id
int64
0
4.52k
code
stringlengths
142
31.2k
answer
stringclasses
7 values
prompt
stringlengths
1.64k
32.6k
test_prompt
stringlengths
1.7k
32.7k
token_length
int64
373
7.8k
__index_level_0__
int64
0
4.5k
3,254
import java.io.*; public class Main { private StreamTokenizer in; private PrintWriter out; public static void main(String[] args) throws IOException { //long time = System.currentTimeMillis(); new Main().run(); //time = System.currentTimeMillis() - time; //System.out.println(time + " ms"); } private void run() throws IOException { //in = new StreamTokenizer(new BufferedReader(new InputStreamReader(new FileInputStream("input.txt")))); //BufferedReader reader = new BufferedReader(new InputStreamReader(new FileInputStream("input.txt"))); //out = new PrintWriter(new File("output.txt")); in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in))); //BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(new OutputStreamWriter(System.out)); out.print(25); out.flush(); } int nextInt() throws IOException { in.nextToken(); return (int) in.nval; } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; public class Main { private StreamTokenizer in; private PrintWriter out; public static void main(String[] args) throws IOException { //long time = System.currentTimeMillis(); new Main().run(); //time = System.currentTimeMillis() - time; //System.out.println(time + " ms"); } private void run() throws IOException { //in = new StreamTokenizer(new BufferedReader(new InputStreamReader(new FileInputStream("input.txt")))); //BufferedReader reader = new BufferedReader(new InputStreamReader(new FileInputStream("input.txt"))); //out = new PrintWriter(new File("output.txt")); in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in))); //BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(new OutputStreamWriter(System.out)); out.print(25); out.flush(); } int nextInt() throws IOException { in.nextToken(); return (int) in.nval; } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; public class Main { private StreamTokenizer in; private PrintWriter out; public static void main(String[] args) throws IOException { //long time = System.currentTimeMillis(); new Main().run(); //time = System.currentTimeMillis() - time; //System.out.println(time + " ms"); } private void run() throws IOException { //in = new StreamTokenizer(new BufferedReader(new InputStreamReader(new FileInputStream("input.txt")))); //BufferedReader reader = new BufferedReader(new InputStreamReader(new FileInputStream("input.txt"))); //out = new PrintWriter(new File("output.txt")); in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in))); //BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(new OutputStreamWriter(System.out)); out.print(25); out.flush(); } int nextInt() throws IOException { in.nextToken(); return (int) in.nval; } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
528
3,248
274
import java.util.*; import java.io.*; public class A { public static void main(String ar[]) throws Exception { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); String s1[]=br.readLine().split(" "); int n=Integer.parseInt(s1[0]); int m=Integer.parseInt(s1[1]); int a[]=new int[n]; String s2[]=br.readLine().split(" "); long S=0; for(int i=0;i<n;i++) { a[i]=Integer.parseInt(s2[i]); S+=(long)a[i]; } Arrays.sort(a); m=a[n-1]; int last=1; int t=1; for(int i=1;i<n-1;i++) { if(a[i]==last) t++; else { t++; last=last+1; } } if(last<m) { t+=m-last; } else t++; System.out.println(S-t); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; public class A { public static void main(String ar[]) throws Exception { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); String s1[]=br.readLine().split(" "); int n=Integer.parseInt(s1[0]); int m=Integer.parseInt(s1[1]); int a[]=new int[n]; String s2[]=br.readLine().split(" "); long S=0; for(int i=0;i<n;i++) { a[i]=Integer.parseInt(s2[i]); S+=(long)a[i]; } Arrays.sort(a); m=a[n-1]; int last=1; int t=1; for(int i=1;i<n-1;i++) { if(a[i]==last) t++; else { t++; last=last+1; } } if(last<m) { t+=m-last; } else t++; System.out.println(S-t); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class A { public static void main(String ar[]) throws Exception { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); String s1[]=br.readLine().split(" "); int n=Integer.parseInt(s1[0]); int m=Integer.parseInt(s1[1]); int a[]=new int[n]; String s2[]=br.readLine().split(" "); long S=0; for(int i=0;i<n;i++) { a[i]=Integer.parseInt(s2[i]); S+=(long)a[i]; } Arrays.sort(a); m=a[n-1]; int last=1; int t=1; for(int i=1;i<n-1;i++) { if(a[i]==last) t++; else { t++; last=last+1; } } if(last<m) { t+=m-last; } else t++; System.out.println(S-t); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
569
274
3,688
import java.io.*; import java.math.BigDecimal; import java.math.BigInteger; import java.math.RoundingMode; import java.text.DecimalFormat; import java.util.*; import static java.lang.Math.*; public class Main { final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null; BufferedReader in; PrintWriter out; StringTokenizer tok = new StringTokenizer(""); void init() throws FileNotFoundException { if (ONLINE_JUDGE) { in = new BufferedReader(new FileReader("input.txt")); out = new PrintWriter("output.txt"); } else { in = new BufferedReader(new FileReader("input.txt")); out = new PrintWriter("output.txt"); } } String readString() throws IOException { while (!tok.hasMoreTokens()) { tok = new StringTokenizer(in.readLine()); } return tok.nextToken(); } int readInt() throws IOException { return Integer.parseInt(readString()); } long readLong() throws IOException { return Long.parseLong(readString()); } double readDouble() throws IOException { return Double.parseDouble(readString()); } public static void main(String[] args) { new Main().run(); // Sworn to fight and die } public static void mergeSort(int[] a) { mergeSort(a, 0, a.length - 1); } private static void mergeSort(int[] a, int levtIndex, int rightIndex) { final int MAGIC_VALUE = 50; if (levtIndex < rightIndex) { if (rightIndex - levtIndex <= MAGIC_VALUE) { insertionSort(a, levtIndex, rightIndex); } else { int middleIndex = (levtIndex + rightIndex) / 2; mergeSort(a, levtIndex, middleIndex); mergeSort(a, middleIndex + 1, rightIndex); merge(a, levtIndex, middleIndex, rightIndex); } } } private static void merge(int[] a, int levtIndex, int middleIndex, int rightIndex) { int length1 = middleIndex - levtIndex + 1; int length2 = rightIndex - middleIndex; int[] levtArray = new int[length1]; int[] rightArray = new int[length2]; System.arraycopy(a, levtIndex, levtArray, 0, length1); System.arraycopy(a, middleIndex + 1, rightArray, 0, length2); for (int k = levtIndex, i = 0, j = 0; k <= rightIndex; k++) { if (i == length1) { a[k] = rightArray[j++]; } else if (j == length2) { a[k] = levtArray[i++]; } else { a[k] = levtArray[i] <= rightArray[j] ? levtArray[i++] : rightArray[j++]; } } } private static void insertionSort(int[] a, int levtIndex, int rightIndex) { for (int i = levtIndex + 1; i <= rightIndex; i++) { int current = a[i]; int j = i - 1; while (j >= levtIndex && a[j] > current) { a[j + 1] = a[j]; j--; } a[j + 1] = current; } } public void run() { try { long t1 = System.currentTimeMillis(); init(); solve(); out.close(); long t2 = System.currentTimeMillis(); System.err.println("Time = " + (t2 - t1)); } catch (Exception e) { e.printStackTrace(System.err); System.exit(-1); } } class LOL implements Comparable<LOL> { int x; int y; public LOL(int x, int y) { this.x = x; this.y = y; } @Override public int compareTo(LOL o) { return (x - o.x); // ----> //return o.x * o.y - x * y; // <---- } } class LOL2 implements Comparable<LOL2> { int x; int y; int z; public LOL2(int x, int y, int z) { this.x = x; this.y = y; this.z = z; } @Override public int compareTo(LOL2 o) { return (z - o.z); // ----> //return o.x * o.y - x * y; // <---- } } class test implements Comparable<test> { long x; long y; public test(long x, long y) { this.x = x; this.y = y; } @Override public int compareTo(test o) { //int compareResult = Long.compare(y, o.y); // ----> //if (compareResult != 0) { // return -compareResult; //} int compareResult = Long.compare(x, o.x); if (compareResult != 0) { return compareResult; } return Long.compare(y, o.y); //return o.x * o.y - x * y; // <---- } } class data { String name; String city; data(String name, String city) { this.city = city; this.name = name; } } class Point { double x; double y; Point(double x, double y) { this.x = x; this.y = y; } double distance(Point temp) { return Math.sqrt((x - temp.x) * (x - temp.x) + (y - temp.y) * (y - temp.y)); } double sqrDist(Point temp) { return ((x - temp.x) * (x - temp.x) + (y - temp.y) * (y - temp.y)); } Point rotate(double alpha) { return new Point(x * cos(alpha) - y * sin(alpha), x * sin(alpha) + y * cos(alpha)); } void sum(Point o) { x += o.x; y += o.y; } void scalarProduct(int alpha) { x *= alpha; y *= alpha; } } class Line { double a; double b; double c; Line(Point A, Point B) { a = B.y - A.y; b = A.x - B.x; c = -A.x * a - A.y * b; } Line(double a, double b, double c) { this.a = a; this.b = b; this.c = c; } Point intersection(Line o) { double det = a * o.b - b * o.a; double det1 = -c * o.b + b * o.c; double det2 = -a * o.c + c * o.a; return new Point(det1 / det, det2 / det); } } /* class Plane { double a; double b; double c; double d; Plane (Point fir, Point sec, Point thi) { double del1 = (sec.y - fir.y) * (thi.z - fir.z) - (thi.y - fir.y) * (sec.z - fir.z); double del2 = (thi.x - fir.x) * (sec.z - fir.z) - (thi.z - fir.z) * (sec.x - fir.x); double del3 = (thi.y - fir.y) * (sec.x - fir.x) - (thi.x - fir.x) * (sec.y - fir.y); a = del1; b = del2; c = del3; d = -fir.x * del1 - fir.y * del2 - fir.z * del3; } double distance(Point point) { return abs(a * point.x + b * point.y + c * point.z + d) / sqrt(a * a + b * b + c * c); } } */ class record implements Comparable<record> { String city; Long score; public record(String name, Long score) { this.city = name; this.score = score; } @Override public int compareTo(record o) { if (o.city.equals(city)) { return 0; } if (score.equals(o.score)) { return 1; } if (score > o.score) { return 666; } else { return -666; } //return Long.compare(score, o.score); } } public long gcd(long a, long b) { if (a == 0 || b == 0) return max(a, b); if (a % b == 0) return b; else return gcd(b, a % b); } boolean prime(long n) { if (n == 1) return false; for (int i = 2; i <= sqrt(n); i++) if (n % i == 0) return false; return true; } public int sum(long n) { int s = 0; while (n > 0) { s += (n % 10); n /= 10; } return s; } /* public void simulation(int k) { long ans = 0; int start = 1; for (int i = 0; i < k; i++) { start *= 10; } for (int i = start/10; i < start; i++) { int locAns = 0; for (int j = start/10; j < start; j++) { if (sum(i + j) == sum(i) + sum(j) ) { ans += 1; locAns += 1; } else { //.println(i + "!!!" + j); } } //out.println(i + " " + locAns); } out.println(ans); }*/ ArrayList<Integer> primes; boolean[] isPrime; public void getPrimes (int n) { isPrime[0] = false; isPrime[1] = false; for (int i = 2; i <= n; i++) { if (isPrime[i]) { primes.add(i); if (1l * i * i <= n) { for (int j = i * i; j <= n; j += i) { isPrime[j] = false; } } } } } public long binPowMod(long a, long b, long mod) { if (b == 0) { return 1 % mod; } if (b % 2 != 0) { return ((a % mod) * (binPowMod(a, b - 1, mod) % mod)) % mod; } else { long temp = binPowMod(a, b / 2, mod) % mod; long ans = (temp * temp) % mod; return ans; } } int type[]; boolean vis[]; HashMap<Integer, HashSet<Integer>> g; int componentNum[]; /* void dfs(int u, int numOfComponent) { vis[u] = true; componentNum[u] = numOfComponent; for (Integer v: g.get(u)) { if (!vis[v]) { dfs(v, numOfComponent); } } } */ int p[]; int find(int x) { if (x == p[x]) { return x; } return p[x] = find(p[x]); } boolean merge(int x, int y) { x = find(x); y = find(y); if (p[x] == p[y]) { return false; } p[y] = x; return true; } class Trajectory { double x0; double y0; double vx; double vy; Trajectory(double vx, double vy, double x0, double y0) { this.vx = vx; this.vy = vy; this.x0 = x0; this.y0 = y0; } double y (double x) { return y0 + (x - x0) * (vy / vx) - 5 * (x - x0) * (x - x0) / (vx * vx); } double der(double x) { return (vy / vx) - 10 * (x - x0) / (vx * vx); } } int s; int n; int m; boolean isVisited[][]; char[][] maze; int[] dx = {0, 0, -1, 1}; int[] dy = {1, -1, 0, 0}; void dfs(int x, int y) { isVisited[x][y] = true; for (int i = 0; i < 4; i++) { int currX = x + dx[i]; int currY = y + dy[i]; if (maze[currX][currY] == '.' && !isVisited[currX][currY]) { dfs(currX, currY); } } } public void solve() throws IOException { n = readInt(); m = readInt(); maze = new char[n + 2][m + 2]; for (int i = 0; i < n + 2; i++) { maze[i][0] = '#'; maze[i][m + 1] = '#'; } for (int j = 0; j < m + 2; j++) { maze[0][j] = '#'; maze[n + 1][j] = '#'; } for (int i = 1; i <= n; i++) { for (int j = 1; j <= m; j++) { maze[i][j] = '.'; } } int[][] dist = new int[n + 2][m + 2]; for (int i = 0; i < n + 2; i++) { for (int j = 0; j < m + 2; j++) { dist[i][j] = Integer.MAX_VALUE; } } ArrayDeque<Integer> xValues = new ArrayDeque<Integer>(); ArrayDeque<Integer> yValues = new ArrayDeque<Integer>(); int k = readInt(); for (int i = 0; i < k; i++) { int currX = readInt(); int currY = readInt(); xValues.add(currX); yValues.add(currY); dist[currX][currY] = 0; } while(!xValues.isEmpty()) { int x = xValues.poll(); int y = yValues.poll(); for (int i = 0; i < 4; i++) { int currX = x + dx[i]; int currY = y + dy[i]; if (maze[currX][currY] == '.' && dist[currX][currY] > dist[x][y] + 1) { dist[currX][currY] = dist[x][y] + 1; xValues.add(currX); yValues.add(currY); } } } int maxDist = 0; int indexX = 0; int indexY = 0; for (int i = 1; i <= n; i++) { for (int j = 1; j <= m; j++) { if (dist[i][j] >= maxDist) { maxDist = dist[i][j]; indexX = i; indexY = j; } } } out.print(indexX + " " + indexY); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.math.BigDecimal; import java.math.BigInteger; import java.math.RoundingMode; import java.text.DecimalFormat; import java.util.*; import static java.lang.Math.*; public class Main { final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null; BufferedReader in; PrintWriter out; StringTokenizer tok = new StringTokenizer(""); void init() throws FileNotFoundException { if (ONLINE_JUDGE) { in = new BufferedReader(new FileReader("input.txt")); out = new PrintWriter("output.txt"); } else { in = new BufferedReader(new FileReader("input.txt")); out = new PrintWriter("output.txt"); } } String readString() throws IOException { while (!tok.hasMoreTokens()) { tok = new StringTokenizer(in.readLine()); } return tok.nextToken(); } int readInt() throws IOException { return Integer.parseInt(readString()); } long readLong() throws IOException { return Long.parseLong(readString()); } double readDouble() throws IOException { return Double.parseDouble(readString()); } public static void main(String[] args) { new Main().run(); // Sworn to fight and die } public static void mergeSort(int[] a) { mergeSort(a, 0, a.length - 1); } private static void mergeSort(int[] a, int levtIndex, int rightIndex) { final int MAGIC_VALUE = 50; if (levtIndex < rightIndex) { if (rightIndex - levtIndex <= MAGIC_VALUE) { insertionSort(a, levtIndex, rightIndex); } else { int middleIndex = (levtIndex + rightIndex) / 2; mergeSort(a, levtIndex, middleIndex); mergeSort(a, middleIndex + 1, rightIndex); merge(a, levtIndex, middleIndex, rightIndex); } } } private static void merge(int[] a, int levtIndex, int middleIndex, int rightIndex) { int length1 = middleIndex - levtIndex + 1; int length2 = rightIndex - middleIndex; int[] levtArray = new int[length1]; int[] rightArray = new int[length2]; System.arraycopy(a, levtIndex, levtArray, 0, length1); System.arraycopy(a, middleIndex + 1, rightArray, 0, length2); for (int k = levtIndex, i = 0, j = 0; k <= rightIndex; k++) { if (i == length1) { a[k] = rightArray[j++]; } else if (j == length2) { a[k] = levtArray[i++]; } else { a[k] = levtArray[i] <= rightArray[j] ? levtArray[i++] : rightArray[j++]; } } } private static void insertionSort(int[] a, int levtIndex, int rightIndex) { for (int i = levtIndex + 1; i <= rightIndex; i++) { int current = a[i]; int j = i - 1; while (j >= levtIndex && a[j] > current) { a[j + 1] = a[j]; j--; } a[j + 1] = current; } } public void run() { try { long t1 = System.currentTimeMillis(); init(); solve(); out.close(); long t2 = System.currentTimeMillis(); System.err.println("Time = " + (t2 - t1)); } catch (Exception e) { e.printStackTrace(System.err); System.exit(-1); } } class LOL implements Comparable<LOL> { int x; int y; public LOL(int x, int y) { this.x = x; this.y = y; } @Override public int compareTo(LOL o) { return (x - o.x); // ----> //return o.x * o.y - x * y; // <---- } } class LOL2 implements Comparable<LOL2> { int x; int y; int z; public LOL2(int x, int y, int z) { this.x = x; this.y = y; this.z = z; } @Override public int compareTo(LOL2 o) { return (z - o.z); // ----> //return o.x * o.y - x * y; // <---- } } class test implements Comparable<test> { long x; long y; public test(long x, long y) { this.x = x; this.y = y; } @Override public int compareTo(test o) { //int compareResult = Long.compare(y, o.y); // ----> //if (compareResult != 0) { // return -compareResult; //} int compareResult = Long.compare(x, o.x); if (compareResult != 0) { return compareResult; } return Long.compare(y, o.y); //return o.x * o.y - x * y; // <---- } } class data { String name; String city; data(String name, String city) { this.city = city; this.name = name; } } class Point { double x; double y; Point(double x, double y) { this.x = x; this.y = y; } double distance(Point temp) { return Math.sqrt((x - temp.x) * (x - temp.x) + (y - temp.y) * (y - temp.y)); } double sqrDist(Point temp) { return ((x - temp.x) * (x - temp.x) + (y - temp.y) * (y - temp.y)); } Point rotate(double alpha) { return new Point(x * cos(alpha) - y * sin(alpha), x * sin(alpha) + y * cos(alpha)); } void sum(Point o) { x += o.x; y += o.y; } void scalarProduct(int alpha) { x *= alpha; y *= alpha; } } class Line { double a; double b; double c; Line(Point A, Point B) { a = B.y - A.y; b = A.x - B.x; c = -A.x * a - A.y * b; } Line(double a, double b, double c) { this.a = a; this.b = b; this.c = c; } Point intersection(Line o) { double det = a * o.b - b * o.a; double det1 = -c * o.b + b * o.c; double det2 = -a * o.c + c * o.a; return new Point(det1 / det, det2 / det); } } /* class Plane { double a; double b; double c; double d; Plane (Point fir, Point sec, Point thi) { double del1 = (sec.y - fir.y) * (thi.z - fir.z) - (thi.y - fir.y) * (sec.z - fir.z); double del2 = (thi.x - fir.x) * (sec.z - fir.z) - (thi.z - fir.z) * (sec.x - fir.x); double del3 = (thi.y - fir.y) * (sec.x - fir.x) - (thi.x - fir.x) * (sec.y - fir.y); a = del1; b = del2; c = del3; d = -fir.x * del1 - fir.y * del2 - fir.z * del3; } double distance(Point point) { return abs(a * point.x + b * point.y + c * point.z + d) / sqrt(a * a + b * b + c * c); } } */ class record implements Comparable<record> { String city; Long score; public record(String name, Long score) { this.city = name; this.score = score; } @Override public int compareTo(record o) { if (o.city.equals(city)) { return 0; } if (score.equals(o.score)) { return 1; } if (score > o.score) { return 666; } else { return -666; } //return Long.compare(score, o.score); } } public long gcd(long a, long b) { if (a == 0 || b == 0) return max(a, b); if (a % b == 0) return b; else return gcd(b, a % b); } boolean prime(long n) { if (n == 1) return false; for (int i = 2; i <= sqrt(n); i++) if (n % i == 0) return false; return true; } public int sum(long n) { int s = 0; while (n > 0) { s += (n % 10); n /= 10; } return s; } /* public void simulation(int k) { long ans = 0; int start = 1; for (int i = 0; i < k; i++) { start *= 10; } for (int i = start/10; i < start; i++) { int locAns = 0; for (int j = start/10; j < start; j++) { if (sum(i + j) == sum(i) + sum(j) ) { ans += 1; locAns += 1; } else { //.println(i + "!!!" + j); } } //out.println(i + " " + locAns); } out.println(ans); }*/ ArrayList<Integer> primes; boolean[] isPrime; public void getPrimes (int n) { isPrime[0] = false; isPrime[1] = false; for (int i = 2; i <= n; i++) { if (isPrime[i]) { primes.add(i); if (1l * i * i <= n) { for (int j = i * i; j <= n; j += i) { isPrime[j] = false; } } } } } public long binPowMod(long a, long b, long mod) { if (b == 0) { return 1 % mod; } if (b % 2 != 0) { return ((a % mod) * (binPowMod(a, b - 1, mod) % mod)) % mod; } else { long temp = binPowMod(a, b / 2, mod) % mod; long ans = (temp * temp) % mod; return ans; } } int type[]; boolean vis[]; HashMap<Integer, HashSet<Integer>> g; int componentNum[]; /* void dfs(int u, int numOfComponent) { vis[u] = true; componentNum[u] = numOfComponent; for (Integer v: g.get(u)) { if (!vis[v]) { dfs(v, numOfComponent); } } } */ int p[]; int find(int x) { if (x == p[x]) { return x; } return p[x] = find(p[x]); } boolean merge(int x, int y) { x = find(x); y = find(y); if (p[x] == p[y]) { return false; } p[y] = x; return true; } class Trajectory { double x0; double y0; double vx; double vy; Trajectory(double vx, double vy, double x0, double y0) { this.vx = vx; this.vy = vy; this.x0 = x0; this.y0 = y0; } double y (double x) { return y0 + (x - x0) * (vy / vx) - 5 * (x - x0) * (x - x0) / (vx * vx); } double der(double x) { return (vy / vx) - 10 * (x - x0) / (vx * vx); } } int s; int n; int m; boolean isVisited[][]; char[][] maze; int[] dx = {0, 0, -1, 1}; int[] dy = {1, -1, 0, 0}; void dfs(int x, int y) { isVisited[x][y] = true; for (int i = 0; i < 4; i++) { int currX = x + dx[i]; int currY = y + dy[i]; if (maze[currX][currY] == '.' && !isVisited[currX][currY]) { dfs(currX, currY); } } } public void solve() throws IOException { n = readInt(); m = readInt(); maze = new char[n + 2][m + 2]; for (int i = 0; i < n + 2; i++) { maze[i][0] = '#'; maze[i][m + 1] = '#'; } for (int j = 0; j < m + 2; j++) { maze[0][j] = '#'; maze[n + 1][j] = '#'; } for (int i = 1; i <= n; i++) { for (int j = 1; j <= m; j++) { maze[i][j] = '.'; } } int[][] dist = new int[n + 2][m + 2]; for (int i = 0; i < n + 2; i++) { for (int j = 0; j < m + 2; j++) { dist[i][j] = Integer.MAX_VALUE; } } ArrayDeque<Integer> xValues = new ArrayDeque<Integer>(); ArrayDeque<Integer> yValues = new ArrayDeque<Integer>(); int k = readInt(); for (int i = 0; i < k; i++) { int currX = readInt(); int currY = readInt(); xValues.add(currX); yValues.add(currY); dist[currX][currY] = 0; } while(!xValues.isEmpty()) { int x = xValues.poll(); int y = yValues.poll(); for (int i = 0; i < 4; i++) { int currX = x + dx[i]; int currY = y + dy[i]; if (maze[currX][currY] == '.' && dist[currX][currY] > dist[x][y] + 1) { dist[currX][currY] = dist[x][y] + 1; xValues.add(currX); yValues.add(currY); } } } int maxDist = 0; int indexX = 0; int indexY = 0; for (int i = 1; i <= n; i++) { for (int j = 1; j <= m; j++) { if (dist[i][j] >= maxDist) { maxDist = dist[i][j]; indexX = i; indexY = j; } } } out.print(indexX + " " + indexY); } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.math.BigDecimal; import java.math.BigInteger; import java.math.RoundingMode; import java.text.DecimalFormat; import java.util.*; import static java.lang.Math.*; public class Main { final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null; BufferedReader in; PrintWriter out; StringTokenizer tok = new StringTokenizer(""); void init() throws FileNotFoundException { if (ONLINE_JUDGE) { in = new BufferedReader(new FileReader("input.txt")); out = new PrintWriter("output.txt"); } else { in = new BufferedReader(new FileReader("input.txt")); out = new PrintWriter("output.txt"); } } String readString() throws IOException { while (!tok.hasMoreTokens()) { tok = new StringTokenizer(in.readLine()); } return tok.nextToken(); } int readInt() throws IOException { return Integer.parseInt(readString()); } long readLong() throws IOException { return Long.parseLong(readString()); } double readDouble() throws IOException { return Double.parseDouble(readString()); } public static void main(String[] args) { new Main().run(); // Sworn to fight and die } public static void mergeSort(int[] a) { mergeSort(a, 0, a.length - 1); } private static void mergeSort(int[] a, int levtIndex, int rightIndex) { final int MAGIC_VALUE = 50; if (levtIndex < rightIndex) { if (rightIndex - levtIndex <= MAGIC_VALUE) { insertionSort(a, levtIndex, rightIndex); } else { int middleIndex = (levtIndex + rightIndex) / 2; mergeSort(a, levtIndex, middleIndex); mergeSort(a, middleIndex + 1, rightIndex); merge(a, levtIndex, middleIndex, rightIndex); } } } private static void merge(int[] a, int levtIndex, int middleIndex, int rightIndex) { int length1 = middleIndex - levtIndex + 1; int length2 = rightIndex - middleIndex; int[] levtArray = new int[length1]; int[] rightArray = new int[length2]; System.arraycopy(a, levtIndex, levtArray, 0, length1); System.arraycopy(a, middleIndex + 1, rightArray, 0, length2); for (int k = levtIndex, i = 0, j = 0; k <= rightIndex; k++) { if (i == length1) { a[k] = rightArray[j++]; } else if (j == length2) { a[k] = levtArray[i++]; } else { a[k] = levtArray[i] <= rightArray[j] ? levtArray[i++] : rightArray[j++]; } } } private static void insertionSort(int[] a, int levtIndex, int rightIndex) { for (int i = levtIndex + 1; i <= rightIndex; i++) { int current = a[i]; int j = i - 1; while (j >= levtIndex && a[j] > current) { a[j + 1] = a[j]; j--; } a[j + 1] = current; } } public void run() { try { long t1 = System.currentTimeMillis(); init(); solve(); out.close(); long t2 = System.currentTimeMillis(); System.err.println("Time = " + (t2 - t1)); } catch (Exception e) { e.printStackTrace(System.err); System.exit(-1); } } class LOL implements Comparable<LOL> { int x; int y; public LOL(int x, int y) { this.x = x; this.y = y; } @Override public int compareTo(LOL o) { return (x - o.x); // ----> //return o.x * o.y - x * y; // <---- } } class LOL2 implements Comparable<LOL2> { int x; int y; int z; public LOL2(int x, int y, int z) { this.x = x; this.y = y; this.z = z; } @Override public int compareTo(LOL2 o) { return (z - o.z); // ----> //return o.x * o.y - x * y; // <---- } } class test implements Comparable<test> { long x; long y; public test(long x, long y) { this.x = x; this.y = y; } @Override public int compareTo(test o) { //int compareResult = Long.compare(y, o.y); // ----> //if (compareResult != 0) { // return -compareResult; //} int compareResult = Long.compare(x, o.x); if (compareResult != 0) { return compareResult; } return Long.compare(y, o.y); //return o.x * o.y - x * y; // <---- } } class data { String name; String city; data(String name, String city) { this.city = city; this.name = name; } } class Point { double x; double y; Point(double x, double y) { this.x = x; this.y = y; } double distance(Point temp) { return Math.sqrt((x - temp.x) * (x - temp.x) + (y - temp.y) * (y - temp.y)); } double sqrDist(Point temp) { return ((x - temp.x) * (x - temp.x) + (y - temp.y) * (y - temp.y)); } Point rotate(double alpha) { return new Point(x * cos(alpha) - y * sin(alpha), x * sin(alpha) + y * cos(alpha)); } void sum(Point o) { x += o.x; y += o.y; } void scalarProduct(int alpha) { x *= alpha; y *= alpha; } } class Line { double a; double b; double c; Line(Point A, Point B) { a = B.y - A.y; b = A.x - B.x; c = -A.x * a - A.y * b; } Line(double a, double b, double c) { this.a = a; this.b = b; this.c = c; } Point intersection(Line o) { double det = a * o.b - b * o.a; double det1 = -c * o.b + b * o.c; double det2 = -a * o.c + c * o.a; return new Point(det1 / det, det2 / det); } } /* class Plane { double a; double b; double c; double d; Plane (Point fir, Point sec, Point thi) { double del1 = (sec.y - fir.y) * (thi.z - fir.z) - (thi.y - fir.y) * (sec.z - fir.z); double del2 = (thi.x - fir.x) * (sec.z - fir.z) - (thi.z - fir.z) * (sec.x - fir.x); double del3 = (thi.y - fir.y) * (sec.x - fir.x) - (thi.x - fir.x) * (sec.y - fir.y); a = del1; b = del2; c = del3; d = -fir.x * del1 - fir.y * del2 - fir.z * del3; } double distance(Point point) { return abs(a * point.x + b * point.y + c * point.z + d) / sqrt(a * a + b * b + c * c); } } */ class record implements Comparable<record> { String city; Long score; public record(String name, Long score) { this.city = name; this.score = score; } @Override public int compareTo(record o) { if (o.city.equals(city)) { return 0; } if (score.equals(o.score)) { return 1; } if (score > o.score) { return 666; } else { return -666; } //return Long.compare(score, o.score); } } public long gcd(long a, long b) { if (a == 0 || b == 0) return max(a, b); if (a % b == 0) return b; else return gcd(b, a % b); } boolean prime(long n) { if (n == 1) return false; for (int i = 2; i <= sqrt(n); i++) if (n % i == 0) return false; return true; } public int sum(long n) { int s = 0; while (n > 0) { s += (n % 10); n /= 10; } return s; } /* public void simulation(int k) { long ans = 0; int start = 1; for (int i = 0; i < k; i++) { start *= 10; } for (int i = start/10; i < start; i++) { int locAns = 0; for (int j = start/10; j < start; j++) { if (sum(i + j) == sum(i) + sum(j) ) { ans += 1; locAns += 1; } else { //.println(i + "!!!" + j); } } //out.println(i + " " + locAns); } out.println(ans); }*/ ArrayList<Integer> primes; boolean[] isPrime; public void getPrimes (int n) { isPrime[0] = false; isPrime[1] = false; for (int i = 2; i <= n; i++) { if (isPrime[i]) { primes.add(i); if (1l * i * i <= n) { for (int j = i * i; j <= n; j += i) { isPrime[j] = false; } } } } } public long binPowMod(long a, long b, long mod) { if (b == 0) { return 1 % mod; } if (b % 2 != 0) { return ((a % mod) * (binPowMod(a, b - 1, mod) % mod)) % mod; } else { long temp = binPowMod(a, b / 2, mod) % mod; long ans = (temp * temp) % mod; return ans; } } int type[]; boolean vis[]; HashMap<Integer, HashSet<Integer>> g; int componentNum[]; /* void dfs(int u, int numOfComponent) { vis[u] = true; componentNum[u] = numOfComponent; for (Integer v: g.get(u)) { if (!vis[v]) { dfs(v, numOfComponent); } } } */ int p[]; int find(int x) { if (x == p[x]) { return x; } return p[x] = find(p[x]); } boolean merge(int x, int y) { x = find(x); y = find(y); if (p[x] == p[y]) { return false; } p[y] = x; return true; } class Trajectory { double x0; double y0; double vx; double vy; Trajectory(double vx, double vy, double x0, double y0) { this.vx = vx; this.vy = vy; this.x0 = x0; this.y0 = y0; } double y (double x) { return y0 + (x - x0) * (vy / vx) - 5 * (x - x0) * (x - x0) / (vx * vx); } double der(double x) { return (vy / vx) - 10 * (x - x0) / (vx * vx); } } int s; int n; int m; boolean isVisited[][]; char[][] maze; int[] dx = {0, 0, -1, 1}; int[] dy = {1, -1, 0, 0}; void dfs(int x, int y) { isVisited[x][y] = true; for (int i = 0; i < 4; i++) { int currX = x + dx[i]; int currY = y + dy[i]; if (maze[currX][currY] == '.' && !isVisited[currX][currY]) { dfs(currX, currY); } } } public void solve() throws IOException { n = readInt(); m = readInt(); maze = new char[n + 2][m + 2]; for (int i = 0; i < n + 2; i++) { maze[i][0] = '#'; maze[i][m + 1] = '#'; } for (int j = 0; j < m + 2; j++) { maze[0][j] = '#'; maze[n + 1][j] = '#'; } for (int i = 1; i <= n; i++) { for (int j = 1; j <= m; j++) { maze[i][j] = '.'; } } int[][] dist = new int[n + 2][m + 2]; for (int i = 0; i < n + 2; i++) { for (int j = 0; j < m + 2; j++) { dist[i][j] = Integer.MAX_VALUE; } } ArrayDeque<Integer> xValues = new ArrayDeque<Integer>(); ArrayDeque<Integer> yValues = new ArrayDeque<Integer>(); int k = readInt(); for (int i = 0; i < k; i++) { int currX = readInt(); int currY = readInt(); xValues.add(currX); yValues.add(currY); dist[currX][currY] = 0; } while(!xValues.isEmpty()) { int x = xValues.poll(); int y = yValues.poll(); for (int i = 0; i < 4; i++) { int currX = x + dx[i]; int currY = y + dy[i]; if (maze[currX][currY] == '.' && dist[currX][currY] > dist[x][y] + 1) { dist[currX][currY] = dist[x][y] + 1; xValues.add(currX); yValues.add(currY); } } } int maxDist = 0; int indexX = 0; int indexY = 0; for (int i = 1; i <= n; i++) { for (int j = 1; j <= m; j++) { if (dist[i][j] >= maxDist) { maxDist = dist[i][j]; indexX = i; indexY = j; } } } out.print(indexX + " " + indexY); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
3,844
3,680
3,117
import java.io.InputStreamReader; import java.util.Scanner; import java.io.IOException; public class kresz { public static double a; public static double v; public static double l; public static double d; public static double w; public static double gyorsulut (double v1, double v2) { //v1 -> v2 mennyi utat tesz meg return Math.abs((v2*v2-v1*v1)/(2*a)); } public static double gyorsulido (double v1, double v2) { //v1 -> v2 mennyi idő return Math.abs((v2-v1)/a); } public static void beolvas () throws IOException { Scanner be = new Scanner (new InputStreamReader (System.in)); a = be.nextDouble(); v = be.nextDouble(); l = be.nextDouble(); d = be.nextDouble(); w = be.nextDouble(); be.close(); } public static void main (String args[]) throws IOException { beolvas(); double s = l; //hátralévő út double t = 0; //eltelt idő if (v <= w || Math.sqrt(2*a*d) <= w) { //nincs korlátozás if (gyorsulut(0,v) > l) { t+=gyorsulido(0, Math.sqrt(2*a*l)); s = 0; } else { s-=gyorsulut(0,v); t+=gyorsulido(0,v); } } else { //gyorsuló szakaszok a korlátozásig if (d < gyorsulut(0,v)+gyorsulut(v,w)) { double x = Math.sqrt(a*(d-w*w/(2*a))+w*w); s-=gyorsulut(0,w)+2*gyorsulut(w,x); t+=gyorsulido(0,w)+2*gyorsulido(w,x); } else { s-=gyorsulut(0,v)+gyorsulut(w,v); t+=gyorsulido(0,v)+gyorsulido(w,v); } //gyorsuló szakaszok a korlátozástól if (gyorsulut(v,w) > l-d) { double y = Math.sqrt(2*a*(l-d)+w*w); s-= gyorsulut(w,y); t+=gyorsulido(w,y); } else { s-=gyorsulut(w,v); t+=gyorsulido(w,v); } } t+=s/v; //nem gyorsuló szakaszok ideje System.out.println(t); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.InputStreamReader; import java.util.Scanner; import java.io.IOException; public class kresz { public static double a; public static double v; public static double l; public static double d; public static double w; public static double gyorsulut (double v1, double v2) { //v1 -> v2 mennyi utat tesz meg return Math.abs((v2*v2-v1*v1)/(2*a)); } public static double gyorsulido (double v1, double v2) { //v1 -> v2 mennyi idő return Math.abs((v2-v1)/a); } public static void beolvas () throws IOException { Scanner be = new Scanner (new InputStreamReader (System.in)); a = be.nextDouble(); v = be.nextDouble(); l = be.nextDouble(); d = be.nextDouble(); w = be.nextDouble(); be.close(); } public static void main (String args[]) throws IOException { beolvas(); double s = l; //hátralévő út double t = 0; //eltelt idő if (v <= w || Math.sqrt(2*a*d) <= w) { //nincs korlátozás if (gyorsulut(0,v) > l) { t+=gyorsulido(0, Math.sqrt(2*a*l)); s = 0; } else { s-=gyorsulut(0,v); t+=gyorsulido(0,v); } } else { //gyorsuló szakaszok a korlátozásig if (d < gyorsulut(0,v)+gyorsulut(v,w)) { double x = Math.sqrt(a*(d-w*w/(2*a))+w*w); s-=gyorsulut(0,w)+2*gyorsulut(w,x); t+=gyorsulido(0,w)+2*gyorsulido(w,x); } else { s-=gyorsulut(0,v)+gyorsulut(w,v); t+=gyorsulido(0,v)+gyorsulido(w,v); } //gyorsuló szakaszok a korlátozástól if (gyorsulut(v,w) > l-d) { double y = Math.sqrt(2*a*(l-d)+w*w); s-= gyorsulut(w,y); t+=gyorsulido(w,y); } else { s-=gyorsulut(w,v); t+=gyorsulido(w,v); } } t+=s/v; //nem gyorsuló szakaszok ideje System.out.println(t); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.InputStreamReader; import java.util.Scanner; import java.io.IOException; public class kresz { public static double a; public static double v; public static double l; public static double d; public static double w; public static double gyorsulut (double v1, double v2) { //v1 -> v2 mennyi utat tesz meg return Math.abs((v2*v2-v1*v1)/(2*a)); } public static double gyorsulido (double v1, double v2) { //v1 -> v2 mennyi idő return Math.abs((v2-v1)/a); } public static void beolvas () throws IOException { Scanner be = new Scanner (new InputStreamReader (System.in)); a = be.nextDouble(); v = be.nextDouble(); l = be.nextDouble(); d = be.nextDouble(); w = be.nextDouble(); be.close(); } public static void main (String args[]) throws IOException { beolvas(); double s = l; //hátralévő út double t = 0; //eltelt idő if (v <= w || Math.sqrt(2*a*d) <= w) { //nincs korlátozás if (gyorsulut(0,v) > l) { t+=gyorsulido(0, Math.sqrt(2*a*l)); s = 0; } else { s-=gyorsulut(0,v); t+=gyorsulido(0,v); } } else { //gyorsuló szakaszok a korlátozásig if (d < gyorsulut(0,v)+gyorsulut(v,w)) { double x = Math.sqrt(a*(d-w*w/(2*a))+w*w); s-=gyorsulut(0,w)+2*gyorsulut(w,x); t+=gyorsulido(0,w)+2*gyorsulido(w,x); } else { s-=gyorsulut(0,v)+gyorsulut(w,v); t+=gyorsulido(0,v)+gyorsulido(w,v); } //gyorsuló szakaszok a korlátozástól if (gyorsulut(v,w) > l-d) { double y = Math.sqrt(2*a*(l-d)+w*w); s-= gyorsulut(w,y); t+=gyorsulido(w,y); } else { s-=gyorsulut(w,v); t+=gyorsulido(w,v); } } t+=s/v; //nem gyorsuló szakaszok ideje System.out.println(t); } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
962
3,111
3,767
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.util.Arrays; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); DExplorerSpace solver = new DExplorerSpace(); solver.solve(1, in, out); out.close(); } static class DExplorerSpace { static final int oo = 1000000000; public void solve(int testNumber, InputReader in, OutputWriter out) { int n = in.nextInt(), m = in.nextInt(), k = in.nextInt(); int[][] right = new int[n][m - 1]; int[][] down = new int[n - 1][m]; for (int i = 0; i < n; i++) right[i] = in.readIntArray(m - 1); for (int i = 0; i + 1 < n; i++) down[i] = in.readIntArray(m); if (k % 2 == 1) { for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) out.print(-1 + " "); out.println(); } return; } int[][][] dp = new int[k / 2 + 1][n][m]; for (int r = 1; 2 * r <= k; r++) { for (int i = 0; i < n; i++) Arrays.fill(dp[r][i], oo); for (int i = 0; i < n; i++) for (int j = 0; j < m - 1; j++) { int cost = right[i][j]; dp[r][i][j] = Integer.min(dp[r][i][j], dp[r - 1][i][j + 1] + cost); dp[r][i][j + 1] = Integer.min(dp[r][i][j + 1], dp[r - 1][i][j] + cost); } for (int i = 0; i + 1 < n; i++) for (int j = 0; j < m; j++) { int cost = down[i][j]; dp[r][i][j] = Integer.min(dp[r][i][j], dp[r - 1][i + 1][j] + cost); dp[r][i + 1][j] = Integer.min(dp[r][i + 1][j], dp[r - 1][i][j] + cost); } } for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { out.print(2 * dp[k / 2][i][j] + " "); } out.println(); } } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) { writer.print(' '); } writer.print(objects[i]); } } public void println(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) { writer.print(' '); } writer.print(objects[i]); } writer.print('\n'); } public void close() { writer.close(); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int[] readIntArray(int size) { int[] array = new int[size]; for (int i = 0; i < size; i++) { array[i] = readInt(); } return array; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public int readInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.util.Arrays; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); DExplorerSpace solver = new DExplorerSpace(); solver.solve(1, in, out); out.close(); } static class DExplorerSpace { static final int oo = 1000000000; public void solve(int testNumber, InputReader in, OutputWriter out) { int n = in.nextInt(), m = in.nextInt(), k = in.nextInt(); int[][] right = new int[n][m - 1]; int[][] down = new int[n - 1][m]; for (int i = 0; i < n; i++) right[i] = in.readIntArray(m - 1); for (int i = 0; i + 1 < n; i++) down[i] = in.readIntArray(m); if (k % 2 == 1) { for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) out.print(-1 + " "); out.println(); } return; } int[][][] dp = new int[k / 2 + 1][n][m]; for (int r = 1; 2 * r <= k; r++) { for (int i = 0; i < n; i++) Arrays.fill(dp[r][i], oo); for (int i = 0; i < n; i++) for (int j = 0; j < m - 1; j++) { int cost = right[i][j]; dp[r][i][j] = Integer.min(dp[r][i][j], dp[r - 1][i][j + 1] + cost); dp[r][i][j + 1] = Integer.min(dp[r][i][j + 1], dp[r - 1][i][j] + cost); } for (int i = 0; i + 1 < n; i++) for (int j = 0; j < m; j++) { int cost = down[i][j]; dp[r][i][j] = Integer.min(dp[r][i][j], dp[r - 1][i + 1][j] + cost); dp[r][i + 1][j] = Integer.min(dp[r][i + 1][j], dp[r - 1][i][j] + cost); } } for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { out.print(2 * dp[k / 2][i][j] + " "); } out.println(); } } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) { writer.print(' '); } writer.print(objects[i]); } } public void println(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) { writer.print(' '); } writer.print(objects[i]); } writer.print('\n'); } public void close() { writer.close(); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int[] readIntArray(int size) { int[] array = new int[size]; for (int i = 0; i < size; i++) { array[i] = readInt(); } return array; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public int readInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.util.Arrays; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); DExplorerSpace solver = new DExplorerSpace(); solver.solve(1, in, out); out.close(); } static class DExplorerSpace { static final int oo = 1000000000; public void solve(int testNumber, InputReader in, OutputWriter out) { int n = in.nextInt(), m = in.nextInt(), k = in.nextInt(); int[][] right = new int[n][m - 1]; int[][] down = new int[n - 1][m]; for (int i = 0; i < n; i++) right[i] = in.readIntArray(m - 1); for (int i = 0; i + 1 < n; i++) down[i] = in.readIntArray(m); if (k % 2 == 1) { for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) out.print(-1 + " "); out.println(); } return; } int[][][] dp = new int[k / 2 + 1][n][m]; for (int r = 1; 2 * r <= k; r++) { for (int i = 0; i < n; i++) Arrays.fill(dp[r][i], oo); for (int i = 0; i < n; i++) for (int j = 0; j < m - 1; j++) { int cost = right[i][j]; dp[r][i][j] = Integer.min(dp[r][i][j], dp[r - 1][i][j + 1] + cost); dp[r][i][j + 1] = Integer.min(dp[r][i][j + 1], dp[r - 1][i][j] + cost); } for (int i = 0; i + 1 < n; i++) for (int j = 0; j < m; j++) { int cost = down[i][j]; dp[r][i][j] = Integer.min(dp[r][i][j], dp[r - 1][i + 1][j] + cost); dp[r][i + 1][j] = Integer.min(dp[r][i + 1][j], dp[r - 1][i][j] + cost); } } for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { out.print(2 * dp[k / 2][i][j] + " "); } out.println(); } } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) { writer.print(' '); } writer.print(objects[i]); } } public void println(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) { writer.print(' '); } writer.print(objects[i]); } writer.print('\n'); } public void close() { writer.close(); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int[] readIntArray(int size) { int[] array = new int[size]; for (int i = 0; i < size; i++) { array[i] = readInt(); } return array; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public int readInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,793
3,759
917
import java.io.BufferedReader; import java.io.FileWriter; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.math.BigInteger; import java.io.ObjectInputStream.GetField; import java.security.KeyStore.Entry; import java.util.ArrayList; import java.util.Arrays; import java.util.Collection; import java.util.Collections; import java.util.HashMap; import java.util.HashSet; import java.util.LinkedList; import java.util.PriorityQueue; import java.util.Queue; import java.util.Stack; import java.util.StringTokenizer; import java.util.TreeMap; import java.util.TreeSet; import javax.swing.JLabel; public class codeforcesreturn { static class edge { int u; int v; public edge(int u, int v) { this.u = u; this.v = v; } } static ArrayList<Integer>[] adjlist; static int[][] adjmatrix; static int[][] adjmatrix2; static boolean[] vis; static boolean[] intialvis; static boolean[] vis2; static int[] counter; static int V, E; static Stack<Integer> st; static ArrayList<Integer> arrylist; static boolean flag; static int[] dx = new int[] { 1, -1, 0, 0 }; static int[] dy = new int[] { 0, 0, 1, -1 }; static int[] Arr; static PrintWriter pw; static boolean ans = true;; public static long gcd(long u, long v) { if (u == 0) return v; return gcd(v % u, u); } public static void bib(int u) { vis[u] = true; for (int v : adjlist[u]) { if (!vis[v]) { counter[v] = 1 ^ counter[u]; bib(v); } else if (counter[v] != (1 ^ counter[u])) ans = false; } } public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); // FileWriter f = new FileWriter("C:\\Users\\Hp\\Desktop\\out.txt"); PrintWriter pw = new PrintWriter(System.out); int n = sc.nextInt(); int k = sc.nextInt(); int sum = n; for (long i = 0; i < 1e5; i++) { if (i * (i + 1) / 2 - (n - i) == k) { System.out.println(n - i); break; } } } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { String x = next(); StringBuilder sb = new StringBuilder("0"); double res = 0, f = 1; boolean dec = false, neg = false; int start = 0; if (x.charAt(0) == '-') { neg = true; start++; } for (int i = start; i < x.length(); i++) if (x.charAt(i) == '.') { res = Long.parseLong(sb.toString()); sb = new StringBuilder("0"); dec = true; } else { sb.append(x.charAt(i)); if (dec) f *= 10; } res += Long.parseLong(sb.toString()) / f; return res * (neg ? -1 : 1); } public boolean ready() throws IOException { return br.ready(); } } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.FileWriter; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.math.BigInteger; import java.io.ObjectInputStream.GetField; import java.security.KeyStore.Entry; import java.util.ArrayList; import java.util.Arrays; import java.util.Collection; import java.util.Collections; import java.util.HashMap; import java.util.HashSet; import java.util.LinkedList; import java.util.PriorityQueue; import java.util.Queue; import java.util.Stack; import java.util.StringTokenizer; import java.util.TreeMap; import java.util.TreeSet; import javax.swing.JLabel; public class codeforcesreturn { static class edge { int u; int v; public edge(int u, int v) { this.u = u; this.v = v; } } static ArrayList<Integer>[] adjlist; static int[][] adjmatrix; static int[][] adjmatrix2; static boolean[] vis; static boolean[] intialvis; static boolean[] vis2; static int[] counter; static int V, E; static Stack<Integer> st; static ArrayList<Integer> arrylist; static boolean flag; static int[] dx = new int[] { 1, -1, 0, 0 }; static int[] dy = new int[] { 0, 0, 1, -1 }; static int[] Arr; static PrintWriter pw; static boolean ans = true;; public static long gcd(long u, long v) { if (u == 0) return v; return gcd(v % u, u); } public static void bib(int u) { vis[u] = true; for (int v : adjlist[u]) { if (!vis[v]) { counter[v] = 1 ^ counter[u]; bib(v); } else if (counter[v] != (1 ^ counter[u])) ans = false; } } public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); // FileWriter f = new FileWriter("C:\\Users\\Hp\\Desktop\\out.txt"); PrintWriter pw = new PrintWriter(System.out); int n = sc.nextInt(); int k = sc.nextInt(); int sum = n; for (long i = 0; i < 1e5; i++) { if (i * (i + 1) / 2 - (n - i) == k) { System.out.println(n - i); break; } } } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { String x = next(); StringBuilder sb = new StringBuilder("0"); double res = 0, f = 1; boolean dec = false, neg = false; int start = 0; if (x.charAt(0) == '-') { neg = true; start++; } for (int i = start; i < x.length(); i++) if (x.charAt(i) == '.') { res = Long.parseLong(sb.toString()); sb = new StringBuilder("0"); dec = true; } else { sb.append(x.charAt(i)); if (dec) f *= 10; } res += Long.parseLong(sb.toString()) / f; return res * (neg ? -1 : 1); } public boolean ready() throws IOException { return br.ready(); } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.FileWriter; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.math.BigInteger; import java.io.ObjectInputStream.GetField; import java.security.KeyStore.Entry; import java.util.ArrayList; import java.util.Arrays; import java.util.Collection; import java.util.Collections; import java.util.HashMap; import java.util.HashSet; import java.util.LinkedList; import java.util.PriorityQueue; import java.util.Queue; import java.util.Stack; import java.util.StringTokenizer; import java.util.TreeMap; import java.util.TreeSet; import javax.swing.JLabel; public class codeforcesreturn { static class edge { int u; int v; public edge(int u, int v) { this.u = u; this.v = v; } } static ArrayList<Integer>[] adjlist; static int[][] adjmatrix; static int[][] adjmatrix2; static boolean[] vis; static boolean[] intialvis; static boolean[] vis2; static int[] counter; static int V, E; static Stack<Integer> st; static ArrayList<Integer> arrylist; static boolean flag; static int[] dx = new int[] { 1, -1, 0, 0 }; static int[] dy = new int[] { 0, 0, 1, -1 }; static int[] Arr; static PrintWriter pw; static boolean ans = true;; public static long gcd(long u, long v) { if (u == 0) return v; return gcd(v % u, u); } public static void bib(int u) { vis[u] = true; for (int v : adjlist[u]) { if (!vis[v]) { counter[v] = 1 ^ counter[u]; bib(v); } else if (counter[v] != (1 ^ counter[u])) ans = false; } } public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); // FileWriter f = new FileWriter("C:\\Users\\Hp\\Desktop\\out.txt"); PrintWriter pw = new PrintWriter(System.out); int n = sc.nextInt(); int k = sc.nextInt(); int sum = n; for (long i = 0; i < 1e5; i++) { if (i * (i + 1) / 2 - (n - i) == k) { System.out.println(n - i); break; } } } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { String x = next(); StringBuilder sb = new StringBuilder("0"); double res = 0, f = 1; boolean dec = false, neg = false; int start = 0; if (x.charAt(0) == '-') { neg = true; start++; } for (int i = start; i < x.length(); i++) if (x.charAt(i) == '.') { res = Long.parseLong(sb.toString()); sb = new StringBuilder("0"); dec = true; } else { sb.append(x.charAt(i)); if (dec) f *= 10; } res += Long.parseLong(sb.toString()) / f; return res * (neg ? -1 : 1); } public boolean ready() throws IOException { return br.ready(); } } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,184
916
2,007
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.util.Arrays; import java.util.InputMismatchException; import java.io.OutputStreamWriter; import java.util.NoSuchElementException; import java.io.OutputStream; import java.io.PrintWriter; import java.util.Iterator; import java.io.BufferedWriter; import java.io.IOException; import java.io.Writer; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author aryssoncf */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskD solver = new TaskD(); solver.solve(1, in, out); out.close(); } static class TaskD { public void solve(int testNumber, InputReader in, OutputWriter out) { try { int n = in.readInt(); int[] x = new int[n], w = new int[n]; in.readIntArrays(x, w); int[] begin = new int[n], end = new int[n]; Arrays.setAll(begin, i -> x[i] - w[i]); Arrays.setAll(end, i -> x[i] + w[i]); int m = ArrayUtils.compress(begin, end).length; int[] dp = new int[m + 1], order = ArrayUtils.order(end); int idx = 0; for (int i = 0; i < m; i++) { if (i > 0) { dp[i] = dp[i - 1]; } while (idx < n && end[order[idx]] == i) { dp[i] = Math.max(dp[i], dp[begin[order[idx]]] + 1); idx++; } } int res = dp[m - 1]; out.printLine(res); } catch (Exception e) { e.printStackTrace(); } } } static class Sorter { private static final int INSERTION_THRESHOLD = 16; private Sorter() { } public static void sort(IntList list, IntComparator comparator) { quickSort(list, 0, list.size() - 1, (Integer.bitCount(Integer.highestOneBit(list.size()) - 1) * 5) >> 1, comparator); } private static void quickSort(IntList list, int from, int to, int remaining, IntComparator comparator) { if (to - from < INSERTION_THRESHOLD) { insertionSort(list, from, to, comparator); return; } if (remaining == 0) { heapSort(list, from, to, comparator); return; } remaining--; int pivotIndex = (from + to) >> 1; int pivot = list.get(pivotIndex); list.swap(pivotIndex, to); int storeIndex = from; int equalIndex = to; for (int i = from; i < equalIndex; i++) { int value = comparator.compare(list.get(i), pivot); if (value < 0) { list.swap(storeIndex++, i); } else if (value == 0) { list.swap(--equalIndex, i--); } } quickSort(list, from, storeIndex - 1, remaining, comparator); for (int i = equalIndex; i <= to; i++) { list.swap(storeIndex++, i); } quickSort(list, storeIndex, to, remaining, comparator); } private static void heapSort(IntList list, int from, int to, IntComparator comparator) { for (int i = (to + from - 1) >> 1; i >= from; i--) { siftDown(list, i, to, comparator, from); } for (int i = to; i > from; i--) { list.swap(from, i); siftDown(list, from, i - 1, comparator, from); } } private static void siftDown(IntList list, int start, int end, IntComparator comparator, int delta) { int value = list.get(start); while (true) { int child = ((start - delta) << 1) + 1 + delta; if (child > end) { return; } int childValue = list.get(child); if (child + 1 <= end) { int otherValue = list.get(child + 1); if (comparator.compare(otherValue, childValue) > 0) { child++; childValue = otherValue; } } if (comparator.compare(value, childValue) >= 0) { return; } list.swap(start, child); start = child; } } private static void insertionSort(IntList list, int from, int to, IntComparator comparator) { for (int i = from + 1; i <= to; i++) { int value = list.get(i); for (int j = i - 1; j >= from; j--) { if (comparator.compare(list.get(j), value) <= 0) { break; } list.swap(j, j + 1); } } } } static interface IntList extends IntReversableCollection { public abstract int get(int index); public abstract void set(int index, int value); public abstract void addAt(int index, int value); public abstract void removeAt(int index); default public void swap(int first, int second) { if (first == second) { return; } int temp = get(first); set(first, get(second)); set(second, temp); } default public IntIterator intIterator() { return new IntIterator() { private int at; private boolean removed; public int value() { if (removed) { throw new IllegalStateException(); } return get(at); } public boolean advance() { at++; removed = false; return isValid(); } public boolean isValid() { return !removed && at < size(); } public void remove() { removeAt(at); at--; removed = true; } }; } default public void add(int value) { addAt(size(), value); } default public IntList sort(IntComparator comparator) { Sorter.sort(this, comparator); return this; } default IntList unique() { int last = Integer.MIN_VALUE; IntList result = new IntArrayList(); int size = size(); for (int i = 0; i < size; i++) { int current = get(i); if (current != last) { result.add(current); last = current; } } return result; } default public IntList subList(final int from, final int to) { return new IntList() { private final int shift; private final int size; { if (from < 0 || from > to || to > IntList.this.size()) { throw new IndexOutOfBoundsException("from = " + from + ", to = " + to + ", size = " + size()); } shift = from; size = to - from; } public int size() { return size; } public int get(int at) { if (at < 0 || at >= size) { throw new IndexOutOfBoundsException("at = " + at + ", size = " + size()); } return IntList.this.get(at + shift); } public void addAt(int index, int value) { throw new UnsupportedOperationException(); } public void removeAt(int index) { throw new UnsupportedOperationException(); } public void set(int at, int value) { if (at < 0 || at >= size) { throw new IndexOutOfBoundsException("at = " + at + ", size = " + size()); } IntList.this.set(at + shift, value); } public IntList compute() { return new IntArrayList(this); } }; } } static interface IntComparator { IntComparator DEFAULT = Integer::compare; int compare(int first, int second); } static class Range { public static IntList range(int from, int to) { int[] result = new int[Math.abs(from - to)]; int current = from; if (from <= to) { for (int i = 0; i < result.length; i++) { result[i] = current++; } } else { for (int i = 0; i < result.length; i++) { result[i] = current--; } } return new IntArray(result); } } static interface IntReversableCollection extends IntCollection { } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void close() { writer.close(); } public void printLine(int i) { writer.println(i); } } static interface IntStream extends Iterable<Integer>, Comparable<IntStream> { IntIterator intIterator(); default Iterator<Integer> iterator() { return new Iterator<Integer>() { private IntIterator it = intIterator(); public boolean hasNext() { return it.isValid(); } public Integer next() { int result = it.value(); it.advance(); return result; } }; } default int compareTo(IntStream c) { IntIterator it = intIterator(); IntIterator jt = c.intIterator(); while (it.isValid() && jt.isValid()) { int i = it.value(); int j = jt.value(); if (i < j) { return -1; } else if (i > j) { return 1; } it.advance(); jt.advance(); } if (it.isValid()) { return 1; } if (jt.isValid()) { return -1; } return 0; } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public void readIntArrays(int[]... arrays) { for (int i = 0; i < arrays[0].length; i++) { for (int j = 0; j < arrays.length; j++) { arrays[j][i] = readInt(); } } } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { boolean isSpaceChar(int ch); } } static interface IntCollection extends IntStream { public int size(); default public void add(int value) { throw new UnsupportedOperationException(); } default public int[] toArray() { int size = size(); int[] array = new int[size]; int i = 0; for (IntIterator it = intIterator(); it.isValid(); it.advance()) { array[i++] = it.value(); } return array; } default public IntCollection addAll(IntStream values) { for (IntIterator it = values.intIterator(); it.isValid(); it.advance()) { add(it.value()); } return this; } } static class IntArray extends IntAbstractStream implements IntList { private int[] data; public IntArray(int[] arr) { data = arr; } public int size() { return data.length; } public int get(int at) { return data[at]; } public void addAt(int index, int value) { throw new UnsupportedOperationException(); } public void removeAt(int index) { throw new UnsupportedOperationException(); } public void set(int index, int value) { data[index] = value; } } static class ArrayUtils { public static int[] range(int from, int to) { return Range.range(from, to).toArray(); } public static int[] createOrder(int size) { return range(0, size); } public static int[] sort(int[] array, IntComparator comparator) { return sort(array, 0, array.length, comparator); } public static int[] sort(int[] array, int from, int to, IntComparator comparator) { if (from == 0 && to == array.length) { new IntArray(array).sort(comparator); } else { new IntArray(array).subList(from, to).sort(comparator); } return array; } public static int[] order(final int[] array) { return sort(createOrder(array.length), (first, second) -> Integer.compare(array[first], array[second])); } public static int[] unique(int[] array) { return new IntArray(array).unique().toArray(); } public static int[] compress(int[]... arrays) { int totalLength = 0; for (int[] array : arrays) { totalLength += array.length; } int[] all = new int[totalLength]; int delta = 0; for (int[] array : arrays) { System.arraycopy(array, 0, all, delta, array.length); delta += array.length; } sort(all, IntComparator.DEFAULT); all = unique(all); for (int[] array : arrays) { for (int i = 0; i < array.length; i++) { array[i] = Arrays.binarySearch(all, array[i]); } } return all; } } static interface IntIterator { public int value() throws NoSuchElementException; public boolean advance(); public boolean isValid(); } static class IntArrayList extends IntAbstractStream implements IntList { private int size; private int[] data; public IntArrayList() { this(3); } public IntArrayList(int capacity) { data = new int[capacity]; } public IntArrayList(IntCollection c) { this(c.size()); addAll(c); } public IntArrayList(IntStream c) { this(); if (c instanceof IntCollection) { ensureCapacity(((IntCollection) c).size()); } addAll(c); } public IntArrayList(IntArrayList c) { size = c.size(); data = c.data.clone(); } public IntArrayList(int[] arr) { size = arr.length; data = arr.clone(); } public int size() { return size; } public int get(int at) { if (at >= size) { throw new IndexOutOfBoundsException("at = " + at + ", size = " + size); } return data[at]; } private void ensureCapacity(int capacity) { if (data.length >= capacity) { return; } capacity = Math.max(2 * data.length, capacity); data = Arrays.copyOf(data, capacity); } public void addAt(int index, int value) { ensureCapacity(size + 1); if (index > size || index < 0) { throw new IndexOutOfBoundsException("at = " + index + ", size = " + size); } if (index != size) { System.arraycopy(data, index, data, index + 1, size - index); } data[index] = value; size++; } public void removeAt(int index) { if (index >= size || index < 0) { throw new IndexOutOfBoundsException("at = " + index + ", size = " + size); } if (index != size - 1) { System.arraycopy(data, index + 1, data, index, size - index - 1); } size--; } public void set(int index, int value) { if (index >= size) { throw new IndexOutOfBoundsException("at = " + index + ", size = " + size); } data[index] = value; } public int[] toArray() { return Arrays.copyOf(data, size); } } static abstract class IntAbstractStream implements IntStream { public String toString() { StringBuilder builder = new StringBuilder(); boolean first = true; for (IntIterator it = intIterator(); it.isValid(); it.advance()) { if (first) { first = false; } else { builder.append(' '); } builder.append(it.value()); } return builder.toString(); } public boolean equals(Object o) { if (!(o instanceof IntStream)) { return false; } IntStream c = (IntStream) o; IntIterator it = intIterator(); IntIterator jt = c.intIterator(); while (it.isValid() && jt.isValid()) { if (it.value() != jt.value()) { return false; } it.advance(); jt.advance(); } return !it.isValid() && !jt.isValid(); } public int hashCode() { int result = 0; for (IntIterator it = intIterator(); it.isValid(); it.advance()) { result *= 31; result += it.value(); } return result; } } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.util.Arrays; import java.util.InputMismatchException; import java.io.OutputStreamWriter; import java.util.NoSuchElementException; import java.io.OutputStream; import java.io.PrintWriter; import java.util.Iterator; import java.io.BufferedWriter; import java.io.IOException; import java.io.Writer; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author aryssoncf */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskD solver = new TaskD(); solver.solve(1, in, out); out.close(); } static class TaskD { public void solve(int testNumber, InputReader in, OutputWriter out) { try { int n = in.readInt(); int[] x = new int[n], w = new int[n]; in.readIntArrays(x, w); int[] begin = new int[n], end = new int[n]; Arrays.setAll(begin, i -> x[i] - w[i]); Arrays.setAll(end, i -> x[i] + w[i]); int m = ArrayUtils.compress(begin, end).length; int[] dp = new int[m + 1], order = ArrayUtils.order(end); int idx = 0; for (int i = 0; i < m; i++) { if (i > 0) { dp[i] = dp[i - 1]; } while (idx < n && end[order[idx]] == i) { dp[i] = Math.max(dp[i], dp[begin[order[idx]]] + 1); idx++; } } int res = dp[m - 1]; out.printLine(res); } catch (Exception e) { e.printStackTrace(); } } } static class Sorter { private static final int INSERTION_THRESHOLD = 16; private Sorter() { } public static void sort(IntList list, IntComparator comparator) { quickSort(list, 0, list.size() - 1, (Integer.bitCount(Integer.highestOneBit(list.size()) - 1) * 5) >> 1, comparator); } private static void quickSort(IntList list, int from, int to, int remaining, IntComparator comparator) { if (to - from < INSERTION_THRESHOLD) { insertionSort(list, from, to, comparator); return; } if (remaining == 0) { heapSort(list, from, to, comparator); return; } remaining--; int pivotIndex = (from + to) >> 1; int pivot = list.get(pivotIndex); list.swap(pivotIndex, to); int storeIndex = from; int equalIndex = to; for (int i = from; i < equalIndex; i++) { int value = comparator.compare(list.get(i), pivot); if (value < 0) { list.swap(storeIndex++, i); } else if (value == 0) { list.swap(--equalIndex, i--); } } quickSort(list, from, storeIndex - 1, remaining, comparator); for (int i = equalIndex; i <= to; i++) { list.swap(storeIndex++, i); } quickSort(list, storeIndex, to, remaining, comparator); } private static void heapSort(IntList list, int from, int to, IntComparator comparator) { for (int i = (to + from - 1) >> 1; i >= from; i--) { siftDown(list, i, to, comparator, from); } for (int i = to; i > from; i--) { list.swap(from, i); siftDown(list, from, i - 1, comparator, from); } } private static void siftDown(IntList list, int start, int end, IntComparator comparator, int delta) { int value = list.get(start); while (true) { int child = ((start - delta) << 1) + 1 + delta; if (child > end) { return; } int childValue = list.get(child); if (child + 1 <= end) { int otherValue = list.get(child + 1); if (comparator.compare(otherValue, childValue) > 0) { child++; childValue = otherValue; } } if (comparator.compare(value, childValue) >= 0) { return; } list.swap(start, child); start = child; } } private static void insertionSort(IntList list, int from, int to, IntComparator comparator) { for (int i = from + 1; i <= to; i++) { int value = list.get(i); for (int j = i - 1; j >= from; j--) { if (comparator.compare(list.get(j), value) <= 0) { break; } list.swap(j, j + 1); } } } } static interface IntList extends IntReversableCollection { public abstract int get(int index); public abstract void set(int index, int value); public abstract void addAt(int index, int value); public abstract void removeAt(int index); default public void swap(int first, int second) { if (first == second) { return; } int temp = get(first); set(first, get(second)); set(second, temp); } default public IntIterator intIterator() { return new IntIterator() { private int at; private boolean removed; public int value() { if (removed) { throw new IllegalStateException(); } return get(at); } public boolean advance() { at++; removed = false; return isValid(); } public boolean isValid() { return !removed && at < size(); } public void remove() { removeAt(at); at--; removed = true; } }; } default public void add(int value) { addAt(size(), value); } default public IntList sort(IntComparator comparator) { Sorter.sort(this, comparator); return this; } default IntList unique() { int last = Integer.MIN_VALUE; IntList result = new IntArrayList(); int size = size(); for (int i = 0; i < size; i++) { int current = get(i); if (current != last) { result.add(current); last = current; } } return result; } default public IntList subList(final int from, final int to) { return new IntList() { private final int shift; private final int size; { if (from < 0 || from > to || to > IntList.this.size()) { throw new IndexOutOfBoundsException("from = " + from + ", to = " + to + ", size = " + size()); } shift = from; size = to - from; } public int size() { return size; } public int get(int at) { if (at < 0 || at >= size) { throw new IndexOutOfBoundsException("at = " + at + ", size = " + size()); } return IntList.this.get(at + shift); } public void addAt(int index, int value) { throw new UnsupportedOperationException(); } public void removeAt(int index) { throw new UnsupportedOperationException(); } public void set(int at, int value) { if (at < 0 || at >= size) { throw new IndexOutOfBoundsException("at = " + at + ", size = " + size()); } IntList.this.set(at + shift, value); } public IntList compute() { return new IntArrayList(this); } }; } } static interface IntComparator { IntComparator DEFAULT = Integer::compare; int compare(int first, int second); } static class Range { public static IntList range(int from, int to) { int[] result = new int[Math.abs(from - to)]; int current = from; if (from <= to) { for (int i = 0; i < result.length; i++) { result[i] = current++; } } else { for (int i = 0; i < result.length; i++) { result[i] = current--; } } return new IntArray(result); } } static interface IntReversableCollection extends IntCollection { } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void close() { writer.close(); } public void printLine(int i) { writer.println(i); } } static interface IntStream extends Iterable<Integer>, Comparable<IntStream> { IntIterator intIterator(); default Iterator<Integer> iterator() { return new Iterator<Integer>() { private IntIterator it = intIterator(); public boolean hasNext() { return it.isValid(); } public Integer next() { int result = it.value(); it.advance(); return result; } }; } default int compareTo(IntStream c) { IntIterator it = intIterator(); IntIterator jt = c.intIterator(); while (it.isValid() && jt.isValid()) { int i = it.value(); int j = jt.value(); if (i < j) { return -1; } else if (i > j) { return 1; } it.advance(); jt.advance(); } if (it.isValid()) { return 1; } if (jt.isValid()) { return -1; } return 0; } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public void readIntArrays(int[]... arrays) { for (int i = 0; i < arrays[0].length; i++) { for (int j = 0; j < arrays.length; j++) { arrays[j][i] = readInt(); } } } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { boolean isSpaceChar(int ch); } } static interface IntCollection extends IntStream { public int size(); default public void add(int value) { throw new UnsupportedOperationException(); } default public int[] toArray() { int size = size(); int[] array = new int[size]; int i = 0; for (IntIterator it = intIterator(); it.isValid(); it.advance()) { array[i++] = it.value(); } return array; } default public IntCollection addAll(IntStream values) { for (IntIterator it = values.intIterator(); it.isValid(); it.advance()) { add(it.value()); } return this; } } static class IntArray extends IntAbstractStream implements IntList { private int[] data; public IntArray(int[] arr) { data = arr; } public int size() { return data.length; } public int get(int at) { return data[at]; } public void addAt(int index, int value) { throw new UnsupportedOperationException(); } public void removeAt(int index) { throw new UnsupportedOperationException(); } public void set(int index, int value) { data[index] = value; } } static class ArrayUtils { public static int[] range(int from, int to) { return Range.range(from, to).toArray(); } public static int[] createOrder(int size) { return range(0, size); } public static int[] sort(int[] array, IntComparator comparator) { return sort(array, 0, array.length, comparator); } public static int[] sort(int[] array, int from, int to, IntComparator comparator) { if (from == 0 && to == array.length) { new IntArray(array).sort(comparator); } else { new IntArray(array).subList(from, to).sort(comparator); } return array; } public static int[] order(final int[] array) { return sort(createOrder(array.length), (first, second) -> Integer.compare(array[first], array[second])); } public static int[] unique(int[] array) { return new IntArray(array).unique().toArray(); } public static int[] compress(int[]... arrays) { int totalLength = 0; for (int[] array : arrays) { totalLength += array.length; } int[] all = new int[totalLength]; int delta = 0; for (int[] array : arrays) { System.arraycopy(array, 0, all, delta, array.length); delta += array.length; } sort(all, IntComparator.DEFAULT); all = unique(all); for (int[] array : arrays) { for (int i = 0; i < array.length; i++) { array[i] = Arrays.binarySearch(all, array[i]); } } return all; } } static interface IntIterator { public int value() throws NoSuchElementException; public boolean advance(); public boolean isValid(); } static class IntArrayList extends IntAbstractStream implements IntList { private int size; private int[] data; public IntArrayList() { this(3); } public IntArrayList(int capacity) { data = new int[capacity]; } public IntArrayList(IntCollection c) { this(c.size()); addAll(c); } public IntArrayList(IntStream c) { this(); if (c instanceof IntCollection) { ensureCapacity(((IntCollection) c).size()); } addAll(c); } public IntArrayList(IntArrayList c) { size = c.size(); data = c.data.clone(); } public IntArrayList(int[] arr) { size = arr.length; data = arr.clone(); } public int size() { return size; } public int get(int at) { if (at >= size) { throw new IndexOutOfBoundsException("at = " + at + ", size = " + size); } return data[at]; } private void ensureCapacity(int capacity) { if (data.length >= capacity) { return; } capacity = Math.max(2 * data.length, capacity); data = Arrays.copyOf(data, capacity); } public void addAt(int index, int value) { ensureCapacity(size + 1); if (index > size || index < 0) { throw new IndexOutOfBoundsException("at = " + index + ", size = " + size); } if (index != size) { System.arraycopy(data, index, data, index + 1, size - index); } data[index] = value; size++; } public void removeAt(int index) { if (index >= size || index < 0) { throw new IndexOutOfBoundsException("at = " + index + ", size = " + size); } if (index != size - 1) { System.arraycopy(data, index + 1, data, index, size - index - 1); } size--; } public void set(int index, int value) { if (index >= size) { throw new IndexOutOfBoundsException("at = " + index + ", size = " + size); } data[index] = value; } public int[] toArray() { return Arrays.copyOf(data, size); } } static abstract class IntAbstractStream implements IntStream { public String toString() { StringBuilder builder = new StringBuilder(); boolean first = true; for (IntIterator it = intIterator(); it.isValid(); it.advance()) { if (first) { first = false; } else { builder.append(' '); } builder.append(it.value()); } return builder.toString(); } public boolean equals(Object o) { if (!(o instanceof IntStream)) { return false; } IntStream c = (IntStream) o; IntIterator it = intIterator(); IntIterator jt = c.intIterator(); while (it.isValid() && jt.isValid()) { if (it.value() != jt.value()) { return false; } it.advance(); jt.advance(); } return !it.isValid() && !jt.isValid(); } public int hashCode() { int result = 0; for (IntIterator it = intIterator(); it.isValid(); it.advance()) { result *= 31; result += it.value(); } return result; } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.util.Arrays; import java.util.InputMismatchException; import java.io.OutputStreamWriter; import java.util.NoSuchElementException; import java.io.OutputStream; import java.io.PrintWriter; import java.util.Iterator; import java.io.BufferedWriter; import java.io.IOException; import java.io.Writer; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author aryssoncf */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskD solver = new TaskD(); solver.solve(1, in, out); out.close(); } static class TaskD { public void solve(int testNumber, InputReader in, OutputWriter out) { try { int n = in.readInt(); int[] x = new int[n], w = new int[n]; in.readIntArrays(x, w); int[] begin = new int[n], end = new int[n]; Arrays.setAll(begin, i -> x[i] - w[i]); Arrays.setAll(end, i -> x[i] + w[i]); int m = ArrayUtils.compress(begin, end).length; int[] dp = new int[m + 1], order = ArrayUtils.order(end); int idx = 0; for (int i = 0; i < m; i++) { if (i > 0) { dp[i] = dp[i - 1]; } while (idx < n && end[order[idx]] == i) { dp[i] = Math.max(dp[i], dp[begin[order[idx]]] + 1); idx++; } } int res = dp[m - 1]; out.printLine(res); } catch (Exception e) { e.printStackTrace(); } } } static class Sorter { private static final int INSERTION_THRESHOLD = 16; private Sorter() { } public static void sort(IntList list, IntComparator comparator) { quickSort(list, 0, list.size() - 1, (Integer.bitCount(Integer.highestOneBit(list.size()) - 1) * 5) >> 1, comparator); } private static void quickSort(IntList list, int from, int to, int remaining, IntComparator comparator) { if (to - from < INSERTION_THRESHOLD) { insertionSort(list, from, to, comparator); return; } if (remaining == 0) { heapSort(list, from, to, comparator); return; } remaining--; int pivotIndex = (from + to) >> 1; int pivot = list.get(pivotIndex); list.swap(pivotIndex, to); int storeIndex = from; int equalIndex = to; for (int i = from; i < equalIndex; i++) { int value = comparator.compare(list.get(i), pivot); if (value < 0) { list.swap(storeIndex++, i); } else if (value == 0) { list.swap(--equalIndex, i--); } } quickSort(list, from, storeIndex - 1, remaining, comparator); for (int i = equalIndex; i <= to; i++) { list.swap(storeIndex++, i); } quickSort(list, storeIndex, to, remaining, comparator); } private static void heapSort(IntList list, int from, int to, IntComparator comparator) { for (int i = (to + from - 1) >> 1; i >= from; i--) { siftDown(list, i, to, comparator, from); } for (int i = to; i > from; i--) { list.swap(from, i); siftDown(list, from, i - 1, comparator, from); } } private static void siftDown(IntList list, int start, int end, IntComparator comparator, int delta) { int value = list.get(start); while (true) { int child = ((start - delta) << 1) + 1 + delta; if (child > end) { return; } int childValue = list.get(child); if (child + 1 <= end) { int otherValue = list.get(child + 1); if (comparator.compare(otherValue, childValue) > 0) { child++; childValue = otherValue; } } if (comparator.compare(value, childValue) >= 0) { return; } list.swap(start, child); start = child; } } private static void insertionSort(IntList list, int from, int to, IntComparator comparator) { for (int i = from + 1; i <= to; i++) { int value = list.get(i); for (int j = i - 1; j >= from; j--) { if (comparator.compare(list.get(j), value) <= 0) { break; } list.swap(j, j + 1); } } } } static interface IntList extends IntReversableCollection { public abstract int get(int index); public abstract void set(int index, int value); public abstract void addAt(int index, int value); public abstract void removeAt(int index); default public void swap(int first, int second) { if (first == second) { return; } int temp = get(first); set(first, get(second)); set(second, temp); } default public IntIterator intIterator() { return new IntIterator() { private int at; private boolean removed; public int value() { if (removed) { throw new IllegalStateException(); } return get(at); } public boolean advance() { at++; removed = false; return isValid(); } public boolean isValid() { return !removed && at < size(); } public void remove() { removeAt(at); at--; removed = true; } }; } default public void add(int value) { addAt(size(), value); } default public IntList sort(IntComparator comparator) { Sorter.sort(this, comparator); return this; } default IntList unique() { int last = Integer.MIN_VALUE; IntList result = new IntArrayList(); int size = size(); for (int i = 0; i < size; i++) { int current = get(i); if (current != last) { result.add(current); last = current; } } return result; } default public IntList subList(final int from, final int to) { return new IntList() { private final int shift; private final int size; { if (from < 0 || from > to || to > IntList.this.size()) { throw new IndexOutOfBoundsException("from = " + from + ", to = " + to + ", size = " + size()); } shift = from; size = to - from; } public int size() { return size; } public int get(int at) { if (at < 0 || at >= size) { throw new IndexOutOfBoundsException("at = " + at + ", size = " + size()); } return IntList.this.get(at + shift); } public void addAt(int index, int value) { throw new UnsupportedOperationException(); } public void removeAt(int index) { throw new UnsupportedOperationException(); } public void set(int at, int value) { if (at < 0 || at >= size) { throw new IndexOutOfBoundsException("at = " + at + ", size = " + size()); } IntList.this.set(at + shift, value); } public IntList compute() { return new IntArrayList(this); } }; } } static interface IntComparator { IntComparator DEFAULT = Integer::compare; int compare(int first, int second); } static class Range { public static IntList range(int from, int to) { int[] result = new int[Math.abs(from - to)]; int current = from; if (from <= to) { for (int i = 0; i < result.length; i++) { result[i] = current++; } } else { for (int i = 0; i < result.length; i++) { result[i] = current--; } } return new IntArray(result); } } static interface IntReversableCollection extends IntCollection { } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void close() { writer.close(); } public void printLine(int i) { writer.println(i); } } static interface IntStream extends Iterable<Integer>, Comparable<IntStream> { IntIterator intIterator(); default Iterator<Integer> iterator() { return new Iterator<Integer>() { private IntIterator it = intIterator(); public boolean hasNext() { return it.isValid(); } public Integer next() { int result = it.value(); it.advance(); return result; } }; } default int compareTo(IntStream c) { IntIterator it = intIterator(); IntIterator jt = c.intIterator(); while (it.isValid() && jt.isValid()) { int i = it.value(); int j = jt.value(); if (i < j) { return -1; } else if (i > j) { return 1; } it.advance(); jt.advance(); } if (it.isValid()) { return 1; } if (jt.isValid()) { return -1; } return 0; } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public void readIntArrays(int[]... arrays) { for (int i = 0; i < arrays[0].length; i++) { for (int j = 0; j < arrays.length; j++) { arrays[j][i] = readInt(); } } } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { boolean isSpaceChar(int ch); } } static interface IntCollection extends IntStream { public int size(); default public void add(int value) { throw new UnsupportedOperationException(); } default public int[] toArray() { int size = size(); int[] array = new int[size]; int i = 0; for (IntIterator it = intIterator(); it.isValid(); it.advance()) { array[i++] = it.value(); } return array; } default public IntCollection addAll(IntStream values) { for (IntIterator it = values.intIterator(); it.isValid(); it.advance()) { add(it.value()); } return this; } } static class IntArray extends IntAbstractStream implements IntList { private int[] data; public IntArray(int[] arr) { data = arr; } public int size() { return data.length; } public int get(int at) { return data[at]; } public void addAt(int index, int value) { throw new UnsupportedOperationException(); } public void removeAt(int index) { throw new UnsupportedOperationException(); } public void set(int index, int value) { data[index] = value; } } static class ArrayUtils { public static int[] range(int from, int to) { return Range.range(from, to).toArray(); } public static int[] createOrder(int size) { return range(0, size); } public static int[] sort(int[] array, IntComparator comparator) { return sort(array, 0, array.length, comparator); } public static int[] sort(int[] array, int from, int to, IntComparator comparator) { if (from == 0 && to == array.length) { new IntArray(array).sort(comparator); } else { new IntArray(array).subList(from, to).sort(comparator); } return array; } public static int[] order(final int[] array) { return sort(createOrder(array.length), (first, second) -> Integer.compare(array[first], array[second])); } public static int[] unique(int[] array) { return new IntArray(array).unique().toArray(); } public static int[] compress(int[]... arrays) { int totalLength = 0; for (int[] array : arrays) { totalLength += array.length; } int[] all = new int[totalLength]; int delta = 0; for (int[] array : arrays) { System.arraycopy(array, 0, all, delta, array.length); delta += array.length; } sort(all, IntComparator.DEFAULT); all = unique(all); for (int[] array : arrays) { for (int i = 0; i < array.length; i++) { array[i] = Arrays.binarySearch(all, array[i]); } } return all; } } static interface IntIterator { public int value() throws NoSuchElementException; public boolean advance(); public boolean isValid(); } static class IntArrayList extends IntAbstractStream implements IntList { private int size; private int[] data; public IntArrayList() { this(3); } public IntArrayList(int capacity) { data = new int[capacity]; } public IntArrayList(IntCollection c) { this(c.size()); addAll(c); } public IntArrayList(IntStream c) { this(); if (c instanceof IntCollection) { ensureCapacity(((IntCollection) c).size()); } addAll(c); } public IntArrayList(IntArrayList c) { size = c.size(); data = c.data.clone(); } public IntArrayList(int[] arr) { size = arr.length; data = arr.clone(); } public int size() { return size; } public int get(int at) { if (at >= size) { throw new IndexOutOfBoundsException("at = " + at + ", size = " + size); } return data[at]; } private void ensureCapacity(int capacity) { if (data.length >= capacity) { return; } capacity = Math.max(2 * data.length, capacity); data = Arrays.copyOf(data, capacity); } public void addAt(int index, int value) { ensureCapacity(size + 1); if (index > size || index < 0) { throw new IndexOutOfBoundsException("at = " + index + ", size = " + size); } if (index != size) { System.arraycopy(data, index, data, index + 1, size - index); } data[index] = value; size++; } public void removeAt(int index) { if (index >= size || index < 0) { throw new IndexOutOfBoundsException("at = " + index + ", size = " + size); } if (index != size - 1) { System.arraycopy(data, index + 1, data, index, size - index - 1); } size--; } public void set(int index, int value) { if (index >= size) { throw new IndexOutOfBoundsException("at = " + index + ", size = " + size); } data[index] = value; } public int[] toArray() { return Arrays.copyOf(data, size); } } static abstract class IntAbstractStream implements IntStream { public String toString() { StringBuilder builder = new StringBuilder(); boolean first = true; for (IntIterator it = intIterator(); it.isValid(); it.advance()) { if (first) { first = false; } else { builder.append(' '); } builder.append(it.value()); } return builder.toString(); } public boolean equals(Object o) { if (!(o instanceof IntStream)) { return false; } IntStream c = (IntStream) o; IntIterator it = intIterator(); IntIterator jt = c.intIterator(); while (it.isValid() && jt.isValid()) { if (it.value() != jt.value()) { return false; } it.advance(); jt.advance(); } return !it.isValid() && !jt.isValid(); } public int hashCode() { int result = 0; for (IntIterator it = intIterator(); it.isValid(); it.advance()) { result *= 31; result += it.value(); } return result; } } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
