id
int64 0
4.52k
| code
stringlengths 142
31.2k
| answer
stringclasses 7
values | prompt
stringlengths 1.64k
32.6k
| test_prompt
stringlengths 1.7k
32.7k
| token_length
int64 373
7.8k
| __index_level_0__
int64 0
4.5k
|
---|---|---|---|---|---|---|
3,254 |
import java.io.*;
public class Main {
private StreamTokenizer in;
private PrintWriter out;
public static void main(String[] args) throws IOException {
//long time = System.currentTimeMillis();
new Main().run();
//time = System.currentTimeMillis() - time;
//System.out.println(time + " ms");
}
private void run() throws IOException {
//in = new StreamTokenizer(new BufferedReader(new InputStreamReader(new FileInputStream("input.txt"))));
//BufferedReader reader = new BufferedReader(new InputStreamReader(new FileInputStream("input.txt")));
//out = new PrintWriter(new File("output.txt"));
in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
//BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(new OutputStreamWriter(System.out));
out.print(25);
out.flush();
}
int nextInt() throws IOException {
in.nextToken();
return (int) in.nval;
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
public class Main {
private StreamTokenizer in;
private PrintWriter out;
public static void main(String[] args) throws IOException {
//long time = System.currentTimeMillis();
new Main().run();
//time = System.currentTimeMillis() - time;
//System.out.println(time + " ms");
}
private void run() throws IOException {
//in = new StreamTokenizer(new BufferedReader(new InputStreamReader(new FileInputStream("input.txt"))));
//BufferedReader reader = new BufferedReader(new InputStreamReader(new FileInputStream("input.txt")));
//out = new PrintWriter(new File("output.txt"));
in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
//BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(new OutputStreamWriter(System.out));
out.print(25);
out.flush();
}
int nextInt() throws IOException {
in.nextToken();
return (int) in.nval;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
public class Main {
private StreamTokenizer in;
private PrintWriter out;
public static void main(String[] args) throws IOException {
//long time = System.currentTimeMillis();
new Main().run();
//time = System.currentTimeMillis() - time;
//System.out.println(time + " ms");
}
private void run() throws IOException {
//in = new StreamTokenizer(new BufferedReader(new InputStreamReader(new FileInputStream("input.txt"))));
//BufferedReader reader = new BufferedReader(new InputStreamReader(new FileInputStream("input.txt")));
//out = new PrintWriter(new File("output.txt"));
in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
//BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(new OutputStreamWriter(System.out));
out.print(25);
out.flush();
}
int nextInt() throws IOException {
in.nextToken();
return (int) in.nval;
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 528 | 3,248 |
274 |
import java.util.*;
import java.io.*;
public class A
{
public static void main(String ar[]) throws Exception
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
String s1[]=br.readLine().split(" ");
int n=Integer.parseInt(s1[0]);
int m=Integer.parseInt(s1[1]);
int a[]=new int[n];
String s2[]=br.readLine().split(" ");
long S=0;
for(int i=0;i<n;i++)
{ a[i]=Integer.parseInt(s2[i]); S+=(long)a[i]; }
Arrays.sort(a);
m=a[n-1];
int last=1;
int t=1;
for(int i=1;i<n-1;i++)
{
if(a[i]==last)
t++;
else
{
t++;
last=last+1;
}
}
if(last<m)
{ t+=m-last; }
else
t++;
System.out.println(S-t);
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class A
{
public static void main(String ar[]) throws Exception
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
String s1[]=br.readLine().split(" ");
int n=Integer.parseInt(s1[0]);
int m=Integer.parseInt(s1[1]);
int a[]=new int[n];
String s2[]=br.readLine().split(" ");
long S=0;
for(int i=0;i<n;i++)
{ a[i]=Integer.parseInt(s2[i]); S+=(long)a[i]; }
Arrays.sort(a);
m=a[n-1];
int last=1;
int t=1;
for(int i=1;i<n-1;i++)
{
if(a[i]==last)
t++;
else
{
t++;
last=last+1;
}
}
if(last<m)
{ t+=m-last; }
else
t++;
System.out.println(S-t);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class A
{
public static void main(String ar[]) throws Exception
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
String s1[]=br.readLine().split(" ");
int n=Integer.parseInt(s1[0]);
int m=Integer.parseInt(s1[1]);
int a[]=new int[n];
String s2[]=br.readLine().split(" ");
long S=0;
for(int i=0;i<n;i++)
{ a[i]=Integer.parseInt(s2[i]); S+=(long)a[i]; }
Arrays.sort(a);
m=a[n-1];
int last=1;
int t=1;
for(int i=1;i<n-1;i++)
{
if(a[i]==last)
t++;
else
{
t++;
last=last+1;
}
}
if(last<m)
{ t+=m-last; }
else
t++;
System.out.println(S-t);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 569 | 274 |
3,688 |
import java.io.*;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.RoundingMode;
import java.text.DecimalFormat;
import java.util.*;
import static java.lang.Math.*;
public class Main {
final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null;
BufferedReader in;
PrintWriter out;
StringTokenizer tok = new StringTokenizer("");
void init() throws FileNotFoundException {
if (ONLINE_JUDGE) {
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
} else {
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
}
}
String readString() throws IOException {
while (!tok.hasMoreTokens()) {
tok = new StringTokenizer(in.readLine());
}
return tok.nextToken();
}
int readInt() throws IOException {
return Integer.parseInt(readString());
}
long readLong() throws IOException {
return Long.parseLong(readString());
}
double readDouble() throws IOException {
return Double.parseDouble(readString());
}
public static void main(String[] args) {
new Main().run();
// Sworn to fight and die
}
public static void mergeSort(int[] a) {
mergeSort(a, 0, a.length - 1);
}
private static void mergeSort(int[] a, int levtIndex, int rightIndex) {
final int MAGIC_VALUE = 50;
if (levtIndex < rightIndex) {
if (rightIndex - levtIndex <= MAGIC_VALUE) {
insertionSort(a, levtIndex, rightIndex);
} else {
int middleIndex = (levtIndex + rightIndex) / 2;
mergeSort(a, levtIndex, middleIndex);
mergeSort(a, middleIndex + 1, rightIndex);
merge(a, levtIndex, middleIndex, rightIndex);
}
}
}
private static void merge(int[] a, int levtIndex, int middleIndex,
int rightIndex) {
int length1 = middleIndex - levtIndex + 1;
int length2 = rightIndex - middleIndex;
int[] levtArray = new int[length1];
int[] rightArray = new int[length2];
System.arraycopy(a, levtIndex, levtArray, 0, length1);
System.arraycopy(a, middleIndex + 1, rightArray, 0, length2);
for (int k = levtIndex, i = 0, j = 0; k <= rightIndex; k++) {
if (i == length1) {
a[k] = rightArray[j++];
} else if (j == length2) {
a[k] = levtArray[i++];
} else {
a[k] = levtArray[i] <= rightArray[j] ? levtArray[i++]
: rightArray[j++];
}
}
}
private static void insertionSort(int[] a, int levtIndex, int rightIndex) {
for (int i = levtIndex + 1; i <= rightIndex; i++) {
int current = a[i];
int j = i - 1;
while (j >= levtIndex && a[j] > current) {
a[j + 1] = a[j];
j--;
}
a[j + 1] = current;
}
}
public void run() {
try {
long t1 = System.currentTimeMillis();
init();
solve();
out.close();
long t2 = System.currentTimeMillis();
System.err.println("Time = " + (t2 - t1));
} catch (Exception e) {
e.printStackTrace(System.err);
System.exit(-1);
}
}
class LOL implements Comparable<LOL> {
int x;
int y;
public LOL(int x, int y) {
this.x = x;
this.y = y;
}
@Override
public int compareTo(LOL o) {
return (x - o.x); // ---->
//return o.x * o.y - x * y; // <----
}
}
class LOL2 implements Comparable<LOL2> {
int x;
int y;
int z;
public LOL2(int x, int y, int z) {
this.x = x;
this.y = y;
this.z = z;
}
@Override
public int compareTo(LOL2 o) {
return (z - o.z); // ---->
//return o.x * o.y - x * y; // <----
}
}
class test implements Comparable<test> {
long x;
long y;
public test(long x, long y) {
this.x = x;
this.y = y;
}
@Override
public int compareTo(test o) {
//int compareResult = Long.compare(y, o.y); // ---->
//if (compareResult != 0) {
// return -compareResult;
//}
int compareResult = Long.compare(x, o.x);
if (compareResult != 0) {
return compareResult;
}
return Long.compare(y, o.y);
//return o.x * o.y - x * y; // <----
}
}
class data {
String name;
String city;
data(String name, String city) {
this.city = city;
this.name = name;
}
}
class Point {
double x;
double y;
Point(double x, double y) {
this.x = x;
this.y = y;
}
double distance(Point temp) {
return Math.sqrt((x - temp.x) * (x - temp.x) + (y - temp.y) * (y - temp.y));
}
double sqrDist(Point temp) {
return ((x - temp.x) * (x - temp.x) + (y - temp.y) * (y - temp.y));
}
Point rotate(double alpha) {
return new Point(x * cos(alpha) - y * sin(alpha), x * sin(alpha) + y * cos(alpha));
}
void sum(Point o) {
x += o.x;
y += o.y;
}
void scalarProduct(int alpha) {
x *= alpha;
y *= alpha;
}
}
class Line {
double a;
double b;
double c;
Line(Point A, Point B) {
a = B.y - A.y;
b = A.x - B.x;
c = -A.x * a - A.y * b;
}
Line(double a, double b, double c) {
this.a = a;
this.b = b;
this.c = c;
}
Point intersection(Line o) {
double det = a * o.b - b * o.a;
double det1 = -c * o.b + b * o.c;
double det2 = -a * o.c + c * o.a;
return new Point(det1 / det, det2 / det);
}
}
/* class Plane {
double a;
double b;
double c;
double d;
Plane (Point fir, Point sec, Point thi) {
double del1 = (sec.y - fir.y) * (thi.z - fir.z) - (thi.y - fir.y) * (sec.z - fir.z);
double del2 = (thi.x - fir.x) * (sec.z - fir.z) - (thi.z - fir.z) * (sec.x - fir.x);
double del3 = (thi.y - fir.y) * (sec.x - fir.x) - (thi.x - fir.x) * (sec.y - fir.y);
a = del1;
b = del2;
c = del3;
d = -fir.x * del1 - fir.y * del2 - fir.z * del3;
}
double distance(Point point) {
return abs(a * point.x + b * point.y + c * point.z + d) / sqrt(a * a + b * b + c * c);
}
} */
class record implements Comparable<record> {
String city;
Long score;
public record(String name, Long score) {
this.city = name;
this.score = score;
}
@Override
public int compareTo(record o) {
if (o.city.equals(city)) {
return 0;
}
if (score.equals(o.score)) {
return 1;
}
if (score > o.score) {
return 666;
} else {
return -666;
}
//return Long.compare(score, o.score);
}
}
public long gcd(long a, long b) {
if (a == 0 || b == 0) return max(a, b);
if (a % b == 0)
return b;
else
return gcd(b, a % b);
}
boolean prime(long n) {
if (n == 1) return false;
for (int i = 2; i <= sqrt(n); i++)
if (n % i == 0)
return false;
return true;
}
public int sum(long n) {
int s = 0;
while (n > 0) {
s += (n % 10);
n /= 10;
}
return s;
}
/* public void simulation(int k) {
long ans = 0;
int start = 1;
for (int i = 0; i < k; i++) {
start *= 10;
}
for (int i = start/10; i < start; i++) {
int locAns = 0;
for (int j = start/10; j < start; j++) {
if (sum(i + j) == sum(i) + sum(j) ) {
ans += 1;
locAns += 1;
} else {
//.println(i + "!!!" + j);
}
}
//out.println(i + " " + locAns);
}
out.println(ans);
}*/
ArrayList<Integer> primes;
boolean[] isPrime;
public void getPrimes (int n) {
isPrime[0] = false;
isPrime[1] = false;
for (int i = 2; i <= n; i++) {
if (isPrime[i]) {
primes.add(i);
if (1l * i * i <= n) {
for (int j = i * i; j <= n; j += i) {
isPrime[j] = false;
}
}
}
}
}
public long binPowMod(long a, long b, long mod) {
if (b == 0) {
return 1 % mod;
}
if (b % 2 != 0) {
return ((a % mod) * (binPowMod(a, b - 1, mod) % mod)) % mod;
} else {
long temp = binPowMod(a, b / 2, mod) % mod;
long ans = (temp * temp) % mod;
return ans;
}
}
int type[];
boolean vis[];
HashMap<Integer, HashSet<Integer>> g;
int componentNum[];
/* void dfs(int u, int numOfComponent) {
vis[u] = true;
componentNum[u] = numOfComponent;
for (Integer v: g.get(u)) {
if (!vis[v]) {
dfs(v, numOfComponent);
}
}
} */
int p[];
int find(int x) {
if (x == p[x]) {
return x;
}
return p[x] = find(p[x]);
}
boolean merge(int x, int y) {
x = find(x);
y = find(y);
if (p[x] == p[y]) {
return false;
}
p[y] = x;
return true;
}
class Trajectory {
double x0;
double y0;
double vx;
double vy;
Trajectory(double vx, double vy, double x0, double y0) {
this.vx = vx;
this.vy = vy;
this.x0 = x0;
this.y0 = y0;
}
double y (double x) {
return y0 + (x - x0) * (vy / vx) - 5 * (x - x0) * (x - x0) / (vx * vx);
}
double der(double x) {
return (vy / vx) - 10 * (x - x0) / (vx * vx);
}
}
int s;
int n;
int m;
boolean isVisited[][];
char[][] maze;
int[] dx = {0, 0, -1, 1};
int[] dy = {1, -1, 0, 0};
void dfs(int x, int y) {
