if(present.contains(comp1)) { set2.add(sarr[i]); set2.add(comp1); present.remove(comp1); } else { int comp2 = a - sarr[i]; if(present.contains(comp2)) { set1.add(sarr[i]); set1.add(comp2); present.remove(comp2); } else { jout.println("NO"); return; } } } jout.println("YES"); for(int i = 0; i < n; i++) { if(i != 0) jout.print(' '); if(rev) jout.print(set2.contains(arr[i])? 0 : 1); else jout.print(set1.contains(arr[i])? 0 : 1); } } } class InputReader { private static final int bufferMaxLength = 1024; private InputStream in; private byte[] buffer; private int currentBufferSize; private int currentBufferTop; private static final String tokenizers = " \t\r\f\n"; public InputReader(InputStream stream) { this.in = stream; buffer = new byte[bufferMaxLength]; currentBufferSize = 0; currentBufferTop = 0; } private boolean refill() { try { this.currentBufferSize = this.in.read(this.buffer); this.currentBufferTop = 0; } catch(Exception e) {} return this.currentBufferSize > 0; } private Byte readChar() { if(currentBufferTop < currentBufferSize) { return this.buffer[this.currentBufferTop++]; } else { if(!this.refill()) { return null; } else { return readChar(); } } } public String token() { StringBuffer tok = new StringBuffer(); Byte first; while((first = readChar()) != null && (tokenizers.indexOf((char) first.byteValue()) != -1)); if(first == null) return null; tok.append((char)first.byteValue()); while((first = readChar()) != null && (tokenizers.indexOf((char) first.byteValue()) == -1)) { tok.append((char)first.byteValue()); } return tok.toString(); } public Integer int32() throws NumberFormatException { String tok = token(); return tok == null? null : Integer.parseInt(tok); } } class OutputWriter { private final int bufferMaxOut = 1024; private PrintWriter out; private StringBuilder output; private boolean forceFlush = false; public OutputWriter(OutputStream outStream) { out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outStream))); output = new StringBuilder(2 * bufferMaxOut); } public OutputWriter(Writer writer) { forceFlush = true; out = new PrintWriter(writer); output = new StringBuilder(2 * bufferMaxOut); } private void autoFlush() { if(forceFlush || output.length() >= bufferMaxOut) { flush(); } } public void print(Object... tokens) { for(int i = 0; i < tokens.length; i++) { if(i != 0) output.append(' '); output.append(tokens[i]); } autoFlush(); } public void println(Object... tokens) { print(tokens); output.append('\n'); autoFlush(); } public void flush() { out.print(output); output.setLength(0); } public void close() { flush(); out.close(); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.IOException; import java.io.OutputStreamWriter; import java.util.Arrays; import java.io.BufferedWriter; import java.util.Set; import java.io.OutputStream; import java.io.PrintWriter; import java.io.Writer; import java.util.HashSet; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author Mahmoud Aladdin <aladdin3> */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskD solver = new TaskD(); solver.solve(1, in, out); out.close(); } } class TaskD { public void solve(int testNumber, InputReader jin, OutputWriter jout) { int n = jin.int32(); int a = jin.int32(); int b = jin.int32(); Set<Integer> present = new HashSet<Integer>(); int[] arr = new int[n]; int[] sarr = new int[n]; for(int i = 0; i < n; i++) { sarr[i] = arr[i] = jin.int32(); present.add(arr[i]); } boolean rev = b < a; if(b < a) {b ^= a; a ^= b; b ^= a; } Arrays.sort(sarr); Set<Integer> set1 = new HashSet<Integer>(); Set<Integer> set2 = new HashSet<Integer>(); for(int i = 0; i < n; i++) { if(set1.contains(sarr)) continue; if(set2.contains(sarr)) continue; int comp1 = b - sarr[i]; if(present.contains(comp1)) { set2.add(sarr[i]); set2.add(comp1); present.remove(comp1); } else { int comp2 = a - sarr[i]; if(present.contains(comp2)) { set1.add(sarr[i]); set1.add(comp2); present.remove(comp2); } else { jout.println("NO"); return; } } } jout.println("YES"); for(int i = 0; i < n; i++) { if(i != 0) jout.print(' '); if(rev) jout.print(set2.contains(arr[i])? 0 : 1); else jout.print(set1.contains(arr[i])? 0 : 1); } } } class InputReader { private static final int bufferMaxLength = 1024; private InputStream in; private byte[] buffer; private int currentBufferSize; private int currentBufferTop; private static final String tokenizers = " \t\r\f\n"; public InputReader(InputStream stream) { this.in = stream; buffer = new byte[bufferMaxLength]; currentBufferSize = 0; currentBufferTop = 0; } private boolean refill() { try { this.currentBufferSize = this.in.read(this.buffer); this.currentBufferTop = 0; } catch(Exception e) {} return this.currentBufferSize > 0; } private Byte readChar() { if(currentBufferTop < currentBufferSize) { return this.buffer[this.currentBufferTop++]; } else { if(!this.refill()) { return null; } else { return readChar(); } } } public String token() { StringBuffer tok = new StringBuffer(); Byte first; while((first = readChar()) != null && (tokenizers.indexOf((char) first.byteValue()) != -1)); if(first == null) return null; tok.append((char)first.byteValue()); while((first = readChar()) != null && (tokenizers.indexOf((char) first.byteValue()) == -1)) { tok.append((char)first.byteValue()); } return tok.toString(); } public Integer int32() throws NumberFormatException { String tok = token(); return tok == null? null : Integer.parseInt(tok); } } class OutputWriter { private final int bufferMaxOut = 1024; private PrintWriter out; private StringBuilder output; private boolean forceFlush = false; public OutputWriter(OutputStream outStream) { out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outStream))); output = new StringBuilder(2 * bufferMaxOut); } public OutputWriter(Writer writer) { forceFlush = true; out = new PrintWriter(writer); output = new StringBuilder(2 * bufferMaxOut); } private void autoFlush() { if(forceFlush || output.length() >= bufferMaxOut) { flush(); } } public void print(Object... tokens) { for(int i = 0; i < tokens.length; i++) { if(i != 0) output.append(' '); output.append(tokens[i]); } autoFlush(); } public void println(Object... tokens) { print(tokens); output.append('\n'); autoFlush(); } public void flush() { out.print(output); output.setLength(0); } public void close() { flush(); out.close(); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.IOException; import java.io.OutputStreamWriter; import java.util.Arrays; import java.io.BufferedWriter; import java.util.Set; import java.io.OutputStream; import java.io.PrintWriter; import java.io.Writer; import java.util.HashSet; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author Mahmoud Aladdin <aladdin3> */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskD solver = new TaskD(); solver.solve(1, in, out); out.close(); } } class TaskD { public void solve(int testNumber, InputReader jin, OutputWriter jout) { int n = jin.int32(); int a = jin.int32(); int b = jin.int32(); Set<Integer> present = new HashSet<Integer>(); int[] arr = new int[n]; int[] sarr = new int[n]; for(int i = 0; i < n; i++) { sarr[i] = arr[i] = jin.int32(); present.add(arr[i]); } boolean rev = b < a; if(b < a) {b ^= a; a ^= b; b ^= a; } Arrays.sort(sarr); Set<Integer> set1 = new HashSet<Integer>(); Set<Integer> set2 = new HashSet<Integer>(); for(int i = 0; i < n; i++) { if(set1.contains(sarr)) continue; if(set2.contains(sarr)) continue; int comp1 = b - sarr[i]; if(present.contains(comp1)) { set2.add(sarr[i]); set2.add(comp1); present.remove(comp1); } else { int comp2 = a - sarr[i]; if(present.contains(comp2)) { set1.add(sarr[i]); set1.add(comp2); present.remove(comp2); } else { jout.println("NO"); return; } } } jout.println("YES"); for(int i = 0; i < n; i++) { if(i != 0) jout.print(' '); if(rev) jout.print(set2.contains(arr[i])? 0 : 1); else jout.print(set1.contains(arr[i])? 0 : 1); } } } class InputReader { private static final int bufferMaxLength = 1024; private InputStream in; private byte[] buffer; private int currentBufferSize; private int currentBufferTop; private static final String tokenizers = " \t\r\f\n"; public InputReader(InputStream stream) { this.in = stream; buffer = new byte[bufferMaxLength]; currentBufferSize = 0; currentBufferTop = 0; } private boolean refill() { try { this.currentBufferSize = this.in.read(this.buffer); this.currentBufferTop = 0; } catch(Exception e) {} return this.currentBufferSize > 0; } private Byte readChar() { if(currentBufferTop < currentBufferSize) { return this.buffer[this.currentBufferTop++]; } else { if(!this.refill()) { return null; } else { return readChar(); } } } public String token() { StringBuffer tok = new StringBuffer(); Byte first; while((first = readChar()) != null && (tokenizers.indexOf((char) first.byteValue()) != -1)); if(first == null) return null; tok.append((char)first.byteValue()); while((first = readChar()) != null && (tokenizers.indexOf((char) first.byteValue()) == -1)) { tok.append((char)first.byteValue()); } return tok.toString(); } public Integer int32() throws NumberFormatException { String tok = token(); return tok == null? null : Integer.parseInt(tok); } } class OutputWriter { private final int bufferMaxOut = 1024; private PrintWriter out; private StringBuilder output; private boolean forceFlush = false; public OutputWriter(OutputStream outStream) { out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outStream))); output = new StringBuilder(2 * bufferMaxOut); } public OutputWriter(Writer writer) { forceFlush = true; out = new PrintWriter(writer); output = new StringBuilder(2 * bufferMaxOut); } private void autoFlush() { if(forceFlush || output.length() >= bufferMaxOut) { flush(); } } public void print(Object... tokens) { for(int i = 0; i < tokens.length; i++) { if(i != 0) output.append(' '); output.append(tokens[i]); } autoFlush(); } public void println(Object... tokens) { print(tokens); output.append('\n'); autoFlush(); } public void flush() { out.print(output); output.setLength(0); } public void close() { flush(); out.close(); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,480
384
1,000
import java.util.*; public class global{ public static void main(String s[]){ Scanner sc = new Scanner(System.in); long n = sc.nextLong(); String st = String.valueOf(n); if(st.length()==1){ System.out.println(n); }else{ long val = 1; long prev=9; long total=9; long late=9; for(int i=2;i<=12;i++){ val*=10; total+=i*(val*9); if(n<=total){ long diff = n-late; long div = diff/i; long mod = diff%i; if(mod==0){ prev+=div; System.out.println((prev)%10); break; }else{ prev+=div+1; String fg = String.valueOf(prev); System.out.println(fg.charAt((int)mod-1)); break; } } prev+=(9*val); late=total; } } } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; public class global{ public static void main(String s[]){ Scanner sc = new Scanner(System.in); long n = sc.nextLong(); String st = String.valueOf(n); if(st.length()==1){ System.out.println(n); }else{ long val = 1; long prev=9; long total=9; long late=9; for(int i=2;i<=12;i++){ val*=10; total+=i*(val*9); if(n<=total){ long diff = n-late; long div = diff/i; long mod = diff%i; if(mod==0){ prev+=div; System.out.println((prev)%10); break; }else{ prev+=div+1; String fg = String.valueOf(prev); System.out.println(fg.charAt((int)mod-1)); break; } } prev+=(9*val); late=total; } } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; public class global{ public static void main(String s[]){ Scanner sc = new Scanner(System.in); long n = sc.nextLong(); String st = String.valueOf(n); if(st.length()==1){ System.out.println(n); }else{ long val = 1; long prev=9; long total=9; long late=9; for(int i=2;i<=12;i++){ val*=10; total+=i*(val*9); if(n<=total){ long diff = n-late; long div = diff/i; long mod = diff%i; if(mod==0){ prev+=div; System.out.println((prev)%10); break; }else{ prev+=div+1; String fg = String.valueOf(prev); System.out.println(fg.charAt((int)mod-1)); break; } } prev+=(9*val); late=total; } } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
583
999
3,012
import java.io.*; import java.util.*; public class Main{ public static void main(String[] args) throws IOException{ BufferedReader buffer = new BufferedReader(new InputStreamReader(System.in)); String a=buffer.readLine(); int b=Integer.parseInt(a); if(b%4==0 || b%7==0 || b%44==0 || b%47==0 || b%74==0 || b%77==0 || b%444==0 || b%447==0 || b%474==0 || b%477==0 || b%744==0 || b%747==0 || b%774==0 || b%777==0) System.out.println("YES"); else System.out.println("NO"); }}
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main{ public static void main(String[] args) throws IOException{ BufferedReader buffer = new BufferedReader(new InputStreamReader(System.in)); String a=buffer.readLine(); int b=Integer.parseInt(a); if(b%4==0 || b%7==0 || b%44==0 || b%47==0 || b%74==0 || b%77==0 || b%444==0 || b%447==0 || b%474==0 || b%477==0 || b%744==0 || b%747==0 || b%774==0 || b%777==0) System.out.println("YES"); else System.out.println("NO"); }} </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main{ public static void main(String[] args) throws IOException{ BufferedReader buffer = new BufferedReader(new InputStreamReader(System.in)); String a=buffer.readLine(); int b=Integer.parseInt(a); if(b%4==0 || b%7==0 || b%44==0 || b%47==0 || b%74==0 || b%77==0 || b%444==0 || b%447==0 || b%474==0 || b%477==0 || b%744==0 || b%747==0 || b%774==0 || b%777==0) System.out.println("YES"); else System.out.println("NO"); }} </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
517
3,006
508
import java.io.*; import java.util.*; public class Main { static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner() { try { br = new BufferedReader(new InputStreamReader(System.in)); st = new StringTokenizer(br.readLine()); } catch (Exception e){e.printStackTrace();} } public String next() { if (st.hasMoreTokens()) return st.nextToken(); try {st = new StringTokenizer(br.readLine());} catch (Exception e) {e.printStackTrace();} return st.nextToken(); } public int nextInt() {return Integer.parseInt(next());} public long nextLong() {return Long.parseLong(next());} public double nextDouble() {return Double.parseDouble(next());} public String nextLine() { String line = ""; if(st.hasMoreTokens()) line = st.nextToken(); else try {return br.readLine();}catch(IOException e){e.printStackTrace();} while(st.hasMoreTokens()) line += " "+st.nextToken(); return line; } } public static void main(String[] args) { FastScanner sc = new FastScanner(); PrintWriter pw = new PrintWriter(System.out); int n = sc.nextInt(); int best = 1; int bestTime = Integer.MAX_VALUE; for(int i=0;i<n;i++) { int time; int a = sc.nextInt(); time = (a%n==0 || a%n<=i) ? a/n : (a+n)/n; if(time < bestTime) { best = i + 1; bestTime = time; } } pw.println(best); pw.close(); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main { static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner() { try { br = new BufferedReader(new InputStreamReader(System.in)); st = new StringTokenizer(br.readLine()); } catch (Exception e){e.printStackTrace();} } public String next() { if (st.hasMoreTokens()) return st.nextToken(); try {st = new StringTokenizer(br.readLine());} catch (Exception e) {e.printStackTrace();} return st.nextToken(); } public int nextInt() {return Integer.parseInt(next());} public long nextLong() {return Long.parseLong(next());} public double nextDouble() {return Double.parseDouble(next());} public String nextLine() { String line = ""; if(st.hasMoreTokens()) line = st.nextToken(); else try {return br.readLine();}catch(IOException e){e.printStackTrace();} while(st.hasMoreTokens()) line += " "+st.nextToken(); return line; } } public static void main(String[] args) { FastScanner sc = new FastScanner(); PrintWriter pw = new PrintWriter(System.out); int n = sc.nextInt(); int best = 1; int bestTime = Integer.MAX_VALUE; for(int i=0;i<n;i++) { int time; int a = sc.nextInt(); time = (a%n==0 || a%n<=i) ? a/n : (a+n)/n; if(time < bestTime) { best = i + 1; bestTime = time; } } pw.println(best); pw.close(); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main { static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner() { try { br = new BufferedReader(new InputStreamReader(System.in)); st = new StringTokenizer(br.readLine()); } catch (Exception e){e.printStackTrace();} } public String next() { if (st.hasMoreTokens()) return st.nextToken(); try {st = new StringTokenizer(br.readLine());} catch (Exception e) {e.printStackTrace();} return st.nextToken(); } public int nextInt() {return Integer.parseInt(next());} public long nextLong() {return Long.parseLong(next());} public double nextDouble() {return Double.parseDouble(next());} public String nextLine() { String line = ""; if(st.hasMoreTokens()) line = st.nextToken(); else try {return br.readLine();}catch(IOException e){e.printStackTrace();} while(st.hasMoreTokens()) line += " "+st.nextToken(); return line; } } public static void main(String[] args) { FastScanner sc = new FastScanner(); PrintWriter pw = new PrintWriter(System.out); int n = sc.nextInt(); int best = 1; int bestTime = Integer.MAX_VALUE; for(int i=0;i<n;i++) { int time; int a = sc.nextInt(); time = (a%n==0 || a%n<=i) ? a/n : (a+n)/n; if(time < bestTime) { best = i + 1; bestTime = time; } } pw.println(best); pw.close(); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
675
507
4,007
/** * BaZ :D */ import java.util.*; import java.io.*; import static java.lang.Math.*; public class ACMIND { static FastReader scan; static PrintWriter pw; static long MOD = 1_000_000_007; static long INF = 1_000_000_000_000_000_000L; static long inf = 2_000_000_000; public static void main(String[] args) { new Thread(null,null,"BaZ",1<<25) { public void run() { try { solve(); } catch(Exception e) { e.printStackTrace(); System.exit(1); } } }.start(); } static int n, g[], t[], T; static int dp[][]; static void solve() throws IOException { scan = new FastReader(); pw = new PrintWriter(System.out,true); StringBuilder fast = new StringBuilder(); n = ni(); T = ni(); g = new int[n]; t = new int[n]; for(int i=0;i<n;++i) { t[i] = ni(); g[i] = ni(); } int MAX = (1<<n); dp = new int[MAX][4]; for(int i=0;i<MAX;++i) { for(int j=0;j<4;++j) { dp[i][j] = -1; } } pl(f((1<<n)-1,0)); pw.flush(); pw.close(); } static int f(int mask, int prev) { if(dp[mask][prev]!=-1) { return dp[mask][prev]; } int left = T; for(int i=0;i<n;++i) { if((mask&(1<<i))==0) { left-=t[i]; } } if(left==0) { return 1; } int cnt = 0; for(int i=0;i<n;++i) { if((mask&(1<<i))!=0) { if(g[i]!=prev && left>=t[i]) { cnt+=f(mask^(1<<i), g[i]); if(cnt>=MOD) { cnt-=MOD; } } } } return dp[mask][prev] = cnt; } static int ni() throws IOException { return scan.nextInt(); } static long nl() throws IOException { return scan.nextLong(); } static double nd() throws IOException { return scan.nextDouble(); } static void pl() { pw.println(); } static void p(Object o) { pw.print(o+" "); } static void pl(Object o) { pw.println(o); } static void psb(StringBuilder sb) { pw.print(sb); } static void pa(String arrayName, Object arr[]) { pl(arrayName+" : "); for(Object o : arr) p(o); pl(); } static void pa(String arrayName, int arr[]) { pl(arrayName+" : "); for(int o : arr) p(o); pl(); } static void pa(String arrayName, long arr[]) { pl(arrayName+" : "); for(long o : arr) p(o); pl(); } static void pa(String arrayName, double arr[]) { pl(arrayName+" : "); for(double o : arr) p(o); pl(); } static void pa(String arrayName, char arr[]) { pl(arrayName+" : "); for(char o : arr) p(o); pl(); } static void pa(String listName, List list) { pl(listName+" : "); for(Object o : list) p(o); pl(); } static void pa(String arrayName, Object[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(Object o : arr[i]) p(o); pl(); } } static void pa(String arrayName, int[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(int o : arr[i]) p(o); pl(); } } static void pa(String arrayName, long[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(long o : arr[i]) p(o); pl(); } } static void pa(String arrayName, char[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(char o : arr[i]) p(o); pl(); } } static void pa(String arrayName, double[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(double o : arr[i]) p(o); pl(); } } static class FastReader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public FastReader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public FastReader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[1000000]; int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') while ((c = read()) >= '0' && c <= '9') ret += (c - '0') / (div *= 10); if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> /** * BaZ :D */ import java.util.*; import java.io.*; import static java.lang.Math.*; public class ACMIND { static FastReader scan; static PrintWriter pw; static long MOD = 1_000_000_007; static long INF = 1_000_000_000_000_000_000L; static long inf = 2_000_000_000; public static void main(String[] args) { new Thread(null,null,"BaZ",1<<25) { public void run() { try { solve(); } catch(Exception e) { e.printStackTrace(); System.exit(1); } } }.start(); } static int n, g[], t[], T; static int dp[][]; static void solve() throws IOException { scan = new FastReader(); pw = new PrintWriter(System.out,true); StringBuilder fast = new StringBuilder(); n = ni(); T = ni(); g = new int[n]; t = new int[n]; for(int i=0;i<n;++i) { t[i] = ni(); g[i] = ni(); } int MAX = (1<<n); dp = new int[MAX][4]; for(int i=0;i<MAX;++i) { for(int j=0;j<4;++j) { dp[i][j] = -1; } } pl(f((1<<n)-1,0)); pw.flush(); pw.close(); } static int f(int mask, int prev) { if(dp[mask][prev]!=-1) { return dp[mask][prev]; } int left = T; for(int i=0;i<n;++i) { if((mask&(1<<i))==0) { left-=t[i]; } } if(left==0) { return 1; } int cnt = 0; for(int i=0;i<n;++i) { if((mask&(1<<i))!=0) { if(g[i]!=prev && left>=t[i]) { cnt+=f(mask^(1<<i), g[i]); if(cnt>=MOD) { cnt-=MOD; } } } } return dp[mask][prev] = cnt; } static int ni() throws IOException { return scan.nextInt(); } static long nl() throws IOException { return scan.nextLong(); } static double nd() throws IOException { return scan.nextDouble(); } static void pl() { pw.println(); } static void p(Object o) { pw.print(o+" "); } static void pl(Object o) { pw.println(o); } static void psb(StringBuilder sb) { pw.print(sb); } static void pa(String arrayName, Object arr[]) { pl(arrayName+" : "); for(Object o : arr) p(o); pl(); } static void pa(String arrayName, int arr[]) { pl(arrayName+" : "); for(int o : arr) p(o); pl(); } static void pa(String arrayName, long arr[]) { pl(arrayName+" : "); for(long o : arr) p(o); pl(); } static void pa(String arrayName, double arr[]) { pl(arrayName+" : "); for(double o : arr) p(o); pl(); } static void pa(String arrayName, char arr[]) { pl(arrayName+" : "); for(char o : arr) p(o); pl(); } static void pa(String listName, List list) { pl(listName+" : "); for(Object o : list) p(o); pl(); } static void pa(String arrayName, Object[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(Object o : arr[i]) p(o); pl(); } } static void pa(String arrayName, int[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(int o : arr[i]) p(o); pl(); } } static void pa(String arrayName, long[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(long o : arr[i]) p(o); pl(); } } static void pa(String arrayName, char[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(char o : arr[i]) p(o); pl(); } } static void pa(String arrayName, double[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(double o : arr[i]) p(o); pl(); } } static class FastReader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public FastReader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public FastReader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[1000000]; int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') while ((c = read()) >= '0' && c <= '9') ret += (c - '0') / (div *= 10); if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> /** * BaZ :D */ import java.util.*; import java.io.*; import static java.lang.Math.*; public class ACMIND { static FastReader scan; static PrintWriter pw; static long MOD = 1_000_000_007; static long INF = 1_000_000_000_000_000_000L; static long inf = 2_000_000_000; public static void main(String[] args) { new Thread(null,null,"BaZ",1<<25) { public void run() { try { solve(); } catch(Exception e) { e.printStackTrace(); System.exit(1); } } }.start(); } static int n, g[], t[], T; static int dp[][]; static void solve() throws IOException { scan = new FastReader(); pw = new PrintWriter(System.out,true); StringBuilder fast = new StringBuilder(); n = ni(); T = ni(); g = new int[n]; t = new int[n]; for(int i=0;i<n;++i) { t[i] = ni(); g[i] = ni(); } int MAX = (1<<n); dp = new int[MAX][4]; for(int i=0;i<MAX;++i) { for(int j=0;j<4;++j) { dp[i][j] = -1; } } pl(f((1<<n)-1,0)); pw.flush(); pw.close(); } static int f(int mask, int prev) { if(dp[mask][prev]!=-1) { return dp[mask][prev]; } int left = T; for(int i=0;i<n;++i) { if((mask&(1<<i))==0) { left-=t[i]; } } if(left==0) { return 1; } int cnt = 0; for(int i=0;i<n;++i) { if((mask&(1<<i))!=0) { if(g[i]!=prev && left>=t[i]) { cnt+=f(mask^(1<<i), g[i]); if(cnt>=MOD) { cnt-=MOD; } } } } return dp[mask][prev] = cnt; } static int ni() throws IOException { return scan.nextInt(); } static long nl() throws IOException { return scan.nextLong(); } static double nd() throws IOException { return scan.nextDouble(); } static void pl() { pw.println(); } static void p(Object o) { pw.print(o+" "); } static void pl(Object o) { pw.println(o); } static void psb(StringBuilder sb) { pw.print(sb); } static void pa(String arrayName, Object arr[]) { pl(arrayName+" : "); for(Object o : arr) p(o); pl(); } static void pa(String arrayName, int arr[]) { pl(arrayName+" : "); for(int o : arr) p(o); pl(); } static void pa(String arrayName, long arr[]) { pl(arrayName+" : "); for(long o : arr) p(o); pl(); } static void pa(String arrayName, double arr[]) { pl(arrayName+" : "); for(double o : arr) p(o); pl(); } static void pa(String arrayName, char arr[]) { pl(arrayName+" : "); for(char o : arr) p(o); pl(); } static void pa(String listName, List list) { pl(listName+" : "); for(Object o : list) p(o); pl(); } static void pa(String arrayName, Object[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(Object o : arr[i]) p(o); pl(); } } static void pa(String arrayName, int[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(int o : arr[i]) p(o); pl(); } } static void pa(String arrayName, long[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(long o : arr[i]) p(o); pl(); } } static void pa(String arrayName, char[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(char o : arr[i]) p(o); pl(); } } static void pa(String arrayName, double[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(double o : arr[i]) p(o); pl(); } } static class FastReader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public FastReader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public FastReader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[1000000]; int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') while ((c = read()) >= '0' && c <= '9') ret += (c - '0') / (div *= 10); if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
2,129
3,996
3,319
import java.io.IOException; import java.io.InputStream; import java.util.Arrays; import java.util.InputMismatchException; import java.util.LinkedList; public class D { static LinkedList<Integer>[] E; static int[] M; static boolean[] visited; static int n; static int center; public static boolean match(int x) { if (visited[x]) return false; visited[x] = true; for (int y : E[x]) if (y != center && (M[y] == -1 || match(M[y]))) { M[y] = x; return true; } return false; } public static int maxMatch() { int res = 0; Arrays.fill(M, -1); for (int i = 0; i < n; i++) { Arrays.fill(visited, false); if (i != center && match(i)) res++; } return res; } public static void main(String[] args) { InputReader in = new InputReader(System.in); n = in.readInt(); int m = in.readInt(); E = new LinkedList[n]; M = new int[n]; boolean[][] C = new boolean[n][n]; visited = new boolean[n]; for (int i = 0; i < n; i++) E[i] = new LinkedList<Integer>(); for (int i = 0; i < m; i++) { int x = in.readInt() - 1; int y = in.readInt() - 1; C[x][y] = true; E[x].add(y); } int min = Integer.MAX_VALUE; for (int i = 0; i < n; i++) { int res = 0; int all = 0; for (int j = 0; j < n; j++) if (j != i) { all += E[j].size(); if (!C[i][j]) res++; if (!C[j][i]) res++; else all--; } if (!C[i][i]) res++; center = i; int match = maxMatch(); res += (all - match) + (n - match - 1); min = Math.min(min, res); } System.out.println(min); } } class InputReader { private InputStream stream; private byte[] buf = new byte[1000]; private int curChar, numChars; public InputReader(InputStream stream) { this.stream = stream; } private int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long readLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuffer res = new StringBuffer(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private String readLine0() { StringBuffer buf = new StringBuffer(); int c = read(); while (c != '\n' && c != -1) { buf.appendCodePoint(c); c = read(); } return buf.toString(); } public String readLine() { String s = readLine0(); while (s.trim().length() == 0) s = readLine0(); return s; } public String readLine(boolean ignoreEmptyLines) { if (ignoreEmptyLines) return readLine(); else return readLine0(); } public char readCharacter() { int c = read(); while (isSpaceChar(c)) c = read(); return (char) c; } public double readDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') return res * Math.pow(10, readInt()); if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') return res * Math.pow(10, readInt()); if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.IOException; import java.io.InputStream; import java.util.Arrays; import java.util.InputMismatchException; import java.util.LinkedList; public class D { static LinkedList<Integer>[] E; static int[] M; static boolean[] visited; static int n; static int center; public static boolean match(int x) { if (visited[x]) return false; visited[x] = true; for (int y : E[x]) if (y != center && (M[y] == -1 || match(M[y]))) { M[y] = x; return true; } return false; } public static int maxMatch() { int res = 0; Arrays.fill(M, -1); for (int i = 0; i < n; i++) { Arrays.fill(visited, false); if (i != center && match(i)) res++; } return res; } public static void main(String[] args) { InputReader in = new InputReader(System.in); n = in.readInt(); int m = in.readInt(); E = new LinkedList[n]; M = new int[n]; boolean[][] C = new boolean[n][n]; visited = new boolean[n]; for (int i = 0; i < n; i++) E[i] = new LinkedList<Integer>(); for (int i = 0; i < m; i++) { int x = in.readInt() - 1; int y = in.readInt() - 1; C[x][y] = true; E[x].add(y); } int min = Integer.MAX_VALUE; for (int i = 0; i < n; i++) { int res = 0; int all = 0; for (int j = 0; j < n; j++) if (j != i) { all += E[j].size(); if (!C[i][j]) res++; if (!C[j][i]) res++; else all--; } if (!C[i][i]) res++; center = i; int match = maxMatch(); res += (all - match) + (n - match - 1); min = Math.min(min, res); } System.out.println(min); } } class InputReader { private InputStream stream; private byte[] buf = new byte[1000]; private int curChar, numChars; public InputReader(InputStream stream) { this.stream = stream; } private int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long readLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuffer res = new StringBuffer(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private String readLine0() { StringBuffer buf = new StringBuffer(); int c = read(); while (c != '\n' && c != -1) { buf.appendCodePoint(c); c = read(); } return buf.toString(); } public String readLine() { String s = readLine0(); while (s.trim().length() == 0) s = readLine0(); return s; } public String readLine(boolean ignoreEmptyLines) { if (ignoreEmptyLines) return readLine(); else return readLine0(); } public char readCharacter() { int c = read(); while (isSpaceChar(c)) c = read(); return (char) c; } public double readDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') return res * Math.pow(10, readInt()); if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') return res * Math.pow(10, readInt()); if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.IOException; import java.io.InputStream; import java.util.Arrays; import java.util.InputMismatchException; import java.util.LinkedList; public class D { static LinkedList<Integer>[] E; static int[] M; static boolean[] visited; static int n; static int center; public static boolean match(int x) { if (visited[x]) return false; visited[x] = true; for (int y : E[x]) if (y != center && (M[y] == -1 || match(M[y]))) { M[y] = x; return true; } return false; } public static int maxMatch() { int res = 0; Arrays.fill(M, -1); for (int i = 0; i < n; i++) { Arrays.fill(visited, false); if (i != center && match(i)) res++; } return res; } public static void main(String[] args) { InputReader in = new InputReader(System.in); n = in.readInt(); int m = in.readInt(); E = new LinkedList[n]; M = new int[n]; boolean[][] C = new boolean[n][n]; visited = new boolean[n]; for (int i = 0; i < n; i++) E[i] = new LinkedList<Integer>(); for (int i = 0; i < m; i++) { int x = in.readInt() - 1; int y = in.readInt() - 1; C[x][y] = true; E[x].add(y); } int min = Integer.MAX_VALUE; for (int i = 0; i < n; i++) { int res = 0; int all = 0; for (int j = 0; j < n; j++) if (j != i) { all += E[j].size(); if (!C[i][j]) res++; if (!C[j][i]) res++; else all--; } if (!C[i][i]) res++; center = i; int match = maxMatch(); res += (all - match) + (n - match - 1); min = Math.min(min, res); } System.out.println(min); } } class InputReader { private InputStream stream; private byte[] buf = new byte[1000]; private int curChar, numChars; public InputReader(InputStream stream) { this.stream = stream; } private int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long readLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuffer res = new StringBuffer(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private String readLine0() { StringBuffer buf = new StringBuffer(); int c = read(); while (c != '\n' && c != -1) { buf.appendCodePoint(c); c = read(); } return buf.toString(); } public String readLine() { String s = readLine0(); while (s.trim().length() == 0) s = readLine0(); return s; } public String readLine(boolean ignoreEmptyLines) { if (ignoreEmptyLines) return readLine(); else return readLine0(); } public char readCharacter() { int c = read(); while (isSpaceChar(c)) c = read(); return (char) c; } public double readDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') return res * Math.pow(10, readInt()); if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') return res * Math.pow(10, readInt()); if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,754