4,406
2,003
4,214
import java.util.Scanner; public class Fishes { public static void main(String[] args) { Scanner s = new Scanner(System.in); int n = s.nextInt(); double[][] p = new double[n][n]; double[] dp = new double[1 << 18]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { p[i][j] = Double.parseDouble(s.next()); } } int last = 1 << n; dp[last - 1] = 1.0; for (int i = last - 2; i > 0; i--) { int res = 0; for (int j = 0; j < n; j++) { if (((1 << j) & i) > 0) res++; } res++; res = res * (res - 1) / 2; for (int j = 0; j < n; j++) { if (((1 << j) & i) == 0) { for (int z = 0; z < n; z++) { if (((1 << z) & i) > 0) { dp[i] += dp[i | (1 << j)] * 1.0 / res * p[z][j]; } } } } } for (int i = 0; i < n; i++) { System.out.print(dp[1 << i] + " "); } } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; public class Fishes { public static void main(String[] args) { Scanner s = new Scanner(System.in); int n = s.nextInt(); double[][] p = new double[n][n]; double[] dp = new double[1 << 18]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { p[i][j] = Double.parseDouble(s.next()); } } int last = 1 << n; dp[last - 1] = 1.0; for (int i = last - 2; i > 0; i--) { int res = 0; for (int j = 0; j < n; j++) { if (((1 << j) & i) > 0) res++; } res++; res = res * (res - 1) / 2; for (int j = 0; j < n; j++) { if (((1 << j) & i) == 0) { for (int z = 0; z < n; z++) { if (((1 << z) & i) > 0) { dp[i] += dp[i | (1 << j)] * 1.0 / res * p[z][j]; } } } } } for (int i = 0; i < n; i++) { System.out.print(dp[1 << i] + " "); } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Scanner; public class Fishes { public static void main(String[] args) { Scanner s = new Scanner(System.in); int n = s.nextInt(); double[][] p = new double[n][n]; double[] dp = new double[1 << 18]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { p[i][j] = Double.parseDouble(s.next()); } } int last = 1 << n; dp[last - 1] = 1.0; for (int i = last - 2; i > 0; i--) { int res = 0; for (int j = 0; j < n; j++) { if (((1 << j) & i) > 0) res++; } res++; res = res * (res - 1) / 2; for (int j = 0; j < n; j++) { if (((1 << j) & i) == 0) { for (int z = 0; z < n; z++) { if (((1 << z) & i) > 0) { dp[i] += dp[i | (1 << j)] * 1.0 / res * p[z][j]; } } } } } for (int i = 0; i < n; i++) { System.out.print(dp[1 << i] + " "); } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
692
4,203
2,737
import java.io.*; import java.util.*; public class LCMChallenge { public static void main(String[] args) throws IOException { BufferedReader f = new BufferedReader(new InputStreamReader(System.in)); long n = Long.parseLong(f.readLine()); if (n == 1 || n == 2) System.out.println(n); else if (n % 2 == 1) System.out.println(n*(n-1)*(n-2)); else { long prod = n*(n-1); long x = n-2; while (x > 0 && gcd(n,x) > 1 || gcd(n-1,x) > 1) x--; prod *= x; if ((n-1)*(n-2)*(n-3) > prod) prod = (n-1)*(n-2)*(n-3); System.out.println(prod); } } public static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a%b); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class LCMChallenge { public static void main(String[] args) throws IOException { BufferedReader f = new BufferedReader(new InputStreamReader(System.in)); long n = Long.parseLong(f.readLine()); if (n == 1 || n == 2) System.out.println(n); else if (n % 2 == 1) System.out.println(n*(n-1)*(n-2)); else { long prod = n*(n-1); long x = n-2; while (x > 0 && gcd(n,x) > 1 || gcd(n-1,x) > 1) x--; prod *= x; if ((n-1)*(n-2)*(n-3) > prod) prod = (n-1)*(n-2)*(n-3); System.out.println(prod); } } public static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a%b); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class LCMChallenge { public static void main(String[] args) throws IOException { BufferedReader f = new BufferedReader(new InputStreamReader(System.in)); long n = Long.parseLong(f.readLine()); if (n == 1 || n == 2) System.out.println(n); else if (n % 2 == 1) System.out.println(n*(n-1)*(n-2)); else { long prod = n*(n-1); long x = n-2; while (x > 0 && gcd(n,x) > 1 || gcd(n-1,x) > 1) x--; prod *= x; if ((n-1)*(n-2)*(n-3) > prod) prod = (n-1)*(n-2)*(n-3); System.out.println(prod); } } public static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a%b); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
559
2,731
1,364
import java.io.*; import java.math.*; import static java.lang.Math.*; import java.security.SecureRandom; import static java.util.Arrays.*; import java.util.*; import java.util.regex.Matcher; import java.util.regex.Pattern; import sun.misc.Regexp; import java.awt.geom.*; import sun.net.www.content.text.plain; public class Main { public static void main(String[] args) throws IOException { new Main().run(); } StreamTokenizer in; PrintWriter out; //deb//////////////////////////////////////////////// public static void deb(String n, Object n1) { System.out.println(n + " is : " + n1); } public static void deb(int[] A) { for (Object oo : A) { System.out.print(oo + " "); } System.out.println(""); } public static void deb(boolean[] A) { for (Object oo : A) { System.out.print(oo + " "); } System.out.println(""); } public static void deb(double[] A) { for (Object oo : A) { System.out.print(oo + " "); } System.out.println(""); } public static void deb(String[] A) { for (Object oo : A) { System.out.print(oo + " "); } System.out.println(""); } public static void deb(int[][] A) { for (int i = 0; i < A.length; i++) { for (Object oo : A[i]) { System.out.print(oo + " "); } System.out.println(""); } } public static void deb(double[][] A) { for (int i = 0; i < A.length; i++) { for (Object oo : A[i]) { System.out.print(oo + " "); } System.out.println(""); } } public static void deb(long[][] A) { for (int i = 0; i < A.length; i++) { for (Object oo : A[i]) { System.out.print(oo + " "); } System.out.println(""); } } public static void deb(String[][] A) { for (int i = 0; i < A.length; i++) { for (Object oo : A[i]) { System.out.print(oo + " "); } System.out.println(""); } } ///////////////////////////////////////////////////////////// int nextInt() throws IOException { in.nextToken(); return (int) in.nval; } long nextLong() throws IOException { in.nextToken(); return (long) in.nval; } void run() throws IOException { // in = new StreamTokenizer(new BufferedReader(new FileReader("input.txt"))); // out = new PrintWriter(new FileWriter("output.txt")); in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in))); out = new PrintWriter(new OutputStreamWriter(System.out)); solve(); out.flush(); } //boolean inR(int x,int y){ //return (x<=0)&&(x<4)&&(y<=0)&&(y<4); //} @SuppressWarnings("unchecked") void solve() throws IOException { // BufferedReader re= new BufferedReader(new FileReader("C:\\Users\\ASELA\\Desktop\\PROBLEMSET\\input\\F\\10.in")); BufferedReader re= new BufferedReader(new InputStreamReader(System.in)); Scanner sc= new Scanner(System.in); long n=sc.nextLong(),k=sc.nextLong(); if(k*(k-1)/2<n-1) System.out.println("-1"); else{ long ff=k*(k-1)/2; ff=-2*(n-1-ff); // System.out.println(ff); long up=k,dw=0; while(up-dw>1){ long c=(up+dw)/2; if(c*(c-1)<=ff)dw=c; else up=c; } if(n==1) { System.out.println("0"); return; } System.out.println(k-dw); } } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.math.*; import static java.lang.Math.*; import java.security.SecureRandom; import static java.util.Arrays.*; import java.util.*; import java.util.regex.Matcher; import java.util.regex.Pattern; import sun.misc.Regexp; import java.awt.geom.*; import sun.net.www.content.text.plain; public class Main { public static void main(String[] args) throws IOException { new Main().run(); } StreamTokenizer in; PrintWriter out; //deb//////////////////////////////////////////////// public static void deb(String n, Object n1) { System.out.println(n + " is : " + n1); } public static void deb(int[] A) { for (Object oo : A) { System.out.print(oo + " "); } System.out.println(""); } public static void deb(boolean[] A) { for (Object oo : A) { System.out.print(oo + " "); } System.out.println(""); } public static void deb(double[] A) { for (Object oo : A) { System.out.print(oo + " "); } System.out.println(""); } public static void deb(String[] A) { for (Object oo : A) { System.out.print(oo + " "); } System.out.println(""); } public static void deb(int[][] A) { for (int i = 0; i < A.length; i++) { for (Object oo : A[i]) { System.out.print(oo + " "); } System.out.println(""); } } public static void deb(double[][] A) { for (int i = 0; i < A.length; i++) { for (Object oo : A[i]) { System.out.print(oo + " "); } System.out.println(""); } } public static void deb(long[][] A) { for (int i = 0; i < A.length; i++) { for (Object oo : A[i]) { System.out.print(oo + " "); } System.out.println(""); } } public static void deb(String[][] A) { for (int i = 0; i < A.length; i++) { for (Object oo : A[i]) { System.out.print(oo + " "); } System.out.println(""); } } ///////////////////////////////////////////////////////////// int nextInt() throws IOException { in.nextToken(); return (int) in.nval; } long nextLong() throws IOException { in.nextToken(); return (long) in.nval; } void run() throws IOException { // in = new StreamTokenizer(new BufferedReader(new FileReader("input.txt"))); // out = new PrintWriter(new FileWriter("output.txt")); in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in))); out = new PrintWriter(new OutputStreamWriter(System.out)); solve(); out.flush(); } //boolean inR(int x,int y){ //return (x<=0)&&(x<4)&&(y<=0)&&(y<4); //} @SuppressWarnings("unchecked") void solve() throws IOException { // BufferedReader re= new BufferedReader(new FileReader("C:\\Users\\ASELA\\Desktop\\PROBLEMSET\\input\\F\\10.in")); BufferedReader re= new BufferedReader(new InputStreamReader(System.in)); Scanner sc= new Scanner(System.in); long n=sc.nextLong(),k=sc.nextLong(); if(k*(k-1)/2<n-1) System.out.println("-1"); else{ long ff=k*(k-1)/2; ff=-2*(n-1-ff); // System.out.println(ff); long up=k,dw=0; while(up-dw>1){ long c=(up+dw)/2; if(c*(c-1)<=ff)dw=c; else up=c; } if(n==1) { System.out.println("0"); return; } System.out.println(k-dw); } } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.math.*; import static java.lang.Math.*; import java.security.SecureRandom; import static java.util.Arrays.*; import java.util.*; import java.util.regex.Matcher; import java.util.regex.Pattern; import sun.misc.Regexp; import java.awt.geom.*; import sun.net.www.content.text.plain; public class Main { public static void main(String[] args) throws IOException { new Main().run(); } StreamTokenizer in; PrintWriter out; //deb//////////////////////////////////////////////// public static void deb(String n, Object n1) { System.out.println(n + " is : " + n1); } public static void deb(int[] A) { for (Object oo : A) { System.out.print(oo + " "); } System.out.println(""); } public static void deb(boolean[] A) { for (Object oo : A) { System.out.print(oo + " "); } System.out.println(""); } public static void deb(double[] A) { for (Object oo : A) { System.out.print(oo + " "); } System.out.println(""); } public static void deb(String[] A) { for (Object oo : A) { System.out.print(oo + " "); } System.out.println(""); } public static void deb(int[][] A) { for (int i = 0; i < A.length; i++) { for (Object oo : A[i]) { System.out.print(oo + " "); } System.out.println(""); } } public static void deb(double[][] A) { for (int i = 0; i < A.length; i++) { for (Object oo : A[i]) { System.out.print(oo + " "); } System.out.println(""); } } public static void deb(long[][] A) { for (int i = 0; i < A.length; i++) { for (Object oo : A[i]) { System.out.print(oo + " "); } System.out.println(""); } } public static void deb(String[][] A) { for (int i = 0; i < A.length; i++) { for (Object oo : A[i]) { System.out.print(oo + " "); } System.out.println(""); } } ///////////////////////////////////////////////////////////// int nextInt() throws IOException { in.nextToken(); return (int) in.nval; } long nextLong() throws IOException { in.nextToken(); return (long) in.nval; } void run() throws IOException { // in = new StreamTokenizer(new BufferedReader(new FileReader("input.txt"))); // out = new PrintWriter(new FileWriter("output.txt")); in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in))); out = new PrintWriter(new OutputStreamWriter(System.out)); solve(); out.flush(); } //boolean inR(int x,int y){ //return (x<=0)&&(x<4)&&(y<=0)&&(y<4); //} @SuppressWarnings("unchecked") void solve() throws IOException { // BufferedReader re= new BufferedReader(new FileReader("C:\\Users\\ASELA\\Desktop\\PROBLEMSET\\input\\F\\10.in")); BufferedReader re= new BufferedReader(new InputStreamReader(System.in)); Scanner sc= new Scanner(System.in); long n=sc.nextLong(),k=sc.nextLong(); if(k*(k-1)/2<n-1) System.out.println("-1"); else{ long ff=k*(k-1)/2; ff=-2*(n-1-ff); // System.out.println(ff); long up=k,dw=0; while(up-dw>1){ long c=(up+dw)/2; if(c*(c-1)<=ff)dw=c; else up=c; } if(n==1) { System.out.println("0"); return; } System.out.println(k-dw); } } } </CODE> <EVALUATION_RUBRIC> - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,213
1,362
446
import java.io.*; import java.util.*; import java.lang.*; import static java.lang.Math.*; // _ h _ r _ t r _ // _ t _ t _ s t _ public class TaskA implements Runnable { long m = (int)1e9+7; PrintWriter w; InputReader c; final int MAXN = (int)1e6 + 100; public void run() { c = new InputReader(System.in); w = new PrintWriter(System.out); int n = c.nextInt(), hamming_distance = 0; char[] s = c.next().toCharArray(), t = c.next().toCharArray(); HashMap<Character, HashSet<Character>> replace = new HashMap<>(); HashMap<Character, Integer> map = new HashMap<>(); for(int i=0;i<n;++i) if(s[i] != t[i]) { HashSet<Character> temp; if(replace.containsKey(s[i])){ temp = replace.get(s[i]); temp.add(t[i]); } else { temp = new HashSet<>(); temp.add(t[i]); } map.put(s[i],i); replace.put(s[i], temp); hamming_distance++; } int l = -1, r = -1; boolean global_check = false; for(int i=0;i<n;i++) if(s[i] != t[i]) { if(replace.containsKey(t[i])) { HashSet<Character> indices = replace.get(t[i]); int ind = map.get(t[i]); l = i + 1; r = ind + 1; if (indices.contains(s[i])) { hamming_distance -= 2; global_check = true; break; } } if(global_check) break; } if(!global_check && l!=-1) hamming_distance--; else if(global_check){ for(int i=0;i<n;i++) { if(t[i] == s[l-1] && s[i] == t[l-1]){ r = i + 1; break; } } } w.println(hamming_distance); w.println(l+" "+r); w.close(); } static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } public static void sortbyColumn(int arr[][], int col){ Arrays.sort(arr, new Comparator<int[]>() { public int compare(int[] o1, int[] o2){ return(Integer.valueOf(o1[col]).compareTo(o2[col])); } }); } public static class DJSet { public int[] upper; public DJSet(int n) { upper = new int[n]; Arrays.fill(upper, -1); } public int root(int x) { return upper[x] < 0 ? x : (upper[x] = root(upper[x])); } public boolean equiv(int x, int y) { return root(x) == root(y); } public boolean union(int x, int y) { x = root(x); y = root(y); if (x != y) { if (upper[y] < upper[x]) { int d = x; x = y; y = d; } upper[x] += upper[y]; upper[y] = x; } return x == y; } } public static int[] radixSort(int[] f) { int[] to = new int[f.length]; { int[] b = new int[65537]; for(int i = 0;i < f.length;i++)b[1+(f[i]&0xffff)]++; for(int i = 1;i <= 65536;i++)b[i]+=b[i-1]; for(int i = 0;i < f.length;i++)to[b[f[i]&0xffff]++] = f[i]; int[] d = f; f = to;to = d; } { int[] b = new int[65537]; for(int i = 0;i < f.length;i++)b[1+(f[i]>>>16)]++; for(int i = 1;i <= 65536;i++)b[i]+=b[i-1]; for(int i = 0;i < f.length;i++)to[b[f[i]>>>16]++] = f[i]; int[] d = f; f = to;to = d; } return f; } public void printArray(int[] a){ for(int i=0;i<a.length;i++) w.print(a[i]+" "); w.println(); } public int[] scanArrayI(int n){ int a[] = new int[n]; for(int i=0;i<n;i++) a[i] = c.nextInt(); return a; } public long[] scanArrayL(int n){ long a[] = new long[n]; for(int i=0;i<n;i++) a[i] = c.nextLong(); return a; } public void printArray(long[] a){ for(int i=0;i<a.length;i++) w.print(a[i]+" "); w.println(); } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; private BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars==-1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if(numChars <= 0) return -1; } return buf[curChar++]; } public String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } public int nextInt() { int c = read(); while(isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if(c<'0'||c>'9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public double nextDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return readString(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } public static void main(String args[]) throws Exception { new Thread(null, new TaskA(),"TaskA",1<<26).start(); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; import java.lang.*; import static java.lang.Math.*; // _ h _ r _ t r _ // _ t _ t _ s t _ public class TaskA implements Runnable { long m = (int)1e9+7; PrintWriter w; InputReader c; final int MAXN = (int)1e6 + 100; public void run() { c = new InputReader(System.in); w = new PrintWriter(System.out); int n = c.nextInt(), hamming_distance = 0; char[] s = c.next().toCharArray(), t = c.next().toCharArray(); HashMap<Character, HashSet<Character>> replace = new HashMap<>(); HashMap<Character, Integer> map = new HashMap<>(); for(int i=0;i<n;++i) if(s[i] != t[i]) { HashSet<Character> temp; if(replace.containsKey(s[i])){ temp = replace.get(s[i]); temp.add(t[i]); } else { temp = new HashSet<>(); temp.add(t[i]); } map.put(s[i],i); replace.put(s[i], temp); hamming_distance++; } int l = -1, r = -1; boolean global_check = false; for(int i=0;i<n;i++) if(s[i] != t[i]) { if(replace.containsKey(t[i])) { HashSet<Character> indices = replace.get(t[i]); int ind = map.get(t[i]); l = i + 1; r = ind + 1; if (indices.contains(s[i])) { hamming_distance -= 2; global_check = true; break; } } if(global_check) break; } if(!global_check && l!=-1) hamming_distance--; else if(global_check){ for(int i=0;i<n;i++) { if(t[i] == s[l-1] && s[i] == t[l-1]){ r = i + 1; break; } } } w.println(hamming_distance); w.println(l+" "+r); w.close(); } static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } public static void sortbyColumn(int arr[][], int col){ Arrays.sort(arr, new Comparator<int[]>() { public int compare(int[] o1, int[] o2){ return(Integer.valueOf(o1[col]).compareTo(o2[col])); } }); } public static class DJSet { public int[] upper; public DJSet(int n) { upper = new int[n]; Arrays.fill(upper, -1); } public int root(int x) { return upper[x] < 0 ? x : (upper[x] = root(upper[x])); } public boolean equiv(int x, int y) { return root(x) == root(y); } public boolean union(int x, int y) { x = root(x); y = root(y); if (x != y) { if (upper[y] < upper[x]) { int d = x; x = y; y = d; } upper[x] += upper[y]; upper[y] = x; } return x == y; } } public static int[] radixSort(int[] f) { int[] to = new int[f.length]; { int[] b = new int[65537]; for(int i = 0;i < f.length;i++)b[1+(f[i]&0xffff)]++; for(int i = 1;i <= 65536;i++)b[i]+=b[i-1]; for(int i = 0;i < f.length;i++)to[b[f[i]&0xffff]++] = f[i]; int[] d = f; f = to;to = d; } { int[] b = new int[65537]; for(int i = 0;i < f.length;i++)b[1+(f[i]>>>16)]++; for(int i = 1;i <= 65536;i++)b[i]+=b[i-1]; for(int i = 0;i < f.length;i++)to[b[f[i]>>>16]++] = f[i]; int[] d = f; f = to;to = d; } return f; } public void printArray(int[] a){ for(int i=0;i<a.length;i++) w.print(a[i]+" "); w.println(); } public int[] scanArrayI(int n){ int a[] = new int[n]; for(int i=0;i<n;i++) a[i] = c.nextInt(); return a; } public long[] scanArrayL(int n){ long a[] = new long[n]; for(int i=0;i<n;i++) a[i] = c.nextLong(); return a; } public void printArray(long[] a){ for(int i=0;i<a.length;i++) w.print(a[i]+" "); w.println(); } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; private BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars==-1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if(numChars <= 0) return -1; } return buf[curChar++]; } public String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } public int nextInt() { int c = read(); while(isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if(c<'0'||c>'9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public double nextDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return readString(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } public static void main(String args[]) throws Exception { new Thread(null, new TaskA(),"TaskA",1<<26).start(); } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; import java.lang.*; import static java.lang.Math.*; // _ h _ r _ t r _ // _ t _ t _ s t _ public class TaskA implements Runnable { long m = (int)1e9+7; PrintWriter w; InputReader c; final int MAXN = (int)1e6 + 100; public void run() { c = new InputReader(System.in); w = new PrintWriter(System.out); int n = c.nextInt(), hamming_distance = 0; char[] s = c.next().toCharArray(), t = c.next().toCharArray(); HashMap<Character, HashSet<Character>> replace = new HashMap<>(); HashMap<Character, Integer> map = new HashMap<>(); for(int i=0;i<n;++i) if(s[i] != t[i]) { HashSet<Character> temp; if(replace.containsKey(s[i])){ temp = replace.get(s[i]); temp.add(t[i]); } else { temp = new HashSet<>(); temp.add(t[i]); } map.put(s[i],i); replace.put(s[i], temp); hamming_distance++; } int l = -1, r = -1; boolean global_check = false; for(int i=0;i<n;i++) if(s[i] != t[i]) { if(replace.containsKey(t[i])) { HashSet<Character> indices = replace.get(t[i]); int ind = map.get(t[i]); l = i + 1; r = ind + 1; if (indices.contains(s[i])) { hamming_distance -= 2; global_check = true; break; } } if(global_check) break; } if(!global_check && l!=-1) hamming_distance--; else if(global_check){ for(int i=0;i<n;i++) { if(t[i] == s[l-1] && s[i] == t[l-1]){ r = i + 1; break; } } } w.println(hamming_distance); w.println(l+" "+r); w.close(); } static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } public static void sortbyColumn(int arr[][], int col){ Arrays.sort(arr, new Comparator<int[]>() { public int compare(int[] o1, int[] o2){ return(Integer.valueOf(o1[col]).compareTo(o2[col])); } }); } public static class DJSet { public int[] upper; public DJSet(int n) { upper = new int[n]; Arrays.fill(upper, -1); } public int root(int x) { return upper[x] < 0 ? x : (upper[x] = root(upper[x])); } public boolean equiv(int x, int y) { return root(x) == root(y); } public boolean union(int x, int y) { x = root(x); y = root(y); if (x != y) { if (upper[y] < upper[x]) { int d = x; x = y; y = d; } upper[x] += upper[y]; upper[y] = x; } return x == y; } } public static int[] radixSort(int[] f) { int[] to = new int[f.length]; { int[] b = new int[65537]; for(int i = 0;i < f.length;i++)b[1+(f[i]&0xffff)]++; for(int i = 1;i <= 65536;i++)b[i]+=b[i-1]; for(int i = 0;i < f.length;i++)to[b[f[i]&0xffff]++] = f[i]; int[] d = f; f = to;to = d; } { int[] b = new int[65537]; for(int i = 0;i < f.length;i++)b[1+(f[i]>>>16)]++; for(int i = 1;i <= 65536;i++)b[i]+=b[i-1]; for(int i = 0;i < f.length;i++)to[b[f[i]>>>16]++] = f[i]; int[] d = f; f = to;to = d; } return f; } public void printArray(int[] a){ for(int i=0;i<a.length;i++) w.print(a[i]+" "); w.println(); } public int[] scanArrayI(int n){ int a[] = new int[n]; for(int i=0;i<n;i++) a[i] = c.nextInt(); return a; } public long[] scanArrayL(int n){ long a[] = new long[n]; for(int i=0;i<n;i++) a[i] = c.nextLong(); return a; } public void printArray(long[] a){ for(int i=0;i<a.length;i++) w.print(a[i]+" "); w.println(); } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; private BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars==-1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if(numChars <= 0) return -1; } return buf[curChar++]; } public String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } public int nextInt() { int c = read(); while(isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if(c<'0'||c>'9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public double nextDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return readString(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } public static void main(String args[]) throws Exception { new Thread(null, new TaskA(),"TaskA",1<<26).start(); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
2,383
445
2,268
import java.io.BufferedReader; import java.io.FileNotFoundException; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.util.StringTokenizer; /* public class _909C { } */ public class _909C { int mod = (int) 1e9 + 7; public void solve() throws FileNotFoundException { InputStream inputStream = System.in; InputHelper in = new InputHelper(inputStream); // actual solution int n = in.readInteger(); char[] a = new char[n]; for (int i = 0; i < n; i++) { a[i] = in.read().charAt(0); } int[][][] dp = new int[2][n + 1][2]; dp[0][0][0] = dp[0][0][1] = 1; for (int i = 1; i < n; i++) { for (int j = n; j >= 0; j--) { if (a[i - 1] == 's') { dp[1][j][0] = dp[1][j][1] = dp[0][j][1]; } else { if (j > 0) dp[1][j][0] = dp[1][j][1] = dp[0][j - 1][0]; } } for (int j = 0; j <= n; j++) { dp[0][j][0] = dp[1][j][0]; dp[0][j][1] = dp[1][j][1]; dp[1][j][0] = 0; dp[1][j][1] = 0; } for (int j = n - 1; j >= 0; j--) { dp[0][j][1] += dp[0][j + 1][1]; dp[0][j][1] %= mod; } } System.out.println(dp[0][0][1]); // end here } public static void main(String[] args) throws FileNotFoundException { (new _909C()).solve(); } class InputHelper { StringTokenizer tokenizer = null; private BufferedReader bufferedReader; public InputHelper(InputStream inputStream) { InputStreamReader inputStreamReader = new InputStreamReader(inputStream); bufferedReader = new BufferedReader(inputStreamReader, 16384); } public String read() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { String line = bufferedReader.readLine(); if (line == null) { return null; } tokenizer = new StringTokenizer(line); } catch (IOException e) { e.printStackTrace(); } } return tokenizer.nextToken(); } public Integer readInteger() { return Integer.parseInt(read()); } public Long readLong() { return Long.parseLong(read()); } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.FileNotFoundException; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.util.StringTokenizer; /* public class _909C { } */ public class _909C { int mod = (int) 1e9 + 7; public void solve() throws FileNotFoundException { InputStream inputStream = System.in; InputHelper in = new InputHelper(inputStream); // actual solution int n = in.readInteger(); char[] a = new char[n]; for (int i = 0; i < n; i++) { a[i] = in.read().charAt(0); } int[][][] dp = new int[2][n + 1][2]; dp[0][0][0] = dp[0][0][1] = 1; for (int i = 1; i < n; i++) { for (int j = n; j >= 0; j--) { if (a[i - 1] == 's') { dp[1][j][0] = dp[1][j][1] = dp[0][j][1]; } else { if (j > 0) dp[1][j][0] = dp[1][j][1] = dp[0][j - 1][0]; } } for (int j = 0; j <= n; j++) { dp[0][j][0] = dp[1][j][0]; dp[0][j][1] = dp[1][j][1]; dp[1][j][0] = 0; dp[1][j][1] = 0; } for (int j = n - 1; j >= 0; j--) { dp[0][j][1] += dp[0][j + 1][1]; dp[0][j][1] %= mod; } } System.out.println(dp[0][0][1]); // end here } public static void main(String[] args) throws FileNotFoundException { (new _909C()).solve(); } class InputHelper { StringTokenizer tokenizer = null; private BufferedReader bufferedReader; public InputHelper(InputStream inputStream) { InputStreamReader inputStreamReader = new InputStreamReader(inputStream); bufferedReader = new BufferedReader(inputStreamReader, 16384); } public String read() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { String line = bufferedReader.readLine(); if (line == null) { return null; } tokenizer = new StringTokenizer(line); } catch (IOException e) { e.printStackTrace(); } } return tokenizer.nextToken(); } public Integer readInteger() { return Integer.parseInt(read()); } public Long readLong() { return Long.parseLong(read()); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.FileNotFoundException; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.util.StringTokenizer; /* public class _909C { } */ public class _909C { int mod = (int) 1e9 + 7; public void solve() throws FileNotFoundException { InputStream inputStream = System.in; InputHelper in = new InputHelper(inputStream); // actual solution int n = in.readInteger(); char[] a = new char[n]; for (int i = 0; i < n; i++) { a[i] = in.read().charAt(0); } int[][][] dp = new int[2][n + 1][2]; dp[0][0][0] = dp[0][0][1] = 1; for (int i = 1; i < n; i++) { for (int j = n; j >= 0; j--) { if (a[i - 1] == 's') { dp[1][j][0] = dp[1][j][1] = dp[0][j][1]; } else { if (j > 0) dp[1][j][0] = dp[1][j][1] = dp[0][j - 1][0]; } } for (int j = 0; j <= n; j++) { dp[0][j][0] = dp[1][j][0]; dp[0][j][1] = dp[1][j][1]; dp[1][j][0] = 0; dp[1][j][1] = 0; } for (int j = n - 1; j >= 0; j--) { dp[0][j][1] += dp[0][j + 1][1]; dp[0][j][1] %= mod; } } System.out.println(dp[0][0][1]); // end here } public static void main(String[] args) throws FileNotFoundException { (new _909C()).solve(); } class InputHelper { StringTokenizer tokenizer = null; private BufferedReader bufferedReader; public InputHelper(InputStream inputStream) { InputStreamReader inputStreamReader = new InputStreamReader(inputStream); bufferedReader = new BufferedReader(inputStreamReader, 16384); } public String read() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { String line = bufferedReader.readLine(); if (line == null) { return null; } tokenizer = new StringTokenizer(line); } catch (IOException e) { e.printStackTrace(); } } return tokenizer.nextToken(); } public Integer readInteger() { return Integer.parseInt(read()); } public Long readLong() { return Long.parseLong(read()); } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
972
2,263
1,851
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Iterator; import java.util.ListIterator; import java.util.Collection; import java.util.AbstractList; import java.util.InputMismatchException; import java.io.IOException; import java.util.Deque; import java.util.ArrayDeque; import java.util.NoSuchElementException; import java.util.ConcurrentModificationException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author cunbidun */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); DPairOfLines solver = new DPairOfLines(); solver.solve(1, in, out); out.close(); } static class DPairOfLines { private static final int INF = (int) 2e9 + 7; private InputReader in; private PrintWriter out; public void solve(int testNumber, InputReader in, PrintWriter out) { this.in = in; this.out = out; int n = in.nextInt(); if (n <= 4) { out.println("YES"); return; } TreeList<PairII> list = new TreeList<>(); PairII[] a = new PairII[n + 1]; for (int i = 1; i <= n; i++) { a[i] = (new PairII(in.nextInt(), in.nextInt())); list.add(a[i]); } PairII pos1 = new PairII(INF, INF); PairII pos2 = new PairII(INF, INF); for (int i = 1; i <= 5; i++) { for (int j = i + 1; j <= 5; j++) { for (int k = j + 1; k <= 5; k++) { int x1 = a[i].first; int y1 = a[i].second; int x2 = a[j].first; int y2 = a[j].second; int x = a[k].first; int y = a[k].second; long s = (long) (y2 - y1) * x + (long) (x1 - x2) * y + ((long) x2 * y1 - (long) x1 * y2); if (s == 0) { pos1 = a[i]; pos2 = a[j]; } } } } if (pos1.equals(new PairII(INF, INF))) { out.println("NO"); return; } int x1 = pos1.first; int y1 = pos1.second; int x2 = pos2.first; int y2 = pos2.second; for (int i = 0; i < list.size(); i++) { int x = list.get(i).first; int y = list.get(i).second; long s = (long) (y2 - y1) * x + (long) (x1 - x2) * y + ((long) x2 * y1 - (long) x1 * y2); if (s == 0) { list.remove(i); i--; } } if (list.size() <= 2) { out.println("YES"); return; } x1 = list.get(0).first; y1 = list.get(0).second; x2 = list.get(1).first; y2 = list.get(1).second; for (int i = 0; i < list.size(); i++) { int x = list.get(i).first; int y = list.get(i).second; long s = (long) (y2 - y1) * x + (long) (x1 - x2) * y + ((long) x2 * y1 - (long) x1 * y2); if (s == 0) { list.remove(i); i--; } } if (list.size() == 0) { out.println("YES"); } else out.println("NO"); } } static interface OrderedIterator<E> extends Iterator<E> { } static class PairII implements Comparable<PairII> { public int first; public int second; public PairII(int first, int second) { this.first = first; this.second = second; } public boolean equals(Object o) { if (this == o) { return true; } if (o == null || getClass() != o.getClass()) { return false; } PairII pair = (PairII) o; return first == pair.first && second == pair.second; } public String toString() { return "(" + first + "," + second + ")"; } public int compareTo(PairII o) { int value = Integer.compare(first, o.first); if (value != 0) { return value; } return Integer.compare(second, o.second); } } static class TreeList<E> extends AbstractList<E> { private TreeList.AVLNode<E> root; private int size; public TreeList() { super(); } public TreeList(final Collection<? extends E> coll) { super(); if (!coll.isEmpty()) { root = new TreeList.AVLNode<>(coll); size = coll.size(); } } public E get(final int index) { return root.get(index).getValue(); } public int size() { return size; } public Iterator<E> iterator() { // override to go 75% faster return listIterator(0); } public ListIterator<E> listIterator() { // override to go 75% faster return listIterator(0); } public ListIterator<E> listIterator(final int fromIndex) { return new TreeList.TreeListIterator<>(this, fromIndex); } public int indexOf(final Object object) { // override to go 75% faster if (root == null) { return -1; } return root.indexOf(object, root.relativePosition); } public boolean contains(final Object object) { return indexOf(object) >= 0; } public Object[] toArray() { final Object[] array = new Object[size()]; if (root != null) { root.toArray(array, root.relativePosition); } return array; } public void add(final int index, final E obj) { modCount++; if (root == null) { root = new TreeList.AVLNode<>(index, obj, null, null); } else { root = root.insert(index, obj); } size++; } public boolean addAll(final Collection<? extends E> c) { if (c.isEmpty()) { return false; } modCount += c.size(); final TreeList.AVLNode<E> cTree = new TreeList.AVLNode<>(c); root = root == null ? cTree : root.addAll(cTree, size); size += c.size(); return true; } public E set(final int index, final E obj) { final TreeList.AVLNode<E> node = root.get(index); final E result = node.value; node.setValue(obj); return result; } public E remove(final int index) { modCount++; final E result = get(index); root = root.remove(index); size--; return result; } public void clear() { modCount++; root = null; size = 0; } static class AVLNode<E> { private TreeList.AVLNode<E> left; private boolean leftIsPrevious; private TreeList.AVLNode<E> right; private boolean rightIsNext; private int height; private int relativePosition; private E value; private AVLNode(final int relativePosition, final E obj, final TreeList.AVLNode<E> rightFollower, final TreeList.AVLNode<E> leftFollower) { this.relativePosition = relativePosition; value = obj; rightIsNext = true; leftIsPrevious = true; right = rightFollower; left = leftFollower; } private AVLNode(final Collection<? extends E> coll) { this(coll.iterator(), 0, coll.size() - 1, 0, null, null); } private AVLNode(final Iterator<? extends E> iterator, final int start, final int end, final int absolutePositionOfParent, final TreeList.AVLNode<E> prev, final TreeList.AVLNode<E> next) { final int mid = start + (end - start) / 2; if (start < mid) { left = new TreeList.AVLNode<>(iterator, start, mid - 1, mid, prev, this); } else { leftIsPrevious = true; left = prev; } value = iterator.next(); relativePosition = mid - absolutePositionOfParent; if (mid < end) { right = new TreeList.AVLNode<>(iterator, mid + 1, end, mid, this, next); } else { rightIsNext = true; right = next; } recalcHeight(); } E getValue() { return value; } void setValue(final E obj) { this.value = obj; } TreeList.AVLNode<E> get(final int index) { final int indexRelativeToMe = index - relativePosition; if (indexRelativeToMe == 0) { return this; } final TreeList.AVLNode<E> nextNode = indexRelativeToMe < 0 ? getLeftSubTree() : getRightSubTree(); if (nextNode == null) { return null; } return nextNode.get(indexRelativeToMe); } int indexOf(final Object object, final int index) { if (getLeftSubTree() != null) { final int result = left.indexOf(object, index + left.relativePosition); if (result != -1) { return result; } } if (value == null ? value == object : value.equals(object)) { return index; } if (getRightSubTree() != null) { return right.indexOf(object, index + right.relativePosition); } return -1; } void toArray(final Object[] array, final int index) { array[index] = value; if (getLeftSubTree() != null) { left.toArray(array, index + left.relativePosition); } if (getRightSubTree() != null) { right.toArray(array, index + right.relativePosition); } } TreeList.AVLNode<E> next() { if (rightIsNext || right == null) { return right; } return right.min(); } TreeList.AVLNode<E> previous() { if (leftIsPrevious || left == null) { return left; } return left.max(); } TreeList.AVLNode<E> insert(final int index, final E obj) { final int indexRelativeToMe = index - relativePosition; if (indexRelativeToMe <= 0) { return insertOnLeft(indexRelativeToMe, obj); } return insertOnRight(indexRelativeToMe, obj); } private TreeList.AVLNode<E> insertOnLeft(final int indexRelativeToMe, final E obj) { if (getLeftSubTree() == null) { setLeft(new TreeList.AVLNode<>(-1, obj, this, left), null); } else { setLeft(left.insert(indexRelativeToMe, obj), null); } if (relativePosition >= 0) { relativePosition++; } final TreeList.AVLNode<E> ret = balance(); recalcHeight(); return ret; } private TreeList.AVLNode<E> insertOnRight(final int indexRelativeToMe, final E obj) { if (getRightSubTree() == null) { setRight(new TreeList.AVLNode<>(+1, obj, right, this), null); } else { setRight(right.insert(indexRelativeToMe, obj), null); } if (relativePosition < 0) { relativePosition--; } final TreeList.AVLNode<E> ret = balance(); recalcHeight(); return ret; } private TreeList.AVLNode<E> getLeftSubTree() { return leftIsPrevious ? null : left; } private TreeList.AVLNode<E> getRightSubTree() { return rightIsNext ? null : right; } private TreeList.AVLNode<E> max() { return getRightSubTree() == null ? this : right.max(); } private TreeList.AVLNode<E> min() { return getLeftSubTree() == null ? this : left.min(); } TreeList.AVLNode<E> remove(final int index) { final int indexRelativeToMe = index - relativePosition; if (indexRelativeToMe == 0) { return removeSelf(); } if (indexRelativeToMe > 0) { setRight(right.remove(indexRelativeToMe), right.right); if (relativePosition < 0) { relativePosition++; } } else { setLeft(left.remove(indexRelativeToMe), left.left); if (relativePosition > 0) { relativePosition--; } } recalcHeight(); return balance(); } private TreeList.AVLNode<E> removeMax() { if (getRightSubTree() == null) { return removeSelf(); } setRight(right.removeMax(), right.right); if (relativePosition < 0) { relativePosition++; } recalcHeight(); return balance(); } private TreeList.AVLNode<E> removeMin() { if (getLeftSubTree() == null) { return removeSelf(); } setLeft(left.removeMin(), left.left); if (relativePosition > 0) { relativePosition--; } recalcHeight(); return balance(); } private TreeList.AVLNode<E> removeSelf() { if (getRightSubTree() == null && getLeftSubTree() == null) { return null; } if (getRightSubTree() == null) { if (relativePosition > 0) { left.relativePosition += relativePosition; } left.max().setRight(null, right); return left; } if (getLeftSubTree() == null) { right.relativePosition += relativePosition - (relativePosition < 0 ? 0 : 1); right.min().setLeft(null, left); return right; } if (heightRightMinusLeft() > 0) { // more on the right, so delete from the right final TreeList.AVLNode<E> rightMin = right.min(); value = rightMin.value; if (leftIsPrevious) { left = rightMin.left; } right = right.removeMin(); if (relativePosition < 0) { relativePosition++; } } else { // more on the left or equal, so delete from the left final TreeList.AVLNode<E> leftMax = left.max(); value = leftMax.value; if (rightIsNext) { right = leftMax.right; } final TreeList.AVLNode<E> leftPrevious = left.left; left = left.removeMax(); if (left == null) { // special case where left that was deleted was a double link // only occurs when height difference is equal left = leftPrevious; leftIsPrevious = true; } if (relativePosition > 0) { relativePosition--; } } recalcHeight(); return this; } private TreeList.AVLNode<E> balance() { switch (heightRightMinusLeft()) { case 1: case 0: case -1: return this; case -2: if (left.heightRightMinusLeft() > 0) { setLeft(left.rotateLeft(), null); } return rotateRight(); case 2: if (right.heightRightMinusLeft() < 0) { setRight(right.rotateRight(), null); } return rotateLeft(); default: throw new RuntimeException("tree inconsistent!"); } } private int getOffset(final TreeList.AVLNode<E> node) { if (node == null) { return 0; } return node.relativePosition; } private int setOffset(final TreeList.AVLNode<E> node, final int newOffest) { if (node == null) { return 0; } final int oldOffset = getOffset(node); node.relativePosition = newOffest; return oldOffset; } private void recalcHeight() { height = Math.max( getLeftSubTree() == null ? -1 : getLeftSubTree().height, getRightSubTree() == null ? -1 : getRightSubTree().height) + 1; } private int getHeight(final TreeList.AVLNode<E> node) { return node == null ? -1 : node.height; } private int heightRightMinusLeft() { return getHeight(getRightSubTree()) - getHeight(getLeftSubTree()); } private TreeList.AVLNode<E> rotateLeft() { final TreeList.AVLNode<E> newTop = right; // can't be faedelung! final TreeList.AVLNode<E> movedNode = getRightSubTree().getLeftSubTree(); final int newTopPosition = relativePosition + getOffset(newTop); final int myNewPosition = -newTop.relativePosition; final int movedPosition = getOffset(newTop) + getOffset(movedNode); setRight(movedNode, newTop); newTop.setLeft(this, null); setOffset(newTop, newTopPosition); setOffset(this, myNewPosition); setOffset(movedNode, movedPosition); return newTop; } private TreeList.AVLNode<E> rotateRight() { final TreeList.AVLNode<E> newTop = left; final TreeList.AVLNode<E> movedNode = getLeftSubTree().getRightSubTree(); final int newTopPosition = relativePosition + getOffset(newTop); final int myNewPosition = -newTop.relativePosition; final int movedPosition = getOffset(newTop) + getOffset(movedNode); setLeft(movedNode, newTop); newTop.setRight(this, null); setOffset(newTop, newTopPosition); setOffset(this, myNewPosition); setOffset(movedNode, movedPosition); return newTop; } private void setLeft(final TreeList.AVLNode<E> node, final TreeList.AVLNode<E> previous) { leftIsPrevious = node == null; left = leftIsPrevious ? previous : node; recalcHeight(); } private void setRight(final TreeList.AVLNode<E> node, final TreeList.AVLNode<E> next) { rightIsNext = node == null; right = rightIsNext ? next : node; recalcHeight(); } private TreeList.AVLNode<E> addAll(TreeList.AVLNode<E> otherTree, final int currentSize) { final TreeList.AVLNode<E> maxNode = max(); final TreeList.AVLNode<E> otherTreeMin = otherTree.min(); // We need to efficiently merge the two AVL trees while keeping them // balanced (or nearly balanced). To do this, we take the shorter // tree and combine it with a similar-height subtree of the taller // tree. There are two symmetric cases: // * this tree is taller, or // * otherTree is taller. if (otherTree.height > height) { // CASE 1: The other tree is taller than this one. We will thus // merge this tree into otherTree. // STEP 1: Remove the maximum element from this tree. final TreeList.AVLNode<E> leftSubTree = removeMax(); // STEP 2: Navigate left from the root of otherTree until we // contains a subtree, s, that is no taller than me. (While we are // navigating left, we store the nodes we encounter in a stack // so that we can re-balance them in step 4.) final Deque<TreeList.AVLNode<E>> sAncestors = new ArrayDeque<>(); TreeList.AVLNode<E> s = otherTree; int sAbsolutePosition = s.relativePosition + currentSize; int sParentAbsolutePosition = 0; while (s != null && s.height > getHeight(leftSubTree)) { sParentAbsolutePosition = sAbsolutePosition; sAncestors.push(s); s = s.left; if (s != null) { sAbsolutePosition += s.relativePosition; } } // STEP 3: Replace s with a newly constructed subtree whose root // is maxNode, whose left subtree is leftSubTree, and whose right // subtree is s. maxNode.setLeft(leftSubTree, null); maxNode.setRight(s, otherTreeMin); if (leftSubTree != null) { leftSubTree.max().setRight(null, maxNode); leftSubTree.relativePosition -= currentSize - 1; } if (s != null) { s.min().setLeft(null, maxNode); s.relativePosition = sAbsolutePosition - currentSize + 1; } maxNode.relativePosition = currentSize - 1 - sParentAbsolutePosition; otherTree.relativePosition += currentSize; // STEP 4: Re-balance the tree and recalculate the heights of s's ancestors. s = maxNode; while (!sAncestors.isEmpty()) { final TreeList.AVLNode<E> sAncestor = sAncestors.pop(); sAncestor.setLeft(s, null); s = sAncestor.balance(); } return s; } otherTree = otherTree.removeMin(); final Deque<TreeList.AVLNode<E>> sAncestors = new ArrayDeque<>(); TreeList.AVLNode<E> s = this; int sAbsolutePosition = s.relativePosition; int sParentAbsolutePosition = 0; while (s != null && s.height > getHeight(otherTree)) { sParentAbsolutePosition = sAbsolutePosition; sAncestors.push(s); s = s.right; if (s != null) { sAbsolutePosition += s.relativePosition; } } otherTreeMin.setRight(otherTree, null); otherTreeMin.setLeft(s, maxNode); if (otherTree != null) { otherTree.min().setLeft(null, otherTreeMin); otherTree.relativePosition++; } if (s != null) { s.max().setRight(null, otherTreeMin); s.relativePosition = sAbsolutePosition - currentSize; } otherTreeMin.relativePosition = currentSize - sParentAbsolutePosition; s = otherTreeMin; while (!sAncestors.isEmpty()) { final TreeList.AVLNode<E> sAncestor = sAncestors.pop(); sAncestor.setRight(s, null); s = sAncestor.balance(); } return s; } } static class TreeListIterator<E> implements ListIterator<E>, OrderedIterator<E> { private final TreeList<E> parent; private TreeList.AVLNode<E> next; private int nextIndex; private TreeList.AVLNode<E> current; private int currentIndex; private int expectedModCount; private TreeListIterator(final TreeList<E> parent, final int fromIndex) throws IndexOutOfBoundsException { super(); this.parent = parent; this.expectedModCount = parent.modCount; this.next = parent.root == null ? null : parent.root.get(fromIndex); this.nextIndex = fromIndex; this.currentIndex = -1; } private void checkModCount() { if (parent.modCount != expectedModCount) { throw new ConcurrentModificationException(); } } public boolean hasNext() { return nextIndex < parent.size(); } public E next() { checkModCount(); if (!hasNext()) { throw new NoSuchElementException("No element at index " + nextIndex + "."); } if (next == null) { next = parent.root.get(nextIndex); } final E value = next.getValue(); current = next; currentIndex = nextIndex++; next = next.next(); return value; } public boolean hasPrevious() { return nextIndex > 0; } public E previous() { checkModCount(); if (!hasPrevious()) { throw new NoSuchElementException("Already at start of list."); } if (next == null) { next = parent.root.get(nextIndex - 1); } else { next = next.previous(); } final E value = next.getValue(); current = next; currentIndex = --nextIndex; return value; } public int nextIndex() { return nextIndex; } public int previousIndex() { return nextIndex() - 1; } public void remove() { checkModCount(); if (currentIndex == -1) { throw new IllegalStateException(); } parent.remove(currentIndex); if (nextIndex != currentIndex) { // remove() following next() nextIndex--; } // the AVL node referenced by next may have become stale after a remove // reset it now: will be retrieved by next call to next()/previous() via nextIndex next = null; current = null; currentIndex = -1; expectedModCount++; } public void set(final E obj) { checkModCount(); if (current == null) { throw new IllegalStateException(); } current.setValue(obj); } public void add(final E obj) { checkModCount(); parent.add(nextIndex, obj); current = null; currentIndex = -1; nextIndex++; expectedModCount++; } } } static class InputReader extends InputStream { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } private static boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Iterator; import java.util.ListIterator; import java.util.Collection; import java.util.AbstractList; import java.util.InputMismatchException; import java.io.IOException; import java.util.Deque; import java.util.ArrayDeque; import java.util.NoSuchElementException; import java.util.ConcurrentModificationException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author cunbidun */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); DPairOfLines solver = new DPairOfLines(); solver.solve(1, in, out); out.close(); } static class DPairOfLines { private static final int INF = (int) 2e9 + 7; private InputReader in; private PrintWriter out; public void solve(int testNumber, InputReader in, PrintWriter out) { this.in = in; this.out = out; int n = in.nextInt(); if (n <= 4) { out.println("YES"); return; } TreeList<PairII> list = new TreeList<>(); PairII[] a = new PairII[n + 1]; for (int i = 1; i <= n; i++) { a[i] = (new PairII(in.nextInt(), in.nextInt())); list.add(a[i]); } PairII pos1 = new PairII(INF, INF); PairII pos2 = new PairII(INF, INF); for (int i = 1; i <= 5; i++) { for (int j = i + 1; j <= 5; j++) { for (int k = j + 1; k <= 5; k++) { int x1 = a[i].first; int y1 = a[i].second; int x2 = a[j].first; int y2 = a[j].second; int x = a[k].first; int y = a[k].second; long s = (long) (y2 - y1) * x + (long) (x1 - x2) * y + ((long) x2 * y1 - (long) x1 * y2); if (s == 0) { pos1 = a[i]; pos2 = a[j]; } } } } if (pos1.equals(new PairII(INF, INF))) { out.println("NO"); return; } int x1 = pos1.first; int y1 = pos1.second; int x2 = pos2.first; int y2 = pos2.second; for (int i = 0; i < list.size(); i++) { int x = list.get(i).first; int y = list.get(i).second; long s = (long) (y2 - y1) * x + (long) (x1 - x2) * y + ((long) x2 * y1 - (long) x1 * y2); if (s == 0) { list.remove(i); i--; } } if (list.size() <= 2) { out.println("YES"); return; } x1 = list.get(0).first; y1 = list.get(0).second; x2 = list.get(1).first; y2 = list.get(1).second; for (int i = 0; i < list.size(); i++) { int x = list.get(i).first; int y = list.get(i).second; long s = (long) (y2 - y1) * x + (long) (x1 - x2) * y + ((long) x2 * y1 - (long) x1 * y2); if (s == 0) { list.remove(i); i--; } } if (list.size() == 0) { out.println("YES"); } else out.println("NO"); } } static interface OrderedIterator<E> extends Iterator<E> { } static class PairII implements Comparable<PairII> { public int first; public int second; public PairII(int first, int second) { this.first = first; this.second = second; } public boolean equals(Object o) { if (this == o) { return true; } if (o == null || getClass() != o.getClass()) { return false; } PairII pair = (PairII) o; return first == pair.first && second == pair.second; } public String toString() { return "(" + first + "," + second + ")"; } public int compareTo(PairII o) { int value = Integer.compare(first, o.first); if (value != 0) { return value; } return Integer.compare(second, o.second); } } static class TreeList<E> extends AbstractList<E> { private TreeList.AVLNode<E> root; private int size; public TreeList() { super(); } public TreeList(final Collection<? extends E> coll) { super(); if (!coll.isEmpty()) { root = new TreeList.AVLNode<>(coll); size = coll.size(); } } public E get(final int index) { return root.get(index).getValue(); } public int size() { return size; } public Iterator<E> iterator() { // override to go 75% faster return listIterator(0); } public ListIterator<E> listIterator() { // override to go 75% faster return listIterator(0); } public ListIterator<E> listIterator(final int fromIndex) { return new TreeList.TreeListIterator<>(this, fromIndex); } public int indexOf(final Object object) { // override to go 75% faster if (root == null) { return -1; } return root.indexOf(object, root.relativePosition); } public boolean contains(final Object object) { return indexOf(object) >= 0; } public Object[] toArray() { final Object[] array = new Object[size()]; if (root != null) { root.toArray(array, root.relativePosition); } return array; } public void add(final int index, final E obj) { modCount++; if (root == null) { root = new TreeList.AVLNode<>(index, obj, null, null); } else { root = root.insert(index, obj); } size++; } public boolean addAll(final Collection<? extends E> c) { if (c.isEmpty()) { return false; } modCount += c.size(); final TreeList.AVLNode<E> cTree = new TreeList.AVLNode<>(c); root = root == null ? cTree : root.addAll(cTree, size); size += c.size(); return true; } public E set(final int index, final E obj) { final TreeList.AVLNode<E> node = root.get(index); final E result = node.value; node.setValue(obj); return result; } public E remove(final int index) { modCount++; final E result = get(index); root = root.remove(index); size--; return result; } public void clear() { modCount++; root = null; size = 0; } static class AVLNode<E> { private TreeList.AVLNode<E> left; private boolean leftIsPrevious; private TreeList.AVLNode<E> right; private boolean rightIsNext; private int height; private int relativePosition; private E value; private AVLNode(final int relativePosition, final E obj, final TreeList.AVLNode<E> rightFollower, final TreeList.AVLNode<E> leftFollower) { this.relativePosition = relativePosition; value = obj; rightIsNext = true; leftIsPrevious = true; right = rightFollower; left = leftFollower; } private AVLNode(final Collection<? extends E> coll) { this(coll.iterator(), 0, coll.size() - 1, 0, null, null); } private AVLNode(final Iterator<? extends E> iterator, final int start, final int end, final int absolutePositionOfParent, final TreeList.AVLNode<E> prev, final TreeList.AVLNode<E> next) { final int mid = start + (end - start) / 2; if (start < mid) { left = new TreeList.AVLNode<>(iterator, start, mid - 1, mid, prev, this); } else { leftIsPrevious = true; left = prev; } value = iterator.next(); relativePosition = mid - absolutePositionOfParent; if (mid < end) { right = new TreeList.AVLNode<>(iterator, mid + 1, end, mid, this, next); } else { rightIsNext = true; right = next; } recalcHeight(); } E getValue() { return value; } void setValue(final E obj) { this.value = obj; } TreeList.AVLNode<E> get(final int index) { final int indexRelativeToMe = index - relativePosition; if (indexRelativeToMe == 0) { return this; } final TreeList.AVLNode<E> nextNode = indexRelativeToMe < 0 ? getLeftSubTree() : getRightSubTree(); if (nextNode == null) { return null; } return nextNode.get(indexRelativeToMe); } int indexOf(final Object object, final int index) { if (getLeftSubTree() != null) { final int result = left.indexOf(object, index + left.relativePosition); if (result != -1) { return result; } } if (value == null ? value == object : value.equals(object)) { return index; } if (getRightSubTree() != null) { return right.indexOf(object, index + right.relativePosition); } return -1; } void toArray(final Object[] array, final int index) { array[index] = value; if (getLeftSubTree() != null) { left.toArray(array, index + left.relativePosition); } if (getRightSubTree() != null) { right.toArray(array, index + right.relativePosition); } } TreeList.AVLNode<E> next() { if (rightIsNext || right == null) { return right; } return right.min(); } TreeList.AVLNode<E> previous() { if (leftIsPrevious || left == null) { return left; } return left.max(); } TreeList.AVLNode<E> insert(final int index, final E obj) { final int indexRelativeToMe = index - relativePosition; if (indexRelativeToMe <= 0) { return insertOnLeft(indexRelativeToMe, obj); } return insertOnRight(indexRelativeToMe, obj); } private TreeList.AVLNode<E> insertOnLeft(final int indexRelativeToMe, final E obj) { if (getLeftSubTree() == null) { setLeft(new TreeList.AVLNode<>(-1, obj, this, left), null); } else { setLeft(left.insert(indexRelativeToMe, obj), null); } if (relativePosition >= 0) { relativePosition++; } final TreeList.AVLNode<E> ret = balance(); recalcHeight(); return ret; } private TreeList.AVLNode<E> insertOnRight(final int indexRelativeToMe, final E obj) { if (getRightSubTree() == null) { setRight(new TreeList.AVLNode<>(+1, obj, right, this), null); } else { setRight(right.insert(indexRelativeToMe, obj), null); } if (relativePosition < 0) { relativePosition--; } final TreeList.AVLNode<E> ret = balance(); recalcHeight(); return ret; } private TreeList.AVLNode<E> getLeftSubTree() { return leftIsPrevious ? null : left; } private TreeList.AVLNode<E> getRightSubTree() { return rightIsNext ? null : right; } private TreeList.AVLNode<E> max() { return getRightSubTree() == null ? this : right.max(); } private TreeList.AVLNode<E> min() { return getLeftSubTree() == null ? this : left.min(); } TreeList.AVLNode<E> remove(final int index) { final int indexRelativeToMe = index - relativePosition; if (indexRelativeToMe == 0) { return removeSelf(); } if (indexRelativeToMe > 0) { setRight(right.remove(indexRelativeToMe), right.right); if (relativePosition < 0) { relativePosition++; } } else { setLeft(left.remove(indexRelativeToMe), left.left); if (relativePosition > 0) { relativePosition--; } } recalcHeight(); return balance(); } private TreeList.AVLNode<E> removeMax() { if (getRightSubTree() == null) { return removeSelf(); } setRight(right.removeMax(), right.right); if (relativePosition < 0) { relativePosition++; } recalcHeight(); return balance(); } private TreeList.AVLNode<E> removeMin() { if (getLeftSubTree() == null) { return removeSelf(); } setLeft(left.removeMin(), left.left); if (relativePosition > 0) { relativePosition--; } recalcHeight(); return balance(); } private TreeList.AVLNode<E> removeSelf() { if (getRightSubTree() == null && getLeftSubTree() == null) { return null; } if (getRightSubTree() == null) { if (relativePosition > 0) { left.relativePosition += relativePosition; } left.max().setRight(null, right); return left; } if (getLeftSubTree() == null) { right.relativePosition += relativePosition - (relativePosition < 0 ? 