isVisited[x][y] = true;
for (int i = 0; i < 4; i++) {
int currX = x + dx[i];
int currY = y + dy[i];
if (maze[currX][currY] == '.' && !isVisited[currX][currY]) {
dfs(currX, currY);
}
}
}
public void solve() throws IOException {
n = readInt();
m = readInt();
maze = new char[n + 2][m + 2];
for (int i = 0; i < n + 2; i++) {
maze[i][0] = '#';
maze[i][m + 1] = '#';
}
for (int j = 0; j < m + 2; j++) {
maze[0][j] = '#';
maze[n + 1][j] = '#';
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
maze[i][j] = '.';
}
}
int[][] dist = new int[n + 2][m + 2];
for (int i = 0; i < n + 2; i++) {
for (int j = 0; j < m + 2; j++) {
dist[i][j] = Integer.MAX_VALUE;
}
}
ArrayDeque<Integer> xValues = new ArrayDeque<Integer>();
ArrayDeque<Integer> yValues = new ArrayDeque<Integer>();
int k = readInt();
for (int i = 0; i < k; i++) {
int currX = readInt();
int currY = readInt();
xValues.add(currX);
yValues.add(currY);
dist[currX][currY] = 0;
}
while(!xValues.isEmpty()) {
int x = xValues.poll();
int y = yValues.poll();
for (int i = 0; i < 4; i++) {
int currX = x + dx[i];
int currY = y + dy[i];
if (maze[currX][currY] == '.' && dist[currX][currY] > dist[x][y] + 1) {
dist[currX][currY] = dist[x][y] + 1;
xValues.add(currX);
yValues.add(currY);
}
}
}
int maxDist = 0;
int indexX = 0;
int indexY = 0;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
if (dist[i][j] >= maxDist) {
maxDist = dist[i][j];
indexX = i;
indexY = j;
}
}
}
out.print(indexX + " " + indexY);
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.RoundingMode;
import java.text.DecimalFormat;
import java.util.*;
import static java.lang.Math.*;
public class Main {
final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null;
BufferedReader in;
PrintWriter out;
StringTokenizer tok = new StringTokenizer("");
void init() throws FileNotFoundException {
if (ONLINE_JUDGE) {
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
} else {
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
}
}
String readString() throws IOException {
while (!tok.hasMoreTokens()) {
tok = new StringTokenizer(in.readLine());
}
return tok.nextToken();
}
int readInt() throws IOException {
return Integer.parseInt(readString());
}
long readLong() throws IOException {
return Long.parseLong(readString());
}
double readDouble() throws IOException {
return Double.parseDouble(readString());
}
public static void main(String[] args) {
new Main().run();
// Sworn to fight and die
}
public static void mergeSort(int[] a) {
mergeSort(a, 0, a.length - 1);
}
private static void mergeSort(int[] a, int levtIndex, int rightIndex) {
final int MAGIC_VALUE = 50;
if (levtIndex < rightIndex) {
if (rightIndex - levtIndex <= MAGIC_VALUE) {
insertionSort(a, levtIndex, rightIndex);
} else {
int middleIndex = (levtIndex + rightIndex) / 2;
mergeSort(a, levtIndex, middleIndex);
mergeSort(a, middleIndex + 1, rightIndex);
merge(a, levtIndex, middleIndex, rightIndex);
}
}
}
private static void merge(int[] a, int levtIndex, int middleIndex,
int rightIndex) {
int length1 = middleIndex - levtIndex + 1;
int length2 = rightIndex - middleIndex;
int[] levtArray = new int[length1];
int[] rightArray = new int[length2];
System.arraycopy(a, levtIndex, levtArray, 0, length1);
System.arraycopy(a, middleIndex + 1, rightArray, 0, length2);
for (int k = levtIndex, i = 0, j = 0; k <= rightIndex; k++) {
if (i == length1) {
a[k] = rightArray[j++];
} else if (j == length2) {
a[k] = levtArray[i++];
} else {
a[k] = levtArray[i] <= rightArray[j] ? levtArray[i++]
: rightArray[j++];
}
}
}
private static void insertionSort(int[] a, int levtIndex, int rightIndex) {
for (int i = levtIndex + 1; i <= rightIndex; i++) {
int current = a[i];
int j = i - 1;
while (j >= levtIndex && a[j] > current) {
a[j + 1] = a[j];
j--;
}
a[j + 1] = current;
}
}
public void run() {
try {
long t1 = System.currentTimeMillis();
init();
solve();
out.close();
long t2 = System.currentTimeMillis();
System.err.println("Time = " + (t2 - t1));
} catch (Exception e) {
e.printStackTrace(System.err);
System.exit(-1);
}
}
class LOL implements Comparable<LOL> {
int x;
int y;
public LOL(int x, int y) {
this.x = x;
this.y = y;
}
@Override
public int compareTo(LOL o) {
return (x - o.x); // ---->
//return o.x * o.y - x * y; // <----
}
}
class LOL2 implements Comparable<LOL2> {
int x;
int y;
int z;
public LOL2(int x, int y, int z) {
this.x = x;
this.y = y;
this.z = z;
}
@Override
public int compareTo(LOL2 o) {
return (z - o.z); // ---->
//return o.x * o.y - x * y; // <----
}
}
class test implements Comparable<test> {
long x;
long y;
public test(long x, long y) {
this.x = x;
this.y = y;
}
@Override
public int compareTo(test o) {
//int compareResult = Long.compare(y, o.y); // ---->
//if (compareResult != 0) {
// return -compareResult;
//}
int compareResult = Long.compare(x, o.x);
if (compareResult != 0) {
return compareResult;
}
return Long.compare(y, o.y);
//return o.x * o.y - x * y; // <----
}
}
class data {
String name;
String city;
data(String name, String city) {
this.city = city;
this.name = name;
}
}
class Point {
double x;
double y;
Point(double x, double y) {
this.x = x;
this.y = y;
}
double distance(Point temp) {
return Math.sqrt((x - temp.x) * (x - temp.x) + (y - temp.y) * (y - temp.y));
}
double sqrDist(Point temp) {
return ((x - temp.x) * (x - temp.x) + (y - temp.y) * (y - temp.y));
}
Point rotate(double alpha) {
return new Point(x * cos(alpha) - y * sin(alpha), x * sin(alpha) + y * cos(alpha));
}
void sum(Point o) {
x += o.x;
y += o.y;
}
void scalarProduct(int alpha) {
x *= alpha;
y *= alpha;
}
}
class Line {
double a;
double b;
double c;
Line(Point A, Point B) {
a = B.y - A.y;
b = A.x - B.x;
c = -A.x * a - A.y * b;
}
Line(double a, double b, double c) {
this.a = a;
this.b = b;
this.c = c;
}
Point intersection(Line o) {
double det = a * o.b - b * o.a;
double det1 = -c * o.b + b * o.c;
double det2 = -a * o.c + c * o.a;
return new Point(det1 / det, det2 / det);
}
}
/* class Plane {
double a;
double b;
double c;
double d;
Plane (Point fir, Point sec, Point thi) {
double del1 = (sec.y - fir.y) * (thi.z - fir.z) - (thi.y - fir.y) * (sec.z - fir.z);
double del2 = (thi.x - fir.x) * (sec.z - fir.z) - (thi.z - fir.z) * (sec.x - fir.x);
double del3 = (thi.y - fir.y) * (sec.x - fir.x) - (thi.x - fir.x) * (sec.y - fir.y);
a = del1;
b = del2;
c = del3;
d = -fir.x * del1 - fir.y * del2 - fir.z * del3;
}
double distance(Point point) {
return abs(a * point.x + b * point.y + c * point.z + d) / sqrt(a * a + b * b + c * c);
}
} */
class record implements Comparable<record> {
String city;
Long score;
public record(String name, Long score) {
this.city = name;
this.score = score;
}
@Override
public int compareTo(record o) {
if (o.city.equals(city)) {
return 0;
}
if (score.equals(o.score)) {
return 1;
}
if (score > o.score) {
return 666;
} else {
return -666;
}
//return Long.compare(score, o.score);
}
}
public long gcd(long a, long b) {
if (a == 0 || b == 0) return max(a, b);
if (a % b == 0)
return b;
else
return gcd(b, a % b);
}
boolean prime(long n) {
if (n == 1) return false;
for (int i = 2; i <= sqrt(n); i++)
if (n % i == 0)
return false;
return true;
}
public int sum(long n) {
int s = 0;
while (n > 0) {
s += (n % 10);
n /= 10;
}
return s;
}
/* public void simulation(int k) {
long ans = 0;
int start = 1;
for (int i = 0; i < k; i++) {
start *= 10;
}
for (int i = start/10; i < start; i++) {
int locAns = 0;
for (int j = start/10; j < start; j++) {
if (sum(i + j) == sum(i) + sum(j) ) {
ans += 1;
locAns += 1;
} else {
//.println(i + "!!!" + j);
}
}
//out.println(i + " " + locAns);
}
out.println(ans);
}*/
ArrayList<Integer> primes;
boolean[] isPrime;
public void getPrimes (int n) {
isPrime[0] = false;
isPrime[1] = false;
for (int i = 2; i <= n; i++) {
if (isPrime[i]) {
primes.add(i);
if (1l * i * i <= n) {
for (int j = i * i; j <= n; j += i) {
isPrime[j] = false;
}
}
}
}
}
public long binPowMod(long a, long b, long mod) {
if (b == 0) {
return 1 % mod;
}
if (b % 2 != 0) {
return ((a % mod) * (binPowMod(a, b - 1, mod) % mod)) % mod;
} else {
long temp = binPowMod(a, b / 2, mod) % mod;
long ans = (temp * temp) % mod;
return ans;
}
}
int type[];
boolean vis[];
HashMap<Integer, HashSet<Integer>> g;
int componentNum[];
/* void dfs(int u, int numOfComponent) {
vis[u] = true;
componentNum[u] = numOfComponent;
for (Integer v: g.get(u)) {
if (!vis[v]) {
dfs(v, numOfComponent);
}
}
} */
int p[];
int find(int x) {
if (x == p[x]) {
return x;
}
return p[x] = find(p[x]);
}
boolean merge(int x, int y) {
x = find(x);
y = find(y);
if (p[x] == p[y]) {
return false;
}
p[y] = x;
return true;
}
class Trajectory {
double x0;
double y0;
double vx;
double vy;
Trajectory(double vx, double vy, double x0, double y0) {
this.vx = vx;
this.vy = vy;
this.x0 = x0;
this.y0 = y0;
}
double y (double x) {
return y0 + (x - x0) * (vy / vx) - 5 * (x - x0) * (x - x0) / (vx * vx);
}
double der(double x) {
return (vy / vx) - 10 * (x - x0) / (vx * vx);
}
}
int s;
int n;
int m;
boolean isVisited[][];
char[][] maze;
int[] dx = {0, 0, -1, 1};
int[] dy = {1, -1, 0, 0};
void dfs(int x, int y) {
isVisited[x][y] = true;
for (int i = 0; i < 4; i++) {
int currX = x + dx[i];
int currY = y + dy[i];
if (maze[currX][currY] == '.' && !isVisited[currX][currY]) {
dfs(currX, currY);
}
}
}
public void solve() throws IOException {
n = readInt();
m = readInt();
maze = new char[n + 2][m + 2];
for (int i = 0; i < n + 2; i++) {
maze[i][0] = '#';
maze[i][m + 1] = '#';
}
for (int j = 0; j < m + 2; j++) {
maze[0][j] = '#';
maze[n + 1][j] = '#';
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
maze[i][j] = '.';
}
}
int[][] dist = new int[n + 2][m + 2];
for (int i = 0; i < n + 2; i++) {
for (int j = 0; j < m + 2; j++) {
dist[i][j] = Integer.MAX_VALUE;
}
}
ArrayDeque<Integer> xValues = new ArrayDeque<Integer>();
ArrayDeque<Integer> yValues = new ArrayDeque<Integer>();
int k = readInt();
for (int i = 0; i < k; i++) {
int currX = readInt();
int currY = readInt();
xValues.add(currX);
yValues.add(currY);
dist[currX][currY] = 0;
}
while(!xValues.isEmpty()) {
int x = xValues.poll();
int y = yValues.poll();
for (int i = 0; i < 4; i++) {
int currX = x + dx[i];
int currY = y + dy[i];
if (maze[currX][currY] == '.' && dist[currX][currY] > dist[x][y] + 1) {
dist[currX][currY] = dist[x][y] + 1;
xValues.add(currX);
yValues.add(currY);
}
}
}
int maxDist = 0;
int indexX = 0;
int indexY = 0;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
if (dist[i][j] >= maxDist) {
maxDist = dist[i][j];
indexX = i;
indexY = j;
}
}
}
out.print(indexX + " " + indexY);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.RoundingMode;
import java.text.DecimalFormat;
import java.util.*;
import static java.lang.Math.*;
public class Main {
final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null;
BufferedReader in;
PrintWriter out;
StringTokenizer tok = new StringTokenizer("");
void init() throws FileNotFoundException {
if (ONLINE_JUDGE) {
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
} else {
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
}
}
String readString() throws IOException {
while (!tok.hasMoreTokens()) {
tok = new StringTokenizer(in.readLine());
}
return tok.nextToken();
}
int readInt() throws IOException {
return Integer.parseInt(readString());
}
long readLong() throws IOException {
return Long.parseLong(readString());
}
double readDouble() throws IOException {
return Double.parseDouble(readString());
}
public static void main(String[] args) {
new Main().run();
// Sworn to fight and die
}
public static void mergeSort(int[] a) {
mergeSort(a, 0, a.length - 1);
}
private static void mergeSort(int[] a, int levtIndex, int rightIndex) {
final int MAGIC_VALUE = 50;
if (levtIndex < rightIndex) {
if (rightIndex - levtIndex <= MAGIC_VALUE) {
insertionSort(a, levtIndex, rightIndex);
} else {
int middleIndex = (levtIndex + rightIndex) / 2;
mergeSort(a, levtIndex, middleIndex);
mergeSort(a, middleIndex + 1, rightIndex);
merge(a, levtIndex, middleIndex, rightIndex);
}
}
}
private static void merge(int[] a, int levtIndex, int middleIndex,
int rightIndex) {
int length1 = middleIndex - levtIndex + 1;
int length2 = rightIndex - middleIndex;
int[] levtArray = new int[length1];
int[] rightArray = new int[length2];
System.arraycopy(a, levtIndex, levtArray, 0, length1);
System.arraycopy(a, middleIndex + 1, rightArray, 0, length2);
for (int k = levtIndex, i = 0, j = 0; k <= rightIndex; k++) {
if (i == length1) {