3,313
741
/* * To change this license header, choose License Headers in Project Properties. * To change this template file, choose Tools | Templates * and open the template in the editor. */ import java.util.ArrayList; import java.util.Scanner; /** * * @author Ahmed */ public class Watermelon { static class Passengers { public int floor ; public int time; public Passengers( int floor , int time){ this.floor =floor; this.time =time; } } /** * @param args the command line arguments */ public static void main(String[] args) { // TODO code application logic here Scanner in = new Scanner(System.in); int x = in.nextInt() , y = in.nextInt(); ArrayList<Passengers> list = new ArrayList<>(); for(int i = 1 ; i <= x ; ++i){ list.add(new Passengers(in.nextInt(), in.nextInt())); } int sum = 0 ; for(int i = list.size() - 1 ; i >= 0 ; --i) { int s = y - list.get(i).floor; sum = sum + s ; if(sum < list.get(i).time) { sum = sum + ( list.get(i).time - sum); } y = list.get(i).floor; } if( list.get(list.size() - 1).floor != 0){ sum = sum + (list.get(0).floor); } System.out.println(sum); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> /* * To change this license header, choose License Headers in Project Properties. * To change this template file, choose Tools | Templates * and open the template in the editor. */ import java.util.ArrayList; import java.util.Scanner; /** * * @author Ahmed */ public class Watermelon { static class Passengers { public int floor ; public int time; public Passengers( int floor , int time){ this.floor =floor; this.time =time; } } /** * @param args the command line arguments */ public static void main(String[] args) { // TODO code application logic here Scanner in = new Scanner(System.in); int x = in.nextInt() , y = in.nextInt(); ArrayList<Passengers> list = new ArrayList<>(); for(int i = 1 ; i <= x ; ++i){ list.add(new Passengers(in.nextInt(), in.nextInt())); } int sum = 0 ; for(int i = list.size() - 1 ; i >= 0 ; --i) { int s = y - list.get(i).floor; sum = sum + s ; if(sum < list.get(i).time) { sum = sum + ( list.get(i).time - sum); } y = list.get(i).floor; } if( list.get(list.size() - 1).floor != 0){ sum = sum + (list.get(0).floor); } System.out.println(sum); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> /* * To change this license header, choose License Headers in Project Properties. * To change this template file, choose Tools | Templates * and open the template in the editor. */ import java.util.ArrayList; import java.util.Scanner; /** * * @author Ahmed */ public class Watermelon { static class Passengers { public int floor ; public int time; public Passengers( int floor , int time){ this.floor =floor; this.time =time; } } /** * @param args the command line arguments */ public static void main(String[] args) { // TODO code application logic here Scanner in = new Scanner(System.in); int x = in.nextInt() , y = in.nextInt(); ArrayList<Passengers> list = new ArrayList<>(); for(int i = 1 ; i <= x ; ++i){ list.add(new Passengers(in.nextInt(), in.nextInt())); } int sum = 0 ; for(int i = list.size() - 1 ; i >= 0 ; --i) { int s = y - list.get(i).floor; sum = sum + s ; if(sum < list.get(i).time) { sum = sum + ( list.get(i).time - sum); } y = list.get(i).floor; } if( list.get(list.size() - 1).floor != 0){ sum = sum + (list.get(0).floor); } System.out.println(sum); } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
675
740
1,731
import java.io.*; import java.util.*; import java.math.*; public class Main { Scanner in; PrintWriter out; static class House implements Comparable <House>{ int len; int pos; House(Scanner in){ pos = in.nextInt() * 2; len = in.nextInt() * 2; } public int compareTo(House arg0) { return this.pos-arg0.pos; } } void solve(){ int n = in.nextInt(); int size = in.nextInt(); House []h = new House[n]; for (int i = 0; i < h.length; i++){ h[i] = new House(in); } Arrays.sort(h); int ans = 2; for (int i = 0; i < h.length - 1; i++){ int next = i + 1; int sz = h[next].pos - h[i].pos - (h[next].len + h[i].len) / 2; if (sz == size * 2) { ans ++; } else if (sz > size * 2) { ans += 2; } } out.println(ans); } public void run(){ in = new Scanner(System.in); out = new PrintWriter(System.out); try { solve(); } finally { out.close(); } } void asserT(boolean e){ if (!e){ throw new Error(); } } public static void main(String[] args) { new Main().run(); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; import java.math.*; public class Main { Scanner in; PrintWriter out; static class House implements Comparable <House>{ int len; int pos; House(Scanner in){ pos = in.nextInt() * 2; len = in.nextInt() * 2; } public int compareTo(House arg0) { return this.pos-arg0.pos; } } void solve(){ int n = in.nextInt(); int size = in.nextInt(); House []h = new House[n]; for (int i = 0; i < h.length; i++){ h[i] = new House(in); } Arrays.sort(h); int ans = 2; for (int i = 0; i < h.length - 1; i++){ int next = i + 1; int sz = h[next].pos - h[i].pos - (h[next].len + h[i].len) / 2; if (sz == size * 2) { ans ++; } else if (sz > size * 2) { ans += 2; } } out.println(ans); } public void run(){ in = new Scanner(System.in); out = new PrintWriter(System.out); try { solve(); } finally { out.close(); } } void asserT(boolean e){ if (!e){ throw new Error(); } } public static void main(String[] args) { new Main().run(); } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; import java.math.*; public class Main { Scanner in; PrintWriter out; static class House implements Comparable <House>{ int len; int pos; House(Scanner in){ pos = in.nextInt() * 2; len = in.nextInt() * 2; } public int compareTo(House arg0) { return this.pos-arg0.pos; } } void solve(){ int n = in.nextInt(); int size = in.nextInt(); House []h = new House[n]; for (int i = 0; i < h.length; i++){ h[i] = new House(in); } Arrays.sort(h); int ans = 2; for (int i = 0; i < h.length - 1; i++){ int next = i + 1; int sz = h[next].pos - h[i].pos - (h[next].len + h[i].len) / 2; if (sz == size * 2) { ans ++; } else if (sz > size * 2) { ans += 2; } } out.println(ans); } public void run(){ in = new Scanner(System.in); out = new PrintWriter(System.out); try { solve(); } finally { out.close(); } } void asserT(boolean e){ if (!e){ throw new Error(); } } public static void main(String[] args) { new Main().run(); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
701
1,727
3,943
import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.Reader; import java.io.IOException; import java.util.StringTokenizer; /* * @author Tnascimento */ public class MaeDosDragoes { public static PrintWriter saida = new PrintWriter(System.out, false); public static class Escanear { BufferedReader reader; StringTokenizer tokenizer; public Escanear() { this(new InputStreamReader(System.in)); } public Escanear(Reader in) { reader = new BufferedReader(in); } String proximo() { if (tokenizer == null || !tokenizer.hasMoreElements()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { e.printStackTrace(); } } return tokenizer.nextToken(); } int nextInt() { return Integer.parseInt(proximo()); } } public static void main(String[] args) { Escanear fastScanner = new Escanear(); int proximoInt = fastScanner.nextInt(); double proximoDouble = fastScanner.nextInt(); long[] graph = new long[proximoInt]; for(Integer i = 0; i < proximoInt; i++) { for(Integer j =0; j < proximoInt; j++) { Integer val = fastScanner.nextInt(); if (val.equals(1) || i.equals(j)) { graph[i] |= 1L << j; } } } int szLeft = proximoInt/2; int szRight = proximoInt - szLeft; int[] dp = new int[1 << szLeft]; int maxMask = 1 << szLeft; for(int mask = 1; mask <maxMask; mask++) { int curMask = mask; for(int j = 0; j < szLeft; j++) { if (((1 << j) & mask) > 0) { curMask &= graph[j + szRight] >> szRight; dp[mask] = Math.max(dp[mask], dp[mask ^ (1 << j)]); } } if (mask == curMask) { dp[mask] = Math.max(dp[mask],Integer.bitCount(mask)); } } int ans = 0; int rmaxMask = 1 << szRight; for(int mask = 0; mask < rmaxMask; mask++) { int curMask = mask; int oMask = maxMask -1; for(int j = 0; j < szRight; j++) { if (((1 << j) & mask) > 0) { curMask &= (graph[j] & (rmaxMask-1)); oMask &= graph[j] >> szRight; } } if (curMask != mask) continue; ans = Math.max(ans, Integer.bitCount(mask) + dp[oMask]); } proximoDouble/=ans; saida.println(proximoDouble * proximoDouble * (ans * (ans-1))/2); saida.flush(); } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.Reader; import java.io.IOException; import java.util.StringTokenizer; /* * @author Tnascimento */ public class MaeDosDragoes { public static PrintWriter saida = new PrintWriter(System.out, false); public static class Escanear { BufferedReader reader; StringTokenizer tokenizer; public Escanear() { this(new InputStreamReader(System.in)); } public Escanear(Reader in) { reader = new BufferedReader(in); } String proximo() { if (tokenizer == null || !tokenizer.hasMoreElements()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { e.printStackTrace(); } } return tokenizer.nextToken(); } int nextInt() { return Integer.parseInt(proximo()); } } public static void main(String[] args) { Escanear fastScanner = new Escanear(); int proximoInt = fastScanner.nextInt(); double proximoDouble = fastScanner.nextInt(); long[] graph = new long[proximoInt]; for(Integer i = 0; i < proximoInt; i++) { for(Integer j =0; j < proximoInt; j++) { Integer val = fastScanner.nextInt(); if (val.equals(1) || i.equals(j)) { graph[i] |= 1L << j; } } } int szLeft = proximoInt/2; int szRight = proximoInt - szLeft; int[] dp = new int[1 << szLeft]; int maxMask = 1 << szLeft; for(int mask = 1; mask <maxMask; mask++) { int curMask = mask; for(int j = 0; j < szLeft; j++) { if (((1 << j) & mask) > 0) { curMask &= graph[j + szRight] >> szRight; dp[mask] = Math.max(dp[mask], dp[mask ^ (1 << j)]); } } if (mask == curMask) { dp[mask] = Math.max(dp[mask],Integer.bitCount(mask)); } } int ans = 0; int rmaxMask = 1 << szRight; for(int mask = 0; mask < rmaxMask; mask++) { int curMask = mask; int oMask = maxMask -1; for(int j = 0; j < szRight; j++) { if (((1 << j) & mask) > 0) { curMask &= (graph[j] & (rmaxMask-1)); oMask &= graph[j] >> szRight; } } if (curMask != mask) continue; ans = Math.max(ans, Integer.bitCount(mask) + dp[oMask]); } proximoDouble/=ans; saida.println(proximoDouble * proximoDouble * (ans * (ans-1))/2); saida.flush(); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.Reader; import java.io.IOException; import java.util.StringTokenizer; /* * @author Tnascimento */ public class MaeDosDragoes { public static PrintWriter saida = new PrintWriter(System.out, false); public static class Escanear { BufferedReader reader; StringTokenizer tokenizer; public Escanear() { this(new InputStreamReader(System.in)); } public Escanear(Reader in) { reader = new BufferedReader(in); } String proximo() { if (tokenizer == null || !tokenizer.hasMoreElements()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { e.printStackTrace(); } } return tokenizer.nextToken(); } int nextInt() { return Integer.parseInt(proximo()); } } public static void main(String[] args) { Escanear fastScanner = new Escanear(); int proximoInt = fastScanner.nextInt(); double proximoDouble = fastScanner.nextInt(); long[] graph = new long[proximoInt]; for(Integer i = 0; i < proximoInt; i++) { for(Integer j =0; j < proximoInt; j++) { Integer val = fastScanner.nextInt(); if (val.equals(1) || i.equals(j)) { graph[i] |= 1L << j; } } } int szLeft = proximoInt/2; int szRight = proximoInt - szLeft; int[] dp = new int[1 << szLeft]; int maxMask = 1 << szLeft; for(int mask = 1; mask <maxMask; mask++) { int curMask = mask; for(int j = 0; j < szLeft; j++) { if (((1 << j) & mask) > 0) { curMask &= graph[j + szRight] >> szRight; dp[mask] = Math.max(dp[mask], dp[mask ^ (1 << j)]); } } if (mask == curMask) { dp[mask] = Math.max(dp[mask],Integer.bitCount(mask)); } } int ans = 0; int rmaxMask = 1 << szRight; for(int mask = 0; mask < rmaxMask; mask++) { int curMask = mask; int oMask = maxMask -1; for(int j = 0; j < szRight; j++) { if (((1 << j) & mask) > 0) { curMask &= (graph[j] & (rmaxMask-1)); oMask &= graph[j] >> szRight; } } if (curMask != mask) continue; ans = Math.max(ans, Integer.bitCount(mask) + dp[oMask]); } proximoDouble/=ans; saida.println(proximoDouble * proximoDouble * (ans * (ans-1))/2); saida.flush(); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
986
3,932
985
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; public class Main { public static void main(String[] args) throws IOException { BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer tokenizer = new StringTokenizer(reader.readLine()); int n = Integer.parseInt(tokenizer.nextToken()); int k = Integer.parseInt(tokenizer.nextToken()); System.out.println((int)(n-(-3.0+Math.sqrt(9.0+8.0*(n+k)))/2.0)); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; public class Main { public static void main(String[] args) throws IOException { BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer tokenizer = new StringTokenizer(reader.readLine()); int n = Integer.parseInt(tokenizer.nextToken()); int k = Integer.parseInt(tokenizer.nextToken()); System.out.println((int)(n-(-3.0+Math.sqrt(9.0+8.0*(n+k)))/2.0)); } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; public class Main { public static void main(String[] args) throws IOException { BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer tokenizer = new StringTokenizer(reader.readLine()); int n = Integer.parseInt(tokenizer.nextToken()); int k = Integer.parseInt(tokenizer.nextToken()); System.out.println((int)(n-(-3.0+Math.sqrt(9.0+8.0*(n+k)))/2.0)); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
445
984
356
import com.sun.org.apache.xpath.internal.axes.SubContextList; import java.util.Scanner; /** * * @author Madi */ public class Round42CC { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = Integer.parseInt(sc.nextLine()); String s = sc.nextLine(); int k = 0; for (int i = 0; i < n; i++) { if (s.charAt(i) == 'H') { k++; } } s = s + s.substring(0, k); String ss = ""; int max = 0; for (int i = 0; i < s.length() - k; i++) { ss = s.substring(i, i + k); int count = 0; for (int j = 0; j < ss.length(); j++) { if (ss.charAt(j) == 'H') { count++; } } if (count > max) { max = count; } } System.out.println(k - max); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import com.sun.org.apache.xpath.internal.axes.SubContextList; import java.util.Scanner; /** * * @author Madi */ public class Round42CC { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = Integer.parseInt(sc.nextLine()); String s = sc.nextLine(); int k = 0; for (int i = 0; i < n; i++) { if (s.charAt(i) == 'H') { k++; } } s = s + s.substring(0, k); String ss = ""; int max = 0; for (int i = 0; i < s.length() - k; i++) { ss = s.substring(i, i + k); int count = 0; for (int j = 0; j < ss.length(); j++) { if (ss.charAt(j) == 'H') { count++; } } if (count > max) { max = count; } } System.out.println(k - max); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import com.sun.org.apache.xpath.internal.axes.SubContextList; import java.util.Scanner; /** * * @author Madi */ public class Round42CC { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = Integer.parseInt(sc.nextLine()); String s = sc.nextLine(); int k = 0; for (int i = 0; i < n; i++) { if (s.charAt(i) == 'H') { k++; } } s = s + s.substring(0, k); String ss = ""; int max = 0; for (int i = 0; i < s.length() - k; i++) { ss = s.substring(i, i + k); int count = 0; for (int j = 0; j < ss.length(); j++) { if (ss.charAt(j) == 'H') { count++; } } if (count > max) { max = count; } } System.out.println(k - max); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
569
355
190
import java.util.Scanner; public class NickAndArray { public static void main(String args[]) { Scanner sc=new Scanner(System.in); int n=sc.nextInt(); int array[]=new int[n]; int max=Integer.MAX_VALUE; int index=0; for(int i=0;i<n;i++) { int k=sc.nextInt(); array[i]=k; if(array[i]>=0) { array[i]=-array[i]-1; } if(array[i]<max) { max=array[i]; index=i; } } if(n%2!=0) { array[index]=-array[index]-1; } for(int i=0;i<n;i++) { System.out.print(array[i]+" " ); } } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; public class NickAndArray { public static void main(String args[]) { Scanner sc=new Scanner(System.in); int n=sc.nextInt(); int array[]=new int[n]; int max=Integer.MAX_VALUE; int index=0; for(int i=0;i<n;i++) { int k=sc.nextInt(); array[i]=k; if(array[i]>=0) { array[i]=-array[i]-1; } if(array[i]<max) { max=array[i]; index=i; } } if(n%2!=0) { array[index]=-array[index]-1; } for(int i=0;i<n;i++) { System.out.print(array[i]+" " ); } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; public class NickAndArray { public static void main(String args[]) { Scanner sc=new Scanner(System.in); int n=sc.nextInt(); int array[]=new int[n]; int max=Integer.MAX_VALUE; int index=0; for(int i=0;i<n;i++) { int k=sc.nextInt(); array[i]=k; if(array[i]>=0) { array[i]=-array[i]-1; } if(array[i]<max) { max=array[i]; index=i; } } if(n%2!=0) { array[index]=-array[index]-1; } for(int i=0;i<n;i++) { System.out.print(array[i]+" " ); } } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
499
190
2,293
import java.io.*; import java.util.*; public final class PythonIndentation { public static void main(String[] args) { new PythonIndentation(System.in, System.out); } static class Solver implements Runnable { static final int MOD = (int) 1e9 + 7; int n; char[] arr; long[][] dp; BufferedReader in; PrintWriter out; void solve() throws IOException { n = Integer.parseInt(in.readLine()); arr = new char[n]; dp = new long[n + 1][n + 1]; for (int i = 0; i < n; i++) arr[i] = in.readLine().charAt(0); for (int i = 0; i <= n; i++) Arrays.fill(dp[i], -1); dp[0][0] = 1; if (arr[0] == 's') out.println(find(1, 0)); else out.println(find(1, 1)); } long find(int curr, int backIndents) { if (backIndents < 0) return 0; if (curr == n) return 1; if (dp[curr][backIndents] != -1) return dp[curr][backIndents]; long ans; if (arr[curr] == 's') ans = find(curr + 1, backIndents); else ans = find(curr + 1, backIndents + 1); if (arr[curr - 1] != 'f') ans = CMath.mod(ans + find(curr, backIndents - 1), MOD); return dp[curr][backIndents] = ans; } public Solver(BufferedReader in, PrintWriter out) { this.in = in; this.out = out; } @Override public void run() { try { solve(); } catch (IOException e) { e.printStackTrace(); } } } static class CMath { static long mod(long number, long mod) { return number - (number / mod) * mod; } } private PythonIndentation(InputStream inputStream, OutputStream outputStream) { BufferedReader in = new BufferedReader(new InputStreamReader(inputStream)); PrintWriter out = new PrintWriter(outputStream); Thread thread = new Thread(null, new Solver(in, out), "PythonIndentation", 1 << 29); try { thread.start(); thread.join(); } catch (InterruptedException e) { e.printStackTrace(); } finally { try { in.close(); } catch (IOException e) { e.printStackTrace(); } out.flush(); out.close(); } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public final class PythonIndentation { public static void main(String[] args) { new PythonIndentation(System.in, System.out); } static class Solver implements Runnable { static final int MOD = (int) 1e9 + 7; int n; char[] arr; long[][] dp; BufferedReader in; PrintWriter out; void solve() throws IOException { n = Integer.parseInt(in.readLine()); arr = new char[n]; dp = new long[n + 1][n + 1]; for (int i = 0; i < n; i++) arr[i] = in.readLine().charAt(0); for (int i = 0; i <= n; i++) Arrays.fill(dp[i], -1); dp[0][0] = 1; if (arr[0] == 's') out.println(find(1, 0)); else out.println(find(1, 1)); } long find(int curr, int backIndents) { if (backIndents < 0) return 0; if (curr == n) return 1; if (dp[curr][backIndents] != -1) return dp[curr][backIndents]; long ans; if (arr[curr] == 's') ans = find(curr + 1, backIndents); else ans = find(curr + 1, backIndents + 1); if (arr[curr - 1] != 'f') ans = CMath.mod(ans + find(curr, backIndents - 1), MOD); return dp[curr][backIndents] = ans; } public Solver(BufferedReader in, PrintWriter out) { this.in = in; this.out = out; } @Override public void run() { try { solve(); } catch (IOException e) { e.printStackTrace(); } } } static class CMath { static long mod(long number, long mod) { return number - (number / mod) * mod; } } private PythonIndentation(InputStream inputStream, OutputStream outputStream) { BufferedReader in = new BufferedReader(new InputStreamReader(inputStream)); PrintWriter out = new PrintWriter(outputStream); Thread thread = new Thread(null, new Solver(in, out), "PythonIndentation", 1 << 29); try { thread.start(); thread.join(); } catch (InterruptedException e) { e.printStackTrace(); } finally { try { in.close(); } catch (IOException e) { e.printStackTrace(); } out.flush(); out.close(); } } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public final class PythonIndentation { public static void main(String[] args) { new PythonIndentation(System.in, System.out); } static class Solver implements Runnable { static final int MOD = (int) 1e9 + 7; int n; char[] arr; long[][] dp; BufferedReader in; PrintWriter out; void solve() throws IOException { n = Integer.parseInt(in.readLine()); arr = new char[n]; dp = new long[n + 1][n + 1]; for (int i = 0; i < n; i++) arr[i] = in.readLine().charAt(0); for (int i = 0; i <= n; i++) Arrays.fill(dp[i], -1); dp[0][0] = 1; if (arr[0] == 's') out.println(find(1, 0)); else out.println(find(1, 1)); } long find(int curr, int backIndents) { if (backIndents < 0) return 0; if (curr == n) return 1; if (dp[curr][backIndents] != -1) return dp[curr][backIndents]; long ans; if (arr[curr] == 's') ans = find(curr + 1, backIndents); else ans = find(curr + 1, backIndents + 1); if (arr[curr - 1] != 'f') ans = CMath.mod(ans + find(curr, backIndents - 1), MOD); return dp[curr][backIndents] = ans; } public Solver(BufferedReader in, PrintWriter out) { this.in = in; this.out = out; } @Override public void run() { try { solve(); } catch (IOException e) { e.printStackTrace(); } } } static class CMath { static long mod(long number, long mod) { return number - (number / mod) * mod; } } private PythonIndentation(InputStream inputStream, OutputStream outputStream) { BufferedReader in = new BufferedReader(new InputStreamReader(inputStream)); PrintWriter out = new PrintWriter(outputStream); Thread thread = new Thread(null, new Solver(in, out), "PythonIndentation", 1 << 29); try { thread.start(); thread.join(); } catch (InterruptedException e) { e.printStackTrace(); } finally { try { in.close(); } catch (IOException e) { e.printStackTrace(); } out.flush(); out.close(); } } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
985
2,288
3,598
/* If you want to aim high, aim high Don't let that studying and grades consume you Just live life young ****************************** What do you think? What do you think? 1st on Billboard, what do you think of it Next is a Grammy, what do you think of it However you think, I’m sorry, but shit, I have no fcking interest ******************************* I'm standing on top of my Monopoly board That means I'm on top of my game and it don't stop til my hip don't hop anymore https://www.a2oj.com/Ladder16.html ******************************* 300iq as writer = Sad! */ import java.util.*; import java.io.*; import java.math.*; public class x35C { public static void main(String hi[]) throws Exception { BufferedReader infile = new BufferedReader(new FileReader("input.txt")); StringTokenizer st = new StringTokenizer(infile.readLine()); int N = Integer.parseInt(st.nextToken()); int M = Integer.parseInt(st.nextToken()); int K = Integer.parseInt(infile.readLine()); int[][] grid = new int[N][M]; for(int i=0; i < N; i++) Arrays.fill(grid[i], -1); ArrayDeque<Integer> q = new ArrayDeque<Integer>(); st = new StringTokenizer(infile.readLine()); while(K-->0) { int a = Integer.parseInt(st.nextToken())-1; int b = Integer.parseInt(st.nextToken())-1; grid[a][b] = 0; q.add(a); q.add(b); } while(q.size() > 0) { int x = q.poll(); int y = q.poll(); if(x > 0 && grid[x-1][y] == -1) { grid[x-1][y] = grid[x][y]+1; q.add(x-1); q.add(y); } if(y > 0 && grid[x][y-1] == -1) { grid[x][y-1] = grid[x][y]+1; q.add(x); q.add(y-1); } if(x+1 < N && grid[x+1][y] == -1) { grid[x+1][y] = grid[x][y]+1; q.add(x+1); q.add(y); } if(y+1 < M && grid[x][y+1] == -1) { grid[x][y+1] = grid[x][y]+1; q.add(x); q.add(y+1); } } int r = 0; int c = 0; for(int i=0; i < N; i++) for(int j=0; j < M; j++) if(grid[r][c] < grid[i][j]) { r = i; c = j; } r++; c++; System.setOut(new PrintStream(new File("output.txt"))); System.out.println(r+" "+c); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> /* If you want to aim high, aim high Don't let that studying and grades consume you Just live life young ****************************** What do you think? What do you think? 1st on Billboard, what do you think of it Next is a Grammy, what do you think of it However you think, I’m sorry, but shit, I have no fcking interest ******************************* I'm standing on top of my Monopoly board That means I'm on top of my game and it don't stop til my hip don't hop anymore https://www.a2oj.com/Ladder16.html ******************************* 300iq as writer = Sad! */ import java.util.*; import java.io.*; import java.math.*; public class x35C { public static void main(String hi[]) throws Exception { BufferedReader infile = new BufferedReader(new FileReader("input.txt")); StringTokenizer st = new StringTokenizer(infile.readLine()); int N = Integer.parseInt(st.nextToken()); int M = Integer.parseInt(st.nextToken()); int K = Integer.parseInt(infile.readLine()); int[][] grid = new int[N][M]; for(int i=0; i < N; i++) Arrays.fill(grid[i], -1); ArrayDeque<Integer> q = new ArrayDeque<Integer>(); st = new StringTokenizer(infile.readLine()); while(K-->0) { int a = Integer.parseInt(st.nextToken())-1; int b = Integer.parseInt(st.nextToken())-1; grid[a][b] = 0; q.add(a); q.add(b); } while(q.size() > 0) { int x = q.poll(); int y = q.poll(); if(x > 0 && grid[x-1][y] == -1) { grid[x-1][y] = grid[x][y]+1; q.add(x-1); q.add(y); } if(y > 0 && grid[x][y-1] == -1) { grid[x][y-1] = grid[x][y]+1; q.add(x); q.add(y-1); } if(x+1 < N && grid[x+1][y] == -1) { grid[x+1][y] = grid[x][y]+1; q.add(x+1); q.add(y); } if(y+1 < M && grid[x][y+1] == -1) { grid[x][y+1] = grid[x][y]+1; q.add(x); q.add(y+1); } } int r = 0; int c = 0; for(int i=0; i < N; i++) for(int j=0; j < M; j++) if(grid[r][c] < grid[i][j]) { r = i; c = j; } r++; c++; System.setOut(new PrintStream(new File("output.txt"))); System.out.println(r+" "+c); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> /* If you want to aim high, aim high Don't let that studying and grades consume you Just live life young ****************************** What do you think? What do you think? 1st on Billboard, what do you think of it Next is a Grammy, what do you think of it However you think, I’m sorry, but shit, I have no fcking interest ******************************* I'm standing on top of my Monopoly board That means I'm on top of my game and it don't stop til my hip don't hop anymore https://www.a2oj.com/Ladder16.html ******************************* 300iq as writer = Sad! */ import java.util.*; import java.io.*; import java.math.*; public class x35C { public static void main(String hi[]) throws Exception { BufferedReader infile = new BufferedReader(new FileReader("input.txt")); StringTokenizer st = new StringTokenizer(infile.readLine()); int N = Integer.parseInt(st.nextToken()); int M = Integer.parseInt(st.nextToken()); int K = Integer.parseInt(infile.readLine()); int[][] grid = new int[N][M]; for(int i=0; i < N; i++) Arrays.fill(grid[i], -1); ArrayDeque<Integer> q = new ArrayDeque<Integer>(); st = new StringTokenizer(infile.readLine()); while(K-->0) { int a = Integer.parseInt(st.nextToken())-1; int b = Integer.parseInt(st.nextToken())-1; grid[a][b] = 0; q.add(a); q.add(b); } while(q.size() > 0) { int x = q.poll(); int y = q.poll(); if(x > 0 && grid[x-1][y] == -1) { grid[x-1][y] = grid[x][y]+1; q.add(x-1); q.add(y); } if(y > 0 && grid[x][y-1] == -1) { grid[x][y-1] = grid[x][y]+1; q.add(x); q.add(y-1); } if(x+1 < N && grid[x+1][y] == -1) { grid[x+1][y] = grid[x][y]+1; q.add(x+1); q.add(y); } if(y+1 < M && grid[x][y+1] == -1) { grid[x][y+1] = grid[x][y]+1; q.add(x); q.add(y+1); } } int r = 0; int c = 0; for(int i=0; i < N; i++) for(int j=0; j < M; j++) if(grid[r][c] < grid[i][j]) { r = i; c = j; } r++; c++; System.setOut(new PrintStream(new File("output.txt"))); System.out.println(r+" "+c); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
990
3,590
1,490
import java.awt.Point; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.HashSet; import java.util.StringTokenizer; import static java.lang.Math.*; import static java.lang.Integer.*; import static java.lang.Long.*; import static java.lang.Character.*; import static java.lang.String.*; @SuppressWarnings("unused") public class round169D { static PrintWriter out = new PrintWriter(System.out); static BufferedReader br = new BufferedReader(new InputStreamReader( System.in)); static StringTokenizer st = new StringTokenizer(""); static int nextInt() throws Exception { return Integer.parseInt(next()); } static String next() throws Exception { while (true) { if (st.hasMoreTokens()) { return st.nextToken(); } String s = br.readLine(); if (s == null) { return null; } st = new StringTokenizer(s); } } public static void main(String[] args)throws Exception { long l = parseLong(next()); long r = parseLong(next()); long [] min = new long [61]; for(int i = 1 ; i <= 60 ; ++i){//(2^i)-1 is obtained by min[i]^min[i]+1 min[i] = (long) pow(2, i - 1) - 1; } for(int i = 60 ; i >= 0 ; --i){//try to get 2^i-1 as answer. if(min[i] >= r) continue; if(min[i] >= l && min[i] + 1 <= r){ out.println((long) pow(2, i) - 1); out.flush(); return; } if(min[i] < l){ long one_jump = (long) pow(2, i); long jumps = (long) ceil((l - min[i]) / (one_jump * 1.0)); long cur = min[i] + (jumps * one_jump); if(cur >= l && cur + 1 <= r){ out.println((long) pow(2, i) - 1); out.flush(); return; } } } out.println(0); out.flush(); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.awt.Point; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.HashSet; import java.util.StringTokenizer; import static java.lang.Math.*; import static java.lang.Integer.*; import static java.lang.Long.*; import static java.lang.Character.*; import static java.lang.String.*; @SuppressWarnings("unused") public class round169D { static PrintWriter out = new PrintWriter(System.out); static BufferedReader br = new BufferedReader(new InputStreamReader( System.in)); static StringTokenizer st = new StringTokenizer(""); static int nextInt() throws Exception { return Integer.parseInt(next()); } static String next() throws Exception { while (true) { if (st.hasMoreTokens()) { return st.nextToken(); } String s = br.readLine(); if (s == null) { return null; } st = new StringTokenizer(s); } } public static void main(String[] args)throws Exception { long l = parseLong(next()); long r = parseLong(next()); long [] min = new long [61]; for(int i = 1 ; i <= 60 ; ++i){//(2^i)-1 is obtained by min[i]^min[i]+1 min[i] = (long) pow(2, i - 1) - 1; } for(int i = 60 ; i >= 0 ; --i){//try to get 2^i-1 as answer. if(min[i] >= r) continue; if(min[i] >= l && min[i] + 1 <= r){ out.println((long) pow(2, i) - 1); out.flush(); return; } if(min[i] < l){ long one_jump = (long) pow(2, i); long jumps = (long) ceil((l - min[i]) / (one_jump * 1.0)); long cur = min[i] + (jumps * one_jump); if(cur >= l && cur + 1 <= r){ out.println((long) pow(2, i) - 1); out.flush(); return; } } } out.println(0); out.flush(); } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.awt.Point; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.HashSet; import java.util.StringTokenizer; import static java.lang.Math.*; import static java.lang.Integer.*; import static java.lang.Long.*; import static java.lang.Character.*; import static java.lang.String.*; @SuppressWarnings("unused") public class round169D { static PrintWriter out = new PrintWriter(System.out); static BufferedReader br = new BufferedReader(new InputStreamReader( System.in)); static StringTokenizer st = new StringTokenizer(""); static int nextInt() throws Exception { return Integer.parseInt(next()); } static String next() throws Exception { while (true) { if (st.hasMoreTokens()) { return st.nextToken(); } String s = br.readLine(); if (s == null) { return null; } st = new StringTokenizer(s); } } public static void main(String[] args)throws Exception { long l = parseLong(next()); long r = parseLong(next()); long [] min = new long [61]; for(int i = 1 ; i <= 60 ; ++i){//(2^i)-1 is obtained by min[i]^min[i]+1 min[i] = (long) pow(2, i - 1) - 1; } for(int i = 60 ; i >= 0 ; --i){//try to get 2^i-1 as answer. if(min[i] >= r) continue; if(min[i] >= l && min[i] + 1 <= r){ out.println((long) pow(2, i) - 1); out.flush(); return; } if(min[i] < l){ long one_jump = (long) pow(2, i); long jumps = (long) ceil((l - min[i]) / (one_jump * 1.0)); long cur = min[i] + (jumps * one_jump); if(cur >= l && cur + 1 <= r){ out.println((long) pow(2, i) - 1); out.flush(); return; } } } out.println(0); out.flush(); } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