0 : 1); right.min().setLeft(null, left); return right; } if (heightRightMinusLeft() > 0) { // more on the right, so delete from the right final TreeList.AVLNode<E> rightMin = right.min(); value = rightMin.value; if (leftIsPrevious) { left = rightMin.left; } right = right.removeMin(); if (relativePosition < 0) { relativePosition++; } } else { // more on the left or equal, so delete from the left final TreeList.AVLNode<E> leftMax = left.max(); value = leftMax.value; if (rightIsNext) { right = leftMax.right; } final TreeList.AVLNode<E> leftPrevious = left.left; left = left.removeMax(); if (left == null) { // special case where left that was deleted was a double link // only occurs when height difference is equal left = leftPrevious; leftIsPrevious = true; } if (relativePosition > 0) { relativePosition--; } } recalcHeight(); return this; } private TreeList.AVLNode<E> balance() { switch (heightRightMinusLeft()) { case 1: case 0: case -1: return this; case -2: if (left.heightRightMinusLeft() > 0) { setLeft(left.rotateLeft(), null); } return rotateRight(); case 2: if (right.heightRightMinusLeft() < 0) { setRight(right.rotateRight(), null); } return rotateLeft(); default: throw new RuntimeException("tree inconsistent!"); } } private int getOffset(final TreeList.AVLNode<E> node) { if (node == null) { return 0; } return node.relativePosition; } private int setOffset(final TreeList.AVLNode<E> node, final int newOffest) { if (node == null) { return 0; } final int oldOffset = getOffset(node); node.relativePosition = newOffest; return oldOffset; } private void recalcHeight() { height = Math.max( getLeftSubTree() == null ? -1 : getLeftSubTree().height, getRightSubTree() == null ? -1 : getRightSubTree().height) + 1; } private int getHeight(final TreeList.AVLNode<E> node) { return node == null ? -1 : node.height; } private int heightRightMinusLeft() { return getHeight(getRightSubTree()) - getHeight(getLeftSubTree()); } private TreeList.AVLNode<E> rotateLeft() { final TreeList.AVLNode<E> newTop = right; // can't be faedelung! final TreeList.AVLNode<E> movedNode = getRightSubTree().getLeftSubTree(); final int newTopPosition = relativePosition + getOffset(newTop); final int myNewPosition = -newTop.relativePosition; final int movedPosition = getOffset(newTop) + getOffset(movedNode); setRight(movedNode, newTop); newTop.setLeft(this, null); setOffset(newTop, newTopPosition); setOffset(this, myNewPosition); setOffset(movedNode, movedPosition); return newTop; } private TreeList.AVLNode<E> rotateRight() { final TreeList.AVLNode<E> newTop = left; final TreeList.AVLNode<E> movedNode = getLeftSubTree().getRightSubTree(); final int newTopPosition = relativePosition + getOffset(newTop); final int myNewPosition = -newTop.relativePosition; final int movedPosition = getOffset(newTop) + getOffset(movedNode); setLeft(movedNode, newTop); newTop.setRight(this, null); setOffset(newTop, newTopPosition); setOffset(this, myNewPosition); setOffset(movedNode, movedPosition); return newTop; } private void setLeft(final TreeList.AVLNode<E> node, final TreeList.AVLNode<E> previous) { leftIsPrevious = node == null; left = leftIsPrevious ? previous : node; recalcHeight(); } private void setRight(final TreeList.AVLNode<E> node, final TreeList.AVLNode<E> next) { rightIsNext = node == null; right = rightIsNext ? next : node; recalcHeight(); } private TreeList.AVLNode<E> addAll(TreeList.AVLNode<E> otherTree, final int currentSize) { final TreeList.AVLNode<E> maxNode = max(); final TreeList.AVLNode<E> otherTreeMin = otherTree.min(); // We need to efficiently merge the two AVL trees while keeping them // balanced (or nearly balanced). To do this, we take the shorter // tree and combine it with a similar-height subtree of the taller // tree. There are two symmetric cases: // * this tree is taller, or // * otherTree is taller. if (otherTree.height > height) { // CASE 1: The other tree is taller than this one. We will thus // merge this tree into otherTree. // STEP 1: Remove the maximum element from this tree. final TreeList.AVLNode<E> leftSubTree = removeMax(); // STEP 2: Navigate left from the root of otherTree until we // contains a subtree, s, that is no taller than me. (While we are // navigating left, we store the nodes we encounter in a stack // so that we can re-balance them in step 4.) final Deque<TreeList.AVLNode<E>> sAncestors = new ArrayDeque<>(); TreeList.AVLNode<E> s = otherTree; int sAbsolutePosition = s.relativePosition + currentSize; int sParentAbsolutePosition = 0; while (s != null && s.height > getHeight(leftSubTree)) { sParentAbsolutePosition = sAbsolutePosition; sAncestors.push(s); s = s.left; if (s != null) { sAbsolutePosition += s.relativePosition; } } // STEP 3: Replace s with a newly constructed subtree whose root // is maxNode, whose left subtree is leftSubTree, and whose right // subtree is s. maxNode.setLeft(leftSubTree, null); maxNode.setRight(s, otherTreeMin); if (leftSubTree != null) { leftSubTree.max().setRight(null, maxNode); leftSubTree.relativePosition -= currentSize - 1; } if (s != null) { s.min().setLeft(null, maxNode); s.relativePosition = sAbsolutePosition - currentSize + 1; } maxNode.relativePosition = currentSize - 1 - sParentAbsolutePosition; otherTree.relativePosition += currentSize; // STEP 4: Re-balance the tree and recalculate the heights of s's ancestors. s = maxNode; while (!sAncestors.isEmpty()) { final TreeList.AVLNode<E> sAncestor = sAncestors.pop(); sAncestor.setLeft(s, null); s = sAncestor.balance(); } return s; } otherTree = otherTree.removeMin(); final Deque<TreeList.AVLNode<E>> sAncestors = new ArrayDeque<>(); TreeList.AVLNode<E> s = this; int sAbsolutePosition = s.relativePosition; int sParentAbsolutePosition = 0; while (s != null && s.height > getHeight(otherTree)) { sParentAbsolutePosition = sAbsolutePosition; sAncestors.push(s); s = s.right; if (s != null) { sAbsolutePosition += s.relativePosition; } } otherTreeMin.setRight(otherTree, null); otherTreeMin.setLeft(s, maxNode); if (otherTree != null) { otherTree.min().setLeft(null, otherTreeMin); otherTree.relativePosition++; } if (s != null) { s.max().setRight(null, otherTreeMin); s.relativePosition = sAbsolutePosition - currentSize; } otherTreeMin.relativePosition = currentSize - sParentAbsolutePosition; s = otherTreeMin; while (!sAncestors.isEmpty()) { final TreeList.AVLNode<E> sAncestor = sAncestors.pop(); sAncestor.setRight(s, null); s = sAncestor.balance(); } return s; } } static class TreeListIterator<E> implements ListIterator<E>, OrderedIterator<E> { private final TreeList<E> parent; private TreeList.AVLNode<E> next; private int nextIndex; private TreeList.AVLNode<E> current; private int currentIndex; private int expectedModCount; private TreeListIterator(final TreeList<E> parent, final int fromIndex) throws IndexOutOfBoundsException { super(); this.parent = parent; this.expectedModCount = parent.modCount; this.next = parent.root == null ? null : parent.root.get(fromIndex); this.nextIndex = fromIndex; this.currentIndex = -1; } private void checkModCount() { if (parent.modCount != expectedModCount) { throw new ConcurrentModificationException(); } } public boolean hasNext() { return nextIndex < parent.size(); } public E next() { checkModCount(); if (!hasNext()) { throw new NoSuchElementException("No element at index " + nextIndex + "."); } if (next == null) { next = parent.root.get(nextIndex); } final E value = next.getValue(); current = next; currentIndex = nextIndex++; next = next.next(); return value; } public boolean hasPrevious() { return nextIndex > 0; } public E previous() { checkModCount(); if (!hasPrevious()) { throw new NoSuchElementException("Already at start of list."); } if (next == null) { next = parent.root.get(nextIndex - 1); } else { next = next.previous(); } final E value = next.getValue(); current = next; currentIndex = --nextIndex; return value; } public int nextIndex() { return nextIndex; } public int previousIndex() { return nextIndex() - 1; } public void remove() { checkModCount(); if (currentIndex == -1) { throw new IllegalStateException(); } parent.remove(currentIndex); if (nextIndex != currentIndex) { // remove() following next() nextIndex--; } // the AVL node referenced by next may have become stale after a remove // reset it now: will be retrieved by next call to next()/previous() via nextIndex next = null; current = null; currentIndex = -1; expectedModCount++; } public void set(final E obj) { checkModCount(); if (current == null) { throw new IllegalStateException(); } current.setValue(obj); } public void add(final E obj) { checkModCount(); parent.add(nextIndex, obj); current = null; currentIndex = -1; nextIndex++; expectedModCount++; } } } static class InputReader extends InputStream { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } private static boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Iterator; import java.util.ListIterator; import java.util.Collection; import java.util.AbstractList; import java.util.InputMismatchException; import java.io.IOException; import java.util.Deque; import java.util.ArrayDeque; import java.util.NoSuchElementException; import java.util.ConcurrentModificationException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author cunbidun */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); DPairOfLines solver = new DPairOfLines(); solver.solve(1, in, out); out.close(); } static class DPairOfLines { private static final int INF = (int) 2e9 + 7; private InputReader in; private PrintWriter out; public void solve(int testNumber, InputReader in, PrintWriter out) { this.in = in; this.out = out; int n = in.nextInt(); if (n <= 4) { out.println("YES"); return; } TreeList<PairII> list = new TreeList<>(); PairII[] a = new PairII[n + 1]; for (int i = 1; i <= n; i++) { a[i] = (new PairII(in.nextInt(), in.nextInt())); list.add(a[i]); } PairII pos1 = new PairII(INF, INF); PairII pos2 = new PairII(INF, INF); for (int i = 1; i <= 5; i++) { for (int j = i + 1; j <= 5; j++) { for (int k = j + 1; k <= 5; k++) { int x1 = a[i].first; int y1 = a[i].second; int x2 = a[j].first; int y2 = a[j].second; int x = a[k].first; int y = a[k].second; long s = (long) (y2 - y1) * x + (long) (x1 - x2) * y + ((long) x2 * y1 - (long) x1 * y2); if (s == 0) { pos1 = a[i]; pos2 = a[j]; } } } } if (pos1.equals(new PairII(INF, INF))) { out.println("NO"); return; } int x1 = pos1.first; int y1 = pos1.second; int x2 = pos2.first; int y2 = pos2.second; for (int i = 0; i < list.size(); i++) { int x = list.get(i).first; int y = list.get(i).second; long s = (long) (y2 - y1) * x + (long) (x1 - x2) * y + ((long) x2 * y1 - (long) x1 * y2); if (s == 0) { list.remove(i); i--; } } if (list.size() <= 2) { out.println("YES"); return; } x1 = list.get(0).first; y1 = list.get(0).second; x2 = list.get(1).first; y2 = list.get(1).second; for (int i = 0; i < list.size(); i++) { int x = list.get(i).first; int y = list.get(i).second; long s = (long) (y2 - y1) * x + (long) (x1 - x2) * y + ((long) x2 * y1 - (long) x1 * y2); if (s == 0) { list.remove(i); i--; } } if (list.size() == 0) { out.println("YES"); } else out.println("NO"); } } static interface OrderedIterator<E> extends Iterator<E> { } static class PairII implements Comparable<PairII> { public int first; public int second; public PairII(int first, int second) { this.first = first; this.second = second; } public boolean equals(Object o) { if (this == o) { return true; } if (o == null || getClass() != o.getClass()) { return false; } PairII pair = (PairII) o; return first == pair.first && second == pair.second; } public String toString() { return "(" + first + "," + second + ")"; } public int compareTo(PairII o) { int value = Integer.compare(first, o.first); if (value != 0) { return value; } return Integer.compare(second, o.second); } } static class TreeList<E> extends AbstractList<E> { private TreeList.AVLNode<E> root; private int size; public TreeList() { super(); } public TreeList(final Collection<? extends E> coll) { super(); if (!coll.isEmpty()) { root = new TreeList.AVLNode<>(coll); size = coll.size(); } } public E get(final int index) { return root.get(index).getValue(); } public int size() { return size; } public Iterator<E> iterator() { // override to go 75% faster return listIterator(0); } public ListIterator<E> listIterator() { // override to go 75% faster return listIterator(0); } public ListIterator<E> listIterator(final int fromIndex) { return new TreeList.TreeListIterator<>(this, fromIndex); } public int indexOf(final Object object) { // override to go 75% faster if (root == null) { return -1; } return root.indexOf(object, root.relativePosition); } public boolean contains(final Object object) { return indexOf(object) >= 0; } public Object[] toArray() { final Object[] array = new Object[size()]; if (root != null) { root.toArray(array, root.relativePosition); } return array; } public void add(final int index, final E obj) { modCount++; if (root == null) { root = new TreeList.AVLNode<>(index, obj, null, null); } else { root = root.insert(index, obj); } size++; } public boolean addAll(final Collection<? extends E> c) { if (c.isEmpty()) { return false; } modCount += c.size(); final TreeList.AVLNode<E> cTree = new TreeList.AVLNode<>(c); root = root == null ? cTree : root.addAll(cTree, size); size += c.size(); return true; } public E set(final int index, final E obj) { final TreeList.AVLNode<E> node = root.get(index); final E result = node.value; node.setValue(obj); return result; } public E remove(final int index) { modCount++; final E result = get(index); root = root.remove(index); size--; return result; } public void clear() { modCount++; root = null; size = 0; } static class AVLNode<E> { private TreeList.AVLNode<E> left; private boolean leftIsPrevious; private TreeList.AVLNode<E> right; private boolean rightIsNext; private int height; private int relativePosition; private E value; private AVLNode(final int relativePosition, final E obj, final TreeList.AVLNode<E> rightFollower, final TreeList.AVLNode<E> leftFollower) { this.relativePosition = relativePosition; value = obj; rightIsNext = true; leftIsPrevious = true; right = rightFollower; left = leftFollower; } private AVLNode(final Collection<? extends E> coll) { this(coll.iterator(), 0, coll.size() - 1, 0, null, null); } private AVLNode(final Iterator<? extends E> iterator, final int start, final int end, final int absolutePositionOfParent, final TreeList.AVLNode<E> prev, final TreeList.AVLNode<E> next) { final int mid = start + (end - start) / 2; if (start < mid) { left = new TreeList.AVLNode<>(iterator, start, mid - 1, mid, prev, this); } else { leftIsPrevious = true; left = prev; } value = iterator.next(); relativePosition = mid - absolutePositionOfParent; if (mid < end) { right = new TreeList.AVLNode<>(iterator, mid + 1, end, mid, this, next); } else { rightIsNext = true; right = next; } recalcHeight(); } E getValue() { return value; } void setValue(final E obj) { this.value = obj; } TreeList.AVLNode<E> get(final int index) { final int indexRelativeToMe = index - relativePosition; if (indexRelativeToMe == 0) { return this; } final TreeList.AVLNode<E> nextNode = indexRelativeToMe < 0 ? getLeftSubTree() : getRightSubTree(); if (nextNode == null) { return null; } return nextNode.get(indexRelativeToMe); } int indexOf(final Object object, final int index) { if (getLeftSubTree() != null) { final int result = left.indexOf(object, index + left.relativePosition); if (result != -1) { return result; } } if (value == null ? value == object : value.equals(object)) { return index; } if (getRightSubTree() != null) { return right.indexOf(object, index + right.relativePosition); } return -1; } void toArray(final Object[] array, final int index) { array[index] = value; if (getLeftSubTree() != null) { left.toArray(array, index + left.relativePosition); } if (getRightSubTree() != null) { right.toArray(array, index + right.relativePosition); } } TreeList.AVLNode<E> next() { if (rightIsNext || right == null) { return right; } return right.min(); } TreeList.AVLNode<E> previous() { if (leftIsPrevious || left == null) { return left; } return left.max(); } TreeList.AVLNode<E> insert(final int index, final E obj) { final int indexRelativeToMe = index - relativePosition; if (indexRelativeToMe <= 0) { return insertOnLeft(indexRelativeToMe, obj); } return insertOnRight(indexRelativeToMe, obj); } private TreeList.AVLNode<E> insertOnLeft(final int indexRelativeToMe, final E obj) { if (getLeftSubTree() == null) { setLeft(new TreeList.AVLNode<>(-1, obj, this, left), null); } else { setLeft(left.insert(indexRelativeToMe, obj), null); } if (relativePosition >= 0) { relativePosition++; } final TreeList.AVLNode<E> ret = balance(); recalcHeight(); return ret; } private TreeList.AVLNode<E> insertOnRight(final int indexRelativeToMe, final E obj) { if (getRightSubTree() == null) { setRight(new TreeList.AVLNode<>(+1, obj, right, this), null); } else { setRight(right.insert(indexRelativeToMe, obj), null); } if (relativePosition < 0) { relativePosition--; } final TreeList.AVLNode<E> ret = balance(); recalcHeight(); return ret; } private TreeList.AVLNode<E> getLeftSubTree() { return leftIsPrevious ? null : left; } private TreeList.AVLNode<E> getRightSubTree() { return rightIsNext ? null : right; } private TreeList.AVLNode<E> max() { return getRightSubTree() == null ? this : right.max(); } private TreeList.AVLNode<E> min() { return getLeftSubTree() == null ? this : left.min(); } TreeList.AVLNode<E> remove(final int index) { final int indexRelativeToMe = index - relativePosition; if (indexRelativeToMe == 0) { return removeSelf(); } if (indexRelativeToMe > 0) { setRight(right.remove(indexRelativeToMe), right.right); if (relativePosition < 0) { relativePosition++; } } else { setLeft(left.remove(indexRelativeToMe), left.left); if (relativePosition > 0) { relativePosition--; } } recalcHeight(); return balance(); } private TreeList.AVLNode<E> removeMax() { if (getRightSubTree() == null) { return removeSelf(); } setRight(right.removeMax(), right.right); if (relativePosition < 0) { relativePosition++; } recalcHeight(); return balance(); } private TreeList.AVLNode<E> removeMin() { if (getLeftSubTree() == null) { return removeSelf(); } setLeft(left.removeMin(), left.left); if (relativePosition > 0) { relativePosition--; } recalcHeight(); return balance(); } private TreeList.AVLNode<E> removeSelf() { if (getRightSubTree() == null && getLeftSubTree() == null) { return null; } if (getRightSubTree() == null) { if (relativePosition > 0) { left.relativePosition += relativePosition; } left.max().setRight(null, right); return left; } if (getLeftSubTree() == null) { right.relativePosition += relativePosition - (relativePosition < 0 ? 0 : 1); right.min().setLeft(null, left); return right; } if (heightRightMinusLeft() > 0) { // more on the right, so delete from the right final TreeList.AVLNode<E> rightMin = right.min(); value = rightMin.value; if (leftIsPrevious) { left = rightMin.left; } right = right.removeMin(); if (relativePosition < 0) { relativePosition++; } } else { // more on the left or equal, so delete from the left final TreeList.AVLNode<E> leftMax = left.max(); value = leftMax.value; if (rightIsNext) { right = leftMax.right; } final TreeList.AVLNode<E> leftPrevious = left.left; left = left.removeMax(); if (left == null) { // special case where left that was deleted was a double link // only occurs when height difference is equal left = leftPrevious; leftIsPrevious = true; } if (relativePosition > 0) { relativePosition--; } } recalcHeight(); return this; } private TreeList.AVLNode<E> balance() { switch (heightRightMinusLeft()) { case 1: case 0: case -1: return this; case -2: if (left.heightRightMinusLeft() > 0) { setLeft(left.rotateLeft(), null); } return rotateRight(); case 2: if (right.heightRightMinusLeft() < 0) { setRight(right.rotateRight(), null); } return rotateLeft(); default: throw new RuntimeException("tree inconsistent!"); } } private int getOffset(final TreeList.AVLNode<E> node) { if (node == null) { return 0; } return node.relativePosition; } private int setOffset(final TreeList.AVLNode<E> node, final int newOffest) { if (node == null) { return 0; } final int oldOffset = getOffset(node); node.relativePosition = newOffest; return oldOffset; } private void recalcHeight() { height = Math.max( getLeftSubTree() == null ? -1 : getLeftSubTree().height, getRightSubTree() == null ? -1 : getRightSubTree().height) + 1; } private int getHeight(final TreeList.AVLNode<E> node) { return node == null ? -1 : node.height; } private int heightRightMinusLeft() { return getHeight(getRightSubTree()) - getHeight(getLeftSubTree()); } private TreeList.AVLNode<E> rotateLeft() { final TreeList.AVLNode<E> newTop = right; // can't be faedelung! final TreeList.AVLNode<E> movedNode = getRightSubTree().getLeftSubTree(); final int newTopPosition = relativePosition + getOffset(newTop); final int myNewPosition = -newTop.relativePosition; final int movedPosition = getOffset(newTop) + getOffset(movedNode); setRight(movedNode, newTop); newTop.setLeft(this, null); setOffset(newTop, newTopPosition); setOffset(this, myNewPosition); setOffset(movedNode, movedPosition); return newTop; } private TreeList.AVLNode<E> rotateRight() { final TreeList.AVLNode<E> newTop = left; final TreeList.AVLNode<E> movedNode = getLeftSubTree().getRightSubTree(); final int newTopPosition = relativePosition + getOffset(newTop); final int myNewPosition = -newTop.relativePosition; final int movedPosition = getOffset(newTop) + getOffset(movedNode); setLeft(movedNode, newTop); newTop.setRight(this, null); setOffset(newTop, newTopPosition); setOffset(this, myNewPosition); setOffset(movedNode, movedPosition); return newTop; } private void setLeft(final TreeList.AVLNode<E> node, final TreeList.AVLNode<E> previous) { leftIsPrevious = node == null; left = leftIsPrevious ? previous : node; recalcHeight(); } private void setRight(final TreeList.AVLNode<E> node, final TreeList.AVLNode<E> next) { rightIsNext = node == null; right = rightIsNext ? next : node; recalcHeight(); } private TreeList.AVLNode<E> addAll(TreeList.AVLNode<E> otherTree, final int currentSize) { final TreeList.AVLNode<E> maxNode = max(); final TreeList.AVLNode<E> otherTreeMin = otherTree.min(); // We need to efficiently merge the two AVL trees while keeping them // balanced (or nearly balanced). To do this, we take the shorter // tree and combine it with a similar-height subtree of the taller // tree. There are two symmetric cases: // * this tree is taller, or // * otherTree is taller. if (otherTree.height > height) { // CASE 1: The other tree is taller than this one. We will thus // merge this tree into otherTree. // STEP 1: Remove the maximum element from this tree. final TreeList.AVLNode<E> leftSubTree = removeMax(); // STEP 2: Navigate left from the root of otherTree until we // contains a subtree, s, that is no taller than me. (While we are // navigating left, we store the nodes we encounter in a stack // so that we can re-balance them in step 4.) final Deque<TreeList.AVLNode<E>> sAncestors = new ArrayDeque<>(); TreeList.AVLNode<E> s = otherTree; int sAbsolutePosition = s.relativePosition + currentSize; int sParentAbsolutePosition = 0; while (s != null && s.height > getHeight(leftSubTree)) { sParentAbsolutePosition = sAbsolutePosition; sAncestors.push(s); s = s.left; if (s != null) { sAbsolutePosition += s.relativePosition; } } // STEP 3: Replace s with a newly constructed subtree whose root // is maxNode, whose left subtree is leftSubTree, and whose right // subtree is s. maxNode.setLeft(leftSubTree, null); maxNode.setRight(s, otherTreeMin); if (leftSubTree != null) { leftSubTree.max().setRight(null, maxNode); leftSubTree.relativePosition -= currentSize - 1; } if (s != null) { s.min().setLeft(null, maxNode); s.relativePosition = sAbsolutePosition - currentSize + 1; } maxNode.relativePosition = currentSize - 1 - sParentAbsolutePosition; otherTree.relativePosition += currentSize; // STEP 4: Re-balance the tree and recalculate the heights of s's ancestors. s = maxNode; while (!sAncestors.isEmpty()) { final TreeList.AVLNode<E> sAncestor = sAncestors.pop(); sAncestor.setLeft(s, null); s = sAncestor.balance(); } return s; } otherTree = otherTree.removeMin(); final Deque<TreeList.AVLNode<E>> sAncestors = new ArrayDeque<>(); TreeList.AVLNode<E> s = this; int sAbsolutePosition = s.relativePosition; int sParentAbsolutePosition = 0; while (s != null && s.height > getHeight(otherTree)) { sParentAbsolutePosition = sAbsolutePosition; sAncestors.push(s); s = s.right; if (s != null) { sAbsolutePosition += s.relativePosition; } } otherTreeMin.setRight(otherTree, null); otherTreeMin.setLeft(s, maxNode); if (otherTree != null) { otherTree.min().setLeft(null, otherTreeMin); otherTree.relativePosition++; } if (s != null) { s.max().setRight(null, otherTreeMin); s.relativePosition = sAbsolutePosition - currentSize; } otherTreeMin.relativePosition = currentSize - sParentAbsolutePosition; s = otherTreeMin; while (!sAncestors.isEmpty()) { final TreeList.AVLNode<E> sAncestor = sAncestors.pop(); sAncestor.setRight(s, null); s = sAncestor.balance(); } return s; } } static class TreeListIterator<E> implements ListIterator<E>, OrderedIterator<E> { private final TreeList<E> parent; private TreeList.AVLNode<E> next; private int nextIndex; private TreeList.AVLNode<E> current; private int currentIndex; private int expectedModCount; private TreeListIterator(final TreeList<E> parent, final int fromIndex) throws IndexOutOfBoundsException { super(); this.parent = parent; this.expectedModCount = parent.modCount; this.next = parent.root == null ? null : parent.root.get(fromIndex); this.nextIndex = fromIndex; this.currentIndex = -1; } private void checkModCount() { if (parent.modCount != expectedModCount) { throw new ConcurrentModificationException(); } } public boolean hasNext() { return nextIndex < parent.size(); } public E next() { checkModCount(); if (!hasNext()) { throw new NoSuchElementException("No element at index " + nextIndex + "."); } if (next == null) { next = parent.root.get(nextIndex); } final E value = next.getValue(); current = next; currentIndex = nextIndex++; next = next.next(); return value; } public boolean hasPrevious() { return nextIndex > 0; } public E previous() { checkModCount(); if (!hasPrevious()) { throw new NoSuchElementException("Already at start of list."); } if (next == null) { next = parent.root.get(nextIndex - 1); } else { next = next.previous(); } final E value = next.getValue(); current = next; currentIndex = --nextIndex; return value; } public int nextIndex() { return nextIndex; } public int previousIndex() { return nextIndex() - 1; } public void remove() { checkModCount(); if (currentIndex == -1) { throw new IllegalStateException(); } parent.remove(currentIndex); if (nextIndex != currentIndex) { // remove() following next() nextIndex--; } // the AVL node referenced by next may have become stale after a remove // reset it now: will be retrieved by next call to next()/previous() via nextIndex next = null; current = null; currentIndex = -1; expectedModCount++; } public void set(final E obj) { checkModCount(); if (current == null) { throw new IllegalStateException(); } current.setValue(obj); } public void add(final E obj) { checkModCount(); parent.add(nextIndex, obj); current = null; currentIndex = -1; nextIndex++; expectedModCount++; } } } static class InputReader extends InputStream { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } private static boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
6,442
1,847
268
import java.util.*; import java.io.*; public class SonyaExhibition { static BufferedReader br; static StringTokenizer tokenizer; public static void main(String[] args) throws Exception { br = new BufferedReader(new InputStreamReader(System.in)); int n = nextInt(); int[] arr = {0,1}; for(int i = 0; i < n; i++) { System.out.print(arr[i % 2]); } System.out.println(); } public static String next() throws IOException { while (tokenizer == null || !tokenizer.hasMoreTokens()) { String line = br.readLine(); if (line == null) throw new IOException(); tokenizer = new StringTokenizer(line); } return tokenizer.nextToken(); } public static int nextInt() throws IOException { return Integer.parseInt(next()); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class SonyaExhibition { static BufferedReader br; static StringTokenizer tokenizer; public static void main(String[] args) throws Exception { br = new BufferedReader(new InputStreamReader(System.in)); int n = nextInt(); int[] arr = {0,1}; for(int i = 0; i < n; i++) { System.out.print(arr[i % 2]); } System.out.println(); } public static String next() throws IOException { while (tokenizer == null || !tokenizer.hasMoreTokens()) { String line = br.readLine(); if (line == null) throw new IOException(); tokenizer = new StringTokenizer(line); } return tokenizer.nextToken(); } public static int nextInt() throws IOException { return Integer.parseInt(next()); } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; public class SonyaExhibition { static BufferedReader br; static StringTokenizer tokenizer; public static void main(String[] args) throws Exception { br = new BufferedReader(new InputStreamReader(System.in)); int n = nextInt(); int[] arr = {0,1}; for(int i = 0; i < n; i++) { System.out.print(arr[i % 2]); } System.out.println(); } public static String next() throws IOException { while (tokenizer == null || !tokenizer.hasMoreTokens()) { String line = br.readLine(); if (line == null) throw new IOException(); tokenizer = new StringTokenizer(line); } return tokenizer.nextToken(); } public static int nextInt() throws IOException { return Integer.parseInt(next()); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
501
268
3,851
import java.io.*; import java.util.*; public class Codeforces { public static void main(String args[])throws Exception { BufferedReader bu=new BufferedReader(new InputStreamReader(System.in)); StringBuilder sb=new StringBuilder(); int t=Integer.parseInt(bu.readLine()); while(t-->0) { int n=Integer.parseInt(bu.readLine()); int cur[]=new int[n],i,cr=-1; for(i=0;i<n;i++) { int j,d=Integer.parseInt(bu.readLine()),f=-1; for(j=cr;j>=0;j--) if(cur[j]==d-1) {f=j; break;} if(f==-1) { cr++; f=cr; } cur[f]=d; cr=f; for(j=f+1;j<n;j++) cur[j]=0; sb.append(cur[0]); for(j=1;j<n;j++) if(cur[j]==0) break; else sb.append("."+cur[j]); sb.append("\n"); } } System.out.print(sb); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Codeforces { public static void main(String args[])throws Exception { BufferedReader bu=new BufferedReader(new InputStreamReader(System.in)); StringBuilder sb=new StringBuilder(); int t=Integer.parseInt(bu.readLine()); while(t-->0) { int n=Integer.parseInt(bu.readLine()); int cur[]=new int[n],i,cr=-1; for(i=0;i<n;i++) { int j,d=Integer.parseInt(bu.readLine()),f=-1; for(j=cr;j>=0;j--) if(cur[j]==d-1) {f=j; break;} if(f==-1) { cr++; f=cr; } cur[f]=d; cr=f; for(j=f+1;j<n;j++) cur[j]=0; sb.append(cur[0]); for(j=1;j<n;j++) if(cur[j]==0) break; else sb.append("."+cur[j]); sb.append("\n"); } } System.out.print(sb); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Codeforces { public static void main(String args[])throws Exception { BufferedReader bu=new BufferedReader(new InputStreamReader(System.in)); StringBuilder sb=new StringBuilder(); int t=Integer.parseInt(bu.readLine()); while(t-->0) { int n=Integer.parseInt(bu.readLine()); int cur[]=new int[n],i,cr=-1; for(i=0;i<n;i++) { int j,d=Integer.parseInt(bu.readLine()),f=-1; for(j=cr;j>=0;j--) if(cur[j]==d-1) {f=j; break;} if(f==-1) { cr++; f=cr; } cur[f]=d; cr=f; for(j=f+1;j<n;j++) cur[j]=0; sb.append(cur[0]); for(j=1;j<n;j++) if(cur[j]==0) break; else sb.append("."+cur[j]); sb.append("\n"); } } System.out.print(sb); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
558
3,841
1,760
//package round15; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.StreamTokenizer; public class A { static StreamTokenizer in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in))); static int nextInt() throws IOException{ in.nextToken(); return (int)in.nval; } static PrintWriter out = new PrintWriter(System.out); public static void main(String[] args) throws IOException{ int n = nextInt(), t = nextInt(), x[] = new int[n], a[] = new int[n]; for (int i=0; i<n; i++){ x[i] = nextInt(); a[i] = nextInt(); } for (int i=0; i<n-1; i++) for (int j=i+1; j<n; j++) if (x[i] > x[j]){ int p = x[i]; x[i] = x[j]; x[j] = p; p = a[i]; a[i] = a[j]; a[j] = p; } double l[] = new double[n]; double r[] = new double[n]; for (int i=0; i<n; i++){ l[i] = x[i]-a[i]/2.0; r[i] = x[i]+a[i]/2.0; } int res = 2; for (int i=1; i<n; i++){ if (Math.abs(l[i]-r[i-1]-t) < 0.000001) res++; else if (l[i]-r[i-1] > t) res += 2; } out.println(res); out.flush(); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> //package round15; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.StreamTokenizer; public class A { static StreamTokenizer in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in))); static int nextInt() throws IOException{ in.nextToken(); return (int)in.nval; } static PrintWriter out = new PrintWriter(System.out); public static void main(String[] args) throws IOException{ int n = nextInt(), t = nextInt(), x[] = new int[n], a[] = new int[n]; for (int i=0; i<n; i++){ x[i] = nextInt(); a[i] = nextInt(); } for (int i=0; i<n-1; i++) for (int j=i+1; j<n; j++) if (x[i] > x[j]){ int p = x[i]; x[i] = x[j]; x[j] = p; p = a[i]; a[i] = a[j]; a[j] = p; } double l[] = new double[n]; double r[] = new double[n]; for (int i=0; i<n; i++){ l[i] = x[i]-a[i]/2.0; r[i] = x[i]+a[i]/2.0; } int res = 2; for (int i=1; i<n; i++){ if (Math.abs(l[i]-r[i-1]-t) < 0.000001) res++; else if (l[i]-r[i-1] > t) res += 2; } out.println(res); out.flush(); } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> //package round15; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.StreamTokenizer; public class A { static StreamTokenizer in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in))); static int nextInt() throws IOException{ in.nextToken(); return (int)in.nval; } static PrintWriter out = new PrintWriter(System.out); public static void main(String[] args) throws IOException{ int n = nextInt(), t = nextInt(), x[] = new int[n], a[] = new int[n]; for (int i=0; i<n; i++){ x[i] = nextInt(); a[i] = nextInt(); } for (int i=0; i<n-1; i++) for (int j=i+1; j<n; j++) if (x[i] > x[j]){ int p = x[i]; x[i] = x[j]; x[j] = p; p = a[i]; a[i] = a[j]; a[j] = p; } double l[] = new double[n]; double r[] = new double[n]; for (int i=0; i<n; i++){ l[i] = x[i]-a[i]/2.0; r[i] = x[i]+a[i]/2.0; } int res = 2; for (int i=1; i<n; i++){ if (Math.abs(l[i]-r[i-1]-t) < 0.000001) res++; else if (l[i]-r[i-1] > t) res += 2; } out.println(res); out.flush(); } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit to any of the given categories or is ambiguous. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
743
1,756
1,990
//package round113; import java.io.ByteArrayInputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.Comparator; public class A { InputStream is; PrintWriter out; String INPUT = ""; void solve() { int n = ni(), k = ni(); int[][] d = new int[n][2]; for(int i = 0;i < n;i++){ d[i][0] = ni(); d[i][1] = ni(); } Arrays.sort(d, new Comparator<int[]>() { public int compare(int[] a, int[] b) { if(a[0] - b[0] != 0)return -(a[0] - b[0]); return a[1] - b[1]; } }); int b; for(b = k-1;b >= 0 && d[k-1][0] == d[b][0] && d[k-1][1] == d[b][1];b--); b++; int a; for(a = k-1;a < n && d[k-1][0] == d[a][0] && d[k-1][1] == d[a][1];a++); a--; out.println(a-b+1); } void run() throws Exception { is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes()); out = new PrintWriter(System.out); long s = System.currentTimeMillis(); solve(); out.flush(); tr(System.currentTimeMillis()-s+"ms"); } public static void main(String[] args) throws Exception { new A().run(); } public int ni() { try { int num = 0; boolean minus = false; while((num = is.read()) != -1 && !((num >= '0' && num <= '9') || num == '-')); if(num == '-'){ num = 0; minus = true; }else{ num -= '0'; } while(true){ int b = is.read(); if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } } } catch (IOException e) { } return -1; } public long nl() { try { long num = 0; boolean minus = false; while((num = is.read()) != -1 && !((num >= '0' && num <= '9') || num == '-')); if(num == '-'){ num = 0; minus = true; }else{ num -= '0'; } while(true){ int b = is.read(); if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } } } catch (IOException e) { } return -1; } public String ns() { try{ int b = 0; StringBuilder sb = new StringBuilder(); while((b = is.read()) != -1 && (b == '\r' || b == '\n' || b == ' ')); if(b == -1)return ""; sb.append((char)b); while(true){ b = is.read(); if(b == -1)return sb.toString(); if(b == '\r' || b == '\n' || b == ' ')return sb.toString(); sb.append((char)b); } } catch (IOException e) { } return ""; } public char[] ns(int n) { char[] buf = new char[n]; try{ int b = 0, p = 0; while((b = is.read()) != -1 && (b == ' ' || b == '\r' || b == '\n')); if(b == -1)return null; buf[p++] = (char)b; while(p < n){ b = is.read(); if(b == -1 || b == ' ' || b == '\r' || b == '\n')break; buf[p++] = (char)b; } return Arrays.copyOf(buf, p); } catch (IOException e) { } return null; } double nd() { return Double.parseDouble(ns()); } boolean oj = System.getProperty("ONLINE_JUDGE") != null; void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> //package round113; import java.io.ByteArrayInputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.Comparator; public class A { InputStream is; PrintWriter out; String INPUT = ""; void solve() { int n = ni(), k = ni(); int[][] d = new int[n][2]; for(int i = 0;i < n;i++){ d[i][0] = ni(); d[i][1] = ni(); } Arrays.sort(d, new Comparator<int[]>() { public int compare(int[] a, int[] b) { if(a[0] - b[0] != 0)return -(a[0] - b[0]); return a[1] - b[1]; } }); int b; for(b = k-1;b >= 0 && d[k-1][0] == d[b][0] && d[k-1][1] == d[b][1];b--); b++; int a; for(a = k-1;a < n && d[k-1][0] == d[a][0] && d[k-1][1] == d[a][1];a++); a--; out.println(a-b+1); } void run() throws Exception { is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes()); out = new PrintWriter(System.out); long s = System.currentTimeMillis(); solve(); out.flush(); tr(System.currentTimeMillis()-s+"ms"); } public static void main(String[] args) throws Exception { new A().run(); } public int ni() { try { int num = 0; boolean minus = false; while((num = is.read()) != -1 && !((num >= '0' && num <= '9') || num == '-')); if(num == '-'){ num = 0; minus = true; }else{ num -= '0'; } while(true){ int b = is.read(); if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } } } catch (IOException e) { } return -1; } public long nl() { try { long num = 0; boolean minus = false; while((num = is.read()) != -1 && !((num >= '0' && num <= '9') || num == '-')); if(num == '-'){ num = 0; minus = true; }else{ num -= '0'; } while(true){ int b = is.read(); if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } } } catch (IOException e) { } return -1; } public String ns() { try{ int b = 0; StringBuilder sb = new StringBuilder(); while((b = is.read()) != -1 && (b == '\r' || b == '\n' || b == ' ')); if(b == -1)return ""; sb.append((char)b); while(true){ b = is.read(); if(b == -1)return sb.toString(); if(b == '\r' || b == '\n' || b == ' ')return sb.toString(); sb.append((char)b); } } catch (IOException e) { } return ""; } public char[] ns(int n) { char[] buf = new char[n]; try{ int b = 0, p = 0; while((b = is.read()) != -1 && (b == ' ' || b == '\r' || b == '\n')); if(b == -1)return null; buf[p++] = (char)b; while(p < n){ b = is.read(); if(b == -1 || b == ' ' || b == '\r' || b == '\n')break; buf[p++] = (char)b; } return Arrays.copyOf(buf, p); } catch (IOException e) { } return null; } double nd() { return Double.parseDouble(ns()); } boolean oj = System.getProperty("ONLINE_JUDGE") != null; void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> //package round113; import java.io.ByteArrayInputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.Comparator; public class A { InputStream is; PrintWriter out; String INPUT = ""; void solve() { int n = ni(), k = ni(); int[][] d = new int[n][2]; for(int i = 0;i < n;i++){ d[i][0] = ni(); d[i][1] = ni(); } Arrays.sort(d, new Comparator<int[]>() { public int compare(int[] a, int[] b) { if(a[0] - b[0] != 0)return -(a[0] - b[0]); return a[1] - b[1]; } }); int b; for(b = k-1;b >= 0 && d[k-1][0] == d[b][0] && d[k-1][1] == d[b][1];b--); b++; int a; for(a = k-1;a < n && d[k-1][0] == d[a][0] && d[k-1][1] == d[a][1];a++); a--; out.println(a-b+1); } void run() throws Exception { is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes()); out = new PrintWriter(System.out); long s = System.currentTimeMillis(); solve(); out.flush(); tr(System.currentTimeMillis()-s+"ms"); } public static void main(String[] args) throws Exception { new A().run(); } public int ni() { try { int num = 0; boolean minus = false; while((num = is.read()) != -1 && !((num >= '0' && num <= '9') || num == '-')); if(num == '-'){ num = 0; minus = true; }else{ num -= '0'; } while(true){ int b = is.read(); if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } } } catch (IOException e) { } return -1; } public long nl() { try { long num = 0; boolean minus = false; while((num = is.read()) != -1 && !((num >= '0' && num <= '9') || num == '-')); if(num == '-'){ num = 0; minus = true; }else{ num -= '0'; } while(true){ int b = is.read(); if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } } } catch (IOException e) { } return -1; } public String ns() { try{ int b = 0; StringBuilder sb = new StringBuilder(); while((b = is.read()) != -1 && (b == '\r' || b == '\n' || b == ' ')); if(b == -1)return ""; sb.append((char)b); while(true){ b = is.read(); if(b == -1)return sb.toString(); if(b == '\r' || b == '\n' || b == ' ')return sb.toString(); sb.append((char)b); } } catch (IOException e) { } return ""; } public char[] ns(int n) { char[] buf = new char[n]; try{ int b = 0, p = 0; while((b = is.read()) != -1 && (b == ' ' || b == '\r' || b == '\n')); if(b == -1)return null; buf[p++] = (char)b; while(p < n){ b = is.read(); if(b == -1 || b == ' ' || b == '\r' || b == '\n')break; buf[p++] = (char)b; } return Arrays.copyOf(buf, p); } catch (IOException e) { } return null; } double nd() { return Double.parseDouble(ns()); } boolean oj = System.getProperty("ONLINE_JUDGE") != null; void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,362
1,986
1,377
import java.util.Scanner; public class b { public static void main(String[] args) { Scanner sc = new Scanner(System.in); long n = sc.nextLong() - 1, k = sc.nextLong() - 1; int a = 0; if ((k + 1) * k / 2 < n) { System.out.println(-1); return; } while (n > 0 && k > 0) { long min = go(n, k); a += (k - min + 1); n -= (k + min) * (k - min + 1) / 2; k = Math.min(min - 1, n); } if (n == 0) System.out.println(a); else System.out.println(-1); } static long go(long n, long k) { long low = 1, high = k; while (low + 1 < high) { long mid = (low + high) / 2; if ((k + mid) * (k - mid + 1) / 2 <= n) { high = mid; } else low = mid; } return high; } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; public class b { public static void main(String[] args) { Scanner sc = new Scanner(System.in); long n = sc.nextLong() - 1, k = sc.nextLong() - 1; int a = 0; if ((k + 1) * k / 2 < n) { System.out.println(-1); return; } while (n > 0 && k > 0) { long min = go(n, k); a += (k - min + 1); n -= (k + min) * (k - min + 1) / 2; k = Math.min(min - 1, n); } if (n == 0) System.out.println(a); else System.out.println(-1); } static long go(long n, long k) { long low = 1, high = k; while (low + 1 < high) { long mid = (low + high) / 2; if ((k + mid) * (k - mid + 1) / 2 <= n) { high = mid; } else low = mid; } return high; } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Scanner; public class b { public static void main(String[] args) { Scanner sc = new Scanner(System.in); long n = sc.nextLong() - 1, k = sc.nextLong() - 1; int a = 0; if ((k + 1) * k / 2 < n) { System.out.println(-1); return; } while (n > 0 && k > 0) { long min = go(n, k); a += (k - min + 1); n -= (k + min) * (k - min + 1) / 2; k = Math.min(min - 1, n); } if (n == 0) System.out.println(a); else System.out.println(-1); } static long go(long n, long k) { long low = 1, high = k; while (low + 1 < high) { long mid = (low + high) / 2; if ((k + mid) * (k - mid + 1) / 2 <= n) { high = mid; } else low = mid; } return high; } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
624
1,375
282
import java.util.HashSet; import java.util.Scanner; public class Solution { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); HashSet<Integer> set = new HashSet<>(); for(int i = 0; i<n; i++){ int a = sc.nextInt(); if(a!=0){ set.add(a); } } System.out.println(set.size()); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.HashSet; import java.util.Scanner; public class Solution { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); HashSet<Integer> set = new HashSet<>(); for(int i = 0; i<n; i++){ int a = sc.nextInt(); if(a!=0){ set.add(a); } } System.out.println(set.size()); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.HashSet; import java.util.Scanner; public class Solution { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); HashSet<Integer> set = new HashSet<>(); for(int i = 0; i<n; i++){ int a = sc.nextInt(); if(a!=0){ set.add(a); } } System.out.println(set.size()); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
423
282
1,936
import java.io.PrintWriter; import java.util.Arrays; import java.util.Scanner; public class nA { Scanner in; PrintWriter out; void solve() { int n = in.nextInt(); int a[] = new int[n]; int sum = 0; for (int i = 0; i < n; i++) { a[i] = in.nextInt(); sum+=a[i]; } Arrays.sort(a); int nowsum = 0; int kol = 0; for(int i = n - 1; i >= 0; i--){ if(nowsum <= sum / 2){ nowsum+=a[i]; kol++; }else{ break; } } out.println(kol); } void run() { in = new Scanner(System.in); out = new PrintWriter(System.out); try { solve(); } finally { out.close(); } } public static void main(String[] args) { new nA().run(); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.PrintWriter; import java.util.Arrays; import java.util.Scanner; public class nA { Scanner in; PrintWriter out; void solve() { int n = in.nextInt(); int a[] = new int[n]; int sum = 0; for (int i = 0; i < n; i++) { a[i] = in.nextInt(); sum+=a[i]; } Arrays.sort(a); int nowsum = 0; int kol = 0; for(int i = n - 1; i >= 0; i--){ if(nowsum <= sum / 2){ nowsum+=a[i]; kol++; }else{ break; } } out.println(kol); } void run() { in = new Scanner(System.in); out = new PrintWriter(System.out); try { solve(); } finally { out.close(); } } public static void main(String[] args) { new nA().run(); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.PrintWriter; import java.util.Arrays; import java.util.Scanner; public class nA { Scanner in; PrintWriter out; void solve() { int n = in.nextInt(); int a[] = new int[n]; int sum = 0; for (int i = 0; i < n; i++) { a[i] = in.nextInt(); sum+=a[i]; } Arrays.sort(a); int nowsum = 0; int kol = 0; for(int i = n - 1; i >= 0; i--){ if(nowsum <= sum / 2){ nowsum+=a[i]; kol++; }else{ break; } } out.println(kol); } void run() { in = new Scanner(System.in); out = new PrintWriter(System.out); try { solve(); } finally { out.close(); } } public static void main(String[] args) { new nA().run(); } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
555
1,932
2,464
import java.util.ArrayList; import java.util.Collections; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.Scanner; public class Main { private static class Interval implements Comparable<Interval> { public int start , end; public Interval(int start , int end) { this.start = start; this.end = end; } @Override public int compareTo(Interval interval) { return this.end - interval.end; } } private static int getTotal(List<Interval> list) { int ans = 0 , i , n = list.size(); for (i = 0;i < n;i ++) { int end = list.get(i).end; while (i < n && list.get(i).start <= end) { i ++; } i --; ans ++; } return ans; } private static void solve(List<Interval> list) { List<int[]> ans = new ArrayList<>(); int i , n = list.size(); for (i = 0;i < n;i ++) { int start = list.get(i).start , end = list.get(i).end; while (i < n && list.get(i).start <= end) { i ++; } i --; ans.add(new int[] {start , end}); } System.out.println(ans.size()); for (int[] array : ans) { System.out.println(array[0] + " " + array[1]); } } private static long[] a = new long[2000]; public static void main(String[] args) { Scanner scan = new Scanner(System.in); Map<Long , List<Interval>> map = new HashMap<>(); int i , j , n = scan.nextInt() , max = 0; long ans = 0; for (i = 1;i <= n;i ++) { a[i] = scan.nextLong(); } for (i = 1;i <= n;i ++) { long sum = 0; for (j = i;j <= n;j ++) { sum += a[j]; if (!map.containsKey(sum)) { map.put(sum , new ArrayList<>()); } map.get(sum).add(new Interval(i , j)); } } for (List<Interval> list : map.values()) { Collections.sort(list); } for (Map.Entry<Long , List<Interval>> entry : map.entrySet()) { int total = getTotal(entry.getValue()); if (total > max) { max = total; ans = entry.getKey(); } } solve(map.get(ans)); } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.ArrayList; import java.util.Collections; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.Scanner; public class Main { private static class Interval implements Comparable<Interval> { public int start , end; public Interval(int start , int end) { this.start = start; this.end = end; } @Override public int compareTo(Interval interval) { return this.end - interval.end; } } private static int getTotal(List<Interval> list) { int ans = 0 , i , n = list.size(); for (i = 0;i < n;i ++) { int end = list.get(i).end; while (i < n && list.get(i).start <= end) { i ++; } i --; ans ++; } return ans; } private static void solve(List<Interval> list) { List<int[]> ans = new ArrayList<>(); int i , n = list.size(); for (i = 0;i < n;i ++) { int start = list.get(i).start , end = list.get(i).end; while (i < n && list.get(i).start <= end) { i ++; } i --; ans.add(new int[] {start , end}); } System.out.println(ans.size()); for (int[] array : ans) { System.out.println(array[0] + " " + array[1]); } } private static long[] a = new long[2000]; public static void main(String[] args) { Scanner scan = new Scanner(System.in); Map<Long , List<Interval>> map = new HashMap<>(); int i , j , n = scan.nextInt() , max = 0; long ans = 0; for (i = 1;i <= n;i ++) { a[i] = scan.nextLong(); } for (i = 1;i <= n;i ++) { long sum = 0; for (j = i;j <= n;j ++) { sum += a[j]; if (!map.containsKey(sum)) { map.put(sum , new ArrayList<>()); } map.get(sum).add(new Interval(i , j)); } } for (List<Interval> list : map.values()) { Collections.sort(list); } for (Map.Entry<Long , List<Interval>> entry : map.entrySet()) { int total = getTotal(entry.getValue()); if (total > max) { max = total; ans = entry.getKey(); } } solve(map.get(ans)); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.ArrayList; import java.util.Collections; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.Scanner; public class Main { private static class Interval implements Comparable<Interval> { public int start , end; public Interval(int start , int end) { this.start = start; this.end = end; } @Override public int compareTo(Interval interval) { return this.end - interval.end; } } private static int getTotal(List<Interval> list) { int ans = 0 , i , n = list.size(); for (i = 0;i < n;i ++) { int end = list.get(i).end; while (i < n && list.get(i).start <= end) { i ++; } i --; ans ++; } return ans; } private static void solve(List<Interval> list) { List<int[]> ans = new ArrayList<>(); int i , n = list.size(); for (i = 0;i < n;i ++) { int start = list.get(i).start , end = list.get(i).end; while (i < n && list.get(i).start <= end) { i ++; } i --; ans.add(new int[] {start , end}); } System.out.println(ans.size()); for (int[] array : ans) { System.out.println(array[0] + " " + array[1]); } } private static long[] a = new long[2000]; public static void main(String[] args) { Scanner scan = new Scanner(System.in); Map<Long , List<Interval>> map = new HashMap<>(); int i , j , n = scan.nextInt() , max = 0; long ans = 0; for (i = 1;i <= n;i ++) { a[i] = scan.nextLong(); } for (i = 1;i <= n;i ++) { long sum = 0; for (j = i;j <= n;j ++) { sum += a[j]; if (!map.containsKey(sum)) { map.put(sum , new ArrayList<>()); } map.get(sum).add(new Interval(i , j)); } } for (List<Interval> list : map.values()) { Collections.sort(list); } for (Map.Entry<Long , List<Interval>> entry : map.entrySet()) { int total = getTotal(entry.getValue()); if (total > max) { max = total; ans = entry.getKey(); } } solve(map.get(ans)); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
955
2,459
3,434
import java.util.Scanner; public class A { public static void main(String[] args) { new A().run(); } private void run() { Scanner sc = new Scanner(System.in); String s = sc.next(); sc.close(); int res = 0; for (int i = 0; i < s.length(); i++) for (int j = i + 1; j <= s.length(); j++) { String sub = s.substring(i, j); int c = count(s, sub); if (c >= 2) res = Math.max(res, sub.length()); } System.out.println(res); } private int count(String s, String sub) { int res = 0; while (s.length() > 0) { if (s.startsWith(sub)) res++; s = s.substring(1); } return res; } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; public class A { public static void main(String[] args) { new A().run(); } private void run() { Scanner sc = new Scanner(System.in); String s = sc.next(); sc.close(); int res = 0; for (int i = 0; i < s.length(); i++) for (int j = i + 1; j <= s.length(); j++) { String sub = s.substring(i, j); int c = count(s, sub); if (c >= 2) res = Math.max(res, sub.length()); } System.out.println(res); } private int count(String s, String sub) { int res = 0; while (s.length() > 0) { if (s.startsWith(sub)) res++; s = s.substring(1); } return res; } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Scanner; public class A { public static void main(String[] args) { new A().run(); } private void run() { Scanner sc = new Scanner(System.in); String s = sc.next(); sc.close(); int res = 0; for (int i = 0; i < s.length(); i++) for (int j = i + 1; j <= s.length(); j++) { String sub = s.substring(i, j); int c = count(s, sub); if (c >= 2) res = Math.max(res, sub.length()); } System.out.println(res); } private int count(String s, String sub) { int res = 0; while (s.length() > 0) { if (s.startsWith(sub)) res++; s = s.substring(1); } return res; } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
527
3,428
4,487
import java.io.*; import java.math.BigInteger; import java.util.*; public class E implements Runnable { public static void main (String[] args) {new Thread(null, new E(), "_cf", 1 << 28).start();} int n, m; char[] str; int[][] occs, cost; int[] dp; public void run() { FastScanner fs = new FastScanner(); PrintWriter out = new PrintWriter(System.out); System.err.println(""); n = fs.nextInt(); m = fs.nextInt(); str = fs.next().toCharArray(); occs = new int[m][m]; for(int i = 0; i < n-1; i++) { occs[str[i]-'a'][str[i+1]-'a']++; occs[str[i+1]-'a'][str[i]-'a']++; } //cost[mask][v] = numPairs with v for some all bits on in mask int all = (1<<m)-1; cost = new int[m][1<<m]; for(int i = 0; i < m; i++) { for(int mask = 1; mask < all; mask++) { if(((1<<i)&mask) > 0) continue; int lb = mask & (-mask); int trail = Integer.numberOfTrailingZeros(lb); int nmask = mask ^ lb; cost[i][mask] = cost[i][nmask]+occs[i][trail]; } } dp = new int[1<<m]; Arrays.fill(dp, -1); System.out.println(solve(0)); out.close(); } int oo = (int)1e9; int solve(int mask) { if(mask == (1<<m)-1) return 0; if(dp[mask] != -1) return dp[mask]; int res = oo; int addOn = 0; for(int nxt = 0; nxt < m; nxt++) { if(((1<<nxt)&mask) > 0) continue; addOn += cost[nxt][mask]; } for(int nxt = 0; nxt < m; nxt++) { if(((1<<nxt)&mask) > 0) continue; int ret = addOn+solve(mask | (1<<nxt)); res = Math.min(res, ret); } return dp[mask] = res; } class FastScanner { public int BS = 1<<16; public char NC = (char)0; byte[] buf = new byte[BS]; int bId = 0, size = 0; char c = NC; double num = 1; BufferedInputStream in; public FastScanner() { in = new BufferedInputStream(System.in, BS); } public FastScanner(String s) { try { in = new BufferedInputStream(new FileInputStream(new File(s)), BS); } catch (Exception e) { in = new BufferedInputStream(System.in, BS); } } public char nextChar(){ while(bId==size) { try { size = in.read(buf); }catch(Exception e) { return NC; } if(size==-1)return NC; bId=0; } return (char)buf[bId++]; } public int nextInt() { return (int)nextLong(); } public long nextLong() { num=1; boolean neg = false; if(c==NC)c=nextChar(); for(;(c<'0' || c>'9'); c = nextChar()) { if(c=='-')neg=true; } long res = 0; for(; c>='0' && c <='9'; c=nextChar()) { res = (res<<3)+(res<<1)+c-'0'; num*=10; } return neg?-res:res; } public double nextDouble() { double cur = nextLong(); return c!='.' ? cur:cur+nextLong()/num; } public String next() { StringBuilder res = new StringBuilder(); while(c<=32)c=nextChar(); while(c>32) { res.append(c); c=nextChar(); } return res.toString(); } public String nextLine() { StringBuilder res = new StringBuilder(); while(c<=32)c=nextChar(); while(c!='\n') { res.append(c); c=nextChar(); } return res.toString(); } public boolean hasNext() { if(c>32)return true; while(true) { c=nextChar(); if(c==NC)return false; else if(c>32)return true; } } public int[] nextIntArray(int n) { int[] res = new int[n]; for(int i = 0; i < n; i++) res[i] = nextInt(); return res; } } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.math.BigInteger; import java.util.*; public class E implements Runnable { public static void main (String[] args) {new Thread(null, new E(), "_cf", 1 << 28).start();} int n, m; char[] str; int[][] occs, cost; int[] dp; public void run() { FastScanner fs = new FastScanner(); PrintWriter out = new PrintWriter(System.out); System.err.println(""); n = fs.nextInt(); m = fs.nextInt(); str = fs.next().toCharArray(); occs = new int[m][m]; for(int i = 0; i < n-1; i++) { occs[str[i]-'a'][str[i+1]-'a']++; occs[str[i+1]-'a'][str[i]-'a']++; } //cost[mask][v] = numPairs with v for some all bits on in mask int all = (1<<m)-1; cost = new int[m][1<<m]; for(int i = 0; i < m; i++) { for(int mask = 1; mask < all; mask++) { if(((1<<i)&mask) > 0) continue; int lb = mask & (-mask); int trail = Integer.numberOfTrailingZeros(lb); int nmask = mask ^ lb; cost[i][mask] = cost[i][nmask]+occs[i][trail]; } } dp = new int[1<<m]; Arrays.fill(dp, -1); System.out.println(solve(0)); out.close(); } int oo = (int)1e9; int solve(int mask) { if(mask == (1<<m)-1) return 0; if(dp[mask] != -1) return dp[mask]; int res = oo; int addOn = 0; for(int nxt = 0; nxt < m; nxt++) { if(((1<<nxt)&mask) > 0) continue; addOn += cost[nxt][mask]; } for(int nxt = 0; nxt < m; nxt++) { if(((1<<nxt)&mask) > 0) continue; int ret = addOn+solve(mask | (1<<nxt)); res = Math.min(res, ret); } return dp[mask] = res; } class FastScanner { public int BS = 1<<16; public char NC = (char)0; byte[] buf = new byte[BS]; int bId = 0, size = 0; char c = NC; double num = 1; BufferedInputStream in; public FastScanner() { in = new BufferedInputStream(System.in, BS); } public FastScanner(String s) { try { in = new BufferedInputStream(new FileInputStream(new File(s)), BS); } catch (Exception e) { in = new BufferedInputStream(System.in, BS); } } public char nextChar(){ while(bId==size) { try { size = in.read(buf); }catch(Exception e) { return NC; } if(size==-1)return NC; bId=0; } return (char)buf[bId++]; } public int nextInt() { return (int)nextLong(); } public long nextLong() { num=1; boolean neg = false; if(c==NC)c=nextChar(); for(;(c<'0' || c>'9'); c = nextChar()) { if(c=='-')neg=true; } long res = 0; for(; c>='0' && c <='9'; c=nextChar()) { res = (res<<3)+(res<<1)+c-'0'; num*=10; } return neg?-res:res; } public double nextDouble() { double cur = nextLong(); return c!='.' ? cur:cur+nextLong()/num; } public String next() { StringBuilder res = new StringBuilder(); while(c<=32)c=nextChar(); while(c>32) { res.append(c); c=nextChar(); } return res.toString(); } public String nextLine() { StringBuilder res = new StringBuilder(); while(c<=32)c=nextChar(); while(c!='\n') { res.append(c); c=nextChar(); } return res.toString(); } public boolean hasNext() { if(c>32)return true; while(true) { c=nextChar(); if(c==NC)return false; else if(c>32)return true; } } public int[] nextIntArray(int n) { int[] res = new int[n]; for(int i = 0; i < n; i++) res[i] = nextInt(); return res; } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.math.BigInteger; import java.util.*; public class E implements Runnable { public static void main (String[] args) {new Thread(null, new E(), "_cf", 1 << 28).start();} int n, m; char[] str; int[][] occs, cost; int[] dp; public void run() { FastScanner fs = new FastScanner(); PrintWriter out = new PrintWriter(System.out); System.err.println(""); n = fs.nextInt(); m = fs.nextInt(); str = fs.next().toCharArray(); occs = new int[m][m]; for(int i = 0; i < n-1; i++) { occs[str[i]-'a'][str[i+1]-'a']++; occs[str[i+1]-'a'][str[i]-'a']++; } //cost[mask][v] = numPairs with v for some all bits on in mask int all = (1<<m)-1; cost = new int[m][1<<m]; for(int i = 0; i < m; i++) { for(int mask = 1; mask < all; mask++) { if(((1<<i)&mask) > 0) continue; int lb = mask & (-mask); int trail = Integer.numberOfTrailingZeros(lb); int nmask = mask ^ lb; cost[i][mask] = cost[i][nmask]+occs[i][trail]; } } dp = new int[1<<m]; Arrays.fill(dp, -1); System.out.println(solve(0)); out.close(); } int oo = (int)1e9; int solve(int mask) { if(mask == (1<<m)-1) return 0; if(dp[mask] != -1) return dp[mask]; int res = oo; int addOn = 0; for(int nxt = 0; nxt < m; nxt++) { if(((1<<nxt)&mask) > 0) continue; addOn += cost[nxt][mask]; } for(int nxt = 0; nxt < m; nxt++) { if(((1<<nxt)&mask) > 0) continue; int ret = addOn+solve(mask | (1<<nxt)); res = Math.min(res, ret); } return dp[mask] = res; } class FastScanner { public int BS = 1<<16; public char NC = (char)0; byte[] buf = new byte[BS]; int bId = 0, size = 0; char c = NC; double num = 1; BufferedInputStream in; public FastScanner() { in = new BufferedInputStream(System.in, BS); } public FastScanner(String s) { try { in = new BufferedInputStream(new FileInputStream(new File(s)), BS); } catch (Exception e) { in = new BufferedInputStream(System.in, BS); } } public char nextChar(){ while(bId==size) { try { size = in.read(buf); }catch(Exception e) { return NC; } if(size==-1)return NC; bId=0; } return (char)buf[bId++]; } public int nextInt() { return (int)nextLong(); } public long nextLong() { num=1; boolean neg = false; if(c==NC)c=nextChar(); for(;(c<'0' || c>'9'); c = nextChar()) { if(c=='-')neg=true; } long res = 0; for(; c>='0' && c <='9'; c=nextChar()) { res = (res<<3)+(res<<1)+c-'0'; num*=10; } return neg?-res:res; } public double nextDouble() { double cur = nextLong(); return c!='.' ? cur:cur+nextLong()/num; } public String next() { StringBuilder res = new StringBuilder(); while(c<=32)c=nextChar(); while(c>32) { res.append(c); c=nextChar(); } return res.toString(); } public String nextLine() { StringBuilder res = new StringBuilder(); while(c<=32)c=nextChar(); while(c!='\n') { res.append(c); c=nextChar(); } return res.toString(); } public boolean hasNext() { if(c>32)return true; while(true) { c=nextChar(); if(c==NC)return false; else if(c>32)return true; } } public int[] nextIntArray(int n) { int[] res = new int[n]; for(int i = 0; i < n; i++) res[i] = nextInt(); return res; } } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,483
4,476
4,138
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.StringTokenizer; public class LookingForOrder { static int[] x, y; static int[] dp; static int n; static int dist(int i, int j) { return ((x[i] - x[j]) * (x[i] - x[j])) + ((y[i] - y[j]) * (y[i] - y[j])); } static int solve(int mask) { if (mask == (1 << n) - 1) return 0; if (dp[mask] != -1) return dp[mask]; int ans = Integer.MAX_VALUE; int j = 0; for (int i = 1; i < n; i++) if ((mask & (1 << i)) == 0) { if (j == 0) { ans = Math .min(ans, 2 * dist(0, i) + solve(mask | (1 << i))); j = i; } else ans = Math.min(ans, dist(0, i) + dist(i, j) + dist(j, 0) + solve(mask | (1 << i) | (1 << j))); } return dp[mask] = ans; } static void prnt(int mask) { if (mask == (1 << n) - 1) return; int j = 0; for (int i = 1; i < n; i++) if ((mask & (1 << i)) == 0) { if (j == 0) { j = i; if (dp[mask] == 2 * dist(0, i) + solve(mask | (1 << i))) { out.print(" " + i + " 0"); prnt(mask | (1 << i)); return; } } else if (dp[mask] == dist(0, i) + dist(i, j) + dist(j, 0) + solve(mask | (1 << i) | (1 << j))) { out.print(" " + i + " " + j + " 0"); prnt(mask | (1 << i) | (1 << j)); return; } } } public static void main(String[] args) throws IOException { sc = new StringTokenizer(br.readLine()); int a = nxtInt(); int b = nxtInt(); n = nxtInt() + 1; x = new int[n]; y = new int[n]; dp = new int[1 << n]; Arrays.fill(dp, -1); x[0] = a; y[0] = b; for (int i = 1; i < n; i++) { x[i] = nxtInt(); y[i] = nxtInt(); } out.println(solve(1 << 0)); out.print(0); prnt(1 << 0); out.println(); br.close(); out.close(); } static BufferedReader br = new BufferedReader(new InputStreamReader( System.in)); static PrintWriter out = new PrintWriter(System.out); static StringTokenizer sc; static String nxtTok() throws IOException { while (!sc.hasMoreTokens()) sc = new StringTokenizer(br.readLine()); return sc.nextToken(); } static int nxtInt() throws IOException { return Integer.parseInt(nxtTok()); } static long nxtLng() throws IOException { return Long.parseLong(nxtTok()); } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.StringTokenizer; public class LookingForOrder { static int[] x, y; static int[] dp; static int n; static int dist(int i, int j) { return ((x[i] - x[j]) * (x[i] - x[j])) + ((y[i] - y[j]) * (y[i] - y[j])); } static int solve(int mask) { if (mask == (1 << n) - 1) return 0; if (dp[mask] != -1) return dp[mask]; int ans = Integer.MAX_VALUE; int j = 0; for (int i = 1; i < n; i++) if ((mask & (1 << i)) == 0) { if (j == 0) { ans = Math .min(ans, 2 * dist(0, i) + solve(mask | (1 << i))); j = i; } else ans = Math.min(ans, dist(0, i) + dist(i, j) + dist(j, 0) + solve(mask | (1 << i) | (1 << j))); } return dp[mask] = ans; } static void prnt(int mask) { if (mask == (1 << n) - 1) return; int j = 0; for (int i = 1; i < n; i++) if ((mask & (1 << i)) == 0) { if (j == 0) { j = i; if (dp[mask] == 2 * dist(0, i) + solve(mask | (1 << i))) { out.print(" " + i + " 0"); prnt(mask | (1 << i)); return; } } else if (dp[mask] == dist(0, i) + dist(i, j) + dist(j, 0) + solve(mask | (1 << i) | (1 << j))) { out.print(" " + i + " " + j + " 0"); prnt(mask | (1 << i) | (1 << j)); return; } } } public static void main(String[] args) throws IOException { sc = new StringTokenizer(br.readLine()); int a = nxtInt(); int b = nxtInt(); n = nxtInt() + 1; x = new int[n]; y = new int[n]; dp = new int[1 << n]; Arrays.fill(dp, -1); x[0] = a; y[0] = b; for (int i = 1; i < n; i++) { x[i] = nxtInt(); y[i] = nxtInt(); } out.println(solve(1 << 0)); out.print(0); prnt(1 << 0); out.println(); br.close(); out.close(); } static BufferedReader br = new BufferedReader(new InputStreamReader( System.in)); static PrintWriter out = new PrintWriter(System.out); static StringTokenizer sc; static String nxtTok() throws IOException { while (!sc.hasMoreTokens()) sc = new StringTokenizer(br.readLine()); return sc.nextToken(); } static int nxtInt() throws IOException { return Integer.parseInt(nxtTok()); } static long nxtLng() throws IOException { return Long.parseLong(nxtTok()); } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.StringTokenizer; public class LookingForOrder { static int[] x, y; static int[] dp; static int n; static int dist(int i, int j) { return ((x[i] - x[j]) * (x[i] - x[j])) + ((y[i] - y[j]) * (y[i] - y[j])); } static int solve(int mask) { if (mask == (1 << n) - 1) return 0; if (dp[mask] != -1) return dp[mask]; int ans = Integer.MAX_VALUE; int j = 0; for (int i = 1; i < n; i++) if ((mask & (1 << i)) == 0) { if (j == 0) { ans = Math .min(ans, 2 * dist(0, i) + solve(mask | (1 << i))); j = i; } else ans = Math.min(ans, dist(0, i) + dist(i, j) + dist(j, 0) + solve(mask | (1 << i) | (1 << j))); } return dp[mask] = ans; } static void prnt(int mask) { if (mask == (1 << n) - 1) return; int j = 0; for (int i = 1; i < n; i++) if ((mask & (1 << i)) == 0) { if (j == 0) { j = i; if (dp[mask] == 2 * dist(0, i) + solve(mask | (1 << i))) { out.print(" " + i + " 0"); prnt(mask | (1 << i)); return; } } else if (dp[mask] == dist(0, i) + dist(i, j) + dist(j, 0) + solve(mask | (1 << i) | (1 << j))) { out.print(" " + i + " " + j + " 0"); prnt(mask | (1 << i) | (1 << j)); return; } } } public static void main(String[] args) throws IOException { sc = new StringTokenizer(br.readLine()); int a = nxtInt(); int b = nxtInt(); n = nxtInt() + 1; x = new int[n]; y = new int[n]; dp = new int[1 << n]; Arrays.fill(dp, -1); x[0] = a; y[0] = b; for (int i = 1; i < n; i++) { x[i] = nxtInt(); y[i] = nxtInt(); } out.println(solve(1 << 0)); out.print(0); prnt(1 << 0); out.println(); br.close(); out.close(); } static BufferedReader br = new BufferedReader(new InputStreamReader( System.in)); static PrintWriter out = new PrintWriter(System.out); static StringTokenizer sc; static String nxtTok() throws IOException { while (!sc.hasMoreTokens()) sc = new StringTokenizer(br.readLine()); return sc.nextToken(); } static int nxtInt() throws IOException { return Integer.parseInt(nxtTok()); } static long nxtLng() throws IOException { return Long.parseLong(nxtTok()); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,125
4,127
69
import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class D { private void solve() { br = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); int n = nextInt(), m = nextInt(); boolean[][] used = new boolean[n + 1][m + 1]; for (int j = 1; j <= (m + 1) / 2; j++) { int x1 = 1, x2 = n; for (int i = 1; i <= n; i++) { if (x1 <= n && !used[x1][j]) { out.println(x1 + " " + j); used[x1++][j] = true; } if (x2 > 0 && !used[x2][m - j + 1]) { out.println(x2 + " " + (m - j + 1)); used[x2--][m - j + 1] = true; } } } out.close(); } public static void main(String[] args) { new D().solve(); } private BufferedReader br; private StringTokenizer st; private PrintWriter out; private String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception e) { throw new RuntimeException(e); } } return st.nextToken(); } private int nextInt() { return Integer.parseInt(next()); } private long nextLong() { return Long.parseLong(next()); } private double nextDouble() { return Double.parseDouble(next()); } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class D { private void solve() { br = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); int n = nextInt(), m = nextInt(); boolean[][] used = new boolean[n + 1][m + 1]; for (int j = 1; j <= (m + 1) / 2; j++) { int x1 = 1, x2 = n; for (int i = 1; i <= n; i++) { if (x1 <= n && !used[x1][j]) { out.println(x1 + " " + j); used[x1++][j] = true; } if (x2 > 0 && !used[x2][m - j + 1]) { out.println(x2 + " " + (m - j + 1)); used[x2--][m - j + 1] = true; } } } out.close(); } public static void main(String[] args) { new D().solve(); } private BufferedReader br; private StringTokenizer st; private PrintWriter out; private String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception e) { throw new RuntimeException(e); } } return st.nextToken(); } private int nextInt() { return Integer.parseInt(next()); } private long nextLong() { return Long.parseLong(next()); } private double nextDouble() { return Double.parseDouble(next()); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class D { private void solve() { br = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); int n = nextInt(), m = nextInt(); boolean[][] used = new boolean[n + 1][m + 1]; for (int j = 1; j <= (m + 1) / 2; j++) { int x1 = 1, x2 = n; for (int i = 1; i <= n; i++) { if (x1 <= n && !used[x1][j]) { out.println(x1 + " " + j); used[x1++][j] = true; } if (x2 > 0 && !used[x2][m - j + 1]) { out.println(x2 + " " + (m - j + 1)); used[x2--][m - j + 1] = true; } } } out.close(); } public static void main(String[] args) { new D().solve(); } private BufferedReader br; private StringTokenizer st; private PrintWriter out; private String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception e) { throw new RuntimeException(e); } } return st.nextToken(); } private int nextInt() { return Integer.parseInt(next()); } private long nextLong() { return Long.parseLong(next()); } private double nextDouble() { return Double.parseDouble(next()); } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit to any of the given categories or is ambiguous. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
704
69
3,204
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.OutputStream; import java.io.PrintWriter; import java.util.StringTokenizer; public class CF { public static void main(String[] args) throws IOException { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); int n = in.nextInt(); if (n >= 0) { out.println(n); } else { int res = n; n = Math.abs(n); String s = String.valueOf(Math.abs(n)); if (s.length() == 1) { res = 0; } else { res = Math.max(-Integer.parseInt(s.substring(0, s.length() - 1)), res); res = Math.max(-Integer.parseInt(s.substring(0, s.length() - 2) + s.charAt(s.length() - 1)), res); } out.println(res); } out.close(); } } class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream)); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.OutputStream; import java.io.PrintWriter; import java.util.StringTokenizer; public class CF { public static void main(String[] args) throws IOException { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); int n = in.nextInt(); if (n >= 0) { out.println(n); } else { int res = n; n = Math.abs(n); String s = String.valueOf(Math.abs(n)); if (s.length() == 1) { res = 0; } else { res = Math.max(-Integer.parseInt(s.substring(0, s.length() - 1)), res); res = Math.max(-Integer.parseInt(s.substring(0, s.length() - 2) + s.charAt(s.length() - 1)), res); } out.println(res); } out.close(); } } class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream)); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.OutputStream; import java.io.PrintWriter; import java.util.StringTokenizer; public class CF { public static void main(String[] args) throws IOException { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); int n = in.nextInt(); if (n >= 0) { out.println(n); } else { int res = n; n = Math.abs(n); String s = String.valueOf(Math.abs(n)); if (s.length() == 1) { res = 0; } else { res = Math.max(-Integer.parseInt(s.substring(0, s.length() - 1)), res); res = Math.max(-Integer.parseInt(s.substring(0, s.length() - 2) + s.charAt(s.length() - 1)), res); } out.println(res); } out.close(); } } class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream)); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
662
3,198
4,063
import java.util.*; import java.io.*; public class Main{ BufferedReader in; StringTokenizer str = null; PrintWriter out; private String next() throws Exception{ if (str == null || !str.hasMoreElements()) str = new StringTokenizer(in.readLine()); return str.nextToken(); } private int nextInt() throws Exception{ return Integer.parseInt(next()); } int []x,y; int n; int []dp, prev; public void run() throws Exception{ in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); int xs = nextInt(); int ys = nextInt(); n = nextInt(); x = new int[n]; y = new int[n]; for(int i=0;i<n;i++){ x[i] = nextInt(); y[i] = nextInt(); } int one[] = new int[n]; for(int i=0;i<n;i++){ one[i] = dist(xs, ys, x[i], y[i]); } int two[][] = new int[n][n]; for(int i=0;i<n;i++){ for(int j=i+1;j<n;j++){ two[i][j] = two[j][i] = dist(xs, ys, x[i], y[i]) + dist(x[i], y[i], x[j], y[j]) + dist(xs, ys, x[j], y[j]); } } dp = new int[1<<n]; Arrays.fill(dp, Integer.MAX_VALUE/2); dp[0] = 0; prev = new int[1<<n]; Arrays.fill(prev, -1); for(int mask=1;mask<(1<<n);mask++){ int i = 0; while((mask & (1<<i)) == 0) i++; dp[mask] = dp[mask ^ (1<<i)] + 2*one[i]; prev[mask] = i+1; for(int j=i+1;j<n;j++){ if ((mask & (1<<j)) > 0) { if (dp[mask] > dp[mask ^ (1<<i) ^ (1<<j)] + two[i][j]) { dp[mask] = dp[mask ^ (1<<i) ^ (1<<j)] + two[i][j]; prev[mask] = 100 * (i+1) + (j+1); } } } } out.println(dp[(1<<n)-1]); out.print(0 + " "); int cur = (1<<n)-1; int i = 0, j = 0; while(cur > 0) { i = prev[cur]/100; j = prev[cur]%100; if (i > 0) { cur^=1<<(i-1); out.print(i + " "); } if (j > 0) { cur^=1<<(j-1); out.print(j + " "); } out.print(0 + " "); } // if (i == 0 || j == 0) { // out.println(0); // } out.close(); } private String bit2str(int mask, int n) { String s = ""; for(int i=0;i<n;i++){ if ((mask & (1<<i)) > 0){ s+="1"; }else{ s+="0"; } } while(s.length() < n) s+="0"; return new StringBuilder(s).reverse().toString(); } private int dist(int x1, int y1, int x2, int y2) { return (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2); } public static void main(String args[]) throws Exception{ new Main().run(); } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class Main{ BufferedReader in; StringTokenizer str = null; PrintWriter out; private String next() throws Exception{ if (str == null || !str.hasMoreElements()) str = new StringTokenizer(in.readLine()); return str.nextToken(); } private int nextInt() throws Exception{ return Integer.parseInt(next()); } int []x,y; int n; int []dp, prev; public void run() throws Exception{ in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); int xs = nextInt(); int ys = nextInt(); n = nextInt(); x = new int[n]; y = new int[n]; for(int i=0;i<n;i++){ x[i] = nextInt(); y[i] = nextInt(); } int one[] = new int[n]; for(int i=0;i<n;i++){ one[i] = dist(xs, ys, x[i], y[i]); } int two[][] = new int[n][n]; for(int i=0;i<n;i++){ for(int j=i+1;j<n;j++){ two[i][j] = two[j][i] = dist(xs, ys, x[i], y[i]) + dist(x[i], y[i], x[j], y[j]) + dist(xs, ys, x[j], y[j]); } } dp = new int[1<<n]; Arrays.fill(dp, Integer.MAX_VALUE/2); dp[0] = 0; prev = new int[1<<n]; Arrays.fill(prev, -1); for(int mask=1;mask<(1<<n);mask++){ int i = 0; while((mask & (1<<i)) == 0) i++; dp[mask] = dp[mask ^ (1<<i)] + 2*one[i]; prev[mask] = i+1; for(int j=i+1;j<n;j++){ if ((mask & (1<<j)) > 0) { if (dp[mask] > dp[mask ^ (1<<i) ^ (1<<j)] + two[i][j]) { dp[mask] = dp[mask ^ (1<<i) ^ (1<<j)] + two[i][j]; prev[mask] = 100 * (i+1) + (j+1); } } } } out.println(dp[(1<<n)-1]); out.print(0 + " "); int cur = (1<<n)-1; int i = 0, j = 0; while(cur > 0) { i = prev[cur]/100; j = prev[cur]%100; if (i > 0) { cur^=1<<(i-1); out.print(i + " "); } if (j > 0) { cur^=1<<(j-1); out.print(j + " "); } out.print(0 + " "); } // if (i == 0 || j == 0) { // out.println(0); // } out.close(); } private String bit2str(int mask, int n) { String s = ""; for(int i=0;i<n;i++){ if ((mask & (1<<i)) > 0){ s+="1"; }else{ s+="0"; } } while(s.length() < n) s+="0"; return new StringBuilder(s).reverse().toString(); } private int dist(int x1, int y1, int x2, int y2) { return (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2); } public static void main(String args[]) throws Exception{ new Main().run(); } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class Main{ BufferedReader in; StringTokenizer str = null; PrintWriter out; private String next() throws Exception{ if (str == null || !str.hasMoreElements()) str = new StringTokenizer(in.readLine()); return str.nextToken(); } private int nextInt() throws Exception{ return Integer.parseInt(next()); } int []x,y; int n; int []dp, prev; public void run() throws Exception{ in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); int xs = nextInt(); int ys = nextInt(); n = nextInt(); x = new int[n]; y = new int[n]; for(int i=0;i<n;i++){ x[i] = nextInt(); y[i] = nextInt(); } int one[] = new int[n]; for(int i=0;i<n;i++){ one[i] = dist(xs, ys, x[i], y[i]); } int two[][] = new int[n][n]; for(int i=0;i<n;i++){ for(int j=i+1;j<n;j++){ two[i][j] = two[j][i] = dist(xs, ys, x[i], y[i]) + dist(x[i], y[i], x[j], y[j]) + dist(xs, ys, x[j], y[j]); } } dp = new int[1<<n]; Arrays.fill(dp, Integer.MAX_VALUE/2); dp[0] = 0; prev = new int[1<<n]; Arrays.fill(prev, -1); for(int mask=1;mask<(1<<n);mask++){ int i = 0; while((mask & (1<<i)) == 0) i++; dp[mask] = dp[mask ^ (1<<i)] + 2*one[i]; prev[mask] = i+1; for(int j=i+1;j<n;j++){ if ((mask & (1<<j)) > 0) { if (dp[mask] > dp[mask ^ (1<<i) ^ (1<<j)] + two[i][j]) { dp[mask] = dp[mask ^ (1<<i) ^ (1<<j)] + two[i][j]; prev[mask] = 100 * (i+1) + (j+1); } } } } out.println(dp[(1<<n)-1]); out.print(0 + " "); int cur = (1<<n)-1; int i = 0, j = 0; while(cur > 0) { i = prev[cur]/100; j = prev[cur]%100; if (i > 0) { cur^=1<<(i-1); out.print(i + " "); } if (j > 0) { cur^=1<<(j-1); out.print(j + " "); } out.print(0 + " "); } // if (i == 0 || j == 0) { // out.println(0); // } out.close(); } private String bit2str(int mask, int n) { String s = ""; for(int i=0;i<n;i++){ if ((mask & (1<<i)) > 0){ s+="1"; }else{ s+="0"; } } while(s.length() < n) s+="0"; return new StringBuilder(s).reverse().toString(); } private int dist(int x1, int y1, int x2, int y2) { return (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2); } public static void main(String args[]) throws Exception{ new Main().run(); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,215
4,052
873
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.util.HashSet; import java.util.Set; import java.util.StringTokenizer; public class B { static BufferedReader in; static StringTokenizer st; static String next() throws IOException { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } static int nextInt() throws IOException { return Integer.parseInt(next()); } public static void main(String[] args) throws IOException { in = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out)); int n = nextInt(); int k = nextInt(); int[] a = new int[n + 1]; for (int i = 1; i <= n; i++) { a[i] = nextInt(); } Set<Integer> set_1 = new HashSet<Integer>(); for (int i = 1; i <= n; i++) { set_1.add(a[i]); if (set_1.size() == k) { Set<Integer> set_2 = new HashSet<Integer>(); for (int j = i; j >= 1; j--) { set_2.add(a[j]); if (set_2.size() == k) { out.print(j + " " + i); out.close(); return; } } } } out.print("-1 -1"); out.close(); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.util.HashSet; import java.util.Set; import java.util.StringTokenizer; public class B { static BufferedReader in; static StringTokenizer st; static String next() throws IOException { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } static int nextInt() throws IOException { return Integer.parseInt(next()); } public static void main(String[] args) throws IOException { in = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out)); int n = nextInt(); int k = nextInt(); int[] a = new int[n + 1]; for (int i = 1; i <= n; i++) { a[i] = nextInt(); } Set<Integer> set_1 = new HashSet<Integer>(); for (int i = 1; i <= n; i++) { set_1.add(a[i]); if (set_1.size() == k) { Set<Integer> set_2 = new HashSet<Integer>(); for (int j = i; j >= 1; j--) { set_2.add(a[j]); if (set_2.size() == k) { out.print(j + " " + i); out.close(); return; } } } } out.print("-1 -1"); out.close(); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.util.HashSet; import java.util.Set; import java.util.StringTokenizer; public class B { static BufferedReader in; static StringTokenizer st; static String next() throws IOException { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } static int nextInt() throws IOException { return Integer.parseInt(next()); } public static void main(String[] args) throws IOException { in = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out)); int n = nextInt(); int k = nextInt(); int[] a = new int[n + 1]; for (int i = 1; i <= n; i++) { a[i] = nextInt(); } Set<Integer> set_1 = new HashSet<Integer>(); for (int i = 1; i <= n; i++) { set_1.add(a[i]); if (set_1.size() == k) { Set<Integer> set_2 = new HashSet<Integer>(); for (int j = i; j >= 1; j--) { set_2.add(a[j]); if (set_2.size() == k) { out.print(j + " " + i); out.close(); return; } } } } out.print("-1 -1"); out.close(); } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
665
872
3,208