a[k] = rightArray[j++];
} else if (j == length2) {
a[k] = levtArray[i++];
} else {
a[k] = levtArray[i] <= rightArray[j] ? levtArray[i++]
: rightArray[j++];
}
}
}
private static void insertionSort(int[] a, int levtIndex, int rightIndex) {
for (int i = levtIndex + 1; i <= rightIndex; i++) {
int current = a[i];
int j = i - 1;
while (j >= levtIndex && a[j] > current) {
a[j + 1] = a[j];
j--;
}
a[j + 1] = current;
}
}
public void run() {
try {
long t1 = System.currentTimeMillis();
init();
solve();
out.close();
long t2 = System.currentTimeMillis();
System.err.println("Time = " + (t2 - t1));
} catch (Exception e) {
e.printStackTrace(System.err);
System.exit(-1);
}
}
class LOL implements Comparable<LOL> {
int x;
int y;
public LOL(int x, int y) {
this.x = x;
this.y = y;
}
@Override
public int compareTo(LOL o) {
return (x - o.x); // ---->
//return o.x * o.y - x * y; // <----
}
}
class LOL2 implements Comparable<LOL2> {
int x;
int y;
int z;
public LOL2(int x, int y, int z) {
this.x = x;
this.y = y;
this.z = z;
}
@Override
public int compareTo(LOL2 o) {
return (z - o.z); // ---->
//return o.x * o.y - x * y; // <----
}
}
class test implements Comparable<test> {
long x;
long y;
public test(long x, long y) {
this.x = x;
this.y = y;
}
@Override
public int compareTo(test o) {
//int compareResult = Long.compare(y, o.y); // ---->
//if (compareResult != 0) {
// return -compareResult;
//}
int compareResult = Long.compare(x, o.x);
if (compareResult != 0) {
return compareResult;
}
return Long.compare(y, o.y);
//return o.x * o.y - x * y; // <----
}
}
class data {
String name;
String city;
data(String name, String city) {
this.city = city;
this.name = name;
}
}
class Point {
double x;
double y;
Point(double x, double y) {
this.x = x;
this.y = y;
}
double distance(Point temp) {
return Math.sqrt((x - temp.x) * (x - temp.x) + (y - temp.y) * (y - temp.y));
}
double sqrDist(Point temp) {
return ((x - temp.x) * (x - temp.x) + (y - temp.y) * (y - temp.y));
}
Point rotate(double alpha) {
return new Point(x * cos(alpha) - y * sin(alpha), x * sin(alpha) + y * cos(alpha));
}
void sum(Point o) {
x += o.x;
y += o.y;
}
void scalarProduct(int alpha) {
x *= alpha;
y *= alpha;
}
}
class Line {
double a;
double b;
double c;
Line(Point A, Point B) {
a = B.y - A.y;
b = A.x - B.x;
c = -A.x * a - A.y * b;
}
Line(double a, double b, double c) {
this.a = a;
this.b = b;
this.c = c;
}
Point intersection(Line o) {
double det = a * o.b - b * o.a;
double det1 = -c * o.b + b * o.c;
double det2 = -a * o.c + c * o.a;
return new Point(det1 / det, det2 / det);
}
}
/* class Plane {
double a;
double b;
double c;
double d;
Plane (Point fir, Point sec, Point thi) {
double del1 = (sec.y - fir.y) * (thi.z - fir.z) - (thi.y - fir.y) * (sec.z - fir.z);
double del2 = (thi.x - fir.x) * (sec.z - fir.z) - (thi.z - fir.z) * (sec.x - fir.x);
double del3 = (thi.y - fir.y) * (sec.x - fir.x) - (thi.x - fir.x) * (sec.y - fir.y);
a = del1;
b = del2;
c = del3;
d = -fir.x * del1 - fir.y * del2 - fir.z * del3;
}
double distance(Point point) {
return abs(a * point.x + b * point.y + c * point.z + d) / sqrt(a * a + b * b + c * c);
}
} */
class record implements Comparable<record> {
String city;
Long score;
public record(String name, Long score) {
this.city = name;
this.score = score;
}
@Override
public int compareTo(record o) {
if (o.city.equals(city)) {
return 0;
}
if (score.equals(o.score)) {
return 1;
}
if (score > o.score) {
return 666;
} else {
return -666;
}
//return Long.compare(score, o.score);
}
}
public long gcd(long a, long b) {
if (a == 0 || b == 0) return max(a, b);
if (a % b == 0)
return b;
else
return gcd(b, a % b);
}
boolean prime(long n) {
if (n == 1) return false;
for (int i = 2; i <= sqrt(n); i++)
if (n % i == 0)
return false;
return true;
}
public int sum(long n) {
int s = 0;
while (n > 0) {
s += (n % 10);
n /= 10;
}
return s;
}
/* public void simulation(int k) {
long ans = 0;
int start = 1;
for (int i = 0; i < k; i++) {
start *= 10;
}
for (int i = start/10; i < start; i++) {
int locAns = 0;
for (int j = start/10; j < start; j++) {
if (sum(i + j) == sum(i) + sum(j) ) {
ans += 1;
locAns += 1;
} else {
//.println(i + "!!!" + j);
}
}
//out.println(i + " " + locAns);
}
out.println(ans);
}*/
ArrayList<Integer> primes;
boolean[] isPrime;
public void getPrimes (int n) {
isPrime[0] = false;
isPrime[1] = false;
for (int i = 2; i <= n; i++) {
if (isPrime[i]) {
primes.add(i);
if (1l * i * i <= n) {
for (int j = i * i; j <= n; j += i) {
isPrime[j] = false;
}
}
}
}
}
public long binPowMod(long a, long b, long mod) {
if (b == 0) {
return 1 % mod;
}
if (b % 2 != 0) {
return ((a % mod) * (binPowMod(a, b - 1, mod) % mod)) % mod;
} else {
long temp = binPowMod(a, b / 2, mod) % mod;
long ans = (temp * temp) % mod;
return ans;
}
}
int type[];
boolean vis[];
HashMap<Integer, HashSet<Integer>> g;
int componentNum[];
/* void dfs(int u, int numOfComponent) {
vis[u] = true;
componentNum[u] = numOfComponent;
for (Integer v: g.get(u)) {
if (!vis[v]) {
dfs(v, numOfComponent);
}
}
} */
int p[];
int find(int x) {
if (x == p[x]) {
return x;
}
return p[x] = find(p[x]);
}
boolean merge(int x, int y) {
x = find(x);
y = find(y);
if (p[x] == p[y]) {
return false;
}
p[y] = x;
return true;
}
class Trajectory {
double x0;
double y0;
double vx;
double vy;
Trajectory(double vx, double vy, double x0, double y0) {
this.vx = vx;
this.vy = vy;
this.x0 = x0;
this.y0 = y0;
}
double y (double x) {
return y0 + (x - x0) * (vy / vx) - 5 * (x - x0) * (x - x0) / (vx * vx);
}
double der(double x) {
return (vy / vx) - 10 * (x - x0) / (vx * vx);
}
}
int s;
int n;
int m;
boolean isVisited[][];
char[][] maze;
int[] dx = {0, 0, -1, 1};
int[] dy = {1, -1, 0, 0};
void dfs(int x, int y) {
isVisited[x][y] = true;
for (int i = 0; i < 4; i++) {
int currX = x + dx[i];
int currY = y + dy[i];
if (maze[currX][currY] == '.' && !isVisited[currX][currY]) {
dfs(currX, currY);
}
}
}
public void solve() throws IOException {
n = readInt();
m = readInt();
maze = new char[n + 2][m + 2];
for (int i = 0; i < n + 2; i++) {
maze[i][0] = '#';
maze[i][m + 1] = '#';
}
for (int j = 0; j < m + 2; j++) {
maze[0][j] = '#';
maze[n + 1][j] = '#';
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
maze[i][j] = '.';
}
}
int[][] dist = new int[n + 2][m + 2];
for (int i = 0; i < n + 2; i++) {
for (int j = 0; j < m + 2; j++) {
dist[i][j] = Integer.MAX_VALUE;
}
}
ArrayDeque<Integer> xValues = new ArrayDeque<Integer>();
ArrayDeque<Integer> yValues = new ArrayDeque<Integer>();
int k = readInt();
for (int i = 0; i < k; i++) {
int currX = readInt();
int currY = readInt();
xValues.add(currX);
yValues.add(currY);
dist[currX][currY] = 0;
}
while(!xValues.isEmpty()) {
int x = xValues.poll();
int y = yValues.poll();
for (int i = 0; i < 4; i++) {
int currX = x + dx[i];
int currY = y + dy[i];
if (maze[currX][currY] == '.' && dist[currX][currY] > dist[x][y] + 1) {
dist[currX][currY] = dist[x][y] + 1;
xValues.add(currX);
yValues.add(currY);
}
}
}
int maxDist = 0;
int indexX = 0;
int indexY = 0;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
if (dist[i][j] >= maxDist) {
maxDist = dist[i][j];
indexX = i;
indexY = j;
}
}
}
out.print(indexX + " " + indexY);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 3,844 | 3,680 |
3,117 |
import java.io.InputStreamReader;
import java.util.Scanner;
import java.io.IOException;
public class kresz {
public static double a;
public static double v;
public static double l;
public static double d;
public static double w;
public static double gyorsulut (double v1, double v2) { //v1 -> v2 mennyi utat tesz meg
return Math.abs((v2*v2-v1*v1)/(2*a));
}
public static double gyorsulido (double v1, double v2) { //v1 -> v2 mennyi idő
return Math.abs((v2-v1)/a);
}
public static void beolvas () throws IOException {
Scanner be = new Scanner (new InputStreamReader (System.in));
a = be.nextDouble();
v = be.nextDouble();
l = be.nextDouble();
d = be.nextDouble();
w = be.nextDouble();
be.close();
}
public static void main (String args[]) throws IOException {
beolvas();
double s = l; //hátralévő út
double t = 0; //eltelt idő
if (v <= w || Math.sqrt(2*a*d) <= w) { //nincs korlátozás
if (gyorsulut(0,v) > l) {
t+=gyorsulido(0, Math.sqrt(2*a*l));
s = 0;
}
else {
s-=gyorsulut(0,v);
t+=gyorsulido(0,v);
}
}
else {
//gyorsuló szakaszok a korlátozásig
if (d < gyorsulut(0,v)+gyorsulut(v,w)) {
double x = Math.sqrt(a*(d-w*w/(2*a))+w*w);
s-=gyorsulut(0,w)+2*gyorsulut(w,x);
t+=gyorsulido(0,w)+2*gyorsulido(w,x);
}
else {
s-=gyorsulut(0,v)+gyorsulut(w,v);
t+=gyorsulido(0,v)+gyorsulido(w,v);
}
//gyorsuló szakaszok a korlátozástól
if (gyorsulut(v,w) > l-d) {
double y = Math.sqrt(2*a*(l-d)+w*w);
s-= gyorsulut(w,y);
t+=gyorsulido(w,y);
}
else {
s-=gyorsulut(w,v);
t+=gyorsulido(w,v);
}
}
t+=s/v; //nem gyorsuló szakaszok ideje
System.out.println(t);
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.InputStreamReader;
import java.util.Scanner;
import java.io.IOException;
public class kresz {
public static double a;
public static double v;
public static double l;
public static double d;
public static double w;
public static double gyorsulut (double v1, double v2) { //v1 -> v2 mennyi utat tesz meg
return Math.abs((v2*v2-v1*v1)/(2*a));
}
public static double gyorsulido (double v1, double v2) { //v1 -> v2 mennyi idő
return Math.abs((v2-v1)/a);
}
public static void beolvas () throws IOException {
Scanner be = new Scanner (new InputStreamReader (System.in));
a = be.nextDouble();
v = be.nextDouble();
l = be.nextDouble();
d = be.nextDouble();
w = be.nextDouble();
be.close();
}
public static void main (String args[]) throws IOException {
beolvas();
double s = l; //hátralévő út
double t = 0; //eltelt idő
if (v <= w || Math.sqrt(2*a*d) <= w) { //nincs korlátozás
if (gyorsulut(0,v) > l) {
t+=gyorsulido(0, Math.sqrt(2*a*l));
s = 0;
}
else {
s-=gyorsulut(0,v);
t+=gyorsulido(0,v);
}
}
else {
//gyorsuló szakaszok a korlátozásig
if (d < gyorsulut(0,v)+gyorsulut(v,w)) {
double x = Math.sqrt(a*(d-w*w/(2*a))+w*w);
s-=gyorsulut(0,w)+2*gyorsulut(w,x);
t+=gyorsulido(0,w)+2*gyorsulido(w,x);
}
else {
s-=gyorsulut(0,v)+gyorsulut(w,v);
t+=gyorsulido(0,v)+gyorsulido(w,v);
}
//gyorsuló szakaszok a korlátozástól
if (gyorsulut(v,w) > l-d) {
double y = Math.sqrt(2*a*(l-d)+w*w);
s-= gyorsulut(w,y);
t+=gyorsulido(w,y);
}
else {
s-=gyorsulut(w,v);
t+=gyorsulido(w,v);
}
}
t+=s/v; //nem gyorsuló szakaszok ideje
System.out.println(t);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.InputStreamReader;
import java.util.Scanner;
import java.io.IOException;
public class kresz {
public static double a;
public static double v;
public static double l;
public static double d;
public static double w;
public static double gyorsulut (double v1, double v2) { //v1 -> v2 mennyi utat tesz meg
return Math.abs((v2*v2-v1*v1)/(2*a));
}
public static double gyorsulido (double v1, double v2) { //v1 -> v2 mennyi idő
return Math.abs((v2-v1)/a);
}
public static void beolvas () throws IOException {
Scanner be = new Scanner (new InputStreamReader (System.in));
a = be.nextDouble();
v = be.nextDouble();
l = be.nextDouble();
d = be.nextDouble();
w = be.nextDouble();
be.close();
}
public static void main (String args[]) throws IOException {
beolvas();
double s = l; //hátralévő út
double t = 0; //eltelt idő
if (v <= w || Math.sqrt(2*a*d) <= w) { //nincs korlátozás
if (gyorsulut(0,v) > l) {
t+=gyorsulido(0, Math.sqrt(2*a*l));
s = 0;
}
else {
s-=gyorsulut(0,v);
t+=gyorsulido(0,v);
}
}
else {
//gyorsuló szakaszok a korlátozásig
if (d < gyorsulut(0,v)+gyorsulut(v,w)) {
double x = Math.sqrt(a*(d-w*w/(2*a))+w*w);
s-=gyorsulut(0,w)+2*gyorsulut(w,x);
t+=gyorsulido(0,w)+2*gyorsulido(w,x);
}
else {
s-=gyorsulut(0,v)+gyorsulut(w,v);
t+=gyorsulido(0,v)+gyorsulido(w,v);
}
//gyorsuló szakaszok a korlátozástól
if (gyorsulut(v,w) > l-d) {
double y = Math.sqrt(2*a*(l-d)+w*w);
s-= gyorsulut(w,y);
t+=gyorsulido(w,y);
}
else {
s-=gyorsulut(w,v);
t+=gyorsulido(w,v);
}
}
t+=s/v; //nem gyorsuló szakaszok ideje
System.out.println(t);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 962 | 3,111 |
3,767 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
DExplorerSpace solver = new DExplorerSpace();
solver.solve(1, in, out);
out.close();
}
static class DExplorerSpace {
static final int oo = 1000000000;
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.nextInt(), m = in.nextInt(), k = in.nextInt();
int[][] right = new int[n][m - 1];
int[][] down = new int[n - 1][m];