817
1,488
1,462
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.HashMap; import java.util.Map; import java.util.StringTokenizer; public class Solver { StringTokenizer st; BufferedReader in; PrintWriter out; public static void main(String[] args) throws NumberFormatException, IOException { Solver solver = new Solver(); solver.open(); solver.solve(); solver.close(); } public void open() throws IOException { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); } public String nextToken() throws IOException { while (st == null || !st.hasMoreTokens()) { String line = in.readLine(); if (line == null) return null; st = new StringTokenizer(line); } return st.nextToken(); } public int nextInt() throws NumberFormatException, IOException { return Integer.parseInt(nextToken()); } public long nextLong() throws NumberFormatException, IOException { return Long.parseLong(nextToken()); } public double nextDouble() throws NumberFormatException, IOException { return Double.parseDouble(nextToken()); } int n; class Otr { int x1, y1, x2, y2; int dx, dy; public Otr(int x, int y, int dx, int dy) { super(); this.x1 = x; this.y1 = y; this.x2 = x; this.y2 = y; this.dx = dx; this.dy = dy; } int getAns() { if (x1 == x2 && y1 == y2) { int nx1 = x1 + dx; int ny2 = y2 + dy; if ((nx1 <= 0 || nx1 > n) && (ny2 <= 0 || ny2 > n)) { return 0; } } x1 += dx; if (x1 <= 0) { x1 = 1; y1 += dy; } if (x1 > n) { x1 = n; y1 += dy; } y2 += dy; if (y2 <= 0) { y2 = 1; x2 += dx; } if (y2 > n) { y2 = n; x2 += dx; } return Math.abs(x1 - x2) + 1; } @Override public String toString() { return "(" + x1 + "," + y1 + ")->(" + x2 + "," + y2 + ")"; } } int[] dxs = { -1, -1, 1, 1 }; int[] dys = { -1, 1, -1, 1 }; public void solve() throws NumberFormatException, IOException { n = nextInt(); int x = nextInt(); int y = nextInt(); long c = nextLong(); long now = 1; Otr[] otr = new Otr[4]; for (int i = 0; i < 4; i++) { otr[i] = new Otr(x, y, dxs[i], dys[i]); } int result = 0; while (now < c) { for (int i = 0; i < 4; i++) { now += otr[i].getAns(); } for (int i = 0; i < 3; i++) { for (int j = i + 1; j < 4; j++) { Otr o1 = otr[i]; Otr o2 = otr[j]; if (o1.x1!=o1.x2 || o1.y1!=o1.y2){ if (o2.x1!=o2.x2 || o2.y1!=o2.y2){ if (o1.x1 == o2.x1 && o1.y1 == o2.y1) { now--; } if (o1.x1 == o2.x2 && o1.y1 == o2.y2) { now--; } if (o1.x2 == o2.x1 && o1.y2 == o2.y1) { now--; } if (o1.x2 == o2.x2 && o1.y2 == o2.y2) { now--; } }else{ if (o1.x1 == o2.x1 && o1.y1 == o2.y1) { now--; } if (o1.x2 == o2.x1 && o1.y2 == o2.y1) { now--; } } }else{ if (o2.x1!=o2.x2 || o2.y1!=o2.y2){ if (o1.x2 == o2.x1 && o1.y2 == o2.y1) { now--; } if (o1.x2 == o2.x2 && o1.y2 == o2.y2) { now--; } }else{ if (o1.x1 == o2.x1 && o1.y1 == o2.y1) { now--; } } } } } result++; } out.println(result); } public void close() { out.flush(); out.close(); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.HashMap; import java.util.Map; import java.util.StringTokenizer; public class Solver { StringTokenizer st; BufferedReader in; PrintWriter out; public static void main(String[] args) throws NumberFormatException, IOException { Solver solver = new Solver(); solver.open(); solver.solve(); solver.close(); } public void open() throws IOException { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); } public String nextToken() throws IOException { while (st == null || !st.hasMoreTokens()) { String line = in.readLine(); if (line == null) return null; st = new StringTokenizer(line); } return st.nextToken(); } public int nextInt() throws NumberFormatException, IOException { return Integer.parseInt(nextToken()); } public long nextLong() throws NumberFormatException, IOException { return Long.parseLong(nextToken()); } public double nextDouble() throws NumberFormatException, IOException { return Double.parseDouble(nextToken()); } int n; class Otr { int x1, y1, x2, y2; int dx, dy; public Otr(int x, int y, int dx, int dy) { super(); this.x1 = x; this.y1 = y; this.x2 = x; this.y2 = y; this.dx = dx; this.dy = dy; } int getAns() { if (x1 == x2 && y1 == y2) { int nx1 = x1 + dx; int ny2 = y2 + dy; if ((nx1 <= 0 || nx1 > n) && (ny2 <= 0 || ny2 > n)) { return 0; } } x1 += dx; if (x1 <= 0) { x1 = 1; y1 += dy; } if (x1 > n) { x1 = n; y1 += dy; } y2 += dy; if (y2 <= 0) { y2 = 1; x2 += dx; } if (y2 > n) { y2 = n; x2 += dx; } return Math.abs(x1 - x2) + 1; } @Override public String toString() { return "(" + x1 + "," + y1 + ")->(" + x2 + "," + y2 + ")"; } } int[] dxs = { -1, -1, 1, 1 }; int[] dys = { -1, 1, -1, 1 }; public void solve() throws NumberFormatException, IOException { n = nextInt(); int x = nextInt(); int y = nextInt(); long c = nextLong(); long now = 1; Otr[] otr = new Otr[4]; for (int i = 0; i < 4; i++) { otr[i] = new Otr(x, y, dxs[i], dys[i]); } int result = 0; while (now < c) { for (int i = 0; i < 4; i++) { now += otr[i].getAns(); } for (int i = 0; i < 3; i++) { for (int j = i + 1; j < 4; j++) { Otr o1 = otr[i]; Otr o2 = otr[j]; if (o1.x1!=o1.x2 || o1.y1!=o1.y2){ if (o2.x1!=o2.x2 || o2.y1!=o2.y2){ if (o1.x1 == o2.x1 && o1.y1 == o2.y1) { now--; } if (o1.x1 == o2.x2 && o1.y1 == o2.y2) { now--; } if (o1.x2 == o2.x1 && o1.y2 == o2.y1) { now--; } if (o1.x2 == o2.x2 && o1.y2 == o2.y2) { now--; } }else{ if (o1.x1 == o2.x1 && o1.y1 == o2.y1) { now--; } if (o1.x2 == o2.x1 && o1.y2 == o2.y1) { now--; } } }else{ if (o2.x1!=o2.x2 || o2.y1!=o2.y2){ if (o1.x2 == o2.x1 && o1.y2 == o2.y1) { now--; } if (o1.x2 == o2.x2 && o1.y2 == o2.y2) { now--; } }else{ if (o1.x1 == o2.x1 && o1.y1 == o2.y1) { now--; } } } } } result++; } out.println(result); } public void close() { out.flush(); out.close(); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.HashMap; import java.util.Map; import java.util.StringTokenizer; public class Solver { StringTokenizer st; BufferedReader in; PrintWriter out; public static void main(String[] args) throws NumberFormatException, IOException { Solver solver = new Solver(); solver.open(); solver.solve(); solver.close(); } public void open() throws IOException { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); } public String nextToken() throws IOException { while (st == null || !st.hasMoreTokens()) { String line = in.readLine(); if (line == null) return null; st = new StringTokenizer(line); } return st.nextToken(); } public int nextInt() throws NumberFormatException, IOException { return Integer.parseInt(nextToken()); } public long nextLong() throws NumberFormatException, IOException { return Long.parseLong(nextToken()); } public double nextDouble() throws NumberFormatException, IOException { return Double.parseDouble(nextToken()); } int n; class Otr { int x1, y1, x2, y2; int dx, dy; public Otr(int x, int y, int dx, int dy) { super(); this.x1 = x; this.y1 = y; this.x2 = x; this.y2 = y; this.dx = dx; this.dy = dy; } int getAns() { if (x1 == x2 && y1 == y2) { int nx1 = x1 + dx; int ny2 = y2 + dy; if ((nx1 <= 0 || nx1 > n) && (ny2 <= 0 || ny2 > n)) { return 0; } } x1 += dx; if (x1 <= 0) { x1 = 1; y1 += dy; } if (x1 > n) { x1 = n; y1 += dy; } y2 += dy; if (y2 <= 0) { y2 = 1; x2 += dx; } if (y2 > n) { y2 = n; x2 += dx; } return Math.abs(x1 - x2) + 1; } @Override public String toString() { return "(" + x1 + "," + y1 + ")->(" + x2 + "," + y2 + ")"; } } int[] dxs = { -1, -1, 1, 1 }; int[] dys = { -1, 1, -1, 1 }; public void solve() throws NumberFormatException, IOException { n = nextInt(); int x = nextInt(); int y = nextInt(); long c = nextLong(); long now = 1; Otr[] otr = new Otr[4]; for (int i = 0; i < 4; i++) { otr[i] = new Otr(x, y, dxs[i], dys[i]); } int result = 0; while (now < c) { for (int i = 0; i < 4; i++) { now += otr[i].getAns(); } for (int i = 0; i < 3; i++) { for (int j = i + 1; j < 4; j++) { Otr o1 = otr[i]; Otr o2 = otr[j]; if (o1.x1!=o1.x2 || o1.y1!=o1.y2){ if (o2.x1!=o2.x2 || o2.y1!=o2.y2){ if (o1.x1 == o2.x1 && o1.y1 == o2.y1) { now--; } if (o1.x1 == o2.x2 && o1.y1 == o2.y2) { now--; } if (o1.x2 == o2.x1 && o1.y2 == o2.y1) { now--; } if (o1.x2 == o2.x2 && o1.y2 == o2.y2) { now--; } }else{ if (o1.x1 == o2.x1 && o1.y1 == o2.y1) { now--; } if (o1.x2 == o2.x1 && o1.y2 == o2.y1) { now--; } } }else{ if (o2.x1!=o2.x2 || o2.y1!=o2.y2){ if (o1.x2 == o2.x1 && o1.y2 == o2.y1) { now--; } if (o1.x2 == o2.x2 && o1.y2 == o2.y2) { now--; } }else{ if (o1.x1 == o2.x1 && o1.y1 == o2.y1) { now--; } } } } } result++; } out.println(result); } public void close() { out.flush(); out.close(); } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,514
1,460
3,600
import java.io.*; import java.util.*; import java.lang.*; public class Main { public static void main(String[] args) throws IOException { InputStream input = System.in; OutputStream output = System.out; InputReader in = new InputReader(new FileReader(new File("input.txt"))); PrintWriter out = new PrintWriter(new BufferedWriter(new FileWriter("output.txt"))); Solution s = new Solution(); s.solve(1, in, out); out.close(); } static class Solution { static int[][] grid; static int[] dx = {0, 0, 1, -1}; static int[] dy = {1, -1, 0, 0}; static int n, m; public void solve(int cs, InputReader in, PrintWriter out) { n = in.nextInt(); m = in.nextInt(); int k = in.nextInt(); grid = new int[n][m]; for (int[] d : grid) Arrays.fill(d, -1); for (int i = 0; i < k; i++) { Pair tree = new Pair(in.nextInt()-1, in.nextInt()-1); bfs(tree); } int max = 0, idx1 = 0, idx2 = 0; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { if (grid[i][j] > max) { max = grid[i][j]; idx1 = i; idx2 = j; } } } out.printf("%d %d%n", idx1+1, idx2+1); } public boolean isValid(int i, int j) { return i >= 0 && i < n && j >= 0 && j < m; } static class Pair { int x, y; public Pair(int x, int y) { this.x = x; this.y = y; } } public void bfs(Pair src) { Queue<Pair> q = new LinkedList<>(); grid[src.x][src.y] = 0; q.add(src); while (!q.isEmpty()) { Pair p = q.poll(); for (int k = 0; k < 4; k++) { int nx = p.x+dx[k]; int ny = p.y+dy[k]; if (isValid(nx, ny)) { if (grid[nx][ny] > grid[p.x][p.y]+1 || grid[nx][ny] == -1) { grid[nx][ny] = grid[p.x][p.y] + 1; q.add(new Pair(nx, ny)); } } } } } } static class InputReader { BufferedReader br; StringTokenizer st; public InputReader(InputStream i) { br = new BufferedReader(new InputStreamReader(i), 32768); st = null; } public InputReader(FileReader s) { br = new BufferedReader(s); st = null; } public String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } public String nextLine() { try { return br.readLine(); } catch (IOException e) { throw new RuntimeException(e); } } } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; import java.lang.*; public class Main { public static void main(String[] args) throws IOException { InputStream input = System.in; OutputStream output = System.out; InputReader in = new InputReader(new FileReader(new File("input.txt"))); PrintWriter out = new PrintWriter(new BufferedWriter(new FileWriter("output.txt"))); Solution s = new Solution(); s.solve(1, in, out); out.close(); } static class Solution { static int[][] grid; static int[] dx = {0, 0, 1, -1}; static int[] dy = {1, -1, 0, 0}; static int n, m; public void solve(int cs, InputReader in, PrintWriter out) { n = in.nextInt(); m = in.nextInt(); int k = in.nextInt(); grid = new int[n][m]; for (int[] d : grid) Arrays.fill(d, -1); for (int i = 0; i < k; i++) { Pair tree = new Pair(in.nextInt()-1, in.nextInt()-1); bfs(tree); } int max = 0, idx1 = 0, idx2 = 0; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { if (grid[i][j] > max) { max = grid[i][j]; idx1 = i; idx2 = j; } } } out.printf("%d %d%n", idx1+1, idx2+1); } public boolean isValid(int i, int j) { return i >= 0 && i < n && j >= 0 && j < m; } static class Pair { int x, y; public Pair(int x, int y) { this.x = x; this.y = y; } } public void bfs(Pair src) { Queue<Pair> q = new LinkedList<>(); grid[src.x][src.y] = 0; q.add(src); while (!q.isEmpty()) { Pair p = q.poll(); for (int k = 0; k < 4; k++) { int nx = p.x+dx[k]; int ny = p.y+dy[k]; if (isValid(nx, ny)) { if (grid[nx][ny] > grid[p.x][p.y]+1 || grid[nx][ny] == -1) { grid[nx][ny] = grid[p.x][p.y] + 1; q.add(new Pair(nx, ny)); } } } } } } static class InputReader { BufferedReader br; StringTokenizer st; public InputReader(InputStream i) { br = new BufferedReader(new InputStreamReader(i), 32768); st = null; } public InputReader(FileReader s) { br = new BufferedReader(s); st = null; } public String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } public String nextLine() { try { return br.readLine(); } catch (IOException e) { throw new RuntimeException(e); } } } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; import java.lang.*; public class Main { public static void main(String[] args) throws IOException { InputStream input = System.in; OutputStream output = System.out; InputReader in = new InputReader(new FileReader(new File("input.txt"))); PrintWriter out = new PrintWriter(new BufferedWriter(new FileWriter("output.txt"))); Solution s = new Solution(); s.solve(1, in, out); out.close(); } static class Solution { static int[][] grid; static int[] dx = {0, 0, 1, -1}; static int[] dy = {1, -1, 0, 0}; static int n, m; public void solve(int cs, InputReader in, PrintWriter out) { n = in.nextInt(); m = in.nextInt(); int k = in.nextInt(); grid = new int[n][m]; for (int[] d : grid) Arrays.fill(d, -1); for (int i = 0; i < k; i++) { Pair tree = new Pair(in.nextInt()-1, in.nextInt()-1); bfs(tree); } int max = 0, idx1 = 0, idx2 = 0; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { if (grid[i][j] > max) { max = grid[i][j]; idx1 = i; idx2 = j; } } } out.printf("%d %d%n", idx1+1, idx2+1); } public boolean isValid(int i, int j) { return i >= 0 && i < n && j >= 0 && j < m; } static class Pair { int x, y; public Pair(int x, int y) { this.x = x; this.y = y; } } public void bfs(Pair src) { Queue<Pair> q = new LinkedList<>(); grid[src.x][src.y] = 0; q.add(src); while (!q.isEmpty()) { Pair p = q.poll(); for (int k = 0; k < 4; k++) { int nx = p.x+dx[k]; int ny = p.y+dy[k]; if (isValid(nx, ny)) { if (grid[nx][ny] > grid[p.x][p.y]+1 || grid[nx][ny] == -1) { grid[nx][ny] = grid[p.x][p.y] + 1; q.add(new Pair(nx, ny)); } } } } } } static class InputReader { BufferedReader br; StringTokenizer st; public InputReader(InputStream i) { br = new BufferedReader(new InputStreamReader(i), 32768); st = null; } public InputReader(FileReader s) { br = new BufferedReader(s); st = null; } public String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } public String nextLine() { try { return br.readLine(); } catch (IOException e) { throw new RuntimeException(e); } } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,126
3,592
4,141
import java.io.BufferedReader; import java.io.File; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.HashMap; import java.util.StringTokenizer; public class CF8C { static int n; static int[] mem; static HashMap<Integer, String> map; static int INF = (int) 1e9; static StringBuilder sb; public static void main(String[] args) throws IOException { MyScanner sc = new MyScanner(System.in); String s = sc.nextLine(); n = sc.nextInt(); mem = new int[1 << n]; Arrays.fill(mem, -1); map = new HashMap<>(); map.put(0, s); for (int i = 1; i <= n; i++) { map.put(i, sc.nextLine()); } int val = dp(0); PrintWriter pw = new PrintWriter(System.out); pw.println(val); sb = new StringBuilder(); sb.append("0 "); build(0); pw.println(sb); pw.flush(); } // node == 0 -- > count 0 // state == 0 has 1 // state == 1 has 2 private static int dp(int msk) { if (msk == (1 << n) - 1) return 0; if(mem[msk] != -1) return mem[msk]; boolean foundFirst = false; int val = (int)1e9; int mark = -1; for (int i = 1; i <= n; i++) { if ((msk & 1 << (i - 1)) == 0){ if(!foundFirst){ foundFirst = true; mark = i; val = dist(0, mark)*2 + dp(msk | 1 << (mark - 1)); }else{ val = Math.min(val, dist(0, mark) + dist(mark, i) + dist(i, 0) + dp((msk|1 << (mark - 1))|1 << (i - 1))); } } } return mem[msk] = val; } private static int dist(int node, int i) { String from = map.get(i); String to = map.get(node); String[] fromco = from.split(" "); String[] toco = to.split(" "); int xs = Integer.parseInt(fromco[0]); int ys = Integer.parseInt(fromco[1]); int xf = Integer.parseInt(toco[0]); int yf = Integer.parseInt(toco[1]); return (xs - xf) * (xs - xf) + (ys - yf) * (ys - yf); } private static void build(int msk) { if (msk == (1 << n) - 1) return; boolean foundFirst = false; int ans = dp(msk); int mark = -1; int val = (int)1e9; for (int i = 1; i <= n; i++) { if ((msk & 1 << (i - 1)) == 0){ if(!foundFirst){ foundFirst = true; mark = i; val = dist(0, mark)*2 + dp(msk | 1 << (mark - 1)); if(val == ans){ sb.append(mark + " 0 "); build(msk | 1 << (mark - 1)); return; } }else{ val = dist(0, mark) + dist(mark, i) + dist(i, 0) + dp(msk|1 << (mark - 1)|1 << (i - 1)); if(val == ans){ sb.append(mark + " " + i + " 0 "); build(msk|1 << (mark - 1)|1 << (i - 1)); return; } } } } } static class MyScanner { StringTokenizer st; BufferedReader br; public MyScanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public MyScanner(String s) throws FileNotFoundException { br = new BufferedReader(new FileReader(new File(s))); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { String x = next(); StringBuilder sb = new StringBuilder("0"); double res = 0, f = 1; boolean dec = false, neg = false; int start = 0; if (x.charAt(0) == '-') { neg = true; start++; } for (int i = start; i < x.length(); i++) if (x.charAt(i) == '.') { res = Long.parseLong(sb.toString()); sb = new StringBuilder("0"); dec = true; } else { sb.append(x.charAt(i)); if (dec) f *= 10; } res += Long.parseLong(sb.toString()) / f; return res * (neg ? -1 : 1); } public boolean ready() throws IOException { return br.ready(); } } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.File; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.HashMap; import java.util.StringTokenizer; public class CF8C { static int n; static int[] mem; static HashMap<Integer, String> map; static int INF = (int) 1e9; static StringBuilder sb; public static void main(String[] args) throws IOException { MyScanner sc = new MyScanner(System.in); String s = sc.nextLine(); n = sc.nextInt(); mem = new int[1 << n]; Arrays.fill(mem, -1); map = new HashMap<>(); map.put(0, s); for (int i = 1; i <= n; i++) { map.put(i, sc.nextLine()); } int val = dp(0); PrintWriter pw = new PrintWriter(System.out); pw.println(val); sb = new StringBuilder(); sb.append("0 "); build(0); pw.println(sb); pw.flush(); } // node == 0 -- > count 0 // state == 0 has 1 // state == 1 has 2 private static int dp(int msk) { if (msk == (1 << n) - 1) return 0; if(mem[msk] != -1) return mem[msk]; boolean foundFirst = false; int val = (int)1e9; int mark = -1; for (int i = 1; i <= n; i++) { if ((msk & 1 << (i - 1)) == 0){ if(!foundFirst){ foundFirst = true; mark = i; val = dist(0, mark)*2 + dp(msk | 1 << (mark - 1)); }else{ val = Math.min(val, dist(0, mark) + dist(mark, i) + dist(i, 0) + dp((msk|1 << (mark - 1))|1 << (i - 1))); } } } return mem[msk] = val; } private static int dist(int node, int i) { String from = map.get(i); String to = map.get(node); String[] fromco = from.split(" "); String[] toco = to.split(" "); int xs = Integer.parseInt(fromco[0]); int ys = Integer.parseInt(fromco[1]); int xf = Integer.parseInt(toco[0]); int yf = Integer.parseInt(toco[1]); return (xs - xf) * (xs - xf) + (ys - yf) * (ys - yf); } private static void build(int msk) { if (msk == (1 << n) - 1) return; boolean foundFirst = false; int ans = dp(msk); int mark = -1; int val = (int)1e9; for (int i = 1; i <= n; i++) { if ((msk & 1 << (i - 1)) == 0){ if(!foundFirst){ foundFirst = true; mark = i; val = dist(0, mark)*2 + dp(msk | 1 << (mark - 1)); if(val == ans){ sb.append(mark + " 0 "); build(msk | 1 << (mark - 1)); return; } }else{ val = dist(0, mark) + dist(mark, i) + dist(i, 0) + dp(msk|1 << (mark - 1)|1 << (i - 1)); if(val == ans){ sb.append(mark + " " + i + " 0 "); build(msk|1 << (mark - 1)|1 << (i - 1)); return; } } } } } static class MyScanner { StringTokenizer st; BufferedReader br; public MyScanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public MyScanner(String s) throws FileNotFoundException { br = new BufferedReader(new FileReader(new File(s))); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { String x = next(); StringBuilder sb = new StringBuilder("0"); double res = 0, f = 1; boolean dec = false, neg = false; int start = 0; if (x.charAt(0) == '-') { neg = true; start++; } for (int i = start; i < x.length(); i++) if (x.charAt(i) == '.') { res = Long.parseLong(sb.toString()); sb = new StringBuilder("0"); dec = true; } else { sb.append(x.charAt(i)); if (dec) f *= 10; } res += Long.parseLong(sb.toString()) / f; return res * (neg ? -1 : 1); } public boolean ready() throws IOException { return br.ready(); } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.File; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.HashMap; import java.util.StringTokenizer; public class CF8C { static int n; static int[] mem; static HashMap<Integer, String> map; static int INF = (int) 1e9; static StringBuilder sb; public static void main(String[] args) throws IOException { MyScanner sc = new MyScanner(System.in); String s = sc.nextLine(); n = sc.nextInt(); mem = new int[1 << n]; Arrays.fill(mem, -1); map = new HashMap<>(); map.put(0, s); for (int i = 1; i <= n; i++) { map.put(i, sc.nextLine()); } int val = dp(0); PrintWriter pw = new PrintWriter(System.out); pw.println(val); sb = new StringBuilder(); sb.append("0 "); build(0); pw.println(sb); pw.flush(); } // node == 0 -- > count 0 // state == 0 has 1 // state == 1 has 2 private static int dp(int msk) { if (msk == (1 << n) - 1) return 0; if(mem[msk] != -1) return mem[msk]; boolean foundFirst = false; int val = (int)1e9; int mark = -1; for (int i = 1; i <= n; i++) { if ((msk & 1 << (i - 1)) == 0){ if(!foundFirst){ foundFirst = true; mark = i; val = dist(0, mark)*2 + dp(msk | 1 << (mark - 1)); }else{ val = Math.min(val, dist(0, mark) + dist(mark, i) + dist(i, 0) + dp((msk|1 << (mark - 1))|1 << (i - 1))); } } } return mem[msk] = val; } private static int dist(int node, int i) { String from = map.get(i); String to = map.get(node); String[] fromco = from.split(" "); String[] toco = to.split(" "); int xs = Integer.parseInt(fromco[0]); int ys = Integer.parseInt(fromco[1]); int xf = Integer.parseInt(toco[0]); int yf = Integer.parseInt(toco[1]); return (xs - xf) * (xs - xf) + (ys - yf) * (ys - yf); } private static void build(int msk) { if (msk == (1 << n) - 1) return; boolean foundFirst = false; int ans = dp(msk); int mark = -1; int val = (int)1e9; for (int i = 1; i <= n; i++) { if ((msk & 1 << (i - 1)) == 0){ if(!foundFirst){ foundFirst = true; mark = i; val = dist(0, mark)*2 + dp(msk | 1 << (mark - 1)); if(val == ans){ sb.append(mark + " 0 "); build(msk | 1 << (mark - 1)); return; } }else{ val = dist(0, mark) + dist(mark, i) + dist(i, 0) + dp(msk|1 << (mark - 1)|1 << (i - 1)); if(val == ans){ sb.append(mark + " " + i + " 0 "); build(msk|1 << (mark - 1)|1 << (i - 1)); return; } } } } } static class MyScanner { StringTokenizer st; BufferedReader br; public MyScanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public MyScanner(String s) throws FileNotFoundException { br = new BufferedReader(new FileReader(new File(s))); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { String x = next(); StringBuilder sb = new StringBuilder("0"); double res = 0, f = 1; boolean dec = false, neg = false; int start = 0; if (x.charAt(0) == '-') { neg = true; start++; } for (int i = start; i < x.length(); i++) if (x.charAt(i) == '.') { res = Long.parseLong(sb.toString()); sb = new StringBuilder("0"); dec = true; } else { sb.append(x.charAt(i)); if (dec) f *= 10; } res += Long.parseLong(sb.toString()) / f; return res * (neg ? -1 : 1); } public boolean ready() throws IOException { return br.ready(); } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,567
4,130
2,863
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class Main { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); String [] line = br.readLine().split(" "); long l = Long.parseLong(line[0]); long r = Long.parseLong(line[1]); if(r-l < 2 || ((r-l == 2) && (l % 2 == 1))) System.out.println("-1"); else { Long start = l + (l%2); System.out.println(start + " " + (start + 1) + " " + (start + 2)); } } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class Main { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); String [] line = br.readLine().split(" "); long l = Long.parseLong(line[0]); long r = Long.parseLong(line[1]); if(r-l < 2 || ((r-l == 2) && (l % 2 == 1))) System.out.println("-1"); else { Long start = l + (l%2); System.out.println(start + " " + (start + 1) + " " + (start + 2)); } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class Main { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); String [] line = br.readLine().split(" "); long l = Long.parseLong(line[0]); long r = Long.parseLong(line[1]); if(r-l < 2 || ((r-l == 2) && (l % 2 == 1))) System.out.println("-1"); else { Long start = l + (l%2); System.out.println(start + " " + (start + 1) + " " + (start + 2)); } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
504
2,857
4,388
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.StringTokenizer; public class Main { static long[][] memo; static boolean[][] adjMat; static int N, endNode; static ArrayList<Integer>[] bits; static long dp(int idx, int msk) //complexity = N * 2^(N + 1) { if(memo[idx][msk] != -1) return memo[idx][msk]; long ret = adjMat[idx][endNode] ? 1 : 0; for(int i = 0, sz = bits[msk].size(); i < sz; ++i) { int j = bits[msk].get(i); if(j > endNode) break; if(adjMat[idx][j]) ret += dp(j, msk | 1 << j); } return memo[idx][msk] = ret; } public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); PrintWriter out = new PrintWriter(System.out); N = sc.nextInt(); adjMat = new boolean[N][N]; bits = new ArrayList[1 << N]; for(int i = 0; i < 1 << N; ++i) { bits[i] = new ArrayList<>(1); for(int j = 0; j < N; ++j) if((i & 1 << j) == 0) bits[i].add(j); } int M = sc.nextInt(); while(M-->0) { int u = sc.nextInt() - 1, v = sc.nextInt() - 1; adjMat[u][v] = adjMat[v][u] = true; } long ans = 0; for(int i = N; i > 1; --i) { memo = new long[i][1 << i]; for(long[] x: memo) Arrays.fill(x, -1); ans += dp(endNode = i - 1, 1 << endNode); } for(int i = 0; i < N; ++i) for(int j = i + 1; j < N; ++j) if(adjMat[i][j]) --ans; out.println(ans >> 1); out.flush(); out.close(); } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s){ br = new BufferedReader(new InputStreamReader(s));} public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException {return Integer.parseInt(next());} public long nextLong() throws IOException {return Long.parseLong(next());} public String nextLine() throws IOException {return br.readLine();} public double nextDouble() throws IOException { return Double.parseDouble(next()); } public boolean ready() throws IOException {return br.ready();} } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.StringTokenizer; public class Main { static long[][] memo; static boolean[][] adjMat; static int N, endNode; static ArrayList<Integer>[] bits; static long dp(int idx, int msk) //complexity = N * 2^(N + 1) { if(memo[idx][msk] != -1) return memo[idx][msk]; long ret = adjMat[idx][endNode] ? 1 : 0; for(int i = 0, sz = bits[msk].size(); i < sz; ++i) { int j = bits[msk].get(i); if(j > endNode) break; if(adjMat[idx][j]) ret += dp(j, msk | 1 << j); } return memo[idx][msk] = ret; } public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); PrintWriter out = new PrintWriter(System.out); N = sc.nextInt(); adjMat = new boolean[N][N]; bits = new ArrayList[1 << N]; for(int i = 0; i < 1 << N; ++i) { bits[i] = new ArrayList<>(1); for(int j = 0; j < N; ++j) if((i & 1 << j) == 0) bits[i].add(j); } int M = sc.nextInt(); while(M-->0) { int u = sc.nextInt() - 1, v = sc.nextInt() - 1; adjMat[u][v] = adjMat[v][u] = true; } long ans = 0; for(int i = N; i > 1; --i) { memo = new long[i][1 << i]; for(long[] x: memo) Arrays.fill(x, -1); ans += dp(endNode = i - 1, 1 << endNode); } for(int i = 0; i < N; ++i) for(int j = i + 1; j < N; ++j) if(adjMat[i][j]) --ans; out.println(ans >> 1); out.flush(); out.close(); } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s){ br = new BufferedReader(new InputStreamReader(s));} public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException {return Integer.parseInt(next());} public long nextLong() throws IOException {return Long.parseLong(next());} public String nextLine() throws IOException {return br.readLine();} public double nextDouble() throws IOException { return Double.parseDouble(next()); } public boolean ready() throws IOException {return br.ready();} } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.StringTokenizer; public class Main { static long[][] memo; static boolean[][] adjMat; static int N, endNode; static ArrayList<Integer>[] bits; static long dp(int idx, int msk) //complexity = N * 2^(N + 1) { if(memo[idx][msk] != -1) return memo[idx][msk]; long ret = adjMat[idx][endNode] ? 1 : 0; for(int i = 0, sz = bits[msk].size(); i < sz; ++i) { int j = bits[msk].get(i); if(j > endNode) break; if(adjMat[idx][j]) ret += dp(j, msk | 1 << j); } return memo[idx][msk] = ret; } public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); PrintWriter out = new PrintWriter(System.out); N = sc.nextInt(); adjMat = new boolean[N][N]; bits = new ArrayList[1 << N]; for(int i = 0; i < 1 << N; ++i) { bits[i] = new ArrayList<>(1); for(int j = 0; j < N; ++j) if((i & 1 << j) == 0) bits[i].add(j); } int M = sc.nextInt(); while(M-->0) { int u = sc.nextInt() - 1, v = sc.nextInt() - 1; adjMat[u][v] = adjMat[v][u] = true; } long ans = 0; for(int i = N; i > 1; --i) { memo = new long[i][1 << i]; for(long[] x: memo) Arrays.fill(x, -1); ans += dp(endNode = i - 1, 1 << endNode); } for(int i = 0; i < N; ++i) for(int j = i + 1; j < N; ++j) if(adjMat[i][j]) --ans; out.println(ans >> 1); out.flush(); out.close(); } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s){ br = new BufferedReader(new InputStreamReader(s));} public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException {return Integer.parseInt(next());} public long nextLong() throws IOException {return Long.parseLong(next());} public String nextLine() throws IOException {return br.readLine();} public double nextDouble() throws IOException { return Double.parseDouble(next()); } public boolean ready() throws IOException {return br.ready();} } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,050
4,377
740