import java.io.BufferedOutputStream; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; public class e { public static class FastReader { BufferedReader br; StringTokenizer st; //it reads the data about the specified point and divide the data about it ,it is quite fast //than using direct public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception r) { r.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next());//converts string to integer } double nextDouble() { return Double.parseDouble(next()); } long nextLong() { return Long.parseLong(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (Exception r) { r.printStackTrace(); } return str; } } static ArrayList<String>list1=new ArrayList<String>(); static void combine(String instr, StringBuffer outstr, int index,int k) { if(outstr.length()==k) { list1.add(outstr.toString());return; } if(outstr.toString().length()==0) outstr.append(instr.charAt(index)); for (int i = 0; i < instr.length(); i++) { outstr.append(instr.charAt(i)); combine(instr, outstr, i + 1,k); outstr.deleteCharAt(outstr.length() - 1); } index++; } static ArrayList<ArrayList<Integer>>l=new ArrayList<>(); static void comb(int n,int k,int ind,ArrayList<Integer>list) { if(k==0) { l.add(new ArrayList<>(list)); return; } for(int i=ind;i<=n;i++) { list.add(i); comb(n,k-1,ind+1,list); list.remove(list.size()-1); } } public static PrintWriter out = new PrintWriter (new BufferedOutputStream(System.out)); public static void main(String[] args) { // TODO Auto-generated method stub FastReader in=new FastReader(); HashMap<Integer,Integer>map=new HashMap<Integer,Integer>(); int n=in.nextInt(); int r=in.nextInt(); double theta=(double)360/(double)n; double b=1-((double)2/(double)(1-Math.cos((double)2*Math.PI/(double)n))); double x=Math.sqrt(1-b)-1; double ans=(double)r/(double)x; System.out.println(ans); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedOutputStream; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; public class e { public static class FastReader { BufferedReader br; StringTokenizer st; //it reads the data about the specified point and divide the data about it ,it is quite fast //than using direct public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception r) { r.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next());//converts string to integer } double nextDouble() { return Double.parseDouble(next()); } long nextLong() { return Long.parseLong(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (Exception r) { r.printStackTrace(); } return str; } } static ArrayList<String>list1=new ArrayList<String>(); static void combine(String instr, StringBuffer outstr, int index,int k) { if(outstr.length()==k) { list1.add(outstr.toString());return; } if(outstr.toString().length()==0) outstr.append(instr.charAt(index)); for (int i = 0; i < instr.length(); i++) { outstr.append(instr.charAt(i)); combine(instr, outstr, i + 1,k); outstr.deleteCharAt(outstr.length() - 1); } index++; } static ArrayList<ArrayList<Integer>>l=new ArrayList<>(); static void comb(int n,int k,int ind,ArrayList<Integer>list) { if(k==0) { l.add(new ArrayList<>(list)); return; } for(int i=ind;i<=n;i++) { list.add(i); comb(n,k-1,ind+1,list); list.remove(list.size()-1); } } public static PrintWriter out = new PrintWriter (new BufferedOutputStream(System.out)); public static void main(String[] args) { // TODO Auto-generated method stub FastReader in=new FastReader(); HashMap<Integer,Integer>map=new HashMap<Integer,Integer>(); int n=in.nextInt(); int r=in.nextInt(); double theta=(double)360/(double)n; double b=1-((double)2/(double)(1-Math.cos((double)2*Math.PI/(double)n))); double x=Math.sqrt(1-b)-1; double ans=(double)r/(double)x; System.out.println(ans); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedOutputStream; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; public class e { public static class FastReader { BufferedReader br; StringTokenizer st; //it reads the data about the specified point and divide the data about it ,it is quite fast //than using direct public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception r) { r.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next());//converts string to integer } double nextDouble() { return Double.parseDouble(next()); } long nextLong() { return Long.parseLong(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (Exception r) { r.printStackTrace(); } return str; } } static ArrayList<String>list1=new ArrayList<String>(); static void combine(String instr, StringBuffer outstr, int index,int k) { if(outstr.length()==k) { list1.add(outstr.toString());return; } if(outstr.toString().length()==0) outstr.append(instr.charAt(index)); for (int i = 0; i < instr.length(); i++) { outstr.append(instr.charAt(i)); combine(instr, outstr, i + 1,k); outstr.deleteCharAt(outstr.length() - 1); } index++; } static ArrayList<ArrayList<Integer>>l=new ArrayList<>(); static void comb(int n,int k,int ind,ArrayList<Integer>list) { if(k==0) { l.add(new ArrayList<>(list)); return; } for(int i=ind;i<=n;i++) { list.add(i); comb(n,k-1,ind+1,list); list.remove(list.size()-1); } } public static PrintWriter out = new PrintWriter (new BufferedOutputStream(System.out)); public static void main(String[] args) { // TODO Auto-generated method stub FastReader in=new FastReader(); HashMap<Integer,Integer>map=new HashMap<Integer,Integer>(); int n=in.nextInt(); int r=in.nextInt(); double theta=(double)360/(double)n; double b=1-((double)2/(double)(1-Math.cos((double)2*Math.PI/(double)n))); double x=Math.sqrt(1-b)-1; double ans=(double)r/(double)x; System.out.println(ans); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
903
3,202
2,957
//package CF; // Div One import java.util.*; public class CFA_200 { public static void main(String[] args) { Scanner sc = new Scanner(System.in); long x = sc.nextLong(); long y = sc.nextLong(); System.out.println(Wilf_tree(x, y)); sc.close(); } static long Wilf_tree(long a,long b) { if(a==0||b==0) return 0; if(a>=b) return a/b+Wilf_tree(a%b, b); else return b/a+Wilf_tree(a, b%a); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> //package CF; // Div One import java.util.*; public class CFA_200 { public static void main(String[] args) { Scanner sc = new Scanner(System.in); long x = sc.nextLong(); long y = sc.nextLong(); System.out.println(Wilf_tree(x, y)); sc.close(); } static long Wilf_tree(long a,long b) { if(a==0||b==0) return 0; if(a>=b) return a/b+Wilf_tree(a%b, b); else return b/a+Wilf_tree(a, b%a); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> //package CF; // Div One import java.util.*; public class CFA_200 { public static void main(String[] args) { Scanner sc = new Scanner(System.in); long x = sc.nextLong(); long y = sc.nextLong(); System.out.println(Wilf_tree(x, y)); sc.close(); } static long Wilf_tree(long a,long b) { if(a==0||b==0) return 0; if(a>=b) return a/b+Wilf_tree(a%b, b); else return b/a+Wilf_tree(a, b%a); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
475
2,951
879
import java.io.*; import java.math.BigInteger; import java.util.*; public class Main { static final double eps = 1e-8; public static void main(String[] args) throws IOException { try { int n = nextInt(); int k = nextInt(); int[] a = new int[n]; int[] d = new int[n]; int[] dr = new int[n]; boolean used[] = new boolean[100001]; a[0] = nextInt(); used[ a[0] ] = true; d[0] = 1; for(int i = 1; i < n; i++) { a[i] = nextInt(); if(!used[ a[i] ]) { used[ a[i] ] = true; d[i] = d[i - 1] + 1; } else { d[i] = d[i - 1]; } } Arrays.fill(used, false); int r = Arrays.binarySearch(d, k); if(r < 0) { pw.println("-1 -1"); return; } while( r > 0 && d[r] == d[r - 1] ) r--; used[ a[r] ] = true; dr[r] = 1; for(int i = r - 1; i >= 0; i--) { if(!used[ a[i] ]) { used[ a[i] ] = true; dr[i] = dr[i + 1] + 1; } else { dr[i] = dr[i + 1]; } } int l = 0; while(l < n - 1 && dr[l] == dr[l + 1] && r - l >= k) l++; pw.println(l + 1 + " " + (r + 1)); } finally { pw.close(); } } static Scanner sc = new Scanner(System.in); static PrintWriter pw = new PrintWriter(System.out); static StreamTokenizer in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in))); static BufferedReader bf = new BufferedReader(new InputStreamReader(System.in)); static StringTokenizer st ; static int nextInt() throws IOException { in.nextToken(); return (int) in.nval; } static long nextLong() throws IOException { in.nextToken(); return (long) in.nval; } static double nextDouble() throws IOException { in.nextToken(); return in.nval; } static String next() throws IOException { in.nextToken(); return in.sval; } static void outArray(int[] O) { for(int i = 0; i < O.length - 1; i++) pw.print(O[i] + " "); pw.println(O[O.length - 1]); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.math.BigInteger; import java.util.*; public class Main { static final double eps = 1e-8; public static void main(String[] args) throws IOException { try { int n = nextInt(); int k = nextInt(); int[] a = new int[n]; int[] d = new int[n]; int[] dr = new int[n]; boolean used[] = new boolean[100001]; a[0] = nextInt(); used[ a[0] ] = true; d[0] = 1; for(int i = 1; i < n; i++) { a[i] = nextInt(); if(!used[ a[i] ]) { used[ a[i] ] = true; d[i] = d[i - 1] + 1; } else { d[i] = d[i - 1]; } } Arrays.fill(used, false); int r = Arrays.binarySearch(d, k); if(r < 0) { pw.println("-1 -1"); return; } while( r > 0 && d[r] == d[r - 1] ) r--; used[ a[r] ] = true; dr[r] = 1; for(int i = r - 1; i >= 0; i--) { if(!used[ a[i] ]) { used[ a[i] ] = true; dr[i] = dr[i + 1] + 1; } else { dr[i] = dr[i + 1]; } } int l = 0; while(l < n - 1 && dr[l] == dr[l + 1] && r - l >= k) l++; pw.println(l + 1 + " " + (r + 1)); } finally { pw.close(); } } static Scanner sc = new Scanner(System.in); static PrintWriter pw = new PrintWriter(System.out); static StreamTokenizer in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in))); static BufferedReader bf = new BufferedReader(new InputStreamReader(System.in)); static StringTokenizer st ; static int nextInt() throws IOException { in.nextToken(); return (int) in.nval; } static long nextLong() throws IOException { in.nextToken(); return (long) in.nval; } static double nextDouble() throws IOException { in.nextToken(); return in.nval; } static String next() throws IOException { in.nextToken(); return in.sval; } static void outArray(int[] O) { for(int i = 0; i < O.length - 1; i++) pw.print(O[i] + " "); pw.println(O[O.length - 1]); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.math.BigInteger; import java.util.*; public class Main { static final double eps = 1e-8; public static void main(String[] args) throws IOException { try { int n = nextInt(); int k = nextInt(); int[] a = new int[n]; int[] d = new int[n]; int[] dr = new int[n]; boolean used[] = new boolean[100001]; a[0] = nextInt(); used[ a[0] ] = true; d[0] = 1; for(int i = 1; i < n; i++) { a[i] = nextInt(); if(!used[ a[i] ]) { used[ a[i] ] = true; d[i] = d[i - 1] + 1; } else { d[i] = d[i - 1]; } } Arrays.fill(used, false); int r = Arrays.binarySearch(d, k); if(r < 0) { pw.println("-1 -1"); return; } while( r > 0 && d[r] == d[r - 1] ) r--; used[ a[r] ] = true; dr[r] = 1; for(int i = r - 1; i >= 0; i--) { if(!used[ a[i] ]) { used[ a[i] ] = true; dr[i] = dr[i + 1] + 1; } else { dr[i] = dr[i + 1]; } } int l = 0; while(l < n - 1 && dr[l] == dr[l + 1] && r - l >= k) l++; pw.println(l + 1 + " " + (r + 1)); } finally { pw.close(); } } static Scanner sc = new Scanner(System.in); static PrintWriter pw = new PrintWriter(System.out); static StreamTokenizer in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in))); static BufferedReader bf = new BufferedReader(new InputStreamReader(System.in)); static StringTokenizer st ; static int nextInt() throws IOException { in.nextToken(); return (int) in.nval; } static long nextLong() throws IOException { in.nextToken(); return (long) in.nval; } static double nextDouble() throws IOException { in.nextToken(); return in.nval; } static String next() throws IOException { in.nextToken(); return in.sval; } static void outArray(int[] O) { for(int i = 0; i < O.length - 1; i++) pw.print(O[i] + " "); pw.println(O[O.length - 1]); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
999
878
325
import java.io.*; import java.util.*; import java.math.*; public class Main { Scanner in; PrintWriter out; StreamTokenizer ST; BufferedReader br; int nextInt() throws IOException { ST.nextToken(); return (int) ST.nval; } double nextDouble() throws IOException { ST.nextToken(); return ST.nval; } String next() throws IOException { ST.nextToken(); return ST.sval; } String nextLine() throws IOException { return br.readLine(); } void solve() throws IOException { br.readLine(); char[]s = br.readLine().toCharArray(); int n = s.length; int h=0; for(int i=0;i<n;++i)if (s[i]=='H')++h; int res=1000000; for(int i=0;i<n;++i) { int t=0; for(int j=0;j<h;++j) { if (s[(i+j)%n]=='T')++t; } res=Math.min(res,t); } out.println(res); } public void run() throws IOException { // br = new BufferedReader(new FileReader(new File("input.txt"))); br = new BufferedReader(new InputStreamReader(System.in)); ST = new StreamTokenizer(br); in = new Scanner(br); out = new PrintWriter(System.out); // out = new PrintWriter(new FileWriter(new File("output.txt"))); solve(); in.close(); out.close(); br.close(); } public static void main(String[] args) throws Exception { new Main().run(); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; import java.math.*; public class Main { Scanner in; PrintWriter out; StreamTokenizer ST; BufferedReader br; int nextInt() throws IOException { ST.nextToken(); return (int) ST.nval; } double nextDouble() throws IOException { ST.nextToken(); return ST.nval; } String next() throws IOException { ST.nextToken(); return ST.sval; } String nextLine() throws IOException { return br.readLine(); } void solve() throws IOException { br.readLine(); char[]s = br.readLine().toCharArray(); int n = s.length; int h=0; for(int i=0;i<n;++i)if (s[i]=='H')++h; int res=1000000; for(int i=0;i<n;++i) { int t=0; for(int j=0;j<h;++j) { if (s[(i+j)%n]=='T')++t; } res=Math.min(res,t); } out.println(res); } public void run() throws IOException { // br = new BufferedReader(new FileReader(new File("input.txt"))); br = new BufferedReader(new InputStreamReader(System.in)); ST = new StreamTokenizer(br); in = new Scanner(br); out = new PrintWriter(System.out); // out = new PrintWriter(new FileWriter(new File("output.txt"))); solve(); in.close(); out.close(); br.close(); } public static void main(String[] args) throws Exception { new Main().run(); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; import java.math.*; public class Main { Scanner in; PrintWriter out; StreamTokenizer ST; BufferedReader br; int nextInt() throws IOException { ST.nextToken(); return (int) ST.nval; } double nextDouble() throws IOException { ST.nextToken(); return ST.nval; } String next() throws IOException { ST.nextToken(); return ST.sval; } String nextLine() throws IOException { return br.readLine(); } void solve() throws IOException { br.readLine(); char[]s = br.readLine().toCharArray(); int n = s.length; int h=0; for(int i=0;i<n;++i)if (s[i]=='H')++h; int res=1000000; for(int i=0;i<n;++i) { int t=0; for(int j=0;j<h;++j) { if (s[(i+j)%n]=='T')++t; } res=Math.min(res,t); } out.println(res); } public void run() throws IOException { // br = new BufferedReader(new FileReader(new File("input.txt"))); br = new BufferedReader(new InputStreamReader(System.in)); ST = new StreamTokenizer(br); in = new Scanner(br); out = new PrintWriter(System.out); // out = new PrintWriter(new FileWriter(new File("output.txt"))); solve(); in.close(); out.close(); br.close(); } public static void main(String[] args) throws Exception { new Main().run(); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
677
325
570
//package global14; import java.util.Scanner; public class B { public static void main(String[] args){ Scanner in = new Scanner(System.in); int t = in.nextInt(); while(t > 0){ t --; int n = in.nextInt(); if(n % 2 != 0){ System.out.println("NO"); continue; } int a = n / 2; int x = (int)Math.sqrt(a); if(x * x == a || (x + 1) * (x + 1) == a){ System.out.println("YES"); continue; } a = n / 4; if(n % 4 != 0){ System.out.println("NO"); continue; } x = (int)Math.sqrt(a); if(x * x == a || (x + 1) * (x + 1) == a){ System.out.println("YES"); continue; } System.out.println("NO"); } } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> //package global14; import java.util.Scanner; public class B { public static void main(String[] args){ Scanner in = new Scanner(System.in); int t = in.nextInt(); while(t > 0){ t --; int n = in.nextInt(); if(n % 2 != 0){ System.out.println("NO"); continue; } int a = n / 2; int x = (int)Math.sqrt(a); if(x * x == a || (x + 1) * (x + 1) == a){ System.out.println("YES"); continue; } a = n / 4; if(n % 4 != 0){ System.out.println("NO"); continue; } x = (int)Math.sqrt(a); if(x * x == a || (x + 1) * (x + 1) == a){ System.out.println("YES"); continue; } System.out.println("NO"); } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> //package global14; import java.util.Scanner; public class B { public static void main(String[] args){ Scanner in = new Scanner(System.in); int t = in.nextInt(); while(t > 0){ t --; int n = in.nextInt(); if(n % 2 != 0){ System.out.println("NO"); continue; } int a = n / 2; int x = (int)Math.sqrt(a); if(x * x == a || (x + 1) * (x + 1) == a){ System.out.println("YES"); continue; } a = n / 4; if(n % 4 != 0){ System.out.println("NO"); continue; } x = (int)Math.sqrt(a); if(x * x == a || (x + 1) * (x + 1) == a){ System.out.println("YES"); continue; } System.out.println("NO"); } } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
552
569
623
//package round495; import java.io.ByteArrayInputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.HashSet; import java.util.InputMismatchException; import java.util.Set; public class A { InputStream is; PrintWriter out; String INPUT = ""; void solve() { int n = ni(), d = ni(); int[] a = na(n); Set<Long> set = new HashSet<>(); for(int v : a){ set.add(v-(long)d); set.add(v+(long)d); } int ct = 0; for(long s : set){ long min = Long.MAX_VALUE; for(int v : a){ min = Math.min(min, Math.abs(s-v)); } if(min == d)ct++; } out.println(ct); } void run() throws Exception { is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes()); out = new PrintWriter(System.out); long s = System.currentTimeMillis(); solve(); out.flush(); tr(System.currentTimeMillis()-s+"ms"); } public static void main(String[] args) throws Exception { new A().run(); } private byte[] inbuf = new byte[1024]; public int lenbuf = 0, ptrbuf = 0; private int readByte() { if(lenbuf == -1)throw new InputMismatchException(); if(ptrbuf >= lenbuf){ ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if(lenbuf <= 0)return -1; } return inbuf[ptrbuf++]; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; } private double nd() { return Double.parseDouble(ns()); } private char nc() { return (char)skip(); } private String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } private char[] ns(int n) { char[] buf = new char[n]; int b = skip(), p = 0; while(p < n && !(isSpaceChar(b))){ buf[p++] = (char)b; b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p); } private char[][] nm(int n, int m) { char[][] map = new char[n][]; for(int i = 0;i < n;i++)map[i] = ns(m); return map; } private int[] na(int n) { int[] a = new int[n]; for(int i = 0;i < n;i++)a[i] = ni(); return a; } private int ni() { int num = 0, b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private long nl() { long num = 0; int b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private boolean oj = System.getProperty("ONLINE_JUDGE") != null; private void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> //package round495; import java.io.ByteArrayInputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.HashSet; import java.util.InputMismatchException; import java.util.Set; public class A { InputStream is; PrintWriter out; String INPUT = ""; void solve() { int n = ni(), d = ni(); int[] a = na(n); Set<Long> set = new HashSet<>(); for(int v : a){ set.add(v-(long)d); set.add(v+(long)d); } int ct = 0; for(long s : set){ long min = Long.MAX_VALUE; for(int v : a){ min = Math.min(min, Math.abs(s-v)); } if(min == d)ct++; } out.println(ct); } void run() throws Exception { is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes()); out = new PrintWriter(System.out); long s = System.currentTimeMillis(); solve(); out.flush(); tr(System.currentTimeMillis()-s+"ms"); } public static void main(String[] args) throws Exception { new A().run(); } private byte[] inbuf = new byte[1024]; public int lenbuf = 0, ptrbuf = 0; private int readByte() { if(lenbuf == -1)throw new InputMismatchException(); if(ptrbuf >= lenbuf){ ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if(lenbuf <= 0)return -1; } return inbuf[ptrbuf++]; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; } private double nd() { return Double.parseDouble(ns()); } private char nc() { return (char)skip(); } private String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } private char[] ns(int n) { char[] buf = new char[n]; int b = skip(), p = 0; while(p < n && !(isSpaceChar(b))){ buf[p++] = (char)b; b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p); } private char[][] nm(int n, int m) { char[][] map = new char[n][]; for(int i = 0;i < n;i++)map[i] = ns(m); return map; } private int[] na(int n) { int[] a = new int[n]; for(int i = 0;i < n;i++)a[i] = ni(); return a; } private int ni() { int num = 0, b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private long nl() { long num = 0; int b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private boolean oj = System.getProperty("ONLINE_JUDGE") != null; private void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> //package round495; import java.io.ByteArrayInputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.HashSet; import java.util.InputMismatchException; import java.util.Set; public class A { InputStream is; PrintWriter out; String INPUT = ""; void solve() { int n = ni(), d = ni(); int[] a = na(n); Set<Long> set = new HashSet<>(); for(int v : a){ set.add(v-(long)d); set.add(v+(long)d); } int ct = 0; for(long s : set){ long min = Long.MAX_VALUE; for(int v : a){ min = Math.min(min, Math.abs(s-v)); } if(min == d)ct++; } out.println(ct); } void run() throws Exception { is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes()); out = new PrintWriter(System.out); long s = System.currentTimeMillis(); solve(); out.flush(); tr(System.currentTimeMillis()-s+"ms"); } public static void main(String[] args) throws Exception { new A().run(); } private byte[] inbuf = new byte[1024]; public int lenbuf = 0, ptrbuf = 0; private int readByte() { if(lenbuf == -1)throw new InputMismatchException(); if(ptrbuf >= lenbuf){ ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if(lenbuf <= 0)return -1; } return inbuf[ptrbuf++]; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; } private double nd() { return Double.parseDouble(ns()); } private char nc() { return (char)skip(); } private String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } private char[] ns(int n) { char[] buf = new char[n]; int b = skip(), p = 0; while(p < n && !(isSpaceChar(b))){ buf[p++] = (char)b; b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p); } private char[][] nm(int n, int m) { char[][] map = new char[n][]; for(int i = 0;i < n;i++)map[i] = ns(m); return map; } private int[] na(int n) { int[] a = new int[n]; for(int i = 0;i < n;i++)a[i] = ni(); return a; } private int ni() { int num = 0, b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private long nl() { long num = 0; int b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private boolean oj = System.getProperty("ONLINE_JUDGE") != null; private void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,348
622
3,312
import java.util.*; import java.io.*; import java.text.*; import java.math.*; import static java.lang.Integer.*; import static java.lang.Double.*; import java.lang.Math.*; public class two_squares { public static void main(String[] args) throws Exception { new two_squares().run(); } public void run() throws Exception { FastIO file = new FastIO(); double x1 = file.nextInt(); double y1 = file.nextInt(); double x2 = file.nextInt(); double y2 = file.nextInt(); double x3 = file.nextInt(); double y3 = file.nextInt(); double x4 = file.nextInt(); double y4 = file.nextInt(); double minx1, maxx1, miny1, maxy1; minx1 = Math.min(x1, Math.min(x2, Math.min(x3, x4))); maxx1 = Math.max(x1, Math.max(x2, Math.max(x3, x4))); miny1 = Math.min(y1, Math.min(y2, Math.min(y3, y4))); maxy1 = Math.max(y1, Math.max(y2, Math.max(y3, y4))); double x5 = file.nextInt(); double y5 = file.nextInt(); double x6 = file.nextInt(); double y6 = file.nextInt(); double x7 = file.nextInt(); double y7 = file.nextInt(); double x8 = file.nextInt(); double y8 = file.nextInt(); double minx2, maxx2, miny2, maxy2; minx2 = Math.min(x5, Math.min(x6, Math.min(x7, x8))); maxx2 = Math.max(x5, Math.max(x6, Math.max(x7, x8))); miny2 = Math.min(y5, Math.min(y6, Math.min(y7, y8))); maxy2 = Math.max(y5, Math.max(y6, Math.max(y7, y8))); Point _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16; _1 = new Point(x1, y1); _2 = new Point(x2, y2); _3 = new Point(x3, y3); _4 = new Point(x4, y4); _5 = new Point(x5, y5); _6 = new Point(x6, y6); _7 = new Point(x7, y7); _8 = new Point(x8, y8); _9 = new Point(minx1, maxy1); _10 = new Point(minx1, miny1); _11 = new Point(maxx1, maxy1); _12 = new Point(maxx1, miny1); double m1 = (minx2 + maxx2) / 2; double m2 = (miny2 + maxy2) / 2; _13 = new Point(minx2, m2); _14 = new Point(m1, miny2); _15 = new Point(maxx2, m2); _16 = new Point(m1, maxy2); Point[] a = {_1, _2, _3, _4}; Point[] b = {_5, _6, _7, _8}; boolean works = false; Line[] aa = {new Line(_9,_10), new Line(_10, _12), new Line(_12, _11), new Line(_11, _9)}; Line[] bb = {new Line(_13, _14), new Line(_14, _15), new Line(_15, _16), new Line(_16, _13)}; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { if (aa[i].intersection(bb[i]) != null) { works = true; } } } for (Point p : b) { if (p.x >= minx1 && p.x <= maxx1 && p.y >= miny1 && p.y <= maxy1) { works = true; } } for (Point p : a) { boolean result = false; for (int i = 0, j = b.length - 1; i < b.length; j = i++) { if ((b[i].y > p.y) != (b[j].y > p.y) && (p.x < (b[j].x - b[i].x) * (p.y - b[i].y) / (b[j].y-b[i].y) + b[i].x)) { result = !result; } } if (result) works = true; } System.out.println(works ? "YES" : "NO"); } public static class Point { double x, y; public Point(double a, double b) { x = a; y = b; } } public static class Line { Point a, b; public Line(Point x, Point y) { a = x; b = y; } public Point intersection(Line o) { double x1 = a.x; double y1 = a.y; double x2 = b.x; double y2 = b.y; double x3 = o.a.x; double y3 = o.a.y; double x4 = o.b.x; double y4 = o.b.y; double denom = (y4 - y3) * (x2 - x1) - (x4 - x3) * (y2 - y1); double ua = ((x4 - x3) * (y1 - y3) - (y4 - y3) * (x1 - x3))/denom; double ub = ((x2 - x1) * (y1 - y3) - (y2 - y1) * (x1 - x3))/denom; if (ua >= 0.0f && ua <= 1.0f && ub >= 0.0f && ub <= 1.0f) { return new Point((int) (x1 + ua*(x2 - x1)), (int) (y1 + ua*(y2 - y1))); } return null; } } public static class FastIO { BufferedReader br; StringTokenizer st; public FastIO() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static long pow(long n, long p, long mod) { if (p == 0) return 1; if (p == 1) return n % mod; if (p % 2 == 0) { long temp = pow(n, p / 2, mod); return (temp * temp) % mod; } else { long temp = pow(n, p / 2, mod); temp = (temp * temp) % mod; return (temp * n) % mod; } } public static long pow(long n, long p) { if (p == 0) return 1; if (p == 1) return n; if (p % 2 == 0) { long temp = pow(n, p / 2); return (temp * temp); } else { long temp = pow(n, p / 2); temp = (temp * temp); return (temp * n); } } public static long gcd(long x, long y) { if (x == 0) return y; else return gcd(y % x, x); } public static boolean isPrime(int n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; for (int i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; import java.text.*; import java.math.*; import static java.lang.Integer.*; import static java.lang.Double.*; import java.lang.Math.*; public class two_squares { public static void main(String[] args) throws Exception { new two_squares().run(); } public void run() throws Exception { FastIO file = new FastIO(); double x1 = file.nextInt(); double y1 = file.nextInt(); double x2 = file.nextInt(); double y2 = file.nextInt(); double x3 = file.nextInt(); double y3 = file.nextInt(); double x4 = file.nextInt(); double y4 = file.nextInt(); double minx1, maxx1, miny1, maxy1; minx1 = Math.min(x1, Math.min(x2, Math.min(x3, x4))); maxx1 = Math.max(x1, Math.max(x2, Math.max(x3, x4))); miny1 = Math.min(y1, Math.min(y2, Math.min(y3, y4))); maxy1 = Math.max(y1, Math.max(y2, Math.max(y3, y4))); double x5 = file.nextInt(); double y5 = file.nextInt(); double x6 = file.nextInt(); double y6 = file.nextInt(); double x7 = file.nextInt(); double y7 = file.nextInt(); double x8 = file.nextInt(); double y8 = file.nextInt(); double minx2, maxx2, miny2, maxy2; minx2 = Math.min(x5, Math.min(x6, Math.min(x7, x8))); maxx2 = Math.max(x5, Math.max(x6, Math.max(x7, x8))); miny2 = Math.min(y5, Math.min(y6, Math.min(y7, y8))); maxy2 = Math.max(y5, Math.max(y6, Math.max(y7, y8))); Point _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16; _1 = new Point(x1, y1); _2 = new Point(x2, y2); _3 = new Point(x3, y3); _4 = new Point(x4, y4); _5 = new Point(x5, y5); _6 = new Point(x6, y6); _7 = new Point(x7, y7); _8 = new Point(x8, y8); _9 = new Point(minx1, maxy1); _10 = new Point(minx1, miny1); _11 = new Point(maxx1, maxy1); _12 = new Point(maxx1, miny1); double m1 = (minx2 + maxx2) / 2; double m2 = (miny2 + maxy2) / 2; _13 = new Point(minx2, m2); _14 = new Point(m1, miny2); _15 = new Point(maxx2, m2); _16 = new Point(m1, maxy2); Point[] a = {_1, _2, _3, _4}; Point[] b = {_5, _6, _7, _8}; boolean works = false; Line[] aa = {new Line(_9,_10), new Line(_10, _12), new Line(_12, _11), new Line(_11, _9)}; Line[] bb = {new Line(_13, _14), new Line(_14, _15), new Line(_15, _16), new Line(_16, _13)}; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { if (aa[i].intersection(bb[i]) != null) { works = true; } } } for (Point p : b) { if (p.x >= minx1 && p.x <= maxx1 && p.y >= miny1 && p.y <= maxy1) { works = true; } } for (Point p : a) { boolean result = false; for (int i = 0, j = b.length - 1; i < b.length; j = i++) { if ((b[i].y > p.y) != (b[j].y > p.y) && (p.x < (b[j].x - b[i].x) * (p.y - b[i].y) / (b[j].y-b[i].y) + b[i].x)) { result = !result; } } if (result) works = true; } System.out.println(works ? "YES" : "NO"); } public static class Point { double x, y; public Point(double a, double b) { x = a; y = b; } } public static class Line { Point a, b; public Line(Point x, Point y) { a = x; b = y; } public Point intersection(Line o) { double x1 = a.x; double y1 = a.y; double x2 = b.x; double y2 = b.y; double x3 = o.a.x; double y3 = o.a.y; double x4 = o.b.x; double y4 = o.b.y; double denom = (y4 - y3) * (x2 - x1) - (x4 - x3) * (y2 - y1); double ua = ((x4 - x3) * (y1 - y3) - (y4 - y3) * (x1 - x3))/denom; double ub = ((x2 - x1) * (y1 - y3) - (y2 - y1) * (x1 - x3))/denom; if (ua >= 0.0f && ua <= 1.0f && ub >= 0.0f && ub <= 1.0f) { return new Point((int) (x1 + ua*(x2 - x1)), (int) (y1 + ua*(y2 - y1))); } return null; } } public static class FastIO { BufferedReader br; StringTokenizer st; public FastIO() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static long pow(long n, long p, long mod) { if (p == 0) return 1; if (p == 1) return n % mod; if (p % 2 == 0) { long temp = pow(n, p / 2, mod); return (temp * temp) % mod; } else { long temp = pow(n, p / 2, mod); temp = (temp * temp) % mod; return (temp * n) % mod; } } public static long pow(long n, long p) { if (p == 0) return 1; if (p == 1) return n; if (p % 2 == 0) { long temp = pow(n, p / 2); return (temp * temp); } else { long temp = pow(n, p / 2); temp = (temp * temp); return (temp * n); } } public static long gcd(long x, long y) { if (x == 0) return y; else return gcd(y % x, x); } public static boolean isPrime(int n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; for (int i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; import java.text.*; import java.math.*; import static java.lang.Integer.*; import static java.lang.Double.*; import java.lang.Math.*; public class two_squares { public static void main(String[] args) throws Exception { new two_squares().run(); } public void run() throws Exception { FastIO file = new FastIO(); double x1 = file.nextInt(); double y1 = file.nextInt(); double x2 = file.nextInt(); double y2 = file.nextInt(); double x3 = file.nextInt(); double y3 = file.nextInt(); double x4 = file.nextInt(); double y4 = file.nextInt(); double minx1, maxx1, miny1, maxy1; minx1 = Math.min(x1, Math.min(x2, Math.min(x3, x4))); maxx1 = Math.max(x1, Math.max(x2, Math.max(x3, x4))); miny1 = Math.min(y1, Math.min(y2, Math.min(y3, y4))); maxy1 = Math.max(y1, Math.max(y2, Math.max(y3, y4))); double x5 = file.nextInt(); double y5 = file.nextInt(); double x6 = file.nextInt(); double y6 = file.nextInt(); double x7 = file.nextInt(); double y7 = file.nextInt(); double x8 = file.nextInt(); double y8 = file.nextInt(); double minx2, maxx2, miny2, maxy2; minx2 = Math.min(x5, Math.min(x6, Math.min(x7, x8))); maxx2 = Math.max(x5, Math.max(x6, Math.max(x7, x8))); miny2 = Math.min(y5, Math.min(y6, Math.min(y7, y8))); maxy2 = Math.max(y5, Math.max(y6, Math.max(y7, y8))); Point _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16; _1 = new Point(x1, y1); _2 = new Point(x2, y2); _3 = new Point(x3, y3); _4 = new Point(x4, y4); _5 = new Point(x5, y5); _6 = new Point(x6, y6); _7 = new Point(x7, y7); _8 = new Point(x8, y8); _9 = new Point(minx1, maxy1); _10 = new Point(minx1, miny1); _11 = new Point(maxx1, maxy1); _12 = new Point(maxx1, miny1); double m1 = (minx2 + maxx2) / 2; double m2 = (miny2 + maxy2) / 2; _13 = new Point(minx2, m2); _14 = new Point(m1, miny2); _15 = new Point(maxx2, m2); _16 = new Point(m1, maxy2); Point[] a = {_1, _2, _3, _4}; Point[] b = {_5, _6, _7, _8}; boolean works = false; Line[] aa = {new Line(_9,_10), new Line(_10, _12), new Line(_12, _11), new Line(_11, _9)}; Line[] bb = {new Line(_13, _14), new Line(_14, _15), new Line(_15, _16), new Line(_16, _13)}; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { if (aa[i].intersection(bb[i]) != null) { works = true; } } } for (Point p : b) { if (p.x >= minx1 && p.x <= maxx1 && p.y >= miny1 && p.y <= maxy1) { works = true; } } for (Point p : a) { boolean result = false; for (int i = 0, j = b.length - 1; i < b.length; j = i++) { if ((b[i].y > p.y) != (b[j].y > p.y) && (p.x < (b[j].x - b[i].x) * (p.y - b[i].y) / (b[j].y-b[i].y) + b[i].x)) { result = !result; } } if (result) works = true; } System.out.println(works ? "YES" : "NO"); } public static class Point { double x, y; public Point(double a, double b) { x = a; y = b; } } public static class Line { Point a, b; public Line(Point x, Point y) { a = x; b = y; } public Point intersection(Line o) { double x1 = a.x; double y1 = a.y; double x2 = b.x; double y2 = b.y; double x3 = o.a.x; double y3 = o.a.y; double x4 = o.b.x; double y4 = o.b.y; double denom = (y4 - y3) * (x2 - x1) - (x4 - x3) * (y2 - y1); double ua = ((x4 - x3) * (y1 - y3) - (y4 - y3) * (x1 - x3))/denom; double ub = ((x2 - x1) * (y1 - y3) - (y2 - y1) * (x1 - x3))/denom; if (ua >= 0.0f && ua <= 1.0f && ub >= 0.0f && ub <= 1.0f) { return new Point((int) (x1 + ua*(x2 - x1)), (int) (y1 + ua*(y2 - y1))); } return null; } } public static class FastIO { BufferedReader br; StringTokenizer st; public FastIO() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static long pow(long n, long p, long mod) { if (p == 0) return 1; if (p == 1) return n % mod; if (p % 2 == 0) { long temp = pow(n, p / 2, mod); return (temp * temp) % mod; } else { long temp = pow(n, p / 2, mod); temp = (temp * temp) % mod; return (temp * n) % mod; } } public static long pow(long n, long p) { if (p == 0) return 1; if (p == 1) return n; if (p % 2 == 0) { long temp = pow(n, p / 2); return (temp * temp); } else { long temp = pow(n, p / 2); temp = (temp * temp); return (temp * n); } } public static long gcd(long x, long y) { if (x == 0) return y; else return gcd(y % x, x); } public static boolean isPrime(int n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; for (int i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
2,358
3,306
4,133
import java.io.IOException; import java.io.OutputStreamWriter; import java.util.Arrays; import java.io.BufferedWriter; import java.util.InputMismatchException; import java.util.Comparator; import java.io.OutputStream; import java.io.PrintWriter; import java.util.NoSuchElementException; import java.io.Writer; import java.math.BigInteger; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author Nguyen Trung Hieu - [email protected] */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } } class TaskC { public void solve(int testNumber, InputReader in, OutputWriter out) { int xs = in.readInt(); int ys = in.readInt(); int n = in.readInt(); int[] x = new int[n]; int[] y = new int[n]; IOUtils.readIntArrays(in, x, y); int[] res = new int[1 << n]; int[] last = new int[1 << n]; Arrays.fill(res, Integer.MAX_VALUE); int[] ds = new int[n]; for (int i = 0; i < n; i++) { ds[i] = (x[i] - xs) * (x[i] - xs) + (y[i] - ys) * (y[i] - ys); } int[][] d = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) d[i][j] = (x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]); } res[0] = 0; for (int i = 1; i < (1 << n); i++) { for (int j = 0; j < n; j++) { if (((i >> j) & 1) != 0) { if (res[i - (1 << j)] + 2 * ds[j] < res[i]) { res[i] = res[i - (1 << j)] + 2 * ds[j]; last[i] = i - (1 << j); } for (int k = j + 1; k < n; k++) { if (((i >> k) & 1) != 0) { if (res[i - (1 << j) - (1 << k)] + ds[j] + ds[k] + d[j][k] < res[i]) { res[i] = res[i - (1 << j) - (1 << k)] + ds[j] + ds[k] + d[j][k]; last[i] = i - (1 << j) - (1 << k); } } } break; } } } int cur = (1 << n) - 1; out.printLine(res[cur]); while (cur != 0) { out.print("0 "); int dif = cur - last[cur]; for (int i = 0; i < n && dif != 0; i++) { if (((dif >> i) & 1) != 0) { out.print((i + 1) + " "); dif -= (1 << i); } } cur = last[cur]; } out.printLine("0"); } } class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object...objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) writer.print(' '); writer.print(objects[i]); } } public void printLine(Object...objects) { print(objects); writer.println(); } public void close() { writer.close(); } } class IOUtils { public static void readIntArrays(InputReader in, int[]... arrays) { for (int i = 0; i < arrays[0].length; i++) { for (int j = 0; j < arrays.length; j++) arrays[j][i] = in.readInt(); } } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.IOException; import java.io.OutputStreamWriter; import java.util.Arrays; import java.io.BufferedWriter; import java.util.InputMismatchException; import java.util.Comparator; import java.io.OutputStream; import java.io.PrintWriter; import java.util.NoSuchElementException; import java.io.Writer; import java.math.BigInteger; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author Nguyen Trung Hieu - [email protected] */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } } class TaskC { public void solve(int testNumber, InputReader in, OutputWriter out) { int xs = in.readInt(); int ys = in.readInt(); int n = in.readInt(); int[] x = new int[n]; int[] y = new int[n]; IOUtils.readIntArrays(in, x, y); int[] res = new int[1 << n]; int[] last = new int[1 << n]; Arrays.fill(res, Integer.MAX_VALUE); int[] ds = new int[n]; for (int i = 0; i < n; i++) { ds[i] = (x[i] - xs) * (x[i] - xs) + (y[i] - ys) * (y[i] - ys); } int[][] d = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) d[i][j] = (x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]); } res[0] = 0; for (int i = 1; i < (1 << n); i++) { for (int j = 0; j < n; j++) { if (((i >> j) & 1) != 0) { if (res[i - (1 << j)] + 2 * ds[j] < res[i]) { res[i] = res[i - (1 << j)] + 2 * ds[j]; last[i] = i - (1 << j); } for (int k = j + 1; k < n; k++) { if (((i >> k) & 1) != 0) { if (res[i - (1 << j) - (1 << k)] + ds[j] + ds[k] + d[j][k] < res[i]) { res[i] = res[i - (1 << j) - (1 << k)] + ds[j] + ds[k] + d[j][k]; last[i] = i - (1 << j) - (1 << k); } } } break; } } } int cur = (1 << n) - 1; out.printLine(res[cur]); while (cur != 0) { out.print("0 "); int dif = cur - last[cur]; for (int i = 0; i < n && dif != 0; i++) { if (((dif >> i) & 1) != 0) { out.print((i + 1) + " "); dif -= (1 << i); } } cur = last[cur]; } out.printLine("0"); } } class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object...objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) writer.print(' '); writer.print(objects[i]); } } public void printLine(Object...objects) { print(objects); writer.println(); } public void close() { writer.close(); } } class IOUtils { public static void readIntArrays(InputReader in, int[]... arrays) { for (int i = 0; i < arrays[0].length; i++) { for (int j = 0; j < arrays.length; j++) arrays[j][i] = in.readInt(); } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.IOException; import java.io.OutputStreamWriter; import java.util.Arrays; import java.io.BufferedWriter; import java.util.InputMismatchException; import java.util.Comparator; import java.io.OutputStream; import java.io.PrintWriter; import java.util.NoSuchElementException; import java.io.Writer; import java.math.BigInteger; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author Nguyen Trung Hieu - [email protected] */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } } class TaskC { public void solve(int testNumber, InputReader in, OutputWriter out) { int xs = in.readInt(); int ys = in.readInt(); int n = in.readInt(); int[] x = new int[n]; int[] y = new int[n]; IOUtils.readIntArrays(in, x, y); int[] res = new int[1 << n]; int[] last = new int[1 << n]; Arrays.fill(res, Integer.MAX_VALUE); int[] ds = new int[n]; for (int i = 0; i < n; i++) { ds[i] = (x[i] - xs) * (x[i] - xs) + (y[i] - ys) * (y[i] - ys); } int[][] d = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) d[i][j] = (x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]); } res[0] = 0; for (int i = 1; i < (1 << n); i++) { for (int j = 0; j < n; j++) { if (((i >> j) & 1) != 0) { if (res[i - (1 << j)] + 2 * ds[j] < res[i]) { res[i] = res[i - (1 << j)] + 2 * ds[j]; last[i] = i - (1 << j); } for (int k = j + 1; k < n; k++) { if (((i >> k) & 1) != 0) { if (res[i - (1 << j) - (1 << k)] + ds[j] + ds[k] + d[j][k] < res[i]) { res[i] = res[i - (1 << j) - (1 << k)] + ds[j] + ds[k] + d[j][k]; last[i] = i - (1 << j) - (1 << k); } } } break; } } } int cur = (1 << n) - 1; out.printLine(res[cur]); while (cur != 0) { out.print("0 "); int dif = cur - last[cur]; for (int i = 0; i < n && dif != 0; i++) { if (((dif >> i) & 1) != 0) { out.print((i + 1) + " "); dif -= (1 << i); } } cur = last[cur]; } out.printLine("0"); } } class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object...objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) writer.print(' '); writer.print(objects[i]); } } public void printLine(Object...objects) { print(objects); writer.println(); } public void close() { writer.close(); } } class IOUtils { public static void readIntArrays(InputReader in, int[]... arrays) { for (int i = 0; i < arrays[0].length; i++) { for (int j = 0; j < arrays.length; j++) arrays[j][i] = in.readInt(); } } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,698
4,122
1,872
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.io.FilterInputStream; import java.io.BufferedInputStream; import java.math.BigInteger; import java.util.HashMap; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author khokharnikunj8 */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; ScanReader in = new ScanReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskD solver = new TaskD(); solver.solve(1, in, out); out.close(); } static class TaskD { public void solve(int testNumber, ScanReader in, PrintWriter out) { int n = in.scanInt(); BigInteger ans = new BigInteger("0"); long val, index, index1, index2; long sum[] = new long[n]; val = in.scanInt(); HashMap<Long, Integer> hs = new HashMap<>(); hs.put(val, 1); sum[0] = val; for (int i = 1; i < n; i++) { val = in.scanInt(); sum[i] += sum[i - 1]; sum[i] += val; if (!hs.containsKey(val)) hs.put(val, 0); hs.put(val, hs.get(val) + 1); ans = ans.add(BigInteger.valueOf(((i + 1) * val) - sum[i])); index = (hs.containsKey(val + 1)) ? hs.get(val + 1) : 0; index1 = (hs.containsKey(val - 1)) ? hs.get(val - 1) : 0; index2 = (hs.containsKey(val)) ? hs.get(val) : 0; ans = ans.subtract(BigInteger.valueOf(((index + index1 + index2) * val) - ((index * (val + 1)) + (index1 * (val - 1)) + (index2 * (val))))); } out.println(ans); } } static class ScanReader { private byte[] buf = new byte[4 * 1024]; private int index; private BufferedInputStream in; private int total; public ScanReader(InputStream inputStream) { in = new BufferedInputStream(inputStream); } private int scan() { if (index >= total) { index = 0; try { total = in.read(buf); } catch (Exception e) { e.printStackTrace(); } if (total <= 0) return -1; } return buf[index++]; } public int scanInt() { int integer = 0; int n = scan(); while (isWhiteSpace(n)) n = scan(); int neg = 1; if (n == '-') { neg = -1; n = scan(); } while (!isWhiteSpace(n)) { if (n >= '0' && n <= '9') { integer *= 10; integer += n - '0'; n = scan(); } } return neg * integer; } private boolean isWhiteSpace(int n) { if (n == ' ' || n == '\n' || n == '\r' || n == '\t' || n == -1) return true; else return false; } } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.io.FilterInputStream; import java.io.BufferedInputStream; import java.math.BigInteger; import java.util.HashMap; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author khokharnikunj8 */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; ScanReader in = new ScanReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskD solver = new TaskD(); solver.solve(1, in, out); out.close(); } static class TaskD { public void solve(int testNumber, ScanReader in, PrintWriter out) { int n = in.scanInt(); BigInteger ans = new BigInteger("0"); long val, index, index1, index2; long sum[] = new long[n]; val = in.scanInt(); HashMap<Long, Integer> hs = new HashMap<>(); hs.put(val, 1); sum[0] = val; for (int i = 1; i < n; i++) { val = in.scanInt(); sum[i] += sum[i - 1]; sum[i] += val; if (!hs.containsKey(val)) hs.put(val, 0); hs.put(val, hs.get(val) + 1); ans = ans.add(BigInteger.valueOf(((i + 1) * val) - sum[i])); index = (hs.containsKey(val + 1)) ? hs.get(val + 1) : 0; index1 = (hs.containsKey(val - 1)) ? hs.get(val - 1) : 0; index2 = (hs.containsKey(val)) ? hs.get(val) : 0; ans = ans.subtract(BigInteger.valueOf(((index + index1 + index2) * val) - ((index * (val + 1)) + (index1 * (val - 1)) + (index2 * (val))))); } out.println(ans); } } static class ScanReader { private byte[] buf = new byte[4 * 1024]; private int index; private BufferedInputStream in; private int total; public ScanReader(InputStream inputStream) { in = new BufferedInputStream(inputStream); } private int scan() { if (index >= total) { index = 0; try { total = in.read(buf); } catch (Exception e) { e.printStackTrace(); } if (total <= 0) return -1; } return buf[index++]; } public int scanInt() { int integer = 0; int n = scan(); while (isWhiteSpace(n)) n = scan(); int neg = 1; if (n == '-') { neg = -1; n = scan(); } while (!isWhiteSpace(n)) { if (n >= '0' && n <= '9') { integer *= 10; integer += n - '0'; n = scan(); } } return neg * integer; } private boolean isWhiteSpace(int n) { if (n == ' ' || n == '\n' || n == '\r' || n == '\t' || n == -1) return true; else return false; } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.io.FilterInputStream; import java.io.BufferedInputStream; import java.math.BigInteger; import java.util.HashMap; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author khokharnikunj8 */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; ScanReader in = new ScanReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskD solver = new TaskD(); solver.solve(1, in, out); out.close(); } static class TaskD { public void solve(int testNumber, ScanReader in, PrintWriter out) { int n = in.scanInt(); BigInteger ans = new BigInteger("0"); long val, index, index1, index2; long sum[] = new long[n]; val = in.scanInt(); HashMap<Long, Integer> hs = new HashMap<>(); hs.put(val, 1); sum[0] = val; for (int i = 1; i < n; i++) { val = in.scanInt(); sum[i] += sum[i - 1]; sum[i] += val; if (!hs.containsKey(val)) hs.put(val, 0); hs.put(val, hs.get(val) + 1); ans = ans.add(BigInteger.valueOf(((i + 1) * val) - sum[i])); index = (hs.containsKey(val + 1)) ? hs.get(val + 1) : 0; index1 = (hs.containsKey(val - 1)) ? hs.get(val - 1) : 0; index2 = (hs.containsKey(val)) ? hs.get(val) : 0; ans = ans.subtract(BigInteger.valueOf(((index + index1 + index2) * val) - ((index * (val + 1)) + (index1 * (val - 1)) + (index2 * (val))))); } out.println(ans); } } static class ScanReader { private byte[] buf = new byte[4 * 1024]; private int index; private BufferedInputStream in; private int total; public ScanReader(InputStream inputStream) { in = new BufferedInputStream(inputStream); } private int scan() { if (index >= total) { index = 0; try { total = in.read(buf); } catch (Exception e) { e.printStackTrace(); } if (total <= 0) return -1; } return buf[index++]; } public int scanInt() { int integer = 0; int n = scan(); while (isWhiteSpace(n)) n = scan(); int neg = 1; if (n == '-') { neg = -1; n = scan(); } while (!isWhiteSpace(n)) { if (n >= '0' && n <= '9') { integer *= 10; integer += n - '0'; n = scan(); } } return neg * integer; } private boolean isWhiteSpace(int n) { if (n == ' ' || n == '\n' || n == '\r' || n == '\t' || n == -1) return true; else return false; } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,094
1,868
2,097
import java.io.*; import java.util.*; public class A { final String filename = new String("A").toLowerCase(); void solve() throws Exception { int n = nextInt(); int[] a = new int[n]; int m = -1; for (int i = 0; i < n; i++) { a[i] = nextInt(); if (m == -1 || a[i] > a[m]) { m = i; } } if (a[m] == 1) a[m] = 2; else a[m] = 1; Arrays.sort(a); for (int i = 0; i < n; i++) { out.print(a[i] + " "); } } void run() { try { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); // in = new BufferedReader(new FileReader("input.txt")); // out = new PrintWriter("output.txt"); solve(); out.close(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } BufferedReader in; StringTokenizer st; PrintWriter out; String nextToken() throws Exception { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(in.readLine()); return st.nextToken(); } int nextInt() throws Exception { return Integer.parseInt(nextToken()); } long nextLong() throws Exception { return Long.parseLong(nextToken()); } double nextDouble() throws Exception { return Double.parseDouble(nextToken()); } public static void main(String[] args) { new A().run(); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class A { final String filename = new String("A").toLowerCase(); void solve() throws Exception { int n = nextInt(); int[] a = new int[n]; int m = -1; for (int i = 0; i < n; i++) { a[i] = nextInt(); if (m == -1 || a[i] > a[m]) { m = i; } } if (a[m] == 1) a[m] = 2; else a[m] = 1; Arrays.sort(a); for (int i = 0; i < n; i++) { out.print(a[i] + " "); } } void run() { try { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); // in = new BufferedReader(new FileReader("input.txt")); // out = new PrintWriter("output.txt"); solve(); out.close(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } BufferedReader in; StringTokenizer st; PrintWriter out; String nextToken() throws Exception { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(in.readLine()); return st.nextToken(); } int nextInt() throws Exception { return Integer.parseInt(nextToken()); } long nextLong() throws Exception { return Long.parseLong(nextToken()); } double nextDouble() throws Exception { return Double.parseDouble(nextToken()); } public static void main(String[] args) { new A().run(); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class A { final String filename = new String("A").toLowerCase(); void solve() throws Exception { int n = nextInt(); int[] a = new int[n]; int m = -1; for (int i = 0; i < n; i++) { a[i] = nextInt(); if (m == -1 || a[i] > a[m]) { m = i; } } if (a[m] == 1) a[m] = 2; else a[m] = 1; Arrays.sort(a); for (int i = 0; i < n; i++) { out.print(a[i] + " "); } } void run() { try { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); // in = new BufferedReader(new FileReader("input.txt")); // out = new PrintWriter("output.txt"); solve(); out.close(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } BufferedReader in; StringTokenizer st; PrintWriter out; String nextToken() throws Exception { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(in.readLine()); return st.nextToken(); } int nextInt() throws Exception { return Integer.parseInt(nextToken()); } long nextLong() throws Exception { return Long.parseLong(nextToken()); } double nextDouble() throws Exception { return Double.parseDouble(nextToken()); } public static void main(String[] args) { new A().run(); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
692
2,093
169
import java.util.*; public class A { public static void main(String args[]) { Scanner sc=new Scanner(System.in); long n=sc.nextLong(); if(n==0) System.out.println(0); else if(n%2==1) System.out.println((n+1)/2); else System.out.println(n+1); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; public class A { public static void main(String args[]) { Scanner sc=new Scanner(System.in); long n=sc.nextLong(); if(n==0) System.out.println(0); else if(n%2==1) System.out.println((n+1)/2); else System.out.println(n+1); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; public class A { public static void main(String args[]) { Scanner sc=new Scanner(System.in); long n=sc.nextLong(); if(n==0) System.out.println(0); else if(n%2==1) System.out.println((n+1)/2); else System.out.println(n+1); } } </CODE> <EVALUATION_RUBRIC> - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
432
169
3,948
import java.util.*; import java.io.*; public class E { void solve(BufferedReader in) throws Exception { int[] xx = toInts(in.readLine()); int n = xx[0]; double k = xx[1]; int[][] board = new int[n][n]; for(int i = 0; i<n; i++) board[i] = toInts(in.readLine()); int fst = n/2; int snd = n - fst; int[] maxc = new int[1<<fst]; int max = 1; for(int i = 0; i<(1<<fst); i++) { for(int j = 0; j<fst; j++) { if((i&(1<<j)) != 0) maxc[i] = Math.max(maxc[i], maxc[i^(1<<j)]); } boolean ok = true; for(int a = 0; a<fst; a++) if(((1<<a)&i) != 0) { for(int b = a+1; b<fst; b++) if(((1<<b)&i) != 0) { if(board[a][b] == 0) ok = false; } } if(ok) { maxc[i] = Integer.bitCount(i); max = Math.max(max, maxc[i]); } } for(int i = 0; i<(1<<snd); i++) { boolean ok = true; for(int a = 0; a<snd; a++) if(((1<<a)&i) != 0) { for(int b = a+1; b<snd; b++) if(((1<<b)&i) != 0) { if(board[a+fst][b+fst] == 0) ok = false; } } if(!ok) continue; int mask = 0; for(int a = 0; a<fst; a++) { ok = true; for(int b = 0; b<snd; b++) { if(((1<<b)&i) != 0) { if(board[a][b+fst] == 0) ok = false; } } if(ok) mask |= (1<<a); } max = Math.max(Integer.bitCount(i) + maxc[mask], max); } System.out.println(k*k*(max-1.0)/(2*max)); } int toInt(String s) {return Integer.parseInt(s);} int[] toInts(String s) { String[] a = s.split(" "); int[] o = new int[a.length]; for(int i = 0; i<a.length; i++) o[i] = toInt(a[i]); return o; } void e(Object o) { System.err.println(o); } public static void main(String[] args) throws Exception{ BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); (new E()).solve(in); } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class E { void solve(BufferedReader in) throws Exception { int[] xx = toInts(in.readLine()); int n = xx[0]; double k = xx[1]; int[][] board = new int[n][n]; for(int i = 0; i<n; i++) board[i] = toInts(in.readLine()); int fst = n/2; int snd = n - fst; int[] maxc = new int[1<<fst]; int max = 1; for(int i = 0; i<(1<<fst); i++) { for(int j = 0; j<fst; j++) { if((i&(1<<j)) != 0) maxc[i] = Math.max(maxc[i], maxc[i^(1<<j)]); } boolean ok = true; for(int a = 0; a<fst; a++) if(((1<<a)&i) != 0) { for(int b = a+1; b<fst; b++) if(((1<<b)&i) != 0) { if(board[a][b] == 0) ok = false; } } if(ok) { maxc[i] = Integer.bitCount(i); max = Math.max(max, maxc[i]); } } for(int i = 0; i<(1<<snd); i++) { boolean ok = true; for(int a = 0; a<snd; a++) if(((1<<a)&i) != 0) { for(int b = a+1; b<snd; b++) if(((1<<b)&i) != 0) { if(board[a+fst][b+fst] == 0) ok = false; } } if(!ok) continue; int mask = 0; for(int a = 0; a<fst; a++) { ok = true; for(int b = 0; b<snd; b++) { if(((1<<b)&i) != 0) { if(board[a][b+fst] == 0) ok = false; } } if(ok) mask |= (1<<a); } max = Math.max(Integer.bitCount(i) + maxc[mask], max); } System.out.println(k*k*(max-1.0)/(2*max)); } int toInt(String s) {return Integer.parseInt(s);} int[] toInts(String s) { String[] a = s.split(" "); int[] o = new int[a.length]; for(int i = 0; i<a.length; i++) o[i] = toInt(a[i]); return o; } void e(Object o) { System.err.println(o); } public static void main(String[] args) throws Exception{ BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); (new E()).solve(in); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class E { void solve(BufferedReader in) throws Exception { int[] xx = toInts(in.readLine()); int n = xx[0]; double k = xx[1]; int[][] board = new int[n][n]; for(int i = 0; i<n; i++) board[i] = toInts(in.readLine()); int fst = n/2; int snd = n - fst; int[] maxc = new int[1<<fst]; int max = 1; for(int i = 0; i<(1<<fst); i++) { for(int j = 0; j<fst; j++) { if((i&(1<<j)) != 0) maxc[i] = Math.max(maxc[i], maxc[i^(1<<j)]); } boolean ok = true; for(int a = 0; a<fst; a++) if(((1<<a)&i) != 0) { for(int b = a+1; b<fst; b++) if(((1<<b)&i) != 0) { if(board[a][b] == 0) ok = false; } } if(ok) { maxc[i] = Integer.bitCount(i); max = Math.max(max, maxc[i]); } } for(int i = 0; i<(1<<snd); i++) { boolean ok = true; for(int a = 0; a<snd; a++) if(((1<<a)&i) != 0) { for(int b = a+1; b<snd; b++) if(((1<<b)&i) != 0) { if(board[a+fst][b+fst] == 0) ok = false; } } if(!ok) continue; int mask = 0; for(int a = 0; a<fst; a++) { ok = true; for(int b = 0; b<snd; b++) { if(((1<<b)&i) != 0) { if(board[a][b+fst] == 0) ok = false; } } if(ok) mask |= (1<<a); } max = Math.max(Integer.bitCount(i) + maxc[mask], max); } System.out.println(k*k*(max-1.0)/(2*max)); } int toInt(String s) {return Integer.parseInt(s);} int[] toInts(String s) { String[] a = s.split(" "); int[] o = new int[a.length]; for(int i = 0; i<a.length; i++) o[i] = toInt(a[i]); return o; } void e(Object o) { System.err.println(o); } public static void main(String[] args) throws Exception{ BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); (new E()).solve(in); } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
981
3,937
3,439
import static java.lang.Math.*; import static java.util.Arrays.*; import java.io.*; import java.util.*; public class Main { static boolean LOCAL = false;//System.getSecurityManager() == null; Scanner sc = new Scanner(System.in); void run() { char[] cs = sc.nextLine().toCharArray(); int res = 0; for (int s1 = 0; s1 < cs.length; s1++) { for (int s2 = s1 + 1; s2 < cs.length; s2++) { int len = 0; while (s2 + len < cs.length && cs[s1 + len] == cs[s2 + len]) { len++; } res = max(res, len); } } System.out.println(res); } class Scanner { BufferedReader br; StringTokenizer st; Scanner(InputStream in) { br = new BufferedReader(new InputStreamReader(in)); eat(""); } void eat(String s) { st = new StringTokenizer(s); } String nextLine() { try { return br.readLine(); } catch (IOException e) { throw new RuntimeException(e); } } boolean hasNext() { while (!st.hasMoreTokens()) { String s = nextLine(); if (s == null) return false; eat(s); } return true; } String next() { hasNext(); return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } } void debug(Object...os) { System.err.println(deepToString(os)); } public static void main(String[] args) { if (LOCAL) { try { System.setIn(new FileInputStream("in.txt")); } catch (Throwable e) { LOCAL = false; } } if (!LOCAL) { try { Locale.setDefault(Locale.US); System.setOut(new PrintStream(new BufferedOutputStream(System.out))); } catch (Throwable e) { } } new Main().run(); System.out.flush(); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import static java.lang.Math.*; import static java.util.Arrays.*; import java.io.*; import java.util.*; public class Main { static boolean LOCAL = false;//System.getSecurityManager() == null; Scanner sc = new Scanner(System.in); void run() { char[] cs = sc.nextLine().toCharArray(); int res = 0; for (int s1 = 0; s1 < cs.length; s1++) { for (int s2 = s1 + 1; s2 < cs.length; s2++) { int len = 0; while (s2 + len < cs.length && cs[s1 + len] == cs[s2 + len]) { len++; } res = max(res, len); } } System.out.println(res); } class Scanner { BufferedReader br; StringTokenizer st; Scanner(InputStream in) { br = new BufferedReader(new InputStreamReader(in)); eat(""); } void eat(String s) { st = new StringTokenizer(s); } String nextLine() { try { return br.readLine(); } catch (IOException e) { throw new RuntimeException(e); } } boolean hasNext() { while (!st.hasMoreTokens()) { String s = nextLine(); if (s == null) return false; eat(s); } return true; } String next() { hasNext(); return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } } void debug(Object...os) { System.err.println(deepToString(os)); } public static void main(String[] args) { if (LOCAL) { try { System.setIn(new FileInputStream("in.txt")); } catch (Throwable e) { LOCAL = false; } } if (!LOCAL) { try { Locale.setDefault(Locale.US); System.setOut(new PrintStream(new BufferedOutputStream(System.out))); } catch (Throwable e) { } } new Main().run(); System.out.flush(); } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import static java.lang.Math.*; import static java.util.Arrays.*; import java.io.*; import java.util.*; public class Main { static boolean LOCAL = false;//System.getSecurityManager() == null; Scanner sc = new Scanner(System.in); void run() { char[] cs = sc.nextLine().toCharArray(); int res = 0; for (int s1 = 0; s1 < cs.length; s1++) { for (int s2 = s1 + 1; s2 < cs.length; s2++) { int len = 0; while (s2 + len < cs.length && cs[s1 + len] == cs[s2 + len]) { len++; } res = max(res, len); } } System.out.println(res); } class Scanner { BufferedReader br; StringTokenizer st; Scanner(InputStream in) { br = new BufferedReader(new InputStreamReader(in)); eat(""); } void eat(String s) { st = new StringTokenizer(s); } String nextLine() { try { return br.readLine(); } catch (IOException e) { throw new RuntimeException(e); } } boolean hasNext() { while (!st.hasMoreTokens()) { String s = nextLine(); if (s == null) return false; eat(s); } return true; } String next() { hasNext(); return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } } void debug(Object...os) { System.err.println(deepToString(os)); } public static void main(String[] args) { if (LOCAL) { try { System.setIn(new FileInputStream("in.txt")); } catch (Throwable e) { LOCAL = false; } } if (!LOCAL) { try { Locale.setDefault(Locale.US); System.setOut(new PrintStream(new BufferedOutputStream(System.out))); } catch (Throwable e) { } } new Main().run(); System.out.flush(); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
807
3,433
2,513
import java.util.HashMap; import java.util.Scanner; public class Main{ int[] ints; int[] prefix; public static void main(String[] args) { new Main().run(); } public void run() { Scanner file = new Scanner(System.in); int N = file.nextInt(); ints = new int[N]; for(int i = 0;i<N;i++) ints[i] = file.nextInt(); prefix = new int[N]; prefix[0] = ints[0]; for(int i =1;i<prefix.length;i++) prefix[i] = prefix[i-1]+ints[i]; HashMap<Integer,Integer> ending = new HashMap<>();//ending for each sum HashMap<Integer,Integer> amount = new HashMap<>();//k for each sum for(int end = 0;end<prefix.length;end++) { for(int start = 0;start<=end;start++) { int sum = sum(start,end); if(!ending.containsKey(sum)) ending.put(sum, -1); if(!amount.containsKey(sum)) amount.put(sum,0); if(ending.get(sum)<start) { amount.put(sum,amount.get(sum)+1); ending.put(sum,end); } } } int max = 0; int maxnum = -1; for(int x:amount.keySet()) { if(amount.get(x)>max) { max = amount.get(x); maxnum = x; } } System.out.println(max); HashMap<Integer,Integer> occurrence = new HashMap<Integer,Integer>(); occurrence.put(0,0); for(int i = 0;i<prefix.length;i++) { if(occurrence.containsKey(prefix[i]-maxnum)) { System.out.println(occurrence.get(prefix[i]-maxnum)+1+" "+(i+1)); occurrence.clear(); } occurrence.put(prefix[i],i+1); } } public int sum(int L, int R) { return prefix[R] - prefix[L] + ints[L]; } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.HashMap; import java.util.Scanner; public class Main{ int[] ints; int[] prefix; public static void main(String[] args) { new Main().run(); } public void run() { Scanner file = new Scanner(System.in); int N = file.nextInt(); ints = new int[N]; for(int i = 0;i<N;i++) ints[i] = file.nextInt(); prefix = new int[N]; prefix[0] = ints[0]; for(int i =1;i<prefix.length;i++) prefix[i] = prefix[i-1]+ints[i]; HashMap<Integer,Integer> ending = new HashMap<>();//ending for each sum HashMap<Integer,Integer> amount = new HashMap<>();//k for each sum for(int end = 0;end<prefix.length;end++) { for(int start = 0;start<=end;start++) { int sum = sum(start,end); if(!ending.containsKey(sum)) ending.put(sum, -1); if(!amount.containsKey(sum)) amount.put(sum,0); if(ending.get(sum)<start) { amount.put(sum,amount.get(sum)+1); ending.put(sum,end); } } } int max = 0; int maxnum = -1; for(int x:amount.keySet()) { if(amount.get(x)>max) { max = amount.get(x); maxnum = x; } } System.out.println(max); HashMap<Integer,Integer> occurrence = new HashMap<Integer,Integer>(); occurrence.put(0,0); for(int i = 0;i<prefix.length;i++) { if(occurrence.containsKey(prefix[i]-maxnum)) { System.out.println(occurrence.get(prefix[i]-maxnum)+1+" "+(i+1)); occurrence.clear(); } occurrence.put(prefix[i],i+1); } } public int sum(int L, int R) { return prefix[R] - prefix[L] + ints[L]; } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.HashMap; import java.util.Scanner; public class Main{ int[] ints; int[] prefix; public static void main(String[] args) { new Main().run(); } public void run() { Scanner file = new Scanner(System.in); int N = file.nextInt(); ints = new int[N]; for(int i = 0;i<N;i++) ints[i] = file.nextInt(); prefix = new int[N]; prefix[0] = ints[0]; for(int i =1;i<prefix.length;i++) prefix[i] = prefix[i-1]+ints[i]; HashMap<Integer,Integer> ending = new HashMap<>();//ending for each sum HashMap<Integer,Integer> amount = new HashMap<>();//k for each sum for(int end = 0;end<prefix.length;end++) { for(int start = 0;start<=end;start++) { int sum = sum(start,end); if(!ending.containsKey(sum)) ending.put(sum, -1); if(!amount.containsKey(sum)) amount.put(sum,0); if(ending.get(sum)<start) { amount.put(sum,amount.get(sum)+1); ending.put(sum,end); } } } int max = 0; int maxnum = -1; for(int x:amount.keySet()) { if(amount.get(x)>max) { max = amount.get(x); maxnum = x; } } System.out.println(max); HashMap<Integer,Integer> occurrence = new HashMap<Integer,Integer>(); occurrence.put(0,0); for(int i = 0;i<prefix.length;i++) { if(occurrence.containsKey(prefix[i]-maxnum)) { System.out.println(occurrence.get(prefix[i]-maxnum)+1+" "+(i+1)); occurrence.clear(); } occurrence.put(prefix[i],i+1); } } public int sum(int L, int R) { return prefix[R] - prefix[L] + ints[L]; } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - others: The time complexity does not fit to any of the given categories or is ambiguous. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
808
2,507
2,484
/* Keep solving problems. */ import java.util.*; import java.io.*; public class CFA { BufferedReader br; PrintWriter out; StringTokenizer st; boolean eof; private static final long MOD = 1000L * 1000L * 1000L + 7; private static final int[] dx = {0, -1, 0, 1}; private static final int[] dy = {1, 0, -1, 0}; private static final String yes = "Yes"; private static final String no = "No"; int n; int[] arr; class Segment { int start; int end; public Segment(int start, int end) { this.start = start; this.end = end; } @Override public String toString() { return start + " " + end; } } Map<Integer, List<Segment>> hm = new HashMap<>(); void solve() throws IOException { n = nextInt(); arr = nextIntArr(n); for (int i = 0; i < n; i++) { int sum = 0; for (int j = i; j < n; j++) { sum += arr[j]; if (!hm.containsKey(sum)) { hm.put(sum, new ArrayList<>()); } hm.get(sum).add(new Segment(i, j)); } } int max = -1; int idx = -1; for (Map.Entry<Integer, List<Segment>> entry : hm.entrySet()) { int key = entry.getKey(); List<Segment> values = entry.getValue(); Collections.sort(values, new Comparator<Segment>() { @Override public int compare(Segment o1, Segment o2) { return Integer.compare(o1.end, o2.end); } }); int cnt = findSeg(values).size(); if (cnt > max) { max = cnt; idx = key; } } List<Segment> res = findSeg(hm.get(idx)); outln(res.size()); for (int i = 0; i < res.size(); i++) { outln((1 + res.get(i).start) + " " + (1 + res.get(i).end)); } } List<Segment> findSeg(List<Segment> input) { List<Segment> res = new ArrayList<>(); int bound = -1; for (int i = 0; i < input.size(); i++) { if (input.get(i).start > bound) { res.add(input.get(i)); bound = input.get(i).end; } } return res; } void shuffle(int[] a) { int n = a.length; for(int i = 0; i < n; i++) { int r = i + (int) (Math.random() * (n - i)); int tmp = a[i]; a[i] = a[r]; a[r] = tmp; } } long gcd(long a, long b) { while(a != 0 && b != 0) { long c = b; b = a % b; a = c; } return a + b; } private void outln(Object o) { out.println(o); } private void out(Object o) { out.print(o); } private void formatPrint(double val) { outln(String.format("%.9f%n", val)); } public CFA() throws IOException { br = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); out.close(); } public static void main(String[] args) throws IOException { new CFA(); } public long[] nextLongArr(int n) throws IOException{ long[] res = new long[n]; for(int i = 0; i < n; i++) res[i] = nextLong(); return res; } public int[] nextIntArr(int n) throws IOException { int[] res = new int[n]; for(int i = 0; i < n; i++) res[i] = nextInt(); return res; } public String nextToken() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception e) { eof = true; return null; } } return st.nextToken(); } public String nextString() { try { return br.readLine(); } catch (IOException e) { eof = true; return null; } } public int nextInt() throws IOException { return Integer.parseInt(nextToken()); } public long nextLong() throws IOException { return Long.parseLong(nextToken()); } public double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> /* Keep solving problems. */ import java.util.*; import java.io.*; public class CFA { BufferedReader br; PrintWriter out; StringTokenizer st; boolean eof; private static final long MOD = 1000L * 1000L * 1000L + 7; private static final int[] dx = {0, -1, 0, 1}; private static final int[] dy = {1, 0, -1, 0}; private static final String yes = "Yes"; private static final String no = "No"; int n; int[] arr; class Segment { int start; int end; public Segment(int start, int end) { this.start = start; this.end = end; } @Override public String toString() { return start + " " + end; } } Map<Integer, List<Segment>> hm = new HashMap<>(); void solve() throws IOException { n = nextInt(); arr = nextIntArr(n); for (int i = 0; i < n; i++) { int sum = 0; for (int j = i; j < n; j++) { sum += arr[j]; if (!hm.containsKey(sum)) { hm.put(sum, new ArrayList<>()); } hm.get(sum).add(new Segment(i, j)); } } int max = -1; int idx = -1; for (Map.Entry<Integer, List<Segment>> entry : hm.entrySet()) { int key = entry.getKey(); List<Segment> values = entry.getValue(); Collections.sort(values, new Comparator<Segment>() { @Override public int compare(Segment o1, Segment o2) { return Integer.compare(o1.end, o2.end); } }); int cnt = findSeg(values).size(); if (cnt > max) { max = cnt; idx = key; } } List<Segment> res = findSeg(hm.get(idx)); outln(res.size()); for (int i = 0; i < res.size(); i++) { outln((1 + res.get(i).start) + " " + (1 + res.get(i).end)); } } List<Segment> findSeg(List<Segment> input) { List<Segment> res = new ArrayList<>(); int bound = -1; for (int i = 0; i < input.size(); i++) { if (input.get(i).start > bound) { res.add(input.get(i)); bound = input.get(i).end; } } return res; } void shuffle(int[] a) { int n = a.length; for(int i = 0; i < n; i++) { int r = i + (int) (Math.random() * (n - i)); int tmp = a[i]; a[i] = a[r]; a[r] = tmp; } } long gcd(long a, long b) { while(a != 0 && b != 0) { long c = b; b = a % b; a = c; } return a + b; } private void outln(Object o) { out.println(o); } private void out(Object o) { out.print(o); } private void formatPrint(double val) { outln(String.format("%.9f%n", val)); } public CFA() throws IOException { br = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); out.close(); } public static void main(String[] args) throws IOException { new CFA(); } public long[] nextLongArr(int n) throws IOException{ long[] res = new long[n]; for(int i = 0; i < n; i++) res[i] = nextLong(); return res; } public int[] nextIntArr(int n) throws IOException { int[] res = new int[n]; for(int i = 0; i < n; i++) res[i] = nextInt(); return res; } public String nextToken() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception e) { eof = true; return null; } } return st.nextToken(); } public String nextString() { try { return br.readLine(); } catch (IOException e) { eof = true; return null; } } public int nextInt() throws IOException { return Integer.parseInt(nextToken()); } public long nextLong() throws IOException { return Long.parseLong(nextToken()); } public double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> /* Keep solving problems. */ import java.util.*; import java.io.*; public class CFA { BufferedReader br; PrintWriter out; StringTokenizer st; boolean eof; private static final long MOD = 1000L * 1000L * 1000L + 7; private static final int[] dx = {0, -1, 0, 1}; private static final int[] dy = {1, 0, -1, 0}; private static final String yes = "Yes"; private static final String no = "No"; int n; int[] arr; class Segment { int start; int end; public Segment(int start, int end) { this.start = start; this.end = end; } @Override public String toString() { return start + " " + end; } } Map<Integer, List<Segment>> hm = new HashMap<>(); void solve() throws IOException { n = nextInt(); arr = nextIntArr(n); for (int i = 0; i < n; i++) { int sum = 0; for (int j = i; j < n; j++) { sum += arr[j]; if (!hm.containsKey(sum)) { hm.put(sum, new ArrayList<>()); } hm.get(sum).add(new Segment(i, j)); } } int max = -1; int idx = -1; for (Map.Entry<Integer, List<Segment>> entry : hm.entrySet()) { int key = entry.getKey(); List<Segment> values = entry.getValue(); Collections.sort(values, new Comparator<Segment>() { @Override public int compare(Segment o1, Segment o2) { return Integer.compare(o1.end, o2.end); } }); int cnt = findSeg(values).size(); if (cnt > max) { max = cnt; idx = key; } } List<Segment> res = findSeg(hm.get(idx)); outln(res.size()); for (int i = 0; i < res.size(); i++) { outln((1 + res.get(i).start) + " " + (1 + res.get(i).end)); } } List<Segment> findSeg(List<Segment> input) { List<Segment> res = new ArrayList<>(); int bound = -1; for (int i = 0; i < input.size(); i++) { if (input.get(i).start > bound) { res.add(input.get(i)); bound = input.get(i).end; } } return res; } void shuffle(int[] a) { int n = a.length; for(int i = 0; i < n; i++) { int r = i + (int) (Math.random() * (n - i)); int tmp = a[i]; a[i] = a[r]; a[r] = tmp; } } long gcd(long a, long b) { while(a != 0 && b != 0) { long c = b; b = a % b; a = c; } return a + b; } private void outln(Object o) { out.println(o); } private void out(Object o) { out.print(o); } private void formatPrint(double val) { outln(String.format("%.9f%n", val)); } public CFA() throws IOException { br = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); out.close(); } public static void main(String[] args) throws IOException { new CFA(); } public long[] nextLongArr(int n) throws IOException{ long[] res = new long[n]; for(int i = 0; i < n; i++) res[i] = nextLong(); return res; } public int[] nextIntArr(int n) throws IOException { int[] res = new int[n]; for(int i = 0; i < n; i++) res[i] = nextInt(); return res; } public String nextToken() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception e) { eof = true; return null; } } return st.nextToken(); } public String nextString() { try { return br.readLine(); } catch (IOException e) { eof = true; return null; } } public int nextInt() throws IOException { return Integer.parseInt(nextToken()); } public long nextLong() throws IOException { return Long.parseLong(nextToken()); } public double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } } </CODE> <EVALUATION_RUBRIC> - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,400
2,479
3,576