for (int i = 0; i < n; i++) right[i] = in.readIntArray(m - 1);
for (int i = 0; i + 1 < n; i++) down[i] = in.readIntArray(m);
if (k % 2 == 1) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) out.print(-1 + " ");
out.println();
}
return;
}
int[][][] dp = new int[k / 2 + 1][n][m];
for (int r = 1; 2 * r <= k; r++) {
for (int i = 0; i < n; i++) Arrays.fill(dp[r][i], oo);
for (int i = 0; i < n; i++)
for (int j = 0; j < m - 1; j++) {
int cost = right[i][j];
dp[r][i][j] = Integer.min(dp[r][i][j], dp[r - 1][i][j + 1] + cost);
dp[r][i][j + 1] = Integer.min(dp[r][i][j + 1], dp[r - 1][i][j] + cost);
}
for (int i = 0; i + 1 < n; i++)
for (int j = 0; j < m; j++) {
int cost = down[i][j];
dp[r][i][j] = Integer.min(dp[r][i][j], dp[r - 1][i + 1][j] + cost);
dp[r][i + 1][j] = Integer.min(dp[r][i + 1][j], dp[r - 1][i][j] + cost);
}
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
out.print(2 * dp[k / 2][i][j] + " ");
}
out.println();
}
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
}
public void println(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
writer.print('\n');
}
public void close() {
writer.close();
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int[] readIntArray(int size) {
int[] array = new int[size];
for (int i = 0; i < size; i++) {
array[i] = readInt();
}
return array;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c)) c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public int readInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
DExplorerSpace solver = new DExplorerSpace();
solver.solve(1, in, out);
out.close();
}
static class DExplorerSpace {
static final int oo = 1000000000;
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.nextInt(), m = in.nextInt(), k = in.nextInt();
int[][] right = new int[n][m - 1];
int[][] down = new int[n - 1][m];
for (int i = 0; i < n; i++) right[i] = in.readIntArray(m - 1);
for (int i = 0; i + 1 < n; i++) down[i] = in.readIntArray(m);
if (k % 2 == 1) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) out.print(-1 + " ");
out.println();
}
return;
}
int[][][] dp = new int[k / 2 + 1][n][m];
for (int r = 1; 2 * r <= k; r++) {
for (int i = 0; i < n; i++) Arrays.fill(dp[r][i], oo);
for (int i = 0; i < n; i++)
for (int j = 0; j < m - 1; j++) {
int cost = right[i][j];
dp[r][i][j] = Integer.min(dp[r][i][j], dp[r - 1][i][j + 1] + cost);
dp[r][i][j + 1] = Integer.min(dp[r][i][j + 1], dp[r - 1][i][j] + cost);
}
for (int i = 0; i + 1 < n; i++)
for (int j = 0; j < m; j++) {
int cost = down[i][j];
dp[r][i][j] = Integer.min(dp[r][i][j], dp[r - 1][i + 1][j] + cost);
dp[r][i + 1][j] = Integer.min(dp[r][i + 1][j], dp[r - 1][i][j] + cost);
}
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
out.print(2 * dp[k / 2][i][j] + " ");
}
out.println();
}
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
}
public void println(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
writer.print('\n');
}
public void close() {
writer.close();
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int[] readIntArray(int size) {
int[] array = new int[size];
for (int i = 0; i < size; i++) {
array[i] = readInt();
}
return array;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c)) c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public int readInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
DExplorerSpace solver = new DExplorerSpace();
solver.solve(1, in, out);
out.close();
}
static class DExplorerSpace {
static final int oo = 1000000000;
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.nextInt(), m = in.nextInt(), k = in.nextInt();
int[][] right = new int[n][m - 1];
int[][] down = new int[n - 1][m];
for (int i = 0; i < n; i++) right[i] = in.readIntArray(m - 1);
for (int i = 0; i + 1 < n; i++) down[i] = in.readIntArray(m);
if (k % 2 == 1) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) out.print(-1 + " ");
out.println();
}
return;
}
int[][][] dp = new int[k / 2 + 1][n][m];
for (int r = 1; 2 * r <= k; r++) {
for (int i = 0; i < n; i++) Arrays.fill(dp[r][i], oo);
for (int i = 0; i < n; i++)
for (int j = 0; j < m - 1; j++) {
int cost = right[i][j];
dp[r][i][j] = Integer.min(dp[r][i][j], dp[r - 1][i][j + 1] + cost);
dp[r][i][j + 1] = Integer.min(dp[r][i][j + 1], dp[r - 1][i][j] + cost);
}
for (int i = 0; i + 1 < n; i++)
for (int j = 0; j < m; j++) {
int cost = down[i][j];
dp[r][i][j] = Integer.min(dp[r][i][j], dp[r - 1][i + 1][j] + cost);
dp[r][i + 1][j] = Integer.min(dp[r][i + 1][j], dp[r - 1][i][j] + cost);
}
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
out.print(2 * dp[k / 2][i][j] + " ");
}
out.println();
}
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
}
public void println(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
writer.print('\n');
}
public void close() {
writer.close();
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int[] readIntArray(int size) {
int[] array = new int[size];
for (int i = 0; i < size; i++) {
array[i] = readInt();
}
return array;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c)) c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public int readInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,793 | 3,759 |
917 |
import java.io.BufferedReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.io.ObjectInputStream.GetField;
import java.security.KeyStore.Entry;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.PriorityQueue;
import java.util.Queue;
import java.util.Stack;
import java.util.StringTokenizer;
import java.util.TreeMap;
import java.util.TreeSet;
import javax.swing.JLabel;
public class codeforcesreturn {
static class edge {
int u;
int v;
public edge(int u, int v) {
this.u = u;
this.v = v;
}
}
static ArrayList<Integer>[] adjlist;
static int[][] adjmatrix;
static int[][] adjmatrix2;
static boolean[] vis;
static boolean[] intialvis;
static boolean[] vis2;
static int[] counter;
static int V, E;
static Stack<Integer> st;
static ArrayList<Integer> arrylist;
static boolean flag;
static int[] dx = new int[] { 1, -1, 0, 0 };
static int[] dy = new int[] { 0, 0, 1, -1 };
static int[] Arr;
static PrintWriter pw;
static boolean ans = true;;
public static long gcd(long u, long v) {
if (u == 0)
return v;
return gcd(v % u, u);
}
public static void bib(int u) {
vis[u] = true;
for (int v : adjlist[u]) {
if (!vis[v]) {
counter[v] = 1 ^ counter[u];
bib(v);
} else if (counter[v] != (1 ^ counter[u]))
ans = false;
}
}
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
// FileWriter f = new FileWriter("C:\\Users\\Hp\\Desktop\\out.txt");
PrintWriter pw = new PrintWriter(System.out);
int n = sc.nextInt();
int k = sc.nextInt();
int sum = n;
for (long i = 0; i < 1e5; i++) {
if (i * (i + 1) / 2 - (n - i) == k) {
System.out.println(n - i);
break;
}
}
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public boolean ready() throws IOException {
return br.ready();
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.io.ObjectInputStream.GetField;
import java.security.KeyStore.Entry;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.PriorityQueue;
import java.util.Queue;
import java.util.Stack;
import java.util.StringTokenizer;
import java.util.TreeMap;
import java.util.TreeSet;
import javax.swing.JLabel;
public class codeforcesreturn {
static class edge {
int u;
int v;
public edge(int u, int v) {
this.u = u;
this.v = v;
}
}
static ArrayList<Integer>[] adjlist;
static int[][] adjmatrix;
static int[][] adjmatrix2;
static boolean[] vis;
static boolean[] intialvis;
static boolean[] vis2;
static int[] counter;
static int V, E;
static Stack<Integer> st;
static ArrayList<Integer> arrylist;
static boolean flag;
static int[] dx = new int[] { 1, -1, 0, 0 };
static int[] dy = new int[] { 0, 0, 1, -1 };
static int[] Arr;
static PrintWriter pw;
static boolean ans = true;;
public static long gcd(long u, long v) {
if (u == 0)
return v;
return gcd(v % u, u);
}
public static void bib(int u) {
vis[u] = true;
for (int v : adjlist[u]) {
if (!vis[v]) {
counter[v] = 1 ^ counter[u];
bib(v);
} else if (counter[v] != (1 ^ counter[u]))
ans = false;
}
}
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
// FileWriter f = new FileWriter("C:\\Users\\Hp\\Desktop\\out.txt");
PrintWriter pw = new PrintWriter(System.out);
int n = sc.nextInt();
int k = sc.nextInt();
int sum = n;
for (long i = 0; i < 1e5; i++) {
if (i * (i + 1) / 2 - (n - i) == k) {
System.out.println(n - i);
break;
}
}
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public boolean ready() throws IOException {
return br.ready();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.io.ObjectInputStream.GetField;
import java.security.KeyStore.Entry;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.PriorityQueue;
import java.util.Queue;
import java.util.Stack;
import java.util.StringTokenizer;
import java.util.TreeMap;
import java.util.TreeSet;
import javax.swing.JLabel;
public class codeforcesreturn {
static class edge {
int u;
int v;
public edge(int u, int v) {
this.u = u;
this.v = v;
}
}
static ArrayList<Integer>[] adjlist;
static int[][] adjmatrix;
static int[][] adjmatrix2;
static boolean[] vis;
static boolean[] intialvis;
static boolean[] vis2;
static int[] counter;
static int V, E;
static Stack<Integer> st;
static ArrayList<Integer> arrylist;
static boolean flag;
static int[] dx = new int[] { 1, -1, 0, 0 };
static int[] dy = new int[] { 0, 0, 1, -1 };
static int[] Arr;
static PrintWriter pw;
static boolean ans = true;;
public static long gcd(long u, long v) {
if (u == 0)
return v;
return gcd(v % u, u);
}
public static void bib(int u) {
vis[u] = true;
for (int v : adjlist[u]) {
if (!vis[v]) {
counter[v] = 1 ^ counter[u];
bib(v);
} else if (counter[v] != (1 ^ counter[u]))
ans = false;
}
}
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
// FileWriter f = new FileWriter("C:\\Users\\Hp\\Desktop\\out.txt");
PrintWriter pw = new PrintWriter(System.out);
int n = sc.nextInt();
int k = sc.nextInt();
int sum = n;
for (long i = 0; i < 1e5; i++) {
if (i * (i + 1) / 2 - (n - i) == k) {
System.out.println(n - i);
break;
}
}
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public boolean ready() throws IOException {
return br.ready();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,184 | 916 |
2,007 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.io.OutputStreamWriter;
import java.util.NoSuchElementException;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.Iterator;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.Writer;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author aryssoncf
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskD solver = new TaskD();
solver.solve(1, in, out);
out.close();
}
static class TaskD {
public void solve(int testNumber, InputReader in, OutputWriter out) {
try {
int n = in.readInt();
int[] x = new int[n], w = new int[n];
in.readIntArrays(x, w);
int[] begin = new int[n], end = new int[n];
Arrays.setAll(begin, i -> x[i] - w[i]);
Arrays.setAll(end, i -> x[i] + w[i]);
int m = ArrayUtils.compress(begin, end).length;
int[] dp = new int[m + 1], order = ArrayUtils.order(end);
int idx = 0;
for (int i = 0; i < m; i++) {
if (i > 0) {
dp[i] = dp[i - 1];
}
while (idx < n && end[order[idx]] == i) {
dp[i] = Math.max(dp[i], dp[begin[order[idx]]] + 1);
idx++;
}
}
int res = dp[m - 1];
out.printLine(res);
} catch (Exception e) {
e.printStackTrace();
}
}
}
static class Sorter {
private static final int INSERTION_THRESHOLD = 16;
private Sorter() {
}
public static void sort(IntList list, IntComparator comparator) {
quickSort(list, 0, list.size() - 1, (Integer.bitCount(Integer.highestOneBit(list.size()) - 1) * 5) >> 1,
comparator);
}
private static void quickSort(IntList list, int from, int to, int remaining, IntComparator comparator) {
if (to - from < INSERTION_THRESHOLD) {
insertionSort(list, from, to, comparator);
return;
}
if (remaining == 0) {
heapSort(list, from, to, comparator);
return;
}
remaining--;
int pivotIndex = (from + to) >> 1;
int pivot = list.get(pivotIndex);
list.swap(pivotIndex, to);
int storeIndex = from;
int equalIndex = to;
for (int i = from; i < equalIndex; i++) {
int value = comparator.compare(list.get(i), pivot);
if (value < 0) {
list.swap(storeIndex++, i);
} else if (value == 0) {
list.swap(--equalIndex, i--);
}
}
quickSort(list, from, storeIndex - 1, remaining, comparator);
for (int i = equalIndex; i <= to; i++) {
list.swap(storeIndex++, i);
}