import java.util.Scanner; public class Main { public static void main(String args[]) { Scanner in=new Scanner(System.in); String str=in.next(); int cnt=0; for(int i=0;i<str.length();++i) { if(str.charAt(i)=='1') { ++cnt; } } int i=0; for(;i<str.length();++i) { if(str.charAt(i)=='0') { System.out.print("0"); } else if(str.charAt(i)=='2') { while(cnt-->0) {// System.out.print("1"); } System.out.print("2"); } } while(cnt-->0) { System.out.print("1"); } in.close(); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Scanner; public class Main { public static void main(String args[]) { Scanner in=new Scanner(System.in); String str=in.next(); int cnt=0; for(int i=0;i<str.length();++i) { if(str.charAt(i)=='1') { ++cnt; } } int i=0; for(;i<str.length();++i) { if(str.charAt(i)=='0') { System.out.print("0"); } else if(str.charAt(i)=='2') { while(cnt-->0) {// System.out.print("1"); } System.out.print("2"); } } while(cnt-->0) { System.out.print("1"); } in.close(); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Scanner; public class Main { public static void main(String args[]) { Scanner in=new Scanner(System.in); String str=in.next(); int cnt=0; for(int i=0;i<str.length();++i) { if(str.charAt(i)=='1') { ++cnt; } } int i=0; for(;i<str.length();++i) { if(str.charAt(i)=='0') { System.out.print("0"); } else if(str.charAt(i)=='2') { while(cnt-->0) {// System.out.print("1"); } System.out.print("2"); } } while(cnt-->0) { System.out.print("1"); } in.close(); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
504
739
2,474
import java.util.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int[] arr = new int[n]; arr[0] = sc.nextInt(); for (int i = 1; i < n; i++) { arr[i] = arr[i - 1] + sc.nextInt(); } HashMap<Integer, List<Pair>> map = new HashMap<>(); for (int i = 0; i < n; i++) { if (map.containsKey(arr[i])) map.get(arr[i]).add(new Pair(0, i)); else { List<Pair> l = new ArrayList<>(); l.add(new Pair(0, i)); map.put(arr[i], l); } for (int j = 1; j <= i; j++) { int ss = arr[i] - arr[j - 1]; if (map.containsKey(ss)) map.get(ss).add(new Pair(j, i)); else { List<Pair> l = new ArrayList<>(); l.add(new Pair(j, i)); map.put(ss, l); } } } List<Pair> el = null; for (List<Pair> value : map.values()) { value.sort(Comparator.comparingInt(Pair::getStart)); ArrayList<Pair> ps = new ArrayList<>(); Pair last = value.get(0); for (int i = 1; i < value.size(); i++) { if (last.getEnd() < value.get(i).getStart()) { ps.add(last); last = value.get(i); } else if (last.getEnd() > value.get(i).getEnd()) last = value.get(i); } ps.add(last); if (el == null) el = ps; else if (ps.size() > el.size()) el = ps; } System.out.println(el.size()); for (Pair pair : el) { System.out.println((pair.getStart() + 1) + " " + (pair.getEnd() + 1)); } } } class Pair { private final int start; private final int end; public int getStart() { return start; } public int getEnd() { return end; } public Pair(int start, int end) { this.start = start; this.end = end; } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int[] arr = new int[n]; arr[0] = sc.nextInt(); for (int i = 1; i < n; i++) { arr[i] = arr[i - 1] + sc.nextInt(); } HashMap<Integer, List<Pair>> map = new HashMap<>(); for (int i = 0; i < n; i++) { if (map.containsKey(arr[i])) map.get(arr[i]).add(new Pair(0, i)); else { List<Pair> l = new ArrayList<>(); l.add(new Pair(0, i)); map.put(arr[i], l); } for (int j = 1; j <= i; j++) { int ss = arr[i] - arr[j - 1]; if (map.containsKey(ss)) map.get(ss).add(new Pair(j, i)); else { List<Pair> l = new ArrayList<>(); l.add(new Pair(j, i)); map.put(ss, l); } } } List<Pair> el = null; for (List<Pair> value : map.values()) { value.sort(Comparator.comparingInt(Pair::getStart)); ArrayList<Pair> ps = new ArrayList<>(); Pair last = value.get(0); for (int i = 1; i < value.size(); i++) { if (last.getEnd() < value.get(i).getStart()) { ps.add(last); last = value.get(i); } else if (last.getEnd() > value.get(i).getEnd()) last = value.get(i); } ps.add(last); if (el == null) el = ps; else if (ps.size() > el.size()) el = ps; } System.out.println(el.size()); for (Pair pair : el) { System.out.println((pair.getStart() + 1) + " " + (pair.getEnd() + 1)); } } } class Pair { private final int start; private final int end; public int getStart() { return start; } public int getEnd() { return end; } public Pair(int start, int end) { this.start = start; this.end = end; } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int[] arr = new int[n]; arr[0] = sc.nextInt(); for (int i = 1; i < n; i++) { arr[i] = arr[i - 1] + sc.nextInt(); } HashMap<Integer, List<Pair>> map = new HashMap<>(); for (int i = 0; i < n; i++) { if (map.containsKey(arr[i])) map.get(arr[i]).add(new Pair(0, i)); else { List<Pair> l = new ArrayList<>(); l.add(new Pair(0, i)); map.put(arr[i], l); } for (int j = 1; j <= i; j++) { int ss = arr[i] - arr[j - 1]; if (map.containsKey(ss)) map.get(ss).add(new Pair(j, i)); else { List<Pair> l = new ArrayList<>(); l.add(new Pair(j, i)); map.put(ss, l); } } } List<Pair> el = null; for (List<Pair> value : map.values()) { value.sort(Comparator.comparingInt(Pair::getStart)); ArrayList<Pair> ps = new ArrayList<>(); Pair last = value.get(0); for (int i = 1; i < value.size(); i++) { if (last.getEnd() < value.get(i).getStart()) { ps.add(last); last = value.get(i); } else if (last.getEnd() > value.get(i).getEnd()) last = value.get(i); } ps.add(last); if (el == null) el = ps; else if (ps.size() > el.size()) el = ps; } System.out.println(el.size()); for (Pair pair : el) { System.out.println((pair.getStart() + 1) + " " + (pair.getEnd() + 1)); } } } class Pair { private final int start; private final int end; public int getStart() { return start; } public int getEnd() { return end; } public Pair(int start, int end) { this.start = start; this.end = end; } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
864
2,469
1,200
import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.InputMismatchException; public class CFFF { static PrintWriter out; static final int oo = 987654321; static final long mod = (long)(1e9)+9; public static void main(String[] args) { MScanner sc = new MScanner(); out = new PrintWriter(System.out); long N = sc.nextLong(); long M = sc.nextLong(); long K = sc.nextLong(); if(M<=N-N/K) out.println(M); else{ long ans = (fastModExpo(2,M-(N-N%K)/K*(K-1)-N%K+1,mod)-2)*K+M-(M-(N-N%K)/K*(K-1)-N%K)*K; out.println((mod+ans)%mod); } out.close(); } static long fastModExpo(int base, long pow, long mod) { if (pow == 0) return 1L; if ((pow & 1) == 1) return (base*fastModExpo(base, pow - 1,mod))%mod; long temp = fastModExpo(base, pow / 2, mod); return (temp*temp)%mod; } static class MScanner { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public MScanner() { stream = System.in; // stream = new FileInputStream(new File("dec.in")); } int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } boolean isEndline(int c) { return c == '\n' || c == '\r' || c == -1; } int nextInt() { return Integer.parseInt(next()); } int[] nextInt(int N) { int[] ret = new int[N]; for (int a = 0; a < N; a++) ret[a] = nextInt(); return ret; } int[][] nextInt(int N, int M) { int[][] ret = new int[N][M]; for (int a = 0; a < N; a++) ret[a] = nextInt(M); return ret; } long nextLong() { return Long.parseLong(next()); } long[] nextLong(int N) { long[] ret = new long[N]; for (int a = 0; a < N; a++) ret[a] = nextLong(); return ret; } double nextDouble() { return Double.parseDouble(next()); } double[] nextDouble(int N) { double[] ret = new double[N]; for (int a = 0; a < N; a++) ret[a] = nextDouble(); return ret; } String next() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } String[] next(int N) { String[] ret = new String[N]; for (int a = 0; a < N; a++) ret[a] = next(); return ret; } String nextLine() { int c = read(); while (isEndline(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndline(c)); return res.toString(); } String[] nextLine(int N) { String[] ret = new String[N]; for (int a = 0; a < N; a++) ret[a] = nextLine(); return ret; } } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.InputMismatchException; public class CFFF { static PrintWriter out; static final int oo = 987654321; static final long mod = (long)(1e9)+9; public static void main(String[] args) { MScanner sc = new MScanner(); out = new PrintWriter(System.out); long N = sc.nextLong(); long M = sc.nextLong(); long K = sc.nextLong(); if(M<=N-N/K) out.println(M); else{ long ans = (fastModExpo(2,M-(N-N%K)/K*(K-1)-N%K+1,mod)-2)*K+M-(M-(N-N%K)/K*(K-1)-N%K)*K; out.println((mod+ans)%mod); } out.close(); } static long fastModExpo(int base, long pow, long mod) { if (pow == 0) return 1L; if ((pow & 1) == 1) return (base*fastModExpo(base, pow - 1,mod))%mod; long temp = fastModExpo(base, pow / 2, mod); return (temp*temp)%mod; } static class MScanner { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public MScanner() { stream = System.in; // stream = new FileInputStream(new File("dec.in")); } int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } boolean isEndline(int c) { return c == '\n' || c == '\r' || c == -1; } int nextInt() { return Integer.parseInt(next()); } int[] nextInt(int N) { int[] ret = new int[N]; for (int a = 0; a < N; a++) ret[a] = nextInt(); return ret; } int[][] nextInt(int N, int M) { int[][] ret = new int[N][M]; for (int a = 0; a < N; a++) ret[a] = nextInt(M); return ret; } long nextLong() { return Long.parseLong(next()); } long[] nextLong(int N) { long[] ret = new long[N]; for (int a = 0; a < N; a++) ret[a] = nextLong(); return ret; } double nextDouble() { return Double.parseDouble(next()); } double[] nextDouble(int N) { double[] ret = new double[N]; for (int a = 0; a < N; a++) ret[a] = nextDouble(); return ret; } String next() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } String[] next(int N) { String[] ret = new String[N]; for (int a = 0; a < N; a++) ret[a] = next(); return ret; } String nextLine() { int c = read(); while (isEndline(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndline(c)); return res.toString(); } String[] nextLine(int N) { String[] ret = new String[N]; for (int a = 0; a < N; a++) ret[a] = nextLine(); return ret; } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.InputMismatchException; public class CFFF { static PrintWriter out; static final int oo = 987654321; static final long mod = (long)(1e9)+9; public static void main(String[] args) { MScanner sc = new MScanner(); out = new PrintWriter(System.out); long N = sc.nextLong(); long M = sc.nextLong(); long K = sc.nextLong(); if(M<=N-N/K) out.println(M); else{ long ans = (fastModExpo(2,M-(N-N%K)/K*(K-1)-N%K+1,mod)-2)*K+M-(M-(N-N%K)/K*(K-1)-N%K)*K; out.println((mod+ans)%mod); } out.close(); } static long fastModExpo(int base, long pow, long mod) { if (pow == 0) return 1L; if ((pow & 1) == 1) return (base*fastModExpo(base, pow - 1,mod))%mod; long temp = fastModExpo(base, pow / 2, mod); return (temp*temp)%mod; } static class MScanner { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public MScanner() { stream = System.in; // stream = new FileInputStream(new File("dec.in")); } int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } boolean isEndline(int c) { return c == '\n' || c == '\r' || c == -1; } int nextInt() { return Integer.parseInt(next()); } int[] nextInt(int N) { int[] ret = new int[N]; for (int a = 0; a < N; a++) ret[a] = nextInt(); return ret; } int[][] nextInt(int N, int M) { int[][] ret = new int[N][M]; for (int a = 0; a < N; a++) ret[a] = nextInt(M); return ret; } long nextLong() { return Long.parseLong(next()); } long[] nextLong(int N) { long[] ret = new long[N]; for (int a = 0; a < N; a++) ret[a] = nextLong(); return ret; } double nextDouble() { return Double.parseDouble(next()); } double[] nextDouble(int N) { double[] ret = new double[N]; for (int a = 0; a < N; a++) ret[a] = nextDouble(); return ret; } String next() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } String[] next(int N) { String[] ret = new String[N]; for (int a = 0; a < N; a++) ret[a] = next(); return ret; } String nextLine() { int c = read(); while (isEndline(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndline(c)); return res.toString(); } String[] nextLine(int N) { String[] ret = new String[N]; for (int a = 0; a < N; a++) ret[a] = nextLine(); return ret; } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,348
1,199
3,608
import java.io.BufferedWriter; import java.io.File; import java.io.FileWriter; import java.io.IOException; import java.util.ArrayList; import java.util.LinkedList; import java.util.Queue; import java.util.Scanner; public class Main { static class Point { int x; int y; Point(int a, int b) { x = a; y = b; } @Override public String toString() { return "Point{" + "x=" + x + ", y=" + y + '}'; } } public static void main(String[] args) throws IOException { File f = new File("input.txt"); Scanner sc = new Scanner(f); BufferedWriter bw = new BufferedWriter(new FileWriter(new File("output.txt"))); int n = sc.nextInt(); int m = sc.nextInt(); boolean[][] board = new boolean[n][m]; int count = sc.nextInt(); Point[] burningTrees = new Point[count]; for (int i=0; i<count; i++) { burningTrees[i] = new Point(sc.nextInt() - 1,sc.nextInt() - 1); } Point last = findLastPoint(board,burningTrees); bw.append((last.x + 1) + " " + (last.y + 1) + "\n"); bw.flush(); bw.close(); sc.close(); } public static Point findLastPoint(boolean[][] board, Point[] burningTree){ Queue<Point> queue = new LinkedList<Point>(); for(int i = 0; i <burningTree.length; i++ ) { queue.add(burningTree[i]); board[burningTree[i].x][burningTree[i].y] = true; } Point lastPoint = new Point(-1,-1); while (!queue.isEmpty()) { Point p = queue.poll(); lastPoint = p; ArrayList<Point> neighbours = getNeighbours(p,board); for(int i = 0; i <neighbours.size(); i++ ) { queue.add(neighbours.get(i)); board[neighbours.get(i).x][neighbours.get(i).y] = true; } } return lastPoint; } public static ArrayList<Point> getNeighbours(Point p, boolean[][] board){ ArrayList<Point> neighbours = new ArrayList<>(); for(int i = -1; i <=1; i++ ){ for(int j = -1; j <= 1; j++ ){ if(Math.abs(i) != Math.abs(j)) { int x = p.x + i; int y = p.y + j; if (x >= 0 && x < board.length && y >= 0 && y < board[0].length) { if (board[x][y] == false) { neighbours.add(new Point(x,y)); } } } } } return neighbours; } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedWriter; import java.io.File; import java.io.FileWriter; import java.io.IOException; import java.util.ArrayList; import java.util.LinkedList; import java.util.Queue; import java.util.Scanner; public class Main { static class Point { int x; int y; Point(int a, int b) { x = a; y = b; } @Override public String toString() { return "Point{" + "x=" + x + ", y=" + y + '}'; } } public static void main(String[] args) throws IOException { File f = new File("input.txt"); Scanner sc = new Scanner(f); BufferedWriter bw = new BufferedWriter(new FileWriter(new File("output.txt"))); int n = sc.nextInt(); int m = sc.nextInt(); boolean[][] board = new boolean[n][m]; int count = sc.nextInt(); Point[] burningTrees = new Point[count]; for (int i=0; i<count; i++) { burningTrees[i] = new Point(sc.nextInt() - 1,sc.nextInt() - 1); } Point last = findLastPoint(board,burningTrees); bw.append((last.x + 1) + " " + (last.y + 1) + "\n"); bw.flush(); bw.close(); sc.close(); } public static Point findLastPoint(boolean[][] board, Point[] burningTree){ Queue<Point> queue = new LinkedList<Point>(); for(int i = 0; i <burningTree.length; i++ ) { queue.add(burningTree[i]); board[burningTree[i].x][burningTree[i].y] = true; } Point lastPoint = new Point(-1,-1); while (!queue.isEmpty()) { Point p = queue.poll(); lastPoint = p; ArrayList<Point> neighbours = getNeighbours(p,board); for(int i = 0; i <neighbours.size(); i++ ) { queue.add(neighbours.get(i)); board[neighbours.get(i).x][neighbours.get(i).y] = true; } } return lastPoint; } public static ArrayList<Point> getNeighbours(Point p, boolean[][] board){ ArrayList<Point> neighbours = new ArrayList<>(); for(int i = -1; i <=1; i++ ){ for(int j = -1; j <= 1; j++ ){ if(Math.abs(i) != Math.abs(j)) { int x = p.x + i; int y = p.y + j; if (x >= 0 && x < board.length && y >= 0 && y < board[0].length) { if (board[x][y] == false) { neighbours.add(new Point(x,y)); } } } } } return neighbours; } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedWriter; import java.io.File; import java.io.FileWriter; import java.io.IOException; import java.util.ArrayList; import java.util.LinkedList; import java.util.Queue; import java.util.Scanner; public class Main { static class Point { int x; int y; Point(int a, int b) { x = a; y = b; } @Override public String toString() { return "Point{" + "x=" + x + ", y=" + y + '}'; } } public static void main(String[] args) throws IOException { File f = new File("input.txt"); Scanner sc = new Scanner(f); BufferedWriter bw = new BufferedWriter(new FileWriter(new File("output.txt"))); int n = sc.nextInt(); int m = sc.nextInt(); boolean[][] board = new boolean[n][m]; int count = sc.nextInt(); Point[] burningTrees = new Point[count]; for (int i=0; i<count; i++) { burningTrees[i] = new Point(sc.nextInt() - 1,sc.nextInt() - 1); } Point last = findLastPoint(board,burningTrees); bw.append((last.x + 1) + " " + (last.y + 1) + "\n"); bw.flush(); bw.close(); sc.close(); } public static Point findLastPoint(boolean[][] board, Point[] burningTree){ Queue<Point> queue = new LinkedList<Point>(); for(int i = 0; i <burningTree.length; i++ ) { queue.add(burningTree[i]); board[burningTree[i].x][burningTree[i].y] = true; } Point lastPoint = new Point(-1,-1); while (!queue.isEmpty()) { Point p = queue.poll(); lastPoint = p; ArrayList<Point> neighbours = getNeighbours(p,board); for(int i = 0; i <neighbours.size(); i++ ) { queue.add(neighbours.get(i)); board[neighbours.get(i).x][neighbours.get(i).y] = true; } } return lastPoint; } public static ArrayList<Point> getNeighbours(Point p, boolean[][] board){ ArrayList<Point> neighbours = new ArrayList<>(); for(int i = -1; i <=1; i++ ){ for(int j = -1; j <= 1; j++ ){ if(Math.abs(i) != Math.abs(j)) { int x = p.x + i; int y = p.y + j; if (x >= 0 && x < board.length && y >= 0 && y < board[0].length) { if (board[x][y] == false) { neighbours.add(new Point(x,y)); } } } } } return neighbours; } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
968
3,600
610
import java.util.Arrays; import java.util.Scanner; public class SonyaAndHotels { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int d = sc.nextInt(); int[] locs = new int[n]; for (int i = 0; i < n; i++) { locs[i] = sc.nextInt(); } Arrays.sort(locs); int count = 2; for (int i = 0; i < locs.length-1; i++) { if(locs[i+1]-locs[i]==2*d){ count++; }else if(locs[i+1]-locs[i]>2*d){ count+=2; } } System.out.println(count); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Arrays; import java.util.Scanner; public class SonyaAndHotels { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int d = sc.nextInt(); int[] locs = new int[n]; for (int i = 0; i < n; i++) { locs[i] = sc.nextInt(); } Arrays.sort(locs); int count = 2; for (int i = 0; i < locs.length-1; i++) { if(locs[i+1]-locs[i]==2*d){ count++; }else if(locs[i+1]-locs[i]>2*d){ count+=2; } } System.out.println(count); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Arrays; import java.util.Scanner; public class SonyaAndHotels { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int d = sc.nextInt(); int[] locs = new int[n]; for (int i = 0; i < n; i++) { locs[i] = sc.nextInt(); } Arrays.sort(locs); int count = 2; for (int i = 0; i < locs.length-1; i++) { if(locs[i+1]-locs[i]==2*d){ count++; }else if(locs[i+1]-locs[i]>2*d){ count+=2; } } System.out.println(count); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
523
609
195
import java.io.BufferedOutputStream; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class Equator { public static BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); public static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out)); public static StringTokenizer st; public static void main(String[] args) throws IOException { int n = nextInt(); int[] a = intArray(n); long s = 0; for (int x : a) s += x; long m = 0; for (int i = 0; i < n; i++) { m += a[i]; if (m*2 >= s) { System.out.println(i+1); return; } } } public static String nextLine() throws IOException { return in.readLine(); } public static String nextString() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(in.readLine()); return st.nextToken(); } public static int nextInt() throws IOException { return Integer.parseInt(nextString()); } public static long nextLong() throws IOException { return Long.parseLong(nextString()); } public static int[] intArray(int n) throws IOException { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public static int[][] intArray(int n, int m) throws IOException { int[][] a = new int[n][m]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) a[i][j] = nextInt(); return a; } public static long[] longArray(int n) throws IOException { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedOutputStream; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class Equator { public static BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); public static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out)); public static StringTokenizer st; public static void main(String[] args) throws IOException { int n = nextInt(); int[] a = intArray(n); long s = 0; for (int x : a) s += x; long m = 0; for (int i = 0; i < n; i++) { m += a[i]; if (m*2 >= s) { System.out.println(i+1); return; } } } public static String nextLine() throws IOException { return in.readLine(); } public static String nextString() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(in.readLine()); return st.nextToken(); } public static int nextInt() throws IOException { return Integer.parseInt(nextString()); } public static long nextLong() throws IOException { return Long.parseLong(nextString()); } public static int[] intArray(int n) throws IOException { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public static int[][] intArray(int n, int m) throws IOException { int[][] a = new int[n][m]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) a[i][j] = nextInt(); return a; } public static long[] longArray(int n) throws IOException { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedOutputStream; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class Equator { public static BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); public static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out)); public static StringTokenizer st; public static void main(String[] args) throws IOException { int n = nextInt(); int[] a = intArray(n); long s = 0; for (int x : a) s += x; long m = 0; for (int i = 0; i < n; i++) { m += a[i]; if (m*2 >= s) { System.out.println(i+1); return; } } } public static String nextLine() throws IOException { return in.readLine(); } public static String nextString() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(in.readLine()); return st.nextToken(); } public static int nextInt() throws IOException { return Integer.parseInt(nextString()); } public static long nextLong() throws IOException { return Long.parseLong(nextString()); } public static int[] intArray(int n) throws IOException { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public static int[][] intArray(int n, int m) throws IOException { int[][] a = new int[n][m]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) a[i][j] = nextInt(); return a; } public static long[] longArray(int n) throws IOException { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
766
195
120
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in Actual solution is at the top * * @author @Ziklon */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); ABirthday solver = new ABirthday(); solver.solve(1, in, out); out.close(); } static class ABirthday { public void solve(int testNumber, InputReader in, OutputWriter out) { long N = in.readLong(), M = in.readLong(), K = in.readLong(), L = in.readLong(); long ans = ((L + K) - 1) / M + 1; if (ans * M > N || ans * M - K < L) out.printLine(-1); else out.printLine(ans); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void close() { writer.close(); } public void printLine(long i) { writer.println(i); } public void printLine(int i) { writer.println(i); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public long readLong() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in Actual solution is at the top * * @author @Ziklon */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); ABirthday solver = new ABirthday(); solver.solve(1, in, out); out.close(); } static class ABirthday { public void solve(int testNumber, InputReader in, OutputWriter out) { long N = in.readLong(), M = in.readLong(), K = in.readLong(), L = in.readLong(); long ans = ((L + K) - 1) / M + 1; if (ans * M > N || ans * M - K < L) out.printLine(-1); else out.printLine(ans); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void close() { writer.close(); } public void printLine(long i) { writer.println(i); } public void printLine(int i) { writer.println(i); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public long readLong() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in Actual solution is at the top * * @author @Ziklon */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); ABirthday solver = new ABirthday(); solver.solve(1, in, out); out.close(); } static class ABirthday { public void solve(int testNumber, InputReader in, OutputWriter out) { long N = in.readLong(), M = in.readLong(), K = in.readLong(), L = in.readLong(); long ans = ((L + K) - 1) / M + 1; if (ans * M > N || ans * M - K < L) out.printLine(-1); else out.printLine(ans); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void close() { writer.close(); } public void printLine(long i) { writer.println(i); } public void printLine(int i) { writer.println(i); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public long readLong() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,100
120
1,026
import java.io.*; import java.util.*; public class digits { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); long k = Long.parseLong(br.readLine()); long temp = 9 * (int)Math.pow(10,0); int count = 0; long initial = 0; while(k > temp) { count++; initial = temp; temp += 9 * (long)Math.pow(10,count)*(count+1); } long index = (k-initial-1)%(count+1); long num = (long)Math.pow(10,count) + (k-initial-1)/(count+1); System.out.println((num+"").charAt((int)index)); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class digits { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); long k = Long.parseLong(br.readLine()); long temp = 9 * (int)Math.pow(10,0); int count = 0; long initial = 0; while(k > temp) { count++; initial = temp; temp += 9 * (long)Math.pow(10,count)*(count+1); } long index = (k-initial-1)%(count+1); long num = (long)Math.pow(10,count) + (k-initial-1)/(count+1); System.out.println((num+"").charAt((int)index)); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class digits { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); long k = Long.parseLong(br.readLine()); long temp = 9 * (int)Math.pow(10,0); int count = 0; long initial = 0; while(k > temp) { count++; initial = temp; temp += 9 * (long)Math.pow(10,count)*(count+1); } long index = (k-initial-1)%(count+1); long num = (long)Math.pow(10,count) + (k-initial-1)/(count+1); System.out.println((num+"").charAt((int)index)); } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
518
1,025
2,324
import java.util.Scanner; public class Main { public static void main(String[] args){ long MOD = 1000000007; Scanner sc = new Scanner(System.in); int n = sc.nextInt(); long[][]dp = new long[n][5010]; char[] program = new char[n]; for(int i = 0; i < n; i++){ program[i] = sc.next().charAt(0); } dp[0][0] = 1; long[] acc = new long[5010]; acc[0] = 1; for(int i = 1 ; i < n; i++){ for(int j = 0; j< 5010; j++){ if(program[i-1] == 'f'){ if(j - 1 >= 0){ dp[i][j] = dp[i-1][j-1]; } }else{ dp[i][j] = acc[j]; } } acc[5009] = dp[i][5009]; for(int j = 5008; j >= 0; j--){ acc[j] = (acc[j + 1] + dp[i][j]) % MOD; } } System.out.println(acc[0]); } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Scanner; public class Main { public static void main(String[] args){ long MOD = 1000000007; Scanner sc = new Scanner(System.in); int n = sc.nextInt(); long[][]dp = new long[n][5010]; char[] program = new char[n]; for(int i = 0; i < n; i++){ program[i] = sc.next().charAt(0); } dp[0][0] = 1; long[] acc = new long[5010]; acc[0] = 1; for(int i = 1 ; i < n; i++){ for(int j = 0; j< 5010; j++){ if(program[i-1] == 'f'){ if(j - 1 >= 0){ dp[i][j] = dp[i-1][j-1]; } }else{ dp[i][j] = acc[j]; } } acc[5009] = dp[i][5009]; for(int j = 5008; j >= 0; j--){ acc[j] = (acc[j + 1] + dp[i][j]) % MOD; } } System.out.println(acc[0]); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; public class Main { public static void main(String[] args){ long MOD = 1000000007; Scanner sc = new Scanner(System.in); int n = sc.nextInt(); long[][]dp = new long[n][5010]; char[] program = new char[n]; for(int i = 0; i < n; i++){ program[i] = sc.next().charAt(0); } dp[0][0] = 1; long[] acc = new long[5010]; acc[0] = 1; for(int i = 1 ; i < n; i++){ for(int j = 0; j< 5010; j++){ if(program[i-1] == 'f'){ if(j - 1 >= 0){ dp[i][j] = dp[i-1][j-1]; } }else{ dp[i][j] = acc[j]; } } acc[5009] = dp[i][5009]; for(int j = 5008; j >= 0; j--){ acc[j] = (acc[j + 1] + dp[i][j]) % MOD; } } System.out.println(acc[0]); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
640
2,319
1,177
import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.InputMismatchException; import java.util.*; public class ed817Q3 { public static void main(String[] args){ InputReader in = new InputReader(System.in); PrintWriter out = new PrintWriter(System.out); int t = 1; for(int zxz=0;zxz<t;zxz++){ // my code starts here long n = in.nextLong(); long s = in.nextLong(); long start=s,end=n; long ans=n+1; while(start<=end){ long mid = start+(end-start)/2; if(mid-digitSum(mid)>=s){ ans = mid; end = mid-1; } else{ start=mid+1; } } System.out.println(n-ans+1); // my code ends here } } static int digitSum(long n){ int sum=0; while(n>0){ sum+=n%10; n=n/10; } return sum; } static class InputReader { private InputStream stream; private byte[] buf = new byte[8192]; private int curChar, snumChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int snext() { if (snumChars == -1) throw new InputMismatchException(); if (curChar >= snumChars) { curChar = 0; try { snumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (snumChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = snext(); while (isSpaceChar(c)) c = snext(); int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = snext(); while (isSpaceChar(c)) c = snext(); int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public int[] nextIntArray(int n) { int a[] = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public String readString() { int c = snext(); while (isSpaceChar(c)) c = snext(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = snext(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.InputMismatchException; import java.util.*; public class ed817Q3 { public static void main(String[] args){ InputReader in = new InputReader(System.in); PrintWriter out = new PrintWriter(System.out); int t = 1; for(int zxz=0;zxz<t;zxz++){ // my code starts here long n = in.nextLong(); long s = in.nextLong(); long start=s,end=n; long ans=n+1; while(start<=end){ long mid = start+(end-start)/2; if(mid-digitSum(mid)>=s){ ans = mid; end = mid-1; } else{ start=mid+1; } } System.out.println(n-ans+1); // my code ends here } } static int digitSum(long n){ int sum=0; while(n>0){ sum+=n%10; n=n/10; } return sum; } static class InputReader { private InputStream stream; private byte[] buf = new byte[8192]; private int curChar, snumChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int snext() { if (snumChars == -1) throw new InputMismatchException(); if (curChar >= snumChars) { curChar = 0; try { snumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (snumChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = snext(); while (isSpaceChar(c)) c = snext(); int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = snext(); while (isSpaceChar(c)) c = snext(); int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public int[] nextIntArray(int n) { int a[] = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public String readString() { int c = snext(); while (isSpaceChar(c)) c = snext(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = snext(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.InputMismatchException; import java.util.*; public class ed817Q3 { public static void main(String[] args){ InputReader in = new InputReader(System.in); PrintWriter out = new PrintWriter(System.out); int t = 1; for(int zxz=0;zxz<t;zxz++){ // my code starts here long n = in.nextLong(); long s = in.nextLong(); long start=s,end=n; long ans=n+1; while(start<=end){ long mid = start+(end-start)/2; if(mid-digitSum(mid)>=s){ ans = mid; end = mid-1; } else{ start=mid+1; } } System.out.println(n-ans+1); // my code ends here } } static int digitSum(long n){ int sum=0; while(n>0){ sum+=n%10; n=n/10; } return sum; } static class InputReader { private InputStream stream; private byte[] buf = new byte[8192]; private int curChar, snumChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int snext() { if (snumChars == -1) throw new InputMismatchException(); if (curChar >= snumChars) { curChar = 0; try { snumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (snumChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = snext(); while (isSpaceChar(c)) c = snext(); int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = snext(); while (isSpaceChar(c)) c = snext(); int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public int[] nextIntArray(int n) { int a[] = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public String readString() { int c = snext(); while (isSpaceChar(c)) c = snext(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = snext(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,190