import java.io.*; import java.util.*; public class Main implements Runnable { public void _main() throws IOException { int height = nextInt(); int width = nextInt(); int k = nextInt(); int[] r = new int[k]; int[] c = new int[k]; for (int i = 0; i < k; i++) { r[i] = nextInt() - 1; c[i] = nextInt() - 1; } int res = 0, R = r[0], C = c[0]; for (int i = 0; i < height; i++) for (int j = 0; j < width; j++) { int cur = Integer.MAX_VALUE; for (int z = 0; z < k; z++) cur = Math.min(cur, Math.abs(i - r[z]) + Math.abs(j - c[z])); if (res < cur) { res = cur; R = i; C = j; } } out.print((R + 1) + " " + (C + 1)); } private BufferedReader in; private PrintWriter out; private StringTokenizer st; private String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(in.readLine()); return st.nextToken(); } private int nextInt() throws IOException { return Integer.parseInt(next()); } private long nextLong() throws IOException { return Long.parseLong(next()); } private double nextDouble() throws IOException { return Double.parseDouble(next()); } public static void main(String[] args) { new Thread(new Main()).start(); } public void run() { try { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); in = new BufferedReader(new FileReader("input.txt")); out = new PrintWriter(new FileWriter("output.txt")); _main(); out.close(); } catch (Exception e) { e.printStackTrace(); System.exit(202); } } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main implements Runnable { public void _main() throws IOException { int height = nextInt(); int width = nextInt(); int k = nextInt(); int[] r = new int[k]; int[] c = new int[k]; for (int i = 0; i < k; i++) { r[i] = nextInt() - 1; c[i] = nextInt() - 1; } int res = 0, R = r[0], C = c[0]; for (int i = 0; i < height; i++) for (int j = 0; j < width; j++) { int cur = Integer.MAX_VALUE; for (int z = 0; z < k; z++) cur = Math.min(cur, Math.abs(i - r[z]) + Math.abs(j - c[z])); if (res < cur) { res = cur; R = i; C = j; } } out.print((R + 1) + " " + (C + 1)); } private BufferedReader in; private PrintWriter out; private StringTokenizer st; private String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(in.readLine()); return st.nextToken(); } private int nextInt() throws IOException { return Integer.parseInt(next()); } private long nextLong() throws IOException { return Long.parseLong(next()); } private double nextDouble() throws IOException { return Double.parseDouble(next()); } public static void main(String[] args) { new Thread(new Main()).start(); } public void run() { try { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); in = new BufferedReader(new FileReader("input.txt")); out = new PrintWriter(new FileWriter("output.txt")); _main(); out.close(); } catch (Exception e) { e.printStackTrace(); System.exit(202); } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main implements Runnable { public void _main() throws IOException { int height = nextInt(); int width = nextInt(); int k = nextInt(); int[] r = new int[k]; int[] c = new int[k]; for (int i = 0; i < k; i++) { r[i] = nextInt() - 1; c[i] = nextInt() - 1; } int res = 0, R = r[0], C = c[0]; for (int i = 0; i < height; i++) for (int j = 0; j < width; j++) { int cur = Integer.MAX_VALUE; for (int z = 0; z < k; z++) cur = Math.min(cur, Math.abs(i - r[z]) + Math.abs(j - c[z])); if (res < cur) { res = cur; R = i; C = j; } } out.print((R + 1) + " " + (C + 1)); } private BufferedReader in; private PrintWriter out; private StringTokenizer st; private String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(in.readLine()); return st.nextToken(); } private int nextInt() throws IOException { return Integer.parseInt(next()); } private long nextLong() throws IOException { return Long.parseLong(next()); } private double nextDouble() throws IOException { return Double.parseDouble(next()); } public static void main(String[] args) { new Thread(new Main()).start(); } public void run() { try { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); in = new BufferedReader(new FileReader("input.txt")); out = new PrintWriter(new FileWriter("output.txt")); _main(); out.close(); } catch (Exception e) { e.printStackTrace(); System.exit(202); } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
779
3,568
2,195
import java.util.*; import java.io.*; public class C { static long time = System.currentTimeMillis(); public static void main(String[] args) throws IOException { //FastReader infile = new FastReader("test.txt"); FastReader infile = new FastReader(System.in); int N = infile.nextInt(); int R = infile.nextInt(); double[] xPos = new double[N]; for(int x = 0; x < N; x++) xPos[x] = infile.nextDouble(); double[] yPos = new double[N]; Arrays.fill(yPos, R); for(int x = 1; x < N; x++) { for(int y = 0; y < x; y++) if(Math.abs(xPos[x]-xPos[y])<=2*R) { yPos[x] = Math.max(yPos[x], yPos[y]+Math.sqrt((2*R)*(2*R)-Math.abs(xPos[x]-xPos[y])*Math.abs(xPos[x]-xPos[y]))); } } System.out.print(yPos[0]); for(int x = 1; x < N; x++) System.out.print(" "+yPos[x]); //System.out.println(System.currentTimeMillis()-time); } } class FastReader { BufferedReader br; StringTokenizer st; public FastReader(String file) throws IOException { br = new BufferedReader(new FileReader(file)); } public FastReader(InputStream i) throws IOException { br = new BufferedReader(new InputStreamReader(System.in)); } boolean hasNext() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception e) { return false; } } return true; } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; public class C { static long time = System.currentTimeMillis(); public static void main(String[] args) throws IOException { //FastReader infile = new FastReader("test.txt"); FastReader infile = new FastReader(System.in); int N = infile.nextInt(); int R = infile.nextInt(); double[] xPos = new double[N]; for(int x = 0; x < N; x++) xPos[x] = infile.nextDouble(); double[] yPos = new double[N]; Arrays.fill(yPos, R); for(int x = 1; x < N; x++) { for(int y = 0; y < x; y++) if(Math.abs(xPos[x]-xPos[y])<=2*R) { yPos[x] = Math.max(yPos[x], yPos[y]+Math.sqrt((2*R)*(2*R)-Math.abs(xPos[x]-xPos[y])*Math.abs(xPos[x]-xPos[y]))); } } System.out.print(yPos[0]); for(int x = 1; x < N; x++) System.out.print(" "+yPos[x]); //System.out.println(System.currentTimeMillis()-time); } } class FastReader { BufferedReader br; StringTokenizer st; public FastReader(String file) throws IOException { br = new BufferedReader(new FileReader(file)); } public FastReader(InputStream i) throws IOException { br = new BufferedReader(new InputStreamReader(System.in)); } boolean hasNext() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception e) { return false; } } return true; } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class C { static long time = System.currentTimeMillis(); public static void main(String[] args) throws IOException { //FastReader infile = new FastReader("test.txt"); FastReader infile = new FastReader(System.in); int N = infile.nextInt(); int R = infile.nextInt(); double[] xPos = new double[N]; for(int x = 0; x < N; x++) xPos[x] = infile.nextDouble(); double[] yPos = new double[N]; Arrays.fill(yPos, R); for(int x = 1; x < N; x++) { for(int y = 0; y < x; y++) if(Math.abs(xPos[x]-xPos[y])<=2*R) { yPos[x] = Math.max(yPos[x], yPos[y]+Math.sqrt((2*R)*(2*R)-Math.abs(xPos[x]-xPos[y])*Math.abs(xPos[x]-xPos[y]))); } } System.out.print(yPos[0]); for(int x = 1; x < N; x++) System.out.print(" "+yPos[x]); //System.out.println(System.currentTimeMillis()-time); } } class FastReader { BufferedReader br; StringTokenizer st; public FastReader(String file) throws IOException { br = new BufferedReader(new FileReader(file)); } public FastReader(InputStream i) throws IOException { br = new BufferedReader(new InputStreamReader(System.in)); } boolean hasNext() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception e) { return false; } } return true; } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
887
2,191
703
import java.util.Scanner; import java.util.regex.Matcher; import java.util.regex.Pattern; public class Main { public static void main(String[] args) { Scanner scn = new Scanner(System.in); int t = scn.nextInt(); while(t-- >0){ String str = scn.next(); Pattern p = Pattern.compile("R[0-9]+C[0-9]+"); Matcher m = p.matcher(str); if (m.matches()){ String nums[] = str.split("[RC]"); String first = nums[1]; String second = nums[2]; String ans = ""; long num = Integer.parseInt(second); while(num >0){ if (num % 26 > 0){ ans += (char)(num%26+'A'-1); num/=26; } else { ans += 'Z'; num/=26; num--; } } for (int i = ans.length()-1; i>=0;--i){ System.out.print(ans.charAt(i)); } System.out.println(first); } else { String first = str.split("[0-9]+")[0]; String second = str.split("[A-Z]+")[1]; System.out.print("R"+second); long num = 0, pow = 1; for (int i = first.length()-1; i>=0; --i){ num += (long)(first.charAt(i)-'A'+1) * pow; pow*=26; } System.out.println("C"+num); } } } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; import java.util.regex.Matcher; import java.util.regex.Pattern; public class Main { public static void main(String[] args) { Scanner scn = new Scanner(System.in); int t = scn.nextInt(); while(t-- >0){ String str = scn.next(); Pattern p = Pattern.compile("R[0-9]+C[0-9]+"); Matcher m = p.matcher(str); if (m.matches()){ String nums[] = str.split("[RC]"); String first = nums[1]; String second = nums[2]; String ans = ""; long num = Integer.parseInt(second); while(num >0){ if (num % 26 > 0){ ans += (char)(num%26+'A'-1); num/=26; } else { ans += 'Z'; num/=26; num--; } } for (int i = ans.length()-1; i>=0;--i){ System.out.print(ans.charAt(i)); } System.out.println(first); } else { String first = str.split("[0-9]+")[0]; String second = str.split("[A-Z]+")[1]; System.out.print("R"+second); long num = 0, pow = 1; for (int i = first.length()-1; i>=0; --i){ num += (long)(first.charAt(i)-'A'+1) * pow; pow*=26; } System.out.println("C"+num); } } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; import java.util.regex.Matcher; import java.util.regex.Pattern; public class Main { public static void main(String[] args) { Scanner scn = new Scanner(System.in); int t = scn.nextInt(); while(t-- >0){ String str = scn.next(); Pattern p = Pattern.compile("R[0-9]+C[0-9]+"); Matcher m = p.matcher(str); if (m.matches()){ String nums[] = str.split("[RC]"); String first = nums[1]; String second = nums[2]; String ans = ""; long num = Integer.parseInt(second); while(num >0){ if (num % 26 > 0){ ans += (char)(num%26+'A'-1); num/=26; } else { ans += 'Z'; num/=26; num--; } } for (int i = ans.length()-1; i>=0;--i){ System.out.print(ans.charAt(i)); } System.out.println(first); } else { String first = str.split("[0-9]+")[0]; String second = str.split("[A-Z]+")[1]; System.out.print("R"+second); long num = 0, pow = 1; for (int i = first.length()-1; i>=0; --i){ num += (long)(first.charAt(i)-'A'+1) * pow; pow*=26; } System.out.println("C"+num); } } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
686
702
155
import java.util.Scanner; public class MargariteBestPresent_1080B { private static int f(int x) { return (x%2==0)?x/2:(x-1)/2-x; } public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n,r,l; n = sc.nextInt(); while(n-->0) { l = sc.nextInt(); r = sc.nextInt(); System.out.println(f(r)-f(l-1)); } sc.close(); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; public class MargariteBestPresent_1080B { private static int f(int x) { return (x%2==0)?x/2:(x-1)/2-x; } public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n,r,l; n = sc.nextInt(); while(n-->0) { l = sc.nextInt(); r = sc.nextInt(); System.out.println(f(r)-f(l-1)); } sc.close(); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; public class MargariteBestPresent_1080B { private static int f(int x) { return (x%2==0)?x/2:(x-1)/2-x; } public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n,r,l; n = sc.nextInt(); while(n-->0) { l = sc.nextInt(); r = sc.nextInt(); System.out.println(f(r)-f(l-1)); } sc.close(); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
472
155
2,759
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////// SOLUTION /////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// public class Solution{ // main(); public static void main(String[] args) throws IOException{ ///input BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); String[] str=br.readLine().split(" "); long n=Long.parseLong(str[0]); if(n<3) System.out.println(n); else if(n%2==1) System.out.println(n*(n-1)*(n-2)); else { if(n%3!=0) System.out.println(n*(n-1)*(n-3)); else System.out.println((n-1)*(n-2)*(n-3)); } }//void main }//class main
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////// SOLUTION /////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// public class Solution{ // main(); public static void main(String[] args) throws IOException{ ///input BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); String[] str=br.readLine().split(" "); long n=Long.parseLong(str[0]); if(n<3) System.out.println(n); else if(n%2==1) System.out.println(n*(n-1)*(n-2)); else { if(n%3!=0) System.out.println(n*(n-1)*(n-3)); else System.out.println((n-1)*(n-2)*(n-3)); } }//void main }//class main </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////// SOLUTION /////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// public class Solution{ // main(); public static void main(String[] args) throws IOException{ ///input BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); String[] str=br.readLine().split(" "); long n=Long.parseLong(str[0]); if(n<3) System.out.println(n); else if(n%2==1) System.out.println(n*(n-1)*(n-2)); else { if(n%3!=0) System.out.println(n*(n-1)*(n-3)); else System.out.println((n-1)*(n-2)*(n-3)); } }//void main }//class main </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
540
2,753
3,546
// upsolve with rainboy import java.io.*; import java.util.*; public class CF1187G extends PrintWriter { CF1187G() { super(System.out); } static class Scanner { Scanner(InputStream in) { this.in = in; } InputStream in; int k, l; byte[] bb = new byte[1 << 15]; byte getc() { if (k >= l) { k = 0; try { l = in.read(bb); } catch (IOException e) { l = 0; } if (l <= 0) return -1; } return bb[k++]; } int nextInt() { byte c = 0; while (c <= 32) c = getc(); int a = 0; while (c > 32) { a = a * 10 + c - '0'; c = getc(); } return a; } } Scanner sc = new Scanner(System.in); public static void main(String[] $) { CF1187G o = new CF1187G(); o.main(); o.flush(); } static final int INF = 0x3f3f3f3f; ArrayList[] aa_; int n_, m_; int[] pi, dd, bb; int[] uu, vv, uv, cost; int[] cc; void init() { aa_ = new ArrayList[n_]; for (int u = 0; u < n_; u++) aa_[u] = new ArrayList<Integer>(); pi = new int[n_]; dd = new int[n_]; bb = new int[n_]; qq = new int[nq]; iq = new boolean[n_]; uu = new int[m_]; vv = new int[m_]; uv = new int[m_]; cost = new int[m_]; cc = new int[m_ * 2]; m_ = 0; } void link(int u, int v, int cap, int cos) { int h = m_++; uu[h] = u; vv[h] = v; uv[h] = u ^ v; cost[h] = cos; cc[h << 1 ^ 0] = cap; aa_[u].add(h << 1 ^ 0); aa_[v].add(h << 1 ^ 1); } int[] qq; int nq = 1 << 20, head, cnt; boolean[] iq; void enqueue(int v) { if (iq[v]) return; if (head + cnt == nq) { if (cnt * 2 <= nq) System.arraycopy(qq, head, qq, 0, cnt); else { int[] qq_ = new int[nq *= 2]; System.arraycopy(qq, head, qq_, 0, cnt); qq = qq_; } head = 0; } qq[head + cnt++] = v; iq[v] = true; } int dequeue() { int u = qq[head++]; cnt--; iq[u] = false; return u; } boolean spfa(int s, int t) { Arrays.fill(pi, INF); pi[s] = 0; head = cnt = 0; enqueue(s); while (cnt > 0) { int u = dequeue(); int d = dd[u] + 1; ArrayList<Integer> adj = aa_[u]; for (int h_ : adj) if (cc[h_] > 0) { int h = h_ >> 1; int p = pi[u] + ((h_ & 1) == 0 ? cost[h] : -cost[h]); int v = u ^ uv[h]; if (pi[v] > p || pi[v] == p && dd[v] > d) { pi[v] = p; dd[v] = d; bb[v] = h_; enqueue(v); } } } return pi[t] != INF; } void push(int s, int t) { int c = INF; for (int u = t, h_, h; u != s; u ^= uv[h]) { h = (h_ = bb[u]) >> 1; c = Math.min(c, cc[h_]); } for (int u = t, h_, h; u != s; u ^= uv[h]) { h = (h_ = bb[u]) >> 1; cc[h_] -= c; cc[h_ ^ 1] += c; } } void push1(int s, int t) { for (int u = t, h_, h; u != s; u ^= uv[h]) { h = (h_ = bb[u]) >> 1; cc[h_]--; cc[h_ ^ 1]++; } } int edmonds_karp(int s, int t) { while (spfa(s, t)) push1(s, t); int c = 0; for (int h = 0; h < m_; h++) c += cost[h] * cc[h << 1 ^ 1]; return c; } void main() { int n = sc.nextInt(); int m = sc.nextInt(); int k = sc.nextInt(); int c = sc.nextInt(); int d = sc.nextInt(); int[] ii = new int[k]; for (int h = 0; h < k; h++) ii[h] = sc.nextInt() - 1; ArrayList[] aa = new ArrayList[n]; for (int i = 0; i < n; i++) aa[i] = new ArrayList<Integer>(); for (int h = 0; h < m; h++) { int i = sc.nextInt() - 1; int j = sc.nextInt() - 1; aa[i].add(j); aa[j].add(i); } int t = n + k + 1; n_ = n * t + 1; m_ = k + (m * 2 * k + n) * (t - 1); init(); for (int i = 0; i < n; i++) { ArrayList<Integer> adj = aa[i]; for (int s = 0; s < t - 1; s++) { int u = i * t + s; for (int j : adj) { int v = j * t + s + 1; for (int x = 1; x <= k; x++) link(u, v, 1, c + (x * 2 - 1) * d); } } } for (int i = 0; i < n; i++) for (int s = 0; s < t - 1; s++) { int u = i * t + s, v = u + 1; link(u, v, k, i == 0 ? 0 : c); } for (int h = 0; h < k; h++) link(n_ - 1, ii[h] * t + 0, 1, 0); println(edmonds_karp(n_ - 1, 0 * t + t - 1)); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> // upsolve with rainboy import java.io.*; import java.util.*; public class CF1187G extends PrintWriter { CF1187G() { super(System.out); } static class Scanner { Scanner(InputStream in) { this.in = in; } InputStream in; int k, l; byte[] bb = new byte[1 << 15]; byte getc() { if (k >= l) { k = 0; try { l = in.read(bb); } catch (IOException e) { l = 0; } if (l <= 0) return -1; } return bb[k++]; } int nextInt() { byte c = 0; while (c <= 32) c = getc(); int a = 0; while (c > 32) { a = a * 10 + c - '0'; c = getc(); } return a; } } Scanner sc = new Scanner(System.in); public static void main(String[] $) { CF1187G o = new CF1187G(); o.main(); o.flush(); } static final int INF = 0x3f3f3f3f; ArrayList[] aa_; int n_, m_; int[] pi, dd, bb; int[] uu, vv, uv, cost; int[] cc; void init() { aa_ = new ArrayList[n_]; for (int u = 0; u < n_; u++) aa_[u] = new ArrayList<Integer>(); pi = new int[n_]; dd = new int[n_]; bb = new int[n_]; qq = new int[nq]; iq = new boolean[n_]; uu = new int[m_]; vv = new int[m_]; uv = new int[m_]; cost = new int[m_]; cc = new int[m_ * 2]; m_ = 0; } void link(int u, int v, int cap, int cos) { int h = m_++; uu[h] = u; vv[h] = v; uv[h] = u ^ v; cost[h] = cos; cc[h << 1 ^ 0] = cap; aa_[u].add(h << 1 ^ 0); aa_[v].add(h << 1 ^ 1); } int[] qq; int nq = 1 << 20, head, cnt; boolean[] iq; void enqueue(int v) { if (iq[v]) return; if (head + cnt == nq) { if (cnt * 2 <= nq) System.arraycopy(qq, head, qq, 0, cnt); else { int[] qq_ = new int[nq *= 2]; System.arraycopy(qq, head, qq_, 0, cnt); qq = qq_; } head = 0; } qq[head + cnt++] = v; iq[v] = true; } int dequeue() { int u = qq[head++]; cnt--; iq[u] = false; return u; } boolean spfa(int s, int t) { Arrays.fill(pi, INF); pi[s] = 0; head = cnt = 0; enqueue(s); while (cnt > 0) { int u = dequeue(); int d = dd[u] + 1; ArrayList<Integer> adj = aa_[u]; for (int h_ : adj) if (cc[h_] > 0) { int h = h_ >> 1; int p = pi[u] + ((h_ & 1) == 0 ? cost[h] : -cost[h]); int v = u ^ uv[h]; if (pi[v] > p || pi[v] == p && dd[v] > d) { pi[v] = p; dd[v] = d; bb[v] = h_; enqueue(v); } } } return pi[t] != INF; } void push(int s, int t) { int c = INF; for (int u = t, h_, h; u != s; u ^= uv[h]) { h = (h_ = bb[u]) >> 1; c = Math.min(c, cc[h_]); } for (int u = t, h_, h; u != s; u ^= uv[h]) { h = (h_ = bb[u]) >> 1; cc[h_] -= c; cc[h_ ^ 1] += c; } } void push1(int s, int t) { for (int u = t, h_, h; u != s; u ^= uv[h]) { h = (h_ = bb[u]) >> 1; cc[h_]--; cc[h_ ^ 1]++; } } int edmonds_karp(int s, int t) { while (spfa(s, t)) push1(s, t); int c = 0; for (int h = 0; h < m_; h++) c += cost[h] * cc[h << 1 ^ 1]; return c; } void main() { int n = sc.nextInt(); int m = sc.nextInt(); int k = sc.nextInt(); int c = sc.nextInt(); int d = sc.nextInt(); int[] ii = new int[k]; for (int h = 0; h < k; h++) ii[h] = sc.nextInt() - 1; ArrayList[] aa = new ArrayList[n]; for (int i = 0; i < n; i++) aa[i] = new ArrayList<Integer>(); for (int h = 0; h < m; h++) { int i = sc.nextInt() - 1; int j = sc.nextInt() - 1; aa[i].add(j); aa[j].add(i); } int t = n + k + 1; n_ = n * t + 1; m_ = k + (m * 2 * k + n) * (t - 1); init(); for (int i = 0; i < n; i++) { ArrayList<Integer> adj = aa[i]; for (int s = 0; s < t - 1; s++) { int u = i * t + s; for (int j : adj) { int v = j * t + s + 1; for (int x = 1; x <= k; x++) link(u, v, 1, c + (x * 2 - 1) * d); } } } for (int i = 0; i < n; i++) for (int s = 0; s < t - 1; s++) { int u = i * t + s, v = u + 1; link(u, v, k, i == 0 ? 0 : c); } for (int h = 0; h < k; h++) link(n_ - 1, ii[h] * t + 0, 1, 0); println(edmonds_karp(n_ - 1, 0 * t + t - 1)); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> // upsolve with rainboy import java.io.*; import java.util.*; public class CF1187G extends PrintWriter { CF1187G() { super(System.out); } static class Scanner { Scanner(InputStream in) { this.in = in; } InputStream in; int k, l; byte[] bb = new byte[1 << 15]; byte getc() { if (k >= l) { k = 0; try { l = in.read(bb); } catch (IOException e) { l = 0; } if (l <= 0) return -1; } return bb[k++]; } int nextInt() { byte c = 0; while (c <= 32) c = getc(); int a = 0; while (c > 32) { a = a * 10 + c - '0'; c = getc(); } return a; } } Scanner sc = new Scanner(System.in); public static void main(String[] $) { CF1187G o = new CF1187G(); o.main(); o.flush(); } static final int INF = 0x3f3f3f3f; ArrayList[] aa_; int n_, m_; int[] pi, dd, bb; int[] uu, vv, uv, cost; int[] cc; void init() { aa_ = new ArrayList[n_]; for (int u = 0; u < n_; u++) aa_[u] = new ArrayList<Integer>(); pi = new int[n_]; dd = new int[n_]; bb = new int[n_]; qq = new int[nq]; iq = new boolean[n_]; uu = new int[m_]; vv = new int[m_]; uv = new int[m_]; cost = new int[m_]; cc = new int[m_ * 2]; m_ = 0; } void link(int u, int v, int cap, int cos) { int h = m_++; uu[h] = u; vv[h] = v; uv[h] = u ^ v; cost[h] = cos; cc[h << 1 ^ 0] = cap; aa_[u].add(h << 1 ^ 0); aa_[v].add(h << 1 ^ 1); } int[] qq; int nq = 1 << 20, head, cnt; boolean[] iq; void enqueue(int v) { if (iq[v]) return; if (head + cnt == nq) { if (cnt * 2 <= nq) System.arraycopy(qq, head, qq, 0, cnt); else { int[] qq_ = new int[nq *= 2]; System.arraycopy(qq, head, qq_, 0, cnt); qq = qq_; } head = 0; } qq[head + cnt++] = v; iq[v] = true; } int dequeue() { int u = qq[head++]; cnt--; iq[u] = false; return u; } boolean spfa(int s, int t) { Arrays.fill(pi, INF); pi[s] = 0; head = cnt = 0; enqueue(s); while (cnt > 0) { int u = dequeue(); int d = dd[u] + 1; ArrayList<Integer> adj = aa_[u]; for (int h_ : adj) if (cc[h_] > 0) { int h = h_ >> 1; int p = pi[u] + ((h_ & 1) == 0 ? cost[h] : -cost[h]); int v = u ^ uv[h]; if (pi[v] > p || pi[v] == p && dd[v] > d) { pi[v] = p; dd[v] = d; bb[v] = h_; enqueue(v); } } } return pi[t] != INF; } void push(int s, int t) { int c = INF; for (int u = t, h_, h; u != s; u ^= uv[h]) { h = (h_ = bb[u]) >> 1; c = Math.min(c, cc[h_]); } for (int u = t, h_, h; u != s; u ^= uv[h]) { h = (h_ = bb[u]) >> 1; cc[h_] -= c; cc[h_ ^ 1] += c; } } void push1(int s, int t) { for (int u = t, h_, h; u != s; u ^= uv[h]) { h = (h_ = bb[u]) >> 1; cc[h_]--; cc[h_ ^ 1]++; } } int edmonds_karp(int s, int t) { while (spfa(s, t)) push1(s, t); int c = 0; for (int h = 0; h < m_; h++) c += cost[h] * cc[h << 1 ^ 1]; return c; } void main() { int n = sc.nextInt(); int m = sc.nextInt(); int k = sc.nextInt(); int c = sc.nextInt(); int d = sc.nextInt(); int[] ii = new int[k]; for (int h = 0; h < k; h++) ii[h] = sc.nextInt() - 1; ArrayList[] aa = new ArrayList[n]; for (int i = 0; i < n; i++) aa[i] = new ArrayList<Integer>(); for (int h = 0; h < m; h++) { int i = sc.nextInt() - 1; int j = sc.nextInt() - 1; aa[i].add(j); aa[j].add(i); } int t = n + k + 1; n_ = n * t + 1; m_ = k + (m * 2 * k + n) * (t - 1); init(); for (int i = 0; i < n; i++) { ArrayList<Integer> adj = aa[i]; for (int s = 0; s < t - 1; s++) { int u = i * t + s; for (int j : adj) { int v = j * t + s + 1; for (int x = 1; x <= k; x++) link(u, v, 1, c + (x * 2 - 1) * d); } } } for (int i = 0; i < n; i++) for (int s = 0; s < t - 1; s++) { int u = i * t + s, v = u + 1; link(u, v, k, i == 0 ? 0 : c); } for (int h = 0; h < k; h++) link(n_ - 1, ii[h] * t + 0, 1, 0); println(edmonds_karp(n_ - 1, 0 * t + t - 1)); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
2,008
3,539
930
import java.io.*; import java.math.BigInteger; import java.util.*; public class Main { static int inf = (int) 1e9; public static void main(String[] args) throws IOException { br = new BufferedReader(new InputStreamReader(System.in)); pw = new PrintWriter(System.out); int n = nextInt(); int k = nextInt(); long l = -1; long r = 100000; while(l != r - 1) { long mid = (l + r) / 2; if (mid * (mid + 1) / 2 - (n - mid) > k) r = mid; else l = mid; } pw.println(n - l); pw.close(); } static BufferedReader br; static StringTokenizer st = new StringTokenizer(""); static PrintWriter pw; static String next() throws IOException { while (!st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } static int nextInt() throws IOException { return Integer.parseInt(next()); } static long nextLong() throws IOException { return Long.parseLong(next()); } static Double nextDouble() throws IOException { return Double.parseDouble(next()); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.math.BigInteger; import java.util.*; public class Main { static int inf = (int) 1e9; public static void main(String[] args) throws IOException { br = new BufferedReader(new InputStreamReader(System.in)); pw = new PrintWriter(System.out); int n = nextInt(); int k = nextInt(); long l = -1; long r = 100000; while(l != r - 1) { long mid = (l + r) / 2; if (mid * (mid + 1) / 2 - (n - mid) > k) r = mid; else l = mid; } pw.println(n - l); pw.close(); } static BufferedReader br; static StringTokenizer st = new StringTokenizer(""); static PrintWriter pw; static String next() throws IOException { while (!st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } static int nextInt() throws IOException { return Integer.parseInt(next()); } static long nextLong() throws IOException { return Long.parseLong(next()); } static Double nextDouble() throws IOException { return Double.parseDouble(next()); } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.math.BigInteger; import java.util.*; public class Main { static int inf = (int) 1e9; public static void main(String[] args) throws IOException { br = new BufferedReader(new InputStreamReader(System.in)); pw = new PrintWriter(System.out); int n = nextInt(); int k = nextInt(); long l = -1; long r = 100000; while(l != r - 1) { long mid = (l + r) / 2; if (mid * (mid + 1) / 2 - (n - mid) > k) r = mid; else l = mid; } pw.println(n - l); pw.close(); } static BufferedReader br; static StringTokenizer st = new StringTokenizer(""); static PrintWriter pw; static String next() throws IOException { while (!st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } static int nextInt() throws IOException { return Integer.parseInt(next()); } static long nextLong() throws IOException { return Long.parseLong(next()); } static Double nextDouble() throws IOException { return Double.parseDouble(next()); } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
614
929
3,225
import java.util.Scanner; /** * Feb 18, 2016 | 4:00:49 PM * <pre> * <u>Description</u> * * </pre> * * @author Essiennta Emmanuel ([email protected]) */ public class ProblemA{ public static void main(String[] args){ Scanner sc = new Scanner(System.in); sc.next(); System.out.println(25); sc.close(); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; /** * Feb 18, 2016 | 4:00:49 PM * <pre> * <u>Description</u> * * </pre> * * @author Essiennta Emmanuel ([email protected]) */ public class ProblemA{ public static void main(String[] args){ Scanner sc = new Scanner(System.in); sc.next(); System.out.println(25); sc.close(); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; /** * Feb 18, 2016 | 4:00:49 PM * <pre> * <u>Description</u> * * </pre> * * @author Essiennta Emmanuel ([email protected]) */ public class ProblemA{ public static void main(String[] args){ Scanner sc = new Scanner(System.in); sc.next(); System.out.println(25); sc.close(); } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
457
3,219
1,242
import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.InputMismatchException; /** * Created by hama_du on 15/09/10. */ public class A { private static final long MOD = 1000000009; public static void main(String[] args) { InputReader in = new InputReader(System.in); PrintWriter out = new PrintWriter(System.out); long n = in.nextInt(); long correct = in.nextInt(); long k = in.nextInt(); long wrong = n - correct; long set = wrong * k + k - 1; if (set >= n) { out.println(correct); } else { long needExtraCorrect = n - (wrong * k + k - 1); long firstSet = needExtraCorrect + k - 1; long otherSet = correct - firstSet; long firstDouble = firstSet / k; otherSet += firstSet % k; long[][] mat = new long[][]{ {2, 2*k}, {0, 1}}; long[][] A = pow(mat, firstDouble, MOD); long score = (A[0][1] + otherSet) % MOD; out.println(score); } out.flush(); } public static long[][] pow(long[][] a, long n, long mod) { long i = 1; long[][] res = E(a.length); long[][] ap = mul(E(a.length), a, mod); while (i <= n) { if ((n & i) >= 1) { res = mul(res, ap, mod); } i *= 2; ap = mul(ap, ap, mod); } return res; } public static long[][] E(int n) { long[][] a = new long[n][n]; for (int i = 0 ; i < n ; i++) { a[i][i] = 1; } return a; } public static long[][] mul(long[][] a, long[][] b, long mod) { long[][] c = new long[a.length][b[0].length]; if (a[0].length != b.length) { System.err.print("err"); } for (int i = 0 ; i < a.length ; i++) { for (int j = 0 ; j < b[0].length ; j++) { long sum = 0; for (int k = 0 ; k < a[0].length ; k++) { sum = (sum + a[i][k] * b[k][j]) % mod; } c[i][j] = sum; } } return c; } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public InputReader(InputStream stream) { this.stream = stream; } private int next() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public char nextChar() { int c = next(); while (isSpaceChar(c)) c = next(); if ('a' <= c && c <= 'z') { return (char) c; } if ('A' <= c && c <= 'Z') { return (char) c; } throw new InputMismatchException(); } public String nextToken() { int c = next(); while (isSpaceChar(c)) c = next(); StringBuilder res = new StringBuilder(); do { res.append((char) c); c = next(); } while (!isSpaceChar(c)); return res.toString(); } public int nextInt() { int c = next(); while (isSpaceChar(c)) c = next(); int sgn = 1; if (c == '-') { sgn = -1; c = next(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c-'0'; c = next(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = next(); while (isSpaceChar(c)) c = next(); long sgn = 1; if (c == '-') { sgn = -1; c = next(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c-'0'; c = next(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static void debug(Object... o) { System.err.println(Arrays.deepToString(o)); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.InputMismatchException; /** * Created by hama_du on 15/09/10. */ public class A { private static final long MOD = 1000000009; public static void main(String[] args) { InputReader in = new InputReader(System.in); PrintWriter out = new PrintWriter(System.out); long n = in.nextInt(); long correct = in.nextInt(); long k = in.nextInt(); long wrong = n - correct; long set = wrong * k + k - 1; if (set >= n) { out.println(correct); } else { long needExtraCorrect = n - (wrong * k + k - 1); long firstSet = needExtraCorrect + k - 1; long otherSet = correct - firstSet; long firstDouble = firstSet / k; otherSet += firstSet % k; long[][] mat = new long[][]{ {2, 2*k}, {0, 1}}; long[][] A = pow(mat, firstDouble, MOD); long score = (A[0][1] + otherSet) % MOD; out.println(score); } out.flush(); } public static long[][] pow(long[][] a, long n, long mod) { long i = 1; long[][] res = E(a.length); long[][] ap = mul(E(a.length), a, mod); while (i <= n) { if ((n & i) >= 1) { res = mul(res, ap, mod); } i *= 2; ap = mul(ap, ap, mod); } return res; } public static long[][] E(int n) { long[][] a = new long[n][n]; for (int i = 0 ; i < n ; i++) { a[i][i] = 1; } return a; } public static long[][] mul(long[][] a, long[][] b, long mod) { long[][] c = new long[a.length][b[0].length]; if (a[0].length != b.length) { System.err.print("err"); } for (int i = 0 ; i < a.length ; i++) { for (int j = 0 ; j < b[0].length ; j++) { long sum = 0; for (int k = 0 ; k < a[0].length ; k++) { sum = (sum + a[i][k] * b[k][j]) % mod; } c[i][j] = sum; } } return c; } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public InputReader(InputStream stream) { this.stream = stream; } private int next() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public char nextChar() { int c = next(); while (isSpaceChar(c)) c = next(); if ('a' <= c && c <= 'z') { return (char) c; } if ('A' <= c && c <= 'Z') { return (char) c; } throw new InputMismatchException(); } public String nextToken() { int c = next(); while (isSpaceChar(c)) c = next(); StringBuilder res = new StringBuilder(); do { res.append((char) c); c = next(); } while (!isSpaceChar(c)); return res.toString(); } public int nextInt() { int c = next(); while (isSpaceChar(c)) c = next(); int sgn = 1; if (c == '-') { sgn = -1; c = next(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c-'0'; c = next(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = next(); while (isSpaceChar(c)) c = next(); long sgn = 1; if (c == '-') { sgn = -1; c = next(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c-'0'; c = next(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static void debug(Object... o) { System.err.println(Arrays.deepToString(o)); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.InputMismatchException; /** * Created by hama_du on 15/09/10. */ public class A { private static final long MOD = 1000000009; public static void main(String[] args) { InputReader in = new InputReader(System.in); PrintWriter out = new PrintWriter(System.out); long n = in.nextInt(); long correct = in.nextInt(); long k = in.nextInt(); long wrong = n - correct; long set = wrong * k + k - 1; if (set >= n) { out.println(correct); } else { long needExtraCorrect = n - (wrong * k + k - 1); long firstSet = needExtraCorrect + k - 1; long otherSet = correct - firstSet; long firstDouble = firstSet / k; otherSet += firstSet % k; long[][] mat = new long[][]{ {2, 2*k}, {0, 1}}; long[][] A = pow(mat, firstDouble, MOD); long score = (A[0][1] + otherSet) % MOD; out.println(score); } out.flush(); } public static long[][] pow(long[][] a, long n, long mod) { long i = 1; long[][] res = E(a.length); long[][] ap = mul(E(a.length), a, mod); while (i <= n) { if ((n & i) >= 1) { res = mul(res, ap, mod); } i *= 2; ap = mul(ap, ap, mod); } return res; } public static long[][] E(int n) { long[][] a = new long[n][n]; for (int i = 0 ; i < n ; i++) { a[i][i] = 1; } return a; } public static long[][] mul(long[][] a, long[][] b, long mod) { long[][] c = new long[a.length][b[0].length]; if (a[0].length != b.length) { System.err.print("err"); } for (int i = 0 ; i < a.length ; i++) { for (int j = 0 ; j < b[0].length ; j++) { long sum = 0; for (int k = 0 ; k < a[0].length ; k++) { sum = (sum + a[i][k] * b[k][j]) % mod; } c[i][j] = sum; } } return c; } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public InputReader(InputStream stream) { this.stream = stream; } private int next() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public char nextChar() { int c = next(); while (isSpaceChar(c)) c = next(); if ('a' <= c && c <= 'z') { return (char) c; } if ('A' <= c && c <= 'Z') { return (char) c; } throw new InputMismatchException(); } public String nextToken() { int c = next(); while (isSpaceChar(c)) c = next(); StringBuilder res = new StringBuilder(); do { res.append((char) c); c = next(); } while (!isSpaceChar(c)); return res.toString(); } public int nextInt() { int c = next(); while (isSpaceChar(c)) c = next(); int sgn = 1; if (c == '-') { sgn = -1; c = next(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c-'0'; c = next(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = next(); while (isSpaceChar(c)) c = next(); long sgn = 1; if (c == '-') { sgn = -1; c = next(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c-'0'; c = next(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static void debug(Object... o) { System.err.println(Arrays.deepToString(o)); } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,575
1,241
2,479
import java.io.PrintWriter; import java.util.*; public class Main{ public static void main(String[] args) { Scanner sc=new Scanner(System.in); PrintWriter out=new PrintWriter(System.out); int n=sc.nextInt(); int a[]=new int[n]; for (int i = 0; i <n ; i++) { a[i]=sc.nextInt(); } HashMap<Integer,ArrayList<Node>> h=new HashMap<>(); for (int i = 0; i <n ; i++) { int sum=0; for (int j = i; j <n ; j++) { sum+=a[j]; if(h.containsKey(sum)){ h.get(sum).add(new Node(i,j)); } else{ ArrayList<Node> temp=new ArrayList<>(); temp.add(new Node(i,j)); h.put(sum,temp); } } } long ans=0; ArrayList<Integer> ansList=new ArrayList<>(); for(int x:h.keySet()){ Collections.sort(h.get(x), new Comparator<Node>() { @Override public int compare(Node o1, Node o2) { return Integer.compare(o1.r,o2.r); } }); ArrayList<Node> l=h.get(x); //out.println(l); ArrayList<Integer> temp=new ArrayList<>(); int lasty=Integer.MIN_VALUE; for (int i = 0; i <l.size() ; i++) { if(l.get(i).l>lasty){ lasty=l.get(i).r; temp.add(l.get(i).l); temp.add(l.get(i).r); } } if(ans<temp.size()){ ansList=temp; ans=ansList.size(); } } out.println(ans/2); for (int i = 0; i <ansList.size() ; i++) { out.print((ansList.get(i)+1)+" "); i++; out.println((ansList.get(i)+1)+" "); } out.close(); } static class Node{ int l,r; public Node(int a,int b){ l=a; r=b; } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.PrintWriter; import java.util.*; public class Main{ public static void main(String[] args) { Scanner sc=new Scanner(System.in); PrintWriter out=new PrintWriter(System.out); int n=sc.nextInt(); int a[]=new int[n]; for (int i = 0; i <n ; i++) { a[i]=sc.nextInt(); } HashMap<Integer,ArrayList<Node>> h=new HashMap<>(); for (int i = 0; i <n ; i++) { int sum=0; for (int j = i; j <n ; j++) { sum+=a[j]; if(h.containsKey(sum)){ h.get(sum).add(new Node(i,j)); } else{ ArrayList<Node> temp=new ArrayList<>(); temp.add(new Node(i,j)); h.put(sum,temp); } } } long ans=0; ArrayList<Integer> ansList=new ArrayList<>(); for(int x:h.keySet()){ Collections.sort(h.get(x), new Comparator<Node>() { @Override public int compare(Node o1, Node o2) { return Integer.compare(o1.r,o2.r); } }); ArrayList<Node> l=h.get(x); //out.println(l); ArrayList<Integer> temp=new ArrayList<>(); int lasty=Integer.MIN_VALUE; for (int i = 0; i <l.size() ; i++) { if(l.get(i).l>lasty){ lasty=l.get(i).r; temp.add(l.get(i).l); temp.add(l.get(i).r); } } if(ans<temp.size()){ ansList=temp; ans=ansList.size(); } } out.println(ans/2); for (int i = 0; i <ansList.size() ; i++) { out.print((ansList.get(i)+1)+" "); i++; out.println((ansList.get(i)+1)+" "); } out.close(); } static class Node{ int l,r; public Node(int a,int b){ l=a; r=b; } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.PrintWriter; import java.util.*; public class Main{ public static void main(String[] args) { Scanner sc=new Scanner(System.in); PrintWriter out=new PrintWriter(System.out); int n=sc.nextInt(); int a[]=new int[n]; for (int i = 0; i <n ; i++) { a[i]=sc.nextInt(); } HashMap<Integer,ArrayList<Node>> h=new HashMap<>(); for (int i = 0; i <n ; i++) { int sum=0; for (int j = i; j <n ; j++) { sum+=a[j]; if(h.containsKey(sum)){ h.get(sum).add(new Node(i,j)); } else{ ArrayList<Node> temp=new ArrayList<>(); temp.add(new Node(i,j)); h.put(sum,temp); } } } long ans=0; ArrayList<Integer> ansList=new ArrayList<>(); for(int x:h.keySet()){ Collections.sort(h.get(x), new Comparator<Node>() { @Override public int compare(Node o1, Node o2) { return Integer.compare(o1.r,o2.r); } }); ArrayList<Node> l=h.get(x); //out.println(l); ArrayList<Integer> temp=new ArrayList<>(); int lasty=Integer.MIN_VALUE; for (int i = 0; i <l.size() ; i++) { if(l.get(i).l>lasty){ lasty=l.get(i).r; temp.add(l.get(i).l); temp.add(l.get(i).r); } } if(ans<temp.size()){ ansList=temp; ans=ansList.size(); } } out.println(ans/2); for (int i = 0; i <ansList.size() ; i++) { out.print((ansList.get(i)+1)+" "); i++; out.println((ansList.get(i)+1)+" "); } out.close(); } static class Node{ int l,r; public Node(int a,int b){ l=a; r=b; } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
806
2,474
2,098
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintStream; import java.util.Arrays; import java.util.StringTokenizer; import java.util.logging.Level; import java.util.logging.Logger; public class ProblemA { private final BufferedReader in; private final PrintStream out; private StringTokenizer tok = new StringTokenizer(""); private String nextLine = null; public static void main(String[] args) throws Exception { new ProblemA(); } private ProblemA() throws Exception { in = new BufferedReader(new InputStreamReader(System.in)); out = System.out; start(); end(); } private int nextInt() { return Integer.parseInt(nextWord()); } private String nextWord() { if (tok.hasMoreTokens()) { return tok.nextToken(); } else { while (!tok.hasMoreTokens()) { try { nextLine = in.readLine(); if (nextLine == null) { return null; } else { tok = new StringTokenizer(nextLine); } } catch (IOException ex) { Logger.getLogger(ProblemA.class.getName()).log(Level.SEVERE, null, ex); } } return tok.nextToken(); } } private void start() { int n = nextInt(); int[] a = new int[n]; boolean allOne = true; for (int i = 0; i < n; i++) { a[i] = nextInt(); if (a[i] != 1) { allOne = false; } } Arrays.sort(a); int[] res = new int[n]; res[0] = 1; for (int i = 1; i < n; i++) { res[i] = a[i - 1]; } if (allOne) { for (int i = 0; i < n - 1; i++) { out.print(a[i] + " "); } out.print(2); } else { for (int i = 0; i < n; i++) { out.print(res[i] + " "); } } } private void end() { out.close(); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintStream; import java.util.Arrays; import java.util.StringTokenizer; import java.util.logging.Level; import java.util.logging.Logger; public class ProblemA { private final BufferedReader in; private final PrintStream out; private StringTokenizer tok = new StringTokenizer(""); private String nextLine = null; public static void main(String[] args) throws Exception { new ProblemA(); } private ProblemA() throws Exception { in = new BufferedReader(new InputStreamReader(System.in)); out = System.out; start(); end(); } private int nextInt() { return Integer.parseInt(nextWord()); } private String nextWord() { if (tok.hasMoreTokens()) { return tok.nextToken(); } else { while (!tok.hasMoreTokens()) { try { nextLine = in.readLine(); if (nextLine == null) { return null; } else { tok = new StringTokenizer(nextLine); } } catch (IOException ex) { Logger.getLogger(ProblemA.class.getName()).log(Level.SEVERE, null, ex); } } return tok.nextToken(); } } private void start() { int n = nextInt(); int[] a = new int[n]; boolean allOne = true; for (int i = 0; i < n; i++) { a[i] = nextInt(); if (a[i] != 1) { allOne = false; } } Arrays.sort(a); int[] res = new int[n]; res[0] = 1; for (int i = 1; i < n; i++) { res[i] = a[i - 1]; } if (allOne) { for (int i = 0; i < n - 1; i++) { out.print(a[i] + " "); } out.print(2); } else { for (int i = 0; i < n; i++) { out.print(res[i] + " "); } } } private void end() { out.close(); } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintStream; import java.util.Arrays; import java.util.StringTokenizer; import java.util.logging.Level; import java.util.logging.Logger; public class ProblemA { private final BufferedReader in; private final PrintStream out; private StringTokenizer tok = new StringTokenizer(""); private String nextLine = null; public static void main(String[] args) throws Exception { new ProblemA(); } private ProblemA() throws Exception { in = new BufferedReader(new InputStreamReader(System.in)); out = System.out; start(); end(); } private int nextInt() { return Integer.parseInt(nextWord()); } private String nextWord() { if (tok.hasMoreTokens()) { return tok.nextToken(); } else { while (!tok.hasMoreTokens()) { try { nextLine = in.readLine(); if (nextLine == null) { return null; } else { tok = new StringTokenizer(nextLine); } } catch (IOException ex) { Logger.getLogger(ProblemA.class.getName()).log(Level.SEVERE, null, ex); } } return tok.nextToken(); } } private void start() { int n = nextInt(); int[] a = new int[n]; boolean allOne = true; for (int i = 0; i < n; i++) { a[i] = nextInt(); if (a[i] != 1) { allOne = false; } } Arrays.sort(a); int[] res = new int[n]; res[0] = 1; for (int i = 1; i < n; i++) { res[i] = a[i - 1]; } if (allOne) { for (int i = 0; i < n - 1; i++) { out.print(a[i] + " "); } out.print(2); } else { for (int i = 0; i < n; i++) { out.print(res[i] + " "); } } } private void end() { out.close(); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
801
2,094
4,077
import java.util.Arrays; import java.util.Scanner; /** * @author vstepanov on 3/29/2017. */ public class Main { public static void main(String[] args) { try(Scanner in = new Scanner(System.in)) { int bx = in.nextInt(); int by = in.nextInt(); int n = in.nextInt(); int[][] xy = new int[n][2]; int[] res = new int[1 << n]; int[] last = new int[1 << n]; for (int i = 0; i < n; i++) { xy[i] = new int[]{in.nextInt(), in.nextInt()}; } int[] ds = new int[n]; for (int i = 0; i < ds.length; i++) { ds[i] = time(xy[i][0], xy[i][1], bx, by); } int[][] d = new int[n][n]; for (int i = 0; i < d.length; i++) { for (int j = 0; j < d.length; j++) { d[i][j] = time(xy[i][0], xy[i][1], xy[j][0], xy[j][1]); } } Arrays.fill(res, Integer.MAX_VALUE); res[0] = 0; for (int i = 0; i < (1 << n); i++) { for (int j = 0; j < n; j++) { if ((i & mask(j)) != 0) { if (res[i - mask(j)] + 2*ds[j] < res[i]) { res[i] = res[i - mask(j)] + 2*ds[j]; last[i] = i - mask(j); } for (int k = j + 1; k < n; k++) { if ((i & mask(k)) != 0) { if (res[i - mask(k) - mask(j)] + ds[j] + ds[k] + d[j][k] < res[i]) { res[i] = res[i - mask(k) - mask(j)] + ds[j] + ds[k] + d[j][k]; last[i] = i - mask(j) - mask(k); } } } break; } } } int cur = (1 << n) - 1; System.out.println(res[cur]); int k = cur; while (k != 0) { System.out.print("0 "); int diff = k - last[k]; for (int i = 0; i < n && diff != 0; i++) { if (((diff >> i) & 1) != 0) { System.out.print((i + 1) + " "); diff -= (1 << i); } } k = last[k]; } System.out.println("0"); } } static int mask(int i) { return 1 << i; } static int time(int x, int y, int x1, int y1) { return (x - x1)*(x - x1) + (y - y1)*(y - y1); } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Arrays; import java.util.Scanner; /** * @author vstepanov on 3/29/2017. */ public class Main { public static void main(String[] args) { try(Scanner in = new Scanner(System.in)) { int bx = in.nextInt(); int by = in.nextInt(); int n = in.nextInt(); int[][] xy = new int[n][2]; int[] res = new int[1 << n]; int[] last = new int[1 << n]; for (int i = 0; i < n; i++) { xy[i] = new int[]{in.nextInt(), in.nextInt()}; } int[] ds = new int[n]; for (int i = 0; i < ds.length; i++) { ds[i] = time(xy[i][0], xy[i][1], bx, by); } int[][] d = new int[n][n]; for (int i = 0; i < d.length; i++) { for (int j = 0; j < d.length; j++) { d[i][j] = time(xy[i][0], xy[i][1], xy[j][0], xy[j][1]); } } Arrays.fill(res, Integer.MAX_VALUE); res[0] = 0; for (int i = 0; i < (1 << n); i++) { for (int j = 0; j < n; j++) { if ((i & mask(j)) != 0) { if (res[i - mask(j)] + 2*ds[j] < res[i]) { res[i] = res[i - mask(j)] + 2*ds[j]; last[i] = i - mask(j); } for (int k = j + 1; k < n; k++) { if ((i & mask(k)) != 0) { if (res[i - mask(k) - mask(j)] + ds[j] + ds[k] + d[j][k] < res[i]) { res[i] = res[i - mask(k) - mask(j)] + ds[j] + ds[k] + d[j][k]; last[i] = i - mask(j) - mask(k); } } } break; } } } int cur = (1 << n) - 1; System.out.println(res[cur]); int k = cur; while (k != 0) { System.out.print("0 "); int diff = k - last[k]; for (int i = 0; i < n && diff != 0; i++) { if (((diff >> i) & 1) != 0) { System.out.print((i + 1) + " "); diff -= (1 << i); } } k = last[k]; } System.out.println("0"); } } static int mask(int i) { return 1 << i; } static int time(int x, int y, int x1, int y1) { return (x - x1)*(x - x1) + (y - y1)*(y - y1); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Arrays; import java.util.Scanner; /** * @author vstepanov on 3/29/2017. */ public class Main { public static void main(String[] args) { try(Scanner in = new Scanner(System.in)) { int bx = in.nextInt(); int by = in.nextInt(); int n = in.nextInt(); int[][] xy = new int[n][2]; int[] res = new int[1 << n]; int[] last = new int[1 << n]; for (int i = 0; i < n; i++) { xy[i] = new int[]{in.nextInt(), in.nextInt()}; } int[] ds = new int[n]; for (int i = 0; i < ds.length; i++) { ds[i] = time(xy[i][0], xy[i][1], bx, by); } int[][] d = new int[n][n]; for (int i = 0; i < d.length; i++) { for (int j = 0; j < d.length; j++) { d[i][j] = time(xy[i][0], xy[i][1], xy[j][0], xy[j][1]); } } Arrays.fill(res, Integer.MAX_VALUE); res[0] = 0; for (int i = 0; i < (1 << n); i++) { for (int j = 0; j < n; j++) { if ((i & mask(j)) != 0) { if (res[i - mask(j)] + 2*ds[j] < res[i]) { res[i] = res[i - mask(j)] + 2*ds[j]; last[i] = i - mask(j); } for (int k = j + 1; k < n; k++) { if ((i & mask(k)) != 0) { if (res[i - mask(k) - mask(j)] + ds[j] + ds[k] + d[j][k] < res[i]) { res[i] = res[i - mask(k) - mask(j)] + ds[j] + ds[k] + d[j][k]; last[i] = i - mask(j) - mask(k); } } } break; } } } int cur = (1 << n) - 1; System.out.println(res[cur]); int k = cur; while (k != 0) { System.out.print("0 "); int diff = k - last[k]; for (int i = 0; i < n && diff != 0; i++) { if (((diff >> i) & 1) != 0) { System.out.print((i + 1) + " "); diff -= (1 << i); } } k = last[k]; } System.out.println("0"); } } static int mask(int i) { return 1 << i; } static int time(int x, int y, int x1, int y1) { return (x - x1)*(x - x1) + (y - y1)*(y - y1); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,055
4,066
2,504
import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.HashMap; import java.util.InputMismatchException; import java.util.List; public class Q6 { public static void main(String[] args) { InputReader s = new InputReader(System.in); PrintWriter out = new PrintWriter(System.out); int t = 1; // t = s.nextInt(); nexttest: while (t-- > 0) { int n = s.nextInt(); int a[] = s.nextIntArray(n); HashMap<Integer, List<Pair>> sets = new HashMap<>(); int pre[] = new int[n + 1]; for (int i = 1; i <= n; i++) { pre[i] = a[i - 1] + pre[i - 1]; } for (int i = 1; i <= n; i++) { for (int j = i; j <= n; j++) { final Integer key = pre[j] - pre[i - 1]; if (!sets.containsKey(key)) { sets.put(key, new ArrayList<>()); } sets.get(key).add(new Pair(i, j)); } } // System.out.println(sets); int ans = 0; List<Pair> answer = new ArrayList<>(); int[] ansNextPos = new int[1]; boolean[] ansTaken = new boolean[1]; for (List<Pair> intervals : sets.values()) { Collections.sort(intervals); int[] nextPos = new int[intervals.size()]; boolean[] taken = new boolean[intervals.size()]; int[] dp = new int[intervals.size()]; dp[intervals.size() - 1] = 1; taken[intervals.size() - 1] = true; nextPos[intervals.size() - 1] = -1; for (int i = intervals.size() - 2; i >= 0; i--) { dp[i] = dp[i + 1]; taken[i] = false; nextPos[i] = i + 1; int ll = i + 1; int rr = intervals.size(); while (ll < rr) { int mid = ll + rr; mid /= 2; if (intervals.get(mid).x > intervals.get(i).y) { rr = mid; } else { ll = mid + 1; } } if (ll < intervals.size()) { if (dp[i] < 1 + dp[ll]) { dp[i] = Math.max(dp[i], 1 + dp[ll]); taken[i] = true; nextPos[i] = ll; } } } if (dp[0] > ans) { ans = dp[0]; answer = intervals; ansNextPos = nextPos; ansTaken = taken; } } out.println(ans); int cur = 0; while (cur != -1) { if (ansTaken[cur]) { out.println(answer.get(cur)); } cur = ansNextPos[cur]; } } out.close(); } static class Pair implements Comparable<Pair> { int x; int y; @Override public String toString() { return x + " " + y; } public Pair(final int x, final int y) { this.x = x; this.y = y; } @Override public int compareTo(final Pair o) { return this.x - o.x; } } static class InputReader { private final InputStream stream; private final byte[] buf = new byte[8192]; private int curChar, snumChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int snext() { if (snumChars == -1) { throw new InputMismatchException(); } if (curChar >= snumChars) { curChar = 0; try { snumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (snumChars <= 0) { return -1; } } return buf[curChar++]; } public int nextInt() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } long res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public int[] nextIntArray(int n) { int a[] = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } public String readString() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = snext(); } while (!isSpaceChar(c)); return res.toString(); } public String nextLine() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = snext(); } while (!isEndOfLine(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.HashMap; import java.util.InputMismatchException; import java.util.List; public class Q6 { public static void main(String[] args) { InputReader s = new InputReader(System.in); PrintWriter out = new PrintWriter(System.out); int t = 1; // t = s.nextInt(); nexttest: while (t-- > 0) { int n = s.nextInt(); int a[] = s.nextIntArray(n); HashMap<Integer, List<Pair>> sets = new HashMap<>(); int pre[] = new int[n + 1]; for (int i = 1; i <= n; i++) { pre[i] = a[i - 1] + pre[i - 1]; } for (int i = 1; i <= n; i++) { for (int j = i; j <= n; j++) { final Integer key = pre[j] - pre[i - 1]; if (!sets.containsKey(key)) { sets.put(key, new ArrayList<>()); } sets.get(key).add(new Pair(i, j)); } } // System.out.println(sets); int ans = 0; List<Pair> answer = new ArrayList<>(); int[] ansNextPos = new int[1]; boolean[] ansTaken = new boolean[1]; for (List<Pair> intervals : sets.values()) { Collections.sort(intervals); int[] nextPos = new int[intervals.size()]; boolean[] taken = new boolean[intervals.size()]; int[] dp = new int[intervals.size()]; dp[intervals.size() - 1] = 1; taken[intervals.size() - 1] = true; nextPos[intervals.size() - 1] = -1; for (int i = intervals.size() - 2; i >= 0; i--) { dp[i] = dp[i + 1]; taken[i] = false; nextPos[i] = i + 1; int ll = i + 1; int rr = intervals.size(); while (ll < rr) { int mid = ll + rr; mid /= 2; if (intervals.get(mid).x > intervals.get(i).y) { rr = mid; } else { ll = mid + 1; } } if (ll < intervals.size()) { if (dp[i] < 1 + dp[ll]) { dp[i] = Math.max(dp[i], 1 + dp[ll]); taken[i] = true; nextPos[i] = ll; } } } if (dp[0] > ans) { ans = dp[0]; answer = intervals; ansNextPos = nextPos; ansTaken = taken; } } out.println(ans); int cur = 0; while (cur != -1) { if (ansTaken[cur]) { out.println(answer.get(cur)); } cur = ansNextPos[cur]; } } out.close(); } static class Pair implements Comparable<Pair> { int x; int y; @Override public String toString() { return x + " " + y; } public Pair(final int x, final int y) { this.x = x; this.y = y; } @Override public int compareTo(final Pair o) { return this.x - o.x; } } static class InputReader { private final InputStream stream; private final byte[] buf = new byte[8192]; private int curChar, snumChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int snext() { if (snumChars == -1) { throw new InputMismatchException(); } if (curChar >= snumChars) { curChar = 0; try { snumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (snumChars <= 0) { return -1; } } return buf[curChar++]; } public int nextInt() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } long res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public int[] nextIntArray(int n) { int a[] = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } public String readString() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = snext(); } while (!isSpaceChar(c)); return res.toString(); } public String nextLine() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = snext(); } while (!isEndOfLine(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.HashMap; import java.util.InputMismatchException; import java.util.List; public class Q6 { public static void main(String[] args) { InputReader s = new InputReader(System.in); PrintWriter out = new PrintWriter(System.out); int t = 1; // t = s.nextInt(); nexttest: while (t-- > 0) { int n = s.nextInt(); int a[] = s.nextIntArray(n); HashMap<Integer, List<Pair>> sets = new HashMap<>(); int pre[] = new int[n + 1]; for (int i = 1; i <= n; i++) { pre[i] = a[i - 1] + pre[i - 1]; } for (int i = 1; i <= n; i++) { for (int j = i; j <= n; j++) { final Integer key = pre[j] - pre[i - 1]; if (!sets.containsKey(key)) { sets.put(key, new ArrayList<>()); } sets.get(key).add(new Pair(i, j)); } } // System.out.println(sets); int ans = 0; List<Pair> answer = new ArrayList<>(); int[] ansNextPos = new int[1]; boolean[] ansTaken = new boolean[1]; for (List<Pair> intervals : sets.values()) { Collections.sort(intervals); int[] nextPos = new int[intervals.size()]; boolean[] taken = new boolean[intervals.size()]; int[] dp = new int[intervals.size()]; dp[intervals.size() - 1] = 1; taken[intervals.size() - 1] = true; nextPos[intervals.size() - 1] = -1; for (int i = intervals.size() - 2; i >= 0; i--) { dp[i] = dp[i + 1]; taken[i] = false; nextPos[i] = i + 1; int ll = i + 1; int rr = intervals.size(); while (ll < rr) { int mid = ll + rr; mid /= 2; if (intervals.get(mid).x > intervals.get(i).y) { rr = mid; } else { ll = mid + 1; } } if (ll < intervals.size()) { if (dp[i] < 1 + dp[ll]) { dp[i] = Math.max(dp[i], 1 + dp[ll]); taken[i] = true; nextPos[i] = ll; } } } if (dp[0] > ans) { ans = dp[0]; answer = intervals; ansNextPos = nextPos; ansTaken = taken; } } out.println(ans); int cur = 0; while (cur != -1) { if (ansTaken[cur]) { out.println(answer.get(cur)); } cur = ansNextPos[cur]; } } out.close(); } static class Pair implements Comparable<Pair> { int x; int y; @Override public String toString() { return x + " " + y; } public Pair(final int x, final int y) { this.x = x; this.y = y; } @Override public int compareTo(final Pair o) { return this.x - o.x; } } static class InputReader { private final InputStream stream; private final byte[] buf = new byte[8192]; private int curChar, snumChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int snext() { if (snumChars == -1) { throw new InputMismatchException(); } if (curChar >= snumChars) { curChar = 0; try { snumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (snumChars <= 0) { return -1; } } return buf[curChar++]; } public int nextInt() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } long res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public int[] nextIntArray(int n) { int a[] = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } public String readString() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = snext(); } while (!isSpaceChar(c)); return res.toString(); } public String nextLine() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = snext(); } while (!isEndOfLine(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,872
2,498
3,680
import java.util.*; import java.io.*; public class C { private static int[] dx = {1, -1, 0, 0}; private static int[] dy = {0, 0, -1, 1}; public static void main(String[] args) throws Exception{ Thread t = new Thread(null, null, "~", Runtime.getRuntime().maxMemory()){ @Override public void run(){ try { solve(); } catch(Exception e) { System.err.println("ERROR"); } } }; t.start(); t.join(); } public static void solve() throws Exception { Scanner in = new Scanner(new File("input.txt")); PrintWriter out = new PrintWriter(new File("output.txt")); int n = in.nextInt(); int m = in.nextInt(); int[][] time = new int[n][m]; for(int i = 0; i < n; ++i) { Arrays.fill(time[i], Integer.MAX_VALUE); } int qq = in.nextInt(); int[] xs = new int[qq]; int[] ys = new int[qq]; for(int i = 0; i < qq; ++i){ xs[i] = in.nextInt() - 1; ys[i] = in.nextInt() - 1; } for(int i = 0; i < n; ++i) { for(int j = 0; j < m; ++j) { for(int k = 0; k < qq; ++k) { int dist = Math.abs(i - xs[k]) + Math.abs(j - ys[k]); time[i][j] = Math.min(time[i][j], dist); } } } int max = -1; int x = -1; int y = -1; for(int i = 0; i < n; ++i) { for(int j = 0; j < m; ++j) if(max < time[i][j]) { max = time[i][j]; x = i + 1; y = j + 1; } } out.println(x + " " + y); out.flush(); out.close(); } private static class Pair { int f, s; int time; public Pair(int f, int s) { this.f = f; this.s = s; } public Pair(int f, int s, int time) { this(f, s); this.time = time; } } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class C { private static int[] dx = {1, -1, 0, 0}; private static int[] dy = {0, 0, -1, 1}; public static void main(String[] args) throws Exception{ Thread t = new Thread(null, null, "~", Runtime.getRuntime().maxMemory()){ @Override public void run(){ try { solve(); } catch(Exception e) { System.err.println("ERROR"); } } }; t.start(); t.join(); } public static void solve() throws Exception { Scanner in = new Scanner(new File("input.txt")); PrintWriter out = new PrintWriter(new File("output.txt")); int n = in.nextInt(); int m = in.nextInt(); int[][] time = new int[n][m]; for(int i = 0; i < n; ++i) { Arrays.fill(time[i], Integer.MAX_VALUE); } int qq = in.nextInt(); int[] xs = new int[qq]; int[] ys = new int[qq]; for(int i = 0; i < qq; ++i){ xs[i] = in.nextInt() - 1; ys[i] = in.nextInt() - 1; } for(int i = 0; i < n; ++i) { for(int j = 0; j < m; ++j) { for(int k = 0; k < qq; ++k) { int dist = Math.abs(i - xs[k]) + Math.abs(j - ys[k]); time[i][j] = Math.min(time[i][j], dist); } } } int max = -1; int x = -1; int y = -1; for(int i = 0; i < n; ++i) { for(int j = 0; j < m; ++j) if(max < time[i][j]) { max = time[i][j]; x = i + 1; y = j + 1; } } out.println(x + " " + y); out.flush(); out.close(); } private static class Pair { int f, s; int time; public Pair(int f, int s) { this.f = f; this.s = s; } public Pair(int f, int s, int time) { this(f, s); this.time = time; } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; public class C { private static int[] dx = {1, -1, 0, 0}; private static int[] dy = {0, 0, -1, 1}; public static void main(String[] args) throws Exception{ Thread t = new Thread(null, null, "~", Runtime.getRuntime().maxMemory()){ @Override public void run(){ try { solve(); } catch(Exception e) { System.err.println("ERROR"); } } }; t.start(); t.join(); } public static void solve() throws Exception { Scanner in = new Scanner(new File("input.txt")); PrintWriter out = new PrintWriter(new File("output.txt")); int n = in.nextInt(); int m = in.nextInt(); int[][] time = new int[n][m]; for(int i = 0; i < n; ++i) { Arrays.fill(time[i], Integer.MAX_VALUE); } int qq = in.nextInt(); int[] xs = new int[qq]; int[] ys = new int[qq]; for(int i = 0; i < qq; ++i){ xs[i] = in.nextInt() - 1; ys[i] = in.nextInt() - 1; } for(int i = 0; i < n; ++i) { for(int j = 0; j < m; ++j) { for(int k = 0; k < qq; ++k) { int dist = Math.abs(i - xs[k]) + Math.abs(j - ys[k]); time[i][j] = Math.min(time[i][j], dist); } } } int max = -1; int x = -1; int y = -1; for(int i = 0; i < n; ++i) { for(int j = 0; j < m; ++j) if(max < time[i][j]) { max = time[i][j]; x = i + 1; y = j + 1; } } out.println(x + " " + y); out.flush(); out.close(); } private static class Pair { int f, s; int time; public Pair(int f, int s) { this.f = f; this.s = s; } public Pair(int f, int s, int time) { this(f, s); this.time = time; } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
894
3,672
3,907
import java.util.*; public class CompressionAndExpansion { public static void main(String[] args) { Scanner in = new Scanner(System.in); int T = in.nextInt(); for (int t = 0; t < T; t++) { int N = in.nextInt(); List<Integer> list = new ArrayList<>(); for (int i = 0; i < N; i++) { int n = in.nextInt(); if (n == 1) { list.add(n); } else { for (int j = list.size() - 1; j >= 0; j--) { if (list.get(j) == n - 1) { list.set(j, n); break; } list.remove(j); } } for (int j = 0; j < list.size(); j++) { System.out.print(list.get(j) + (j == list.size() - 1 ? "\n" : ".")); } } } } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; public class CompressionAndExpansion { public static void main(String[] args) { Scanner in = new Scanner(System.in); int T = in.nextInt(); for (int t = 0; t < T; t++) { int N = in.nextInt(); List<Integer> list = new ArrayList<>(); for (int i = 0; i < N; i++) { int n = in.nextInt(); if (n == 1) { list.add(n); } else { for (int j = list.size() - 1; j >= 0; j--) { if (list.get(j) == n - 1) { list.set(j, n); break; } list.remove(j); } } for (int j = 0; j < list.size(); j++) { System.out.print(list.get(j) + (j == list.size() - 1 ? "\n" : ".")); } } } } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; public class CompressionAndExpansion { public static void main(String[] args) { Scanner in = new Scanner(System.in); int T = in.nextInt(); for (int t = 0; t < T; t++) { int N = in.nextInt(); List<Integer> list = new ArrayList<>(); for (int i = 0; i < N; i++) { int n = in.nextInt(); if (n == 1) { list.add(n); } else { for (int j = list.size() - 1; j >= 0; j--) { if (list.get(j) == n - 1) { list.set(j, n); break; } list.remove(j); } } for (int j = 0; j < list.size(); j++) { System.out.print(list.get(j) + (j == list.size() - 1 ? "\n" : ".")); } } } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
548
3,897
2,363
import java.io.BufferedReader; import java.io.Closeable; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.math.BigInteger; import java.util.Arrays; import java.util.HashMap; import java.util.LinkedList; import java.util.Scanner; import java.util.StringTokenizer; public class D { public static class BIT { int[] dat; public BIT(int n){ dat = new int[n + 1]; } public void add(int k, int a){ // k : 0-indexed for(int i = k + 1; i < dat.length; i += i & -i){ dat[i] += a; } } public int sum(int s, int t){ // [s, t) if(s > 0) return sum(0, t) - sum(0, s); int ret = 0; for(int i = t; i > 0; i -= i & -i) { ret += dat[i]; } return ret; } } public static void main(String[] args) { try (final Scanner sc = new Scanner(System.in)) { final int N = sc.nextInt(); int[] array = new int[N]; for(int i = 0; i < N; i++){ array[i] = sc.nextInt() - 1; } long inv = 0; BIT bit = new BIT(N); for(int i = 0; i < N; i++){ inv += bit.sum(array[i], N); bit.add(array[i], 1); } //System.out.println(inv); int mod2 = (int)(inv % 2); final int M = sc.nextInt(); for(int i = 0; i < M; i++){ final int l = sc.nextInt() - 1; final int r = sc.nextInt() - 1; final long size = (r - l) + 1; if(size > 1){ //System.out.println(size + " " + ((size * (size - 1) / 2))); if((size * (size - 1) / 2) % 2 == 1){ mod2 = 1 - mod2; } } System.out.println((mod2 == 0) ? "even" : "odd"); } } } public static class Scanner implements Closeable { private BufferedReader br; private StringTokenizer tok; public Scanner(InputStream is) { br = new BufferedReader(new InputStreamReader(is)); } private void getLine() { try { while (!hasNext()) { tok = new StringTokenizer(br.readLine()); } } catch (IOException e) { /* ignore */ } } private boolean hasNext() { return tok != null && tok.hasMoreTokens(); } public String next() { getLine(); return tok.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public void close() { try { br.close(); } catch (IOException e) { /* ignore */ } } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.Closeable; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.math.BigInteger; import java.util.Arrays; import java.util.HashMap; import java.util.LinkedList; import java.util.Scanner; import java.util.StringTokenizer; public class D { public static class BIT { int[] dat; public BIT(int n){ dat = new int[n + 1]; } public void add(int k, int a){ // k : 0-indexed for(int i = k + 1; i < dat.length; i += i & -i){ dat[i] += a; } } public int sum(int s, int t){ // [s, t) if(s > 0) return sum(0, t) - sum(0, s); int ret = 0; for(int i = t; i > 0; i -= i & -i) { ret += dat[i]; } return ret; } } public static void main(String[] args) { try (final Scanner sc = new Scanner(System.in)) { final int N = sc.nextInt(); int[] array = new int[N]; for(int i = 0; i < N; i++){ array[i] = sc.nextInt() - 1; } long inv = 0; BIT bit = new BIT(N); for(int i = 0; i < N; i++){ inv += bit.sum(array[i], N); bit.add(array[i], 1); } //System.out.println(inv); int mod2 = (int)(inv % 2); final int M = sc.nextInt(); for(int i = 0; i < M; i++){ final int l = sc.nextInt() - 1; final int r = sc.nextInt() - 1; final long size = (r - l) + 1; if(size > 1){ //System.out.println(size + " " + ((size * (size - 1) / 2))); if((size * (size - 1) / 2) % 2 == 1){ mod2 = 1 - mod2; } } System.out.println((mod2 == 0) ? "even" : "odd"); } } } public static class Scanner implements Closeable { private BufferedReader br; private StringTokenizer tok; public Scanner(InputStream is) { br = new BufferedReader(new InputStreamReader(is)); } private void getLine() { try { while (!hasNext()) { tok = new StringTokenizer(br.readLine()); } } catch (IOException e) { /* ignore */ } } private boolean hasNext() { return tok != null && tok.hasMoreTokens(); } public String next() { getLine(); return tok.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public void close() { try { br.close(); } catch (IOException e) { /* ignore */ } } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.Closeable; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.math.BigInteger; import java.util.Arrays; import java.util.HashMap; import java.util.LinkedList; import java.util.Scanner; import java.util.StringTokenizer; public class D { public static class BIT { int[] dat; public BIT(int n){ dat = new int[n + 1]; } public void add(int k, int a){ // k : 0-indexed for(int i = k + 1; i < dat.length; i += i & -i){ dat[i] += a; } } public int sum(int s, int t){ // [s, t) if(s > 0) return sum(0, t) - sum(0, s); int ret = 0; for(int i = t; i > 0; i -= i & -i) { ret += dat[i]; } return ret; } } public static void main(String[] args) { try (final Scanner sc = new Scanner(System.in)) { final int N = sc.nextInt(); int[] array = new int[N]; for(int i = 0; i < N; i++){ array[i] = sc.nextInt() - 1; } long inv = 0; BIT bit = new BIT(N); for(int i = 0; i < N; i++){ inv += bit.sum(array[i], N); bit.add(array[i], 1); } //System.out.println(inv); int mod2 = (int)(inv % 2); final int M = sc.nextInt(); for(int i = 0; i < M; i++){ final int l = sc.nextInt() - 1; final int r = sc.nextInt() - 1; final long size = (r - l) + 1; if(size > 1){ //System.out.println(size + " " + ((size * (size - 1) / 2))); if((size * (size - 1) / 2) % 2 == 1){ mod2 = 1 - mod2; } } System.out.println((mod2 == 0) ? "even" : "odd"); } } } public static class Scanner implements Closeable { private BufferedReader br; private StringTokenizer tok; public Scanner(InputStream is) { br = new BufferedReader(new InputStreamReader(is)); } private void getLine() { try { while (!hasNext()) { tok = new StringTokenizer(br.readLine()); } } catch (IOException e) { /* ignore */ } } private boolean hasNext() { return tok != null && tok.hasMoreTokens(); } public String next() { getLine(); return tok.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public void close() { try { br.close(); } catch (IOException e) { /* ignore */ } } } } </CODE> <EVALUATION_RUBRIC> - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,075
2,358
1,844
import java.util.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int[] wide = new int[n], sta = new int[n]; HashMap<Integer, Integer> hm = new HashMap<Integer, Integer>(); for (int i = 0; i < n; i++) { wide[i] = sc.nextInt(); hm.put(wide[i], i + 1); } Util.sort(wide); sc.nextLine(); String s = sc.nextLine(); int tp = 0, pos = 0; StringBuilder out = new StringBuilder(); for (int i = 0; i < s.length(); i++) { int t; if (s.charAt(i) == '0') { t = wide[pos++]; sta[tp++] = t; } else t = sta[--tp]; out.append(hm.get(t) + " "); } System.out.println(out.toString()); sc.close(); } public static class Util { public static <T extends Comparable<T> > void merge_sort(T[] a) { Object[] aux = new Object[a.length]; merge_sort0(a, aux, 0, a.length); } public static <T extends Comparable<T> > void merge_sort(T[] a, int l, int r) { Object[] aux = new Object[a.length]; merge_sort0(a, aux, l, r); } @SuppressWarnings("unchecked") private static <T extends Comparable<T> > void merge_sort0(T[] a, Object[] temp, int l, int r) { if (l + 1 == r) return; int mid = (l + r) >> 1; merge_sort0(a, temp, l, mid); merge_sort0(a, temp, mid, r); int x = l, y = mid, c = l; while (x < mid || y < r) { if (y == r || (x < mid && a[x].compareTo(a[y]) <= 0)) temp[c++] = a[x++]; else temp[c++] = a[y++]; } for (int i = l; i < r; i++) a[i] = (T)temp[i]; } static final Random RAN = new Random(); public static <T extends Comparable<T> > void quick_sort(T[] a) { quick_sort0(a, 0, a.length); } public static <T extends Comparable<T> > void quick_sort(T[] a, int l, int r) { quick_sort0(a, l, r); } private static <T extends Comparable<T> > void quick_sort0(T[] a, int l, int r) { if (l + 1 >= r) return; int p = l + RAN.nextInt(r - l); T t = a[p]; a[p] = a[l]; a[l] = t; int x = l, y = r - 1; while (x < y) { while (x < y && a[y].compareTo(t) > 0) --y; while (x < y && a[x].compareTo(t) < 0) ++x; if (x < y) { T b = a[x]; a[x] = a[y]; a[y] = b; ++x; --y; } } quick_sort0(a, l, y + 1); quick_sort0(a, x, r); } static final int BOUND = 8; public static void bucket_sort(int[] a) { bucket_sort(a, 0, a.length); } public static void bucket_sort(int[] a, int l, int r) { int[] cnt = new int[1 << BOUND], b = new int[r - l + 1]; int y = 0; for (int i = l; i < r; i++) ++cnt[a[i] & (1 << BOUND) - 1]; while (y < Integer.SIZE) { for (int i = 1; i < 1 << BOUND; i++) cnt[i] += cnt[i - 1]; for (int i = r - 1; i >= l; i--) b[--cnt[a[i] >> y & (1 << BOUND) - 1]] = a[i]; y += BOUND; Arrays.fill(cnt, 0); for (int i = l; i < r; i++) { a[i] = b[i - l]; ++cnt[a[i] >> y & (1 << BOUND) - 1]; } } } public static void bucket_sort(long[] a) { bucket_sort(a, 0, a.length); } public static void bucket_sort(long[] a, int l, int r) { int[] cnt = new int[1 << BOUND]; long[] b = new long[r - l + 1]; int y = 0; while (y < Long.SIZE) { Arrays.fill(cnt, 0); for (int i = l; i < r; i++) ++cnt[(int) (a[i] >> y & (1 << BOUND) - 1)]; for (int i = 1; i < 1 << BOUND; i++) cnt[i] += cnt[i - 1]; for (int i = r - 1; i >= l; i--) b[--cnt[(int) (a[i] >> y & (1 << BOUND) - 1)]] = a[i]; for (int i = l; i < r; i++) a[i] = b[i - l]; y += BOUND; } } public static void sort(int[] a) { if (a.length <= 1 << BOUND) { Integer[] b = new Integer[a.length]; for (int i = 0; i < a.length; i++) b[i] = a[i]; quick_sort(b); for (int i = 0; i < a.length; i++) a[i] = b[i]; } else bucket_sort(a); } public static void sort(long[] a) { if (a.length <= 1 << BOUND) { Long[] b = new Long[a.length]; for (int i = 0; i < a.length; i++) b[i] = a[i]; quick_sort(b); for (int i = 0; i < a.length; i++) a[i] = b[i]; } else bucket_sort(a); } public static <T extends Comparable<T> > void sort(T[] a) { quick_sort(a); } public static void shuffle(int[] a) { Random ran = new Random(); for (int i = 0; i < a.length; i++) { int p = ran.nextInt(i + 1); int q = a[p]; a[p] = a[i]; a[i] = q; } } public static void shuffle(long[] a) { Random ran = new Random(); for (int i = 0; i < a.length; i++) { int p = ran.nextInt(i + 1); long q = a[p]; a[p] = a[i]; a[i] = q; } } public static <T> void shuffle(T[] a) { Random ran = new Random(); for (int i = 0; i < a.length; i++) { int p = ran.nextInt(i + 1); T q = a[p]; a[p] = a[i]; a[i] = q; } } } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int[] wide = new int[n], sta = new int[n]; HashMap<Integer, Integer> hm = new HashMap<Integer, Integer>(); for (int i = 0; i < n; i++) { wide[i] = sc.nextInt(); hm.put(wide[i], i + 1); } Util.sort(wide); sc.nextLine(); String s = sc.nextLine(); int tp = 0, pos = 0; StringBuilder out = new StringBuilder(); for (int i = 0; i < s.length(); i++) { int t; if (s.charAt(i) == '0') { t = wide[pos++]; sta[tp++] = t; } else t = sta[--tp]; out.append(hm.get(t) + " "); } System.out.println(out.toString()); sc.close(); } public static class Util { public static <T extends Comparable<T> > void merge_sort(T[] a) { Object[] aux = new Object[a.length]; merge_sort0(a, aux, 0, a.length); } public static <T extends Comparable<T> > void merge_sort(T[] a, int l, int r) { Object[] aux = new Object[a.length]; merge_sort0(a, aux, l, r); } @SuppressWarnings("unchecked") private static <T extends Comparable<T> > void merge_sort0(T[] a, Object[] temp, int l, int r) { if (l + 1 == r) return; int mid = (l + r) >> 1; merge_sort0(a, temp, l, mid); merge_sort0(a, temp, mid, r); int x = l, y = mid, c = l; while (x < mid || y < r) { if (y == r || (x < mid && a[x].compareTo(a[y]) <= 0)) temp[c++] = a[x++]; else temp[c++] = a[y++]; } for (int i = l; i < r; i++) a[i] = (T)temp[i]; } static final Random RAN = new Random(); public static <T extends Comparable<T> > void quick_sort(T[] a) { quick_sort0(a, 0, a.length); } public static <T extends Comparable<T> > void quick_sort(T[] a, int l, int r) { quick_sort0(a, l, r); } private static <T extends Comparable<T> > void quick_sort0(T[] a, int l, int r) { if (l + 1 >= r) return; int p = l + RAN.nextInt(r - l); T t = a[p]; a[p] = a[l]; a[l] = t; int x = l, y = r - 1; while (x < y) { while (x < y && a[y].compareTo(t) > 0) --y; while (x < y && a[x].compareTo(t) < 0) ++x; if (x < y) { T b = a[x]; a[x] = a[y]; a[y] = b; ++x; --y; } } quick_sort0(a, l, y + 1); quick_sort0(a, x, r); } static final int BOUND = 8; public static void bucket_sort(int[] a) { bucket_sort(a, 0, a.length); } public static void bucket_sort(int[] a, int l, int r) { int[] cnt = new int[1 << BOUND], b = new int[r - l + 1]; int y = 0; for (int i = l; i < r; i++) ++cnt[a[i] & (1 << BOUND) - 1]; while (y < Integer.SIZE) { for (int i = 1; i < 1 << BOUND; i++) cnt[i] += cnt[i - 1]; for (int i = r - 1; i >= l; i--) b[--cnt[a[i] >> y & (1 << BOUND) - 1]] = a[i]; y += BOUND; Arrays.fill(cnt, 0); for (int i = l; i < r; i++) { a[i] = b[i - l]; ++cnt[a[i] >> y & (1 << BOUND) - 1]; } } } public static void bucket_sort(long[] a) { bucket_sort(a, 0, a.length); } public static void bucket_sort(long[] a, int l, int r) { int[] cnt = new int[1 << BOUND]; long[] b = new long[r - l + 1]; int y = 0; while (y < Long.SIZE) { Arrays.fill(cnt, 0); for (int i = l; i < r; i++) ++cnt[(int) (a[i] >> y & (1 << BOUND) - 1)]; for (int i = 1; i < 1 << BOUND; i++) cnt[i] += cnt[i - 1]; for (int i = r - 1; i >= l; i--) b[--cnt[(int) (a[i] >> y & (1 << BOUND) - 1)]] = a[i]; for (int i = l; i < r; i++) a[i] = b[i - l]; y += BOUND; } } public static void sort(int[] a) { if (a.length <= 1 << BOUND) { Integer[] b = new Integer[a.length]; for (int i = 0; i < a.length; i++) b[i] = a[i]; quick_sort(b); for (int i = 0; i < a.length; i++) a[i] = b[i]; } else bucket_sort(a); } public static void sort(long[] a) { if (a.length <= 1 << BOUND) { Long[] b = new Long[a.length]; for (int i = 0; i < a.length; i++) b[i] = a[i]; quick_sort(b); for (int i = 0; i < a.length; i++) a[i] = b[i]; } else bucket_sort(a); } public static <T extends Comparable<T> > void sort(T[] a) { quick_sort(a); } public static void shuffle(int[] a) { Random ran = new Random(); for (int i = 0; i < a.length; i++) { int p = ran.nextInt(i + 1); int q = a[p]; a[p] = a[i]; a[i] = q; } } public static void shuffle(long[] a) { Random ran = new Random(); for (int i = 0; i < a.length; i++) { int p = ran.nextInt(i + 1); long q = a[p]; a[p] = a[i]; a[i] = q; } } public static <T> void shuffle(T[] a) { Random ran = new Random(); for (int i = 0; i < a.length; i++) { int p = ran.nextInt(i + 1); T q = a[p]; a[p] = a[i]; a[i] = q; } } } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int[] wide = new int[n], sta = new int[n]; HashMap<Integer, Integer> hm = new HashMap<Integer, Integer>(); for (int i = 0; i < n; i++) { wide[i] = sc.nextInt(); hm.put(wide[i], i + 1); } Util.sort(wide); sc.nextLine(); String s = sc.nextLine(); int tp = 0, pos = 0; StringBuilder out = new StringBuilder(); for (int i = 0; i < s.length(); i++) { int t; if (s.charAt(i) == '0') { t = wide[pos++]; sta[tp++] = t; } else t = sta[--tp]; out.append(hm.get(t) + " "); } System.out.println(out.toString()); sc.close(); } public static class Util { public static <T extends Comparable<T> > void merge_sort(T[] a) { Object[] aux = new Object[a.length]; merge_sort0(a, aux, 0, a.length); } public static <T extends Comparable<T> > void merge_sort(T[] a, int l, int r) { Object[] aux = new Object[a.length]; merge_sort0(a, aux, l, r); } @SuppressWarnings("unchecked") private static <T extends Comparable<T> > void merge_sort0(T[] a, Object[] temp, int l, int r) { if (l + 1 == r) return; int mid = (l + r) >> 1; merge_sort0(a, temp, l, mid); merge_sort0(a, temp, mid, r); int x = l, y = mid, c = l; while (x < mid || y < r) { if (y == r || (x < mid && a[x].compareTo(a[y]) <= 0)) temp[c++] = a[x++]; else temp[c++] = a[y++]; } for (int i = l; i < r; i++) a[i] = (T)temp[i]; } static final Random RAN = new Random(); public static <T extends Comparable<T> > void quick_sort(T[] a) { quick_sort0(a, 0, a.length); } public static <T extends Comparable<T> > void quick_sort(T[] a, int l, int r) { quick_sort0(a, l, r); } private static <T extends Comparable<T> > void quick_sort0(T[] a, int l, int r) { if (l + 1 >= r) return; int p = l + RAN.nextInt(r - l); T t = a[p]; a[p] = a[l]; a[l] = t; int x = l, y = r - 1; while (x < y) { while (x < y && a[y].compareTo(t) > 0) --y; while (x < y && a[x].compareTo(t) < 0) ++x; if (x < y) { T b = a[x]; a[x] = a[y]; a[y] = b; ++x; --y; } } quick_sort0(a, l, y + 1); quick_sort0(a, x, r); } static final int BOUND = 8; public static void bucket_sort(int[] a) { bucket_sort(a, 0, a.length); } public static void bucket_sort(int[] a, int l, int r) { int[] cnt = new int[1 << BOUND], b = new int[r - l + 1]; int y = 0; for (int i = l; i < r; i++) ++cnt[a[i] & (1 << BOUND) - 1]; while (y < Integer.SIZE) { for (int i = 1; i < 1 << BOUND; i++) cnt[i] += cnt[i - 1]; for (int i = r - 1; i >= l; i--) b[--cnt[a[i] >> y & (1 << BOUND) - 1]] = a[i]; y += BOUND; Arrays.fill(cnt, 0); for (int i = l; i < r; i++) { a[i] = b[i - l]; ++cnt[a[i] >> y & (1 << BOUND) - 1]; } } } public static void bucket_sort(long[] a) { bucket_sort(a, 0, a.length); } public static void bucket_sort(long[] a, int l, int r) { int[] cnt = new int[1 << BOUND]; long[] b = new long[r - l + 1]; int y = 0; while (y < Long.SIZE) { Arrays.fill(cnt, 0); for (int i = l; i < r; i++) ++cnt[(int) (a[i] >> y & (1 << BOUND) - 1)]; for (int i = 1; i < 1 << BOUND; i++) cnt[i] += cnt[i - 1]; for (int i = r - 1; i >= l; i--) b[--cnt[(int) (a[i] >> y & (1 << BOUND) - 1)]] = a[i]; for (int i = l; i < r; i++) a[i] = b[i - l]; y += BOUND; } } public static void sort(int[] a) { if (a.length <= 1 << BOUND) { Integer[] b = new Integer[a.length]; for (int i = 0; i < a.length; i++) b[i] = a[i]; quick_sort(b); for (int i = 0; i < a.length; i++) a[i] = b[i]; } else bucket_sort(a); } public static void sort(long[] a) { if (a.length <= 1 << BOUND) { Long[] b = new Long[a.length]; for (int i = 0; i < a.length; i++) b[i] = a[i]; quick_sort(b); for (int i = 0; i < a.length; i++) a[i] = b[i]; } else bucket_sort(a); } public static <T extends Comparable<T> > void sort(T[] a) { quick_sort(a); } public static void shuffle(int[] a) { Random ran = new Random(); for (int i = 0; i < a.length; i++) { int p = ran.nextInt(i + 1); int q = a[p]; a[p] = a[i]; a[i] = q; } } public static void shuffle(long[] a) { Random ran = new Random(); for (int i = 0; i < a.length; i++) { int p = ran.nextInt(i + 1); long q = a[p]; a[p] = a[i]; a[i] = q; } } public static <T> void shuffle(T[] a) { Random ran = new Random(); for (int i = 0; i < a.length; i++) { int p = ran.nextInt(i + 1); T q = a[p]; a[p] = a[i]; a[i] = q; } } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