quickSort(list, storeIndex, to, remaining, comparator);
}
private static void heapSort(IntList list, int from, int to, IntComparator comparator) {
for (int i = (to + from - 1) >> 1; i >= from; i--) {
siftDown(list, i, to, comparator, from);
}
for (int i = to; i > from; i--) {
list.swap(from, i);
siftDown(list, from, i - 1, comparator, from);
}
}
private static void siftDown(IntList list, int start, int end, IntComparator comparator, int delta) {
int value = list.get(start);
while (true) {
int child = ((start - delta) << 1) + 1 + delta;
if (child > end) {
return;
}
int childValue = list.get(child);
if (child + 1 <= end) {
int otherValue = list.get(child + 1);
if (comparator.compare(otherValue, childValue) > 0) {
child++;
childValue = otherValue;
}
}
if (comparator.compare(value, childValue) >= 0) {
return;
}
list.swap(start, child);
start = child;
}
}
private static void insertionSort(IntList list, int from, int to, IntComparator comparator) {
for (int i = from + 1; i <= to; i++) {
int value = list.get(i);
for (int j = i - 1; j >= from; j--) {
if (comparator.compare(list.get(j), value) <= 0) {
break;
}
list.swap(j, j + 1);
}
}
}
}
static interface IntList extends IntReversableCollection {
public abstract int get(int index);
public abstract void set(int index, int value);
public abstract void addAt(int index, int value);
public abstract void removeAt(int index);
default public void swap(int first, int second) {
if (first == second) {
return;
}
int temp = get(first);
set(first, get(second));
set(second, temp);
}
default public IntIterator intIterator() {
return new IntIterator() {
private int at;
private boolean removed;
public int value() {
if (removed) {
throw new IllegalStateException();
}
return get(at);
}
public boolean advance() {
at++;
removed = false;
return isValid();
}
public boolean isValid() {
return !removed && at < size();
}
public void remove() {
removeAt(at);
at--;
removed = true;
}
};
}
default public void add(int value) {
addAt(size(), value);
}
default public IntList sort(IntComparator comparator) {
Sorter.sort(this, comparator);
return this;
}
default IntList unique() {
int last = Integer.MIN_VALUE;
IntList result = new IntArrayList();
int size = size();
for (int i = 0; i < size; i++) {
int current = get(i);
if (current != last) {
result.add(current);
last = current;
}
}
return result;
}
default public IntList subList(final int from, final int to) {
return new IntList() {
private final int shift;
private final int size;
{
if (from < 0 || from > to || to > IntList.this.size()) {
throw new IndexOutOfBoundsException("from = " + from + ", to = " + to + ", size = " + size());
}
shift = from;
size = to - from;
}
public int size() {
return size;
}
public int get(int at) {
if (at < 0 || at >= size) {
throw new IndexOutOfBoundsException("at = " + at + ", size = " + size());
}
return IntList.this.get(at + shift);
}
public void addAt(int index, int value) {
throw new UnsupportedOperationException();
}
public void removeAt(int index) {
throw new UnsupportedOperationException();
}
public void set(int at, int value) {
if (at < 0 || at >= size) {
throw new IndexOutOfBoundsException("at = " + at + ", size = " + size());
}
IntList.this.set(at + shift, value);
}
public IntList compute() {
return new IntArrayList(this);
}
};
}
}
static interface IntComparator {
IntComparator DEFAULT = Integer::compare;
int compare(int first, int second);
}
static class Range {
public static IntList range(int from, int to) {
int[] result = new int[Math.abs(from - to)];
int current = from;
if (from <= to) {
for (int i = 0; i < result.length; i++) {
result[i] = current++;
}
} else {
for (int i = 0; i < result.length; i++) {
result[i] = current--;
}
}
return new IntArray(result);
}
}
static interface IntReversableCollection extends IntCollection {
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void printLine(int i) {
writer.println(i);
}
}
static interface IntStream extends Iterable<Integer>, Comparable<IntStream> {
IntIterator intIterator();
default Iterator<Integer> iterator() {
return new Iterator<Integer>() {
private IntIterator it = intIterator();
public boolean hasNext() {
return it.isValid();
}
public Integer next() {
int result = it.value();
it.advance();
return result;
}
};
}
default int compareTo(IntStream c) {
IntIterator it = intIterator();
IntIterator jt = c.intIterator();
while (it.isValid() && jt.isValid()) {
int i = it.value();
int j = jt.value();
if (i < j) {
return -1;
} else if (i > j) {
return 1;
}
it.advance();
jt.advance();
}
if (it.isValid()) {
return 1;
}
if (jt.isValid()) {
return -1;
}
return 0;
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public void readIntArrays(int[]... arrays) {
for (int i = 0; i < arrays[0].length; i++) {
for (int j = 0; j < arrays.length; j++) {
arrays[j][i] = readInt();
}
}
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
boolean isSpaceChar(int ch);
}
}
static interface IntCollection extends IntStream {
public int size();
default public void add(int value) {
throw new UnsupportedOperationException();
}
default public int[] toArray() {
int size = size();
int[] array = new int[size];
int i = 0;
for (IntIterator it = intIterator(); it.isValid(); it.advance()) {
array[i++] = it.value();
}
return array;
}
default public IntCollection addAll(IntStream values) {
for (IntIterator it = values.intIterator(); it.isValid(); it.advance()) {
add(it.value());
}
return this;
}
}
static class IntArray extends IntAbstractStream implements IntList {
private int[] data;
public IntArray(int[] arr) {
data = arr;
}
public int size() {
return data.length;
}
public int get(int at) {
return data[at];
}
public void addAt(int index, int value) {
throw new UnsupportedOperationException();
}
public void removeAt(int index) {
throw new UnsupportedOperationException();
}
public void set(int index, int value) {
data[index] = value;
}
}
static class ArrayUtils {
public static int[] range(int from, int to) {
return Range.range(from, to).toArray();
}
public static int[] createOrder(int size) {
return range(0, size);
}
public static int[] sort(int[] array, IntComparator comparator) {
return sort(array, 0, array.length, comparator);
}
public static int[] sort(int[] array, int from, int to, IntComparator comparator) {
if (from == 0 && to == array.length) {
new IntArray(array).sort(comparator);
} else {
new IntArray(array).subList(from, to).sort(comparator);
}
return array;
}
public static int[] order(final int[] array) {
return sort(createOrder(array.length), (first, second) -> Integer.compare(array[first], array[second]));
}
public static int[] unique(int[] array) {
return new IntArray(array).unique().toArray();
}
public static int[] compress(int[]... arrays) {
int totalLength = 0;
for (int[] array : arrays) {
totalLength += array.length;
}
int[] all = new int[totalLength];
int delta = 0;
for (int[] array : arrays) {
System.arraycopy(array, 0, all, delta, array.length);
delta += array.length;
}
sort(all, IntComparator.DEFAULT);
all = unique(all);
for (int[] array : arrays) {
for (int i = 0; i < array.length; i++) {
array[i] = Arrays.binarySearch(all, array[i]);
}
}
return all;
}
}
static interface IntIterator {
public int value() throws NoSuchElementException;
public boolean advance();
public boolean isValid();
}
static class IntArrayList extends IntAbstractStream implements IntList {
private int size;
private int[] data;
public IntArrayList() {
this(3);
}
public IntArrayList(int capacity) {
data = new int[capacity];
}
public IntArrayList(IntCollection c) {
this(c.size());
addAll(c);
}
public IntArrayList(IntStream c) {
this();
if (c instanceof IntCollection) {
ensureCapacity(((IntCollection) c).size());
}
addAll(c);
}
public IntArrayList(IntArrayList c) {
size = c.size();
data = c.data.clone();
}
public IntArrayList(int[] arr) {
size = arr.length;
data = arr.clone();
}
public int size() {
return size;
}
public int get(int at) {
if (at >= size) {
throw new IndexOutOfBoundsException("at = " + at + ", size = " + size);
}
return data[at];
}
private void ensureCapacity(int capacity) {
if (data.length >= capacity) {
return;
}
capacity = Math.max(2 * data.length, capacity);
data = Arrays.copyOf(data, capacity);
}
public void addAt(int index, int value) {
ensureCapacity(size + 1);
if (index > size || index < 0) {
throw new IndexOutOfBoundsException("at = " + index + ", size = " + size);
}
if (index != size) {
System.arraycopy(data, index, data, index + 1, size - index);
}
data[index] = value;
size++;
}
public void removeAt(int index) {
if (index >= size || index < 0) {
throw new IndexOutOfBoundsException("at = " + index + ", size = " + size);
}
if (index != size - 1) {
System.arraycopy(data, index + 1, data, index, size - index - 1);
}
size--;
}
public void set(int index, int value) {
if (index >= size) {
throw new IndexOutOfBoundsException("at = " + index + ", size = " + size);
}
data[index] = value;
}
public int[] toArray() {
return Arrays.copyOf(data, size);
}
}
static abstract class IntAbstractStream implements IntStream {
public String toString() {
StringBuilder builder = new StringBuilder();
boolean first = true;
for (IntIterator it = intIterator(); it.isValid(); it.advance()) {
if (first) {
first = false;
} else {
builder.append(' ');
}
builder.append(it.value());
}
return builder.toString();
}
public boolean equals(Object o) {
if (!(o instanceof IntStream)) {
return false;
}
IntStream c = (IntStream) o;
IntIterator it = intIterator();
IntIterator jt = c.intIterator();
while (it.isValid() && jt.isValid()) {
if (it.value() != jt.value()) {
return false;
}
it.advance();
jt.advance();
}
return !it.isValid() && !jt.isValid();
}
public int hashCode() {
int result = 0;
for (IntIterator it = intIterator(); it.isValid(); it.advance()) {
result *= 31;
result += it.value();
}
return result;
}
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.io.OutputStreamWriter;
import java.util.NoSuchElementException;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.Iterator;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.Writer;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author aryssoncf
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskD solver = new TaskD();
solver.solve(1, in, out);
out.close();
}
static class TaskD {
public void solve(int testNumber, InputReader in, OutputWriter out) {
try {
int n = in.readInt();
int[] x = new int[n], w = new int[n];
in.readIntArrays(x, w);
int[] begin = new int[n], end = new int[n];
Arrays.setAll(begin, i -> x[i] - w[i]);
Arrays.setAll(end, i -> x[i] + w[i]);
int m = ArrayUtils.compress(begin, end).length;
int[] dp = new int[m + 1], order = ArrayUtils.order(end);
int idx = 0;
for (int i = 0; i < m; i++) {
if (i > 0) {
dp[i] = dp[i - 1];
}
while (idx < n && end[order[idx]] == i) {
dp[i] = Math.max(dp[i], dp[begin[order[idx]]] + 1);
idx++;
}
}
int res = dp[m - 1];
out.printLine(res);
} catch (Exception e) {
e.printStackTrace();
}
}
}
static class Sorter {
private static final int INSERTION_THRESHOLD = 16;
private Sorter() {
}
public static void sort(IntList list, IntComparator comparator) {
quickSort(list, 0, list.size() - 1, (Integer.bitCount(Integer.highestOneBit(list.size()) - 1) * 5) >> 1,
comparator);
}
private static void quickSort(IntList list, int from, int to, int remaining, IntComparator comparator) {
if (to - from < INSERTION_THRESHOLD) {
insertionSort(list, from, to, comparator);
return;
}
if (remaining == 0) {
heapSort(list, from, to, comparator);
return;
}
remaining--;
int pivotIndex = (from + to) >> 1;
int pivot = list.get(pivotIndex);
list.swap(pivotIndex, to);
int storeIndex = from;
int equalIndex = to;
for (int i = from; i < equalIndex; i++) {
int value = comparator.compare(list.get(i), pivot);
if (value < 0) {
list.swap(storeIndex++, i);
} else if (value == 0) {
list.swap(--equalIndex, i--);
}
}
quickSort(list, from, storeIndex - 1, remaining, comparator);
for (int i = equalIndex; i <= to; i++) {
list.swap(storeIndex++, i);
}
quickSort(list, storeIndex, to, remaining, comparator);
}
private static void heapSort(IntList list, int from, int to, IntComparator comparator) {
for (int i = (to + from - 1) >> 1; i >= from; i--) {
siftDown(list, i, to, comparator, from);
}
for (int i = to; i > from; i--) {
list.swap(from, i);
siftDown(list, from, i - 1, comparator, from);
}
}
private static void siftDown(IntList list, int start, int end, IntComparator comparator, int delta) {