1,176
1,903
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.util.Arrays; import java.util.InputMismatchException; public class R111_D2_A { public static void main(String[] args) { InputReader in = new InputReader(System.in); // BufferedReader in = new BufferedReader(new // InputStreamReader(System.in)); int n = in.readInt(); int[] inp = new int[n]; for (int i = 0; i < inp.length; i++) { inp[i] = in.readInt(); } Arrays.sort(inp); int sum1 = 0; int res = 0; for (int i = inp.length - 1; i >= 0; i--) { sum1 += inp[i]; res++; int sum2 = 0; for (int j = 0; j < i; j++) { sum2 += inp[j]; } if (sum1 > sum2) { break; } } System.out.println(res); } static class InputReader { private InputStream stream; private byte[] buf = new byte[1000]; private int curChar, numChars; public InputReader(InputStream stream) { this.stream = stream; } private int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long readLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuffer res = new StringBuffer(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private String readLine0() { StringBuffer buf = new StringBuffer(); int c = read(); while (c != '\n' && c != -1) { buf.appendCodePoint(c); c = read(); } return buf.toString(); } public String readLine() { String s = readLine0(); while (s.trim().length() == 0) s = readLine0(); return s; } public String readLine(boolean ignoreEmptyLines) { if (ignoreEmptyLines) return readLine(); else return readLine0(); } public char readCharacter() { int c = read(); while (isSpaceChar(c)) c = read(); return (char) c; } public double readDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') return res * Math.pow(10, readInt()); if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') return res * Math.pow(10, readInt()); if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.util.Arrays; import java.util.InputMismatchException; public class R111_D2_A { public static void main(String[] args) { InputReader in = new InputReader(System.in); // BufferedReader in = new BufferedReader(new // InputStreamReader(System.in)); int n = in.readInt(); int[] inp = new int[n]; for (int i = 0; i < inp.length; i++) { inp[i] = in.readInt(); } Arrays.sort(inp); int sum1 = 0; int res = 0; for (int i = inp.length - 1; i >= 0; i--) { sum1 += inp[i]; res++; int sum2 = 0; for (int j = 0; j < i; j++) { sum2 += inp[j]; } if (sum1 > sum2) { break; } } System.out.println(res); } static class InputReader { private InputStream stream; private byte[] buf = new byte[1000]; private int curChar, numChars; public InputReader(InputStream stream) { this.stream = stream; } private int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long readLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuffer res = new StringBuffer(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private String readLine0() { StringBuffer buf = new StringBuffer(); int c = read(); while (c != '\n' && c != -1) { buf.appendCodePoint(c); c = read(); } return buf.toString(); } public String readLine() { String s = readLine0(); while (s.trim().length() == 0) s = readLine0(); return s; } public String readLine(boolean ignoreEmptyLines) { if (ignoreEmptyLines) return readLine(); else return readLine0(); } public char readCharacter() { int c = read(); while (isSpaceChar(c)) c = read(); return (char) c; } public double readDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') return res * Math.pow(10, readInt()); if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') return res * Math.pow(10, readInt()); if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.util.Arrays; import java.util.InputMismatchException; public class R111_D2_A { public static void main(String[] args) { InputReader in = new InputReader(System.in); // BufferedReader in = new BufferedReader(new // InputStreamReader(System.in)); int n = in.readInt(); int[] inp = new int[n]; for (int i = 0; i < inp.length; i++) { inp[i] = in.readInt(); } Arrays.sort(inp); int sum1 = 0; int res = 0; for (int i = inp.length - 1; i >= 0; i--) { sum1 += inp[i]; res++; int sum2 = 0; for (int j = 0; j < i; j++) { sum2 += inp[j]; } if (sum1 > sum2) { break; } } System.out.println(res); } static class InputReader { private InputStream stream; private byte[] buf = new byte[1000]; private int curChar, numChars; public InputReader(InputStream stream) { this.stream = stream; } private int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long readLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuffer res = new StringBuffer(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private String readLine0() { StringBuffer buf = new StringBuffer(); int c = read(); while (c != '\n' && c != -1) { buf.appendCodePoint(c); c = read(); } return buf.toString(); } public String readLine() { String s = readLine0(); while (s.trim().length() == 0) s = readLine0(); return s; } public String readLine(boolean ignoreEmptyLines) { if (ignoreEmptyLines) return readLine(); else return readLine0(); } public char readCharacter() { int c = read(); while (isSpaceChar(c)) c = read(); return (char) c; } public double readDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') return res * Math.pow(10, readInt()); if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') return res * Math.pow(10, readInt()); if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,502
1,899
1,251
import java.io.*; import java.math.BigInteger; import java.util.StringTokenizer; public class C { public static void main(String[] args) throws IOException { init(System.in); BigInteger x = new BigInteger(next()); if (x.compareTo(BigInteger.ZERO) == 0) { System.out.println(0); return; } BigInteger k = new BigInteger(next()); BigInteger mod = new BigInteger("1000000007"); BigInteger two = BigInteger.ONE.add(BigInteger.ONE); BigInteger ans = two.modPow(k, mod); ans = ans.multiply(two.multiply(x).subtract(BigInteger.ONE)).add(BigInteger.ONE).mod(mod); System.out.println(ans); } //Input Reader private static BufferedReader reader; private static StringTokenizer tokenizer; private static void init(InputStream inputStream) { reader = new BufferedReader(new InputStreamReader(inputStream)); tokenizer = new StringTokenizer(""); } private static String next() throws IOException { String read; while (!tokenizer.hasMoreTokens()) { read = reader.readLine(); if (read == null || read.equals("")) return "-1"; tokenizer = new StringTokenizer(read); } return tokenizer.nextToken(); } // private static int nextInt() throws IOException { // return Integer.parseInt(next()); // } // private static long nextLong() throws IOException { // return Long.parseLong(next()); // } // // // Get a whole line. // private static String line() throws IOException { // return reader.readLine(); // } // // private static double nextDouble() throws IOException { // return Double.parseDouble(next()); // } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.math.BigInteger; import java.util.StringTokenizer; public class C { public static void main(String[] args) throws IOException { init(System.in); BigInteger x = new BigInteger(next()); if (x.compareTo(BigInteger.ZERO) == 0) { System.out.println(0); return; } BigInteger k = new BigInteger(next()); BigInteger mod = new BigInteger("1000000007"); BigInteger two = BigInteger.ONE.add(BigInteger.ONE); BigInteger ans = two.modPow(k, mod); ans = ans.multiply(two.multiply(x).subtract(BigInteger.ONE)).add(BigInteger.ONE).mod(mod); System.out.println(ans); } //Input Reader private static BufferedReader reader; private static StringTokenizer tokenizer; private static void init(InputStream inputStream) { reader = new BufferedReader(new InputStreamReader(inputStream)); tokenizer = new StringTokenizer(""); } private static String next() throws IOException { String read; while (!tokenizer.hasMoreTokens()) { read = reader.readLine(); if (read == null || read.equals("")) return "-1"; tokenizer = new StringTokenizer(read); } return tokenizer.nextToken(); } // private static int nextInt() throws IOException { // return Integer.parseInt(next()); // } // private static long nextLong() throws IOException { // return Long.parseLong(next()); // } // // // Get a whole line. // private static String line() throws IOException { // return reader.readLine(); // } // // private static double nextDouble() throws IOException { // return Double.parseDouble(next()); // } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.math.BigInteger; import java.util.StringTokenizer; public class C { public static void main(String[] args) throws IOException { init(System.in); BigInteger x = new BigInteger(next()); if (x.compareTo(BigInteger.ZERO) == 0) { System.out.println(0); return; } BigInteger k = new BigInteger(next()); BigInteger mod = new BigInteger("1000000007"); BigInteger two = BigInteger.ONE.add(BigInteger.ONE); BigInteger ans = two.modPow(k, mod); ans = ans.multiply(two.multiply(x).subtract(BigInteger.ONE)).add(BigInteger.ONE).mod(mod); System.out.println(ans); } //Input Reader private static BufferedReader reader; private static StringTokenizer tokenizer; private static void init(InputStream inputStream) { reader = new BufferedReader(new InputStreamReader(inputStream)); tokenizer = new StringTokenizer(""); } private static String next() throws IOException { String read; while (!tokenizer.hasMoreTokens()) { read = reader.readLine(); if (read == null || read.equals("")) return "-1"; tokenizer = new StringTokenizer(read); } return tokenizer.nextToken(); } // private static int nextInt() throws IOException { // return Integer.parseInt(next()); // } // private static long nextLong() throws IOException { // return Long.parseLong(next()); // } // // // Get a whole line. // private static String line() throws IOException { // return reader.readLine(); // } // // private static double nextDouble() throws IOException { // return Double.parseDouble(next()); // } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
669
1,250
3,787
// package com.company.codeforces; import java.util.*; public class Solution { static int n,m,h[][],v[][]; public static void main(String[] args) { Scanner input=new Scanner(System.in); n=input.nextInt(); m=input.nextInt(); int k=input.nextInt(); h=new int[n][m-1]; for (int i = 0; i <n ; i++) { for (int j = 0; j <m-1 ; j++) { h[i][j]=input.nextInt(); } } v=new int[n][m]; for (int i = 0; i <n-1 ; i++) { for (int j = 0; j <m ; j++) { v[i][j]=input.nextInt(); } } int ans[][]=new int[n][m]; dp=new int[501][501][11]; for (int aa[]:ans ) { Arrays.fill(aa,-1); } if (k%2==0) { for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { ans[i][j] = dfs(i, j, k / 2) * 2; } } } for (int i = 0; i <n ; i++) { for (int j = 0; j <m ; j++) { System.out.print(ans[i][j]+" "); } System.out.println(); } } static int dp[][][]; private static int dfs(int i, int j, int k) { if (k==0) return 0; if (dp[i][j][k]!=0){ // System.out.println("hit"); return dp[i][j][k]; } //left int ans=Integer.MAX_VALUE; if (j-1>=0) ans=dfs(i, j-1, k-1)+h[i][j-1]; if (i<n-1) ans=Math.min(ans,dfs(i+1, j, k-1)+v[i][j]); if (i>0) ans=Math.min(ans,dfs(i-1, j, k-1)+v[i-1][j]); if (j<m-1) ans=Math.min(ans,dfs(i, j+1, k-1)+h[i][j]); return dp[i][j][k]= ans; } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> // package com.company.codeforces; import java.util.*; public class Solution { static int n,m,h[][],v[][]; public static void main(String[] args) { Scanner input=new Scanner(System.in); n=input.nextInt(); m=input.nextInt(); int k=input.nextInt(); h=new int[n][m-1]; for (int i = 0; i <n ; i++) { for (int j = 0; j <m-1 ; j++) { h[i][j]=input.nextInt(); } } v=new int[n][m]; for (int i = 0; i <n-1 ; i++) { for (int j = 0; j <m ; j++) { v[i][j]=input.nextInt(); } } int ans[][]=new int[n][m]; dp=new int[501][501][11]; for (int aa[]:ans ) { Arrays.fill(aa,-1); } if (k%2==0) { for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { ans[i][j] = dfs(i, j, k / 2) * 2; } } } for (int i = 0; i <n ; i++) { for (int j = 0; j <m ; j++) { System.out.print(ans[i][j]+" "); } System.out.println(); } } static int dp[][][]; private static int dfs(int i, int j, int k) { if (k==0) return 0; if (dp[i][j][k]!=0){ // System.out.println("hit"); return dp[i][j][k]; } //left int ans=Integer.MAX_VALUE; if (j-1>=0) ans=dfs(i, j-1, k-1)+h[i][j-1]; if (i<n-1) ans=Math.min(ans,dfs(i+1, j, k-1)+v[i][j]); if (i>0) ans=Math.min(ans,dfs(i-1, j, k-1)+v[i-1][j]); if (j<m-1) ans=Math.min(ans,dfs(i, j+1, k-1)+h[i][j]); return dp[i][j][k]= ans; } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> // package com.company.codeforces; import java.util.*; public class Solution { static int n,m,h[][],v[][]; public static void main(String[] args) { Scanner input=new Scanner(System.in); n=input.nextInt(); m=input.nextInt(); int k=input.nextInt(); h=new int[n][m-1]; for (int i = 0; i <n ; i++) { for (int j = 0; j <m-1 ; j++) { h[i][j]=input.nextInt(); } } v=new int[n][m]; for (int i = 0; i <n-1 ; i++) { for (int j = 0; j <m ; j++) { v[i][j]=input.nextInt(); } } int ans[][]=new int[n][m]; dp=new int[501][501][11]; for (int aa[]:ans ) { Arrays.fill(aa,-1); } if (k%2==0) { for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { ans[i][j] = dfs(i, j, k / 2) * 2; } } } for (int i = 0; i <n ; i++) { for (int j = 0; j <m ; j++) { System.out.print(ans[i][j]+" "); } System.out.println(); } } static int dp[][][]; private static int dfs(int i, int j, int k) { if (k==0) return 0; if (dp[i][j][k]!=0){ // System.out.println("hit"); return dp[i][j][k]; } //left int ans=Integer.MAX_VALUE; if (j-1>=0) ans=dfs(i, j-1, k-1)+h[i][j-1]; if (i<n-1) ans=Math.min(ans,dfs(i+1, j, k-1)+v[i][j]); if (i>0) ans=Math.min(ans,dfs(i-1, j, k-1)+v[i-1][j]); if (j<m-1) ans=Math.min(ans,dfs(i, j+1, k-1)+h[i][j]); return dp[i][j][k]= ans; } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
880
3,779
1,867
import java.io.BufferedReader; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.math.BigInteger; import java.util.*; public class D { static HashMap<Long, Integer> comp = new HashMap<Long, Integer>(); static HashMap<Integer, Long> rev = new HashMap<Integer, Long>(); static long freq[]; public static void main(String[] args) { FastScanner in = new FastScanner(); int n = in.nextInt(); long a[] = new long[n]; long copy[] = new long[n]; long sum = 0; for(int i = 0; i < n; i++){ a[i] = in.nextLong(); copy[i] = a[i]; sum+=a[i]; } Arrays.sort(copy); for(int i = 0; i < n; i++) //Compress values to be 1-indexed if(!comp.containsKey(copy[i])){ comp.put(copy[i], (comp.size()+1)); //rev.put(comp.get(copy[i]), copy[i]); } // BIT bit = new BIT(n); freq = new long[n+1]; Arrays.fill(freq, 0); for(int i = 0; i < n; i++){ int v = comp.get(a[i]); freq[v]++; } long res = 0; BigInteger res2 = new BigInteger("0"); for(int i = 0; i < n; i++){ //Go through each element in the array long x = a[i]; //freq[comp.get(x)]--; //Find the amount of values equal to (x-1), x, and (x+1); long below = getFreq(x-1); long eq = getFreq(x); long above = getFreq(x+1); long other = (n-i)-below-eq-above; // System.out.println("x= "+x+" b:"+below+" e:"+eq+" a:"+above); long leaveOut = below*(x-1) + eq*(x) + above*(x+1); long cur = (sum-leaveOut)-(x*other); // System.out.println("sum:"+sum+" leave:"+leaveOut+" oth:"+other+" cur:"+cur+"\n"); res2 = res2.add(new BigInteger(""+cur)); res += cur; sum -= x; freq[comp.get(x)]--; } System.out.println(res2); } static long getFreq(long n){ if(!comp.containsKey(n)) return 0; else return freq[comp.get(n)]; } static class FastScanner{ BufferedReader br; StringTokenizer st; public FastScanner(String s) { try{ br = new BufferedReader(new FileReader(s)); } catch(FileNotFoundException e) { e.printStackTrace(); } } public FastScanner(){ br = new BufferedReader(new InputStreamReader(System.in)); } String nextToken() { while(st == null ||!st.hasMoreElements()){ try { st = new StringTokenizer(br.readLine());} catch(IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(nextToken()); } long nextLong() { return Long.parseLong(nextToken()); } double nextDouble() { return Double.parseDouble(nextToken()); } String next() { return nextToken(); } } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.math.BigInteger; import java.util.*; public class D { static HashMap<Long, Integer> comp = new HashMap<Long, Integer>(); static HashMap<Integer, Long> rev = new HashMap<Integer, Long>(); static long freq[]; public static void main(String[] args) { FastScanner in = new FastScanner(); int n = in.nextInt(); long a[] = new long[n]; long copy[] = new long[n]; long sum = 0; for(int i = 0; i < n; i++){ a[i] = in.nextLong(); copy[i] = a[i]; sum+=a[i]; } Arrays.sort(copy); for(int i = 0; i < n; i++) //Compress values to be 1-indexed if(!comp.containsKey(copy[i])){ comp.put(copy[i], (comp.size()+1)); //rev.put(comp.get(copy[i]), copy[i]); } // BIT bit = new BIT(n); freq = new long[n+1]; Arrays.fill(freq, 0); for(int i = 0; i < n; i++){ int v = comp.get(a[i]); freq[v]++; } long res = 0; BigInteger res2 = new BigInteger("0"); for(int i = 0; i < n; i++){ //Go through each element in the array long x = a[i]; //freq[comp.get(x)]--; //Find the amount of values equal to (x-1), x, and (x+1); long below = getFreq(x-1); long eq = getFreq(x); long above = getFreq(x+1); long other = (n-i)-below-eq-above; // System.out.println("x= "+x+" b:"+below+" e:"+eq+" a:"+above); long leaveOut = below*(x-1) + eq*(x) + above*(x+1); long cur = (sum-leaveOut)-(x*other); // System.out.println("sum:"+sum+" leave:"+leaveOut+" oth:"+other+" cur:"+cur+"\n"); res2 = res2.add(new BigInteger(""+cur)); res += cur; sum -= x; freq[comp.get(x)]--; } System.out.println(res2); } static long getFreq(long n){ if(!comp.containsKey(n)) return 0; else return freq[comp.get(n)]; } static class FastScanner{ BufferedReader br; StringTokenizer st; public FastScanner(String s) { try{ br = new BufferedReader(new FileReader(s)); } catch(FileNotFoundException e) { e.printStackTrace(); } } public FastScanner(){ br = new BufferedReader(new InputStreamReader(System.in)); } String nextToken() { while(st == null ||!st.hasMoreElements()){ try { st = new StringTokenizer(br.readLine());} catch(IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(nextToken()); } long nextLong() { return Long.parseLong(nextToken()); } double nextDouble() { return Double.parseDouble(nextToken()); } String next() { return nextToken(); } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.math.BigInteger; import java.util.*; public class D { static HashMap<Long, Integer> comp = new HashMap<Long, Integer>(); static HashMap<Integer, Long> rev = new HashMap<Integer, Long>(); static long freq[]; public static void main(String[] args) { FastScanner in = new FastScanner(); int n = in.nextInt(); long a[] = new long[n]; long copy[] = new long[n]; long sum = 0; for(int i = 0; i < n; i++){ a[i] = in.nextLong(); copy[i] = a[i]; sum+=a[i]; } Arrays.sort(copy); for(int i = 0; i < n; i++) //Compress values to be 1-indexed if(!comp.containsKey(copy[i])){ comp.put(copy[i], (comp.size()+1)); //rev.put(comp.get(copy[i]), copy[i]); } // BIT bit = new BIT(n); freq = new long[n+1]; Arrays.fill(freq, 0); for(int i = 0; i < n; i++){ int v = comp.get(a[i]); freq[v]++; } long res = 0; BigInteger res2 = new BigInteger("0"); for(int i = 0; i < n; i++){ //Go through each element in the array long x = a[i]; //freq[comp.get(x)]--; //Find the amount of values equal to (x-1), x, and (x+1); long below = getFreq(x-1); long eq = getFreq(x); long above = getFreq(x+1); long other = (n-i)-below-eq-above; // System.out.println("x= "+x+" b:"+below+" e:"+eq+" a:"+above); long leaveOut = below*(x-1) + eq*(x) + above*(x+1); long cur = (sum-leaveOut)-(x*other); // System.out.println("sum:"+sum+" leave:"+leaveOut+" oth:"+other+" cur:"+cur+"\n"); res2 = res2.add(new BigInteger(""+cur)); res += cur; sum -= x; freq[comp.get(x)]--; } System.out.println(res2); } static long getFreq(long n){ if(!comp.containsKey(n)) return 0; else return freq[comp.get(n)]; } static class FastScanner{ BufferedReader br; StringTokenizer st; public FastScanner(String s) { try{ br = new BufferedReader(new FileReader(s)); } catch(FileNotFoundException e) { e.printStackTrace(); } } public FastScanner(){ br = new BufferedReader(new InputStreamReader(System.in)); } String nextToken() { while(st == null ||!st.hasMoreElements()){ try { st = new StringTokenizer(br.readLine());} catch(IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(nextToken()); } long nextLong() { return Long.parseLong(nextToken()); } double nextDouble() { return Double.parseDouble(nextToken()); } String next() { return nextToken(); } } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,117
1,863
3,137
import java.util.*; import java.io.*; public class Traffic extends Template{ public double search1(int a, int w, int d){ double s = 0; double l = 2*w+2*a*d; int repeat = 100; while( repeat-- > 0 ){ double x = (s+l)/2; if( a*a*x*x + 2*a*w*x - w*w - 4*a*d > 0 ){ l = x; } else { s = x; } } return l; } public double search2(int a, double lim, int k){ double s = 0; double l = lim + 2*a*k; int repeat = 100; while( repeat-- > 0 ){ double x = (s+l)/2; if( a*x*x + 2*lim*x - 2*k > 0 ){ l = x; } else { s = x; } } return l; } public void solve() throws IOException { int a = nextInt(); int v = nextInt(); int l = nextInt(); int d = nextInt(); int w = nextInt(); if( w > v ){ w = v; } double time_max = Math.sqrt((double)2*d/a); double time_d = search1(a,w,d); // writer.println(time_max*a < w); writer.println(v <= (w+a*time_d)/2); writer.println(w < v); double t1 = (time_max*a < w) ? time_max : (v >= (w+a*time_d)/2) ? time_d : (w < v) ? (double)(2*v*v-2*v*w+2*a*d+w*w)/(2*a*v) : (double)v/a + (double)(d-(double)v*v/(2*a))/v; double lim = (time_max*a < w) ? time_max*a : w; double t3 = Math.min((double)(v-lim)/a, search2(a, lim, l-d)); // double t = (Math.sqrt(limit*limit+2*a*(l-d))-limit)/a; double dist2 = (l-d) - t3*t3*a/2 - t3*lim; double t4 = dist2/v; // writer.println("t1 = " + t1); // writer.println("dist1 = " + dist1); // writer.println("t3 = " + t3); // writer.println("dist2 = " + dist2); // writer.println("t4 = " + t4); writer.println((t1+t3+t4)); } public static void main(String[] args){ new Traffic().run(); } } abstract class Template implements Runnable{ public abstract void solve() throws IOException; BufferedReader reader; StringTokenizer tokenizer; PrintWriter writer; public void run(){ try{ reader = new BufferedReader(new InputStreamReader(System.in)); tokenizer = null; writer = new PrintWriter(System.out); solve(); reader.close(); writer.close(); } catch(Exception e){ e.printStackTrace(); System.exit(1); } } public int nextInt() throws IOException{ return Integer.parseInt(nextToken()); } public String nextToken() throws IOException{ while( tokenizer == null || !tokenizer.hasMoreTokens() ){ tokenizer = new StringTokenizer(reader.readLine()); } return tokenizer.nextToken(); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; public class Traffic extends Template{ public double search1(int a, int w, int d){ double s = 0; double l = 2*w+2*a*d; int repeat = 100; while( repeat-- > 0 ){ double x = (s+l)/2; if( a*a*x*x + 2*a*w*x - w*w - 4*a*d > 0 ){ l = x; } else { s = x; } } return l; } public double search2(int a, double lim, int k){ double s = 0; double l = lim + 2*a*k; int repeat = 100; while( repeat-- > 0 ){ double x = (s+l)/2; if( a*x*x + 2*lim*x - 2*k > 0 ){ l = x; } else { s = x; } } return l; } public void solve() throws IOException { int a = nextInt(); int v = nextInt(); int l = nextInt(); int d = nextInt(); int w = nextInt(); if( w > v ){ w = v; } double time_max = Math.sqrt((double)2*d/a); double time_d = search1(a,w,d); // writer.println(time_max*a < w); writer.println(v <= (w+a*time_d)/2); writer.println(w < v); double t1 = (time_max*a < w) ? time_max : (v >= (w+a*time_d)/2) ? time_d : (w < v) ? (double)(2*v*v-2*v*w+2*a*d+w*w)/(2*a*v) : (double)v/a + (double)(d-(double)v*v/(2*a))/v; double lim = (time_max*a < w) ? time_max*a : w; double t3 = Math.min((double)(v-lim)/a, search2(a, lim, l-d)); // double t = (Math.sqrt(limit*limit+2*a*(l-d))-limit)/a; double dist2 = (l-d) - t3*t3*a/2 - t3*lim; double t4 = dist2/v; // writer.println("t1 = " + t1); // writer.println("dist1 = " + dist1); // writer.println("t3 = " + t3); // writer.println("dist2 = " + dist2); // writer.println("t4 = " + t4); writer.println((t1+t3+t4)); } public static void main(String[] args){ new Traffic().run(); } } abstract class Template implements Runnable{ public abstract void solve() throws IOException; BufferedReader reader; StringTokenizer tokenizer; PrintWriter writer; public void run(){ try{ reader = new BufferedReader(new InputStreamReader(System.in)); tokenizer = null; writer = new PrintWriter(System.out); solve(); reader.close(); writer.close(); } catch(Exception e){ e.printStackTrace(); System.exit(1); } } public int nextInt() throws IOException{ return Integer.parseInt(nextToken()); } public String nextToken() throws IOException{ while( tokenizer == null || !tokenizer.hasMoreTokens() ){ tokenizer = new StringTokenizer(reader.readLine()); } return tokenizer.nextToken(); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; public class Traffic extends Template{ public double search1(int a, int w, int d){ double s = 0; double l = 2*w+2*a*d; int repeat = 100; while( repeat-- > 0 ){ double x = (s+l)/2; if( a*a*x*x + 2*a*w*x - w*w - 4*a*d > 0 ){ l = x; } else { s = x; } } return l; } public double search2(int a, double lim, int k){ double s = 0; double l = lim + 2*a*k; int repeat = 100; while( repeat-- > 0 ){ double x = (s+l)/2; if( a*x*x + 2*lim*x - 2*k > 0 ){ l = x; } else { s = x; } } return l; } public void solve() throws IOException { int a = nextInt(); int v = nextInt(); int l = nextInt(); int d = nextInt(); int w = nextInt(); if( w > v ){ w = v; } double time_max = Math.sqrt((double)2*d/a); double time_d = search1(a,w,d); // writer.println(time_max*a < w); writer.println(v <= (w+a*time_d)/2); writer.println(w < v); double t1 = (time_max*a < w) ? time_max : (v >= (w+a*time_d)/2) ? time_d : (w < v) ? (double)(2*v*v-2*v*w+2*a*d+w*w)/(2*a*v) : (double)v/a + (double)(d-(double)v*v/(2*a))/v; double lim = (time_max*a < w) ? time_max*a : w; double t3 = Math.min((double)(v-lim)/a, search2(a, lim, l-d)); // double t = (Math.sqrt(limit*limit+2*a*(l-d))-limit)/a; double dist2 = (l-d) - t3*t3*a/2 - t3*lim; double t4 = dist2/v; // writer.println("t1 = " + t1); // writer.println("dist1 = " + dist1); // writer.println("t3 = " + t3); // writer.println("dist2 = " + dist2); // writer.println("t4 = " + t4); writer.println((t1+t3+t4)); } public static void main(String[] args){ new Traffic().run(); } } abstract class Template implements Runnable{ public abstract void solve() throws IOException; BufferedReader reader; StringTokenizer tokenizer; PrintWriter writer; public void run(){ try{ reader = new BufferedReader(new InputStreamReader(System.in)); tokenizer = null; writer = new PrintWriter(System.out); solve(); reader.close(); writer.close(); } catch(Exception e){ e.printStackTrace(); System.exit(1); } } public int nextInt() throws IOException{ return Integer.parseInt(nextToken()); } public String nextToken() throws IOException{ while( tokenizer == null || !tokenizer.hasMoreTokens() ){ tokenizer = new StringTokenizer(reader.readLine()); } return tokenizer.nextToken(); } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,119
3,131
4,033
import java.io.FileInputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.math.BigInteger; import java.nio.charset.Charset; import java.util.*; public class CFContest { public static void main(String[] args) throws Exception { boolean local = System.getProperty("ONLINE_JUDGE") == null; boolean async = false; Charset charset = Charset.forName("ascii"); FastIO io = local ? new FastIO(new FileInputStream("D:\\DATABASE\\TESTCASE\\Code.in"), System.out, charset) : new FastIO(System.in, System.out, charset); Task task = new Task(io, new Debug(local)); if (async) { Thread t = new Thread(null, task, "dalt", 1 << 27); t.setPriority(Thread.MAX_PRIORITY); t.start(); t.join(); } else { task.run(); } if (local) { io.cache.append("\n\n--memory -- \n" + ((Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory()) >> 20) + "M"); } io.flush(); } public static class Task implements Runnable { final FastIO io; final Debug debug; int inf = (int) 1e9 + 2; BitOperator bitOperator = new BitOperator(); Modular modular = new Modular((int) 1e9 + 7); public Task(FastIO io, Debug debug) { this.io = io; this.debug = debug; } @Override public void run() { solve(); } int[][][] f; int n; int t; int[] songTimes; int[] songTypes; int mask; public void solve() { n = io.readInt(); t = io.readInt(); mask = 1 << n; f = new int[4][mask][t + 1]; for (int i = 0; i < 4; i++) { for (int j = 0; j < mask; j++) { for (int k = 0; k <= t; k++) { f[i][j][k] = -1; } } } songTimes = new int[n + 1]; songTypes = new int[n + 1]; for (int i = 1; i <= n; i++) { songTimes[i] = io.readInt(); songTypes[i] = io.readInt(); } int ans = 0; for (int i = 0; i < 4; i++) { for (int j = 0; j < mask; j++) { ans = modular.plus(ans, f(i, j, t)); } } io.cache.append(ans); } int f(int i, int j, int k) { if (j == 0) { return k == 0 && i == 0 ? 