2,080
1,840
989
import java.io.*; import java.math.*; import java.text.*; import java.util.*; import java.util.regex.*; public class Main { public static void main(String[] args) throws IOException { InputStreamReader r = new InputStreamReader(System.in); BufferedReader f = new BufferedReader(r); Scanner sc = new Scanner(System.in); long n=sc.nextLong(); long m=sc.nextLong(); long sum=0; if(n==1){ }else { for (long i = 1; i <= n; i++) { sum += i; if (sum - (n - i) == m) { sum = n - i; break; } } } System.out.println(sum); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.math.*; import java.text.*; import java.util.*; import java.util.regex.*; public class Main { public static void main(String[] args) throws IOException { InputStreamReader r = new InputStreamReader(System.in); BufferedReader f = new BufferedReader(r); Scanner sc = new Scanner(System.in); long n=sc.nextLong(); long m=sc.nextLong(); long sum=0; if(n==1){ }else { for (long i = 1; i <= n; i++) { sum += i; if (sum - (n - i) == m) { sum = n - i; break; } } } System.out.println(sum); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.math.*; import java.text.*; import java.util.*; import java.util.regex.*; public class Main { public static void main(String[] args) throws IOException { InputStreamReader r = new InputStreamReader(System.in); BufferedReader f = new BufferedReader(r); Scanner sc = new Scanner(System.in); long n=sc.nextLong(); long m=sc.nextLong(); long sum=0; if(n==1){ }else { for (long i = 1; i <= n; i++) { sum += i; if (sum - (n - i) == m) { sum = n - i; break; } } } System.out.println(sum); } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
487
988
223
import java.util.*; import java.io.*; import java.lang.*; import java.math.*; public class B { public static void main(String[] args) throws Exception { BufferedReader bf = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out)); int n = Integer.parseInt(bf.readLine()); StringTokenizer st = new StringTokenizer(bf.readLine()); Integer[] a = new Integer[n]; for(int i=0; i<n; i++) a[i] = Integer.parseInt(st.nextToken()); Arrays.sort(a); int[] b = new int[n]; for(int i=0; i<n; i++) b[i] = a[i].intValue(); boolean diff = false; boolean diff2 = false; Set<Integer> vals = new HashSet<Integer>(); vals.add(b[0]); int valval = 0; for(int i=1; i<n; i++) { vals.add(b[i]); if(b[i] == b[i-1]) { if(!diff) { diff = true; valval = b[i]; } else diff2 = true; } } long sum = 0; for(int i : b) sum += i; sum -= 1L*n*(n-1)/2; if(diff && !diff2) { if(!vals.contains((valval-1)) && (valval > 0)) { if(sum%2 == 0) out.println("cslnb"); else out.println("sjfnb"); } else out.println("cslnb"); } else if(diff2) out.println("cslnb"); else if(sum%2 == 0) out.println("cslnb"); else out.println("sjfnb"); // int n = Integer.parseInt(st.nextToken()); out.close(); System.exit(0); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; import java.lang.*; import java.math.*; public class B { public static void main(String[] args) throws Exception { BufferedReader bf = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out)); int n = Integer.parseInt(bf.readLine()); StringTokenizer st = new StringTokenizer(bf.readLine()); Integer[] a = new Integer[n]; for(int i=0; i<n; i++) a[i] = Integer.parseInt(st.nextToken()); Arrays.sort(a); int[] b = new int[n]; for(int i=0; i<n; i++) b[i] = a[i].intValue(); boolean diff = false; boolean diff2 = false; Set<Integer> vals = new HashSet<Integer>(); vals.add(b[0]); int valval = 0; for(int i=1; i<n; i++) { vals.add(b[i]); if(b[i] == b[i-1]) { if(!diff) { diff = true; valval = b[i]; } else diff2 = true; } } long sum = 0; for(int i : b) sum += i; sum -= 1L*n*(n-1)/2; if(diff && !diff2) { if(!vals.contains((valval-1)) && (valval > 0)) { if(sum%2 == 0) out.println("cslnb"); else out.println("sjfnb"); } else out.println("cslnb"); } else if(diff2) out.println("cslnb"); else if(sum%2 == 0) out.println("cslnb"); else out.println("sjfnb"); // int n = Integer.parseInt(st.nextToken()); out.close(); System.exit(0); } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; import java.lang.*; import java.math.*; public class B { public static void main(String[] args) throws Exception { BufferedReader bf = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out)); int n = Integer.parseInt(bf.readLine()); StringTokenizer st = new StringTokenizer(bf.readLine()); Integer[] a = new Integer[n]; for(int i=0; i<n; i++) a[i] = Integer.parseInt(st.nextToken()); Arrays.sort(a); int[] b = new int[n]; for(int i=0; i<n; i++) b[i] = a[i].intValue(); boolean diff = false; boolean diff2 = false; Set<Integer> vals = new HashSet<Integer>(); vals.add(b[0]); int valval = 0; for(int i=1; i<n; i++) { vals.add(b[i]); if(b[i] == b[i-1]) { if(!diff) { diff = true; valval = b[i]; } else diff2 = true; } } long sum = 0; for(int i : b) sum += i; sum -= 1L*n*(n-1)/2; if(diff && !diff2) { if(!vals.contains((valval-1)) && (valval > 0)) { if(sum%2 == 0) out.println("cslnb"); else out.println("sjfnb"); } else out.println("cslnb"); } else if(diff2) out.println("cslnb"); else if(sum%2 == 0) out.println("cslnb"); else out.println("sjfnb"); // int n = Integer.parseInt(st.nextToken()); out.close(); System.exit(0); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
757
223
317
import java.io.*; import java.util.*; public class Main { static InputReader in = new InputReader(System.in); static PrintWriter out = new PrintWriter(System.out); static long oo = 1000000000000L; public static void main(String[] args) throws IOException { int n = in.nextInt(); int q = in.nextInt(); ArrayDeque<Integer> dq = new ArrayDeque<>(); int max = -1; for(int i = 0; i < n; ++i) { int x = in.nextInt(); dq.add(x); max = Math.max(max, x); } ArrayList<Pair> ans = new ArrayList<>(); while(dq.peekFirst() != max) { int a = dq.pollFirst(); int b = dq.pollFirst(); ans.add(new Pair(a, b)); if(a > b) { dq.addFirst(a); dq.addLast(b); } else { dq.addFirst(b); dq.addLast(a); } } ArrayList<Integer> a = new ArrayList<>(); dq.pollFirst(); for(int x : dq) a.add(x); while(q --> 0) { long m = in.nextLong() - 1; if(m < ans.size()) { System.out.println(ans.get((int)m).first + " " + ans.get((int)m).second); } else { int idx = (int)((m - ans.size()) % a.size()); System.out.println(max + " " + a.get(idx)); } } out.close(); } static long lcm(long a, long b) { return a * b / gcd(a, b); } static boolean nextPermutation(int[] a) { for(int i = a.length - 2; i >= 0; --i) { if(a[i] < a[i+1]) { for(int j = a.length - 1; ; --j) { if(a[i] < a[j]) { int t = a[i]; a[i] = a[j]; a[j] = t; for(i++, j = a.length - 1; i < j; ++i, --j) { t = a[i]; a[i] = a[j]; a[j] = t; } return true; } } } } return false; } static void shuffle(int[] a) { Random r = new Random(); for(int i = a.length - 1; i > 0; --i) { int si = r.nextInt(i); int t = a[si]; a[si] = a[i]; a[i] = t; } } static void shuffle(long[] a) { Random r = new Random(); for(int i = a.length - 1; i > 0; --i) { int si = r.nextInt(i); long t = a[si]; a[si] = a[i]; a[i] = t; } } static int lower_bound(int[] a, int n, int k) { int s = 0; int e = n; int m; while (e - s > 0) { m = (s + e) / 2; if (a[m] < k) s = m + 1; else e = m; } return e; } static int lower_bound(long[] a, int n, long k) { int s = 0; int e = n; int m; while (e - s > 0) { m = (s + e) / 2; if (a[m] < k) s = m + 1; else e = m; } return e; } static int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); } static long gcd(long a, long b) { return b == 0 ? a : gcd(b, a % b); } static class Pair implements Comparable<Pair> { int first, second; public Pair(int first, int second) { super(); this.first = first; this.second = second; } @Override public int compareTo(Pair o) { return this.first != o.first ? this.first - o.first : this.second - o.second; } @Override public int hashCode() { final int prime = 31; int result = 1; result = prime * result + first; result = prime * result + second; return result; } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (getClass() != obj.getClass()) return false; Pair other = (Pair) obj; if (first != other.first) return false; if (second != other.second) return false; return true; } } } class InputReader { private final InputStream stream; private final byte[] buf = new byte[8192]; private int curChar, snumChars; public InputReader(InputStream st) { this.stream = st; } public int read() { if (snumChars == -1) throw new InputMismatchException(); if (curChar >= snumChars) { curChar = 0; try { snumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (snumChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public int[] nextIntArray(int n) { int a[] = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } public String readString() { int c = read(); while (isSpaceChar(c)) { c = read(); } StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public String nextLine() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndOfLine(c)); return res.toString(); } public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main { static InputReader in = new InputReader(System.in); static PrintWriter out = new PrintWriter(System.out); static long oo = 1000000000000L; public static void main(String[] args) throws IOException { int n = in.nextInt(); int q = in.nextInt(); ArrayDeque<Integer> dq = new ArrayDeque<>(); int max = -1; for(int i = 0; i < n; ++i) { int x = in.nextInt(); dq.add(x); max = Math.max(max, x); } ArrayList<Pair> ans = new ArrayList<>(); while(dq.peekFirst() != max) { int a = dq.pollFirst(); int b = dq.pollFirst(); ans.add(new Pair(a, b)); if(a > b) { dq.addFirst(a); dq.addLast(b); } else { dq.addFirst(b); dq.addLast(a); } } ArrayList<Integer> a = new ArrayList<>(); dq.pollFirst(); for(int x : dq) a.add(x); while(q --> 0) { long m = in.nextLong() - 1; if(m < ans.size()) { System.out.println(ans.get((int)m).first + " " + ans.get((int)m).second); } else { int idx = (int)((m - ans.size()) % a.size()); System.out.println(max + " " + a.get(idx)); } } out.close(); } static long lcm(long a, long b) { return a * b / gcd(a, b); } static boolean nextPermutation(int[] a) { for(int i = a.length - 2; i >= 0; --i) { if(a[i] < a[i+1]) { for(int j = a.length - 1; ; --j) { if(a[i] < a[j]) { int t = a[i]; a[i] = a[j]; a[j] = t; for(i++, j = a.length - 1; i < j; ++i, --j) { t = a[i]; a[i] = a[j]; a[j] = t; } return true; } } } } return false; } static void shuffle(int[] a) { Random r = new Random(); for(int i = a.length - 1; i > 0; --i) { int si = r.nextInt(i); int t = a[si]; a[si] = a[i]; a[i] = t; } } static void shuffle(long[] a) { Random r = new Random(); for(int i = a.length - 1; i > 0; --i) { int si = r.nextInt(i); long t = a[si]; a[si] = a[i]; a[i] = t; } } static int lower_bound(int[] a, int n, int k) { int s = 0; int e = n; int m; while (e - s > 0) { m = (s + e) / 2; if (a[m] < k) s = m + 1; else e = m; } return e; } static int lower_bound(long[] a, int n, long k) { int s = 0; int e = n; int m; while (e - s > 0) { m = (s + e) / 2; if (a[m] < k) s = m + 1; else e = m; } return e; } static int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); } static long gcd(long a, long b) { return b == 0 ? a : gcd(b, a % b); } static class Pair implements Comparable<Pair> { int first, second; public Pair(int first, int second) { super(); this.first = first; this.second = second; } @Override public int compareTo(Pair o) { return this.first != o.first ? this.first - o.first : this.second - o.second; } @Override public int hashCode() { final int prime = 31; int result = 1; result = prime * result + first; result = prime * result + second; return result; } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (getClass() != obj.getClass()) return false; Pair other = (Pair) obj; if (first != other.first) return false; if (second != other.second) return false; return true; } } } class InputReader { private final InputStream stream; private final byte[] buf = new byte[8192]; private int curChar, snumChars; public InputReader(InputStream st) { this.stream = st; } public int read() { if (snumChars == -1) throw new InputMismatchException(); if (curChar >= snumChars) { curChar = 0; try { snumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (snumChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public int[] nextIntArray(int n) { int a[] = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } public String readString() { int c = read(); while (isSpaceChar(c)) { c = read(); } StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public String nextLine() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndOfLine(c)); return res.toString(); } public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main { static InputReader in = new InputReader(System.in); static PrintWriter out = new PrintWriter(System.out); static long oo = 1000000000000L; public static void main(String[] args) throws IOException { int n = in.nextInt(); int q = in.nextInt(); ArrayDeque<Integer> dq = new ArrayDeque<>(); int max = -1; for(int i = 0; i < n; ++i) { int x = in.nextInt(); dq.add(x); max = Math.max(max, x); } ArrayList<Pair> ans = new ArrayList<>(); while(dq.peekFirst() != max) { int a = dq.pollFirst(); int b = dq.pollFirst(); ans.add(new Pair(a, b)); if(a > b) { dq.addFirst(a); dq.addLast(b); } else { dq.addFirst(b); dq.addLast(a); } } ArrayList<Integer> a = new ArrayList<>(); dq.pollFirst(); for(int x : dq) a.add(x); while(q --> 0) { long m = in.nextLong() - 1; if(m < ans.size()) { System.out.println(ans.get((int)m).first + " " + ans.get((int)m).second); } else { int idx = (int)((m - ans.size()) % a.size()); System.out.println(max + " " + a.get(idx)); } } out.close(); } static long lcm(long a, long b) { return a * b / gcd(a, b); } static boolean nextPermutation(int[] a) { for(int i = a.length - 2; i >= 0; --i) { if(a[i] < a[i+1]) { for(int j = a.length - 1; ; --j) { if(a[i] < a[j]) { int t = a[i]; a[i] = a[j]; a[j] = t; for(i++, j = a.length - 1; i < j; ++i, --j) { t = a[i]; a[i] = a[j]; a[j] = t; } return true; } } } } return false; } static void shuffle(int[] a) { Random r = new Random(); for(int i = a.length - 1; i > 0; --i) { int si = r.nextInt(i); int t = a[si]; a[si] = a[i]; a[i] = t; } } static void shuffle(long[] a) { Random r = new Random(); for(int i = a.length - 1; i > 0; --i) { int si = r.nextInt(i); long t = a[si]; a[si] = a[i]; a[i] = t; } } static int lower_bound(int[] a, int n, int k) { int s = 0; int e = n; int m; while (e - s > 0) { m = (s + e) / 2; if (a[m] < k) s = m + 1; else e = m; } return e; } static int lower_bound(long[] a, int n, long k) { int s = 0; int e = n; int m; while (e - s > 0) { m = (s + e) / 2; if (a[m] < k) s = m + 1; else e = m; } return e; } static int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); } static long gcd(long a, long b) { return b == 0 ? a : gcd(b, a % b); } static class Pair implements Comparable<Pair> { int first, second; public Pair(int first, int second) { super(); this.first = first; this.second = second; } @Override public int compareTo(Pair o) { return this.first != o.first ? this.first - o.first : this.second - o.second; } @Override public int hashCode() { final int prime = 31; int result = 1; result = prime * result + first; result = prime * result + second; return result; } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (getClass() != obj.getClass()) return false; Pair other = (Pair) obj; if (first != other.first) return false; if (second != other.second) return false; return true; } } } class InputReader { private final InputStream stream; private final byte[] buf = new byte[8192]; private int curChar, snumChars; public InputReader(InputStream st) { this.stream = st; } public int read() { if (snumChars == -1) throw new InputMismatchException(); if (curChar >= snumChars) { curChar = 0; try { snumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (snumChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public int[] nextIntArray(int n) { int a[] = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } public String readString() { int c = read(); while (isSpaceChar(c)) { c = read(); } StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public String nextLine() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndOfLine(c)); return res.toString(); } public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
2,133
317
4,312
import java.util.*; import java.io.*; import static java.lang.Math.*; public class B{ public static void main(String[] args) throws Exception{ new B().run(); } double ans = 0; int n, candy, A, half; void run() throws Exception{ Scanner sc = new Scanner(System.in); //BufferedReader sc = new BufferedReader(new InputStreamReader(System.in)); // only sc.readLine() is available n = sc.nextInt(); candy = sc.nextInt(); A = sc.nextInt(); half = n/2; //int[] level = new int[n]; //int[] loyal = new int[n]; S[] ss = new S[n]; for(int i = 0; i < n; i++){ ss[i] = new S(sc.nextInt(), sc.nextInt()); } Arrays.sort(ss); int need = 0; for(int i = n-1; i >= n-half-1; i--) need += (100-ss[i].loyal)/10; if(need <= candy){ System.out.println(1.0); return; } tra(ss, 0, candy); /* while(candy > 0){ int ind = 0; for(int i = 1; i < n; i++) if(ss[i].loyal < 100 && ss[ind].level < ss[i].level) ind = i; ss[ind].loyal += 10; ss[ind].loyal = min(100, ss[ind].loyal); candy--; } */ System.out.printf("%.10f\n", ans); } void tra(S[] ss, int pos, int rest){ if(pos == n){ double sum = 0; int lim = 1<<n; for(int m = 0; m < lim; m++){ int app = Integer.bitCount(m); double p = 1; int B = 0; for(int i = 0; i < n; i++){ if(((m>>i) & 1) == 1){ p = p * ss[i].loyal / 100; }else{ p = p * (100 - ss[i].loyal) / 100; B += ss[i].level; } } if(app > half)sum += p; else{ sum += p * A / (A+B); } } ans = max(ans, sum); return; } for(int i = 0; i <= rest; i++){ int old = ss[pos].loyal; int nl = ss[pos].loyal + i * 10; if(nl > 100)break; ss[pos].loyal = nl; tra(ss, pos+1, rest-i); ss[pos].loyal = old; } } } class S implements Comparable<S>{ int level, loyal; S(int a, int b){ level = a; loyal = b; } public int compareTo(S s){ return this.loyal - s.loyal; } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; import static java.lang.Math.*; public class B{ public static void main(String[] args) throws Exception{ new B().run(); } double ans = 0; int n, candy, A, half; void run() throws Exception{ Scanner sc = new Scanner(System.in); //BufferedReader sc = new BufferedReader(new InputStreamReader(System.in)); // only sc.readLine() is available n = sc.nextInt(); candy = sc.nextInt(); A = sc.nextInt(); half = n/2; //int[] level = new int[n]; //int[] loyal = new int[n]; S[] ss = new S[n]; for(int i = 0; i < n; i++){ ss[i] = new S(sc.nextInt(), sc.nextInt()); } Arrays.sort(ss); int need = 0; for(int i = n-1; i >= n-half-1; i--) need += (100-ss[i].loyal)/10; if(need <= candy){ System.out.println(1.0); return; } tra(ss, 0, candy); /* while(candy > 0){ int ind = 0; for(int i = 1; i < n; i++) if(ss[i].loyal < 100 && ss[ind].level < ss[i].level) ind = i; ss[ind].loyal += 10; ss[ind].loyal = min(100, ss[ind].loyal); candy--; } */ System.out.printf("%.10f\n", ans); } void tra(S[] ss, int pos, int rest){ if(pos == n){ double sum = 0; int lim = 1<<n; for(int m = 0; m < lim; m++){ int app = Integer.bitCount(m); double p = 1; int B = 0; for(int i = 0; i < n; i++){ if(((m>>i) & 1) == 1){ p = p * ss[i].loyal / 100; }else{ p = p * (100 - ss[i].loyal) / 100; B += ss[i].level; } } if(app > half)sum += p; else{ sum += p * A / (A+B); } } ans = max(ans, sum); return; } for(int i = 0; i <= rest; i++){ int old = ss[pos].loyal; int nl = ss[pos].loyal + i * 10; if(nl > 100)break; ss[pos].loyal = nl; tra(ss, pos+1, rest-i); ss[pos].loyal = old; } } } class S implements Comparable<S>{ int level, loyal; S(int a, int b){ level = a; loyal = b; } public int compareTo(S s){ return this.loyal - s.loyal; } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; import static java.lang.Math.*; public class B{ public static void main(String[] args) throws Exception{ new B().run(); } double ans = 0; int n, candy, A, half; void run() throws Exception{ Scanner sc = new Scanner(System.in); //BufferedReader sc = new BufferedReader(new InputStreamReader(System.in)); // only sc.readLine() is available n = sc.nextInt(); candy = sc.nextInt(); A = sc.nextInt(); half = n/2; //int[] level = new int[n]; //int[] loyal = new int[n]; S[] ss = new S[n]; for(int i = 0; i < n; i++){ ss[i] = new S(sc.nextInt(), sc.nextInt()); } Arrays.sort(ss); int need = 0; for(int i = n-1; i >= n-half-1; i--) need += (100-ss[i].loyal)/10; if(need <= candy){ System.out.println(1.0); return; } tra(ss, 0, candy); /* while(candy > 0){ int ind = 0; for(int i = 1; i < n; i++) if(ss[i].loyal < 100 && ss[ind].level < ss[i].level) ind = i; ss[ind].loyal += 10; ss[ind].loyal = min(100, ss[ind].loyal); candy--; } */ System.out.printf("%.10f\n", ans); } void tra(S[] ss, int pos, int rest){ if(pos == n){ double sum = 0; int lim = 1<<n; for(int m = 0; m < lim; m++){ int app = Integer.bitCount(m); double p = 1; int B = 0; for(int i = 0; i < n; i++){ if(((m>>i) & 1) == 1){ p = p * ss[i].loyal / 100; }else{ p = p * (100 - ss[i].loyal) / 100; B += ss[i].level; } } if(app > half)sum += p; else{ sum += p * A / (A+B); } } ans = max(ans, sum); return; } for(int i = 0; i <= rest; i++){ int old = ss[pos].loyal; int nl = ss[pos].loyal + i * 10; if(nl > 100)break; ss[pos].loyal = nl; tra(ss, pos+1, rest-i); ss[pos].loyal = old; } } } class S implements Comparable<S>{ int level, loyal; S(int a, int b){ level = a; loyal = b; } public int compareTo(S s){ return this.loyal - s.loyal; } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,028
4,301
2,456
//package com.example.programming; import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.HashMap; import java.util.Iterator; import java.util.List; import java.util.Map; public class Test { static class Pair { int f,s; public Pair(int x, int y) {f = x; s = y;} } public static void main(String[] args) throws Exception{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(br.readLine()); String[] s = br.readLine().split(" "); int[] arr = new int[n]; for(int i = 0; i<n; i++) arr[i] = Integer.parseInt(s[i]); HashMap<Integer, ArrayList<Pair>> map = new HashMap<>(); for(int i = 0; i<n; i++) { int sum = 0; for(int j = i; j>=0; j--) { sum += arr[j]; ArrayList<Pair> list = map.get(sum); if(list == null) { list = new ArrayList<>(); map.put(sum, list); } list.add(new Pair(j, i)); } } Iterator it = map.entrySet().iterator(); ArrayList<Pair> ans = new ArrayList<>(); for(;it.hasNext();){ Map.Entry<Integer, ArrayList<Pair>> entry = (Map.Entry<Integer, ArrayList<Pair>>)it.next(); ArrayList<Pair> list = entry.getValue(); ArrayList<Pair> pre = new ArrayList<>(); int r = -1; for(Pair p : list) { if(p.f > r) { pre.add(p); r = p.s; } } if(ans.size()<pre.size()) ans = pre; } StringBuilder sb = new StringBuilder(); sb.append(ans.size()).append('\n'); for(Pair p : ans) { sb.append(p.f+1).append(' ').append(p.s+1).append('\n'); } System.out.print(sb); } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> //package com.example.programming; import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.HashMap; import java.util.Iterator; import java.util.List; import java.util.Map; public class Test { static class Pair { int f,s; public Pair(int x, int y) {f = x; s = y;} } public static void main(String[] args) throws Exception{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(br.readLine()); String[] s = br.readLine().split(" "); int[] arr = new int[n]; for(int i = 0; i<n; i++) arr[i] = Integer.parseInt(s[i]); HashMap<Integer, ArrayList<Pair>> map = new HashMap<>(); for(int i = 0; i<n; i++) { int sum = 0; for(int j = i; j>=0; j--) { sum += arr[j]; ArrayList<Pair> list = map.get(sum); if(list == null) { list = new ArrayList<>(); map.put(sum, list); } list.add(new Pair(j, i)); } } Iterator it = map.entrySet().iterator(); ArrayList<Pair> ans = new ArrayList<>(); for(;it.hasNext();){ Map.Entry<Integer, ArrayList<Pair>> entry = (Map.Entry<Integer, ArrayList<Pair>>)it.next(); ArrayList<Pair> list = entry.getValue(); ArrayList<Pair> pre = new ArrayList<>(); int r = -1; for(Pair p : list) { if(p.f > r) { pre.add(p); r = p.s; } } if(ans.size()<pre.size()) ans = pre; } StringBuilder sb = new StringBuilder(); sb.append(ans.size()).append('\n'); for(Pair p : ans) { sb.append(p.f+1).append(' ').append(p.s+1).append('\n'); } System.out.print(sb); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> //package com.example.programming; import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.HashMap; import java.util.Iterator; import java.util.List; import java.util.Map; public class Test { static class Pair { int f,s; public Pair(int x, int y) {f = x; s = y;} } public static void main(String[] args) throws Exception{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(br.readLine()); String[] s = br.readLine().split(" "); int[] arr = new int[n]; for(int i = 0; i<n; i++) arr[i] = Integer.parseInt(s[i]); HashMap<Integer, ArrayList<Pair>> map = new HashMap<>(); for(int i = 0; i<n; i++) { int sum = 0; for(int j = i; j>=0; j--) { sum += arr[j]; ArrayList<Pair> list = map.get(sum); if(list == null) { list = new ArrayList<>(); map.put(sum, list); } list.add(new Pair(j, i)); } } Iterator it = map.entrySet().iterator(); ArrayList<Pair> ans = new ArrayList<>(); for(;it.hasNext();){ Map.Entry<Integer, ArrayList<Pair>> entry = (Map.Entry<Integer, ArrayList<Pair>>)it.next(); ArrayList<Pair> list = entry.getValue(); ArrayList<Pair> pre = new ArrayList<>(); int r = -1; for(Pair p : list) { if(p.f > r) { pre.add(p); r = p.s; } } if(ans.size()<pre.size()) ans = pre; } StringBuilder sb = new StringBuilder(); sb.append(ans.size()).append('\n'); for(Pair p : ans) { sb.append(p.f+1).append(' ').append(p.s+1).append('\n'); } System.out.print(sb); } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
752
2,451
1,274
import java.io.*; import java.util.*; import java.math.*; import java.lang.*; import static java.lang.Math.*; public class Main implements Runnable { static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; private BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars==-1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if(numChars <= 0) return -1; } return buf[curChar++]; } public String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } public int nextInt() { int c = read(); while(isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if(c<'0'||c>'9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public double nextDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return readString(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } public static void main(String args[]) throws Exception { new Thread(null, new Main(),"Main",1<<26).start(); } long fast_pow(long a, long b) { if(b == 0) return 1L; long val = fast_pow(a, b / 2); if(b % 2 == 0) return val * val % mod; else return val * val % mod * a % mod; } long mod = (long)1e9 + 7; public void run() { InputReader sc = new InputReader(System.in); PrintWriter w = new PrintWriter(System.out); long x = sc.nextLong(); long k = sc.nextLong(); if(x == 0) { w.print("0"); w.close(); return; } x = x % mod; long pkp1 = fast_pow(2, k + 1L); long pk = fast_pow(2, k); long sub = (pk - 1 + mod) % mod * pk % mod; long add = x * pkp1 % mod * pk % mod; long num = (add - sub + mod) % mod; long deninv = fast_pow(pk, mod - 2); long ans = num * deninv % mod; w.print(ans); w.close(); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; import java.math.*; import java.lang.*; import static java.lang.Math.*; public class Main implements Runnable { static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; private BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars==-1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if(numChars <= 0) return -1; } return buf[curChar++]; } public String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } public int nextInt() { int c = read(); while(isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if(c<'0'||c>'9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public double nextDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return readString(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } public static void main(String args[]) throws Exception { new Thread(null, new Main(),"Main",1<<26).start(); } long fast_pow(long a, long b) { if(b == 0) return 1L; long val = fast_pow(a, b / 2); if(b % 2 == 0) return val * val % mod; else return val * val % mod * a % mod; } long mod = (long)1e9 + 7; public void run() { InputReader sc = new InputReader(System.in); PrintWriter w = new PrintWriter(System.out); long x = sc.nextLong(); long k = sc.nextLong(); if(x == 0) { w.print("0"); w.close(); return; } x = x % mod; long pkp1 = fast_pow(2, k + 1L); long pk = fast_pow(2, k); long sub = (pk - 1 + mod) % mod * pk % mod; long add = x * pkp1 % mod * pk % mod; long num = (add - sub + mod) % mod; long deninv = fast_pow(pk, mod - 2); long ans = num * deninv % mod; w.print(ans); w.close(); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; import java.math.*; import java.lang.*; import static java.lang.Math.*; public class Main implements Runnable { static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; private BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars==-1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if(numChars <= 0) return -1; } return buf[curChar++]; } public String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } public int nextInt() { int c = read(); while(isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if(c<'0'||c>'9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public double nextDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return readString(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } public static void main(String args[]) throws Exception { new Thread(null, new Main(),"Main",1<<26).start(); } long fast_pow(long a, long b) { if(b == 0) return 1L; long val = fast_pow(a, b / 2); if(b % 2 == 0) return val * val % mod; else return val * val % mod * a % mod; } long mod = (long)1e9 + 7; public void run() { InputReader sc = new InputReader(System.in); PrintWriter w = new PrintWriter(System.out); long x = sc.nextLong(); long k = sc.nextLong(); if(x == 0) { w.print("0"); w.close(); return; } x = x % mod; long pkp1 = fast_pow(2, k + 1L); long pk = fast_pow(2, k); long sub = (pk - 1 + mod) % mod * pk % mod; long add = x * pkp1 % mod * pk % mod; long num = (add - sub + mod) % mod; long deninv = fast_pow(pk, mod - 2); long ans = num * deninv % mod; w.print(ans); w.close(); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,545
1,272
2,491
/* * To change this license header, choose License Headers in Project Properties. * To change this template file, choose Tools | Templates * and open the template in the editor. */ //package Round547; import java.io.DataInputStream; import java.io.FileInputStream; import java.io.IOException; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.Iterator; import java.util.Map; import java.util.PriorityQueue; import java.util.Set; /** * * @author Hemant Dhanuka */ public class F1 { static class Reader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Reader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[64]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } public static void main(String[] args) throws IOException { // Scanner s=new Scanner(System.in); Reader s=new Reader(); int n=s.nextInt(); int a[]=new int[n]; for(int i=0;i<n;i++){ a[i]=s.nextInt(); } Map<Long,PriorityQueue<Node>> map=new HashMap(); for(int i=0;i<n;i++){ long sum=0; for(int j=i;j<n;j++){ sum=sum+a[j]; PriorityQueue<Node> pq=map.get(sum); if(pq==null){ pq=new PriorityQueue(); map.put(sum, pq); } pq.add(new Node(i,j)); } } Set<Long> keys=map.keySet(); Iterator<Long> itr=keys.iterator(); int max=0; int solbackDp[]=null; Node solA[]=new Node[0]; while(itr.hasNext()){ Long sum=itr.next(); PriorityQueue<Node> pq1=map.get(sum); //Node rangelist[]=new Node[pq1.size()+1]; ArrayList<Node> rangelist=new ArrayList<>(); rangelist.add(new Node(-1, -1)); //int count=1; //rangelist[0]=new Node(-1,-1); Node last=rangelist.get(0); while(!pq1.isEmpty()){ Node n1=pq1.poll(); if(n1.l!=last.l){ rangelist.add(n1); last=n1; } } int backTrack[]=new int[rangelist.size()]; int dp[]=new int[rangelist.size()]; Arrays.fill(dp, -1); int ans=fun(0,dp,rangelist,backTrack); if(ans>max){ max=ans; solA=rangelist.toArray(solA); solbackDp=backTrack; } } System.out.println(max); int pos=0; while(solbackDp[pos]!=-1){ pos=solbackDp[pos]; System.out.println((solA[pos].l+1)+" "+(solA[pos].r+1)); } } static int fun(int pos, int[] dp, ArrayList<Node> rangeList, int[] bactTrack){ if(pos==rangeList.size()-1){ bactTrack[pos]=-1; return 0; } if(dp[pos]!=-1){ return dp[pos]; } int i=pos+1; int maxAns=0; int nextPos=-1; for(;i<=rangeList.size()-1;i++){ if(rangeList.get(i).l>rangeList.get(pos).r){ int tempAns=1+fun(i, dp,rangeList, bactTrack); if(tempAns>maxAns){ maxAns=tempAns; nextPos=i; } } } dp[pos]=maxAns; bactTrack[pos]=nextPos; return maxAns; } static class Node implements Comparable<Node>{ int l; int r; public Node(int l, int r) { this.l = l; this.r = r; } @Override public int compareTo(Node o2) { if(this.l!=o2.l){ return this.l-o2.l; } else{ return this.r-o2.r; } } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> /* * To change this license header, choose License Headers in Project Properties. * To change this template file, choose Tools | Templates * and open the template in the editor. */ //package Round547; import java.io.DataInputStream; import java.io.FileInputStream; import java.io.IOException; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.Iterator; import java.util.Map; import java.util.PriorityQueue; import java.util.Set; /** * * @author Hemant Dhanuka */ public class F1 { static class Reader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Reader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[64]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } public static void main(String[] args) throws IOException { // Scanner s=new Scanner(System.in); Reader s=new Reader(); int n=s.nextInt(); int a[]=new int[n]; for(int i=0;i<n;i++){ a[i]=s.nextInt(); } Map<Long,PriorityQueue<Node>> map=new HashMap(); for(int i=0;i<n;i++){ long sum=0; for(int j=i;j<n;j++){ sum=sum+a[j]; PriorityQueue<Node> pq=map.get(sum); if(pq==null){ pq=new PriorityQueue(); map.put(sum, pq); } pq.add(new Node(i,j)); } } Set<Long> keys=map.keySet(); Iterator<Long> itr=keys.iterator(); int max=0; int solbackDp[]=null; Node solA[]=new Node[0]; while(itr.hasNext()){ Long sum=itr.next(); PriorityQueue<Node> pq1=map.get(sum); //Node rangelist[]=new Node[pq1.size()+1]; ArrayList<Node> rangelist=new ArrayList<>(); rangelist.add(new Node(-1, -1)); //int count=1; //rangelist[0]=new Node(-1,-1); Node last=rangelist.get(0); while(!pq1.isEmpty()){ Node n1=pq1.poll(); if(n1.l!=last.l){ rangelist.add(n1); last=n1; } } int backTrack[]=new int[rangelist.size()]; int dp[]=new int[rangelist.size()]; Arrays.fill(dp, -1); int ans=fun(0,dp,rangelist,backTrack); if(ans>max){ max=ans; solA=rangelist.toArray(solA); solbackDp=backTrack; } } System.out.println(max); int pos=0; while(solbackDp[pos]!=-1){ pos=solbackDp[pos]; System.out.println((solA[pos].l+1)+" "+(solA[pos].r+1)); } } static int fun(int pos, int[] dp, ArrayList<Node> rangeList, int[] bactTrack){ if(pos==rangeList.size()-1){ bactTrack[pos]=-1; return 0; } if(dp[pos]!=-1){ return dp[pos]; } int i=pos+1; int maxAns=0; int nextPos=-1; for(;i<=rangeList.size()-1;i++){ if(rangeList.get(i).l>rangeList.get(pos).r){ int tempAns=1+fun(i, dp,rangeList, bactTrack); if(tempAns>maxAns){ maxAns=tempAns; nextPos=i; } } } dp[pos]=maxAns; bactTrack[pos]=nextPos; return maxAns; } static class Node implements Comparable<Node>{ int l; int r; public Node(int l, int r) { this.l = l; this.r = r; } @Override public int compareTo(Node o2) { if(this.l!=o2.l){ return this.l-o2.l; } else{ return this.r-o2.r; } } } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> /* * To change this license header, choose License Headers in Project Properties. * To change this template file, choose Tools | Templates * and open the template in the editor. */ //package Round547; import java.io.DataInputStream; import java.io.FileInputStream; import java.io.IOException; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.Iterator; import java.util.Map; import java.util.PriorityQueue; import java.util.Set; /** * * @author Hemant Dhanuka */ public class F1 { static class Reader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Reader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[64]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } public static void main(String[] args) throws IOException { // Scanner s=new Scanner(System.in); Reader s=new Reader(); int n=s.nextInt(); int a[]=new int[n]; for(int i=0;i<n;i++){ a[i]=s.nextInt(); } Map<Long,PriorityQueue<Node>> map=new HashMap(); for(int i=0;i<n;i++){ long sum=0; for(int j=i;j<n;j++){ sum=sum+a[j]; PriorityQueue<Node> pq=map.get(sum); if(pq==null){ pq=new PriorityQueue(); map.put(sum, pq); } pq.add(new Node(i,j)); } } Set<Long> keys=map.keySet(); Iterator<Long> itr=keys.iterator(); int max=0; int solbackDp[]=null; Node solA[]=new Node[0]; while(itr.hasNext()){ Long sum=itr.next(); PriorityQueue<Node> pq1=map.get(sum); //Node rangelist[]=new Node[pq1.size()+1]; ArrayList<Node> rangelist=new ArrayList<>(); rangelist.add(new Node(-1, -1)); //int count=1; //rangelist[0]=new Node(-1,-1); Node last=rangelist.get(0); while(!pq1.isEmpty()){ Node n1=pq1.poll(); if(n1.l!=last.l){ rangelist.add(n1); last=n1; } } int backTrack[]=new int[rangelist.size()]; int dp[]=new int[rangelist.size()]; Arrays.fill(dp, -1); int ans=fun(0,dp,rangelist,backTrack); if(ans>max){ max=ans; solA=rangelist.toArray(solA); solbackDp=backTrack; } } System.out.println(max); int pos=0; while(solbackDp[pos]!=-1){ pos=solbackDp[pos]; System.out.println((solA[pos].l+1)+" "+(solA[pos].r+1)); } } static int fun(int pos, int[] dp, ArrayList<Node> rangeList, int[] bactTrack){ if(pos==rangeList.size()-1){ bactTrack[pos]=-1; return 0; } if(dp[pos]!=-1){ return dp[pos]; } int i=pos+1; int maxAns=0; int nextPos=-1; for(;i<=rangeList.size()-1;i++){ if(rangeList.get(i).l>rangeList.get(pos).r){ int tempAns=1+fun(i, dp,rangeList, bactTrack); if(tempAns>maxAns){ maxAns=tempAns; nextPos=i; } } } dp[pos]=maxAns; bactTrack[pos]=nextPos; return maxAns; } static class Node implements Comparable<Node>{ int l; int r; public Node(int l, int r) { this.l = l; this.r = r; } @Override public int compareTo(Node o2) { if(this.l!=o2.l){ return this.l-o2.l; } else{ return this.r-o2.r; } } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,993
2,486
2,083
import java.io.OutputStream; import java.io.PrintWriter; import java.util.AbstractList; import java.io.Writer; import java.util.List; import java.io.IOException; import java.util.Arrays; import java.util.InputMismatchException; import java.math.BigInteger; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author Egor Kulikov ([email protected]) */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } } class TaskA { public void solve(int testNumber, InputReader in, OutputWriter out) { int size = in.readInt(); int[] array = IOUtils.readIntArray(in, size); Arrays.sort(array); if (array[size - 1] == 1) array[size - 1] = 2; else array[size - 1] = 1; Arrays.sort(array); out.printLine(Array.wrap(array).toArray()); } } class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public static boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(outputStream); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object...objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) writer.print(' '); writer.print(objects[i]); } } public void printLine(Object...objects) { print(objects); writer.println(); } public void close() { writer.close(); } } class IOUtils { public static int[] readIntArray(InputReader in, int size) { int[] array = new int[size]; for (int i = 0; i < size; i++) array[i] = in.readInt(); return array; } } abstract class Array<T> extends AbstractList<T> { public static List<Integer> wrap(int...array) { return new IntArray(array); } protected static class IntArray extends Array<Integer> { protected final int[] array; protected IntArray(int[] array) { this.array = array; } public int size() { return array.length; } public Integer get(int index) { return array[index]; } public Integer set(int index, Integer value) { int result = array[index]; array[index] = value; return result; } } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.PrintWriter; import java.util.AbstractList; import java.io.Writer; import java.util.List; import java.io.IOException; import java.util.Arrays; import java.util.InputMismatchException; import java.math.BigInteger; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author Egor Kulikov ([email protected]) */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } } class TaskA { public void solve(int testNumber, InputReader in, OutputWriter out) { int size = in.readInt(); int[] array = IOUtils.readIntArray(in, size); Arrays.sort(array); if (array[size - 1] == 1) array[size - 1] = 2; else array[size - 1] = 1; Arrays.sort(array); out.printLine(Array.wrap(array).toArray()); } } class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public static boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(outputStream); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object...objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) writer.print(' '); writer.print(objects[i]); } } public void printLine(Object...objects) { print(objects); writer.println(); } public void close() { writer.close(); } } class IOUtils { public static int[] readIntArray(InputReader in, int size) { int[] array = new int[size]; for (int i = 0; i < size; i++) array[i] = in.readInt(); return array; } } abstract class Array<T> extends AbstractList<T> { public static List<Integer> wrap(int...array) { return new IntArray(array); } protected static class IntArray extends Array<Integer> { protected final int[] array; protected IntArray(int[] array) { this.array = array; } public int size() { return array.length; } public Integer get(int index) { return array[index]; } public Integer set(int index, Integer value) { int result = array[index]; array[index] = value; return result; } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.PrintWriter; import java.util.AbstractList; import java.io.Writer; import java.util.List; import java.io.IOException; import java.util.Arrays; import java.util.InputMismatchException; import java.math.BigInteger; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author Egor Kulikov ([email protected]) */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } } class TaskA { public void solve(int testNumber, InputReader in, OutputWriter out) { int size = in.readInt(); int[] array = IOUtils.readIntArray(in, size); Arrays.sort(array); if (array[size - 1] == 1) array[size - 1] = 2; else array[size - 1] = 1; Arrays.sort(array); out.printLine(Array.wrap(array).toArray()); } } class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public static boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(outputStream); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object...objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) writer.print(' '); writer.print(objects[i]); } } public void printLine(Object...objects) { print(objects); writer.println(); } public void close() { writer.close(); } } class IOUtils { public static int[] readIntArray(InputReader in, int size) { int[] array = new int[size]; for (int i = 0; i < size; i++) array[i] = in.readInt(); return array; } } abstract class Array<T> extends AbstractList<T> { public static List<Integer> wrap(int...array) { return new IntArray(array); } protected static class IntArray extends Array<Integer> { protected final int[] array; protected IntArray(int[] array) { this.array = array; } public int size() { return array.length; } public Integer get(int index) { return array[index]; } public Integer set(int index, Integer value) { int result = array[index]; array[index] = value; return result; } } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,222
2,079
4,145
import java.util.*; import java.io.*; public class Main { static final int MAXN = 24; int[] x = new int[MAXN]; int[] y = new int[MAXN]; int[][] dist = new int[MAXN][MAXN]; int[] single = new int[MAXN]; int sqr(int x) { return x * x; } void run(int nT) { int xs = cin.nextInt(); int ys = cin.nextInt(); int n = cin.nextInt(); for (int i = 0; i < n; ++i) { x[i] = cin.nextInt(); y[i] = cin.nextInt(); } for (int i = 0; i < n; ++i) { for (int j = i + 1; j < n; ++j) { dist[i][j] = sqr(x[i] - xs) + sqr(y[i] - ys) + sqr(x[i] - x[j]) + sqr(y[i] - y[j]) + sqr(x[j] - xs) + sqr(y[j] - ys); } } for (int i = 0; i < n; ++i) { single[i] = (sqr(x[i] - xs) + sqr(y[i] - ys)) * 2; } int[] dp = new int[1 << n]; int[] pre = new int[1 << n]; int tot = 1 << n; for (int s = 1; s < tot; ++s) { int i; for (i = 0; i < n; ++i) { if ((s & (1 << i)) != 0) break; } dp[s] = dp[s^(1<<i)] + single[i]; pre[s] = i + 1; for (int j = i + 1; j < n; ++j) { if ((s & (1 << j)) != 0) { int cur = dp[s^(1 << i) ^(1<<j)] + dist[i][j]; if (cur < dp[s]) { dp[s] = cur; pre[s] = (i + 1) * 100 + (j + 1); } } } } out.println(dp[tot - 1]); int now = tot - 1; out.print("0"); while (now > 0) { int what = pre[now]; int px = what % 100 - 1; int py = what / 100 - 1; if (px >= 0) { out.print(" "); out.print(px + 1); now ^= 1 << px; } if (py >= 0) { out.print(" "); out.print(py + 1); now ^= 1 << py; } out.print(" "); out.print("0"); } out.println(""); } public static void main(String[] argv) { Main solved = new Main(); int T = 1; // T = solved.cin.nextInt(); for (int nT = 1; nT <= T; ++nT) { solved.run(nT); } solved.out.close(); } InputReader cin = new InputReader(System.in); PrintWriter out = new PrintWriter(System.out); } class InputReader { BufferedReader reader; StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream)); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class Main { static final int MAXN = 24; int[] x = new int[MAXN]; int[] y = new int[MAXN]; int[][] dist = new int[MAXN][MAXN]; int[] single = new int[MAXN]; int sqr(int x) { return x * x; } void run(int nT) { int xs = cin.nextInt(); int ys = cin.nextInt(); int n = cin.nextInt(); for (int i = 0; i < n; ++i) { x[i] = cin.nextInt(); y[i] = cin.nextInt(); } for (int i = 0; i < n; ++i) { for (int j = i + 1; j < n; ++j) { dist[i][j] = sqr(x[i] - xs) + sqr(y[i] - ys) + sqr(x[i] - x[j]) + sqr(y[i] - y[j]) + sqr(x[j] - xs) + sqr(y[j] - ys); } } for (int i = 0; i < n; ++i) { single[i] = (sqr(x[i] - xs) + sqr(y[i] - ys)) * 2; } int[] dp = new int[1 << n]; int[] pre = new int[1 << n]; int tot = 1 << n; for (int s = 1; s < tot; ++s) { int i; for (i = 0; i < n; ++i) { if ((s & (1 << i)) != 0) break; } dp[s] = dp[s^(1<<i)] + single[i]; pre[s] = i + 1; for (int j = i + 1; j < n; ++j) { if ((s & (1 << j)) != 0) { int cur = dp[s^(1 << i) ^(1<<j)] + dist[i][j]; if (cur < dp[s]) { dp[s] = cur; pre[s] = (i + 1) * 100 + (j + 1); } } } } out.println(dp[tot - 1]); int now = tot - 1; out.print("0"); while (now > 0) { int what = pre[now]; int px = what % 100 - 1; int py = what / 100 - 1; if (px >= 0) { out.print(" "); out.print(px + 1); now ^= 1 << px; } if (py >= 0) { out.print(" "); out.print(py + 1); now ^= 1 << py; } out.print(" "); out.print("0"); } out.println(""); } public static void main(String[] argv) { Main solved = new Main(); int T = 1; // T = solved.cin.nextInt(); for (int nT = 1; nT <= T; ++nT) { solved.run(nT); } solved.out.close(); } InputReader cin = new InputReader(System.in); PrintWriter out = new PrintWriter(System.out); } class InputReader { BufferedReader reader; StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream)); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class Main { static final int MAXN = 24; int[] x = new int[MAXN]; int[] y = new int[MAXN]; int[][] dist = new int[MAXN][MAXN]; int[] single = new int[MAXN]; int sqr(int x) { return x * x; } void run(int nT) { int xs = cin.nextInt(); int ys = cin.nextInt(); int n = cin.nextInt(); for (int i = 0; i < n; ++i) { x[i] = cin.nextInt(); y[i] = cin.nextInt(); } for (int i = 0; i < n; ++i) { for (int j = i + 1; j < n; ++j) { dist[i][j] = sqr(x[i] - xs) + sqr(y[i] - ys) + sqr(x[i] - x[j]) + sqr(y[i] - y[j]) + sqr(x[j] - xs) + sqr(y[j] - ys); } } for (int i = 0; i < n; ++i) { single[i] = (sqr(x[i] - xs) + sqr(y[i] - ys)) * 2; } int[] dp = new int[1 << n]; int[] pre = new int[1 << n]; int tot = 1 << n; for (int s = 1; s < tot; ++s) { int i; for (i = 0; i < n; ++i) { if ((s & (1 << i)) != 0) break; } dp[s] = dp[s^(1<<i)] + single[i]; pre[s] = i + 1; for (int j = i + 1; j < n; ++j) { if ((s & (1 << j)) != 0) { int cur = dp[s^(1 << i) ^(1<<j)] + dist[i][j]; if (cur < dp[s]) { dp[s] = cur; pre[s] = (i + 1) * 100 + (j + 1); } } } } out.println(dp[tot - 1]); int now = tot - 1; out.print("0"); while (now > 0) { int what = pre[now]; int px = what % 100 - 1; int py = what / 100 - 1; if (px >= 0) { out.print(" "); out.print(px + 1); now ^= 1 << px; } if (py >= 0) { out.print(" "); out.print(py + 1); now ^= 1 << py; } out.print(" "); out.print("0"); } out.println(""); } public static void main(String[] argv) { Main solved = new Main(); int T = 1; // T = solved.cin.nextInt(); for (int nT = 1; nT <= T; ++nT) { solved.run(nT); } solved.out.close(); } InputReader cin = new InputReader(System.in); PrintWriter out = new PrintWriter(System.out); } class InputReader { BufferedReader reader; StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream)); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,196
4,134
2,506
import javax.print.attribute.standard.PrinterMessageFromOperator; import java.io.*; import java.math.BigDecimal; import java.math.BigInteger; import java.util.*; public class Main { public static void main(String[] args) throws Exception { new Main().run();} // int[] h,ne,to,wt; // int ct = 0; // int n; // void graph(int n,int m){ // h = new int[n]; // Arrays.fill(h,-1); //// sccno = new int[n]; //// dfn = new int[n]; //// low = new int[n]; //// iscut = new boolean[n]; // ne = new int[2*m]; // to = new int[2*m]; // wt = new int[2*m]; // ct = 0; // } // void add(int u,int v,int w){ // to[ct] = v; // ne[ct] = h[u]; // wt[ct] = w; // h[u] = ct++; // } // // int color[],dfn[],low[],stack[] = new int[1000000],cnt[]; // int sccno[]; // boolean iscut[]; // int time = 0,top = 0; // int scc_cnt = 0; // // // 有向图的强连通分量 // void tarjan(int u) { // low[u] = dfn[u]= ++time; // stack[top++] = u; // for(int i=h[u];i!=-1;i=ne[i]) { // int v = to[i]; // if(dfn[v]==0) { // tarjan(v); // low[u]=Math.min(low[u],low[v]); // } else if(sccno[v]==0) { // // dfn>0 but sccno==0, means it's in current stack // low[u]=Math.min(low[u],low[v]); // } // } // // if(dfn[u]==low[u]) { // sccno[u] = ++scc_cnt; // while(stack[top-1]!=u) { // sccno[stack[top-1]] = scc_cnt; // --top; // } // --top; // } // } // // //缩点, topology sort // int[] h1,to1,ne1; // int ct1 = 0; // void point(){ // for(int i=0;i<n;i++) { // if(dfn[i]==0) tarjan(i);//有可能图不连通,所以要循环判断。 // } // // 入度 // int du[] = new int[scc_cnt+1]; // h1 = new int[scc_cnt+1]; // Arrays.fill(h1, -1); // to1 = new int[scc_cnt*scc_cnt]; // ne1 = new int[scc_cnt*scc_cnt]; // // scc_cnt 个点 // // for(int i=1;i<=n;i++) { // for(int j=h[i]; j!=-1; j=ne[j]) { // int y = to[j]; // if(sccno[i] != sccno[y]) { // // add(sccno[i],sccno[y]); // 建新图 // to1[ct1] = sccno[y]; // ne1[ct1] = h[sccno[i]]; // h[sccno[i]] = ct1++; // du[sccno[y]]++; //存入度 // } // } // } // // int q[] = new int[100000]; // int end = 0; // int st = 0; // for(int i=1;i<=scc_cnt;++i){ // if(du[i]==0){ // q[end++] = i; // } // } // // int dp[] = new int[scc_cnt+1]; // while(st<end){ // int cur = q[st++]; // for(int i=h1[cur];i!=-1;i=ne1[i]){ // int y = to[i]; // // dp[y] += dp[cur]; // if(--du[y]==0){ // q[end++] = y; // } // } // } // } // // // // // int fa[]; // int faw[]; // // int dep = -1; // int pt = 0; // void go(int rt,int f,int dd){ // // int p = 0; // stk[p] = rt; // lk[p] = 0; // fk[p] = f;p++; // while(p>0) { // int cur = stk[p - 1]; // int fp = fk[p - 1]; // int ll = lk[p - 1]; // p--; // // // if (ll > dep) { // dep = ll; // pt = cur; // } // for (int i = h[cur]; i != -1; i = ne[i]) { // int v = to[i]; // if (fp == v) continue; // // stk[p] = v; // lk[p] = ll + wt[i]; // fk[p] = cur; // p++; // } // } // } // int pt1 = -1; // void go1(int rt,int f,int dd){ // // int p = 0; // stk[p] = rt; // lk[p] = 0; // fk[p] = f;p++; // while(p>0) { // int cur = stk[p - 1]; // int fp = fk[p - 1]; // int ll = lk[p - 1]; // p--; // // // if (ll > dep) { // dep = ll; // pt1 = cur; // } // // fa[cur] = fp; // for (int i = h[cur]; i != -1; i = ne[i]) { // int v = to[i]; // if (v == fp) continue; // faw[v] = wt[i]; // stk[p] = v; // lk[p] = ll + wt[i]; // fk[p] = cur; // p++; // } // } // } // // int r = 0; // int stk[] = new int[301]; // int fk[] = new int[301]; // int lk[] = new int[301]; // void ddfs(int rt,int t1,int t2,int t3,int l){ // // // int p = 0; // stk[p] = rt; // lk[p] = 0; // fk[p] = t3;p++; // while(p>0){ // int cur = stk[p-1]; // int fp = fk[p-1]; // int ll = lk[p-1]; // p--; // r = Math.max(r,ll); // for(int i=h[cur];i!=-1;i=ne[i]){ // int v = to[i]; // if(v==t1||v==t2||v==fp) continue; // stk[p] = v; // lk[p] = ll+wt[i]; // fk[p] = cur;p++; // } // } // // // // } static long mul(long a, long b, long p) { long res=0,base=a; while(b>0) { if((b&1L)>0) res=(res+base)%p; base=(base+base)%p; b>>=1; } return res; } static long mod_pow(long k,long n,long p){ long res = 1L; long temp = k; while(n!=0L){ if((n&1L)==1L){ res = (res*temp)%p; } temp = (temp*temp)%p; n = n>>1L; } return res%p; } int ct = 0; int f[] =new int[200001]; int b[] =new int[200001]; int str[] =new int[200001]; void go(int rt,List<Integer> g[]){ str[ct] = rt; f[rt] = ct; for(int cd:g[rt]){ ct++; go(cd,g); } b[rt] = ct; } int add =0; void go(int rt,int sd,int k,List<Integer> g[],int n){ if(add>n) { return; } Queue<Integer> q =new LinkedList<>(); q.offer(rt); for(int i=1;i<=sd;++i){ int sz =q.size(); if(sz==0) break; int f = (i==1?2:1); while(sz-->0){ int cur = q.poll(); for(int j=0;j<k-f;++j){ q.offer(add); g[cur].add(add);add++; if(add==n+1){ return; } } } } } void solve() { int n = ni(); long s[] = new long[n+1]; for(int i=0;i<n;++i){ s[i+1] = s[i] + ni(); } Map<Long,List<int[]>> mp = new HashMap<>(); for(int i=0;i<n;++i) { for (int j = i; j>=0; --j) { long v = s[i+1]-s[j]; if(!mp.containsKey(v)){ mp.put(v, new ArrayList<>()); } mp.get(v).add(new int[]{j,i}); } } int all = 0;long vv = -1; for(long v:mp.keySet()){ List<int[]> r = mp.get(v); int sz = r.size();int c = 0; int ri = -2000000000; for(int j=0;j<sz;++j){ if(r.get(j)[0]>ri){ ri = r.get(j)[1];c++; } } if(c>all){ all = c; vv = v; } } println(all); List<int[]> r = mp.get(vv); int sz = r.size();int c = 0; int ri = -2000000000; for(int j=0;j<sz;++j){ if(r.get(j)[0]>ri){ ri = r.get(j)[1];println((1+r.get(j)[0])+" "+(1+r.get(j)[1])); } } //N , M , K , a , b , c , d . 其中N , M是矩阵的行列数;K 是上锁的房间数目,(a, b)是起始位置,(c, d)是出口位置 // int n = ni(); // int m = ni(); // int k = ni(); // int a = ni(); // int b = ni(); // int c = ni(); // int d = ni(); // // // char cc[][] = nm(n,m); // char keys[][] = new char[n][m]; // // char ky = 'a'; // for(int i=0;i<k;++i){ // int x = ni(); // int y = ni(); // keys[x][y] = ky; // ky++; // } // int f1[] = {a,b,0}; // // int dd[][] = {{0,1},{0,-1},{1,0},{-1,0}}; // // Queue<int[]> q = new LinkedList<>(); // q.offer(f1); // int ts = 1; // // boolean vis[][][] = new boolean[n][m][33]; // // while(q.size()>0){ // int sz = q.size(); // while(sz-->0) { // int cur[] = q.poll(); // vis[cur[0]][cur[1]][cur[2]] = true; // // int x = cur[0]; // int y = cur[1]; // // for (int u[] : dd) { // int lx = x + u[0]; // int ly = y + u[1]; // if (lx >= 0 && ly >= 0 && lx < n && ly < m && (cc[lx][ly] != '#')&&!vis[lx][ly][cur[2]]){ // char ck =cc[lx][ly]; // if(ck=='.'){ // if(lx==c&&ly==d){ // println(ts); return; // } // if(keys[lx][ly]>='a'&&keys[lx][ly]<='z') { // int cao = cur[2] | (1 << (keys[lx][ly] - 'a')); // q.offer(new int[]{lx, ly, cao}); // vis[lx][ly][cao] = true; // }else { // // q.offer(new int[]{lx, ly, cur[2]}); // } // // }else if(ck>='A'&&ck<='Z'){ // int g = 1<<(ck-'A'); // if((g&cur[2])>0){ // if(lx==c&&ly==d){ // println(ts); return; // } // if(keys[lx][ly]>='a'&&keys[lx][ly]<='z') { // // int cao = cur[2] | (1 << (keys[lx][ly] - 'a')); // q.offer(new int[]{lx, ly, cao}); // vis[lx][ly][cao] = true;; // }else { // // q.offer(new int[]{lx, ly, cur[2]}); // } // } // } // } // } // // } // ts++; // } // println(-1); // int n = ni(); // // HashSet<String> st = new HashSet<>(); // HashMap<String,Integer> mp = new HashMap<>(); // // // for(int i=0;i<n;++i){ // String s = ns(); // int id= 1; // if(mp.containsKey(s)){ // int u = mp.get(s); // id = u; // // } // // if(st.contains(s)) { // // while (true) { // String ts = s + id; // if (!st.contains(ts)) { // s = ts; // break; // } // id++; // } // mp.put(s,id+1); // }else{ // mp.put(s,1); // } // println(s); // st.add(s); // // } // int t = ni(); // // for(int i=0;i<t;++i){ // int n = ni(); // long w[] = nal(n); // // Map<Long,Long> mp = new HashMap<>(); // PriorityQueue<long[]> q =new PriorityQueue<>((xx,xy)->{return Long.compare(xx[0],xy[0]);}); // // for(int j=0;j<n;++j){ // q.offer(new long[]{w[j],0}); // mp.put(w[j],mp.getOrDefault(w[j],0L)+1L); // } // // while(q.size()>=2){ // long f[] = q.poll(); // long y1 = f[1]; // if(y1==0){ // y1 = mp.get(f[0]); // if(y1==1){ // mp.remove(f[0]); // }else{ // mp.put(f[0],y1-1); // } // } // long g[] = q.poll(); // long y2 = g[1]; // if(y2==0){ // y2 = mp.get(g[0]); // if(y2==1){ // mp.remove(g[0]); // }else{ // mp.put(g[0],y2-1); // } // } // q.offer(new long[]{f[0]+g[0],2L*y1*y2}); // // } // long r[] = q.poll(); // println(r[1]); // // // // // } // int o= 9*8*7*6; // println(o); // int t = ni(); // for(int i=0;i<t;++i){ // long a = nl(); // int k = ni(); // if(k==1){ // println(a); // continue; // } // // int f = (int)(a%10L); // int s = 1; // int j = 0; // for(;j<30;j+=2){ // int u = f-j; // if(u<0){ // u = 10+u; // } // s = u*s; // s = s%10; // if(s==k){ // break; // } // } // // if(s==k) { // println(a - j - 2); // }else{ // println(-1); // } // // // // // } // int m = ni(); // h = new int[n]; // to = new int[2*(n-1)]; // ne = new int[2*(n-1)]; // wt = new int[2*(n-1)]; // // for(int i=0;i<n-1;++i){ // int u = ni()-1; // int v = ni()-1; // // } // long a[] = nal(n); // int n = ni(); // int k = ni(); // t1 = new long[200002]; // // int p[][] = new int[n][3]; // // for(int i=0;i<n;++i){ // p[i][0] = ni(); // p[i][1] = ni(); // p[i][2] = i+1; // } // Arrays.sort(p, new Comparator<int[]>() { // @Override // public int compare(int[] x, int[] y) { // if(x[1]!=y[1]){ // return Integer.compare(x[1],y[1]); // } // return Integer.compare(y[0], x[0]); // } // }); // // for(int i=0;i<n;++i){ // int ck = p[i][0]; // // } } // int []h,to,ne,wt; long t1[]; // long t2[]; void update(long[] t,int i,long v){ for(;i<t.length;i+=(i&-i)){ t[i] += v; } } long get(long[] t,int i){ long s = 0; for(;i>0;i-=(i&-i)){ s += t[i]; } return s; } int equal_bigger(long t[],long v){ int s=0,p=0; for(int i=Integer.numberOfTrailingZeros(Integer.highestOneBit(t.length));i>=0;--i) { if(p+(1<<i)< t.length && s + t[p+(1<<i)] < v){ v -= t[p+(1<<i)]; p |= 1<<i; } } return p+1; } static class S{ int l = 0; int r = 0 ; long le = 0; long ri = 0; long tot = 0; long all = 0; public S(int l,int r) { this.l = l; this.r = r; } } static S a[]; static int[] o; static void init(int[] f){ o = f; int len = o.length; a = new S[len*4]; build(1,0,len-1); } static void build(int num,int l,int r){ S cur = new S(l,r); if(l==r){ a[num] = cur; return; }else{ int m = (l+r)>>1; int le = num<<1; int ri = le|1; build(le, l,m); build(ri, m+1,r); a[num] = cur; pushup(num, le, ri); } } // static int query(int num,int l,int r){ // // if(a[num].l>=l&&a[num].r<=r){ // return a[num].tot; // }else{ // int m = (a[num].l+a[num].r)>>1; // int le = num<<1; // int ri = le|1; // pushdown(num, le, ri); // int ma = 1; // int mi = 100000001; // if(l<=m) { // int r1 = query(le, l, r); // ma = ma*r1; // // } // if(r>m){ // int r2 = query(ri, l, r); // ma = ma*r2; // } // return ma; // } // } static long dd = 10007; static void update(int num,int l,long v){ if(a[num].l==a[num].r){ a[num].le = v%dd; a[num].ri = v%dd; a[num].all = v%dd; a[num].tot = v%dd; }else{ int m = (a[num].l+a[num].r)>>1; int le = num<<1; int ri = le|1; pushdown(num, le, ri); if(l<=m){ update(le,l,v); } if(l>m){ update(ri,l,v); } pushup(num,le,ri); } } static void pushup(int num,int le,int ri){ a[num].all = (a[le].all*a[ri].all)%dd; a[num].le = (a[le].le + a[le].all*a[ri].le)%dd; a[num].ri = (a[ri].ri + a[ri].all*a[le].ri)%dd; a[num].tot = (a[le].tot + a[ri].tot + a[le].ri*a[ri].le)%dd; //a[num].res[1] = Math.min(a[le].res[1],a[ri].res[1]); } static void pushdown(int num,int le,int ri){ } int gcd(int a,int b){ return b==0?a: gcd(b,a%b);} InputStream is;PrintWriter out; void run() throws Exception {is = System.in;out = new PrintWriter(System.out);solve();out.flush();} private byte[] inbuf = new byte[2]; public int lenbuf = 0, ptrbuf = 0; private int readByte() { if (lenbuf == -1) throw new InputMismatchException(); if (ptrbuf >= lenbuf) { ptrbuf = 0; try {lenbuf = is.read(inbuf);} catch (IOException e) {throw new InputMismatchException();} if (lenbuf <= 0) return -1; } return inbuf[ptrbuf++];} private boolean isSpaceChar(int c) {return !(c >= 33 && c <= 126);} private int skip() {int b;while((b = readByte()) != -1 && isSpaceChar(b));return b;} private double nd() {return Double.parseDouble(ns());} private char nc() {return (char) skip();} private char ncc() {int b;while((b = readByte()) != -1 && !(b >= 32 && b <= 126));return (char)b;} private String ns() {int b = skip();StringBuilder sb = new StringBuilder(); while (!(isSpaceChar(b))) { // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b);b = readByte(); } return sb.toString();} private char[] ns(int n) {char[] buf = new char[n];int b = skip(), p = 0; while (p < n && !(isSpaceChar(b))) { buf[p++] = (char) b;b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p);} private String nline() {int b = skip();StringBuilder sb = new StringBuilder(); while (!isSpaceChar(b) || b == ' ') { sb.appendCodePoint(b);b = readByte(); } return sb.toString();} private char[][] nm(int n, int m) {char[][] a = new char[n][];for (int i = 0; i < n; i++) a[i] = ns(m);return a;} private int[] na(int n) {int[] a = new int[n];for (int i = 0; i < n; i++) a[i] = ni();return a;} private long[] nal(int n) { long[] a = new long[n];for (int i = 0; i < n; i++) a[i] = nl();return a;} private int ni() { int num = 0, b; boolean minus = false; while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')){}; if (b == '-') { minus = true; b = readByte(); } while (true) { if (b >= '0' && b <= '9') num = (num << 3) + (num << 1) + (b - '0'); else return minus ? -num : num; b = readByte();}} private long nl() { long num = 0; int b; boolean minus = false; while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')){}; if (b == '-') { minus = true; b = readByte(); } while (true) { if (b >= '0' && b <= '9') num = num * 10 + (b - '0'); else return minus ? -num : num; b = readByte();}} void print(Object obj){out.print(obj);} void println(Object obj){out.println(obj);} void println(){out.println();} }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import javax.print.attribute.standard.PrinterMessageFromOperator; import java.io.*; import java.math.BigDecimal; import java.math.BigInteger; import java.util.*; public class Main { public static void main(String[] args) throws Exception { new Main().run();} // int[] h,ne,to,wt; // int ct = 0; // int n; // void graph(int n,int m){ // h = new int[n]; // Arrays.fill(h,-1); //// sccno = new int[n]; //// dfn = new int[n]; //// low = new int[n]; //// iscut = new boolean[n]; // ne = new int[2*m]; // to = new int[2*m]; // wt = new int[2*m]; // ct = 0; // } // void add(int u,int v,int w){ // to[ct] = v; // ne[ct] = h[u]; // wt[ct] = w; // h[u] = ct++; // } // // int color[],dfn[],low[],stack[] = new int[1000000],cnt[]; // int sccno[]; // boolean iscut[]; // int time = 0,top = 0; // int scc_cnt = 0; // // // 有向图的强连通分量 // void tarjan(int u) { // low[u] = dfn[u]= ++time; // stack[top++] = u; // for(int i=h[u];i!=-1;i=ne[i]) { // int v = to[i]; // if(dfn[v]==0) { // tarjan(v); // low[u]=Math.min(low[u],low[v]); // } else if(sccno[v]==0) { // // dfn>0 but sccno==0, means it's in current stack // low[u]=Math.min(low[u],low[v]); // } // } // // if(dfn[u]==low[u]) { // sccno[u] = ++scc_cnt; // while(stack[top-1]!=u) { // sccno[stack[top-1]] = scc_cnt; // --top; // } // --top; // } // } // // //缩点, topology sort // int[] h1,to1,ne1; // int ct1 = 0; // void point(){ // for(int i=0;i<n;i++) { // if(dfn[i]==0) tarjan(i);//有可能图不连通,所以要循环判断。 // } // // 入度 // int du[] = new int[scc_cnt+1]; // h1 = new int[scc_cnt+1]; // Arrays.fill(h1, -1); // to1 = new int[scc_cnt*scc_cnt]; // ne1 = new int[scc_cnt*scc_cnt]; // // scc_cnt 个点 // // for(int i=1;i<=n;i++) { // for(int j=h[i]; j!=-1; j=ne[j]) { // int y = to[j]; // if(sccno[i] != sccno[y]) { // // add(sccno[i],sccno[y]); // 建新图 // to1[ct1] = sccno[y]; // ne1[ct1] = h[sccno[i]]; // h[sccno[i]] = ct1++; // du[sccno[y]]++; //存入度 // } // } // } // // int q[] = new int[100000]; // int end = 0; // int st = 0; // for(int i=1;i<=scc_cnt;++i){ // if(du[i]==0){ // q[end++] = i; // } // } // // int dp[] = new int[scc_cnt+1]; // while(st<end){ // int cur = q[st++]; // for(int i=h1[cur];i!=-1;i=ne1[i]){ // int y = to[i]; // // dp[y] += dp[cur]; // if(--du[y]==0){ // q[end++] = y; // } // } // } // } // // // // // int fa[]; // int faw[]; // // int dep = -1; // int pt = 0; // void go(int rt,int f,int dd){ // // int p = 0; // stk[p] = rt; // lk[p] = 0; // fk[p] = f;p++; // while(p>0) { // int cur = stk[p - 1]; // int fp = fk[p - 1]; // int ll = lk[p - 1]; // p--; // // // if (ll > dep) { // dep = ll; // pt = cur; // } // for (int i = h[cur]; i != -1; i = ne[i]) { // int v = to[i]; // if (fp == v) continue; // // stk[p] = v; // lk[p] = ll + wt[i]; // fk[p] = cur; // p++; // } // } // } // int pt1 = -1; // void go1(int rt,int f,int dd){ // // int p = 0; // stk[p] = rt; // lk[p] = 0; // fk[p] = f;p++; // while(p>0) { // int cur = stk[p - 1]; // int fp = fk[p - 1]; // int ll = lk[p - 1]; // p--; // // // if (ll > dep) { // dep = ll; // pt1 = cur; // } // // fa[cur] = fp; // for (int i = h[cur]; i != -1; i = ne[i]) { // int v = to[i]; // if (v == fp) continue; // faw[v] = wt[i]; // stk[p] = v; // lk[p] = ll + wt[i]; // fk[p] = cur; // p++; // } // } // } // // int r = 0; // int stk[] = new int[301]; // int fk[] = new int[301]; // int lk[] = new int[301]; // void ddfs(int rt,int t1,int t2,int t3,int l){ // // // int p = 0; // stk[p] = rt; // lk[p] = 0; // fk[p] = t3;p++; // while(p>0){ // int cur = stk[p-1]; // int fp = fk[p-1]; // int ll = lk[p-1]; // p--; // r = Math.max(r,ll); // for(int i=h[cur];i!=-1;i=ne[i]){ // int v = to[i]; // if(v==t1||v==t2||v==fp) continue; // stk[p] = v; // lk[p] = ll+wt[i]; // fk[p] = cur;p++; // } // } // // // // } static long mul(long a, long b, long p) { long res=0,base=a; while(b>0) { if((b&1L)>0) res=(res+base)%p; base=(base+base)%p; b>>=1; } return res; } static long mod_pow(long k,long n,long p){ long res = 1L; long temp = k; while(n!=0L){ if((n&1L)==1L){ res = (res*temp)%p; } temp = (temp*temp)%p; n = n>>1L; } return res%p; } int ct = 0; int f[] =new int[200001]; int b[] =new int[200001]; int str[] =new int[200001]; void go(int rt,List<Integer> g[]){ str[ct] = rt; f[rt] = ct; for(int cd:g[rt]){ ct++; go(cd,g); } b[rt] = ct; } int add =0; void go(int rt,int sd,int k,List<Integer> g[],int n){ if(add>n) { return; } Queue<Integer> q =new LinkedList<>(); q.offer(rt); for(int i=1;i<=sd;++i){ int sz =q.size(); if(sz==0) break; int f = (i==1?2:1); while(sz-->0){ int cur = q.poll(); for(int j=0;j<k-f;++j){ q.offer(add); g[cur].add(add);add++; if(add==n+1){ return; } } } } } void solve() { int n = ni(); long s[] = new long[n+1]; for(int i=0;i<n;++i){ s[i+1] = s[i] + ni(); } Map<Long,List<int[]>> mp = new HashMap<>(); for(int i=0;i<n;++i) { for (int j = i; j>=0; --j) { long v = s[i+1]-s[j]; if(!mp.containsKey(v)){ mp.put(v, new ArrayList<>()); } mp.get(v).add(new int[]{j,i}); } } int all = 0;long vv = -1; for(long v:mp.keySet()){ List<int[]> r = mp.get(v); int sz = r.size();int c = 0; int ri = -2000000000; for(int j=0;j<sz;++j){ if(r.get(j)[0]>ri){ ri = r.get(j)[1];c++; } } if(c>all){ all = c; vv = v; } } println(all); List<int[]> r = mp.get(vv); int sz = r.size();int c = 0; int ri = -2000000000; for(int j=0;j<sz;++j){ if(r.get(j)[0]>ri){ ri = r.get(j)[1];println((1+r.get(j)[0])+" "+(1+r.get(j)[1])); } } //N , M , K , a , b , c , d . 其中N , M是矩阵的行列数;K 是上锁的房间数目,(a, b)是起始位置,(c, d)是出口位置 // int n = ni(); // int m = ni(); // int k = ni(); // int a = ni(); // int b = ni(); // int c = ni(); // int d = ni(); // // // char cc[][] = nm(n,m); // char keys[][] = new char[n][m]; // // char ky = 'a'; // for(int i=0;i<k;++i){ // int x = ni(); // int y = ni(); // keys[x][y] = ky; // ky++; // } // int f1[] = {a,b,0}; // // int dd[][] = {{0,1},{0,-1},{1,0},{-1,0}}; // // Queue<int[]> q = new LinkedList<>(); // q.offer(f1); // int ts = 1; // // boolean vis[][][] = new boolean[n][m][33]; // // while(q.size()>0){ // int sz = q.size(); // while(sz-->0) { // int cur[] = q.poll(); // vis[cur[0]][cur[1]][cur[2]] = true; // // int x = cur[0]; // int y = cur[1]; // // for (int u[] : dd) { // int lx = x + u[0]; // int ly = y + u[1]; // if (lx >= 0 && ly >= 0 && lx < n && ly < m && (cc[lx][ly] != '#')&&!vis[lx][ly][cur[2]]){ // char ck =cc[lx][ly]; // if(ck=='.'){ // if(lx==c&&ly==d){ // println(ts); return; // } // if(keys[lx][ly]>='a'&&keys[lx][ly]<='z') { // int cao = cur[2] | (1 << (keys[lx][ly] - 'a')); // q.offer(new int[]{lx, ly, cao}); // vis[lx][ly][cao] = true; // }else { // // q.offer(new int[]{lx, ly, cur[2]}); // } // // }else if(ck>='A'&&ck<='Z'){ // int g = 1<<(ck-'A'); // if((g&cur[2])>0){ // if(lx==c&&ly==d){ // println(ts); return; // } // if(keys[lx][ly]>='a'&&keys[lx][ly]<='z') { // // int cao = cur[2] | (1 << (keys[lx][ly] - 'a')); // q.offer(new int[]{lx, ly, cao}); // vis[lx][ly][cao] = true;; // }else { // // q.offer(new int[]{lx, ly, cur[2]}); // } // } // } // } // } // // } // ts++; // } // println(-1); // int n = ni(); // // HashSet<String> st = new HashSet<>(); // HashMap<String,Integer> mp = new HashMap<>(); // // // for(int i=0;i<n;++i){ // String s = ns(); // int id= 1; // if(mp.containsKey(s)){ // int u = mp.get(s); // id = u; // // } // // if(st.contains(s)) { // // while (true) { // String ts = s + id; // if (!st.contains(ts)) { // s = ts; // break; // } // id++; // } // mp.put(s,id+1); // }else{ // mp.put(s,1); // } // println(s); // st.add(s); // // } // int t = ni(); // // for(int i=0;i<t;++i){ // int n = ni(); // long w[] = nal(n); // // Map<Long,Long> mp = new HashMap<>(); // PriorityQueue<long[]> q =new PriorityQueue<>((xx,xy)->{return Long.compare(xx[0],xy[0]);}); // // for(int j=0;j<n;++j){ // q.offer(new long[]{w[j],0}); // mp.put(w[j],mp.getOrDefault(w[j],0L)+1L); // } // // while(q.size()>=2){ // long f[] = q.poll(); // long y1 = f[1]; // if(y1==0){ // y1 = mp.get(f[0]); // if(y1==1){ // mp.remove(f[0]); // }else{ // mp.put(f[0],y1-1); // } // } // long g[] = q.poll(); // long y2 = g[1]; // if(y2==0){ // y2 = mp.get(g[0]); // if(y2==1){ // mp.remove(g[0]); // }else{ // mp.put(g[0],y2-1); // } // } // q.offer(new long[]{f[0]+g[0],2L*y1*y2}); // // } // long r[] = q.poll(); // println(r[1]); // // // // // } // int o= 9*8*7*6; // println(o); // int t = ni(); // for(int i=0;i<t;++i){ // long a = nl(); // int k = ni(); // if(k==1){ // println(a); // continue; // } // // int f = (int)(a%10L); // int s = 1; // int j = 0; // for(;j<30;j+=2){ // int u = f-j; // if(u<0){ // u = 10+u; // } // s = u*s; // s = s%10; // if(s==k){ // break; // } // } // // if(s==k) { // println(a - j - 2); // }else{ // println(-1); // } // // // // // } // int m = ni(); // h = new int[n]; // to = new int[2*(n-1)]; // ne = new int[2*(n-1)]; // wt = new int[2*(n-1)]; // // for(int i=0;i<n-1;++i){ // int u = ni()-1; // int v = ni()-1; // // } // long a[] = nal(n); // int n = ni(); // int k = ni(); // t1 = new long[200002]; // // int p[][] = new int[n][3]; // // for(int i=0;i<n;++i){ // p[i][0] = ni(); // p[i][1] = ni(); // p[i][2] = i+1; // } // Arrays.sort(p, new Comparator<int[]>() { // @Override // public int compare(int[] x, int[] y) { // if(x[1]!