int value = list.get(start);
while (true) {
int child = ((start - delta) << 1) + 1 + delta;
if (child > end) {
return;
}
int childValue = list.get(child);
if (child + 1 <= end) {
int otherValue = list.get(child + 1);
if (comparator.compare(otherValue, childValue) > 0) {
child++;
childValue = otherValue;
}
}
if (comparator.compare(value, childValue) >= 0) {
return;
}
list.swap(start, child);
start = child;
}
}
private static void insertionSort(IntList list, int from, int to, IntComparator comparator) {
for (int i = from + 1; i <= to; i++) {
int value = list.get(i);
for (int j = i - 1; j >= from; j--) {
if (comparator.compare(list.get(j), value) <= 0) {
break;
}
list.swap(j, j + 1);
}
}
}
}
static interface IntList extends IntReversableCollection {
public abstract int get(int index);
public abstract void set(int index, int value);
public abstract void addAt(int index, int value);
public abstract void removeAt(int index);
default public void swap(int first, int second) {
if (first == second) {
return;
}
int temp = get(first);
set(first, get(second));
set(second, temp);
}
default public IntIterator intIterator() {
return new IntIterator() {
private int at;
private boolean removed;
public int value() {
if (removed) {
throw new IllegalStateException();
}
return get(at);
}
public boolean advance() {
at++;
removed = false;
return isValid();
}
public boolean isValid() {
return !removed && at < size();
}
public void remove() {
removeAt(at);
at--;
removed = true;
}
};
}
default public void add(int value) {
addAt(size(), value);
}
default public IntList sort(IntComparator comparator) {
Sorter.sort(this, comparator);
return this;
}
default IntList unique() {
int last = Integer.MIN_VALUE;
IntList result = new IntArrayList();
int size = size();
for (int i = 0; i < size; i++) {
int current = get(i);
if (current != last) {
result.add(current);
last = current;
}
}
return result;
}
default public IntList subList(final int from, final int to) {
return new IntList() {
private final int shift;
private final int size;
{
if (from < 0 || from > to || to > IntList.this.size()) {
throw new IndexOutOfBoundsException("from = " + from + ", to = " + to + ", size = " + size());
}
shift = from;
size = to - from;
}
public int size() {
return size;
}
public int get(int at) {
if (at < 0 || at >= size) {
throw new IndexOutOfBoundsException("at = " + at + ", size = " + size());
}
return IntList.this.get(at + shift);
}
public void addAt(int index, int value) {
throw new UnsupportedOperationException();
}
public void removeAt(int index) {
throw new UnsupportedOperationException();
}
public void set(int at, int value) {
if (at < 0 || at >= size) {
throw new IndexOutOfBoundsException("at = " + at + ", size = " + size());
}
IntList.this.set(at + shift, value);
}
public IntList compute() {
return new IntArrayList(this);
}
};
}
}
static interface IntComparator {
IntComparator DEFAULT = Integer::compare;
int compare(int first, int second);
}
static class Range {
public static IntList range(int from, int to) {
int[] result = new int[Math.abs(from - to)];
int current = from;
if (from <= to) {
for (int i = 0; i < result.length; i++) {
result[i] = current++;
}
} else {
for (int i = 0; i < result.length; i++) {
result[i] = current--;
}
}
return new IntArray(result);
}
}
static interface IntReversableCollection extends IntCollection {
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void printLine(int i) {
writer.println(i);
}
}
static interface IntStream extends Iterable<Integer>, Comparable<IntStream> {
IntIterator intIterator();
default Iterator<Integer> iterator() {
return new Iterator<Integer>() {
private IntIterator it = intIterator();
public boolean hasNext() {
return it.isValid();
}
public Integer next() {
int result = it.value();
it.advance();
return result;
}
};
}
default int compareTo(IntStream c) {
IntIterator it = intIterator();
IntIterator jt = c.intIterator();
while (it.isValid() && jt.isValid()) {
int i = it.value();
int j = jt.value();
if (i < j) {
return -1;
} else if (i > j) {
return 1;
}
it.advance();
jt.advance();
}
if (it.isValid()) {
return 1;
}
if (jt.isValid()) {
return -1;
}
return 0;
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public void readIntArrays(int[]... arrays) {
for (int i = 0; i < arrays[0].length; i++) {
for (int j = 0; j < arrays.length; j++) {
arrays[j][i] = readInt();
}
}
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
boolean isSpaceChar(int ch);
}
}
static interface IntCollection extends IntStream {
public int size();
default public void add(int value) {
throw new UnsupportedOperationException();
}
default public int[] toArray() {
int size = size();
int[] array = new int[size];
int i = 0;
for (IntIterator it = intIterator(); it.isValid(); it.advance()) {
array[i++] = it.value();
}
return array;
}
default public IntCollection addAll(IntStream values) {
for (IntIterator it = values.intIterator(); it.isValid(); it.advance()) {
add(it.value());
}
return this;
}
}
static class IntArray extends IntAbstractStream implements IntList {
private int[] data;
public IntArray(int[] arr) {
data = arr;
}
public int size() {
return data.length;
}
public int get(int at) {
return data[at];
}
public void addAt(int index, int value) {
throw new UnsupportedOperationException();
}
public void removeAt(int index) {
throw new UnsupportedOperationException();
}
public void set(int index, int value) {
data[index] = value;
}
}
static class ArrayUtils {
public static int[] range(int from, int to) {
return Range.range(from, to).toArray();
}
public static int[] createOrder(int size) {
return range(0, size);
}
public static int[] sort(int[] array, IntComparator comparator) {
return sort(array, 0, array.length, comparator);
}
public static int[] sort(int[] array, int from, int to, IntComparator comparator) {
if (from == 0 && to == array.length) {
new IntArray(array).sort(comparator);
} else {
new IntArray(array).subList(from, to).sort(comparator);
}
return array;
}
public static int[] order(final int[] array) {
return sort(createOrder(array.length), (first, second) -> Integer.compare(array[first], array[second]));
}
public static int[] unique(int[] array) {
return new IntArray(array).unique().toArray();
}
public static int[] compress(int[]... arrays) {
int totalLength = 0;
for (int[] array : arrays) {
totalLength += array.length;
}
int[] all = new int[totalLength];
int delta = 0;
for (int[] array : arrays) {
System.arraycopy(array, 0, all, delta, array.length);
delta += array.length;
}
sort(all, IntComparator.DEFAULT);
all = unique(all);
for (int[] array : arrays) {
for (int i = 0; i < array.length; i++) {
array[i] = Arrays.binarySearch(all, array[i]);
}
}
return all;
}
}
static interface IntIterator {
public int value() throws NoSuchElementException;
public boolean advance();
public boolean isValid();
}
static class IntArrayList extends IntAbstractStream implements IntList {
private int size;
private int[] data;
public IntArrayList() {
this(3);
}
public IntArrayList(int capacity) {
data = new int[capacity];
}
public IntArrayList(IntCollection c) {
this(c.size());
addAll(c);
}
public IntArrayList(IntStream c) {
this();
if (c instanceof IntCollection) {
ensureCapacity(((IntCollection) c).size());
}
addAll(c);
}
public IntArrayList(IntArrayList c) {
size = c.size();
data = c.data.clone();
}
public IntArrayList(int[] arr) {
size = arr.length;
data = arr.clone();
}
public int size() {
return size;
}
public int get(int at) {
if (at >= size) {
throw new IndexOutOfBoundsException("at = " + at + ", size = " + size);
}
return data[at];
}
private void ensureCapacity(int capacity) {
if (data.length >= capacity) {
return;
}
capacity = Math.max(2 * data.length, capacity);
data = Arrays.copyOf(data, capacity);
}
public void addAt(int index, int value) {
ensureCapacity(size + 1);
if (index > size || index < 0) {
throw new IndexOutOfBoundsException("at = " + index + ", size = " + size);
}
if (index != size) {
System.arraycopy(data, index, data, index + 1, size - index);
}
data[index] = value;
size++;
}
public void removeAt(int index) {
if (index >= size || index < 0) {
throw new IndexOutOfBoundsException("at = " + index + ", size = " + size);
}
if (index != size - 1) {
System.arraycopy(data, index + 1, data, index, size - index - 1);
}
size--;
}
public void set(int index, int value) {
if (index >= size) {
throw new IndexOutOfBoundsException("at = " + index + ", size = " + size);
}
data[index] = value;
}
public int[] toArray() {
return Arrays.copyOf(data, size);
}
}
static abstract class IntAbstractStream implements IntStream {
public String toString() {
StringBuilder builder = new StringBuilder();
boolean first = true;
for (IntIterator it = intIterator(); it.isValid(); it.advance()) {
if (first) {
first = false;
} else {
builder.append(' ');
}
builder.append(it.value());
}
return builder.toString();
}
public boolean equals(Object o) {
if (!(o instanceof IntStream)) {
return false;
}
IntStream c = (IntStream) o;
IntIterator it = intIterator();
IntIterator jt = c.intIterator();
while (it.isValid() && jt.isValid()) {
if (it.value() != jt.value()) {
return false;
}
it.advance();
jt.advance();
}
return !it.isValid() && !jt.isValid();
}
public int hashCode() {
int result = 0;
for (IntIterator it = intIterator(); it.isValid(); it.advance()) {
result *= 31;
result += it.value();
}
return result;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.io.OutputStreamWriter;
import java.util.NoSuchElementException;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.Iterator;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.Writer;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author aryssoncf
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskD solver = new TaskD();
solver.solve(1, in, out);
out.close();
}
static class TaskD {
public void solve(int testNumber, InputReader in, OutputWriter out) {
try {
int n = in.readInt();
int[] x = new int[n], w = new int[n];
in.readIntArrays(x, w);
int[] begin = new int[n], end = new int[n];
Arrays.setAll(begin, i -> x[i] - w[i]);
Arrays.setAll(end, i -> x[i] + w[i]);
int m = ArrayUtils.compress(begin, end).length;
int[] dp = new int[m + 1], order = ArrayUtils.order(end);
int idx = 0;
for (int i = 0; i < m; i++) {
if (i > 0) {
dp[i] = dp[i - 1];
}
while (idx < n && end[order[idx]] == i) {
dp[i] = Math.max(dp[i], dp[begin[order[idx]]] + 1);
idx++;
}
}
int res = dp[m - 1];
out.printLine(res);
} catch (Exception e) {
e.printStackTrace();
}
}
}
static class Sorter {
private static final int INSERTION_THRESHOLD = 16;
private Sorter() {
}
public static void sort(IntList list, IntComparator comparator) {
quickSort(list, 0, list.size() - 1, (Integer.bitCount(Integer.highestOneBit(list.size()) - 1) * 5) >> 1,
comparator);
}
private static void quickSort(IntList list, int from, int to, int remaining, IntComparator comparator) {
if (to - from < INSERTION_THRESHOLD) {
insertionSort(list, from, to, comparator);
return;
}
if (remaining == 0) {
heapSort(list, from, to, comparator);
return;
}
remaining--;
int pivotIndex = (from + to) >> 1;
int pivot = list.get(pivotIndex);
list.swap(pivotIndex, to);
int storeIndex = from;
int equalIndex = to;
for (int i = from; i < equalIndex; i++) {
int value = comparator.compare(list.get(i), pivot);
if (value < 0) {
list.swap(storeIndex++, i);
} else if (value == 0) {
list.swap(--equalIndex, i--);
}
}
quickSort(list, from, storeIndex - 1, remaining, comparator);
for (int i = equalIndex; i <= to; i++) {
list.swap(storeIndex++, i);
}
quickSort(list, storeIndex, to, remaining, comparator);
}
private static void heapSort(IntList list, int from, int to, IntComparator comparator) {
for (int i = (to + from - 1) >> 1; i >= from; i--) {
siftDown(list, i, to, comparator, from);
}
for (int i = to; i > from; i--) {
list.swap(from, i);
siftDown(list, from, i - 1, comparator, from);
}
}
private static void siftDown(IntList list, int start, int end, IntComparator comparator, int delta) {
int value = list.get(start);
while (true) {
int child = ((start - delta) << 1) + 1 + delta;
if (child > end) {
return;
}
int childValue = list.get(child);
if (child + 1 <= end) {
int otherValue = list.get(child + 1);
if (comparator.compare(otherValue, childValue) > 0) {
child++;
childValue = otherValue;
}
}
if (comparator.compare(value, childValue) >= 0) {
return;
}
list.swap(start, child);
start = child;
}
}