1 : 0; } if (k < 0) { return 0; } if (f[i][j][k] == -1) { f[i][j][k] = 0; for (int x = 1; x <= n; x++) { if (songTypes[x] != i || bitOperator.bitAt(j, x - 1) == 0) { continue; } for (int y = 0; y < 4; y++) { if (y == i) { continue; } f[i][j][k] = modular.plus(f[i][j][k], f(y, bitOperator.setBit(j, x - 1, false), k - songTimes[x])); } } } return f[i][j][k]; } } /** * 模运算 */ public static class Modular { int m; public Modular(int m) { this.m = m; } public int valueOf(int x) { x %= m; if (x < 0) { x += m; } return x; } public int valueOf(long x) { x %= m; if (x < 0) { x += m; } return (int) x; } public int mul(int x, int y) { return valueOf((long) x * y); } public int plus(int x, int y) { return valueOf(x + y); } @Override public String toString() { return "mod " + m; } } public static class BitOperator { public int bitAt(int x, int i) { return (x >> i) & 1; } public int bitAt(long x, int i) { return (int) ((x >> i) & 1); } public int setBit(int x, int i, boolean v) { if (v) { x |= 1 << i; } else { x &= ~(1 << i); } return x; } public long setBit(long x, int i, boolean v) { if (v) { x |= 1L << i; } else { x &= ~(1L << i); } return x; } /** * Determine whether x is subset of y */ public boolean subset(long x, long y) { return intersect(x, y) == x; } /** * Merge two set */ public long merge(long x, long y) { return x | y; } public long intersect(long x, long y) { return x & y; } public long differ(long x, long y) { return x - intersect(x, y); } } public static class Randomized { static Random random = new Random(); public static double nextDouble(double min, double max) { return random.nextDouble() * (max - min) + min; } public static void randomizedArray(int[] data, int from, int to) { to--; for (int i = from; i <= to; i++) { int s = nextInt(i, to); int tmp = data[i]; data[i] = data[s]; data[s] = tmp; } } public static void randomizedArray(long[] data, int from, int to) { to--; for (int i = from; i <= to; i++) { int s = nextInt(i, to); long tmp = data[i]; data[i] = data[s]; data[s] = tmp; } } public static void randomizedArray(double[] data, int from, int to) { to--; for (int i = from; i <= to; i++) { int s = nextInt(i, to); double tmp = data[i]; data[i] = data[s]; data[s] = tmp; } } public static void randomizedArray(float[] data, int from, int to) { to--; for (int i = from; i <= to; i++) { int s = nextInt(i, to); float tmp = data[i]; data[i] = data[s]; data[s] = tmp; } } public static <T> void randomizedArray(T[] data, int from, int to) { to--; for (int i = from; i <= to; i++) { int s = nextInt(i, to); T tmp = data[i]; data[i] = data[s]; data[s] = tmp; } } public static int nextInt(int l, int r) { return random.nextInt(r - l + 1) + l; } } public static class Splay implements Cloneable { public static final Splay NIL = new Splay(); static { NIL.left = NIL; NIL.right = NIL; NIL.father = NIL; NIL.size = 0; NIL.key = Integer.MIN_VALUE; NIL.sum = 0; } Splay left = NIL; Splay right = NIL; Splay father = NIL; int size = 1; int key; long sum; public static void splay(Splay x) { if (x == NIL) { return; } Splay y, z; while ((y = x.father) != NIL) { if ((z = y.father) == NIL) { y.pushDown(); x.pushDown(); if (x == y.left) { zig(x); } else { zag(x); } } else { z.pushDown(); y.pushDown(); x.pushDown(); if (x == y.left) { if (y == z.left) { zig(y); zig(x); } else { zig(x); zag(x); } } else { if (y == z.left) { zag(x); zig(x); } else { zag(y); zag(x); } } } } x.pushDown(); x.pushUp(); } public static void zig(Splay x) { Splay y = x.father; Splay z = y.father; Splay b = x.right; y.setLeft(b); x.setRight(y); z.changeChild(y, x); y.pushUp(); } public static void zag(Splay x) { Splay y = x.father; Splay z = y.father; Splay b = x.left; y.setRight(b); x.setLeft(y); z.changeChild(y, x); y.pushUp(); } public void setLeft(Splay x) { left = x; x.father = this; } public void setRight(Splay x) { right = x; x.father = this; } public void changeChild(Splay y, Splay x) { if (left == y) { setLeft(x); } else { setRight(x); } } public void pushUp() { if (this == NIL) { return; } size = left.size + right.size + 1; sum = left.sum + right.sum + key; } public void pushDown() { } public static int toArray(Splay root, int[] data, int offset) { if (root == NIL) { return offset; } offset = toArray(root.left, data, offset); data[offset++] = root.key; offset = toArray(root.right, data, offset); return offset; } public static void toString(Splay root, StringBuilder builder) { if (root == NIL) { return; } root.pushDown(); toString(root.left, builder); builder.append(root.key).append(','); toString(root.right, builder); } public Splay clone() { try { return (Splay) super.clone(); } catch (CloneNotSupportedException e) { throw new RuntimeException(e); } } public static Splay cloneTree(Splay splay) { if (splay == NIL) { return NIL; } splay = splay.clone(); splay.left = cloneTree(splay.left); splay.right = cloneTree(splay.right); return splay; } public static Splay add(Splay root, Splay node) { if (root == NIL) { return node; } Splay p = root; while (root != NIL) { p = root; root.pushDown(); if (root.key < node.key) { root = root.right; } else { root = root.left; } } if (p.key < node.key) { p.setRight(node); } else { p.setLeft(node); } p.pushUp(); splay(node); return node; } /** * Make the node with the minimum key as the root of tree */ public static Splay selectMinAsRoot(Splay root) { if (root == NIL) { return root; } root.pushDown(); while (root.left != NIL) { root = root.left; root.pushDown(); } splay(root); return root; } /** * Make the node with the maximum key as the root of tree */ public static Splay selectMaxAsRoot(Splay root) { if (root == NIL) { return root; } root.pushDown(); while (root.right != NIL) { root = root.right; root.pushDown(); } splay(root); return root; } /** * delete root of tree, then merge remain nodes into a new tree, and return the new root */ public static Splay deleteRoot(Splay root) { root.pushDown(); Splay left = splitLeft(root); Splay right = splitRight(root); return merge(left, right); } /** * detach the left subtree from root and return the root of left subtree */ public static Splay splitLeft(Splay root) { root.pushDown(); Splay left = root.left; left.father = NIL; root.setLeft(NIL); root.pushUp(); return left; } /** * detach the right subtree from root and return the root of right subtree */ public static Splay splitRight(Splay root) { root.pushDown(); Splay right = root.right; right.father = NIL; root.setRight(NIL); root.pushUp(); return right; } public static Splay merge(Splay a, Splay b) { if (a == NIL) { return b; } if (b == NIL) { return a; } a = selectMaxAsRoot(a); a.setRight(b); a.pushUp(); return a; } public static Splay selectKthAsRoot(Splay root, int k) { if (root == NIL) { return NIL; } Splay trace = root; Splay father = NIL; while (trace != NIL) { father = trace; trace.pushDown(); if (trace.left.size >= k) { trace = trace.left; } else { k -= trace.left.size + 1; if (k == 0) { break; } else { trace = trace.right; } } } splay(father); return father; } public static Splay selectKeyAsRoot(Splay root, int k) { if (root == NIL) { return NIL; } Splay trace = root; Splay father = NIL; Splay find = NIL; while (trace != NIL) { father = trace; trace.pushDown(); if (trace.key > k) { trace = trace.left; } else { if (trace.key == k) { find = trace; trace = trace.left; } else { trace = trace.right; } } } splay(father); if (find != NIL) { splay(find); return find; } return father; } public static Splay bruteForceMerge(Splay a, Splay b) { if (a == NIL) { return b; } else if (b == NIL) { return a; } if (a.size < b.size) { Splay tmp = a; a = b; b = tmp; } a = selectMaxAsRoot(a); int k = a.key; while (b != NIL) { b = selectMinAsRoot(b); if (b.key >= k) { break; } Splay kickedOut = b; b = deleteRoot(b); a = add(a, kickedOut); } return merge(a, b); } public static Splay[] split(Splay root, int key) { if (root == NIL) { return new Splay[]{NIL, NIL}; } Splay p = root; while (root != NIL) { p = root; root.pushDown(); if (root.key > key) { root = root.left; } else { root = root.right; } } splay(p); if (p.key <= key) { return new Splay[]{p, splitRight(p)}; } else { return new Splay[]{splitLeft(p), p}; } } @Override public String toString() { StringBuilder builder = new StringBuilder().append(key).append(":"); toString(cloneTree(this), builder); return builder.toString(); } } public static class FastIO { public final StringBuilder cache = new StringBuilder(); private final InputStream is; private final OutputStream os; private final Charset charset; private StringBuilder defaultStringBuf = new StringBuilder(1 << 8); private byte[] buf = new byte[1 << 13]; private int bufLen; private int bufOffset; private int next; public FastIO(InputStream is, OutputStream os, Charset charset) { this.is = is; this.os = os; this.charset = charset; } public FastIO(InputStream is, OutputStream os) { this(is, os, Charset.forName("ascii")); } private int read() { while (bufLen == bufOffset) { bufOffset = 0; try { bufLen = is.read(buf); } catch (IOException e) { throw new RuntimeException(e); } if (bufLen == -1) { return -1; } } return buf[bufOffset++]; } public void skipBlank() { while (next >= 0 && next <= 32) { next = read(); } } public int readInt() { int sign = 1; skipBlank(); if (next == '+' || next == '-') { sign = next == '+' ? 1 : -1; next = read(); } int val = 0; if (sign == 1) { while (next >= '0' && next <= '9') { val = val * 10 + next - '0'; next = read(); } } else { while (next >= '0' && next <= '9') { val = val * 10 - next + '0'; next = read(); } } return val; } public long readLong() { int sign = 1; skipBlank(); if (next == '+' || next == '-') { sign = next == '+' ? 1 : -1; next = read(); } long val = 0; if (sign == 1) { while (next >= '0' && next <= '9') { val = val * 10 + next - '0'; next = read(); } } else { while (next >= '0' && next <= '9') { val = val * 10 - next + '0'; next = read(); } } return val; } public double readDouble() { boolean sign = true; skipBlank(); if (next == '+' || next == '-') { sign = next == '+'; next = read(); } long val = 0; while (next >= '0' && next <= '9') { val = val * 10 + next - '0'; next = read(); } if (next != '.') { return sign ? val : -val; } next = read(); long radix = 1; long point = 0; while (next >= '0' && next <= '9') { point = point * 10 + next - '0'; radix = radix * 10; next = read(); } double result = val + (double) point / radix; return sign ? result : -result; } public String readString(StringBuilder builder) { skipBlank(); while (next > 32) { builder.append((char) next); next = read(); } return builder.toString(); } public String readString() { defaultStringBuf.setLength(0); return readString(defaultStringBuf); } public int readLine(char[] data, int offset) { int originalOffset = offset; while (next != -1 && next != '\n') { data[offset++] = (char) next; next = read(); } return offset - originalOffset; } public int readString(char[] data, int offset) { skipBlank(); int originalOffset = offset; while (next > 32) { data[offset++] = (char) next; next = read(); } return offset - originalOffset; } public int readString(byte[] data, int offset) { skipBlank(); int originalOffset = offset; while (next > 32) { data[offset++] = (byte) next; next = read(); } return offset - originalOffset; } public char readChar() { skipBlank(); char c = (char) next; next = read(); return c; } public void flush() { try { os.write(cache.toString().getBytes(charset)); os.flush(); cache.setLength(0); } catch (IOException e) { throw new RuntimeException(e); } } public boolean hasMore() { skipBlank(); return next != -1; } } public static class Debug { private boolean allowDebug; public Debug(boolean allowDebug) { this.allowDebug = allowDebug; } public void assertTrue(boolean flag) { if (!allowDebug) { return; } if (!flag) { fail(); } } public void fail() { throw new RuntimeException(); } public void assertFalse(boolean flag) { if (!allowDebug) { return; } if (flag) { fail(); } } private void outputName(String name) { System.out.print(name + " = "); } public void debug(String name, int x) { if (!allowDebug) { return; } outputName(name); System.out.println("" + x); } public void debug(String name, long x) { if (!allowDebug) { return; } outputName(name); System.out.println("" + x); } public void debug(String name, double x) { if (!allowDebug) { return; } outputName(name); System.out.println("" + x); } public void debug(String name, int[] x) { if (!allowDebug) { return; } outputName(name); System.out.println(Arrays.toString(x)); } public void debug(String name, long[] x) { if (!allowDebug) { return; } outputName(name); System.out.println(Arrays.toString(x)); } public void debug(String name, double[] x) { if (!allowDebug) { return; } outputName(name); System.out.println(Arrays.toString(x)); } public void debug(String name, Object x) { if (!allowDebug) { return; } outputName(name); System.out.println("" + x); } public void debug(String name, Object... x) { if (!allowDebug) { return; } outputName(name); System.out.println(Arrays.deepToString(x)); } } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.FileInputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.math.BigInteger; import java.nio.charset.Charset; import java.util.*; public class CFContest { public static void main(String[] args) throws Exception { boolean local = System.getProperty("ONLINE_JUDGE") == null; boolean async = false; Charset charset = Charset.forName("ascii"); FastIO io = local ? new FastIO(new FileInputStream("D:\\DATABASE\\TESTCASE\\Code.in"), System.out, charset) : new FastIO(System.in, System.out, charset); Task task = new Task(io, new Debug(local)); if (async) { Thread t = new Thread(null, task, "dalt", 1 << 27); t.setPriority(Thread.MAX_PRIORITY); t.start(); t.join(); } else { task.run(); } if (local) { io.cache.append("\n\n--memory -- \n" + ((Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory()) >> 20) + "M"); } io.flush(); } public static class Task implements Runnable { final FastIO io; final Debug debug; int inf = (int) 1e9 + 2; BitOperator bitOperator = new BitOperator(); Modular modular = new Modular((int) 1e9 + 7); public Task(FastIO io, Debug debug) { this.io = io; this.debug = debug; } @Override public void run() { solve(); } int[][][] f; int n; int t; int[] songTimes; int[] songTypes; int mask; public void solve() { n = io.readInt(); t = io.readInt(); mask = 1 << n; f = new int[4][mask][t + 1]; for (int i = 0; i < 4; i++) { for (int j = 0; j < mask; j++) { for (int k = 0; k <= t; k++) { f[i][j][k] = -1; } } } songTimes = new int[n + 1]; songTypes = new int[n + 1]; for (int i = 1; i <= n; i++) { songTimes[i] = io.readInt(); songTypes[i] = io.readInt(); } int ans = 0; for (int i = 0; i < 4; i++) { for (int j = 0; j < mask; j++) { ans = modular.plus(ans, f(i, j, t)); } } io.cache.append(ans); } int f(int i, int j, int k) { if (j == 0) { return k == 0 && i == 0 ? 1 : 0; } if (k < 0) { return 0; } if (f[i][j][k] == -1) { f[i][j][k] = 0; for (int x = 1; x <= n; x++) { if (songTypes[x] != i || bitOperator.bitAt(j, x - 1) == 0) { continue; } for (int y = 0; y < 4; y++) { if (y == i) { continue; } f[i][j][k] = modular.plus(f[i][j][k], f(y, bitOperator.setBit(j, x - 1, false), k - songTimes[x])); } } } return f[i][j][k]; } } /** * 模运算 */ public static class Modular { int m; public Modular(int m) { this.m = m; } public int valueOf(int x) { x %= m; if (x < 0) { x += m; } return x; } public int valueOf(long x) { x %= m; if (x < 0) { x += m; } return (int) x; } public int mul(int x, int y) { return valueOf((long) x * y); } public int plus(int x, int y) { return valueOf(x + y); } @Override public String toString() { return "mod " + m; } } public static class BitOperator { public int bitAt(int x, int i) { return (x >> i) & 1; } public int bitAt(long x, int i) { return (int) ((x >> i) & 1); } public int setBit(int x, int i, boolean v) { if (v) { x |= 1 << i; } else { x &= ~(1 << i); } return x; } public long setBit(long x, int i, boolean v) { if (v) { x |= 1L << i; } else { x &= ~(1L << i); } return x; } /** * Determine whether x is subset of y */ public boolean subset(long x, long y) { return intersect(x, y) == x; } /** * Merge two set */ public long merge(long x, long y) { return x | y; } public long intersect(long x, long y) { return x & y; } public long differ(long x, long y) { return x - intersect(x, y); } } public static class Randomized { static Random random = new Random(); public static double nextDouble(double min, double max) { return random.nextDouble() * (max - min) + min; } public static void randomizedArray(int[] data, int from, int to) { to--; for (int i = from; i <= to; i++) { int s = nextInt(i, to); int tmp = data[i]; data[i] = data[s]; data[s] = tmp; } } public static void randomizedArray(long[] data, int from, int to) { to--; for (int i = from; i <= to; i++) { int s = nextInt(i, to); long tmp = data[i]; data[i] = data[s]; data[s] = tmp; } } public static void randomizedArray(double[] data, int from, int to) { to--; for (int i = from; i <= to; i++) { int s = nextInt(i, to); double tmp = data[i]; data[i] = data[s]; data[s] = tmp; } } public static void randomizedArray(float[] data, int from, int to) { to--; for (int i = from; i <= to; i++) { int s = nextInt(i, to); float tmp = data[i]; data[i] = data[s]; data[s] = tmp; } } public static <T> void randomizedArray(T[] data, int from, int to) { to--; for (int i = from; i <= to; i++) { int s = nextInt(i, to); T tmp = data[i]; data[i] = data[s]; data[s] = tmp; } } public static int nextInt(int l, int r) { return random.nextInt(r - l + 1) + l; } } public static class Splay implements Cloneable { public static final Splay NIL = new Splay(); static { NIL.left = NIL; NIL.right = NIL; NIL.father = NIL; NIL.size = 0; NIL.key = Integer.MIN_VALUE; NIL.sum = 0; } Splay left = NIL; Splay right = NIL; Splay father = NIL; int size = 1; int key; long sum; public static void splay(Splay x) { if (x == NIL) { return; } Splay y, z; while ((y = x.father) != NIL) { if ((z = y.father) == NIL) { y.pushDown(); x.pushDown(); if (x == y.left) { zig(x); } else { zag(x); } } else { z.pushDown(); y.pushDown(); x.pushDown(); if (x == y.left) { if (y == z.left) { zig(y); zig(x); } else { zig(x); zag(x); } } else { if (y == z.left) { zag(x); zig(x); } else { zag(y); zag(x); } } } } x.pushDown(); x.pushUp(); } public static void zig(Splay x) { Splay y = x.father; Splay z = y.father; Splay b = x.right; y.setLeft(b); x.setRight(y); z.changeChild(y, x); y.pushUp(); } public static void zag(Splay x) { Splay y = x.father; Splay z = y.father; Splay b = x.left; y.setRight(b); x.setLeft(y); z.changeChild(y, x); y.pushUp(); } public void setLeft(Splay x) { left = x; x.father = this; } public void setRight(Splay x) { right = x; x.father = this; } public void changeChild(Splay y, Splay x) { if (left == y) { setLeft(x); } else { setRight(x); } } public void pushUp() { if (this == NIL) { return; } size = left.size + right.size + 1; sum = left.sum + right.sum + key; } public void pushDown() { } public static int toArray(Splay root, int[] data, int offset) { if (root == NIL) { return offset; } offset = toArray(root.left, data, offset); data[offset++] = root.key; offset = toArray(root.right, data, offset); return offset; } public static void toString(Splay root, StringBuilder builder) { if (root == NIL) { return; } root.pushDown(); toString(root.left, builder); builder.append(root.key).append(','); toString(root.right, builder); } public Splay clone() { try { return (Splay) super.clone(); } catch (CloneNotSupportedException e) { throw new RuntimeException(e); } } public static Splay cloneTree(Splay splay) { if (splay == NIL) { return NIL; } splay = splay.clone(); splay.left = cloneTree(splay.left); splay.right = cloneTree(splay.right); return splay; } public static Splay add(Splay root, Splay node) { if (root == NIL) { return node; } Splay p = root; while (root != NIL) { p = root; root.pushDown(); if (root.key < node.key) { root = root.right; } else { root = root.left; } } if (p.key < node.key) { p.setRight(node); } else { p.setLeft(node); } p.pushUp(); splay(node); return node; } /** * Make the node with the minimum key as the root of tree */ public static Splay selectMinAsRoot(Splay root) { if (root == NIL) { return root; } root.pushDown(); while (root.left != NIL) { root = root.left; root.pushDown(); } splay(root); return root; } /** * Make the node with the maximum key as the root of tree */ public static Splay selectMaxAsRoot(Splay root) { if (root == NIL) { return root; } root.pushDown(); while (root.right != NIL) { root = root.right; root.pushDown(); } splay(root); return root; } /** * delete root of tree, then merge remain nodes into a new tree, and return the new root */ public static Splay deleteRoot(Splay root) { root.pushDown(); Splay left = splitLeft(root); Splay right = splitRight(root); return merge(left, right); } /** * detach the left subtree from root and return the root of left subtree */ public static Splay splitLeft(Splay root) { root.pushDown(); Splay left = root.left; left.father = NIL; root.setLeft(NIL); root.pushUp(); return left; } /** * detach the right subtree from root and return the root of right subtree */ public static Splay splitRight(Splay root) { root.pushDown(); Splay right = root.right; right.father = NIL; root.setRight(NIL); root.pushUp(); return right; } public static Splay merge(Splay a, Splay b) { if (a == NIL) { return b; } if (b == NIL) { return a; } a = selectMaxAsRoot(a); a.setRight(b); a.pushUp(); return a; } public static Splay selectKthAsRoot(Splay root, int k) { if (root == NIL) { return NIL; } Splay trace = root; Splay father = NIL; while (trace != NIL) { father = trace; trace.pushDown(); if (trace.left.size >= k) { trace = trace.left; } else { k -= trace.left.size + 1; if (k == 0) { break; } else { trace = trace.right; } } } splay(father); return father; } public static Splay selectKeyAsRoot(Splay root, int k) { if (root == NIL) { return NIL; } Splay trace = root; Splay father = NIL; Splay find = NIL; while (trace != NIL) { father = trace; trace.pushDown(); if (trace.key > k) { trace = trace.left; } else { if (trace.key == k) { find = trace; trace = trace.left; } else { trace = trace.right; } } } splay(father); if (find != NIL) { splay(find); return find; } return father; } public static Splay bruteForceMerge(Splay a, Splay b) { if (a == NIL) { return b; } else if (b == NIL) { return a; } if (a.size < b.size) { Splay tmp = a; a = b; b = tmp; } a = selectMaxAsRoot(a); int k = a.key; while (b != NIL) { b = selectMinAsRoot(b); if (b.key >= k) { break; } Splay kickedOut = b; b = deleteRoot(b); a = add(a, kickedOut); } return merge(a, b); } public static Splay[] split(Splay root, int key) { if (root == NIL) { return new Splay[]{NIL, NIL}; } Splay p = root; while (root != NIL) { p = root; root.pushDown(); if (root.key > key) { root = root.left; } else { root = root.right; } } splay(p); if (p.key <= key) { return new Splay[]{p, splitRight(p)}; } else { return new Splay[]{splitLeft(p), p}; } } @Override public String toString() { StringBuilder builder = new StringBuilder().append(key).append(":"); toString(cloneTree(this), builder); return builder.toString(); } } public static class FastIO { public final StringBuilder cache = new StringBuilder(); private final InputStream is; private final OutputStream os; private final Charset charset; private StringBuilder defaultStringBuf = new StringBuilder(1 << 8); private byte[] buf = new byte[1 << 13]; private int bufLen; private int bufOffset; private int next; public FastIO(InputStream is, OutputStream os, Charset charset) { this.is = is; this.os = os; this.charset = charset; } public FastIO(InputStream is, OutputStream os) { this(is, os, Charset.forName("ascii")); } private int read() { while (bufLen == bufOffset) { bufOffset = 0; try { bufLen = is.read(buf); } catch (IOException e) { throw new RuntimeException(e); } if (bufLen == -1) { return -1; } } return buf[bufOffset++]; } public void skipBlank() { while (next >= 0 && next <= 32) { next = read(); } } public int readInt() { int sign = 1; skipBlank(); if (next == '+' || next == '-') { sign = next == '+' ? 1 : -1; next = read(); } int val = 0; if (sign == 1) { while (next >= '0' && next <= '9') { val = val * 10 + next - '0'; next = read(); } } else { while (next >= '0' && next <= '9') { val = val * 10 - next + '0'; next = read(); } } return val; } public long readLong() { int sign = 1; skipBlank(); if (next == '+' || next == '-') { sign = next == '+' ? 1 : -1; next = read(); } long val = 0; if (sign == 1) { while (next >= '0' && next <= '9') { val = val * 10 + next - '0'; next = read(); } } else { while (next >= '0' && next <= '9') { val = val * 10 - next + '0'; next = read(); } } return val; } public double readDouble() { boolean sign = true; skipBlank(); if (next == '+' || next == '-') { sign = next == '+'; next = read(); } long val = 0; while (next >= '0' && next <= '9') { val = val * 10 + next - '0'; next = read(); } if (next != '.') { return sign ? val : -val; } next = read(); long radix = 1; long point = 0; while (next >= '0' && next <= '9') { point = point * 10 + next - '0'; radix = radix * 10; next = read(); } double result = val + (double) point / radix; return sign ? result : -result; } public String readString(StringBuilder builder) { skipBlank(); while (next > 32) { builder.append((char) next); next = read(); } return builder.toString(); } public String readString() { defaultStringBuf.setLength(0); return readString(defaultStringBuf); } public int readLine(char[] data, int offset) { int originalOffset = offset; while (next != -1 && next != '\n') { data[offset++] = (char) next; next = read(); } return offset - originalOffset; } public int readString(char[] data, int offset) { skipBlank(); int originalOffset = offset; while (next > 32) { data[offset++] = (char) next; next = read(); } return offset - originalOffset; } public int readString(byte[] data, int offset) { skipBlank(); int originalOffset = offset; while (next > 32) { data[offset++] = (byte) next; next = read(); } return offset - originalOffset; } public char readChar() { skipBlank(); char c = (char) next; next = read(); return c; } public void flush() { try { os.write(cache.toString().getBytes(charset)); os.flush(); cache.setLength(0); } catch (IOException e) { throw new RuntimeException(e); } } public boolean hasMore() { skipBlank(); return next != -1; } } public static class Debug { private boolean allowDebug; public Debug(boolean allowDebug) { this.allowDebug = allowDebug; } public void assertTrue(boolean flag) { if (!allowDebug) { return; } if (!flag) { fail(); } } public void fail() { throw new RuntimeException(); } public void assertFalse(boolean flag) { if (!allowDebug) { return; } if (flag) { fail(); } } private void outputName(String name) { System.out.print(name + " = "); } public void debug(String name, int x) { if (!allowDebug) { return; } outputName(name); System.out.println("" + x); } public void debug(String name, long x) { if (!allowDebug) { return; } outputName(name); System.out.println("" + x); } public void debug(String name, double x) { if (!allowDebug) { return; } outputName(name); System.out.println("" + x); } public void debug(String name, int[] x) { if (!allowDebug) { return; } outputName(name); System.out.println(Arrays.toString(x)); } public void debug(String name, long[] x) { if (!allowDebug) { return; } outputName(name); System.out.println(Arrays.toString(x)); } public void debug(String name, double[] x) { if (!allowDebug) { return; } outputName(name); System.out.println(Arrays.toString(x)); } public void debug(String name, Object x) { if (!allowDebug) { return; } outputName(name); System.out.println("" + x); } public void debug(String name, Object... x) { if (!allowDebug) { return; } outputName(name); System.out.println(Arrays.deepToString(x)); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.FileInputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.math.BigInteger; import java.nio.charset.Charset; import java.util.*; public class CFContest { public static void main(String[] args) throws Exception { boolean local = System.getProperty("ONLINE_JUDGE") == null; boolean async = false; Charset charset = Charset.forName("ascii"); FastIO io = local ? new FastIO(new FileInputStream("D:\\DATABASE\\TESTCASE\\Code.in"), System.out, charset) : new FastIO(System.in, System.out, charset); Task task = new Task(io, new Debug(local)); if (async) { Thread t = new Thread(null, task, "dalt", 1 << 27); t.setPriority(Thread.MAX_PRIORITY); t.start(); t.join(); } else { task.run(); } if (local) { io.cache.append("\n\n--memory -- \n" + ((Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory()) >> 20) + "M"); } io.flush(); } public static class Task implements Runnable { final FastIO io; final Debug debug; int inf = (int) 1e9 + 2; BitOperator bitOperator = new BitOperator(); Modular modular = new Modular((int) 1e9 + 7); public Task(FastIO io, Debug debug) { this.io = io; this.debug = debug; } @Override public void run() { solve(); } int[][][] f; int n; int t; int[] songTimes; int[] songTypes; int mask; public void solve() { n = io.readInt(); t = io.readInt(); mask = 1 << n; f = new int[4][mask][t + 1]; for (int i = 0; i < 4; i++) { for (int j = 0; j < mask; j++) { for (int k = 0; k <= t; k++) { f[i][j][k] = -1; } } } songTimes = new int[n + 1]; songTypes = new int[n + 1]; for (int i = 1; i <= n; i++) { songTimes[i] = io.readInt(); songTypes[i] = io.readInt(); } int ans = 0; for (int i = 0; i < 4; i++) { for (int j = 0; j < mask; j++) { ans = modular.plus(ans, f(i, j, t)); } } io.cache.append(ans); } int f(int i, int j, int k) { if (j == 0) { return k == 0 && i == 0 ? 1 : 0; } if (k < 0) { return 0; } if (f[i][j][k] == -1) { f[i][j][k] = 0; for (int x = 1; x <= n; x++) { if (songTypes[x] != i || bitOperator.bitAt(j, x - 1) == 0) { continue; } for (int y = 0; y < 4; y++) { if (y == i) { continue; } f[i][j][k] = modular.plus(f[i][j][k], f(y, bitOperator.setBit(j, x - 1, false), k - songTimes[x])); } } } return f[i][j][k]; } } /** * 模运算 */ public static class Modular { int m; public Modular(int m) { this.m = m; } public int valueOf(int x) { x %= m; if (x < 0) { x += m; } return x; } public int valueOf(long x) { x %= m; if (x < 0) { x += m; } return (int) x; } public int mul(int x, int y) { return valueOf((long) x * y); } public int plus(int x, int y) { return valueOf(x + y); } @Override public String toString() { return "mod " + m; } } public static class BitOperator { public int bitAt(int x, int i) { return (x >> i) & 1; } public int bitAt(long x, int i) { return (int) ((x >> i) & 1); } public int setBit(int x, int i, boolean v) { if (v) { x |= 1 << i; } else { x &= ~(1 << i); } return x; } public long setBit(long x, int i, boolean v) { if (v) { x |= 1L << i; } else { x &= ~(1L << i); } return x; } /** * Determine whether x is subset of y */ public boolean subset(long x, long y) { return intersect(x, y) == x; } /** * Merge two set */ public long merge(long x, long y) { return x | y; } public long intersect(long x, long y) { return x & y; } public long differ(long x, long y) { return x - intersect(x, y); } } public static class Randomized { static Random random = new Random(); public static double nextDouble(double min, double max) { return random.nextDouble() * (max - min) + min; } public static void randomizedArray(int[] data, int from, int to) { to--; for (int i = from; i <= to; i++) { int s = nextInt(i, to); int tmp = data[i]; data[i] = data[s]; data[s] = tmp; } } public static void randomizedArray(long[] data, int from, int to) { to--; for (int i = from; i <= to; i++) { int s = nextInt(i, to); long tmp = data[i]; data[i] = data[s]; data[s] = tmp; } } public static void randomizedArray(double[] data, int from, int to) { to--; for (int i = from; i <= to; i++) { int s = nextInt(i, to); double tmp = data[i]; data[i] = data[s]; data[s] = tmp; } } public static void randomizedArray(float[] data, int from, int to) { to--; for (int i = from; i <= to; i++) { int s = nextInt(i, to); float tmp = data[i]; data[i] = data[s]; data[s] = tmp; } } public static <T> void randomizedArray(T[] data, int from, int to) { to--; for (int i = from; i <= to; i++) { int s = nextInt(i, to); T tmp = data[i]; data[i] = data[s]; data[s] = tmp; } } public static int nextInt(int l, int r) { return random.nextInt(r - l + 1) + l; } } public static class Splay implements Cloneable { public static final Splay NIL = new Splay(); static { NIL.left = NIL; NIL.right = NIL; NIL.father = NIL; NIL.size = 0; NIL.key = Integer.MIN_VALUE; NIL.sum = 0; } Splay left = NIL; Splay right = NIL; Splay father = NIL; int size = 1; int key; long sum; public static void splay(Splay x) { if (x == NIL) { return; } Splay y, z; while ((y = x.father) != NIL) { if ((z = y.father) == NIL) { y.pushDown(); x.pushDown(); if (x == y.left) { zig(x); } else { zag(x); } } else { z.pushDown(); y.pushDown(); x.pushDown(); if (x == y.left) { if (y == z.left) { zig(y); zig(x); } else { zig(x); zag(x); } } else { if (y == z.left) { zag(x); zig(x); } else { zag(y); zag(x); } } } } x.pushDown(); x.pushUp(); } public static void zig(Splay x) { Splay y = x.father; Splay z = y.father; Splay b = x.right; y.setLeft(b); x.setRight(y); z.changeChild(y, x); y.pushUp(); } public static void zag(Splay x) { Splay y = x.father; Splay z = y.father; Splay b = x.left; y.setRight(b); x.setLeft(y); z.changeChild(y, x); y.pushUp(); } public void setLeft(Splay x) { left = x; x.father = this; } public void setRight(Splay x) { right = x; x.father = this; } public void changeChild(Splay y, Splay x) { if (left == y) { setLeft(x); } else { setRight(x); } } public void pushUp() { if (this == NIL) { return; } size = left.size + right.size + 1; sum = left.sum + right.sum + key; } public void pushDown() { } public static int toArray(Splay root, int[] data, int offset) { if (root == NIL) { return offset; } offset = toArray(root.left, data, offset); data[offset++] = root.key; offset = toArray(root.right, data, offset); return offset; } public static void toString(Splay root, StringBuilder builder) { if (root == NIL) { return; } root.pushDown(); toString(root.left, builder); builder.append(root.key).append(','); toString(root.right, builder); } public Splay clone() { try { return (Splay) super.clone(); } catch (CloneNotSupportedException e) { throw new RuntimeException(e); } } public static Splay cloneTree(Splay splay) { if (splay == NIL) { return NIL; } splay = splay.clone(); splay.left = cloneTree(splay.left); splay.right = cloneTree(splay.right); return splay; } public static Splay add(Splay root, Splay node) { if (root == NIL) { return node; } Splay p = root; while (root != NIL) { p = root; root.pushDown(); if (root.key < node.key) { root = root.right; } else { root = root.left; } } if (p.key < node.key) { p.setRight(node); } else { p.setLeft(node); } p.pushUp(); splay(node); return node; } /** * Make the node with the minimum key as the root of tree */ public static Splay selectMinAsRoot(Splay root) { if (root == NIL) { return root; } root.pushDown(); while (root.left != NIL) { root = root.left; root.pushDown(); } splay(root); return root; } /** * Make the node with the maximum key as the root of tree */ public static Splay selectMaxAsRoot(Splay root) { if (root == NIL) { return root; } root.pushDown(); while (root.right != NIL) { root = root.right; root.pushDown(); } splay(root); return root; } /** * delete root of tree, then merge remain nodes into a new tree, and return the new root */ public static Splay deleteRoot(Splay root) { root.pushDown(); Splay left = splitLeft(root); Splay right = splitRight(root); return merge(left, right); } /** * detach the left subtree from root and return the root of left subtree */ public static Splay splitLeft(Splay root) { root.pushDown(); Splay left = root.left; left.father = NIL; root.setLeft(NIL); root.pushUp(); return left; } /** * detach the right subtree from root and return the root of right subtree */ public static Splay splitRight(Splay root) { root.pushDown(); Splay right = root.right; right.father = NIL; root.setRight(NIL); root.pushUp(); return right; } public static Splay merge(Splay a, Splay b) { if (a == NIL) { return b; } if (b == NIL) { return a; } a = selectMaxAsRoot(a); a.setRight(b); a.pushUp(); return a; } public static Splay selectKthAsRoot(Splay root, int k) { if (root == NIL) { return NIL; } Splay trace = root; Splay father = NIL; while (trace != NIL) { father = trace; trace.pushDown(); if (trace.left.size >= k) { trace = trace.left; } else { k -= trace.left.size + 1; if (k == 0) { break; } else { trace = trace.right; } } } splay(father); return father; } public static Splay selectKeyAsRoot(Splay root, int k) { if (root == NIL) { return NIL; } Splay trace = root; Splay father = NIL; Splay find = NIL; while (trace != NIL) { father = trace; trace.pushDown(); if (trace.key > k) { trace = trace.left; } else { if (trace.key == k) { find = trace; trace = trace.left; } else { trace = trace.right; } } } splay(father); if (find != NIL) { splay(find); return find; } return father; } public static Splay bruteForceMerge(Splay a, Splay b) { if (a == NIL) { return b; } else if (b == NIL) { return a; } if (a.size < b.size) { Splay tmp = a; a = b; b = tmp; } a = selectMaxAsRoot(a); int k = a.key; while (b != NIL) { b = selectMinAsRoot(b); if (b.key >= k) { break; } Splay kickedOut = b; b = deleteRoot(b); a = add(a, kickedOut); } return merge(a, b); } public static Splay[] split(Splay root, int key) { if (root == NIL) { return new Splay[]{NIL, NIL}; } Splay p = root; while (root != NIL) { p = root; root.pushDown(); if (root.key > key) { root = root.left; } else { root = root.right; } } splay(p); if (p.key <= key) { return new Splay[]{p, splitRight(p)}; } else { return new Splay[]{splitLeft(p), p}; } } @Override public String toString() { StringBuilder builder = new StringBuilder().append(key).append(":"); toString(cloneTree(this), builder); return builder.toString(); } } public static class FastIO { public final StringBuilder cache = new StringBuilder(); private final InputStream is; private final OutputStream os; private final Charset charset; private StringBuilder defaultStringBuf = new StringBuilder(1 << 8); private byte[] buf = new byte[1 << 13]; private int bufLen; private int bufOffset; private int next; public FastIO(InputStream is, OutputStream os, Charset charset) { this.is = is; this.os = os; this.charset = charset; } public FastIO(InputStream is, OutputStream os) { this(is, os, Charset.forName("ascii")); } private int read() { while (bufLen == bufOffset) { bufOffset = 0; try { bufLen = is.read(buf); } catch (IOException e) { throw new RuntimeException(e); } if (bufLen == -1) { return -1; } } return buf[bufOffset++]; } public void skipBlank() { while (next >= 0 && next <= 32) { next = read(); } } public int readInt() { int sign = 1; skipBlank(); if (next == '+' || next == '-') { sign = next == '+' ? 