=y[1]){ // return Integer.compare(x[1],y[1]); // } // return Integer.compare(y[0], x[0]); // } // }); // // for(int i=0;i<n;++i){ // int ck = p[i][0]; // // } } // int []h,to,ne,wt; long t1[]; // long t2[]; void update(long[] t,int i,long v){ for(;i<t.length;i+=(i&-i)){ t[i] += v; } } long get(long[] t,int i){ long s = 0; for(;i>0;i-=(i&-i)){ s += t[i]; } return s; } int equal_bigger(long t[],long v){ int s=0,p=0; for(int i=Integer.numberOfTrailingZeros(Integer.highestOneBit(t.length));i>=0;--i) { if(p+(1<<i)< t.length && s + t[p+(1<<i)] < v){ v -= t[p+(1<<i)]; p |= 1<<i; } } return p+1; } static class S{ int l = 0; int r = 0 ; long le = 0; long ri = 0; long tot = 0; long all = 0; public S(int l,int r) { this.l = l; this.r = r; } } static S a[]; static int[] o; static void init(int[] f){ o = f; int len = o.length; a = new S[len*4]; build(1,0,len-1); } static void build(int num,int l,int r){ S cur = new S(l,r); if(l==r){ a[num] = cur; return; }else{ int m = (l+r)>>1; int le = num<<1; int ri = le|1; build(le, l,m); build(ri, m+1,r); a[num] = cur; pushup(num, le, ri); } } // static int query(int num,int l,int r){ // // if(a[num].l>=l&&a[num].r<=r){ // return a[num].tot; // }else{ // int m = (a[num].l+a[num].r)>>1; // int le = num<<1; // int ri = le|1; // pushdown(num, le, ri); // int ma = 1; // int mi = 100000001; // if(l<=m) { // int r1 = query(le, l, r); // ma = ma*r1; // // } // if(r>m){ // int r2 = query(ri, l, r); // ma = ma*r2; // } // return ma; // } // } static long dd = 10007; static void update(int num,int l,long v){ if(a[num].l==a[num].r){ a[num].le = v%dd; a[num].ri = v%dd; a[num].all = v%dd; a[num].tot = v%dd; }else{ int m = (a[num].l+a[num].r)>>1; int le = num<<1; int ri = le|1; pushdown(num, le, ri); if(l<=m){ update(le,l,v); } if(l>m){ update(ri,l,v); } pushup(num,le,ri); } } static void pushup(int num,int le,int ri){ a[num].all = (a[le].all*a[ri].all)%dd; a[num].le = (a[le].le + a[le].all*a[ri].le)%dd; a[num].ri = (a[ri].ri + a[ri].all*a[le].ri)%dd; a[num].tot = (a[le].tot + a[ri].tot + a[le].ri*a[ri].le)%dd; //a[num].res[1] = Math.min(a[le].res[1],a[ri].res[1]); } static void pushdown(int num,int le,int ri){ } int gcd(int a,int b){ return b==0?a: gcd(b,a%b);} InputStream is;PrintWriter out; void run() throws Exception {is = System.in;out = new PrintWriter(System.out);solve();out.flush();} private byte[] inbuf = new byte[2]; public int lenbuf = 0, ptrbuf = 0; private int readByte() { if (lenbuf == -1) throw new InputMismatchException(); if (ptrbuf >= lenbuf) { ptrbuf = 0; try {lenbuf = is.read(inbuf);} catch (IOException e) {throw new InputMismatchException();} if (lenbuf <= 0) return -1; } return inbuf[ptrbuf++];} private boolean isSpaceChar(int c) {return !(c >= 33 && c <= 126);} private int skip() {int b;while((b = readByte()) != -1 && isSpaceChar(b));return b;} private double nd() {return Double.parseDouble(ns());} private char nc() {return (char) skip();} private char ncc() {int b;while((b = readByte()) != -1 && !(b >= 32 && b <= 126));return (char)b;} private String ns() {int b = skip();StringBuilder sb = new StringBuilder(); while (!(isSpaceChar(b))) { // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b);b = readByte(); } return sb.toString();} private char[] ns(int n) {char[] buf = new char[n];int b = skip(), p = 0; while (p < n && !(isSpaceChar(b))) { buf[p++] = (char) b;b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p);} private String nline() {int b = skip();StringBuilder sb = new StringBuilder(); while (!isSpaceChar(b) || b == ' ') { sb.appendCodePoint(b);b = readByte(); } return sb.toString();} private char[][] nm(int n, int m) {char[][] a = new char[n][];for (int i = 0; i < n; i++) a[i] = ns(m);return a;} private int[] na(int n) {int[] a = new int[n];for (int i = 0; i < n; i++) a[i] = ni();return a;} private long[] nal(int n) { long[] a = new long[n];for (int i = 0; i < n; i++) a[i] = nl();return a;} private int ni() { int num = 0, b; boolean minus = false; while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')){}; if (b == '-') { minus = true; b = readByte(); } while (true) { if (b >= '0' && b <= '9') num = (num << 3) + (num << 1) + (b - '0'); else return minus ? -num : num; b = readByte();}} private long nl() { long num = 0; int b; boolean minus = false; while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')){}; if (b == '-') { minus = true; b = readByte(); } while (true) { if (b >= '0' && b <= '9') num = num * 10 + (b - '0'); else return minus ? -num : num; b = readByte();}} void print(Object obj){out.print(obj);} void println(Object obj){out.println(obj);} void println(){out.println();} } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import javax.print.attribute.standard.PrinterMessageFromOperator; import java.io.*; import java.math.BigDecimal; import java.math.BigInteger; import java.util.*; public class Main { public static void main(String[] args) throws Exception { new Main().run();} // int[] h,ne,to,wt; // int ct = 0; // int n; // void graph(int n,int m){ // h = new int[n]; // Arrays.fill(h,-1); //// sccno = new int[n]; //// dfn = new int[n]; //// low = new int[n]; //// iscut = new boolean[n]; // ne = new int[2*m]; // to = new int[2*m]; // wt = new int[2*m]; // ct = 0; // } // void add(int u,int v,int w){ // to[ct] = v; // ne[ct] = h[u]; // wt[ct] = w; // h[u] = ct++; // } // // int color[],dfn[],low[],stack[] = new int[1000000],cnt[]; // int sccno[]; // boolean iscut[]; // int time = 0,top = 0; // int scc_cnt = 0; // // // 有向图的强连通分量 // void tarjan(int u) { // low[u] = dfn[u]= ++time; // stack[top++] = u; // for(int i=h[u];i!=-1;i=ne[i]) { // int v = to[i]; // if(dfn[v]==0) { // tarjan(v); // low[u]=Math.min(low[u],low[v]); // } else if(sccno[v]==0) { // // dfn>0 but sccno==0, means it's in current stack // low[u]=Math.min(low[u],low[v]); // } // } // // if(dfn[u]==low[u]) { // sccno[u] = ++scc_cnt; // while(stack[top-1]!=u) { // sccno[stack[top-1]] = scc_cnt; // --top; // } // --top; // } // } // // //缩点, topology sort // int[] h1,to1,ne1; // int ct1 = 0; // void point(){ // for(int i=0;i<n;i++) { // if(dfn[i]==0) tarjan(i);//有可能图不连通,所以要循环判断。 // } // // 入度 // int du[] = new int[scc_cnt+1]; // h1 = new int[scc_cnt+1]; // Arrays.fill(h1, -1); // to1 = new int[scc_cnt*scc_cnt]; // ne1 = new int[scc_cnt*scc_cnt]; // // scc_cnt 个点 // // for(int i=1;i<=n;i++) { // for(int j=h[i]; j!=-1; j=ne[j]) { // int y = to[j]; // if(sccno[i] != sccno[y]) { // // add(sccno[i],sccno[y]); // 建新图 // to1[ct1] = sccno[y]; // ne1[ct1] = h[sccno[i]]; // h[sccno[i]] = ct1++; // du[sccno[y]]++; //存入度 // } // } // } // // int q[] = new int[100000]; // int end = 0; // int st = 0; // for(int i=1;i<=scc_cnt;++i){ // if(du[i]==0){ // q[end++] = i; // } // } // // int dp[] = new int[scc_cnt+1]; // while(st<end){ // int cur = q[st++]; // for(int i=h1[cur];i!=-1;i=ne1[i]){ // int y = to[i]; // // dp[y] += dp[cur]; // if(--du[y]==0){ // q[end++] = y; // } // } // } // } // // // // // int fa[]; // int faw[]; // // int dep = -1; // int pt = 0; // void go(int rt,int f,int dd){ // // int p = 0; // stk[p] = rt; // lk[p] = 0; // fk[p] = f;p++; // while(p>0) { // int cur = stk[p - 1]; // int fp = fk[p - 1]; // int ll = lk[p - 1]; // p--; // // // if (ll > dep) { // dep = ll; // pt = cur; // } // for (int i = h[cur]; i != -1; i = ne[i]) { // int v = to[i]; // if (fp == v) continue; // // stk[p] = v; // lk[p] = ll + wt[i]; // fk[p] = cur; // p++; // } // } // } // int pt1 = -1; // void go1(int rt,int f,int dd){ // // int p = 0; // stk[p] = rt; // lk[p] = 0; // fk[p] = f;p++; // while(p>0) { // int cur = stk[p - 1]; // int fp = fk[p - 1]; // int ll = lk[p - 1]; // p--; // // // if (ll > dep) { // dep = ll; // pt1 = cur; // } // // fa[cur] = fp; // for (int i = h[cur]; i != -1; i = ne[i]) { // int v = to[i]; // if (v == fp) continue; // faw[v] = wt[i]; // stk[p] = v; // lk[p] = ll + wt[i]; // fk[p] = cur; // p++; // } // } // } // // int r = 0; // int stk[] = new int[301]; // int fk[] = new int[301]; // int lk[] = new int[301]; // void ddfs(int rt,int t1,int t2,int t3,int l){ // // // int p = 0; // stk[p] = rt; // lk[p] = 0; // fk[p] = t3;p++; // while(p>0){ // int cur = stk[p-1]; // int fp = fk[p-1]; // int ll = lk[p-1]; // p--; // r = Math.max(r,ll); // for(int i=h[cur];i!=-1;i=ne[i]){ // int v = to[i]; // if(v==t1||v==t2||v==fp) continue; // stk[p] = v; // lk[p] = ll+wt[i]; // fk[p] = cur;p++; // } // } // // // // } static long mul(long a, long b, long p) { long res=0,base=a; while(b>0) { if((b&1L)>0) res=(res+base)%p; base=(base+base)%p; b>>=1; } return res; } static long mod_pow(long k,long n,long p){ long res = 1L; long temp = k; while(n!=0L){ if((n&1L)==1L){ res = (res*temp)%p; } temp = (temp*temp)%p; n = n>>1L; } return res%p; } int ct = 0; int f[] =new int[200001]; int b[] =new int[200001]; int str[] =new int[200001]; void go(int rt,List<Integer> g[]){ str[ct] = rt; f[rt] = ct; for(int cd:g[rt]){ ct++; go(cd,g); } b[rt] = ct; } int add =0; void go(int rt,int sd,int k,List<Integer> g[],int n){ if(add>n) { return; } Queue<Integer> q =new LinkedList<>(); q.offer(rt); for(int i=1;i<=sd;++i){ int sz =q.size(); if(sz==0) break; int f = (i==1?2:1); while(sz-->0){ int cur = q.poll(); for(int j=0;j<k-f;++j){ q.offer(add); g[cur].add(add);add++; if(add==n+1){ return; } } } } } void solve() { int n = ni(); long s[] = new long[n+1]; for(int i=0;i<n;++i){ s[i+1] = s[i] + ni(); } Map<Long,List<int[]>> mp = new HashMap<>(); for(int i=0;i<n;++i) { for (int j = i; j>=0; --j) { long v = s[i+1]-s[j]; if(!mp.containsKey(v)){ mp.put(v, new ArrayList<>()); } mp.get(v).add(new int[]{j,i}); } } int all = 0;long vv = -1; for(long v:mp.keySet()){ List<int[]> r = mp.get(v); int sz = r.size();int c = 0; int ri = -2000000000; for(int j=0;j<sz;++j){ if(r.get(j)[0]>ri){ ri = r.get(j)[1];c++; } } if(c>all){ all = c; vv = v; } } println(all); List<int[]> r = mp.get(vv); int sz = r.size();int c = 0; int ri = -2000000000; for(int j=0;j<sz;++j){ if(r.get(j)[0]>ri){ ri = r.get(j)[1];println((1+r.get(j)[0])+" "+(1+r.get(j)[1])); } } //N , M , K , a , b , c , d . 其中N , M是矩阵的行列数;K 是上锁的房间数目,(a, b)是起始位置,(c, d)是出口位置 // int n = ni(); // int m = ni(); // int k = ni(); // int a = ni(); // int b = ni(); // int c = ni(); // int d = ni(); // // // char cc[][] = nm(n,m); // char keys[][] = new char[n][m]; // // char ky = 'a'; // for(int i=0;i<k;++i){ // int x = ni(); // int y = ni(); // keys[x][y] = ky; // ky++; // } // int f1[] = {a,b,0}; // // int dd[][] = {{0,1},{0,-1},{1,0},{-1,0}}; // // Queue<int[]> q = new LinkedList<>(); // q.offer(f1); // int ts = 1; // // boolean vis[][][] = new boolean[n][m][33]; // // while(q.size()>0){ // int sz = q.size(); // while(sz-->0) { // int cur[] = q.poll(); // vis[cur[0]][cur[1]][cur[2]] = true; // // int x = cur[0]; // int y = cur[1]; // // for (int u[] : dd) { // int lx = x + u[0]; // int ly = y + u[1]; // if (lx >= 0 && ly >= 0 && lx < n && ly < m && (cc[lx][ly] != '#')&&!vis[lx][ly][cur[2]]){ // char ck =cc[lx][ly]; // if(ck=='.'){ // if(lx==c&&ly==d){ // println(ts); return; // } // if(keys[lx][ly]>='a'&&keys[lx][ly]<='z') { // int cao = cur[2] | (1 << (keys[lx][ly] - 'a')); // q.offer(new int[]{lx, ly, cao}); // vis[lx][ly][cao] = true; // }else { // // q.offer(new int[]{lx, ly, cur[2]}); // } // // }else if(ck>='A'&&ck<='Z'){ // int g = 1<<(ck-'A'); // if((g&cur[2])>0){ // if(lx==c&&ly==d){ // println(ts); return; // } // if(keys[lx][ly]>='a'&&keys[lx][ly]<='z') { // // int cao = cur[2] | (1 << (keys[lx][ly] - 'a')); // q.offer(new int[]{lx, ly, cao}); // vis[lx][ly][cao] = true;; // }else { // // q.offer(new int[]{lx, ly, cur[2]}); // } // } // } // } // } // // } // ts++; // } // println(-1); // int n = ni(); // // HashSet<String> st = new HashSet<>(); // HashMap<String,Integer> mp = new HashMap<>(); // // // for(int i=0;i<n;++i){ // String s = ns(); // int id= 1; // if(mp.containsKey(s)){ // int u = mp.get(s); // id = u; // // } // // if(st.contains(s)) { // // while (true) { // String ts = s + id; // if (!st.contains(ts)) { // s = ts; // break; // } // id++; // } // mp.put(s,id+1); // }else{ // mp.put(s,1); // } // println(s); // st.add(s); // // } // int t = ni(); // // for(int i=0;i<t;++i){ // int n = ni(); // long w[] = nal(n); // // Map<Long,Long> mp = new HashMap<>(); // PriorityQueue<long[]> q =new PriorityQueue<>((xx,xy)->{return Long.compare(xx[0],xy[0]);}); // // for(int j=0;j<n;++j){ // q.offer(new long[]{w[j],0}); // mp.put(w[j],mp.getOrDefault(w[j],0L)+1L); // } // // while(q.size()>=2){ // long f[] = q.poll(); // long y1 = f[1]; // if(y1==0){ // y1 = mp.get(f[0]); // if(y1==1){ // mp.remove(f[0]); // }else{ // mp.put(f[0],y1-1); // } // } // long g[] = q.poll(); // long y2 = g[1]; // if(y2==0){ // y2 = mp.get(g[0]); // if(y2==1){ // mp.remove(g[0]); // }else{ // mp.put(g[0],y2-1); // } // } // q.offer(new long[]{f[0]+g[0],2L*y1*y2}); // // } // long r[] = q.poll(); // println(r[1]); // // // // // } // int o= 9*8*7*6; // println(o); // int t = ni(); // for(int i=0;i<t;++i){ // long a = nl(); // int k = ni(); // if(k==1){ // println(a); // continue; // } // // int f = (int)(a%10L); // int s = 1; // int j = 0; // for(;j<30;j+=2){ // int u = f-j; // if(u<0){ // u = 10+u; // } // s = u*s; // s = s%10; // if(s==k){ // break; // } // } // // if(s==k) { // println(a - j - 2); // }else{ // println(-1); // } // // // // // } // int m = ni(); // h = new int[n]; // to = new int[2*(n-1)]; // ne = new int[2*(n-1)]; // wt = new int[2*(n-1)]; // // for(int i=0;i<n-1;++i){ // int u = ni()-1; // int v = ni()-1; // // } // long a[] = nal(n); // int n = ni(); // int k = ni(); // t1 = new long[200002]; // // int p[][] = new int[n][3]; // // for(int i=0;i<n;++i){ // p[i][0] = ni(); // p[i][1] = ni(); // p[i][2] = i+1; // } // Arrays.sort(p, new Comparator<int[]>() { // @Override // public int compare(int[] x, int[] y) { // if(x[1]!=y[1]){ // return Integer.compare(x[1],y[1]); // } // return Integer.compare(y[0], x[0]); // } // }); // // for(int i=0;i<n;++i){ // int ck = p[i][0]; // // } } // int []h,to,ne,wt; long t1[]; // long t2[]; void update(long[] t,int i,long v){ for(;i<t.length;i+=(i&-i)){ t[i] += v; } } long get(long[] t,int i){ long s = 0; for(;i>0;i-=(i&-i)){ s += t[i]; } return s; } int equal_bigger(long t[],long v){ int s=0,p=0; for(int i=Integer.numberOfTrailingZeros(Integer.highestOneBit(t.length));i>=0;--i) { if(p+(1<<i)< t.length && s + t[p+(1<<i)] < v){ v -= t[p+(1<<i)]; p |= 1<<i; } } return p+1; } static class S{ int l = 0; int r = 0 ; long le = 0; long ri = 0; long tot = 0; long all = 0; public S(int l,int r) { this.l = l; this.r = r; } } static S a[]; static int[] o; static void init(int[] f){ o = f; int len = o.length; a = new S[len*4]; build(1,0,len-1); } static void build(int num,int l,int r){ S cur = new S(l,r); if(l==r){ a[num] = cur; return; }else{ int m = (l+r)>>1; int le = num<<1; int ri = le|1; build(le, l,m); build(ri, m+1,r); a[num] = cur; pushup(num, le, ri); } } // static int query(int num,int l,int r){ // // if(a[num].l>=l&&a[num].r<=r){ // return a[num].tot; // }else{ // int m = (a[num].l+a[num].r)>>1; // int le = num<<1; // int ri = le|1; // pushdown(num, le, ri); // int ma = 1; // int mi = 100000001; // if(l<=m) { // int r1 = query(le, l, r); // ma = ma*r1; // // } // if(r>m){ // int r2 = query(ri, l, r); // ma = ma*r2; // } // return ma; // } // } static long dd = 10007; static void update(int num,int l,long v){ if(a[num].l==a[num].r){ a[num].le = v%dd; a[num].ri = v%dd; a[num].all = v%dd; a[num].tot = v%dd; }else{ int m = (a[num].l+a[num].r)>>1; int le = num<<1; int ri = le|1; pushdown(num, le, ri); if(l<=m){ update(le,l,v); } if(l>m){ update(ri,l,v); } pushup(num,le,ri); } } static void pushup(int num,int le,int ri){ a[num].all = (a[le].all*a[ri].all)%dd; a[num].le = (a[le].le + a[le].all*a[ri].le)%dd; a[num].ri = (a[ri].ri + a[ri].all*a[le].ri)%dd; a[num].tot = (a[le].tot + a[ri].tot + a[le].ri*a[ri].le)%dd; //a[num].res[1] = Math.min(a[le].res[1],a[ri].res[1]); } static void pushdown(int num,int le,int ri){ } int gcd(int a,int b){ return b==0?a: gcd(b,a%b);} InputStream is;PrintWriter out; void run() throws Exception {is = System.in;out = new PrintWriter(System.out);solve();out.flush();} private byte[] inbuf = new byte[2]; public int lenbuf = 0, ptrbuf = 0; private int readByte() { if (lenbuf == -1) throw new InputMismatchException(); if (ptrbuf >= lenbuf) { ptrbuf = 0; try {lenbuf = is.read(inbuf);} catch (IOException e) {throw new InputMismatchException();} if (lenbuf <= 0) return -1; } return inbuf[ptrbuf++];} private boolean isSpaceChar(int c) {return !(c >= 33 && c <= 126);} private int skip() {int b;while((b = readByte()) != -1 && isSpaceChar(b));return b;} private double nd() {return Double.parseDouble(ns());} private char nc() {return (char) skip();} private char ncc() {int b;while((b = readByte()) != -1 && !(b >= 32 && b <= 126));return (char)b;} private String ns() {int b = skip();StringBuilder sb = new StringBuilder(); while (!(isSpaceChar(b))) { // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b);b = readByte(); } return sb.toString();} private char[] ns(int n) {char[] buf = new char[n];int b = skip(), p = 0; while (p < n && !(isSpaceChar(b))) { buf[p++] = (char) b;b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p);} private String nline() {int b = skip();StringBuilder sb = new StringBuilder(); while (!isSpaceChar(b) || b == ' ') { sb.appendCodePoint(b);b = readByte(); } return sb.toString();} private char[][] nm(int n, int m) {char[][] a = new char[n][];for (int i = 0; i < n; i++) a[i] = ns(m);return a;} private int[] na(int n) {int[] a = new int[n];for (int i = 0; i < n; i++) a[i] = ni();return a;} private long[] nal(int n) { long[] a = new long[n];for (int i = 0; i < n; i++) a[i] = nl();return a;} private int ni() { int num = 0, b; boolean minus = false; while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')){}; if (b == '-') { minus = true; b = readByte(); } while (true) { if (b >= '0' && b <= '9') num = (num << 3) + (num << 1) + (b - '0'); else return minus ? -num : num; b = readByte();}} private long nl() { long num = 0; int b; boolean minus = false; while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')){}; if (b == '-') { minus = true; b = readByte(); } while (true) { if (b >= '0' && b <= '9') num = num * 10 + (b - '0'); else return minus ? -num : num; b = readByte();}} void print(Object obj){out.print(obj);} void println(Object obj){out.println(obj);} void println(){out.println();} } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
6,345
2,500
2,720
import java.io.*; import java.util.*; public class Lcm { public static void main(String args[])throws Exception { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); PrintWriter pw=new PrintWriter(System.out); long n=Long.parseLong(br.readLine()); if(n<=2) pw.println(n); else { if(n%6==0) { pw.println(((n-1)*(n-2)*(n-3))); } else if(n%2==0) { pw.println((n*(n-1)*(n-3))); } else { pw.println((n*(n-1)*(n-2))); } } pw.flush(); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Lcm { public static void main(String args[])throws Exception { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); PrintWriter pw=new PrintWriter(System.out); long n=Long.parseLong(br.readLine()); if(n<=2) pw.println(n); else { if(n%6==0) { pw.println(((n-1)*(n-2)*(n-3))); } else if(n%2==0) { pw.println((n*(n-1)*(n-3))); } else { pw.println((n*(n-1)*(n-2))); } } pw.flush(); } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class Lcm { public static void main(String args[])throws Exception { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); PrintWriter pw=new PrintWriter(System.out); long n=Long.parseLong(br.readLine()); if(n<=2) pw.println(n); else { if(n%6==0) { pw.println(((n-1)*(n-2)*(n-3))); } else if(n%2==0) { pw.println((n*(n-1)*(n-3))); } else { pw.println((n*(n-1)*(n-2))); } } pw.flush(); } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
464
2,714
4,180
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.StringTokenizer; public class A { static double[][] a; static int N; static double[] memo; static double dp(int alive) { int count = Integer.bitCount(alive); if(count == N) return 1; if(memo[alive] > -5) return memo[alive]; double ret = 0; for(int j = 0; j < N; ++j) if((alive & (1<<j)) == 0) ret += die[j][alive | 1<<j] * dp(alive | 1<<j); return memo[alive] = ret; } static double[][] die; static void f() { die = new double[N][1<<N]; for(int i = 0; i < N; ++i) for(int j = 0; j < 1<<N; ++j) { int count = Integer.bitCount(j); if(count <= 1) continue; double prop = 1.0 / (count * (count - 1) >> 1); for(int k = 0; k < N; ++k) if((j & (1<<k)) != 0) die[i][j] += prop * a[k][i]; } } public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); PrintWriter out = new PrintWriter(System.out); N = sc.nextInt(); a = new double[N][N]; for(int i = 0; i < N; ++i) for(int j = 0; j < N; ++j) a[i][j] = sc.nextDouble(); memo = new double[1<<N]; f(); Arrays.fill(memo, -10); for(int i = 0; i < N - 1; ++i) out.printf("%.8f ", dp(1 << i)); out.printf("%.8f\n", dp(1 << N - 1)); out.flush(); out.close(); } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s){ br = new BufferedReader(new InputStreamReader(s));} public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public double nextDouble() throws NumberFormatException, IOException { return Double.parseDouble(next()); } public int nextInt() throws IOException {return Integer.parseInt(next());} public long nextLong() throws IOException {return Long.parseLong(next());} public String nextLine() throws IOException {return br.readLine();} public boolean ready() throws IOException {return br.ready();} } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.StringTokenizer; public class A { static double[][] a; static int N; static double[] memo; static double dp(int alive) { int count = Integer.bitCount(alive); if(count == N) return 1; if(memo[alive] > -5) return memo[alive]; double ret = 0; for(int j = 0; j < N; ++j) if((alive & (1<<j)) == 0) ret += die[j][alive | 1<<j] * dp(alive | 1<<j); return memo[alive] = ret; } static double[][] die; static void f() { die = new double[N][1<<N]; for(int i = 0; i < N; ++i) for(int j = 0; j < 1<<N; ++j) { int count = Integer.bitCount(j); if(count <= 1) continue; double prop = 1.0 / (count * (count - 1) >> 1); for(int k = 0; k < N; ++k) if((j & (1<<k)) != 0) die[i][j] += prop * a[k][i]; } } public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); PrintWriter out = new PrintWriter(System.out); N = sc.nextInt(); a = new double[N][N]; for(int i = 0; i < N; ++i) for(int j = 0; j < N; ++j) a[i][j] = sc.nextDouble(); memo = new double[1<<N]; f(); Arrays.fill(memo, -10); for(int i = 0; i < N - 1; ++i) out.printf("%.8f ", dp(1 << i)); out.printf("%.8f\n", dp(1 << N - 1)); out.flush(); out.close(); } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s){ br = new BufferedReader(new InputStreamReader(s));} public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public double nextDouble() throws NumberFormatException, IOException { return Double.parseDouble(next()); } public int nextInt() throws IOException {return Integer.parseInt(next());} public long nextLong() throws IOException {return Long.parseLong(next());} public String nextLine() throws IOException {return br.readLine();} public boolean ready() throws IOException {return br.ready();} } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.StringTokenizer; public class A { static double[][] a; static int N; static double[] memo; static double dp(int alive) { int count = Integer.bitCount(alive); if(count == N) return 1; if(memo[alive] > -5) return memo[alive]; double ret = 0; for(int j = 0; j < N; ++j) if((alive & (1<<j)) == 0) ret += die[j][alive | 1<<j] * dp(alive | 1<<j); return memo[alive] = ret; } static double[][] die; static void f() { die = new double[N][1<<N]; for(int i = 0; i < N; ++i) for(int j = 0; j < 1<<N; ++j) { int count = Integer.bitCount(j); if(count <= 1) continue; double prop = 1.0 / (count * (count - 1) >> 1); for(int k = 0; k < N; ++k) if((j & (1<<k)) != 0) die[i][j] += prop * a[k][i]; } } public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); PrintWriter out = new PrintWriter(System.out); N = sc.nextInt(); a = new double[N][N]; for(int i = 0; i < N; ++i) for(int j = 0; j < N; ++j) a[i][j] = sc.nextDouble(); memo = new double[1<<N]; f(); Arrays.fill(memo, -10); for(int i = 0; i < N - 1; ++i) out.printf("%.8f ", dp(1 << i)); out.printf("%.8f\n", dp(1 << N - 1)); out.flush(); out.close(); } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s){ br = new BufferedReader(new InputStreamReader(s));} public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public double nextDouble() throws NumberFormatException, IOException { return Double.parseDouble(next()); } public int nextInt() throws IOException {return Integer.parseInt(next());} public long nextLong() throws IOException {return Long.parseLong(next());} public String nextLine() throws IOException {return br.readLine();} public boolean ready() throws IOException {return br.ready();} } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
989
4,169
1,073
import java.math.BigInteger; import java.util.ArrayList; import java.util.Scanner; public class Main { static ArrayList<BigInteger> bs = new ArrayList<>(); static void getBs(int n, BigInteger k) { BigInteger four = BigInteger.valueOf(4); BigInteger tmp4 = BigInteger.valueOf(1); BigInteger sum = BigInteger.ZERO; for (int i = 1; i <= n; i++) { sum = sum.add(tmp4); bs.add(sum); if (sum.compareTo(k) >= 0) break; tmp4 = tmp4.multiply(four); } } static int ss(int n, BigInteger k) { bs = new ArrayList<>(); BigInteger two = BigInteger.valueOf(2); BigInteger s1; BigInteger ts = BigInteger.ZERO; getBs(n - 1, k); int idx = bs.size() - 1; BigInteger tx = BigInteger.valueOf(-1); int ans = -1; for (int i = 1; i <= n; i++) { two = two.shiftLeft(1); s1 = two.add(BigInteger.valueOf(-i - 2)); if (idx >= 0) { tx = tx.add(BigInteger.ONE).multiply(BigInteger.valueOf(2)).add(BigInteger.ONE); ts = ts.add(tx.multiply(bs.get(idx--))); } if (k.compareTo(s1) >= 0) { if (k.subtract(s1).compareTo(ts) <= 0) { ans = n - i; break; } } } return ans; } public static void main(String[] args) { Scanner sc = new Scanner(System.in); int T = sc.nextInt(); while (T-- > 0) { int n = sc.nextInt(); BigInteger k = sc.nextBigInteger(); int ans = ss(n, k); if (ans == -1) { System.out.println("NO"); } else { System.out.println("YES " + ans); } } } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.math.BigInteger; import java.util.ArrayList; import java.util.Scanner; public class Main { static ArrayList<BigInteger> bs = new ArrayList<>(); static void getBs(int n, BigInteger k) { BigInteger four = BigInteger.valueOf(4); BigInteger tmp4 = BigInteger.valueOf(1); BigInteger sum = BigInteger.ZERO; for (int i = 1; i <= n; i++) { sum = sum.add(tmp4); bs.add(sum); if (sum.compareTo(k) >= 0) break; tmp4 = tmp4.multiply(four); } } static int ss(int n, BigInteger k) { bs = new ArrayList<>(); BigInteger two = BigInteger.valueOf(2); BigInteger s1; BigInteger ts = BigInteger.ZERO; getBs(n - 1, k); int idx = bs.size() - 1; BigInteger tx = BigInteger.valueOf(-1); int ans = -1; for (int i = 1; i <= n; i++) { two = two.shiftLeft(1); s1 = two.add(BigInteger.valueOf(-i - 2)); if (idx >= 0) { tx = tx.add(BigInteger.ONE).multiply(BigInteger.valueOf(2)).add(BigInteger.ONE); ts = ts.add(tx.multiply(bs.get(idx--))); } if (k.compareTo(s1) >= 0) { if (k.subtract(s1).compareTo(ts) <= 0) { ans = n - i; break; } } } return ans; } public static void main(String[] args) { Scanner sc = new Scanner(System.in); int T = sc.nextInt(); while (T-- > 0) { int n = sc.nextInt(); BigInteger k = sc.nextBigInteger(); int ans = ss(n, k); if (ans == -1) { System.out.println("NO"); } else { System.out.println("YES " + ans); } } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.math.BigInteger; import java.util.ArrayList; import java.util.Scanner; public class Main { static ArrayList<BigInteger> bs = new ArrayList<>(); static void getBs(int n, BigInteger k) { BigInteger four = BigInteger.valueOf(4); BigInteger tmp4 = BigInteger.valueOf(1); BigInteger sum = BigInteger.ZERO; for (int i = 1; i <= n; i++) { sum = sum.add(tmp4); bs.add(sum); if (sum.compareTo(k) >= 0) break; tmp4 = tmp4.multiply(four); } } static int ss(int n, BigInteger k) { bs = new ArrayList<>(); BigInteger two = BigInteger.valueOf(2); BigInteger s1; BigInteger ts = BigInteger.ZERO; getBs(n - 1, k); int idx = bs.size() - 1; BigInteger tx = BigInteger.valueOf(-1); int ans = -1; for (int i = 1; i <= n; i++) { two = two.shiftLeft(1); s1 = two.add(BigInteger.valueOf(-i - 2)); if (idx >= 0) { tx = tx.add(BigInteger.ONE).multiply(BigInteger.valueOf(2)).add(BigInteger.ONE); ts = ts.add(tx.multiply(bs.get(idx--))); } if (k.compareTo(s1) >= 0) { if (k.subtract(s1).compareTo(ts) <= 0) { ans = n - i; break; } } } return ans; } public static void main(String[] args) { Scanner sc = new Scanner(System.in); int T = sc.nextInt(); while (T-- > 0) { int n = sc.nextInt(); BigInteger k = sc.nextBigInteger(); int ans = ss(n, k); if (ans == -1) { System.out.println("NO"); } else { System.out.println("YES " + ans); } } } } </CODE> <EVALUATION_RUBRIC> - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
778
1,072
257
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskD solver = new TaskD(); solver.solve(1, in, out); out.close(); } static class TaskD { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = in.nextInt(); } int inv = 0; for (int i = 0; i < n; i++) { for (int j = 0; j < i; j++) { if (a[j] > a[i]) { inv++; } } } int m = in.nextInt(); for (int i = 0; i < m; i++) { int l = in.nextInt(); int r = in.nextInt(); int s = (r - l + 1) * (r - l) / 2; inv = (inv + s) % 2; out.println(inv % 2 == 0 ? "even" : "odd"); } } } static class InputReader { private BufferedReader reader; private StringTokenizer stt; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream)); } public String nextLine() { try { return reader.readLine(); } catch (IOException e) { return null; } } public String next() { while (stt == null || !stt.hasMoreTokens()) { stt = new StringTokenizer(nextLine()); } return stt.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskD solver = new TaskD(); solver.solve(1, in, out); out.close(); } static class TaskD { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = in.nextInt(); } int inv = 0; for (int i = 0; i < n; i++) { for (int j = 0; j < i; j++) { if (a[j] > a[i]) { inv++; } } } int m = in.nextInt(); for (int i = 0; i < m; i++) { int l = in.nextInt(); int r = in.nextInt(); int s = (r - l + 1) * (r - l) / 2; inv = (inv + s) % 2; out.println(inv % 2 == 0 ? "even" : "odd"); } } } static class InputReader { private BufferedReader reader; private StringTokenizer stt; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream)); } public String nextLine() { try { return reader.readLine(); } catch (IOException e) { return null; } } public String next() { while (stt == null || !stt.hasMoreTokens()) { stt = new StringTokenizer(nextLine()); } return stt.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskD solver = new TaskD(); solver.solve(1, in, out); out.close(); } static class TaskD { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = in.nextInt(); } int inv = 0; for (int i = 0; i < n; i++) { for (int j = 0; j < i; j++) { if (a[j] > a[i]) { inv++; } } } int m = in.nextInt(); for (int i = 0; i < m; i++) { int l = in.nextInt(); int r = in.nextInt(); int s = (r - l + 1) * (r - l) / 2; inv = (inv + s) % 2; out.println(inv % 2 == 0 ? "even" : "odd"); } } } static class InputReader { private BufferedReader reader; private StringTokenizer stt; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream)); } public String nextLine() { try { return reader.readLine(); } catch (IOException e) { return null; } } public String next() { while (stt == null || !stt.hasMoreTokens()) { stt = new StringTokenizer(nextLine()); } return stt.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
830
257
848
import java.util.*; import java.util.regex.*; import java.text.*; import java.math.*; public class Main { Scanner cin; int []prime; int top; void work() { cin=new Scanner(System.in); int n=cin.nextInt(); int k=cin.nextInt(); top=0; prime=new int[2000]; for(int i=2;i<=n;i++) { if(isprime(i)) prime[top++]=i; } int cnt=0; for(int i=0;i<top;i++) { if(cando(prime[i])) cnt++; } if(cnt>=k) System.out.println("YES"); else System.out.println("NO"); } boolean cando(int n) { for(int i=0;i<top-1;i++) { if(prime[i]+prime[i+1]+1==n) return true; } return false; } boolean isprime(int n) { for(int i=2;i*i<=n;i++) if(n%i==0)return false; return true; } public static void main(String args[]) throws Exception { new Main().work(); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.util.regex.*; import java.text.*; import java.math.*; public class Main { Scanner cin; int []prime; int top; void work() { cin=new Scanner(System.in); int n=cin.nextInt(); int k=cin.nextInt(); top=0; prime=new int[2000]; for(int i=2;i<=n;i++) { if(isprime(i)) prime[top++]=i; } int cnt=0; for(int i=0;i<top;i++) { if(cando(prime[i])) cnt++; } if(cnt>=k) System.out.println("YES"); else System.out.println("NO"); } boolean cando(int n) { for(int i=0;i<top-1;i++) { if(prime[i]+prime[i+1]+1==n) return true; } return false; } boolean isprime(int n) { for(int i=2;i*i<=n;i++) if(n%i==0)return false; return true; } public static void main(String args[]) throws Exception { new Main().work(); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.util.regex.*; import java.text.*; import java.math.*; public class Main { Scanner cin; int []prime; int top; void work() { cin=new Scanner(System.in); int n=cin.nextInt(); int k=cin.nextInt(); top=0; prime=new int[2000]; for(int i=2;i<=n;i++) { if(isprime(i)) prime[top++]=i; } int cnt=0; for(int i=0;i<top;i++) { if(cando(prime[i])) cnt++; } if(cnt>=k) System.out.println("YES"); else System.out.println("NO"); } boolean cando(int n) { for(int i=0;i<top-1;i++) { if(prime[i]+prime[i+1]+1==n) return true; } return false; } boolean isprime(int n) { for(int i=2;i*i<=n;i++) if(n%i==0)return false; return true; } public static void main(String args[]) throws Exception { new Main().work(); } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
603
847
1,104
import java.io.*; import java.util.*; public class B { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); Task solver = new Task(); solver.solve(1, in, out); out.close(); } static class Task { int n = 0; int query(int p, InputReader in) { p %= n; if (p <= 0) p += n; System.out.println("? " + p); System.out.flush(); int x = in.nextInt(); return x; } public void solve(int testNumber, InputReader in, PrintWriter out) { n = in.nextInt(); if (n % 4 != 0) { out.println("! -1"); return; } int p = query(0, in); int q = query(n / 2, in); int l = 0; int r = n / 2; if (p == q) { out.println("! " + (n / 2)); return; } while (l + 1 < r) { int mid = (l + r) / 2; int u = query(mid, in); int v = query(mid + n / 2, in); if (u == v) { out.println("! " + (mid + n / 2)); return; } if ((p < q) == (u < v)) { l = mid; } else { r = mid; } } } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class B { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); Task solver = new Task(); solver.solve(1, in, out); out.close(); } static class Task { int n = 0; int query(int p, InputReader in) { p %= n; if (p <= 0) p += n; System.out.println("? " + p); System.out.flush(); int x = in.nextInt(); return x; } public void solve(int testNumber, InputReader in, PrintWriter out) { n = in.nextInt(); if (n % 4 != 0) { out.println("! -1"); return; } int p = query(0, in); int q = query(n / 2, in); int l = 0; int r = n / 2; if (p == q) { out.println("! " + (n / 2)); return; } while (l + 1 < r) { int mid = (l + r) / 2; int u = query(mid, in); int v = query(mid + n / 2, in); if (u == v) { out.println("! " + (mid + n / 2)); return; } if ((p < q) == (u < v)) { l = mid; } else { r = mid; } } } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class B { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); Task solver = new Task(); solver.solve(1, in, out); out.close(); } static class Task { int n = 0; int query(int p, InputReader in) { p %= n; if (p <= 0) p += n; System.out.println("? " + p); System.out.flush(); int x = in.nextInt(); return x; } public void solve(int testNumber, InputReader in, PrintWriter out) { n = in.nextInt(); if (n % 4 != 0) { out.println("! -1"); return; } int p = query(0, in); int q = query(n / 2, in); int l = 0; int r = n / 2; if (p == q) { out.println("! " + (n / 2)); return; } while (l + 1 < r) { int mid = (l + r) / 2; int u = query(mid, in); int v = query(mid + n / 2, in); if (u == v) { out.println("! " + (mid + n / 2)); return; } if ((p < q) == (u < v)) { l = mid; } else { r = mid; } } } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
845
1,103
62
import java.io.BufferedOutputStream; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; public class e { public static class FastReader { BufferedReader br; StringTokenizer st; //it reads the data about the specified point and divide the data about it ,it is quite fast //than using direct public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception r) { r.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next());//converts string to integer } double nextDouble() { return Double.parseDouble(next()); } long nextLong() { return Long.parseLong(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (Exception r) { r.printStackTrace(); } return str; } } static ArrayList<String>list1=new ArrayList<String>(); static void combine(String instr, StringBuffer outstr, int index,int k) { if(outstr.length()==k) { list1.add(outstr.toString());return; } if(outstr.toString().length()==0) outstr.append(instr.charAt(index)); for (int i = 0; i < instr.length(); i++) { outstr.append(instr.charAt(i)); combine(instr, outstr, i + 1,k); outstr.deleteCharAt(outstr.length() - 1); } index++; } static ArrayList<ArrayList<Integer>>l=new ArrayList<>(); static void comb(int n,int k,int ind,ArrayList<Integer>list) { if(k==0) { l.add(new ArrayList<>(list)); return; } for(int i=ind;i<=n;i++) { list.add(i); comb(n,k-1,ind+1,list); list.remove(list.size()-1); } } public static PrintWriter out = new PrintWriter (new BufferedOutputStream(System.out)); public static void main(String[] args) { // TODO Auto-generated method stub FastReader in=new FastReader(); HashMap<Integer,Integer>map=new HashMap<Integer,Integer>(); int n=in.nextInt(); int r=in.nextInt(); double theta=(double)360/(double)n; double b=1-((double)2/(double)(1-Math.cos((double)2*Math.PI/(double)n))); double x=Math.sqrt(1-b)-1; double ans=(double)r/(double)x; System.out.println(ans); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedOutputStream; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; public class e { public static class FastReader { BufferedReader br; StringTokenizer st; //it reads the data about the specified point and divide the data about it ,it is quite fast //than using direct public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception r) { r.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next());//converts string to integer } double nextDouble() { return Double.parseDouble(next()); } long nextLong() { return Long.parseLong(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (Exception r) { r.printStackTrace(); } return str; } } static ArrayList<String>list1=new ArrayList<String>(); static void combine(String instr, StringBuffer outstr, int index,int k) { if(outstr.length()==k) { list1.add(outstr.toString());return; } if(outstr.toString().length()==0) outstr.append(instr.charAt(index)); for (int i = 0; i < instr.length(); i++) { outstr.append(instr.charAt(i)); combine(instr, outstr, i + 1,k); outstr.deleteCharAt(outstr.length() - 1); } index++; } static ArrayList<ArrayList<Integer>>l=new ArrayList<>(); static void comb(int n,int k,int ind,ArrayList<Integer>list) { if(k==0) { l.add(new ArrayList<>(list)); return; } for(int i=ind;i<=n;i++) { list.add(i); comb(n,k-1,ind+1,list); list.remove(list.size()-1); } } public static PrintWriter out = new PrintWriter (new BufferedOutputStream(System.out)); public static void main(String[] args) { // TODO Auto-generated method stub FastReader in=new FastReader(); HashMap<Integer,Integer>map=new HashMap<Integer,Integer>(); int n=in.nextInt(); int r=in.nextInt(); double theta=(double)360/(double)n; double b=1-((double)2/(double)(1-Math.cos((double)2*Math.PI/(double)n))); double x=Math.sqrt(1-b)-1; double ans=(double)r/(double)x; System.out.println(ans); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedOutputStream; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; public class e { public static class FastReader { BufferedReader br; StringTokenizer st; //it reads the data about the specified point and divide the data about it ,it is quite fast //than using direct public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception r) { r.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next());//converts string to integer } double nextDouble() { return Double.parseDouble(next()); } long nextLong() { return Long.parseLong(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (Exception r) { r.printStackTrace(); } return str; } } static ArrayList<String>list1=new ArrayList<String>(); static void combine(String instr, StringBuffer outstr, int index,int k) { if(outstr.length()==k) { list1.add(outstr.toString());return; } if(outstr.toString().length()==0) outstr.append(instr.charAt(index)); for (int i = 0; i < instr.length(); i++) { outstr.append(instr.charAt(i)); combine(instr, outstr, i + 1,k); outstr.deleteCharAt(outstr.length() - 1); } index++; } static ArrayList<ArrayList<Integer>>l=new ArrayList<>(); static void comb(int n,int k,int ind,ArrayList<Integer>list) { if(k==0) { l.add(new ArrayList<>(list)); return; } for(int i=ind;i<=n;i++) { list.add(i); comb(n,k-1,ind+1,list); list.remove(list.size()-1); } } public static PrintWriter out = new PrintWriter (new BufferedOutputStream(System.out)); public static void main(String[] args) { // TODO Auto-generated method stub FastReader in=new FastReader(); HashMap<Integer,Integer>map=new HashMap<Integer,Integer>(); int n=in.nextInt(); int r=in.nextInt(); double theta=(double)360/(double)n; double b=1-((double)2/(double)(1-Math.cos((double)2*Math.PI/(double)n))); double x=Math.sqrt(1-b)-1; double ans=(double)r/(double)x; System.out.println(ans); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
900
62
1,084
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.ArrayList; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author kessido */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); DOlyaAndMagicalSquare solver = new DOlyaAndMagicalSquare(); int testCount = Integer.parseInt(in.next()); for (int i = 1; i <= testCount; i++) solver.solve(i, in, out); out.close(); } static class DOlyaAndMagicalSquare { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.NextInt(); long k = in.NextLong(); if (k == 0) { out.println("YES " + n); return; } long operationTillNow = 0, numberOfCubeOnTheSide = 1; ArrayList<CubeCount> cubes = new ArrayList<>(); for (int i = n - 1; i >= 0; i--) { cubes.add(new CubeCount(i, (numberOfCubeOnTheSide - 1) * 2 * 2 + 1)); operationTillNow = operationTillNow + 2 * numberOfCubeOnTheSide - 1; numberOfCubeOnTheSide *= 2; long operationLeft = k - operationTillNow; if (operationLeft == 0) { out.println("YES " + i); return; } else if (operationLeft < 0) { out.println("NO"); return; } for (CubeCount c : cubes) { if (!c.hasLessThen(operationLeft)) { out.println("YES " + i); return; } else { operationLeft = c.removeMeFrom(operationLeft); } } if (operationLeft <= 0) { out.println("YES " + i); return; } } out.println("NO"); return; } class CubeCount { int sideSizeLogScale; long repeats; public CubeCount(int sideSizeLogScale, long repeats) { this.repeats = repeats; this.sideSizeLogScale = sideSizeLogScale; } public boolean hasLessThen(long k) { return hasLessThen(k, sideSizeLogScale, repeats); } private boolean hasLessThen(long k, int sideLog, long repeats) { while (true) { if (k <= 0) return false; if (sideLog == 0) return true; k -= repeats; sideLog--; repeats *= 4; } } public long removeMeFrom(long k) { return removeMeFrom(k, sideSizeLogScale, repeats); } private long removeMeFrom(long k, int sideLog, long repeats) { while (true) { if (sideLog == 0) return k; k -= repeats; sideLog--; repeats *= 4; } } } } static class InputReader { BufferedReader reader; StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine(), " \t\n\r\f,"); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int NextInt() { return Integer.parseInt(next()); } public long NextLong() { return Long.parseLong(next()); } } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.ArrayList; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author kessido */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); DOlyaAndMagicalSquare solver = new DOlyaAndMagicalSquare(); int testCount = Integer.parseInt(in.next()); for (int i = 1; i <= testCount; i++) solver.solve(i, in, out); out.close(); } static class DOlyaAndMagicalSquare { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.NextInt(); long k = in.NextLong(); if (k == 0) { out.println("YES " + n); return; } long operationTillNow = 0, numberOfCubeOnTheSide = 1; ArrayList<CubeCount> cubes = new ArrayList<>(); for (int i = n - 1; i >= 0; i--) { cubes.add(new CubeCount(i, (numberOfCubeOnTheSide - 1) * 2 * 2 + 1)); operationTillNow = operationTillNow + 2 * numberOfCubeOnTheSide - 1; numberOfCubeOnTheSide *= 2; long operationLeft = k - operationTillNow; if (operationLeft == 0) { out.println("YES " + i); return; } else if (operationLeft < 0) { out.println("NO"); return; } for (CubeCount c : cubes) { if (!c.hasLessThen(operationLeft)) { out.println("YES " + i); return; } else { operationLeft = c.removeMeFrom(operationLeft); } } if (operationLeft <= 0) { out.println("YES " + i); return; } } out.println("NO"); return; } class CubeCount { int sideSizeLogScale; long repeats; public CubeCount(int sideSizeLogScale, long repeats) { this.repeats = repeats; this.sideSizeLogScale = sideSizeLogScale; } public boolean hasLessThen(long k) { return hasLessThen(k, sideSizeLogScale, repeats); } private boolean hasLessThen(long k, int sideLog, long repeats) { while (true) { if (k <= 0) return false; if (sideLog == 0) return true; k -= repeats; sideLog--; repeats *= 4; } } public long removeMeFrom(long k) { return removeMeFrom(k, sideSizeLogScale, repeats); } private long removeMeFrom(long k, int sideLog, long repeats) { while (true) { if (sideLog == 0) return k; k -= repeats; sideLog--; repeats *= 4; } } } } static class InputReader { BufferedReader reader; StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine(), " \t\n\r\f,"); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int NextInt() { return Integer.parseInt(next()); } public long NextLong() { return Long.parseLong(next()); } } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.ArrayList; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author kessido */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); DOlyaAndMagicalSquare solver = new DOlyaAndMagicalSquare(); int testCount = Integer.parseInt(in.next()); for (int i = 1; i <= testCount; i++) solver.solve(i, in, out); out.close(); } static class DOlyaAndMagicalSquare { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.NextInt(); long k = in.NextLong(); if (k == 0) { out.println("YES " + n); return; } long operationTillNow = 0, numberOfCubeOnTheSide = 1; ArrayList<CubeCount> cubes = new ArrayList<>(); for (int i = n - 1; i >= 0; i--) { cubes.add(new CubeCount(i, (numberOfCubeOnTheSide - 1) * 2 * 2 + 1)); operationTillNow = operationTillNow + 2 * numberOfCubeOnTheSide - 1; numberOfCubeOnTheSide *= 2; long operationLeft = k - operationTillNow; if (operationLeft == 0) { out.println("YES " + i); return; } else if (operationLeft < 0) { out.println("NO"); return; } for (CubeCount c : cubes) { if (!c.hasLessThen(operationLeft)) { out.println("YES " + i); return; } else { operationLeft = c.removeMeFrom(operationLeft); } } if (operationLeft <= 0) { out.println("YES " + i); return; } } out.println("NO"); return; } class CubeCount { int sideSizeLogScale; long repeats; public CubeCount(int sideSizeLogScale, long repeats) { this.repeats = repeats; this.sideSizeLogScale = sideSizeLogScale; } public boolean hasLessThen(long k) { return hasLessThen(k, sideSizeLogScale, repeats); } private boolean hasLessThen(long k, int sideLog, long repeats) { while (true) { if (k <= 0) return false; if (sideLog == 0) return true; k -= repeats; sideLog--; repeats *= 4; } } public long removeMeFrom(long k) { return removeMeFrom(k, sideSizeLogScale, repeats); } private long removeMeFrom(long k, int sideLog, long repeats) { while (true) { if (sideLog == 0) return k; k -= repeats; sideLog--; repeats *= 4; } } } } static class InputReader { BufferedReader reader; StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine(), " \t\n\r\f,"); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int NextInt() { return Integer.parseInt(next()); } public long NextLong() { return Long.parseLong(next()); } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,198
1,083
596
import javafx.collections.transformation.SortedList; import java.io.IOException; import java.io.InputStream; import java.lang.reflect.Array; import java.util.*; public class Main { public static void main(String[] args) throws IOException { Scan scan = new Scan(); int n = scan.scanInt(); long d = scan.scanLong(); long a[]=new long[n]; for(int i=0;i<n;i++){ a[i]=scan.scanLong(); } Arrays.sort(a); int count=0; for(int i=0;i<n-1;i++){ if((a[i+1]-d)>(a[i]+d)){ count+=2; }else if((a[i+1]-d)==(a[i]+d)){ count++; } } count+=2; System.out.println(count); } static class Scan { private byte[] buf=new byte[1024]; private int index; private InputStream in; private int total; public Scan() { in=System.in; } public int scan()throws IOException { if(total<0) throw new InputMismatchException(); if(index>=total) { index=0; total=in.read(buf); if(total<=0) return -1; } return buf[index++]; } public int scanInt()throws IOException { int integer=0; int n=scan(); while(isWhiteSpace(n)) n=scan(); int neg=1; if(n=='-') { neg=-1; n=scan(); } while(!isWhiteSpace(n)) { if(n>='0'&&n<='9') { integer*=10; integer+=n-'0'; n=scan(); } else throw new InputMismatchException(); } return neg*integer; } public char scanchar()throws IOException { int n=scan(); while(isWhiteSpace(n)) n=scan(); return (char)n; // int neg=1; // while(!isWhiteSpace(n)) // { // if(n>='0'&&n<='9') // { // integer*=10; // integer+=n-'0'; // n=scan(); // } // else throw new InputMismatchException(); // } // return neg*integer; } public long scanLong()throws IOException { long lng=0; int n=scan(); while(isWhiteSpace(n)) n=scan(); int neg=1; if(n=='-') { neg=-1; n=scan(); } while(!isWhiteSpace(n) && n!='.') { if(n>='0'&&n<='9') { lng*=10; lng+=n-'0'; n=scan(); } else throw new InputMismatchException(); } if(n=='.') { n=scan(); long temp=1; while(!isWhiteSpace(n)) { if(n>='0'&&n<='9') { temp/=10; lng+=(n-'0')*temp; n=scan(); } else throw new InputMismatchException(); } } return neg*lng; } public double scanDouble()throws IOException { double doub=0; int n=scan(); while(isWhiteSpace(n)) n=scan(); int neg=1; if(n=='-') { neg=-1; n=scan(); } while(!isWhiteSpace(n)&&n!='.') { if(n>='0'&&n<='9') { doub*=10; doub+=n-'0'; n=scan(); } else throw new InputMismatchException(); } if(n=='.') { n=scan(); double temp=1; while(!isWhiteSpace(n)) { if(n>='0'&&n<='9') { temp/=10; doub+=(n-'0')*temp; n=scan(); } else throw new InputMismatchException(); } } return doub*neg; } public String scanString()throws IOException { StringBuilder sb=new StringBuilder(); int n=scan(); while(isWhiteSpace(n)) n=scan(); while(!isWhiteSpace(n)) { sb.append((char)n); n=scan(); } return sb.toString(); } private boolean isWhiteSpace(int n) { if(n==' '||n=='\n'||n=='\r'||n=='\t'||n==-1) return true; return false; } } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import javafx.collections.transformation.SortedList; import java.io.IOException; import java.io.InputStream; import java.lang.reflect.Array; import java.util.*; public class Main { public static void main(String[] args) throws IOException { Scan scan = new Scan(); int n = scan.scanInt(); long d = scan.scanLong(); long a[]=new long[n]; for(int i=0;i<n;i++){ a[i]=scan.scanLong(); } Arrays.sort(a); int count=0; for(int i=0;i<n-1;i++){ if((a[i+1]-d)>(a[i]+d)){ count+=2; }else if((a[i+1]-d)==(a[i]+d)){ count++; } } count+=2; System.out.println(count); } static class Scan { private byte[] buf=new byte[1024]; private int index; private InputStream in; private int total; public Scan() { in=System.in; } public int scan()throws IOException { if(total<0) throw new InputMismatchException(); if(index>=total) { index=0; total=in.read(buf); if(total<=0) return -1; } return buf[index++]; } public int scanInt()throws IOException { int integer=0; int n=scan(); while(isWhiteSpace(n)) n=scan(); int neg=1; if(n=='-') { neg=-1; n=scan(); } while(!isWhiteSpace(n)) { if(n>='0'&&n<='9') { integer*=10; integer+=n-'0'; n=scan(); } else throw new InputMismatchException(); } return neg*integer; } public char scanchar()throws IOException { int n=scan(); while(isWhiteSpace(n)) n=scan(); return (char)n; // int neg=1; // while(!isWhiteSpace(n)) // { // if(n>='0'&&n<='9') // { // integer*=10; // integer+=n-'0'; // n=scan(); // } // else throw new InputMismatchException(); // } // return neg*integer; } public long scanLong()throws IOException { long lng=0; int n=scan(); while(isWhiteSpace(n)) n=scan(); int neg=1; if(n=='-') { neg=-1; n=scan(); } while(!isWhiteSpace(n) && n!='.') { if(n>='0'&&n<='9') { lng*=10; lng+=n-'0'; n=scan(); } else throw new InputMismatchException(); } if(n=='.') { n=scan(); long temp=1; while(!isWhiteSpace(n)) { if(n>='0'&&n<='9') { temp/=10; lng+=(n-'0')*temp; n=scan(); } else throw new InputMismatchException(); } } return neg*lng; } public double scanDouble()throws IOException { double doub=0; int n=scan(); while(isWhiteSpace(n)) n=scan(); int neg=1; if(n=='-') { neg=-1; n=scan(); } while(!isWhiteSpace(n)&&n!='.') { if(n>='0'&&n<='9') { doub*=10; doub+=n-'0'; n=scan(); } else throw new InputMismatchException(); } if(n=='.') { n=scan(); double temp=1; while(!isWhiteSpace(n)) { if(n>='0'&&n<='9') { temp/=10; doub+=(n-'0')*temp; n=scan(); } else throw new InputMismatchException(); } } return doub*neg; } public String scanString()throws IOException { StringBuilder sb=new StringBuilder(); int n=scan(); while(isWhiteSpace(n)) n=scan(); while(!isWhiteSpace(n)) { sb.append((char)n); n=scan(); } return sb.toString(); } private boolean isWhiteSpace(int n) { if(n==' '||n=='\n'||n=='\r'||n=='\t'||n==-1) return true; return false; } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import javafx.collections.transformation.SortedList; import java.io.IOException; import java.io.InputStream; import java.lang.reflect.Array; import java.util.*; public class Main { public static void main(String[] args) throws IOException { Scan scan = new Scan(); int n = scan.scanInt(); long d = scan.scanLong(); long a[]=new long[n]; for(int i=0;i<n;i++){ a[i]=scan.scanLong(); } Arrays.sort(a); int count=0; for(int i=0;i<n-1;i++){ if((a[i+1]-d)>(a[i]+d)){ count+=2; }else if((a[i+1]-d)==(a[i]+d)){ count++; } } count+=2; System.out.println(count); } static class Scan { private byte[] buf=new byte[1024]; private int index; private InputStream in; private int total; public Scan() { in=System.in; } public int scan()throws IOException { if(total<0) throw new InputMismatchException(); if(index>=total) { index=0; total=in.read(buf); if(total<=0) return -1; } return buf[index++]; } public int scanInt()throws IOException { int integer=0; int n=scan(); while(isWhiteSpace(n)) n=scan(); int neg=1; if(n=='-') { neg=-1; n=scan(); } while(!isWhiteSpace(n)) { if(n>='0'&&n<='9') { integer*=10; integer+=n-'0'; n=scan(); } else throw new InputMismatchException(); } return neg*integer; } public char scanchar()throws IOException { int n=scan(); while(isWhiteSpace(n)) n=scan(); return (char)n; // int neg=1; // while(!isWhiteSpace(n)) // { // if(n>='0'&&n<='9') // { // integer*=10; // integer+=n-'0'; // n=scan(); // } // else throw new InputMismatchException(); // } // return neg*integer; } public long scanLong()throws IOException { long lng=0; int n=scan(); while(isWhiteSpace(n)) n=scan(); int neg=1; if(n=='-') { neg=-1; n=scan(); } while(!isWhiteSpace(n) && n!='.') { if(n>='0'&&n<='9') { lng*=10; lng+=n-'0'; n=scan(); } else throw new InputMismatchException(); } if(n=='.') { n=scan(); long temp=1; while(!isWhiteSpace(n)) { if(n>='0'&&n<='9') { temp/=10; lng+=(n-'0')*temp; n=scan(); } else throw new InputMismatchException(); } } return neg*lng; } public double scanDouble()throws IOException { double doub=0; int n=scan(); while(isWhiteSpace(n)) n=scan(); int neg=1; if(n=='-') { neg=-1; n=scan(); } while(!isWhiteSpace(n)&&n!='.') { if(n>='0'&&n<='9') { doub*=10; doub+=n-'0'; n=scan(); } else throw new InputMismatchException(); } if(n=='.') { n=scan(); double temp=1; while(!isWhiteSpace(n)) { if(n>='0'&&n<='9') { temp/=10; doub+=(n-'0')*temp; n=scan(); } else throw new InputMismatchException(); } } return doub*neg; } public String scanString()throws IOException { StringBuilder sb=new StringBuilder(); int n=scan(); while(isWhiteSpace(n)) n=scan(); while(!isWhiteSpace(n)) { sb.append((char)n); n=scan(); } return sb.toString(); } private boolean isWhiteSpace(int n) { if(n==' '||n=='\n'||n=='\r'||n=='\t'||n==-1) return true; return false; } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,370
595
2,608
import java.util.*; import java.io.*; import java.text.*; import java.math.*; import static java.lang.Integer.*; import static java.lang.Double.*; import java.lang.Math.*; public class A { public static void main(String[] args) throws Exception { new A().run(); } public void run() throws Exception { FastIO file = new FastIO(); int n = file.nextInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = file.nextInt(); Arrays.sort(a); boolean[] used = new boolean[n]; int count = 0; for (int i = 0; i < n; i++) { if (!used[i]) { count++; for (int j = i; j < n; j++) { if (a[j] % a[i] == 0) { used[j] = true; } } } } System.out.println(count); } public static class FastIO { BufferedReader br; StringTokenizer st; public FastIO() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static long pow(long n, long p, long mod) { if (p == 0) return 1; if (p == 1) return n % mod; if (p % 2 == 0) { long temp = pow(n, p / 2, mod); return (temp * temp) % mod; } else { long temp = pow(n, (p - 1) / 2, mod); temp = (temp * temp) % mod; return (temp * n) % mod; } } public static long pow(long n, long p) { if (p == 0) return 1; if (p == 1) return n; if (p % 2 == 0) { long temp = pow(n, p / 2); return (temp * temp); } else { long temp = pow(n, (p - 1) / 2); temp = (temp * temp); return (temp * n); } } public static long gcd(long x, long y) { if (x == 0) return y; else return gcd(y % x, x); } public static boolean isPrime(int n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; for (int i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; import java.text.*; import java.math.*; import static java.lang.Integer.*; import static java.lang.Double.*; import java.lang.Math.*; public class A { public static void main(String[] args) throws Exception { new A().run(); } public void run() throws Exception { FastIO file = new FastIO(); int n = file.nextInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = file.nextInt(); Arrays.sort(a); boolean[] used = new boolean[n]; int count = 0; for (int i = 0; i < n; i++) { if (!used[i]) { count++; for (int j = i; j < n; j++) { if (a[j] % a[i] == 0) { used[j] = true; } } } } System.out.println(count); } public static class FastIO { BufferedReader br; StringTokenizer st; public FastIO() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static long pow(long n, long p, long mod) { if (p == 0) return 1; if (p == 1) return n % mod; if (p % 2 == 0) { long temp = pow(n, p / 2, mod); return (temp * temp) % mod; } else { long temp = pow(n, (p - 1) / 2, mod); temp = (temp * temp) % mod; return (temp * n) % mod; } } public static long pow(long n, long p) { if (p == 0) return 1; if (p == 1) return n; if (p % 2 == 0) { long temp = pow(n, p / 2); return (temp * temp); } else { long temp = pow(n, (p - 1) / 2); temp = (temp * temp); return (temp * n); } } public static long gcd(long x, long y) { if (x == 0) return y; else return gcd(y % x, x); } public static boolean isPrime(int n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; for (int i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; import java.text.*; import java.math.*; import static java.lang.Integer.*; import static java.lang.Double.*; import java.lang.Math.*; public class A { public static void main(String[] args) throws Exception { new A().run(); } public void run() throws Exception { FastIO file = new FastIO(); int n = file.nextInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = file.nextInt(); Arrays.sort(a); boolean[] used = new boolean[n]; int count = 0; for (int i = 0; i < n; i++) { if (!used[i]) { count++; for (int j = i; j < n; j++) { if (a[j] % a[i] == 0) { used[j] = true; } } } } System.out.println(count); } public static class FastIO { BufferedReader br; StringTokenizer st; public FastIO() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static long pow(long n, long p, long mod) { if (p == 0) return 1; if (p == 1) return n % mod; if (p % 2 == 0) { long temp = pow(n, p / 2, mod); return (temp * temp) % mod; } else { long temp = pow(n, (p - 1) / 2, mod); temp = (temp * temp) % mod; return (temp * n) % mod; } } public static long pow(long n, long p) { if (p == 0) return 1; if (p == 1) return n; if (p % 2 == 0) { long temp = pow(n, p / 2); return (temp * temp); } else { long temp = pow(n, (p - 1) / 2); temp = (temp * temp); return (temp * n); } } public static long gcd(long x, long y) { if (x == 0) return y; else return gcd(y % x, x); } public static boolean isPrime(int n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; for (int i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,113
2,602
41
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; public class D909 { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); char[] line = br.readLine().toCharArray(); int n = line.length; int l = 0; ArrayList<Node> groups = new ArrayList<>(); Node node = new Node(line[0], 1); groups.add(node); for (int i = 1; i < n; i++) { if (line[i] == groups.get(l).letter) { groups.get(l).count++; } else { node = new Node(line[i], 1); groups.add(node); l++; } } int moves = 0; ArrayList<Node> temp = new ArrayList<>(); while (groups.size() > 1) { moves++; l = groups.size(); groups.get(0).count--; groups.get(l - 1).count--; for (int i = 1; i < l - 1; i++) { groups.get(i).count -= 2; } int p; for (p = 0; p < l; p++) { if (groups.get(p).count > 0) { temp.add(groups.get(p)); break; } } int lTemp = temp.size(); for (p++; p < l; p++) { if (groups.get(p).count <= 0) { continue; } if (groups.get(p).letter == temp.get(lTemp - 1).letter) { temp.get(lTemp - 1).count += groups.get(p).count; } else { temp.add(groups.get(p)); lTemp++; } } groups.clear(); groups.addAll(temp); temp.clear(); } System.out.println(moves); } private static class Node { char letter; int count; Node(char letter, int count) { this.letter = letter; this.count = count; } } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; public class D909 { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); char[] line = br.readLine().toCharArray(); int n = line.length; int l = 0; ArrayList<Node> groups = new ArrayList<>(); Node node = new Node(line[0], 1); groups.add(node); for (int i = 1; i < n; i++) { if (line[i] == groups.get(l).letter) { groups.get(l).count++; } else { node = new Node(line[i], 1); groups.add(node); l++; } } int moves = 0; ArrayList<Node> temp = new ArrayList<>(); while (groups.size() > 1) { moves++; l = groups.size(); groups.get(0).count--; groups.get(l - 1).count--; for (int i = 1; i < l - 1; i++) { groups.get(i).count -= 2; } int p; for (p = 0; p < l; p++) { if (groups.get(p).count > 0) { temp.add(groups.get(p)); break; } } int lTemp = temp.size(); for (p++; p < l; p++) { if (groups.get(p).count <= 0) { continue; } if (groups.get(p).letter == temp.get(lTemp - 1).letter) { temp.get(lTemp - 1).count += groups.get(p).count; } else { temp.add(groups.get(p)); lTemp++; } } groups.clear(); groups.addAll(temp); temp.clear(); } System.out.println(moves); } private static class Node { char letter; int count; Node(char letter, int count) { this.letter = letter; this.count = count; } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; public class D909 { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); char[] line = br.readLine().toCharArray(); int n = line.length; int l = 0; ArrayList<Node> groups = new ArrayList<>(); Node node = new Node(line[0], 1); groups.add(node); for (int i = 1; i < n; i++) { if (line[i] == groups.get(l).letter) { groups.get(l).count++; } else { node = new Node(line[i], 1); groups.add(node); l++; } } int moves = 0; ArrayList<Node> temp = new ArrayList<>(); while (groups.size() > 1) { moves++; l = groups.size(); groups.get(0).count--; groups.get(l - 1).count--; for (int i = 1; i < l - 1; i++) { groups.get(i).count -= 2; } int p; for (p = 0; p < l; p++) { if (groups.get(p).count > 0) { temp.add(groups.get(p)); break; } } int lTemp = temp.size(); for (p++; p < l; p++) { if (groups.get(p).count <= 0) { continue; } if (groups.get(p).letter == temp.get(lTemp - 1).letter) { temp.get(lTemp - 1).count += groups.get(p).count; } else { temp.add(groups.get(p)); lTemp++; } } groups.clear(); groups.addAll(temp); temp.clear(); } System.out.println(moves); } private static class Node { char letter; int count; Node(char letter, int count) { this.letter = letter; this.count = count; } } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
788
41
24
import java.util.*; public class Main { static int n=5; static int[] arr=new int[5]; public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n=sc.nextInt(); int arr[]=new int[n]; for (int i=0;i<n;i++) { arr[i]=sc.nextInt(); } for (int i=0;i<n;i++) { if (arr[i]>=0) { arr[i]=-arr[i]-1; } } if (n%2!=0) { int min=0; for (int i=1;i<n;i++) { if (arr[i]<arr[min]) min=i; } arr[min]=-arr[min]-1; } for (int x:arr) { System.out.print(x + " "); } } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; public class Main { static int n=5; static int[] arr=new int[5]; public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n=sc.nextInt(); int arr[]=new int[n]; for (int i=0;i<n;i++) { arr[i]=sc.nextInt(); } for (int i=0;i<n;i++) { if (arr[i]>=0) { arr[i]=-arr[i]-1; } } if (n%2!=0) { int min=0; for (int i=1;i<n;i++) { if (arr[i]<arr[min]) min=i; } arr[min]=-arr[min]-1; } for (int x:arr) { System.out.print(x + " "); } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; public class Main { static int n=5; static int[] arr=new int[5]; public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n=sc.nextInt(); int arr[]=new int[n]; for (int i=0;i<n;i++) { arr[i]=sc.nextInt(); } for (int i=0;i<n;i++) { if (arr[i]>=0) { arr[i]=-arr[i]-1; } } if (n%2!=0) { int min=0; for (int i=1;i<n;i++) { if (arr[i]<arr[min]) min=i; } arr[min]=-arr[min]-1; } for (int x:arr) { System.out.print(x + " "); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
547
24
857
import java.util.*; import java.io.*; public class A{ public static void main(String args[]){ Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int ans = 0; for(int i = 1; i <= n; i++){ ans += ((i*2) <= n) ? i : n-i+1; } System.out.println(ans); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class A{ public static void main(String args[]){ Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int ans = 0; for(int i = 1; i <= n; i++){ ans += ((i*2) <= n) ? i : n-i+1; } System.out.println(ans); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class A{ public static void main(String args[]){ Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int ans = 0; for(int i = 1; i <= n; i++){ ans += ((i*2) <= n) ? i : n-i+1; } System.out.println(ans); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
420
856
2,344
import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.InputMismatchException; import java.util.NoSuchElementException; public class Main { static PrintWriter out; static InputReader ir; static void solve() { int n=ir.nextInt(); int[] a=ir.nextIntArray(n); int m=ir.nextInt(); long ret=mergeSort(a,0,n)%2; int p,q; for(int i=0;i<m;i++){ p=ir.nextInt()-1; q=ir.nextInt()-1; if((q-p)%4==1||(q-p)%4==2) ret^=1; f(ret); } } public static void f(long a){ if(a==0){ out.println("even"); } else out.println("odd"); } public static long mergeSort(int[] a, int left, int right) { long cnt = 0; if (left + 1 < right) { int mid = (left + right) / 2; cnt += mergeSort(a, left, mid); cnt += mergeSort(a, mid, right); cnt += merge(a, left, mid, right); } return cnt; } public static long merge(int[] a, int left, int mid, int right) { long cnt = 0; int n1 = mid - left; int n2 = right - mid; int[] l = new int[n1 + 1]; int[] r = new int[n2 + 1]; for (int i = 0; i < n1; i++) { l[i] = a[left + i]; } for (int i = 0; i < n2; i++) { r[i] = a[mid + i]; } l[n1] = Integer.MAX_VALUE; r[n2] = Integer.MAX_VALUE; for (int i = 0, j = 0, k = left; k < right; k++) { if (l[i] <= r[j]) { a[k] = l[i]; i++; } else { a[k] = r[j]; j++; cnt += n1 - i; } } return cnt; } public static void main(String[] args) throws Exception { ir = new InputReader(System.in); out = new PrintWriter(System.out); solve(); out.flush(); } static class InputReader { private InputStream in; private byte[] buffer = new byte[1024]; private int curbuf; private int lenbuf; public InputReader(InputStream in) { this.in = in; this.curbuf = this.lenbuf = 0; } public boolean hasNextByte() { if (curbuf >= lenbuf) { curbuf = 0; try { lenbuf = in.read(buffer); } catch (IOException e) { throw new InputMismatchException(); } if (lenbuf <= 0) return false; } return true; } private int readByte() { if (hasNextByte()) return buffer[curbuf++]; else return -1; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private void skip() { while (hasNextByte() && isSpaceChar(buffer[curbuf])) curbuf++; } public boolean hasNext() { skip(); return hasNextByte(); } public String next() { if (!hasNext()) throw new NoSuchElementException(); StringBuilder sb = new StringBuilder(); int b = readByte(); while (!isSpaceChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } public int nextInt() { if (!hasNext()) throw new NoSuchElementException(); int c = readByte(); while (isSpaceChar(c)) c = readByte(); boolean minus = false; if (c == '-') { minus = true; c = readByte(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res = res * 10 + c - '0'; c = readByte(); } while (!isSpaceChar(c)); return (minus) ? -res : res; } public long nextLong() { if (!hasNext()) throw new NoSuchElementException(); int c = readByte(); while (isSpaceChar(c)) c = readByte(); boolean minus = false; if (c == '-') { minus = true; c = readByte(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res = res * 10 + c - '0'; c = readByte(); } while (!isSpaceChar(c)); return (minus) ? -res : res; } public double nextDouble() { return Double.parseDouble(next()); } public int[] nextIntArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public long[] nextLongArray(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public char[][] nextCharMap(int n, int m) { char[][] map = new char[n][m]; for (int i = 0; i < n; i++) map[i] = next().toCharArray(); return map; } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.InputMismatchException; import java.util.NoSuchElementException; public class Main { static PrintWriter out; static InputReader ir; static void solve() { int n=ir.nextInt(); int[] a=ir.nextIntArray(n); int m=ir.nextInt(); long ret=mergeSort(a,0,n)%2; int p,q; for(int i=0;i<m;i++){ p=ir.nextInt()-1; q=ir.nextInt()-1; if((q-p)%4==1||(q-p)%4==2) ret^=1; f(ret); } } public static void f(long a){ if(a==0){ out.println("even"); } else out.println("odd"); } public static long mergeSort(int[] a, int left, int right) { long cnt = 0; if (left + 1 < right) { int mid = (left + right) / 2; cnt += mergeSort(a, left, mid); cnt += mergeSort(a, mid, right); cnt += merge(a, left, mid, right); } return cnt; } public static long merge(int[] a, int left, int mid, int right) { long cnt = 0; int n1 = mid - left; int n2 = right - mid; int[] l = new int[n1 + 1]; int[] r = new int[n2 + 1]; for (int i = 0; i < n1; i++) { l[i] = a[left + i]; } for (int i = 0; i < n2; i++) { r[i] = a[mid + i]; } l[n1] = Integer.MAX_VALUE; r[n2] = Integer.MAX_VALUE; for (int i = 0, j = 0, k = left; k < right; k++) { if (l[i] <= r[j]) { a[k] = l[i]; i++; } else { a[k] = r[j]; j++; cnt += n1 - i; } } return cnt; } public static void main(String[] args) throws Exception { ir = new InputReader(System.in); out = new PrintWriter(System.out); solve(); out.flush(); } static class InputReader { private InputStream in; private byte[] buffer = new byte[1024]; private int curbuf; private int lenbuf; public InputReader(InputStream in) { this.in = in; this.curbuf = this.lenbuf = 0; } public boolean hasNextByte() { if (curbuf >= lenbuf) { curbuf = 0; try { lenbuf = in.read(buffer); } catch (IOException e) { throw new InputMismatchException(); } if (lenbuf <= 0) return false; } return true; } private int readByte() { if (hasNextByte()) return buffer[curbuf++]; else return -1; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private void skip() { while (hasNextByte() && isSpaceChar(buffer[curbuf])) curbuf++; } public boolean hasNext() { skip(); return hasNextByte(); } public String next() { if (!hasNext()) throw new NoSuchElementException(); StringBuilder sb = new StringBuilder(); int b = readByte(); while (!isSpaceChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } public int nextInt() { if (!hasNext()) throw new NoSuchElementException(); int c = readByte(); while (isSpaceChar(c)) c = readByte(); boolean minus = false; if (c == '-') { minus = true; c = readByte(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res = res * 10 + c - '0'; c = readByte(); } while (!isSpaceChar(c)); return (minus) ? -res : res; } public long nextLong() { if (!hasNext()) throw new NoSuchElementException(); int c = readByte(); while (isSpaceChar(c)) c = readByte(); boolean minus = false; if (c == '-') { minus = true; c = readByte(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res = res * 10 + c - '0'; c = readByte(); } while (!isSpaceChar(c)); return (minus) ? -res : res; } public double nextDouble() { return Double.parseDouble(next()); } public int[] nextIntArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public long[] nextLongArray(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public char[][] nextCharMap(int n, int m) { char[][] map = new char[n][m]; for (int i = 0; i < n; i++) map[i] = next().toCharArray(); return map; } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.InputMismatchException; import java.util.NoSuchElementException; public class Main { static PrintWriter out; static InputReader ir; static void solve() { int n=ir.nextInt(); int[] a=ir.nextIntArray(n); int m=ir.nextInt(); long ret=mergeSort(a,0,n)%2; int p,q; for(int i=0;i<m;i++){ p=ir.nextInt()-1; q=ir.nextInt()-1; if((q-p)%4==1||(q-p)%4==2) ret^=1; f(ret); } } public static void f(long a){ if(a==0){ out.println("even"); } else out.println("odd"); } public static long mergeSort(int[] a, int left, int right) { long cnt = 0; if (left + 1 < right) { int mid = (left + right) / 2; cnt += mergeSort(a, left, mid); cnt += mergeSort(a, mid, right); cnt += merge(a, left, mid, right); } return cnt; } public static long merge(int[] a, int left, int mid, int right) { long cnt = 0; int n1 = mid - left; int n2 = right - mid; int[] l = new int[n1 + 1]; int[] r = new int[n2 + 1]; for (int i = 0; i < n1; i++) { l[i] = a[left + i]; } for (int i = 0; i < n2; i++) { r[i] = a[mid + i]; } l[n1] = Integer.MAX_VALUE; r[n2] = Integer.MAX_VALUE; for (int i = 0, j = 0, k = left; k < right; k++) { if (l[i] <= r[j]) { a[k] = l[i]; i++; } else { a[k] = r[j]; j++; cnt += n1 - i; } } return cnt; } public static void main(String[] args) throws Exception { ir = new InputReader(System.in); out = new PrintWriter(System.out); solve(); out.flush(); } static class InputReader { private InputStream in; private byte[] buffer = new byte[1024]; private int curbuf; private int lenbuf; public InputReader(InputStream in) { this.in = in; this.curbuf = this.lenbuf = 0; } public boolean hasNextByte() { if (curbuf >= lenbuf) { curbuf = 0; try { lenbuf = in.read(buffer); } catch (IOException e) { throw new InputMismatchException(); } if (lenbuf <= 0) return false; } return true; } private int readByte() { if (hasNextByte()) return buffer[curbuf++]; else return -1; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private void skip() { while (hasNextByte() && isSpaceChar(buffer[curbuf])) curbuf++; } public boolean hasNext() { skip(); return hasNextByte(); } public String next() { if (!hasNext()) throw new NoSuchElementException(); StringBuilder sb = new StringBuilder(); int b = readByte(); while (!isSpaceChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } public int nextInt() { if (!hasNext()) throw new NoSuchElementException(); int c = readByte(); while (isSpaceChar(c)) c = readByte(); boolean minus = false; if (c == '-') { minus = true; c = readByte(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res = res * 10 + c - '0'; c = readByte(); } while (!isSpaceChar(c)); return (minus) ? -res : res; } public long nextLong() { if (!hasNext()) throw new NoSuchElementException(); int c = readByte(); while (isSpaceChar(c)) c = readByte(); boolean minus = false; if (c == '-') { minus = true; c = readByte(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res = res * 10 + c - '0'; c = readByte(); } while (!isSpaceChar(c)); return (minus) ? -res : res; } public double nextDouble() { return Double.parseDouble(next()); } public int[] nextIntArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public long[] nextLongArray(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public char[][] nextCharMap(int n, int m) { char[][] map = new char[n][m]; for (int i = 0; i < n; i++) map[i] = next().toCharArray(); return map; } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,657