private static void insertionSort(IntList list, int from, int to, IntComparator comparator) {
for (int i = from + 1; i <= to; i++) {
int value = list.get(i);
for (int j = i - 1; j >= from; j--) {
if (comparator.compare(list.get(j), value) <= 0) {
break;
}
list.swap(j, j + 1);
}
}
}
}
static interface IntList extends IntReversableCollection {
public abstract int get(int index);
public abstract void set(int index, int value);
public abstract void addAt(int index, int value);
public abstract void removeAt(int index);
default public void swap(int first, int second) {
if (first == second) {
return;
}
int temp = get(first);
set(first, get(second));
set(second, temp);
}
default public IntIterator intIterator() {
return new IntIterator() {
private int at;
private boolean removed;
public int value() {
if (removed) {
throw new IllegalStateException();
}
return get(at);
}
public boolean advance() {
at++;
removed = false;
return isValid();
}
public boolean isValid() {
return !removed && at < size();
}
public void remove() {
removeAt(at);
at--;
removed = true;
}
};
}
default public void add(int value) {
addAt(size(), value);
}
default public IntList sort(IntComparator comparator) {
Sorter.sort(this, comparator);
return this;
}
default IntList unique() {
int last = Integer.MIN_VALUE;
IntList result = new IntArrayList();
int size = size();
for (int i = 0; i < size; i++) {
int current = get(i);
if (current != last) {
result.add(current);
last = current;
}
}
return result;
}
default public IntList subList(final int from, final int to) {
return new IntList() {
private final int shift;
private final int size;
{
if (from < 0 || from > to || to > IntList.this.size()) {
throw new IndexOutOfBoundsException("from = " + from + ", to = " + to + ", size = " + size());
}
shift = from;
size = to - from;
}
public int size() {
return size;
}
public int get(int at) {
if (at < 0 || at >= size) {
throw new IndexOutOfBoundsException("at = " + at + ", size = " + size());
}
return IntList.this.get(at + shift);
}
public void addAt(int index, int value) {
throw new UnsupportedOperationException();
}
public void removeAt(int index) {
throw new UnsupportedOperationException();
}
public void set(int at, int value) {
if (at < 0 || at >= size) {
throw new IndexOutOfBoundsException("at = " + at + ", size = " + size());
}
IntList.this.set(at + shift, value);
}
public IntList compute() {
return new IntArrayList(this);
}
};
}
}
static interface IntComparator {
IntComparator DEFAULT = Integer::compare;
int compare(int first, int second);
}
static class Range {
public static IntList range(int from, int to) {
int[] result = new int[Math.abs(from - to)];
int current = from;
if (from <= to) {
for (int i = 0; i < result.length; i++) {
result[i] = current++;
}
} else {
for (int i = 0; i < result.length; i++) {
result[i] = current--;
}
}
return new IntArray(result);
}
}
static interface IntReversableCollection extends IntCollection {
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void printLine(int i) {
writer.println(i);
}
}
static interface IntStream extends Iterable<Integer>, Comparable<IntStream> {
IntIterator intIterator();
default Iterator<Integer> iterator() {
return new Iterator<Integer>() {
private IntIterator it = intIterator();
public boolean hasNext() {
return it.isValid();
}
public Integer next() {
int result = it.value();
it.advance();
return result;
}
};
}
default int compareTo(IntStream c) {
IntIterator it = intIterator();
IntIterator jt = c.intIterator();
while (it.isValid() && jt.isValid()) {
int i = it.value();
int j = jt.value();
if (i < j) {
return -1;
} else if (i > j) {
return 1;
}
it.advance();
jt.advance();
}
if (it.isValid()) {
return 1;
}
if (jt.isValid()) {
return -1;
}
return 0;
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public void readIntArrays(int[]... arrays) {
for (int i = 0; i < arrays[0].length; i++) {
for (int j = 0; j < arrays.length; j++) {
arrays[j][i] = readInt();
}
}
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
boolean isSpaceChar(int ch);
}
}
static interface IntCollection extends IntStream {
public int size();
default public void add(int value) {
throw new UnsupportedOperationException();
}
default public int[] toArray() {
int size = size();
int[] array = new int[size];
int i = 0;
for (IntIterator it = intIterator(); it.isValid(); it.advance()) {
array[i++] = it.value();
}
return array;
}
default public IntCollection addAll(IntStream values) {
for (IntIterator it = values.intIterator(); it.isValid(); it.advance()) {
add(it.value());
}
return this;
}
}
static class IntArray extends IntAbstractStream implements IntList {
private int[] data;
public IntArray(int[] arr) {
data = arr;
}
public int size() {
return data.length;
}
public int get(int at) {
return data[at];
}
public void addAt(int index, int value) {
throw new UnsupportedOperationException();
}
public void removeAt(int index) {
throw new UnsupportedOperationException();
}
public void set(int index, int value) {
data[index] = value;
}
}
static class ArrayUtils {
public static int[] range(int from, int to) {
return Range.range(from, to).toArray();
}
public static int[] createOrder(int size) {
return range(0, size);
}
public static int[] sort(int[] array, IntComparator comparator) {
return sort(array, 0, array.length, comparator);
}
public static int[] sort(int[] array, int from, int to, IntComparator comparator) {
if (from == 0 && to == array.length) {
new IntArray(array).sort(comparator);
} else {
new IntArray(array).subList(from, to).sort(comparator);
}
return array;
}
public static int[] order(final int[] array) {
return sort(createOrder(array.length), (first, second) -> Integer.compare(array[first], array[second]));
}
public static int[] unique(int[] array) {
return new IntArray(array).unique().toArray();
}
public static int[] compress(int[]... arrays) {
int totalLength = 0;
for (int[] array : arrays) {
totalLength += array.length;
}
int[] all = new int[totalLength];
int delta = 0;
for (int[] array : arrays) {
System.arraycopy(array, 0, all, delta, array.length);
delta += array.length;
}
sort(all, IntComparator.DEFAULT);
all = unique(all);
for (int[] array : arrays) {
for (int i = 0; i < array.length; i++) {
array[i] = Arrays.binarySearch(all, array[i]);
}
}
return all;
}
}
static interface IntIterator {
public int value() throws NoSuchElementException;
public boolean advance();
public boolean isValid();
}
static class IntArrayList extends IntAbstractStream implements IntList {
private int size;
private int[] data;
public IntArrayList() {
this(3);
}
public IntArrayList(int capacity) {
data = new int[capacity];
}
public IntArrayList(IntCollection c) {
this(c.size());
addAll(c);
}
public IntArrayList(IntStream c) {
this();
if (c instanceof IntCollection) {
ensureCapacity(((IntCollection) c).size());
}
addAll(c);
}
public IntArrayList(IntArrayList c) {
size = c.size();
data = c.data.clone();
}
public IntArrayList(int[] arr) {
size = arr.length;
data = arr.clone();
}
public int size() {
return size;
}
public int get(int at) {
if (at >= size) {
throw new IndexOutOfBoundsException("at = " + at + ", size = " + size);
}
return data[at];
}
private void ensureCapacity(int capacity) {
if (data.length >= capacity) {
return;
}
capacity = Math.max(2 * data.length, capacity);
data = Arrays.copyOf(data, capacity);
}
public void addAt(int index, int value) {
ensureCapacity(size + 1);
if (index > size || index < 0) {
throw new IndexOutOfBoundsException("at = " + index + ", size = " + size);
}
if (index != size) {
System.arraycopy(data, index, data, index + 1, size - index);
}
data[index] = value;
size++;
}
public void removeAt(int index) {
if (index >= size || index < 0) {
throw new IndexOutOfBoundsException("at = " + index + ", size = " + size);
}
if (index != size - 1) {
System.arraycopy(data, index + 1, data, index, size - index - 1);
}
size--;
}
public void set(int index, int value) {
if (index >= size) {
throw new IndexOutOfBoundsException("at = " + index + ", size = " + size);
}
data[index] = value;
}
public int[] toArray() {
return Arrays.copyOf(data, size);
}
}
static abstract class IntAbstractStream implements IntStream {
public String toString() {
StringBuilder builder = new StringBuilder();
boolean first = true;
for (IntIterator it = intIterator(); it.isValid(); it.advance()) {
if (first) {
first = false;
} else {
builder.append(' ');
}
builder.append(it.value());
}
return builder.toString();
}
public boolean equals(Object o) {
if (!(o instanceof IntStream)) {
return false;
}
IntStream c = (IntStream) o;
IntIterator it = intIterator();
IntIterator jt = c.intIterator();
while (it.isValid() && jt.isValid()) {
if (it.value() != jt.value()) {
return false;
}
it.advance();
jt.advance();
}
return !it.isValid() && !jt.isValid();
}
public int hashCode() {
int result = 0;
for (IntIterator it = intIterator(); it.isValid(); it.advance()) {
result *= 31;
result += it.value();
}
return result;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 4,406 | 2,003 |
4,214 |
import java.util.Scanner;
public class Fishes {
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
int n = s.nextInt();
double[][] p = new double[n][n];
double[] dp = new double[1 << 18];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
p[i][j] = Double.parseDouble(s.next());
}
}
int last = 1 << n;
dp[last - 1] = 1.0;
for (int i = last - 2; i > 0; i--) {
int res = 0;
for (int j = 0; j < n; j++) {
if (((1 << j) & i) > 0) res++;
}
res++;
res = res * (res - 1) / 2;
for (int j = 0; j < n; j++) {
if (((1 << j) & i) == 0) {
for (int z = 0; z < n; z++) {
if (((1 << z) & i) > 0) {
dp[i] += dp[i | (1 << j)] * 1.0 / res * p[z][j];
}
}
}
}
}
for (int i = 0; i < n; i++) {
System.out.print(dp[1 << i] + " ");
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class Fishes {
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
int n = s.nextInt();
double[][] p = new double[n][n];
double[] dp = new double[1 << 18];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
p[i][j] = Double.parseDouble(s.next());
}
}
int last = 1 << n;
dp[last - 1] = 1.0;
for (int i = last - 2; i > 0; i--) {
int res = 0;
for (int j = 0; j < n; j++) {
if (((1 << j) & i) > 0) res++;
}
res++;
res = res * (res - 1) / 2;
for (int j = 0; j < n; j++) {
if (((1 << j) & i) == 0) {
for (int z = 0; z < n; z++) {
if (((1 << z) & i) > 0) {
dp[i] += dp[i | (1 << j)] * 1.0 / res * p[z][j];
}
}
}
}
}
for (int i = 0; i < n; i++) {
System.out.print(dp[1 << i] + " ");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class Fishes {
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
int n = s.nextInt();
double[][] p = new double[n][n];
double[] dp = new double[1 << 18];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
p[i][j] = Double.parseDouble(s.next());
}
}
int last = 1 << n;
dp[last - 1] = 1.0;
for (int i = last - 2; i > 0; i--) {
int res = 0;
for (int j = 0; j < n; j++) {
if (((1 << j) & i) > 0) res++;
}
res++;
res = res * (res - 1) / 2;
for (int j = 0; j < n; j++) {
if (((1 << j) & i) == 0) {
for (int z = 0; z < n; z++) {
if (((1 << z) & i) > 0) {
dp[i] += dp[i | (1 << j)] * 1.0 / res * p[z][j];
}
}
}
}
}
for (int i = 0; i < n; i++) {
System.out.print(dp[1 << i] + " ");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 692 | 4,203 |
2,737 |
import java.io.*;
import java.util.*;
public class LCMChallenge {
public static void main(String[] args) throws IOException {
BufferedReader f = new BufferedReader(new InputStreamReader(System.in));
long n = Long.parseLong(f.readLine());
if (n == 1 || n == 2)
System.out.println(n);
else if (n % 2 == 1)
System.out.println(n*(n-1)*(n-2));
else
{
long prod = n*(n-1);
long x = n-2;
while (x > 0 && gcd(n,x) > 1 || gcd(n-1,x) > 1)
x--;
prod *= x;
if ((n-1)*(n-2)*(n-3) > prod)
prod = (n-1)*(n-2)*(n-3);
System.out.println(prod);
}
}
public static long gcd(long a, long b)
{
if (b == 0)
return a;
return gcd(b, a%b);
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class LCMChallenge {
public static void main(String[] args) throws IOException {
BufferedReader f = new BufferedReader(new InputStreamReader(System.in));
long n = Long.parseLong(f.readLine());
if (n == 1 || n == 2)
System.out.println(n);
else if (n % 2 == 1)
System.out.println(n*(n-1)*(n-2));
else
{
long prod = n*(n-1);
long x = n-2;
while (x > 0 && gcd(n,x) > 1 || gcd(n-1,x) > 1)
x--;
prod *= x;
if ((n-1)*(n-2)*(n-3) > prod)