1 : -1; next = read(); } int val = 0; if (sign == 1) { while (next >= '0' && next <= '9') { val = val * 10 + next - '0'; next = read(); } } else { while (next >= '0' && next <= '9') { val = val * 10 - next + '0'; next = read(); } } return val; } public long readLong() { int sign = 1; skipBlank(); if (next == '+' || next == '-') { sign = next == '+' ? 1 : -1; next = read(); } long val = 0; if (sign == 1) { while (next >= '0' && next <= '9') { val = val * 10 + next - '0'; next = read(); } } else { while (next >= '0' && next <= '9') { val = val * 10 - next + '0'; next = read(); } } return val; } public double readDouble() { boolean sign = true; skipBlank(); if (next == '+' || next == '-') { sign = next == '+'; next = read(); } long val = 0; while (next >= '0' && next <= '9') { val = val * 10 + next - '0'; next = read(); } if (next != '.') { return sign ? val : -val; } next = read(); long radix = 1; long point = 0; while (next >= '0' && next <= '9') { point = point * 10 + next - '0'; radix = radix * 10; next = read(); } double result = val + (double) point / radix; return sign ? result : -result; } public String readString(StringBuilder builder) { skipBlank(); while (next > 32) { builder.append((char) next); next = read(); } return builder.toString(); } public String readString() { defaultStringBuf.setLength(0); return readString(defaultStringBuf); } public int readLine(char[] data, int offset) { int originalOffset = offset; while (next != -1 && next != '\n') { data[offset++] = (char) next; next = read(); } return offset - originalOffset; } public int readString(char[] data, int offset) { skipBlank(); int originalOffset = offset; while (next > 32) { data[offset++] = (char) next; next = read(); } return offset - originalOffset; } public int readString(byte[] data, int offset) { skipBlank(); int originalOffset = offset; while (next > 32) { data[offset++] = (byte) next; next = read(); } return offset - originalOffset; } public char readChar() { skipBlank(); char c = (char) next; next = read(); return c; } public void flush() { try { os.write(cache.toString().getBytes(charset)); os.flush(); cache.setLength(0); } catch (IOException e) { throw new RuntimeException(e); } } public boolean hasMore() { skipBlank(); return next != -1; } } public static class Debug { private boolean allowDebug; public Debug(boolean allowDebug) { this.allowDebug = allowDebug; } public void assertTrue(boolean flag) { if (!allowDebug) { return; } if (!flag) { fail(); } } public void fail() { throw new RuntimeException(); } public void assertFalse(boolean flag) { if (!allowDebug) { return; } if (flag) { fail(); } } private void outputName(String name) { System.out.print(name + " = "); } public void debug(String name, int x) { if (!allowDebug) { return; } outputName(name); System.out.println("" + x); } public void debug(String name, long x) { if (!allowDebug) { return; } outputName(name); System.out.println("" + x); } public void debug(String name, double x) { if (!allowDebug) { return; } outputName(name); System.out.println("" + x); } public void debug(String name, int[] x) { if (!allowDebug) { return; } outputName(name); System.out.println(Arrays.toString(x)); } public void debug(String name, long[] x) { if (!allowDebug) { return; } outputName(name); System.out.println(Arrays.toString(x)); } public void debug(String name, double[] x) { if (!allowDebug) { return; } outputName(name); System.out.println(Arrays.toString(x)); } public void debug(String name, Object x) { if (!allowDebug) { return; } outputName(name); System.out.println("" + x); } public void debug(String name, Object... x) { if (!allowDebug) { return; } outputName(name); System.out.println(Arrays.deepToString(x)); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
5,583
4,022
2,571
import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.Scanner; public class a1 { public static void main(String[] args) { Scanner s = new Scanner(System.in); int n = s.nextInt(); int a[] = new int[n]; HashMap<Integer,ArrayList<Integer>> h = new HashMap<>(); boolean visited[] = new boolean[n]; for(int i=0;i<n;i++) { a[i] = s.nextInt(); } Arrays.sort(a); for(int i=0;i<n;i++) { if(h.containsKey(a[i])) { ArrayList<Integer> temp = h.get(a[i]); temp.add(i); h.put(a[i],temp); } else { ArrayList<Integer> k =new ArrayList<>(); k.add(i); h.put(a[i], k); } } int ctr=0; for(int i=0;i<n;i++) { if(!visited[i]) { //System.out.println(a[i]); ctr++; for(int j=a[i];j<=100;j+=a[i]) { if(h.containsKey(j)) { ArrayList<Integer> m = h.get(j); for(int k=0;k<m.size();k++) { visited[m.get(k)]=true; } h.remove(j); } } } } System.out.println(ctr); } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.Scanner; public class a1 { public static void main(String[] args) { Scanner s = new Scanner(System.in); int n = s.nextInt(); int a[] = new int[n]; HashMap<Integer,ArrayList<Integer>> h = new HashMap<>(); boolean visited[] = new boolean[n]; for(int i=0;i<n;i++) { a[i] = s.nextInt(); } Arrays.sort(a); for(int i=0;i<n;i++) { if(h.containsKey(a[i])) { ArrayList<Integer> temp = h.get(a[i]); temp.add(i); h.put(a[i],temp); } else { ArrayList<Integer> k =new ArrayList<>(); k.add(i); h.put(a[i], k); } } int ctr=0; for(int i=0;i<n;i++) { if(!visited[i]) { //System.out.println(a[i]); ctr++; for(int j=a[i];j<=100;j+=a[i]) { if(h.containsKey(j)) { ArrayList<Integer> m = h.get(j); for(int k=0;k<m.size();k++) { visited[m.get(k)]=true; } h.remove(j); } } } } System.out.println(ctr); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.Scanner; public class a1 { public static void main(String[] args) { Scanner s = new Scanner(System.in); int n = s.nextInt(); int a[] = new int[n]; HashMap<Integer,ArrayList<Integer>> h = new HashMap<>(); boolean visited[] = new boolean[n]; for(int i=0;i<n;i++) { a[i] = s.nextInt(); } Arrays.sort(a); for(int i=0;i<n;i++) { if(h.containsKey(a[i])) { ArrayList<Integer> temp = h.get(a[i]); temp.add(i); h.put(a[i],temp); } else { ArrayList<Integer> k =new ArrayList<>(); k.add(i); h.put(a[i], k); } } int ctr=0; for(int i=0;i<n;i++) { if(!visited[i]) { //System.out.println(a[i]); ctr++; for(int j=a[i];j<=100;j+=a[i]) { if(h.containsKey(j)) { ArrayList<Integer> m = h.get(j); for(int k=0;k<m.size();k++) { visited[m.get(k)]=true; } h.remove(j); } } } } System.out.println(ctr); } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
643
2,565
4,367
import java.util.*; import java.io.*; public class Main implements Runnable { private void solution() throws IOException { int n = in.nextInt(); int m = in.nextInt(); boolean[][] adj = new boolean[n][n]; long res = 0; for (int i = 0; i < m; ++i) { int x = in.nextInt(); int y = in.nextInt(); adj[x - 1][y - 1] = true; adj[y - 1][x - 1] = true; } for (int i = 0; i < n; ++i) { for (int j = i + 1; j < n; ++j) { if (adj[i][j]) { --res; } } } final long[][] dp = new long[1 << n][n]; for (int i = 0; i < n; ++i) { for (int mask = 0; mask < (1 << (n - i)); ++mask) { for (int j = 0; j < n - i; ++j) { dp[mask][j] = 0; } } dp[0][0] = 1; for (int mask = 0; mask < (1 << (n - i)); ++mask) { for (int j = 0; j < n - i; ++j) { if (dp[mask][j] != 0) { for (int k = 0; k < n - i; ++k) { if (((mask >> k) & 1) == 0 && adj[j + i][k + i]) { dp[mask | (1 << k)][k] += dp[mask][j]; } } } } if (((mask >> 0) & 1) != 0) { res += dp[mask][0]; } } } out.println(res / 2); } public void run() { try { solution(); in.reader.close(); out.close(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } private class Scanner { BufferedReader reader; StringTokenizer tokenizer; public Scanner(Reader reader) { this.reader = new BufferedReader(reader); this.tokenizer = new StringTokenizer(""); } public boolean hasNext() throws IOException { while (!tokenizer.hasMoreTokens()) { String next = reader.readLine(); if (next == null) { return false; } tokenizer = new StringTokenizer(next); } return true; } public String next() throws IOException { hasNext(); return tokenizer.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public String nextLine() throws IOException { tokenizer = new StringTokenizer(""); return reader.readLine(); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } } public static void main(String[] args) throws IOException { new Thread(null, new Main(), "", 1 << 28).start(); } PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); Scanner in = new Scanner(new InputStreamReader(System.in)); }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class Main implements Runnable { private void solution() throws IOException { int n = in.nextInt(); int m = in.nextInt(); boolean[][] adj = new boolean[n][n]; long res = 0; for (int i = 0; i < m; ++i) { int x = in.nextInt(); int y = in.nextInt(); adj[x - 1][y - 1] = true; adj[y - 1][x - 1] = true; } for (int i = 0; i < n; ++i) { for (int j = i + 1; j < n; ++j) { if (adj[i][j]) { --res; } } } final long[][] dp = new long[1 << n][n]; for (int i = 0; i < n; ++i) { for (int mask = 0; mask < (1 << (n - i)); ++mask) { for (int j = 0; j < n - i; ++j) { dp[mask][j] = 0; } } dp[0][0] = 1; for (int mask = 0; mask < (1 << (n - i)); ++mask) { for (int j = 0; j < n - i; ++j) { if (dp[mask][j] != 0) { for (int k = 0; k < n - i; ++k) { if (((mask >> k) & 1) == 0 && adj[j + i][k + i]) { dp[mask | (1 << k)][k] += dp[mask][j]; } } } } if (((mask >> 0) & 1) != 0) { res += dp[mask][0]; } } } out.println(res / 2); } public void run() { try { solution(); in.reader.close(); out.close(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } private class Scanner { BufferedReader reader; StringTokenizer tokenizer; public Scanner(Reader reader) { this.reader = new BufferedReader(reader); this.tokenizer = new StringTokenizer(""); } public boolean hasNext() throws IOException { while (!tokenizer.hasMoreTokens()) { String next = reader.readLine(); if (next == null) { return false; } tokenizer = new StringTokenizer(next); } return true; } public String next() throws IOException { hasNext(); return tokenizer.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public String nextLine() throws IOException { tokenizer = new StringTokenizer(""); return reader.readLine(); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } } public static void main(String[] args) throws IOException { new Thread(null, new Main(), "", 1 << 28).start(); } PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); Scanner in = new Scanner(new InputStreamReader(System.in)); } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; public class Main implements Runnable { private void solution() throws IOException { int n = in.nextInt(); int m = in.nextInt(); boolean[][] adj = new boolean[n][n]; long res = 0; for (int i = 0; i < m; ++i) { int x = in.nextInt(); int y = in.nextInt(); adj[x - 1][y - 1] = true; adj[y - 1][x - 1] = true; } for (int i = 0; i < n; ++i) { for (int j = i + 1; j < n; ++j) { if (adj[i][j]) { --res; } } } final long[][] dp = new long[1 << n][n]; for (int i = 0; i < n; ++i) { for (int mask = 0; mask < (1 << (n - i)); ++mask) { for (int j = 0; j < n - i; ++j) { dp[mask][j] = 0; } } dp[0][0] = 1; for (int mask = 0; mask < (1 << (n - i)); ++mask) { for (int j = 0; j < n - i; ++j) { if (dp[mask][j] != 0) { for (int k = 0; k < n - i; ++k) { if (((mask >> k) & 1) == 0 && adj[j + i][k + i]) { dp[mask | (1 << k)][k] += dp[mask][j]; } } } } if (((mask >> 0) & 1) != 0) { res += dp[mask][0]; } } } out.println(res / 2); } public void run() { try { solution(); in.reader.close(); out.close(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } private class Scanner { BufferedReader reader; StringTokenizer tokenizer; public Scanner(Reader reader) { this.reader = new BufferedReader(reader); this.tokenizer = new StringTokenizer(""); } public boolean hasNext() throws IOException { while (!tokenizer.hasMoreTokens()) { String next = reader.readLine(); if (next == null) { return false; } tokenizer = new StringTokenizer(next); } return true; } public String next() throws IOException { hasNext(); return tokenizer.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public String nextLine() throws IOException { tokenizer = new StringTokenizer(""); return reader.readLine(); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } } public static void main(String[] args) throws IOException { new Thread(null, new Main(), "", 1 << 28).start(); } PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); Scanner in = new Scanner(new InputStreamReader(System.in)); } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,062
4,356
2,981
import java.util.*; public class c { public static void main(String[] args) { Scanner input = new Scanner(System.in); long a = input.nextLong(), b = input.nextLong(); System.out.println(gcd(a, b)); } static long gcd(long a, long b) { if(b==1) return a; if(a==1) return b; if(a>b) return a/b + gcd(b, a%b); return b/a + gcd(a, b%a); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; public class c { public static void main(String[] args) { Scanner input = new Scanner(System.in); long a = input.nextLong(), b = input.nextLong(); System.out.println(gcd(a, b)); } static long gcd(long a, long b) { if(b==1) return a; if(a==1) return b; if(a>b) return a/b + gcd(b, a%b); return b/a + gcd(a, b%a); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; public class c { public static void main(String[] args) { Scanner input = new Scanner(System.in); long a = input.nextLong(), b = input.nextLong(); System.out.println(gcd(a, b)); } static long gcd(long a, long b) { if(b==1) return a; if(a==1) return b; if(a>b) return a/b + gcd(b, a%b); return b/a + gcd(a, b%a); } } </CODE> <EVALUATION_RUBRIC> - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
438
2,975
290
import java.io.*; import java.util.*; public class Main { private static void solve(InputReader in, OutputWriter out) { int n = in.nextInt(); if (n < 6) { out.println(-1); } else { int m = (n - 2); for (int i = 2; i <= m; i++) { out.println("1 " + i); } out.println(m + " " + (m + 1)); out.println(m + " " + (m + 2)); } for (int i = 2; i <= n; i++) { out.println("1 " + i); } } private static void shuffleArray(int[] array) { int index; Random random = new Random(); for (int i = array.length - 1; i > 0; i--) { index = random.nextInt(i + 1); if (index != i) { array[index] ^= array[i]; array[i] ^= array[index]; array[index] ^= array[i]; } } } public static void main(String[] args) { InputReader in = new InputReader(System.in); OutputWriter out = new OutputWriter(System.out); solve(in, out); in.close(); out.close(); } private static class InputReader { private BufferedReader br; private StringTokenizer st; InputReader(InputStream is) { br = new BufferedReader(new InputStreamReader(is)); st = null; } String nextLine() { String line = null; try { line = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return line; } String next() { while (st == null || !st.hasMoreTokens()) { String line = nextLine(); if (line == null) return null; st = new StringTokenizer(line); } return st.nextToken(); } byte nextByte() { return Byte.parseByte(next()); } short nextShort() { return Short.parseShort(next()); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } void close() { try { br.close(); } catch (IOException e) { e.printStackTrace(); } } } private static class OutputWriter { BufferedWriter bw; OutputWriter(OutputStream os) { bw = new BufferedWriter(new OutputStreamWriter(os)); } void print(int i) { print(Integer.toString(i)); } void println(int i) { println(Integer.toString(i)); } void print(long l) { print(Long.toString(l)); } void println(long l) { println(Long.toString(l)); } void print(double d) { print(Double.toString(d)); } void println(double d) { println(Double.toString(d)); } void print(boolean b) { print(Boolean.toString(b)); } void println(boolean b) { println(Boolean.toString(b)); } void print(char c) { try { bw.write(c); } catch (IOException e) { e.printStackTrace(); } } void println(char c) { println(Character.toString(c)); } void print(String s) { try { bw.write(s); } catch (IOException e) { e.printStackTrace(); } } void println(String s) { print(s); print('\n'); } void close() { try { bw.close(); } catch (IOException e) { e.printStackTrace(); } } } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main { private static void solve(InputReader in, OutputWriter out) { int n = in.nextInt(); if (n < 6) { out.println(-1); } else { int m = (n - 2); for (int i = 2; i <= m; i++) { out.println("1 " + i); } out.println(m + " " + (m + 1)); out.println(m + " " + (m + 2)); } for (int i = 2; i <= n; i++) { out.println("1 " + i); } } private static void shuffleArray(int[] array) { int index; Random random = new Random(); for (int i = array.length - 1; i > 0; i--) { index = random.nextInt(i + 1); if (index != i) { array[index] ^= array[i]; array[i] ^= array[index]; array[index] ^= array[i]; } } } public static void main(String[] args) { InputReader in = new InputReader(System.in); OutputWriter out = new OutputWriter(System.out); solve(in, out); in.close(); out.close(); } private static class InputReader { private BufferedReader br; private StringTokenizer st; InputReader(InputStream is) { br = new BufferedReader(new InputStreamReader(is)); st = null; } String nextLine() { String line = null; try { line = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return line; } String next() { while (st == null || !st.hasMoreTokens()) { String line = nextLine(); if (line == null) return null; st = new StringTokenizer(line); } return st.nextToken(); } byte nextByte() { return Byte.parseByte(next()); } short nextShort() { return Short.parseShort(next()); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } void close() { try { br.close(); } catch (IOException e) { e.printStackTrace(); } } } private static class OutputWriter { BufferedWriter bw; OutputWriter(OutputStream os) { bw = new BufferedWriter(new OutputStreamWriter(os)); } void print(int i) { print(Integer.toString(i)); } void println(int i) { println(Integer.toString(i)); } void print(long l) { print(Long.toString(l)); } void println(long l) { println(Long.toString(l)); } void print(double d) { print(Double.toString(d)); } void println(double d) { println(Double.toString(d)); } void print(boolean b) { print(Boolean.toString(b)); } void println(boolean b) { println(Boolean.toString(b)); } void print(char c) { try { bw.write(c); } catch (IOException e) { e.printStackTrace(); } } void println(char c) { println(Character.toString(c)); } void print(String s) { try { bw.write(s); } catch (IOException e) { e.printStackTrace(); } } void println(String s) { print(s); print('\n'); } void close() { try { bw.close(); } catch (IOException e) { e.printStackTrace(); } } } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main { private static void solve(InputReader in, OutputWriter out) { int n = in.nextInt(); if (n < 6) { out.println(-1); } else { int m = (n - 2); for (int i = 2; i <= m; i++) { out.println("1 " + i); } out.println(m + " " + (m + 1)); out.println(m + " " + (m + 2)); } for (int i = 2; i <= n; i++) { out.println("1 " + i); } } private static void shuffleArray(int[] array) { int index; Random random = new Random(); for (int i = array.length - 1; i > 0; i--) { index = random.nextInt(i + 1); if (index != i) { array[index] ^= array[i]; array[i] ^= array[index]; array[index] ^= array[i]; } } } public static void main(String[] args) { InputReader in = new InputReader(System.in); OutputWriter out = new OutputWriter(System.out); solve(in, out); in.close(); out.close(); } private static class InputReader { private BufferedReader br; private StringTokenizer st; InputReader(InputStream is) { br = new BufferedReader(new InputStreamReader(is)); st = null; } String nextLine() { String line = null; try { line = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return line; } String next() { while (st == null || !st.hasMoreTokens()) { String line = nextLine(); if (line == null) return null; st = new StringTokenizer(line); } return st.nextToken(); } byte nextByte() { return Byte.parseByte(next()); } short nextShort() { return Short.parseShort(next()); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } void close() { try { br.close(); } catch (IOException e) { e.printStackTrace(); } } } private static class OutputWriter { BufferedWriter bw; OutputWriter(OutputStream os) { bw = new BufferedWriter(new OutputStreamWriter(os)); } void print(int i) { print(Integer.toString(i)); } void println(int i) { println(Integer.toString(i)); } void print(long l) { print(Long.toString(l)); } void println(long l) { println(Long.toString(l)); } void print(double d) { print(Double.toString(d)); } void println(double d) { println(Double.toString(d)); } void print(boolean b) { print(Boolean.toString(b)); } void println(boolean b) { println(Boolean.toString(b)); } void print(char c) { try { bw.write(c); } catch (IOException e) { e.printStackTrace(); } } void println(char c) { println(Character.toString(c)); } void print(String s) { try { bw.write(s); } catch (IOException e) { e.printStackTrace(); } } void println(String s) { print(s); print('\n'); } void close() { try { bw.close(); } catch (IOException e) { e.printStackTrace(); } } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,148
290
3,043
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); if (((n % 4) == 0) || ((n % 7) == 0) || ((n % 44) == 0) || ((n % 47) == 0) || ((n % 74) == 0) || ((n % 77) == 0) || ((n % 444) == 0) || ((n % 447) == 0) || ((n % 474) == 0) || ((n % 477) == 0) || ((n % 744) == 0) || ((n % 747) == 0) || ((n % 774) == 0) || ((n % 777) == 0)) System.out.print("YES"); else System.out.print("NO"); in.close(); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); if (((n % 4) == 0) || ((n % 7) == 0) || ((n % 44) == 0) || ((n % 47) == 0) || ((n % 74) == 0) || ((n % 77) == 0) || ((n % 444) == 0) || ((n % 447) == 0) || ((n % 474) == 0) || ((n % 477) == 0) || ((n % 744) == 0) || ((n % 747) == 0) || ((n % 774) == 0) || ((n % 777) == 0)) System.out.print("YES"); else System.out.print("NO"); in.close(); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); if (((n % 4) == 0) || ((n % 7) == 0) || ((n % 44) == 0) || ((n % 47) == 0) || ((n % 74) == 0) || ((n % 77) == 0) || ((n % 444) == 0) || ((n % 447) == 0) || ((n % 474) == 0) || ((n % 477) == 0) || ((n % 744) == 0) || ((n % 747) == 0) || ((n % 774) == 0) || ((n % 777) == 0)) System.out.print("YES"); else System.out.print("NO"); in.close(); } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
565
3,037
3,511
// Main Code at the Bottom import java.util.*; import java.io.*; public class Main{ //Fast IO class static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { boolean env=System.getProperty("ONLINE_JUDGE") != null; //env=true; if(!env) { try { br=new BufferedReader(new FileReader("src\\input.txt")); } catch (FileNotFoundException e) { e.printStackTrace(); } } else br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static long MOD=(long)1e9+7; //debug static void debug(Object... o) { System.out.println(Arrays.deepToString(o)); } static FastReader sc=new FastReader(); static PrintWriter out=new PrintWriter(System.out); //Global variables and functions static long memo[]; static long C[][]; static long exp(long a,long x) { if(x==0) return 1; if(x%2==0) return exp((a*a)%MOD,x/2)%MOD; return ((a%MOD)*((exp((a*a)%MOD,x/2))%MOD))%MOD; } static void fill(int n) { C = new long[n+1][n+1]; for(int i = 1; i<=n;i++) C[i][0]=C[i][i]=1; for(int i=2;i<=n;i++) { for(int j=1;j<=n;j++) { C[i][j]=(C[i-1][j]+C[i-1][j-1])%MOD; } } } //Main function(The main code starts from here) public static void main (String[] args) throws java.lang.Exception { int test=1; //test=sc.nextInt(); while(test-->0) { int n = sc.nextInt(); MOD = sc.nextLong(); memo = new long[n+1]; fill(n); long dp[][] = new long[n+5][n+5]; for(int i=1;i<=n;i++) dp[i][i]=exp(2,i-1); for(int i = 2; i <= n; i++) { for(int j = 1; j < i; j++) { for(int k = 1; k <= j; k++) { long val = (dp[i-k-1][j-k]*C[j][k])%MOD; if(memo[k-1] ==0) memo[k-1] = exp(2, k-1); val=(val*memo[k-1])%MOD; dp[i][j]=(dp[i][j]+val)%MOD; } } } long ans = 0; for(int i=0;i<=n;i++) ans=(ans+dp[n][i])%MOD; out.println(ans); } out.flush(); out.close(); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> // Main Code at the Bottom import java.util.*; import java.io.*; public class Main{ //Fast IO class static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { boolean env=System.getProperty("ONLINE_JUDGE") != null; //env=true; if(!env) { try { br=new BufferedReader(new FileReader("src\\input.txt")); } catch (FileNotFoundException e) { e.printStackTrace(); } } else br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static long MOD=(long)1e9+7; //debug static void debug(Object... o) { System.out.println(Arrays.deepToString(o)); } static FastReader sc=new FastReader(); static PrintWriter out=new PrintWriter(System.out); //Global variables and functions static long memo[]; static long C[][]; static long exp(long a,long x) { if(x==0) return 1; if(x%2==0) return exp((a*a)%MOD,x/2)%MOD; return ((a%MOD)*((exp((a*a)%MOD,x/2))%MOD))%MOD; } static void fill(int n) { C = new long[n+1][n+1]; for(int i = 1; i<=n;i++) C[i][0]=C[i][i]=1; for(int i=2;i<=n;i++) { for(int j=1;j<=n;j++) { C[i][j]=(C[i-1][j]+C[i-1][j-1])%MOD; } } } //Main function(The main code starts from here) public static void main (String[] args) throws java.lang.Exception { int test=1; //test=sc.nextInt(); while(test-->0) { int n = sc.nextInt(); MOD = sc.nextLong(); memo = new long[n+1]; fill(n); long dp[][] = new long[n+5][n+5]; for(int i=1;i<=n;i++) dp[i][i]=exp(2,i-1); for(int i = 2; i <= n; i++) { for(int j = 1; j < i; j++) { for(int k = 1; k <= j; k++) { long val = (dp[i-k-1][j-k]*C[j][k])%MOD; if(memo[k-1] ==0) memo[k-1] = exp(2, k-1); val=(val*memo[k-1])%MOD; dp[i][j]=(dp[i][j]+val)%MOD; } } } long ans = 0; for(int i=0;i<=n;i++) ans=(ans+dp[n][i])%MOD; out.println(ans); } out.flush(); out.close(); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> // Main Code at the Bottom import java.util.*; import java.io.*; public class Main{ //Fast IO class static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { boolean env=System.getProperty("ONLINE_JUDGE") != null; //env=true; if(!env) { try { br=new BufferedReader(new FileReader("src\\input.txt")); } catch (FileNotFoundException e) { e.printStackTrace(); } } else br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static long MOD=(long)1e9+7; //debug static void debug(Object... o) { System.out.println(Arrays.deepToString(o)); } static FastReader sc=new FastReader(); static PrintWriter out=new PrintWriter(System.out); //Global variables and functions static long memo[]; static long C[][]; static long exp(long a,long x) { if(x==0) return 1; if(x%2==0) return exp((a*a)%MOD,x/2)%MOD; return ((a%MOD)*((exp((a*a)%MOD,x/2))%MOD))%MOD; } static void fill(int n) { C = new long[n+1][n+1]; for(int i = 1; i<=n;i++) C[i][0]=C[i][i]=1; for(int i=2;i<=n;i++) { for(int j=1;j<=n;j++) { C[i][j]=(C[i-1][j]+C[i-1][j-1])%MOD; } } } //Main function(The main code starts from here) public static void main (String[] args) throws java.lang.Exception { int test=1; //test=sc.nextInt(); while(test-->0) { int n = sc.nextInt(); MOD = sc.nextLong(); memo = new long[n+1]; fill(n); long dp[][] = new long[n+5][n+5]; for(int i=1;i<=n;i++) dp[i][i]=exp(2,i-1); for(int i = 2; i <= n; i++) { for(int j = 1; j < i; j++) { for(int k = 1; k <= j; k++) { long val = (dp[i-k-1][j-k]*C[j][k])%MOD; if(memo[k-1] ==0) memo[k-1] = exp(2, k-1); val=(val*memo[k-1])%MOD; dp[i][j]=(dp[i][j]+val)%MOD; } } } long ans = 0; for(int i=0;i<=n;i++) ans=(ans+dp[n][i])%MOD; out.println(ans); } out.flush(); out.close(); } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,152
3,505
97
import java.io.*; import java.util.*; public class cf { static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner() { try { br = new BufferedReader(new InputStreamReader(System.in)); st = new StringTokenizer(br.readLine()); } catch (Exception e){e.printStackTrace();} } public String next() { if (st.hasMoreTokens()) return st.nextToken(); try {st = new StringTokenizer(br.readLine());} catch (Exception e) {e.printStackTrace();} return st.nextToken(); } public int nextInt() {return Integer.parseInt(next());} public long nextLong() {return Long.parseLong(next());} public double nextDouble() {return Double.parseDouble(next());} public String nextLine() { String line = ""; if(st.hasMoreTokens()) line = st.nextToken(); else try {return br.readLine();}catch(IOException e){e.printStackTrace();} while(st.hasMoreTokens()) line += " "+st.nextToken(); return line; } } public static void main(String[] args) { FastScanner sc = new FastScanner(); PrintWriter pw = new PrintWriter(System.out); int n = sc.nextInt(); pw.println(n/2+1); pw.close(); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class cf { static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner() { try { br = new BufferedReader(new InputStreamReader(System.in)); st = new StringTokenizer(br.readLine()); } catch (Exception e){e.printStackTrace();} } public String next() { if (st.hasMoreTokens()) return st.nextToken(); try {st = new StringTokenizer(br.readLine());} catch (Exception e) {e.printStackTrace();} return st.nextToken(); } public int nextInt() {return Integer.parseInt(next());} public long nextLong() {return Long.parseLong(next());} public double nextDouble() {return Double.parseDouble(next());} public String nextLine() { String line = ""; if(st.hasMoreTokens()) line = st.nextToken(); else try {return br.readLine();}catch(IOException e){e.printStackTrace();} while(st.hasMoreTokens()) line += " "+st.nextToken(); return line; } } public static void main(String[] args) { FastScanner sc = new FastScanner(); PrintWriter pw = new PrintWriter(System.out); int n = sc.nextInt(); pw.println(n/2+1); pw.close(); } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class cf { static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner() { try { br = new BufferedReader(new InputStreamReader(System.in)); st = new StringTokenizer(br.readLine()); } catch (Exception e){e.printStackTrace();} } public String next() { if (st.hasMoreTokens()) return st.nextToken(); try {st = new StringTokenizer(br.readLine());} catch (Exception e) {e.printStackTrace();} return st.nextToken(); } public int nextInt() {return Integer.parseInt(next());} public long nextLong() {return Long.parseLong(next());} public double nextDouble() {return Double.parseDouble(next());} public String nextLine() { String line = ""; if(st.hasMoreTokens()) line = st.nextToken(); else try {return br.readLine();}catch(IOException e){e.printStackTrace();} while(st.hasMoreTokens()) line += " "+st.nextToken(); return line; } } public static void main(String[] args) { FastScanner sc = new FastScanner(); PrintWriter pw = new PrintWriter(System.out); int n = sc.nextInt(); pw.println(n/2+1); pw.close(); } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