2,339
1,930
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Arrays; public class con111_A { public static void main( final String[] args ) throws IOException { final BufferedReader br = new BufferedReader( new InputStreamReader( System.in ) ); final int n = Integer.parseInt( br.readLine() ); final int[] a = new int[n]; final String[] parts = br.readLine().split( " " ); for ( int i = 0; i < n; ++i ) { a[ i ] = Integer.parseInt( parts[ i ] ); } System.out.println( solve( n, a ) ); } private static int solve( final int n, final int[] a ) { Arrays.sort( a ); int sum = 0; for ( int i = 0; i < n; ++i ) { sum += a[ i ]; } int res = 0; int ms = 0; for ( int i = n - 1; i >= 0; --i ) { if ( ms > sum / 2 ) { break; } else { ms += a[ i ]; ++res; } } return res; } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Arrays; public class con111_A { public static void main( final String[] args ) throws IOException { final BufferedReader br = new BufferedReader( new InputStreamReader( System.in ) ); final int n = Integer.parseInt( br.readLine() ); final int[] a = new int[n]; final String[] parts = br.readLine().split( " " ); for ( int i = 0; i < n; ++i ) { a[ i ] = Integer.parseInt( parts[ i ] ); } System.out.println( solve( n, a ) ); } private static int solve( final int n, final int[] a ) { Arrays.sort( a ); int sum = 0; for ( int i = 0; i < n; ++i ) { sum += a[ i ]; } int res = 0; int ms = 0; for ( int i = n - 1; i >= 0; --i ) { if ( ms > sum / 2 ) { break; } else { ms += a[ i ]; ++res; } } return res; } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Arrays; public class con111_A { public static void main( final String[] args ) throws IOException { final BufferedReader br = new BufferedReader( new InputStreamReader( System.in ) ); final int n = Integer.parseInt( br.readLine() ); final int[] a = new int[n]; final String[] parts = br.readLine().split( " " ); for ( int i = 0; i < n; ++i ) { a[ i ] = Integer.parseInt( parts[ i ] ); } System.out.println( solve( n, a ) ); } private static int solve( final int n, final int[] a ) { Arrays.sort( a ); int sum = 0; for ( int i = 0; i < n; ++i ) { sum += a[ i ]; } int res = 0; int ms = 0; for ( int i = n - 1; i >= 0; --i ) { if ( ms > sum / 2 ) { break; } else { ms += a[ i ]; ++res; } } return res; } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
601
1,926
4,211
import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.StreamTokenizer; public class Main { public static void main(String[] args) throws Exception { StreamTokenizer in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in))); PrintWriter pw = new PrintWriter(System.out); in.nextToken(); int n = (int) in.nval; double[][] a = new double[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { in.nextToken(); a[i][j] = in.nval; } } double[] dp = new double[1 << n]; dp[(1 << n) - 1] = 1.0; for (int mask = (1 << n) - 2; mask > 0; mask--) { int count = Integer.bitCount(mask); double pPair = 2.0 / ((double) count * (count + 1)); double ans = 0.0; for (int j = 0; j < n; j++) { int jj = 1 << j; if ((jj & mask) != 0) continue; double p = dp[mask | jj]; double s = 0; for (int k = 0; k < n; k++) { int kk = 1 << k; if ((kk & mask) == 0) continue; s += a[k][j]; } ans += s * pPair * p; } dp[mask] = ans; } for (int i = 0; i < n; i++) { pw.print(dp[1 << i]); pw.print(' '); } pw.close(); } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.StreamTokenizer; public class Main { public static void main(String[] args) throws Exception { StreamTokenizer in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in))); PrintWriter pw = new PrintWriter(System.out); in.nextToken(); int n = (int) in.nval; double[][] a = new double[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { in.nextToken(); a[i][j] = in.nval; } } double[] dp = new double[1 << n]; dp[(1 << n) - 1] = 1.0; for (int mask = (1 << n) - 2; mask > 0; mask--) { int count = Integer.bitCount(mask); double pPair = 2.0 / ((double) count * (count + 1)); double ans = 0.0; for (int j = 0; j < n; j++) { int jj = 1 << j; if ((jj & mask) != 0) continue; double p = dp[mask | jj]; double s = 0; for (int k = 0; k < n; k++) { int kk = 1 << k; if ((kk & mask) == 0) continue; s += a[k][j]; } ans += s * pPair * p; } dp[mask] = ans; } for (int i = 0; i < n; i++) { pw.print(dp[1 << i]); pw.print(' '); } pw.close(); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.StreamTokenizer; public class Main { public static void main(String[] args) throws Exception { StreamTokenizer in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in))); PrintWriter pw = new PrintWriter(System.out); in.nextToken(); int n = (int) in.nval; double[][] a = new double[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { in.nextToken(); a[i][j] = in.nval; } } double[] dp = new double[1 << n]; dp[(1 << n) - 1] = 1.0; for (int mask = (1 << n) - 2; mask > 0; mask--) { int count = Integer.bitCount(mask); double pPair = 2.0 / ((double) count * (count + 1)); double ans = 0.0; for (int j = 0; j < n; j++) { int jj = 1 << j; if ((jj & mask) != 0) continue; double p = dp[mask | jj]; double s = 0; for (int k = 0; k < n; k++) { int kk = 1 << k; if ((kk & mask) == 0) continue; s += a[k][j]; } ans += s * pPair * p; } dp[mask] = ans; } for (int i = 0; i < n; i++) { pw.print(dp[1 << i]); pw.print(' '); } pw.close(); } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
728
4,200
3,347
import java.util.Scanner; public class Prob023A { public static void main( String[] Args ) { Scanner scan = new Scanner( System.in ); String s = scan.next(); all: for ( int x = s.length() - 1; x >= 0; x-- ) for ( int y = 0; x + y <= s.length(); y++ ) { String sub = s.substring( y, y + x ); if ( s.indexOf( sub, y + 1 ) >= 0 ) { System.out.println( x ); break all; } } } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; public class Prob023A { public static void main( String[] Args ) { Scanner scan = new Scanner( System.in ); String s = scan.next(); all: for ( int x = s.length() - 1; x >= 0; x-- ) for ( int y = 0; x + y <= s.length(); y++ ) { String sub = s.substring( y, y + x ); if ( s.indexOf( sub, y + 1 ) >= 0 ) { System.out.println( x ); break all; } } } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Scanner; public class Prob023A { public static void main( String[] Args ) { Scanner scan = new Scanner( System.in ); String s = scan.next(); all: for ( int x = s.length() - 1; x >= 0; x-- ) for ( int y = 0; x + y <= s.length(); y++ ) { String sub = s.substring( y, y + x ); if ( s.indexOf( sub, y + 1 ) >= 0 ) { System.out.println( x ); break all; } } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
488
3,341
2,435
import java.util.*; public class vas2 { public static void main( String[] args ) { Scanner in = new Scanner( System.in ); int n = in.nextInt(); String st = in.next(); int[] a = new int[n]; for ( int i = 0; i < n; i++ ) a[i] = st.charAt( i ) - 48; boolean c = false; for ( int i = 1; !c && i < n; i++ ) { int s = 0; for ( int j = 0; j < i; j++ ) s += a[j]; int t = 0; for ( int j = i; j < n; j++ ) { t += a[j]; if ( t > s ) if ( t - a[j] != s ) break; else t = a[j]; } if ( t == s ) c = true; } System.out.println( c ? "YES" : "NO" ); } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; public class vas2 { public static void main( String[] args ) { Scanner in = new Scanner( System.in ); int n = in.nextInt(); String st = in.next(); int[] a = new int[n]; for ( int i = 0; i < n; i++ ) a[i] = st.charAt( i ) - 48; boolean c = false; for ( int i = 1; !c && i < n; i++ ) { int s = 0; for ( int j = 0; j < i; j++ ) s += a[j]; int t = 0; for ( int j = i; j < n; j++ ) { t += a[j]; if ( t > s ) if ( t - a[j] != s ) break; else t = a[j]; } if ( t == s ) c = true; } System.out.println( c ? "YES" : "NO" ); } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; public class vas2 { public static void main( String[] args ) { Scanner in = new Scanner( System.in ); int n = in.nextInt(); String st = in.next(); int[] a = new int[n]; for ( int i = 0; i < n; i++ ) a[i] = st.charAt( i ) - 48; boolean c = false; for ( int i = 1; !c && i < n; i++ ) { int s = 0; for ( int j = 0; j < i; j++ ) s += a[j]; int t = 0; for ( int j = i; j < n; j++ ) { t += a[j]; if ( t > s ) if ( t - a[j] != s ) break; else t = a[j]; } if ( t == s ) c = true; } System.out.println( c ? "YES" : "NO" ); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
553
2,430
1,485
import java.util.*; import java.io.*; import java.math.*; import java.awt.geom.*; import static java.lang.Math.*; public class Solution implements Runnable { boolean hasBit(long n, int pos) { return (n & (1L << pos)) != 0; } public void solve() throws Exception { long l = sc.nextLong(), r = sc.nextLong(); int bit = 62; while (bit >= 0 && (hasBit(l, bit) == hasBit(r, bit))) { bit--; } out.println((1L << (bit + 1)) - 1); } static Throwable uncaught; BufferedReader in; FastScanner sc; PrintWriter out; @Override public void run() { try { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); sc = new FastScanner(in); solve(); } catch (Throwable uncaught) { Solution.uncaught = uncaught; } finally { out.close(); } } public static void main(String[] args) throws Throwable { Thread thread = new Thread (null, new Solution(), "", (1 << 26)); thread.start(); thread.join(); if (Solution.uncaught != null) { throw Solution.uncaught; } } } class FastScanner { BufferedReader in; StringTokenizer st; public FastScanner(BufferedReader in) { this.in = in; } public String nextToken() throws Exception { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } public int nextInt() throws Exception { return Integer.parseInt(nextToken()); } public long nextLong() throws Exception { return Long.parseLong(nextToken()); } public double nextDouble() throws Exception { return Double.parseDouble(nextToken()); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; import java.math.*; import java.awt.geom.*; import static java.lang.Math.*; public class Solution implements Runnable { boolean hasBit(long n, int pos) { return (n & (1L << pos)) != 0; } public void solve() throws Exception { long l = sc.nextLong(), r = sc.nextLong(); int bit = 62; while (bit >= 0 && (hasBit(l, bit) == hasBit(r, bit))) { bit--; } out.println((1L << (bit + 1)) - 1); } static Throwable uncaught; BufferedReader in; FastScanner sc; PrintWriter out; @Override public void run() { try { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); sc = new FastScanner(in); solve(); } catch (Throwable uncaught) { Solution.uncaught = uncaught; } finally { out.close(); } } public static void main(String[] args) throws Throwable { Thread thread = new Thread (null, new Solution(), "", (1 << 26)); thread.start(); thread.join(); if (Solution.uncaught != null) { throw Solution.uncaught; } } } class FastScanner { BufferedReader in; StringTokenizer st; public FastScanner(BufferedReader in) { this.in = in; } public String nextToken() throws Exception { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } public int nextInt() throws Exception { return Integer.parseInt(nextToken()); } public long nextLong() throws Exception { return Long.parseLong(nextToken()); } public double nextDouble() throws Exception { return Double.parseDouble(nextToken()); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; import java.math.*; import java.awt.geom.*; import static java.lang.Math.*; public class Solution implements Runnable { boolean hasBit(long n, int pos) { return (n & (1L << pos)) != 0; } public void solve() throws Exception { long l = sc.nextLong(), r = sc.nextLong(); int bit = 62; while (bit >= 0 && (hasBit(l, bit) == hasBit(r, bit))) { bit--; } out.println((1L << (bit + 1)) - 1); } static Throwable uncaught; BufferedReader in; FastScanner sc; PrintWriter out; @Override public void run() { try { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); sc = new FastScanner(in); solve(); } catch (Throwable uncaught) { Solution.uncaught = uncaught; } finally { out.close(); } } public static void main(String[] args) throws Throwable { Thread thread = new Thread (null, new Solution(), "", (1 << 26)); thread.start(); thread.join(); if (Solution.uncaught != null) { throw Solution.uncaught; } } } class FastScanner { BufferedReader in; StringTokenizer st; public FastScanner(BufferedReader in) { this.in = in; } public String nextToken() throws Exception { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } public int nextInt() throws Exception { return Integer.parseInt(nextToken()); } public long nextLong() throws Exception { return Long.parseLong(nextToken()); } public double nextDouble() throws Exception { return Double.parseDouble(nextToken()); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
772
1,483
1,119
import java.util.*; public class ehab4 { public static void main( String[] args ) { Scanner in = new Scanner( System.in ); int a = 0, b = 0; System.out.println( "? 0 0 " ); System.out.flush(); int c = in.nextInt(); for ( int i = 29; i >= 0; i-- ) { System.out.println( "? " + ( a + ( 1 << i ) ) + " " + b ); System.out.flush(); int q1 = in.nextInt(); System.out.println( "? " + a + " " + ( b + ( 1 << i ) ) ); System.out.flush(); int q2 = in.nextInt(); if ( q1 == q2 ) { if ( c == 1 ) a += ( 1 << i ); else if ( c == -1 ) b += ( 1 << i ); c = q1; } else if ( q1 == -1 ) { a += ( 1 << i ); b += ( 1 << i ); } else if ( q1 == -2 ) return; } System.out.println( "! " + a + " " + b ); System.out.flush(); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; public class ehab4 { public static void main( String[] args ) { Scanner in = new Scanner( System.in ); int a = 0, b = 0; System.out.println( "? 0 0 " ); System.out.flush(); int c = in.nextInt(); for ( int i = 29; i >= 0; i-- ) { System.out.println( "? " + ( a + ( 1 << i ) ) + " " + b ); System.out.flush(); int q1 = in.nextInt(); System.out.println( "? " + a + " " + ( b + ( 1 << i ) ) ); System.out.flush(); int q2 = in.nextInt(); if ( q1 == q2 ) { if ( c == 1 ) a += ( 1 << i ); else if ( c == -1 ) b += ( 1 << i ); c = q1; } else if ( q1 == -1 ) { a += ( 1 << i ); b += ( 1 << i ); } else if ( q1 == -2 ) return; } System.out.println( "! " + a + " " + b ); System.out.flush(); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; public class ehab4 { public static void main( String[] args ) { Scanner in = new Scanner( System.in ); int a = 0, b = 0; System.out.println( "? 0 0 " ); System.out.flush(); int c = in.nextInt(); for ( int i = 29; i >= 0; i-- ) { System.out.println( "? " + ( a + ( 1 << i ) ) + " " + b ); System.out.flush(); int q1 = in.nextInt(); System.out.println( "? " + a + " " + ( b + ( 1 << i ) ) ); System.out.flush(); int q2 = in.nextInt(); if ( q1 == q2 ) { if ( c == 1 ) a += ( 1 << i ); else if ( c == -1 ) b += ( 1 << i ); c = q1; } else if ( q1 == -1 ) { a += ( 1 << i ); b += ( 1 << i ); } else if ( q1 == -2 ) return; } System.out.println( "! " + a + " " + b ); System.out.flush(); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
626
1,118
413
import java.util.ArrayList; import java.util.HashMap; import java.util.HashSet; import java.util.LinkedList; import java.util.List; import java.util.Scanner; public class Main2 { static List<List<Integer>> getLayers(int[] numbers, int a, int b) { boolean[] used = new boolean[numbers.length]; HashSet<Integer> hs = new HashSet<Integer>(); for (int i = 0; i < numbers.length; i++) { hs.add(numbers[i]); } HashMap<Integer, Integer> numberToIndex = new HashMap<Integer, Integer>(); for (int i = 0; i < numbers.length; i++) { numberToIndex.put(numbers[i], i); } List<List<Integer>> ans = new ArrayList<List<Integer>>(); for (int i = 0; i < numbers.length; i++) { if (!used[i]) { List<Integer> ansRow = new ArrayList<Integer>(); LinkedList<Integer> current = new LinkedList<Integer>(); current.add(numbers[i]); while (!current.isEmpty()) { int c = current.removeFirst(); used[numberToIndex.get(c)] = true; boolean found = false; if (hs.contains(a - c)) { found = true; if (a - c != c) current.add(a - c); } if (hs.contains(b - c)) { found = true; if (b - c != c) current.add(b - c); } if (found || ansRow.size() > 0) ansRow.add(c); hs.remove(c); } ans.add(ansRow); } } return ans; } public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int a = sc.nextInt(); int b = sc.nextInt(); int[] numbers = new int[n]; for (int i = 0; i < numbers.length; i++) { numbers[i] = sc.nextInt(); } HashSet<Integer> hs = new HashSet<Integer>(); for (int i = 0; i < numbers.length; i++) { hs.add(numbers[i]); } int[] belongs = new int[n]; for (int i = 0; i < belongs.length; i++) { belongs[i] = -1; } HashMap<Integer, Integer> numberToIndex = new HashMap<Integer, Integer>(); for (int i = 0; i < numbers.length; i++) { numberToIndex.put(numbers[i], i); } boolean possible = true; List<List<Integer>> layers = getLayers(numbers, a, b); for (List<Integer> layer : layers) { if (layer.size() == 0) { System.out.println("NO"); return; } int starting = -1; for (int j = 0; j < layer.size(); j++) { int cur = layer.get(j); int nei = 0; if (hs.contains(a - cur)) { nei++; } if (hs.contains(b - cur)) { nei++; } if (nei == 1 || (a == b && nei == 2)) { starting = j; } } if (starting == -1) throw new Error(); int c = layer.get(starting); HashSet<Integer> layerset = new HashSet<Integer>(layer); while (true) { if (layerset.contains(c) && layerset.contains(a - c)) { belongs[numberToIndex.get(c)] = 0; belongs[numberToIndex.get(a - c)] = 0; layerset.remove(c); layerset.remove(a - c); c = b - (a - c); } else if (layerset.contains(c) && layerset.contains(b - c)) { belongs[numberToIndex.get(c)] = 1; belongs[numberToIndex.get(b - c)] = 1; layerset.remove(c); layerset.remove(b - c); c = a - (b - c); } else { break; } } } printResult(belongs); } static void printResult(int[] belongs) { boolean ok = true; for (int i = 0; i < belongs.length; i++) { if (belongs[i] < 0) ok = false; } if (ok) { System.out.println("YES"); StringBuffer sb = new StringBuffer(); for (int i = 0; i < belongs.length; i++) { sb.append(belongs[i]); if (i != belongs.length - 1) sb.append(" "); } System.out.println(sb.toString()); } else { System.out.println("NO"); } } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.ArrayList; import java.util.HashMap; import java.util.HashSet; import java.util.LinkedList; import java.util.List; import java.util.Scanner; public class Main2 { static List<List<Integer>> getLayers(int[] numbers, int a, int b) { boolean[] used = new boolean[numbers.length]; HashSet<Integer> hs = new HashSet<Integer>(); for (int i = 0; i < numbers.length; i++) { hs.add(numbers[i]); } HashMap<Integer, Integer> numberToIndex = new HashMap<Integer, Integer>(); for (int i = 0; i < numbers.length; i++) { numberToIndex.put(numbers[i], i); } List<List<Integer>> ans = new ArrayList<List<Integer>>(); for (int i = 0; i < numbers.length; i++) { if (!used[i]) { List<Integer> ansRow = new ArrayList<Integer>(); LinkedList<Integer> current = new LinkedList<Integer>(); current.add(numbers[i]); while (!current.isEmpty()) { int c = current.removeFirst(); used[numberToIndex.get(c)] = true; boolean found = false; if (hs.contains(a - c)) { found = true; if (a - c != c) current.add(a - c); } if (hs.contains(b - c)) { found = true; if (b - c != c) current.add(b - c); } if (found || ansRow.size() > 0) ansRow.add(c); hs.remove(c); } ans.add(ansRow); } } return ans; } public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int a = sc.nextInt(); int b = sc.nextInt(); int[] numbers = new int[n]; for (int i = 0; i < numbers.length; i++) { numbers[i] = sc.nextInt(); } HashSet<Integer> hs = new HashSet<Integer>(); for (int i = 0; i < numbers.length; i++) { hs.add(numbers[i]); } int[] belongs = new int[n]; for (int i = 0; i < belongs.length; i++) { belongs[i] = -1; } HashMap<Integer, Integer> numberToIndex = new HashMap<Integer, Integer>(); for (int i = 0; i < numbers.length; i++) { numberToIndex.put(numbers[i], i); } boolean possible = true; List<List<Integer>> layers = getLayers(numbers, a, b); for (List<Integer> layer : layers) { if (layer.size() == 0) { System.out.println("NO"); return; } int starting = -1; for (int j = 0; j < layer.size(); j++) { int cur = layer.get(j); int nei = 0; if (hs.contains(a - cur)) { nei++; } if (hs.contains(b - cur)) { nei++; } if (nei == 1 || (a == b && nei == 2)) { starting = j; } } if (starting == -1) throw new Error(); int c = layer.get(starting); HashSet<Integer> layerset = new HashSet<Integer>(layer); while (true) { if (layerset.contains(c) && layerset.contains(a - c)) { belongs[numberToIndex.get(c)] = 0; belongs[numberToIndex.get(a - c)] = 0; layerset.remove(c); layerset.remove(a - c); c = b - (a - c); } else if (layerset.contains(c) && layerset.contains(b - c)) { belongs[numberToIndex.get(c)] = 1; belongs[numberToIndex.get(b - c)] = 1; layerset.remove(c); layerset.remove(b - c); c = a - (b - c); } else { break; } } } printResult(belongs); } static void printResult(int[] belongs) { boolean ok = true; for (int i = 0; i < belongs.length; i++) { if (belongs[i] < 0) ok = false; } if (ok) { System.out.println("YES"); StringBuffer sb = new StringBuffer(); for (int i = 0; i < belongs.length; i++) { sb.append(belongs[i]); if (i != belongs.length - 1) sb.append(" "); } System.out.println(sb.toString()); } else { System.out.println("NO"); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.ArrayList; import java.util.HashMap; import java.util.HashSet; import java.util.LinkedList; import java.util.List; import java.util.Scanner; public class Main2 { static List<List<Integer>> getLayers(int[] numbers, int a, int b) { boolean[] used = new boolean[numbers.length]; HashSet<Integer> hs = new HashSet<Integer>(); for (int i = 0; i < numbers.length; i++) { hs.add(numbers[i]); } HashMap<Integer, Integer> numberToIndex = new HashMap<Integer, Integer>(); for (int i = 0; i < numbers.length; i++) { numberToIndex.put(numbers[i], i); } List<List<Integer>> ans = new ArrayList<List<Integer>>(); for (int i = 0; i < numbers.length; i++) { if (!used[i]) { List<Integer> ansRow = new ArrayList<Integer>(); LinkedList<Integer> current = new LinkedList<Integer>(); current.add(numbers[i]); while (!current.isEmpty()) { int c = current.removeFirst(); used[numberToIndex.get(c)] = true; boolean found = false; if (hs.contains(a - c)) { found = true; if (a - c != c) current.add(a - c); } if (hs.contains(b - c)) { found = true; if (b - c != c) current.add(b - c); } if (found || ansRow.size() > 0) ansRow.add(c); hs.remove(c); } ans.add(ansRow); } } return ans; } public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int a = sc.nextInt(); int b = sc.nextInt(); int[] numbers = new int[n]; for (int i = 0; i < numbers.length; i++) { numbers[i] = sc.nextInt(); } HashSet<Integer> hs = new HashSet<Integer>(); for (int i = 0; i < numbers.length; i++) { hs.add(numbers[i]); } int[] belongs = new int[n]; for (int i = 0; i < belongs.length; i++) { belongs[i] = -1; } HashMap<Integer, Integer> numberToIndex = new HashMap<Integer, Integer>(); for (int i = 0; i < numbers.length; i++) { numberToIndex.put(numbers[i], i); } boolean possible = true; List<List<Integer>> layers = getLayers(numbers, a, b); for (List<Integer> layer : layers) { if (layer.size() == 0) { System.out.println("NO"); return; } int starting = -1; for (int j = 0; j < layer.size(); j++) { int cur = layer.get(j); int nei = 0; if (hs.contains(a - cur)) { nei++; } if (hs.contains(b - cur)) { nei++; } if (nei == 1 || (a == b && nei == 2)) { starting = j; } } if (starting == -1) throw new Error(); int c = layer.get(starting); HashSet<Integer> layerset = new HashSet<Integer>(layer); while (true) { if (layerset.contains(c) && layerset.contains(a - c)) { belongs[numberToIndex.get(c)] = 0; belongs[numberToIndex.get(a - c)] = 0; layerset.remove(c); layerset.remove(a - c); c = b - (a - c); } else if (layerset.contains(c) && layerset.contains(b - c)) { belongs[numberToIndex.get(c)] = 1; belongs[numberToIndex.get(b - c)] = 1; layerset.remove(c); layerset.remove(b - c); c = a - (b - c); } else { break; } } } printResult(belongs); } static void printResult(int[] belongs) { boolean ok = true; for (int i = 0; i < belongs.length; i++) { if (belongs[i] < 0) ok = false; } if (ok) { System.out.println("YES"); StringBuffer sb = new StringBuffer(); for (int i = 0; i < belongs.length; i++) { sb.append(belongs[i]); if (i != belongs.length - 1) sb.append(" "); } System.out.println(sb.toString()); } else { System.out.println("NO"); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,426
412
3,349
/** * MxNINJA 04:06:52 ص 14/01/2014 */ import java.io.BufferedReader; import java.io.InputStreamReader; public class Main { public static void main(String[] args) throws Exception { BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); StringBuilder line = new StringBuilder(reader.readLine()); int length = 0; for (int head = 0; head < line.length(); head++) { for (int tail = line.length() - 1; tail > head; tail--) { String subString = line.substring(head, tail); if(line.indexOf(subString,head+1)>-1){ length = Math.max(subString.length(), length); } } } System.out.println(length); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> /** * MxNINJA 04:06:52 ص 14/01/2014 */ import java.io.BufferedReader; import java.io.InputStreamReader; public class Main { public static void main(String[] args) throws Exception { BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); StringBuilder line = new StringBuilder(reader.readLine()); int length = 0; for (int head = 0; head < line.length(); head++) { for (int tail = line.length() - 1; tail > head; tail--) { String subString = line.substring(head, tail); if(line.indexOf(subString,head+1)>-1){ length = Math.max(subString.length(), length); } } } System.out.println(length); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> /** * MxNINJA 04:06:52 ص 14/01/2014 */ import java.io.BufferedReader; import java.io.InputStreamReader; public class Main { public static void main(String[] args) throws Exception { BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); StringBuilder line = new StringBuilder(reader.readLine()); int length = 0; for (int head = 0; head < line.length(); head++) { for (int tail = line.length() - 1; tail > head; tail--) { String subString = line.substring(head, tail); if(line.indexOf(subString,head+1)>-1){ length = Math.max(subString.length(), length); } } } System.out.println(length); } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
500
3,343
919
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader sc = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); Task solver = new Task(); solver.solve(1, sc, out); out.close(); } static class Task { public void solve(int testNumber, InputReader sc, PrintWriter out) { double n=sc.nextInt(); double k=sc.nextInt(); double ans=n-(-1.5+Math.sqrt(9.0/4+2*(n+k))); out.printf("%.0f\n",ans); } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader sc = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); Task solver = new Task(); solver.solve(1, sc, out); out.close(); } static class Task { public void solve(int testNumber, InputReader sc, PrintWriter out) { double n=sc.nextInt(); double k=sc.nextInt(); double ans=n-(-1.5+Math.sqrt(9.0/4+2*(n+k))); out.printf("%.0f\n",ans); } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader sc = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); Task solver = new Task(); solver.solve(1, sc, out); out.close(); } static class Task { public void solve(int testNumber, InputReader sc, PrintWriter out) { double n=sc.nextInt(); double k=sc.nextInt(); double ans=n-(-1.5+Math.sqrt(9.0/4+2*(n+k))); out.printf("%.0f\n",ans); } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
673
918
411
import java.util.HashMap; import java.util.Iterator; import java.util.LinkedList; import java.util.List; import java.util.Map; import java.util.Scanner; public class TwoSets<V> { private static int n; private static int a; private static int b; private static List<Node<Integer>> nodes = new LinkedList<Node<Integer>>(); private static Map<Integer, Node<Integer>> datas = new HashMap<Integer, Node<Integer>>(); private static Node<Integer> first; private static Node<Integer> second; private static TwoSets<Integer> sets = new TwoSets<Integer>(); private static class Node<V> { V node; Node<V> parent; int rank; int color = -1; boolean inprogress; public Node() { this.parent = this; } @Override public String toString() { return String.format("{node: %s, parent: %s, rank: %s, color:%s}", node, parent.node, rank, color); } } public Node<V> makeSet(V x) { Node<V> node = new Node<V>(); node.node = x; node.parent = node; node.rank = 0; return node; } public void link(Node<V> x, Node<V> y) { if (x.rank > y.rank) { y.parent = x; } else { x.parent = y; if (x.rank == y.rank) { y.rank++; } } } public Node<V> findSet(Node<V> x) { if (x.parent != x) { x.parent = findSet(x.parent); } return x.parent; } public void union(Node<V> x, Node<V> y) { Node<V> rtX = findSet(x); Node<V> rtY = findSet(y); if (rtX.parent != rtY.parent) { link(rtX, rtY); } } public V getNode(Node<V> x) { return x.node; } private int getColor(Node<V> node) { int color; Node<V> parent = findSet(node); color = parent.color; return color; } private void setColor(Node<V> node, int color) { Node<V> parent = findSet(node); parent.color = color; } private static Node<Integer> getOrInitNode(Integer key) { Node<Integer> node = datas.get(key); if (node == null) { node = sets.makeSet(key); datas.put(key, node); } return node; } private static void initNodes(Scanner scanner) { int key; Node<Integer> node; for (int i = 0; i < n; i++) { key = scanner.nextInt(); node = getOrInitNode(key); nodes.add(node); } } private static void unionAll(Node<Integer> value) { int color = sets.getColor(value); if (color == 0) { if (first == null) { first = value; } else { sets.union(first, value); } } else if (color == 1) { if (second == null) { second = value; } else { sets.union(second, value); } } } private static int getKey(Node<Integer> value, int color) { int key = value.node; if (color == 0) { key = a - key; } else { key = b - key; } return key; } private static boolean checkOpposite(Node<Integer> value, int color) { boolean valid; if (value.inprogress) { valid = Boolean.TRUE; } else { value.inprogress = Boolean.TRUE; int opColor = 1 - color; int key = getKey(value, opColor); Node<Integer> node = datas.get(key); valid = (value.node.equals(key)) || (node == null); if (!valid) { key = getKey(node, color); Node<Integer> child = datas.get(key); valid = (child != null); if (valid) { valid = checkOpposite(child, color); if (valid) { sets.union(value, node); sets.union(value, child); value.inprogress = Boolean.FALSE; } } } value.inprogress = Boolean.FALSE; } return valid; } private static boolean checkNodes(Node<Integer> value, int color) { boolean valid; int key = getKey(value, color); int opColor = 1 - color; Node<Integer> node = datas.get(key); valid = (value.node.equals(key)) || (node != null); if (valid) { valid = checkOpposite(value, color); if (valid) { sets.union(value, node); sets.setColor(value, color); } else if (color == 0) { valid = checkNodes(value, opColor); } } else if (color == 0) { valid = checkNodes(value, opColor); } return valid; } private static void format(StringBuilder builder, int i) { if (i > 0) { builder.append(' '); } } private static String printNodes() { String text; StringBuilder builder = new StringBuilder(); Iterator<Node<Integer>> iterator = nodes.iterator(); int i = 0; Node<Integer> node; while (iterator.hasNext()) { format(builder, i); node = iterator.next(); builder.append(sets.getColor(node)); i++; } text = builder.toString().trim(); return text; } private static boolean checkNodes(int color) { boolean valid = Boolean.TRUE; for (Node<Integer> value : nodes) { if (sets.getColor(value) == -1) { valid = checkNodes(value, color); if (valid) { unionAll(value); } else { break; } } } return valid; } private static void calculate() { int color = 0; boolean valid = checkNodes(color); String message = "NO"; if (valid) { message = "YES"; String array = printNodes(); System.out.println(message); System.out.println(array); } else { System.out.println(message); } } public static void main(String[] args) { Scanner scanner = new Scanner(System.in); try { n = scanner.nextInt(); a = scanner.nextInt(); b = scanner.nextInt(); initNodes(scanner); calculate(); } finally { scanner.close(); } } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.HashMap; import java.util.Iterator; import java.util.LinkedList; import java.util.List; import java.util.Map; import java.util.Scanner; public class TwoSets<V> { private static int n; private static int a; private static int b; private static List<Node<Integer>> nodes = new LinkedList<Node<Integer>>(); private static Map<Integer, Node<Integer>> datas = new HashMap<Integer, Node<Integer>>(); private static Node<Integer> first; private static Node<Integer> second; private static TwoSets<Integer> sets = new TwoSets<Integer>(); private static class Node<V> { V node; Node<V> parent; int rank; int color = -1; boolean inprogress; public Node() { this.parent = this; } @Override public String toString() { return String.format("{node: %s, parent: %s, rank: %s, color:%s}", node, parent.node, rank, color); } } public Node<V> makeSet(V x) { Node<V> node = new Node<V>(); node.node = x; node.parent = node; node.rank = 0; return node; } public void link(Node<V> x, Node<V> y) { if (x.rank > y.rank) { y.parent = x; } else { x.parent = y; if (x.rank == y.rank) { y.rank++; } } } public Node<V> findSet(Node<V> x) { if (x.parent != x) { x.parent = findSet(x.parent); } return x.parent; } public void union(Node<V> x, Node<V> y) { Node<V> rtX = findSet(x); Node<V> rtY = findSet(y); if (rtX.parent != rtY.parent) { link(rtX, rtY); } } public V getNode(Node<V> x) { return x.node; } private int getColor(Node<V> node) { int color; Node<V> parent = findSet(node); color = parent.color; return color; } private void setColor(Node<V> node, int color) { Node<V> parent = findSet(node); parent.color = color; } private static Node<Integer> getOrInitNode(Integer key) { Node<Integer> node = datas.get(key); if (node == null) { node = sets.makeSet(key); datas.put(key, node); } return node; } private static void initNodes(Scanner scanner) { int key; Node<Integer> node; for (int i = 0; i < n; i++) { key = scanner.nextInt(); node = getOrInitNode(key); nodes.add(node); } } private static void unionAll(Node<Integer> value) { int color = sets.getColor(value); if (color == 0) { if (first == null) { first = value; } else { sets.union(first, value); } } else if (color == 1) { if (second == null) { second = value; } else { sets.union(second, value); } } } private static int getKey(Node<Integer> value, int color) { int key = value.node; if (color == 0) { key = a - key; } else { key = b - key; } return key; } private static boolean checkOpposite(Node<Integer> value, int color) { boolean valid; if (value.inprogress) { valid = Boolean.TRUE; } else { value.inprogress = Boolean.TRUE; int opColor = 1 - color; int key = getKey(value, opColor); Node<Integer> node = datas.get(key); valid = (value.node.equals(key)) || (node == null); if (!valid) { key = getKey(node, color); Node<Integer> child = datas.get(key); valid = (child != null); if (valid) { valid = checkOpposite(child, color); if (valid) { sets.union(value, node); sets.union(value, child); value.inprogress = Boolean.FALSE; } } } value.inprogress = Boolean.FALSE; } return valid; } private static boolean checkNodes(Node<Integer> value, int color) { boolean valid; int key = getKey(value, color); int opColor = 1 - color; Node<Integer> node = datas.get(key); valid = (value.node.equals(key)) || (node != null); if (valid) { valid = checkOpposite(value, color); if (valid) { sets.union(value, node); sets.setColor(value, color); } else if (color == 0) { valid = checkNodes(value, opColor); } } else if (color == 0) { valid = checkNodes(value, opColor); } return valid; } private static void format(StringBuilder builder, int i) { if (i > 0) { builder.append(' '); } } private static String printNodes() { String text; StringBuilder builder = new StringBuilder(); Iterator<Node<Integer>> iterator = nodes.iterator(); int i = 0; Node<Integer> node; while (iterator.hasNext()) { format(builder, i); node = iterator.next(); builder.append(sets.getColor(node)); i++; } text = builder.toString().trim(); return text; } private static boolean checkNodes(int color) { boolean valid = Boolean.TRUE; for (Node<Integer> value : nodes) { if (sets.getColor(value) == -1) { valid = checkNodes(value, color); if (valid) { unionAll(value); } else { break; } } } return valid; } private static void calculate() { int color = 0; boolean valid = checkNodes(color); String message = "NO"; if (valid) { message = "YES"; String array = printNodes(); System.out.println(message); System.out.println(array); } else { System.out.println(message); } } public static void main(String[] args) { Scanner scanner = new Scanner(System.in); try { n = scanner.nextInt(); a = scanner.nextInt(); b = scanner.nextInt(); initNodes(scanner); calculate(); } finally { scanner.close(); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.HashMap; import java.util.Iterator; import java.util.LinkedList; import java.util.List; import java.util.Map; import java.util.Scanner; public class TwoSets<V> { private static int n; private static int a; private static int b; private static List<Node<Integer>> nodes = new LinkedList<Node<Integer>>(); private static Map<Integer, Node<Integer>> datas = new HashMap<Integer, Node<Integer>>(); private static Node<Integer> first; private static Node<Integer> second; private static TwoSets<Integer> sets = new TwoSets<Integer>(); private static class Node<V> { V node; Node<V> parent; int rank; int color = -1; boolean inprogress; public Node() { this.parent = this; } @Override public String toString() { return String.format("{node: %s, parent: %s, rank: %s, color:%s}", node, parent.node, rank, color); } } public Node<V> makeSet(V x) { Node<V> node = new Node<V>(); node.node = x; node.parent = node; node.rank = 0; return node; } public void link(Node<V> x, Node<V> y) { if (x.rank > y.rank) { y.parent = x; } else { x.parent = y; if (x.rank == y.rank) { y.rank++; } } } public Node<V> findSet(Node<V> x) { if (x.parent != x) { x.parent = findSet(x.parent); } return x.parent; } public void union(Node<V> x, Node<V> y) { Node<V> rtX = findSet(x); Node<V> rtY = findSet(y); if (rtX.parent != rtY.parent) { link(rtX, rtY); } } public V getNode(Node<V> x) { return x.node; } private int getColor(Node<V> node) { int color; Node<V> parent = findSet(node); color = parent.color; return color; } private void setColor(Node<V> node, int color) { Node<V> parent = findSet(node); parent.color = color; } private static Node<Integer> getOrInitNode(Integer key) { Node<Integer> node = datas.get(key); if (node == null) { node = sets.makeSet(key); datas.put(key, node); } return node; } private static void initNodes(Scanner scanner) { int key; Node<Integer> node; for (int i = 0; i < n; i++) { key = scanner.nextInt(); node = getOrInitNode(key); nodes.add(node); } } private static void unionAll(Node<Integer> value) { int color = sets.getColor(value); if (color == 0) { if (first == null) { first = value; } else { sets.union(first, value); } } else if (color == 1) { if (second == null) { second = value; } else { sets.union(second, value); } } } private static int getKey(Node<Integer> value, int color) { int key = value.node; if (color == 0) { key = a - key; } else { key = b - key; } return key; } private static boolean checkOpposite(Node<Integer> value, int color) { boolean valid; if (value.inprogress) { valid = Boolean.TRUE; } else { value.inprogress = Boolean.TRUE; int opColor = 1 - color; int key = getKey(value, opColor); Node<Integer> node = datas.get(key); valid = (value.node.equals(key)) || (node == null); if (!valid) { key = getKey(node, color); Node<Integer> child = datas.get(key); valid = (child != null); if (valid) { valid = checkOpposite(child, color); if (valid) { sets.union(value, node); sets.union(value, child); value.inprogress = Boolean.FALSE; } } } value.inprogress = Boolean.FALSE; } return valid; } private static boolean checkNodes(Node<Integer> value, int color) { boolean valid; int key = getKey(value, color); int opColor = 1 - color; Node<Integer> node = datas.get(key); valid = (value.node.equals(key)) || (node != null); if (valid) { valid = checkOpposite(value, color); if (valid) { sets.union(value, node); sets.setColor(value, color); } else if (color == 0) { valid = checkNodes(value, opColor); } } else if (color == 0) { valid = checkNodes(value, opColor); } return valid; } private static void format(StringBuilder builder, int i) { if (i > 0) { builder.append(' '); } } private static String printNodes() { String text; StringBuilder builder = new StringBuilder(); Iterator<Node<Integer>> iterator = nodes.iterator(); int i = 0; Node<Integer> node; while (iterator.hasNext()) { format(builder, i); node = iterator.next(); builder.append(sets.getColor(node)); i++; } text = builder.toString().trim(); return text; } private static boolean checkNodes(int color) { boolean valid = Boolean.TRUE; for (Node<Integer> value : nodes) { if (sets.getColor(value) == -1) { valid = checkNodes(value, color); if (valid) { unionAll(value); } else { break; } } } return valid; } private static void calculate() { int color = 0; boolean valid = checkNodes(color); String message = "NO"; if (valid) { message = "YES"; String array = printNodes(); System.out.println(message); System.out.println(array); } else { System.out.println(message); } } public static void main(String[] args) { Scanner scanner = new Scanner(System.in); try { n = scanner.nextInt(); a = scanner.nextInt(); b = scanner.nextInt(); initNodes(scanner); calculate(); } finally { scanner.close(); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,722
410
3,509
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayDeque; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.HashMap; import java.util.HashSet; import java.util.PriorityQueue; import java.util.Random; import java.util.StringTokenizer; import java.util.TreeMap; import java.util.TreeSet; @SuppressWarnings("unused") public class Solution{ static long mod = -1; static long[] fact, invfact, pow; static long[][] C; static long[][] dp; static final int N = 405; static int n; public static void main(String[] args) throws IOException { FastScanner fs = new FastScanner(); PrintWriter out = new PrintWriter(System.out); int tt = 1; outer: while(tt-->0) { n = fs.nextInt(); mod = fs.nextLong(); dp = new long[N][N]; precompute(); dp[0][0] = 1; for(int i=0;i<n;i++) { for(int j=0;j<=i;j++) { for(int k=1;i+k<=n;k++) { dp[i+k+1][j+k] += (((dp[i][j]*pow[k-1])%mod)*C[j+k][k])%mod; dp[i+k+1][j+k] %= mod; } } } long ans = 0; for(int i=0;i<=n;i++) { ans = (ans + dp[n+1][i])%mod; } out.println(ans); } out.close(); } static void precompute() { fact = new long[N]; invfact = new long[N]; C = new long[N][N]; pow = new long[N]; fact[0] = 1; for(int i=1;i<=n;i++) fact[i] = (fact[i-1]*i)%mod; invfact[n] = inv(fact[n]); for(int i=n-1;i>=0;i--) invfact[i] = (invfact[i+1]*(i+1))%mod; pow[0] = 1; for(int i=1;i<=n;i++) pow[i] = (pow[i-1]*2)%mod; for(int i=1;i<=n;i++) { for(int j=0;j<=i;j++) { if(j==0 || j==i) C[i][j] = 1; else C[i][j] = (C[i-1][j-1] + C[i-1][j])%mod; } } } static long exp(long a, long n) { long res = 1; while(n>0) { if((n&1)==1) res = (res*a)%mod; a = (a*a)%mod; n = n>>1; } return res; } static long inv(long n) { return exp(n, mod-2); } static final Random random=new Random(); static <T> void shuffle(T[] arr) { int n = arr.length; for(int i=0;i<n;i++ ) { int k = random.nextInt(n); T temp = arr[k]; arr[k] = arr[i]; arr[i] = temp; } } static void ruffleSort(int[] a) { int n=a.length;//shuffle, then sort for (int i=0; i<n; i++) { int oi=random.nextInt(n); int temp=a[oi]; a[oi]=a[i]; a[i]=temp; } Arrays.sort(a); } static void ruffleSort(long[] a) { int n=a.length;//shuffle, then sort for (int i=0; i<n; i++) { int oi=random.nextInt(n); long temp=a[oi]; a[oi]=a[i]; a[i]=temp; } Arrays.sort(a); } static void reverse(int[] arr, int l, int r) { for(int i=l;i<l+(r-l)/2;i++){ int temp = arr[i]; arr[i] = arr[r-i+l-1]; arr[r-i+l-1] = temp; } } static void reverse(long[] arr, int l, int r) { for(int i=l;i<l+(r-l)/2;i++){ long temp = arr[i]; arr[i] = arr[r-i+l-1]; arr[r-i+l-1] = temp; } } static <T> void reverse(T[] arr, int l, int r) { for(int i=l;i<l+(r-l)/2;i++) { T temp = arr[i]; arr[i] = arr[r-i+l-1]; arr[r-i+l-1] = temp; } } static class FastScanner{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); public String next(){ while(!st.hasMoreElements()){ try{ st = new StringTokenizer(br.readLine()); } catch(IOException e){ e.printStackTrace(); } } return st.nextToken(); } public String nextLine() throws IOException { return br.readLine(); } public int nextInt(){ return Integer.parseInt(next()); } public int[] readArray(int n){ int[] a = new int[n]; for(int i=0;i<n;i++) a[i] = nextInt(); return a; } public long nextLong() { return Long.parseLong(next()); } public char nextChar() { return next().toCharArray()[0]; } } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayDeque; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.HashMap; import java.util.HashSet; import java.util.PriorityQueue; import java.util.Random; import java.util.StringTokenizer; import java.util.TreeMap; import java.util.TreeSet; @SuppressWarnings("unused") public class Solution{ static long mod = -1; static long[] fact, invfact, pow; static long[][] C; static long[][] dp; static final int N = 405; static int n; public static void main(String[] args) throws IOException { FastScanner fs = new FastScanner(); PrintWriter out = new PrintWriter(System.out); int tt = 1; outer: while(tt-->0) { n = fs.nextInt(); mod = fs.nextLong(); dp = new long[N][N]; precompute(); dp[0][0] = 1; for(int i=0;i<n;i++) { for(int j=0;j<=i;j++) { for(int k=1;i+k<=n;k++) { dp[i+k+1][j+k] += (((dp[i][j]*pow[k-1])%mod)*C[j+k][k])%mod; dp[i+k+1][j+k] %= mod; } } } long ans = 0; for(int i=0;i<=n;i++) { ans = (ans + dp[n+1][i])%mod; } out.println(ans); } out.close(); } static void precompute() { fact = new long[N]; invfact = new long[N]; C = new long[N][N]; pow = new long[N]; fact[0] = 1; for(int i=1;i<=n;i++) fact[i] = (fact[i-1]*i)%mod; invfact[n] = inv(fact[n]); for(int i=n-1;i>=0;i--) invfact[i] = (invfact[i+1]*(i+1))%mod; pow[0] = 1; for(int i=1;i<=n;i++) pow[i] = (pow[i-1]*2)%mod; for(int i=1;i<=n;i++) { for(int j=0;j<=i;j++) { if(j==0 || j==i) C[i][j] = 1; else C[i][j] = (C[i-1][j-1] + C[i-1][j])%mod; } } } static long exp(long a, long n) { long res = 1; while(n>0) { if((n&1)==1) res = (res*a)%mod; a = (a*a)%mod; n = n>>1; } return res; } static long inv(long n) { return exp(n, mod-2); } static final Random random=new Random(); static <T> void shuffle(T[] arr) { int n = arr.length; for(int i=0;i<n;i++ ) { int k = random.nextInt(n); T temp = arr[k]; arr[k] = arr[i]; arr[i] = temp; } } static void ruffleSort(int[] a) { int n=a.length;//shuffle, then sort for (int i=0; i<n; i++) { int oi=random.nextInt(n); int temp=a[oi]; a[oi]=a[i]; a[i]=temp; } Arrays.sort(a); } static void ruffleSort(long[] a) { int n=a.length;//shuffle, then sort for (int i=0; i<n; i++) { int oi=random.nextInt(n); long temp=a[oi]; a[oi]=a[i]; a[i]=temp; } Arrays.sort(a); } static void reverse(int[] arr, int l, int r) { for(int i=l;i<l+(r-l)/2;i++){ int temp = arr[i]; arr[i] = arr[r-i+l-1]; arr[r-i+l-1] = temp; } } static void reverse(long[] arr, int l, int r) { for(int i=l;i<l+(r-l)/2;i++){ long temp = arr[i]; arr[i] = arr[r-i+l-1]; arr[r-i+l-1] = temp; } } static <T> void reverse(T[] arr, int l, int r) { for(int i=l;i<l+(r-l)/2;i++) { T temp = arr[i]; arr[i] = arr[r-i+l-1]; arr[r-i+l-1] = temp; } } static class FastScanner{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); public String next(){ while(!st.hasMoreElements()){ try{ st = new StringTokenizer(br.readLine()); } catch(IOException e){ e.printStackTrace(); } } return st.nextToken(); } public String nextLine() throws IOException { return br.readLine(); } public int nextInt(){ return Integer.parseInt(next()); } public int[] readArray(int n){ int[] a = new int[n]; for(int i=0;i<n;i++) a[i] = nextInt(); return a; } public long nextLong() { return Long.parseLong(next()); } public char nextChar() { return next().toCharArray()[0]; } } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayDeque; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.HashMap; import java.util.HashSet; import java.util.PriorityQueue; import java.util.Random; import java.util.StringTokenizer; import java.util.TreeMap; import java.util.TreeSet; @SuppressWarnings("unused") public class Solution{ static long mod = -1; static long[] fact, invfact, pow; static long[][] C; static long[][] dp; static final int N = 405; static int n; public static void main(String[] args) throws IOException { FastScanner fs = new FastScanner(); PrintWriter out = new PrintWriter(System.out); int tt = 1; outer: while(tt-->0) { n = fs.nextInt(); mod = fs.nextLong(); dp = new long[N][N]; precompute(); dp[0][0] = 1; for(int i=0;i<n;i++) { for(int j=0;j<=i;j++) { for(int k=1;i+k<=n;k++) { dp[i+k+1][j+k] += (((dp[i][j]*pow[k-1])%mod)*C[j+k][k])%mod; dp[i+k+1][j+k] %= mod; } } } long ans = 0; for(int i=0;i<=n;i++) { ans = (ans + dp[n+1][i])%mod; } out.println(ans); } out.close(); } static void precompute() { fact = new long[N]; invfact = new long[N]; C = new long[N][N]; pow = new long[N]; fact[0] = 1; for(int i=1;i<=n;i++) fact[i] = (fact[i-1]*i)%mod; invfact[n] = inv(fact[n]); for(int i=n-1;i>=0;i--) invfact[i] = (invfact[i+1]*(i+1))%mod; pow[0] = 1; for(int i=1;i<=n;i++) pow[i] = (pow[i-1]*2)%mod; for(int i=1;i<=n;i++) { for(int j=0;j<=i;j++) { if(j==0 || j==i) C[i][j] = 1; else C[i][j] = (C[i-1][j-1] + C[i-1][j])%mod; } } } static long exp(long a, long n) { long res = 1; while(n>0) { if((n&1)==1) res = (res*a)%mod; a = (a*a)%mod; n = n>>1; } return res; } static long inv(long n) { return exp(n, mod-2); } static final Random random=new Random(); static <T> void shuffle(T[] arr) { int n = arr.length; for(int i=0;i<n;i++ ) { int k = random.nextInt(n); T temp = arr[k]; arr[k] = arr[i]; arr[i] = temp; } } static void ruffleSort(int[] a) { int n=a.length;//shuffle, then sort for (int i=0; i<n; i++) { int oi=random.nextInt(n); int temp=a[oi]; a[oi]=a[i]; a[i]=temp; } Arrays.sort(a); } static void ruffleSort(long[] a) { int n=a.length;//shuffle, then sort for (int i=0; i<n; i++) { int oi=random.nextInt(n); long temp=a[oi]; a[oi]=a[i]; a[i]=temp; } Arrays.sort(a); } static void reverse(int[] arr, int l, int r) { for(int i=l;i<l+(r-l)/2;i++){ int temp = arr[i]; arr[i] = arr[r-i+l-1]; arr[r-i+l-1] = temp; } } static void reverse(long[] arr, int l, int r) { for(int i=l;i<l+(r-l)/2;i++){ long temp = arr[i]; arr[i] = arr[r-i+l-1]; arr[r-i+l-1] = temp; } } static <T> void reverse(T[] arr, int l, int r) { for(int i=l;i<l+(r-l)/2;i++) { T temp = arr[i]; arr[i] = arr[r-i+l-1]; arr[r-i+l-1] = temp; } } static class FastScanner{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); public String next(){ while(!st.hasMoreElements()){ try{ st = new StringTokenizer(br.readLine()); } catch(IOException e){ e.printStackTrace(); } } return st.nextToken(); } public String nextLine() throws IOException { return br.readLine(); } public int nextInt(){ return Integer.parseInt(next()); } public int[] readArray(int n){ int[] a = new int[n]; for(int i=0;i<n;i++) a[i] = nextInt(); return a; } public long nextLong() { return Long.parseLong(next()); } public char nextChar() { return next().toCharArray()[0]; } } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,657
3,503
137
/** * BaZ :D */ import java.util.*; import java.io.*; import static java.lang.Math.*; public class Main { static Reader scan; static PrintWriter pw; static int n,k,left[],right[],arr[]; static long MOD = 1000000007,count[],dp[]; public static void main(String[] args) { new Thread(null,null,"BaZ",1<<25) { public void run() { try { solve(); } catch(Exception e) { e.printStackTrace(); System.exit(1); } } }.start(); } static void solve() throws IOException { scan = new Reader(); pw = new PrintWriter(System.out,true); StringBuilder sb = new StringBuilder(); n = ni(); k = ni(); int stack[] = new int[1000001]; int top = -1; arr = new int[n]; left = new int[n]; right = new int[n]; for(int i=0;i<n;++i) { arr[i] = ni(); while(top>=0 && arr[stack[top]]<=arr[i]) top--; if(top==-1) left[i] = 0; else left[i] = stack[top]+1; stack[++top] = i; } top = -1; for(int i=n-1;i>=0;--i) { while(top>=0 && arr[stack[top]]<arr[i]) top--; if(top==-1) right[i] = n-1; else right[i] = stack[top]-1; stack[++top] = i; } //pa("left", left); //pa("right", right); dp = new long[n+1]; for(int i=0;i<=n;++i) { if(i<k) continue; dp[i] = dp[i-k+1] + (i-k+1); } count = new long[n]; long ans = 0; for(int i=0;i<n;++i) { int len = right[i]-left[i]+1; int lef = i-left[i]; int rig = right[i]-i; long count = dp[len] - dp[lef] - dp[rig]; if(count>=MOD) count%=MOD; ans += count*arr[i]; if(ans>=MOD) ans%=MOD; } pl(ans); pw.flush(); pw.close(); } static int ni() throws IOException { return scan.nextInt(); } static long nl() throws IOException { return scan.nextLong(); } static double nd() throws IOException { return scan.nextDouble(); } static void pl() { pw.println(); } static void p(Object o) { pw.print(o+" "); } static void pl(Object o) { pw.println(o); } static void psb(StringBuilder sb) { pw.print(sb); } static void pa(String arrayName, Object arr[]) { pl(arrayName+" : "); for(Object o : arr) p(o); pl(); } static void pa(String arrayName, int arr[]) { pl(arrayName+" : "); for(int o : arr) p(o); pl(); } static void pa(String arrayName, long arr[]) { pl(arrayName+" : "); for(long o : arr) p(o); pl(); } static void pa(String arrayName, double arr[]) { pl(arrayName+" : "); for(double o : arr) p(o); pl(); } static void pa(String arrayName, char arr[]) { pl(arrayName+" : "); for(char o : arr) p(o); pl(); } static void pa(String listName, List list) { pl(listName+" : "); for(Object o : list) p(o); pl(); } static void pa(String arrayName, Object[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(Object o : arr[i]) p(o); pl(); } } static void pa(String arrayName, int[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(int o : arr[i]) p(o); pl(); } } static void pa(String arrayName, long[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(long o : arr[i]) p(o); pl(); } } static void pa(String arrayName, char[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(char o : arr[i]) p(o); pl(); } } static void pa(String arrayName, double[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(double o : arr[i]) p(o); pl(); } } static class Reader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Reader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[64]; int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') while ((c = read()) >= '0' && c <= '9') ret += (c - '0') / (div *= 10); if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> /** * BaZ :D */ import java.util.*; import java.io.*; import static java.lang.Math.*; public class Main { static Reader scan; static PrintWriter pw; static int n,k,left[],right[],arr[]; static long MOD = 1000000007,count[],dp[]; public static void main(String[] args) { new Thread(null,null,"BaZ",1<<25) { public void run() { try { solve(); } catch(Exception e) { e.printStackTrace(); System.exit(1); } } }.start(); } static void solve() throws IOException { scan = new Reader(); pw = new PrintWriter(System.out,true); StringBuilder sb = new StringBuilder(); n = ni(); k = ni(); int stack[] = new int[1000001]; int top = -1; arr = new int[n]; left = new int[n]; right = new int[n]; for(int i=0;i<n;++i) { arr[i] = ni(); while(top>=0 && arr[stack[top]]<=arr[i]) top--; if(top==-1) left[i] = 0; else left[i] = stack[top]+1; stack[++top] = i; } top = -1; for(int i=n-1;i>=0;--i) { while(top>=0 && arr[stack[top]]<arr[i]) top--; if(top==-1) right[i] = n-1; else right[i] = stack[top]-1; stack[++top] = i; } //pa("left", left); //pa("right", right); dp = new long[n+1]; for(int i=0;i<=n;++i) { if(i<k) continue; dp[i] = dp[i-k+1] + (i-k+1); } count = new long[n]; long ans = 0; for(int i=0;i<n;++i) { int len = right[i]-left[i]+1; int lef = i-left[i]; int rig = right[i]-i; long count = dp[len] - dp[lef] - dp[rig]; if(count>=MOD) count%=MOD; ans += count*arr[i]; if(ans>=MOD) ans%=MOD; } pl(ans); pw.flush(); pw.close(); } static int ni() throws IOException { return scan.nextInt(); } static long nl() throws IOException { return scan.nextLong(); } static double nd() throws IOException { return scan.nextDouble(); } static void pl() { pw.println(); } static void p(Object o) { pw.print(o+" "); } static void pl(Object o) { pw.println(o); } static void psb(StringBuilder sb) { pw.print(sb); } static void pa(String arrayName, Object arr[]) { pl(arrayName+" : "); for(Object o : arr) p(o); pl(); } static void pa(String arrayName, int arr[]) { pl(arrayName+" : "); for(int o : arr) p(o); pl(); } static void pa(String arrayName, long arr[]) { pl(arrayName+" : "); for(long o : arr) p(o); pl(); } static void pa(String arrayName, double arr[]) { pl(arrayName+" : "); for(double o : arr) p(o); pl(); } static void pa(String arrayName, char arr[]) { pl(arrayName+" : "); for(char o : arr) p(o); pl(); } static void pa(String listName, List list) { pl(listName+" : "); for(Object o : list) p(o); pl(); } static void pa(String arrayName, Object[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(Object o : arr[i]) p(o); pl(); } } static void pa(String arrayName, int[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(int o : arr[i]) p(o); pl(); } } static void pa(String arrayName, long[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(long o : arr[i]) p(o); pl(); } } static void pa(String arrayName, char[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(char o : arr[i]) p(o); pl(); } } static void pa(String arrayName, double[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(double o : arr[i]) p(o); pl(); } } static class Reader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Reader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[64]; int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') while ((c = read()) >= '0' && c <= '9') ret += (c - '0') / (div *= 10); if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> /** * BaZ :D */ import java.util.*; import java.io.*; import static java.lang.Math.*; public class Main { static Reader scan; static PrintWriter pw; static int n,k,left[],right[],arr[]; static long MOD = 1000000007,count[],dp[]; public static void main(String[] args) { new Thread(null,null,"BaZ",1<<25) { public void run() { try { solve(); } catch(Exception e) { e.printStackTrace(); System.exit(1); } } }.start(); } static void solve() throws IOException { scan = new Reader(); pw = new PrintWriter(System.out,true); StringBuilder sb = new StringBuilder(); n = ni(); k = ni(); int stack[] = new int[1000001]; int top = -1; arr = new int[n]; left = new int[n]; right = new int[n]; for(int i=0;i<n;++i) { arr[i] = ni(); while(top>=0 && arr[stack[top]]<=arr[i]) top--; if(top==-1) left[i] = 0; else left[i] = stack[top]+1; stack[++top] = i; } top = -1; for(int i=n-1;i>=0;--i) { while(top>=0 && arr[stack[top]]<arr[i]) top--; if(top==-1) right[i] = n-1; else right[i] = stack[top]-1; stack[++top] = i; } //pa("left", left); //pa("right", right); dp = new long[n+1]; for(int i=0;i<=n;++i) { if(i<k) continue; dp[i] = dp[i-k+1] + (i-k+1); } count = new long[n]; long ans = 0; for(int i=0;i<n;++i) { int len = right[i]-left[i]+1; int lef = i-left[i]; int rig = right[i]-i; long count = dp[len] - dp[lef] - dp[rig]; if(count>=MOD) count%=MOD; ans += count*arr[i]; if(ans>=MOD) ans%=MOD; } pl(ans); pw.flush(); pw.close(); } static int ni() throws IOException { return scan.nextInt(); } static long nl() throws IOException { return scan.nextLong(); } static double nd() throws IOException { return scan.nextDouble(); } static void pl() { pw.println(); } static void p(Object o) { pw.print(o+" "); } static void pl(Object o) { pw.println(o); } static void psb(StringBuilder sb) { pw.print(sb); } static void pa(String arrayName, Object arr[]) { pl(arrayName+" : "); for(Object o : arr) p(o); pl(); } static void pa(String arrayName, int arr[]) { pl(arrayName+" : "); for(int o : arr) p(o); pl(); } static void pa(String arrayName, long arr[]) { pl(arrayName+" : "); for(long o : arr) p(o); pl(); } static void pa(String arrayName, double arr[]) { pl(arrayName+" : "); for(double o : arr) p(o); pl(); } static void pa(String arrayName, char arr[]) { pl(arrayName+" : "); for(char o : arr) p(o); pl(); } static void pa(String listName, List list) { pl(listName+" : "); for(Object o : list) p(o); pl(); } static void pa(String arrayName, Object[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(Object o : arr[i]) p(o); pl(); } } static void pa(String arrayName, int[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(int o : arr[i]) p(o); pl(); } } static void pa(String arrayName, long[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(long o : arr[i]) p(o); pl(); } } static void pa(String arrayName, char[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(char o : arr[i]) p(o); pl(); } } static void pa(String arrayName, double[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(double o : arr[i]) p(o); pl(); } } static class Reader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Reader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[64]; int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') while ((c = read()) >= '0' && c <= '9') ret += (c - '0') / (div *= 10); if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
2,119
137
1,794
import java.util.Arrays; import java.util.InputMismatchException; import java.io.*; /** * Generated by Contest helper plug-in * Actual solution is at the bottom */ public class Main { public static void main(String[] args) { InputReader in = new StreamInputReader(System.in); PrintWriter out = new PrintWriter(System.out); run(in, out); } public static void run(InputReader in, PrintWriter out) { Solver solver = new TaskB(); solver.solve(1, in, out); Exit.exit(in, out); } } abstract class InputReader { private boolean finished = false; public abstract int read(); public int readInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuffer res = new StringBuffer(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public void setFinished(boolean finished) { this.finished = finished; } public abstract void close(); } class StreamInputReader extends InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar, numChars; public StreamInputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public void close() { try { stream.close(); } catch (IOException ignored) { } } } class Exit { private Exit() { } public static void exit(InputReader in, PrintWriter out) { in.setFinished(true); in.close(); out.close(); } } interface Solver { public void solve(int testNumber, InputReader in, PrintWriter out); } class TaskB implements Solver { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.readInt(); int m = in.readInt(); int k = in.readInt(); int[] a = new int[n]; for(int i=0;i<n;i++) a[i] = in.readInt(); Arrays.sort(a); if(k>=m) { out.println(0); } else { for(int i=n-1;i>=0;i--) { k += (a[i]-1); if(k>=m) { out.println(n-i); return; } } if(k<m) out.println(-1); } } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Arrays; import java.util.InputMismatchException; import java.io.*; /** * Generated by Contest helper plug-in * Actual solution is at the bottom */ public class Main { public static void main(String[] args) { InputReader in = new StreamInputReader(System.in); PrintWriter out = new PrintWriter(System.out); run(in, out); } public static void run(InputReader in, PrintWriter out) { Solver solver = new TaskB(); solver.solve(1, in, out); Exit.exit(in, out); } } abstract class InputReader { private boolean finished = false; public abstract int read(); public int readInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuffer res = new StringBuffer(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public void setFinished(boolean finished) { this.finished = finished; } public abstract void close(); } class StreamInputReader extends InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar, numChars; public StreamInputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public void close() { try { stream.close(); } catch (IOException ignored) { } } } class Exit { private Exit() { } public static void exit(InputReader in, PrintWriter out) { in.setFinished(true); in.close(); out.close(); } } interface Solver { public void solve(int testNumber, InputReader in, PrintWriter out); } class TaskB implements Solver { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.readInt(); int m = in.readInt(); int k = in.readInt(); int[] a = new int[n]; for(int i=0;i<n;i++) a[i] = in.readInt(); Arrays.sort(a); if(k>=m) { out.println(0); } else { for(int i=n-1;i>=0;i--) { k += (a[i]-1); if(k>=m) { out.println(n-i); return; } } if(k<m) out.println(-1); } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Arrays; import java.util.InputMismatchException; import java.io.*; /** * Generated by Contest helper plug-in * Actual solution is at the bottom */ public class Main { public static void main(String[] args) { InputReader in = new StreamInputReader(System.in); PrintWriter out = new PrintWriter(System.out); run(in, out); } public static void run(InputReader in, PrintWriter out) { Solver solver = new TaskB(); solver.solve(1, in, out); Exit.exit(in, out); } } abstract class InputReader { private boolean finished = false; public abstract int read(); public int readInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuffer res = new StringBuffer(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public void setFinished(boolean finished) { this.finished = finished; } public abstract void close(); } class StreamInputReader extends InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar, numChars; public StreamInputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public void close() { try { stream.close(); } catch (IOException ignored) { } } } class Exit { private Exit() { } public static void exit(InputReader in, PrintWriter out) { in.setFinished(true); in.close(); out.close(); } } interface Solver { public void solve(int testNumber, InputReader in, PrintWriter out); } class TaskB implements Solver { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.readInt(); int m = in.readInt(); int k = in.readInt(); int[] a = new int[n]; for(int i=0;i<n;i++) a[i] = in.readInt(); Arrays.sort(a); if(k>=m) { out.println(0); } else { for(int i=n-1;i>=0;i--) { k += (a[i]-1); if(k>=m) { out.println(n-i); return; } } if(k<m) out.println(-1); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,128
1,790
1,290
import java.util.*; import java.io.*; import java.lang.*; import java.math.*; public class C { public static void main(String[] args) throws Exception { BufferedReader bf = new BufferedReader(new InputStreamReader(System.in)); // Scanner scan = new Scanner(System.in); PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out)); // int n = Integer.parseInt(bf.readLine()); StringTokenizer st = new StringTokenizer(bf.readLine()); // int[] a = new int[n]; for(int i=0; i<n; i++) a[i] = Integer.parseInt(st.nextToken()); long n = Long.parseLong(st.nextToken()); long k = Long.parseLong(st.nextToken()); int mod = 1000000007; if(n == 0) { out.println(0); out.close(); System.exit(0); } n %= mod; long ans = exp(2, (int)((k+1) % (mod-1)), mod); ans = (1L*ans * n) % mod; ans = ans + mod + 1 - exp(2, (int)((k) % (mod-1)), mod); ans %= mod; out.println(ans); // int n = scan.nextInt(); out.close(); System.exit(0); } public static int exp(int base, int e, int mod) { if(e == 0) return 1; if(e == 1) return base; int val = exp(base, e/2, mod); int ans = (int)(1L*val*val % mod); if(e % 2 == 1) ans = (int)(1L*ans*base % mod); return ans; } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; import java.lang.*; import java.math.*; public class C { public static void main(String[] args) throws Exception { BufferedReader bf = new BufferedReader(new InputStreamReader(System.in)); // Scanner scan = new Scanner(System.in); PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out)); // int n = Integer.parseInt(bf.readLine()); StringTokenizer st = new StringTokenizer(bf.readLine()); // int[] a = new int[n]; for(int i=0; i<n; i++) a[i] = Integer.parseInt(st.nextToken()); long n = Long.parseLong(st.nextToken()); long k = Long.parseLong(st.nextToken()); int mod = 1000000007; if(n == 0) { out.println(0); out.close(); System.exit(0); } n %= mod; long ans = exp(2, (int)((k+1) % (mod-1)), mod); ans = (1L*ans * n) % mod; ans = ans + mod + 1 - exp(2, (int)((k) % (mod-1)), mod); ans %= mod; out.println(ans); // int n = scan.nextInt(); out.close(); System.exit(0); } public static int exp(int base, int e, int mod) { if(e == 0) return 1; if(e == 1) return base; int val = exp(base, e/2, mod); int ans = (int)(1L*val*val % mod); if(e % 2 == 1) ans = (int)(1L*ans*base % mod); return ans; } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; import java.lang.*; import java.math.*; public class C { public static void main(String[] args) throws Exception { BufferedReader bf = new BufferedReader(new InputStreamReader(System.in)); // Scanner scan = new Scanner(System.in); PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out)); // int n = Integer.parseInt(bf.readLine()); StringTokenizer st = new StringTokenizer(bf.readLine()); // int[] a = new int[n]; for(int i=0; i<n; i++) a[i] = Integer.parseInt(st.nextToken()); long n = Long.parseLong(st.nextToken()); long k = Long.parseLong(st.nextToken()); int mod = 1000000007; if(n == 0) { out.println(0); out.close(); System.exit(0); } n %= mod; long ans = exp(2, (int)((k+1) % (mod-1)), mod); ans = (1L*ans * n) % mod; ans = ans + mod + 1 - exp(2, (int)((k) % (mod-1)), mod); ans %= mod; out.println(ans); // int n = scan.nextInt(); out.close(); System.exit(0); } public static int exp(int base, int e, int mod) { if(e == 0) return 1; if(e == 1) return base; int val = exp(base, e/2, mod); int ans = (int)(1L*val*val % mod); if(e % 2 == 1) ans = (int)(1L*ans*base % mod); return ans; } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
721
1,288
2,256
import java.util.Scanner; public class maestro{ public static void main(String[] args){ Scanner sc = new Scanner(System.in); int N = sc.nextInt(); long mod = (long)Math.pow(10,9)+7; long[][] arr = new long[N][N]; arr[0][0]=1; for (int i=1;i<N;i++){ char c = sc.next().charAt(0); if (c=='f'){ for (int j=1;j<N;j++) arr[i][j] = arr[i - 1][j - 1]; } else { long sum=0; for (int j=N-1;j>=0;j--){ sum=(sum+arr[i-1][j])%mod; arr[i][j] = sum; } } } long ans=0; for (int i=0;i<N;i++) ans=(ans+arr[N-1][i])%mod; System.out.println(ans); } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Scanner; public class maestro{ public static void main(String[] args){ Scanner sc = new Scanner(System.in); int N = sc.nextInt(); long mod = (long)Math.pow(10,9)+7; long[][] arr = new long[N][N]; arr[0][0]=1; for (int i=1;i<N;i++){ char c = sc.next().charAt(0); if (c=='f'){ for (int j=1;j<N;j++) arr[i][j] = arr[i - 1][j - 1]; } else { long sum=0; for (int j=N-1;j>=0;j--){ sum=(sum+arr[i-1][j])%mod; arr[i][j] = sum; } } } long ans=0; for (int i=0;i<N;i++) ans=(ans+arr[N-1][i])%mod; System.out.println(ans); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; public class maestro{ public static void main(String[] args){ Scanner sc = new Scanner(System.in); int N = sc.nextInt(); long mod = (long)Math.pow(10,9)+7; long[][] arr = new long[N][N]; arr[0][0]=1; for (int i=1;i<N;i++){ char c = sc.next().charAt(0); if (c=='f'){ for (int j=1;j<N;j++) arr[i][j] = arr[i - 1][j - 1]; } else { long sum=0; for (int j=N-1;j>=0;j--){ sum=(sum+arr[i-1][j])%mod; arr[i][j] = sum; } } } long ans=0; for (int i=0;i<N;i++) ans=(ans+arr[N-1][i])%mod; System.out.println(ans); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
554
2,251
2,678
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Arrays; public class A { public static void main(String[] args) throws IOException { BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(reader.readLine()); String str[] = reader.readLine().split(" "); int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = Integer.parseInt(str[i]); } Arrays.sort(a); int k = 0; for (int i = 0; i < n; i++) { if (a[i] == 0){ continue; } for (int j = i + 1; j < n; j++) { if (a[j] % a[i] == 0){ a[j] = 0; } } k++; } System.out.println(k); } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Arrays; public class A { public static void main(String[] args) throws IOException { BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(reader.readLine()); String str[] = reader.readLine().split(" "); int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = Integer.parseInt(str[i]); } Arrays.sort(a); int k = 0; for (int i = 0; i < n; i++) { if (a[i] == 0){ continue; } for (int j = i + 1; j < n; j++) { if (a[j] % a[i] == 0){ a[j] = 0; } } k++; } System.out.println(k); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Arrays; public class A { public static void main(String[] args) throws IOException { BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(reader.readLine()); String str[] = reader.readLine().split(" "); int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = Integer.parseInt(str[i]); } Arrays.sort(a); int k = 0; for (int i = 0; i < n; i++) { if (a[i] == 0){ continue; } for (int j = i + 1; j < n; j++) { if (a[j] % a[i] == 0){ a[j] = 0; } } k++; } System.out.println(k); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
556
2,672