591
97
1,728
import java.util.ArrayList; import java.util.Collections; import java.util.HashSet; import java.util.List; import java.util.Scanner; import java.util.Set; public class R015A { final double EPS = 1e-9; boolean isEqual(double x, double y) { return Math.abs(x-y) <= EPS * Math.max(Math.abs(x), Math.abs(y)); } class Pair implements Comparable<Pair>{ double left; double right; Pair(double left, double right) { this.left = left; this.right = right; } public String toString() { return "(" + left + "," + right + ")"; } public int hashCode() { return (int)(left * 17 + right * 31); } public boolean equals(Object o) { if(!(o instanceof Pair)) return false; Pair that = (Pair)o; return isEqual(this.left, that.left) && isEqual(this.right, that.right); } public int compareTo(Pair that) { if(this.left != that.left) return (int)(this.left - that.left); return (int)(this.right - that.right); } } public R015A() { } private void process() { Scanner scanner = new Scanner(System.in); int n = scanner.nextInt(); int t = scanner.nextInt(); int[] x = new int[n]; int[] a = new int[n]; for(int i=0; i<n; i++) { x[i] = scanner.nextInt(); a[i] = scanner.nextInt(); } List<Pair> pairs = new ArrayList<Pair>(); for(int i=0; i<n; i++) { double left = x[i] - a[i] / 2.0; double right= x[i] + a[i] / 2.0; pairs.add(new Pair(left, right)); } Collections.sort(pairs); Set<Pair> newPairs = new HashSet<Pair>(); newPairs.add(new Pair(pairs.get(0).left - t, pairs.get(0).left)); for(int i=0; i<pairs.size()-1; i++) { if(pairs.get(i+1).left - pairs.get(i).right >= t) { newPairs.add(new Pair(pairs.get(i).right, pairs.get(i).right + t)); newPairs.add(new Pair(pairs.get(i+1).left - t, pairs.get(i+1).left)); } } newPairs.add(new Pair(pairs.get(pairs.size()-1).right, pairs.get(pairs.size()-1).right + t)); System.out.println(newPairs.size()); } public static void main(String[] args) { new R015A().process(); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.ArrayList; import java.util.Collections; import java.util.HashSet; import java.util.List; import java.util.Scanner; import java.util.Set; public class R015A { final double EPS = 1e-9; boolean isEqual(double x, double y) { return Math.abs(x-y) <= EPS * Math.max(Math.abs(x), Math.abs(y)); } class Pair implements Comparable<Pair>{ double left; double right; Pair(double left, double right) { this.left = left; this.right = right; } public String toString() { return "(" + left + "," + right + ")"; } public int hashCode() { return (int)(left * 17 + right * 31); } public boolean equals(Object o) { if(!(o instanceof Pair)) return false; Pair that = (Pair)o; return isEqual(this.left, that.left) && isEqual(this.right, that.right); } public int compareTo(Pair that) { if(this.left != that.left) return (int)(this.left - that.left); return (int)(this.right - that.right); } } public R015A() { } private void process() { Scanner scanner = new Scanner(System.in); int n = scanner.nextInt(); int t = scanner.nextInt(); int[] x = new int[n]; int[] a = new int[n]; for(int i=0; i<n; i++) { x[i] = scanner.nextInt(); a[i] = scanner.nextInt(); } List<Pair> pairs = new ArrayList<Pair>(); for(int i=0; i<n; i++) { double left = x[i] - a[i] / 2.0; double right= x[i] + a[i] / 2.0; pairs.add(new Pair(left, right)); } Collections.sort(pairs); Set<Pair> newPairs = new HashSet<Pair>(); newPairs.add(new Pair(pairs.get(0).left - t, pairs.get(0).left)); for(int i=0; i<pairs.size()-1; i++) { if(pairs.get(i+1).left - pairs.get(i).right >= t) { newPairs.add(new Pair(pairs.get(i).right, pairs.get(i).right + t)); newPairs.add(new Pair(pairs.get(i+1).left - t, pairs.get(i+1).left)); } } newPairs.add(new Pair(pairs.get(pairs.size()-1).right, pairs.get(pairs.size()-1).right + t)); System.out.println(newPairs.size()); } public static void main(String[] args) { new R015A().process(); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.ArrayList; import java.util.Collections; import java.util.HashSet; import java.util.List; import java.util.Scanner; import java.util.Set; public class R015A { final double EPS = 1e-9; boolean isEqual(double x, double y) { return Math.abs(x-y) <= EPS * Math.max(Math.abs(x), Math.abs(y)); } class Pair implements Comparable<Pair>{ double left; double right; Pair(double left, double right) { this.left = left; this.right = right; } public String toString() { return "(" + left + "," + right + ")"; } public int hashCode() { return (int)(left * 17 + right * 31); } public boolean equals(Object o) { if(!(o instanceof Pair)) return false; Pair that = (Pair)o; return isEqual(this.left, that.left) && isEqual(this.right, that.right); } public int compareTo(Pair that) { if(this.left != that.left) return (int)(this.left - that.left); return (int)(this.right - that.right); } } public R015A() { } private void process() { Scanner scanner = new Scanner(System.in); int n = scanner.nextInt(); int t = scanner.nextInt(); int[] x = new int[n]; int[] a = new int[n]; for(int i=0; i<n; i++) { x[i] = scanner.nextInt(); a[i] = scanner.nextInt(); } List<Pair> pairs = new ArrayList<Pair>(); for(int i=0; i<n; i++) { double left = x[i] - a[i] / 2.0; double right= x[i] + a[i] / 2.0; pairs.add(new Pair(left, right)); } Collections.sort(pairs); Set<Pair> newPairs = new HashSet<Pair>(); newPairs.add(new Pair(pairs.get(0).left - t, pairs.get(0).left)); for(int i=0; i<pairs.size()-1; i++) { if(pairs.get(i+1).left - pairs.get(i).right >= t) { newPairs.add(new Pair(pairs.get(i).right, pairs.get(i).right + t)); newPairs.add(new Pair(pairs.get(i+1).left - t, pairs.get(i+1).left)); } } newPairs.add(new Pair(pairs.get(pairs.size()-1).right, pairs.get(pairs.size()-1).right + t)); System.out.println(newPairs.size()); } public static void main(String[] args) { new R015A().process(); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
929
1,724
505
//package contese_476; import java.util.*; public class q1 { int m=(int)1e9+7; public class Node { int a; int b; public void Node(int a,int b) { this.a=a; this.b=b; } } public int mul(int a ,int b) { a=a%m; b=b%m; return((a*b)%m); } public int pow(int a,int b) { int x=1; while(b>0) { if(b%2!=0) x=mul(x,a); a=mul(a,a); b=b/2; } return x; } public static long gcd(long a,long b) { if(b==0) return a; else return gcd(b,a%b); } public static void main(String[] args) { Scanner sc=new Scanner(System.in); int n=sc.nextInt(); HashMap<Integer,Integer> h=new HashMap(); //HashMap<Integer,Integer> h1=new HashMap(); int[] a=new int[n]; int x=sc.nextInt(); for(int i=0;i<n;i++) { a[i]=sc.nextInt(); if(h.get(a[i])==null) { h.put(a[i], 1); //h1.put(a[i],i); } else { System.out.print(0); System.exit(0); } } for(int i=0;i<n;i++) { int num=a[i]&x; if(num==a[i]) continue; if(h.get(num)==null) continue; else { System.out.print(1); System.exit(0); } } for(int i=0;i<n;i++) { int num=a[i]&x; if(num==a[i]) continue; if(h.get(num)==null) h.put(num, 1); else { System.out.print(2); System.exit(0); } } System.out.print(-1); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> //package contese_476; import java.util.*; public class q1 { int m=(int)1e9+7; public class Node { int a; int b; public void Node(int a,int b) { this.a=a; this.b=b; } } public int mul(int a ,int b) { a=a%m; b=b%m; return((a*b)%m); } public int pow(int a,int b) { int x=1; while(b>0) { if(b%2!=0) x=mul(x,a); a=mul(a,a); b=b/2; } return x; } public static long gcd(long a,long b) { if(b==0) return a; else return gcd(b,a%b); } public static void main(String[] args) { Scanner sc=new Scanner(System.in); int n=sc.nextInt(); HashMap<Integer,Integer> h=new HashMap(); //HashMap<Integer,Integer> h1=new HashMap(); int[] a=new int[n]; int x=sc.nextInt(); for(int i=0;i<n;i++) { a[i]=sc.nextInt(); if(h.get(a[i])==null) { h.put(a[i], 1); //h1.put(a[i],i); } else { System.out.print(0); System.exit(0); } } for(int i=0;i<n;i++) { int num=a[i]&x; if(num==a[i]) continue; if(h.get(num)==null) continue; else { System.out.print(1); System.exit(0); } } for(int i=0;i<n;i++) { int num=a[i]&x; if(num==a[i]) continue; if(h.get(num)==null) h.put(num, 1); else { System.out.print(2); System.exit(0); } } System.out.print(-1); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> //package contese_476; import java.util.*; public class q1 { int m=(int)1e9+7; public class Node { int a; int b; public void Node(int a,int b) { this.a=a; this.b=b; } } public int mul(int a ,int b) { a=a%m; b=b%m; return((a*b)%m); } public int pow(int a,int b) { int x=1; while(b>0) { if(b%2!=0) x=mul(x,a); a=mul(a,a); b=b/2; } return x; } public static long gcd(long a,long b) { if(b==0) return a; else return gcd(b,a%b); } public static void main(String[] args) { Scanner sc=new Scanner(System.in); int n=sc.nextInt(); HashMap<Integer,Integer> h=new HashMap(); //HashMap<Integer,Integer> h1=new HashMap(); int[] a=new int[n]; int x=sc.nextInt(); for(int i=0;i<n;i++) { a[i]=sc.nextInt(); if(h.get(a[i])==null) { h.put(a[i], 1); //h1.put(a[i],i); } else { System.out.print(0); System.exit(0); } } for(int i=0;i<n;i++) { int num=a[i]&x; if(num==a[i]) continue; if(h.get(num)==null) continue; else { System.out.print(1); System.exit(0); } } for(int i=0;i<n;i++) { int num=a[i]&x; if(num==a[i]) continue; if(h.get(num)==null) h.put(num, 1); else { System.out.print(2); System.exit(0); } } System.out.print(-1); } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
781
504
1,323
import java.util.Scanner; public class CF489_C { static long mod = 1000000007; public static void main(String[] args) { Scanner s = new Scanner(System.in); long x = s.nextLong(), k = s.nextLong(); if (x == 0) { System.out.println(0); return; } long max = x % mod; long temp = power(2, k, mod); temp %= mod; max = (max % mod) * (temp % mod); max %= mod; long min = max % mod; min = mod(min - (temp - 1)); min %= mod; long num = mod(max - min + 1); long n = num % mod; n = (n % mod) * (min % mod + max % mod); n = n % mod; n %= mod; long ans = n % mod * modInverse(num, mod); System.out.println(ans % mod); } static long modInverse(long a, long m) { long m0 = m; long y = 0, x = 1; if (m == 1) return 0; while (a > 1) { // q is quotient long q = a / m; long t = m; // m is remainder now, process same as // Euclid's algo m = a % m; a = t; t = y; // Update y and x y = x - q * y; x = t; } // Make x positive if (x < 0) x += m0; return x; } static long mod(long val) { val %= mod; if (val < 0) val += mod; return val; } static long power(long x, long y, long p) { // Initialize result long res = 1; // Update x if it is more // than or equal to p x = x % p; while (y > 0) { // If y is odd, multiply x // with result if ((y & 1) == 1) res = (res * x) % p; // y must be even now // y = y / 2 y = y >> 1; x = (x * x) % p; } return res; } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; public class CF489_C { static long mod = 1000000007; public static void main(String[] args) { Scanner s = new Scanner(System.in); long x = s.nextLong(), k = s.nextLong(); if (x == 0) { System.out.println(0); return; } long max = x % mod; long temp = power(2, k, mod); temp %= mod; max = (max % mod) * (temp % mod); max %= mod; long min = max % mod; min = mod(min - (temp - 1)); min %= mod; long num = mod(max - min + 1); long n = num % mod; n = (n % mod) * (min % mod + max % mod); n = n % mod; n %= mod; long ans = n % mod * modInverse(num, mod); System.out.println(ans % mod); } static long modInverse(long a, long m) { long m0 = m; long y = 0, x = 1; if (m == 1) return 0; while (a > 1) { // q is quotient long q = a / m; long t = m; // m is remainder now, process same as // Euclid's algo m = a % m; a = t; t = y; // Update y and x y = x - q * y; x = t; } // Make x positive if (x < 0) x += m0; return x; } static long mod(long val) { val %= mod; if (val < 0) val += mod; return val; } static long power(long x, long y, long p) { // Initialize result long res = 1; // Update x if it is more // than or equal to p x = x % p; while (y > 0) { // If y is odd, multiply x // with result if ((y & 1) == 1) res = (res * x) % p; // y must be even now // y = y / 2 y = y >> 1; x = (x * x) % p; } return res; } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; public class CF489_C { static long mod = 1000000007; public static void main(String[] args) { Scanner s = new Scanner(System.in); long x = s.nextLong(), k = s.nextLong(); if (x == 0) { System.out.println(0); return; } long max = x % mod; long temp = power(2, k, mod); temp %= mod; max = (max % mod) * (temp % mod); max %= mod; long min = max % mod; min = mod(min - (temp - 1)); min %= mod; long num = mod(max - min + 1); long n = num % mod; n = (n % mod) * (min % mod + max % mod); n = n % mod; n %= mod; long ans = n % mod * modInverse(num, mod); System.out.println(ans % mod); } static long modInverse(long a, long m) { long m0 = m; long y = 0, x = 1; if (m == 1) return 0; while (a > 1) { // q is quotient long q = a / m; long t = m; // m is remainder now, process same as // Euclid's algo m = a % m; a = t; t = y; // Update y and x y = x - q * y; x = t; } // Make x positive if (x < 0) x += m0; return x; } static long mod(long val) { val %= mod; if (val < 0) val += mod; return val; } static long power(long x, long y, long p) { // Initialize result long res = 1; // Update x if it is more // than or equal to p x = x % p; while (y > 0) { // If y is odd, multiply x // with result if ((y & 1) == 1) res = (res * x) % p; // y must be even now // y = y / 2 y = y >> 1; x = (x * x) % p; } return res; } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
919
1,321
3,675
//package C; import java.io.*; import java.util.ArrayList; import java.util.LinkedList; import java.util.Queue; public class Fire_Again { static int N; static int M; static int K; private class Pos { public int r; public int c; int last; public Pos(int r,int c, int last) { this.r = r; this.c = c; this.last = last; } } static ArrayList<Pos> pos = new ArrayList<>(); static boolean[][] used;// = new boolean[2001][2001]; static int[] rows = {-1,1,0,0}; static int[] cols = {0,0,-1,1}; int LAST = 0; int lastRow = 1; int lastCol = 1; public static void main(String[] args) throws IOException { Fire_Again fire_again = new Fire_Again(); BufferedReader bufferedReader = new BufferedReader(new FileReader("input.txt")); String[] nm = bufferedReader.readLine().split(" "); N = Integer.parseInt(nm[0]) + 1; M = Integer.parseInt(nm[1]) + 1; K = Integer.parseInt(bufferedReader.readLine()); used = new boolean[N][M]; String[] rc = bufferedReader.readLine().split(" "); for(int k = 0;k < rc.length;k+=2) { int r = Integer.parseInt(rc[k]); int c = Integer.parseInt(rc[k+1]); pos.add(fire_again.new Pos(r,c,0)); } fire_again.bfs(); PrintStream ps = new PrintStream("output.txt"); ps.printf("%d %d\n",fire_again.lastRow,fire_again.lastCol); ps.flush(); ps.close(); } Queue<Pos> queue = new LinkedList<>(); private void bfs() { queue.addAll(pos); for(Pos p : pos) { used[p.r][p.c] = true; // System.out.println("r = "+(p.r) + " c = " + (p.c)); } while(!queue.isEmpty()) { Pos p = queue.poll(); if(p.last > LAST) { LAST = p.last; lastRow = p.r; lastCol = p.c; } for(int i = 0;i < rows.length;i++) { int currR = p.r; int currC = p.c; if(currR + rows[i] >= 1 && currR + rows[i] < N && currC + cols[i] >= 1 && currC + cols[i] < M && !used[currR + rows[i] ] [currC + cols[i] ] ) { // System.out.println("r = "+(currR+rows[i]) + " c = " + (currC+cols[i])); queue.add(new Pos(currR+rows[i],currC+cols[i],p.last+1)); used[currR + rows[i] ] [currC + cols[i] ] = true; } } } } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> //package C; import java.io.*; import java.util.ArrayList; import java.util.LinkedList; import java.util.Queue; public class Fire_Again { static int N; static int M; static int K; private class Pos { public int r; public int c; int last; public Pos(int r,int c, int last) { this.r = r; this.c = c; this.last = last; } } static ArrayList<Pos> pos = new ArrayList<>(); static boolean[][] used;// = new boolean[2001][2001]; static int[] rows = {-1,1,0,0}; static int[] cols = {0,0,-1,1}; int LAST = 0; int lastRow = 1; int lastCol = 1; public static void main(String[] args) throws IOException { Fire_Again fire_again = new Fire_Again(); BufferedReader bufferedReader = new BufferedReader(new FileReader("input.txt")); String[] nm = bufferedReader.readLine().split(" "); N = Integer.parseInt(nm[0]) + 1; M = Integer.parseInt(nm[1]) + 1; K = Integer.parseInt(bufferedReader.readLine()); used = new boolean[N][M]; String[] rc = bufferedReader.readLine().split(" "); for(int k = 0;k < rc.length;k+=2) { int r = Integer.parseInt(rc[k]); int c = Integer.parseInt(rc[k+1]); pos.add(fire_again.new Pos(r,c,0)); } fire_again.bfs(); PrintStream ps = new PrintStream("output.txt"); ps.printf("%d %d\n",fire_again.lastRow,fire_again.lastCol); ps.flush(); ps.close(); } Queue<Pos> queue = new LinkedList<>(); private void bfs() { queue.addAll(pos); for(Pos p : pos) { used[p.r][p.c] = true; // System.out.println("r = "+(p.r) + " c = " + (p.c)); } while(!queue.isEmpty()) { Pos p = queue.poll(); if(p.last > LAST) { LAST = p.last; lastRow = p.r; lastCol = p.c; } for(int i = 0;i < rows.length;i++) { int currR = p.r; int currC = p.c; if(currR + rows[i] >= 1 && currR + rows[i] < N && currC + cols[i] >= 1 && currC + cols[i] < M && !used[currR + rows[i] ] [currC + cols[i] ] ) { // System.out.println("r = "+(currR+rows[i]) + " c = " + (currC+cols[i])); queue.add(new Pos(currR+rows[i],currC+cols[i],p.last+1)); used[currR + rows[i] ] [currC + cols[i] ] = true; } } } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> //package C; import java.io.*; import java.util.ArrayList; import java.util.LinkedList; import java.util.Queue; public class Fire_Again { static int N; static int M; static int K; private class Pos { public int r; public int c; int last; public Pos(int r,int c, int last) { this.r = r; this.c = c; this.last = last; } } static ArrayList<Pos> pos = new ArrayList<>(); static boolean[][] used;// = new boolean[2001][2001]; static int[] rows = {-1,1,0,0}; static int[] cols = {0,0,-1,1}; int LAST = 0; int lastRow = 1; int lastCol = 1; public static void main(String[] args) throws IOException { Fire_Again fire_again = new Fire_Again(); BufferedReader bufferedReader = new BufferedReader(new FileReader("input.txt")); String[] nm = bufferedReader.readLine().split(" "); N = Integer.parseInt(nm[0]) + 1; M = Integer.parseInt(nm[1]) + 1; K = Integer.parseInt(bufferedReader.readLine()); used = new boolean[N][M]; String[] rc = bufferedReader.readLine().split(" "); for(int k = 0;k < rc.length;k+=2) { int r = Integer.parseInt(rc[k]); int c = Integer.parseInt(rc[k+1]); pos.add(fire_again.new Pos(r,c,0)); } fire_again.bfs(); PrintStream ps = new PrintStream("output.txt"); ps.printf("%d %d\n",fire_again.lastRow,fire_again.lastCol); ps.flush(); ps.close(); } Queue<Pos> queue = new LinkedList<>(); private void bfs() { queue.addAll(pos); for(Pos p : pos) { used[p.r][p.c] = true; // System.out.println("r = "+(p.r) + " c = " + (p.c)); } while(!queue.isEmpty()) { Pos p = queue.poll(); if(p.last > LAST) { LAST = p.last; lastRow = p.r; lastCol = p.c; } for(int i = 0;i < rows.length;i++) { int currR = p.r; int currC = p.c; if(currR + rows[i] >= 1 && currR + rows[i] < N && currC + cols[i] >= 1 && currC + cols[i] < M && !used[currR + rows[i] ] [currC + cols[i] ] ) { // System.out.println("r = "+(currR+rows[i]) + " c = " + (currC+cols[i])); queue.add(new Pos(currR+rows[i],currC+cols[i],p.last+1)); used[currR + rows[i] ] [currC + cols[i] ] = true; } } } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
998
3,667
3,497
//make sure to make new file! import java.io.*; import java.util.*; public class EG14{ public static long MOD; public static int MAX = 405; public static long[] fac; public static long[] ifac; public static void main(String[] args)throws IOException{ BufferedReader f = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(System.out); StringTokenizer st = new StringTokenizer(f.readLine()); int n = Integer.parseInt(st.nextToken()); MOD = Long.parseLong(st.nextToken()); long[] pow2 = new long[MAX]; pow2[0] = 1L; for(int k = 1; k < MAX; k++){ pow2[k] = (2L*pow2[k-1] + MOD)%MOD; } fac = new long[MAX]; ifac = new long[MAX]; fac[0] = 1L; ifac[0] = 1L; for(int k = 1; k < MAX; k++){ fac[k] = ((long)k*fac[k-1] + MOD)%MOD; ifac[k] = modInverse(fac[k],MOD); } long[][] dp = new long[n][n+1]; //what n you're on, what how many computers you've turned on manually //initial for(int k = 0; k < n; k++){ dp[k][k+1] = pow2[k]; } for(int k = 2; k < n; k++){ for(int j = 1; j <= n; j++){ if(dp[k-2][j-1] == 0) continue; long start = dp[k-2][j-1]; //number for part up to previous block for(int add = 1; ; add++){ if(k+add-1 >= n || j+add-1 > n) break; long adder = (start * pow2[add-1] + MOD)%MOD; adder = (adder * choose(j+add-1,j-1) + MOD)%MOD; dp[k+add-1][j+add-1] = (dp[k+add-1][j+add-1] + adder + MOD)%MOD; } } } long answer = 0L; for(int k = 1; k <= n; k++){ answer = (answer + dp[n-1][k] + MOD)%MOD; } out.println(answer); out.close(); } //a choose b public static long choose(int a, int b){ long prod = (fac[a]*ifac[b] + MOD)%MOD; return (prod*ifac[a-b] + MOD)%MOD; } //from geeksforgeeks public static long modInverse(long a, long m) { long m0 = m; long y = 0L; long x = 1L; if (m == 1L) return 0L; while (a > 1L) { // q is quotient long q = a / m; long t = m; // m is remainder now, process same as // Euclid's algo m = a % m; a = t; t = y; // Update y and x y = x - q * y; x = t; } // Make x positive if (x < 0L) x += m0; return x; } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> //make sure to make new file! import java.io.*; import java.util.*; public class EG14{ public static long MOD; public static int MAX = 405; public static long[] fac; public static long[] ifac; public static void main(String[] args)throws IOException{ BufferedReader f = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(System.out); StringTokenizer st = new StringTokenizer(f.readLine()); int n = Integer.parseInt(st.nextToken()); MOD = Long.parseLong(st.nextToken()); long[] pow2 = new long[MAX]; pow2[0] = 1L; for(int k = 1; k < MAX; k++){ pow2[k] = (2L*pow2[k-1] + MOD)%MOD; } fac = new long[MAX]; ifac = new long[MAX]; fac[0] = 1L; ifac[0] = 1L; for(int k = 1; k < MAX; k++){ fac[k] = ((long)k*fac[k-1] + MOD)%MOD; ifac[k] = modInverse(fac[k],MOD); } long[][] dp = new long[n][n+1]; //what n you're on, what how many computers you've turned on manually //initial for(int k = 0; k < n; k++){ dp[k][k+1] = pow2[k]; } for(int k = 2; k < n; k++){ for(int j = 1; j <= n; j++){ if(dp[k-2][j-1] == 0) continue; long start = dp[k-2][j-1]; //number for part up to previous block for(int add = 1; ; add++){ if(k+add-1 >= n || j+add-1 > n) break; long adder = (start * pow2[add-1] + MOD)%MOD; adder = (adder * choose(j+add-1,j-1) + MOD)%MOD; dp[k+add-1][j+add-1] = (dp[k+add-1][j+add-1] + adder + MOD)%MOD; } } } long answer = 0L; for(int k = 1; k <= n; k++){ answer = (answer + dp[n-1][k] + MOD)%MOD; } out.println(answer); out.close(); } //a choose b public static long choose(int a, int b){ long prod = (fac[a]*ifac[b] + MOD)%MOD; return (prod*ifac[a-b] + MOD)%MOD; } //from geeksforgeeks public static long modInverse(long a, long m) { long m0 = m; long y = 0L; long x = 1L; if (m == 1L) return 0L; while (a > 1L) { // q is quotient long q = a / m; long t = m; // m is remainder now, process same as // Euclid's algo m = a % m; a = t; t = y; // Update y and x y = x - q * y; x = t; } // Make x positive if (x < 0L) x += m0; return x; } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> //make sure to make new file! import java.io.*; import java.util.*; public class EG14{ public static long MOD; public static int MAX = 405; public static long[] fac; public static long[] ifac; public static void main(String[] args)throws IOException{ BufferedReader f = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(System.out); StringTokenizer st = new StringTokenizer(f.readLine()); int n = Integer.parseInt(st.nextToken()); MOD = Long.parseLong(st.nextToken()); long[] pow2 = new long[MAX]; pow2[0] = 1L; for(int k = 1; k < MAX; k++){ pow2[k] = (2L*pow2[k-1] + MOD)%MOD; } fac = new long[MAX]; ifac = new long[MAX]; fac[0] = 1L; ifac[0] = 1L; for(int k = 1; k < MAX; k++){ fac[k] = ((long)k*fac[k-1] + MOD)%MOD; ifac[k] = modInverse(fac[k],MOD); } long[][] dp = new long[n][n+1]; //what n you're on, what how many computers you've turned on manually //initial for(int k = 0; k < n; k++){ dp[k][k+1] = pow2[k]; } for(int k = 2; k < n; k++){ for(int j = 1; j <= n; j++){ if(dp[k-2][j-1] == 0) continue; long start = dp[k-2][j-1]; //number for part up to previous block for(int add = 1; ; add++){ if(k+add-1 >= n || j+add-1 > n) break; long adder = (start * pow2[add-1] + MOD)%MOD; adder = (adder * choose(j+add-1,j-1) + MOD)%MOD; dp[k+add-1][j+add-1] = (dp[k+add-1][j+add-1] + adder + MOD)%MOD; } } } long answer = 0L; for(int k = 1; k <= n; k++){ answer = (answer + dp[n-1][k] + MOD)%MOD; } out.println(answer); out.close(); } //a choose b public static long choose(int a, int b){ long prod = (fac[a]*ifac[b] + MOD)%MOD; return (prod*ifac[a-b] + MOD)%MOD; } //from geeksforgeeks public static long modInverse(long a, long m) { long m0 = m; long y = 0L; long x = 1L; if (m == 1L) return 0L; while (a > 1L) { // q is quotient long q = a / m; long t = m; // m is remainder now, process same as // Euclid's algo m = a % m; a = t; t = y; // Update y and x y = x - q * y; x = t; } // Make x positive if (x < 0L) x += m0; return x; } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,176
3,491
2,305
import java.awt.*; import java.io.*; import java.math.*; import java.util.*; public class TaskC { public static void main(String[] args) { new TaskC().run(); } void solve(){ int n = in.nextInt(); String s[] = new String[n]; for(int i = 0; i < n; i++) s[i] = in.next(); if(s[n-1].compareTo("f") == 0){ out.println(0); return; } int dp[] = new int[n+2]; int mod = 1000*1000*1000+7; dp[0] = 1; for(int i = n-1; i >= 0; i--){ if(s[i].compareTo("s") == 0){ int ss = 0; for(int j = 0; j <= n; j++){ ss += dp[j]; if(ss>=mod) ss -= mod; dp[j] = ss; } }else{ for(int j = 0; j < n;j++){ dp[j] = dp[j+1]; } dp[n] = 0; } } out.println(dp[0]); } FastScanner in; PrintWriter out; void run() { in = new FastScanner(System.in); out = new PrintWriter(System.out); int tests = 1;//in.nextInt(); while(tests > 0){ solve(); tests--; } out.close(); } class Pair implements Comparable<Pair>{ Integer x, y; public Pair(int x, int y){ this.x = x; this.y = y; } @Override public int compareTo(Pair o) { if(x.compareTo(o.x) == 0) return y.compareTo(o.y); return x.compareTo(o.x); } } class FastScanner { StringTokenizer st; BufferedReader bf; public FastScanner(InputStream is) { bf = new BufferedReader(new InputStreamReader(is)); } public FastScanner(File f){ try{ bf = new BufferedReader(new FileReader(f)); } catch(IOException ex){ ex.printStackTrace(); } } String next(){ while(st == null || !st.hasMoreTokens()){ try{ st = new StringTokenizer(bf.readLine()); } catch(Exception ex){ ex.printStackTrace(); } } return st.nextToken(); } int nextInt(){ return Integer.parseInt(next()); } long nextLong(){ return Long.parseLong(next()); } double nextDouble(){ return Double.parseDouble(next()); } int[] readArray(int n){ int[] a = new int[n]; for(int i = 0; i < n; i++) a[i] = nextInt(); return a; } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.awt.*; import java.io.*; import java.math.*; import java.util.*; public class TaskC { public static void main(String[] args) { new TaskC().run(); } void solve(){ int n = in.nextInt(); String s[] = new String[n]; for(int i = 0; i < n; i++) s[i] = in.next(); if(s[n-1].compareTo("f") == 0){ out.println(0); return; } int dp[] = new int[n+2]; int mod = 1000*1000*1000+7; dp[0] = 1; for(int i = n-1; i >= 0; i--){ if(s[i].compareTo("s") == 0){ int ss = 0; for(int j = 0; j <= n; j++){ ss += dp[j]; if(ss>=mod) ss -= mod; dp[j] = ss; } }else{ for(int j = 0; j < n;j++){ dp[j] = dp[j+1]; } dp[n] = 0; } } out.println(dp[0]); } FastScanner in; PrintWriter out; void run() { in = new FastScanner(System.in); out = new PrintWriter(System.out); int tests = 1;//in.nextInt(); while(tests > 0){ solve(); tests--; } out.close(); } class Pair implements Comparable<Pair>{ Integer x, y; public Pair(int x, int y){ this.x = x; this.y = y; } @Override public int compareTo(Pair o) { if(x.compareTo(o.x) == 0) return y.compareTo(o.y); return x.compareTo(o.x); } } class FastScanner { StringTokenizer st; BufferedReader bf; public FastScanner(InputStream is) { bf = new BufferedReader(new InputStreamReader(is)); } public FastScanner(File f){ try{ bf = new BufferedReader(new FileReader(f)); } catch(IOException ex){ ex.printStackTrace(); } } String next(){ while(st == null || !st.hasMoreTokens()){ try{ st = new StringTokenizer(bf.readLine()); } catch(Exception ex){ ex.printStackTrace(); } } return st.nextToken(); } int nextInt(){ return Integer.parseInt(next()); } long nextLong(){ return Long.parseLong(next()); } double nextDouble(){ return Double.parseDouble(next()); } int[] readArray(int n){ int[] a = new int[n]; for(int i = 0; i < n; i++) a[i] = nextInt(); return a; } } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.awt.*; import java.io.*; import java.math.*; import java.util.*; public class TaskC { public static void main(String[] args) { new TaskC().run(); } void solve(){ int n = in.nextInt(); String s[] = new String[n]; for(int i = 0; i < n; i++) s[i] = in.next(); if(s[n-1].compareTo("f") == 0){ out.println(0); return; } int dp[] = new int[n+2]; int mod = 1000*1000*1000+7; dp[0] = 1; for(int i = n-1; i >= 0; i--){ if(s[i].compareTo("s") == 0){ int ss = 0; for(int j = 0; j <= n; j++){ ss += dp[j]; if(ss>=mod) ss -= mod; dp[j] = ss; } }else{ for(int j = 0; j < n;j++){ dp[j] = dp[j+1]; } dp[n] = 0; } } out.println(dp[0]); } FastScanner in; PrintWriter out; void run() { in = new FastScanner(System.in); out = new PrintWriter(System.out); int tests = 1;//in.nextInt(); while(tests > 0){ solve(); tests--; } out.close(); } class Pair implements Comparable<Pair>{ Integer x, y; public Pair(int x, int y){ this.x = x; this.y = y; } @Override public int compareTo(Pair o) { if(x.compareTo(o.x) == 0) return y.compareTo(o.y); return x.compareTo(o.x); } } class FastScanner { StringTokenizer st; BufferedReader bf; public FastScanner(InputStream is) { bf = new BufferedReader(new InputStreamReader(is)); } public FastScanner(File f){ try{ bf = new BufferedReader(new FileReader(f)); } catch(IOException ex){ ex.printStackTrace(); } } String next(){ while(st == null || !st.hasMoreTokens()){ try{ st = new StringTokenizer(bf.readLine()); } catch(Exception ex){ ex.printStackTrace(); } } return st.nextToken(); } int nextInt(){ return Integer.parseInt(next()); } long nextLong(){ return Long.parseLong(next()); } double nextDouble(){ return Double.parseDouble(next()); } int[] readArray(int n){ int[] a = new int[n]; for(int i = 0; i < n; i++) a[i] = nextInt(); return a; } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
980
2,300
2,902
/* * To change this license header, choose License Headers in Project Properties. * To change this template file, choose Tools | Templates * and open the template in the editor. */ import java.util.Scanner; /** * * @author RezaM */ public class A { public static void main(String[] args) { Scanner scan = new Scanner(System.in); int n = scan.nextInt(); if (n % 2 == 0) { System.out.println(4 + " " + (n - 4)); } else { System.out.println(9 + " " + (n - 9)); } } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> /* * To change this license header, choose License Headers in Project Properties. * To change this template file, choose Tools | Templates * and open the template in the editor. */ import java.util.Scanner; /** * * @author RezaM */ public class A { public static void main(String[] args) { Scanner scan = new Scanner(System.in); int n = scan.nextInt(); if (n % 2 == 0) { System.out.println(4 + " " + (n - 4)); } else { System.out.println(9 + " " + (n - 9)); } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> /* * To change this license header, choose License Headers in Project Properties. * To change this template file, choose Tools | Templates * and open the template in the editor. */ import java.util.Scanner; /** * * @author RezaM */ public class A { public static void main(String[] args) { Scanner scan = new Scanner(System.in); int n = scan.nextInt(); if (n % 2 == 0) { System.out.println(4 + " " + (n - 4)); } else { System.out.println(9 + " " + (n - 9)); } } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
467
2,896