prod = (n-1)*(n-2)*(n-3);
System.out.println(prod);
}
}
public static long gcd(long a, long b)
{
if (b == 0)
return a;
return gcd(b, a%b);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class LCMChallenge {
public static void main(String[] args) throws IOException {
BufferedReader f = new BufferedReader(new InputStreamReader(System.in));
long n = Long.parseLong(f.readLine());
if (n == 1 || n == 2)
System.out.println(n);
else if (n % 2 == 1)
System.out.println(n*(n-1)*(n-2));
else
{
long prod = n*(n-1);
long x = n-2;
while (x > 0 && gcd(n,x) > 1 || gcd(n-1,x) > 1)
x--;
prod *= x;
if ((n-1)*(n-2)*(n-3) > prod)
prod = (n-1)*(n-2)*(n-3);
System.out.println(prod);
}
}
public static long gcd(long a, long b)
{
if (b == 0)
return a;
return gcd(b, a%b);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 559 | 2,731 |
1,364 |
import java.io.*;
import java.math.*;
import static java.lang.Math.*;
import java.security.SecureRandom;
import static java.util.Arrays.*;
import java.util.*;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
import sun.misc.Regexp;
import java.awt.geom.*;
import sun.net.www.content.text.plain;
public class Main {
public static void main(String[] args) throws IOException {
new Main().run();
}
StreamTokenizer in;
PrintWriter out;
//deb////////////////////////////////////////////////
public static void deb(String n, Object n1) {
System.out.println(n + " is : " + n1);
}
public static void deb(int[] A) {
for (Object oo : A) {
System.out.print(oo + " ");
}
System.out.println("");
}
public static void deb(boolean[] A) {
for (Object oo : A) {
System.out.print(oo + " ");
}
System.out.println("");
}
public static void deb(double[] A) {
for (Object oo : A) {
System.out.print(oo + " ");
}
System.out.println("");
}
public static void deb(String[] A) {
for (Object oo : A) {
System.out.print(oo + " ");
}
System.out.println("");
}
public static void deb(int[][] A) {
for (int i = 0; i < A.length; i++) {
for (Object oo : A[i]) {
System.out.print(oo + " ");
}
System.out.println("");
}
}
public static void deb(double[][] A) {
for (int i = 0; i < A.length; i++) {
for (Object oo : A[i]) {
System.out.print(oo + " ");
}
System.out.println("");
}
}
public static void deb(long[][] A) {
for (int i = 0; i < A.length; i++) {
for (Object oo : A[i]) {
System.out.print(oo + " ");
}
System.out.println("");
}
}
public static void deb(String[][] A) {
for (int i = 0; i < A.length; i++) {
for (Object oo : A[i]) {
System.out.print(oo + " ");
}
System.out.println("");
}
}
/////////////////////////////////////////////////////////////
int nextInt() throws IOException {
in.nextToken();
return (int) in.nval;
}
long nextLong() throws IOException {
in.nextToken();
return (long) in.nval;
}
void run() throws IOException {
// in = new StreamTokenizer(new BufferedReader(new FileReader("input.txt")));
// out = new PrintWriter(new FileWriter("output.txt"));
in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
out = new PrintWriter(new OutputStreamWriter(System.out));
solve();
out.flush();
}
//boolean inR(int x,int y){
//return (x<=0)&&(x<4)&&(y<=0)&&(y<4);
//}
@SuppressWarnings("unchecked")
void solve() throws IOException {
// BufferedReader re= new BufferedReader(new FileReader("C:\\Users\\ASELA\\Desktop\\PROBLEMSET\\input\\F\\10.in"));
BufferedReader re= new BufferedReader(new InputStreamReader(System.in));
Scanner sc= new Scanner(System.in);
long n=sc.nextLong(),k=sc.nextLong();
if(k*(k-1)/2<n-1)
System.out.println("-1");
else{
long ff=k*(k-1)/2;
ff=-2*(n-1-ff);
// System.out.println(ff);
long up=k,dw=0;
while(up-dw>1){
long c=(up+dw)/2;
if(c*(c-1)<=ff)dw=c;
else up=c;
}
if(n==1)
{ System.out.println("0");
return;
}
System.out.println(k-dw);
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.math.*;
import static java.lang.Math.*;
import java.security.SecureRandom;
import static java.util.Arrays.*;
import java.util.*;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
import sun.misc.Regexp;
import java.awt.geom.*;
import sun.net.www.content.text.plain;
public class Main {
public static void main(String[] args) throws IOException {
new Main().run();
}
StreamTokenizer in;
PrintWriter out;
//deb////////////////////////////////////////////////
public static void deb(String n, Object n1) {
System.out.println(n + " is : " + n1);
}
public static void deb(int[] A) {
for (Object oo : A) {
System.out.print(oo + " ");
}
System.out.println("");
}
public static void deb(boolean[] A) {
for (Object oo : A) {
System.out.print(oo + " ");
}
System.out.println("");
}
public static void deb(double[] A) {
for (Object oo : A) {
System.out.print(oo + " ");
}
System.out.println("");
}
public static void deb(String[] A) {
for (Object oo : A) {
System.out.print(oo + " ");
}
System.out.println("");
}
public static void deb(int[][] A) {
for (int i = 0; i < A.length; i++) {
for (Object oo : A[i]) {
System.out.print(oo + " ");
}
System.out.println("");
}
}
public static void deb(double[][] A) {
for (int i = 0; i < A.length; i++) {
for (Object oo : A[i]) {
System.out.print(oo + " ");
}
System.out.println("");
}
}
public static void deb(long[][] A) {
for (int i = 0; i < A.length; i++) {
for (Object oo : A[i]) {
System.out.print(oo + " ");
}
System.out.println("");
}
}
public static void deb(String[][] A) {
for (int i = 0; i < A.length; i++) {
for (Object oo : A[i]) {
System.out.print(oo + " ");
}
System.out.println("");
}
}
/////////////////////////////////////////////////////////////
int nextInt() throws IOException {
in.nextToken();
return (int) in.nval;
}
long nextLong() throws IOException {
in.nextToken();
return (long) in.nval;
}
void run() throws IOException {
// in = new StreamTokenizer(new BufferedReader(new FileReader("input.txt")));
// out = new PrintWriter(new FileWriter("output.txt"));
in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
out = new PrintWriter(new OutputStreamWriter(System.out));
solve();
out.flush();
}
//boolean inR(int x,int y){
//return (x<=0)&&(x<4)&&(y<=0)&&(y<4);
//}
@SuppressWarnings("unchecked")
void solve() throws IOException {
// BufferedReader re= new BufferedReader(new FileReader("C:\\Users\\ASELA\\Desktop\\PROBLEMSET\\input\\F\\10.in"));
BufferedReader re= new BufferedReader(new InputStreamReader(System.in));
Scanner sc= new Scanner(System.in);
long n=sc.nextLong(),k=sc.nextLong();
if(k*(k-1)/2<n-1)
System.out.println("-1");
else{
long ff=k*(k-1)/2;
ff=-2*(n-1-ff);
// System.out.println(ff);
long up=k,dw=0;
while(up-dw>1){
long c=(up+dw)/2;
if(c*(c-1)<=ff)dw=c;
else up=c;
}
if(n==1)
{ System.out.println("0");
return;
}
System.out.println(k-dw);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.math.*;
import static java.lang.Math.*;
import java.security.SecureRandom;
import static java.util.Arrays.*;
import java.util.*;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
import sun.misc.Regexp;
import java.awt.geom.*;
import sun.net.www.content.text.plain;
public class Main {
public static void main(String[] args) throws IOException {
new Main().run();
}
StreamTokenizer in;
PrintWriter out;
//deb////////////////////////////////////////////////
public static void deb(String n, Object n1) {
System.out.println(n + " is : " + n1);
}
public static void deb(int[] A) {
for (Object oo : A) {
System.out.print(oo + " ");
}
System.out.println("");
}
public static void deb(boolean[] A) {
for (Object oo : A) {
System.out.print(oo + " ");
}
System.out.println("");
}
public static void deb(double[] A) {
for (Object oo : A) {
System.out.print(oo + " ");
}
System.out.println("");
}
public static void deb(String[] A) {
for (Object oo : A) {
System.out.print(oo + " ");
}
System.out.println("");
}
public static void deb(int[][] A) {
for (int i = 0; i < A.length; i++) {
for (Object oo : A[i]) {
System.out.print(oo + " ");
}
System.out.println("");
}
}
public static void deb(double[][] A) {
for (int i = 0; i < A.length; i++) {
for (Object oo : A[i]) {
System.out.print(oo + " ");
}
System.out.println("");
}
}
public static void deb(long[][] A) {
for (int i = 0; i < A.length; i++) {
for (Object oo : A[i]) {
System.out.print(oo + " ");
}
System.out.println("");
}
}
public static void deb(String[][] A) {
for (int i = 0; i < A.length; i++) {
for (Object oo : A[i]) {
System.out.print(oo + " ");
}
System.out.println("");
}
}
/////////////////////////////////////////////////////////////
int nextInt() throws IOException {
in.nextToken();
return (int) in.nval;
}
long nextLong() throws IOException {
in.nextToken();
return (long) in.nval;
}
void run() throws IOException {
// in = new StreamTokenizer(new BufferedReader(new FileReader("input.txt")));
// out = new PrintWriter(new FileWriter("output.txt"));
in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
out = new PrintWriter(new OutputStreamWriter(System.out));
solve();
out.flush();
}
//boolean inR(int x,int y){
//return (x<=0)&&(x<4)&&(y<=0)&&(y<4);
//}
@SuppressWarnings("unchecked")
void solve() throws IOException {
// BufferedReader re= new BufferedReader(new FileReader("C:\\Users\\ASELA\\Desktop\\PROBLEMSET\\input\\F\\10.in"));
BufferedReader re= new BufferedReader(new InputStreamReader(System.in));
Scanner sc= new Scanner(System.in);
long n=sc.nextLong(),k=sc.nextLong();
if(k*(k-1)/2<n-1)
System.out.println("-1");
else{
long ff=k*(k-1)/2;
ff=-2*(n-1-ff);
// System.out.println(ff);
long up=k,dw=0;
while(up-dw>1){
long c=(up+dw)/2;
if(c*(c-1)<=ff)dw=c;
else up=c;
}
if(n==1)
{ System.out.println("0");
return;
}
System.out.println(k-dw);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,213 | 1,362 |
446 |
import java.io.*;
import java.util.*;
import java.lang.*;
import static java.lang.Math.*;
// _ h _ r _ t r _
// _ t _ t _ s t _
public class TaskA implements Runnable {
long m = (int)1e9+7;
PrintWriter w;
InputReader c;
final int MAXN = (int)1e6 + 100;
public void run() {
c = new InputReader(System.in);
w = new PrintWriter(System.out);
int n = c.nextInt(), hamming_distance = 0;
char[] s = c.next().toCharArray(), t = c.next().toCharArray();
HashMap<Character, HashSet<Character>> replace = new HashMap<>();
HashMap<Character, Integer> map = new HashMap<>();
for(int i=0;i<n;++i) if(s[i] != t[i]) {
HashSet<Character> temp;
if(replace.containsKey(s[i])){
temp = replace.get(s[i]);
temp.add(t[i]);
} else {
temp = new HashSet<>();
temp.add(t[i]);
}
map.put(s[i],i);
replace.put(s[i], temp);
hamming_distance++;
}
int l = -1, r = -1;
boolean global_check = false;
for(int i=0;i<n;i++) if(s[i] != t[i]) {
if(replace.containsKey(t[i])) {
HashSet<Character> indices = replace.get(t[i]);
int ind = map.get(t[i]);
l = i + 1;
r = ind + 1;
if (indices.contains(s[i])) {
hamming_distance -= 2;
global_check = true;
break;
}
}
if(global_check) break;
}
if(!global_check && l!=-1) hamming_distance--;
else if(global_check){
for(int i=0;i<n;i++) {
if(t[i] == s[l-1] && s[i] == t[l-1]){
r = i + 1;
break;
}
}
}
w.println(hamming_distance);
w.println(l+" "+r);
w.close();
}
static long gcd(long a, long b) {
if (b == 0)
return a;
return gcd(b, a % b);
}
public static void sortbyColumn(int arr[][], int col){
Arrays.sort(arr, new Comparator<int[]>()
{
public int compare(int[] o1, int[] o2){
return(Integer.valueOf(o1[col]).compareTo(o2[col]));
}
});
}
public static class DJSet {
public int[] upper;
public DJSet(int n) {
upper = new int[n];
Arrays.fill(upper, -1);
}
public int root(int x) {
return upper[x] < 0 ? x : (upper[x] = root(upper[x]));
}
public boolean equiv(int x, int y) {
return root(x) == root(y);
}
public boolean union(int x, int y) {
x = root(x);
y = root(y);
if (x != y) {
if (upper[y] < upper[x]) {
int d = x;
x = y;
y = d;
}
upper[x] += upper[y];
upper[y] = x;
}
return x == y;
}
}
public static int[] radixSort(int[] f) {
int[] to = new int[f.length];
{
int[] b = new int[65537];
for(int i = 0;i < f.length;i++)b[1+(f[i]&0xffff)]++;
for(int i = 1;i <= 65536;i++)b[i]+=b[i-1];
for(int i = 0;i < f.length;i++)to[b[f[i]&0xffff]++] = f[i];
int[] d = f; f = to;to = d;
}
{
int[] b = new int[65537];
for(int i = 0;i < f.length;i++)b[1+(f[i]>>>16)]++;
for(int i = 1;i <= 65536;i++)b[i]+=b[i-1];
for(int i = 0;i < f.length;i++)to[b[f[i]>>>16]++] = f[i];
int[] d = f; f = to;to = d;
}
return f;
}
public void printArray(int[] a){
for(int i=0;i<a.length;i++)
w.print(a[i]+" ");
w.println();
}
public int[] scanArrayI(int n){
int a[] = new int[n];
for(int i=0;i<n;i++)
a[i] = c.nextInt();
return a;
}
public long[] scanArrayL(int n){
long a[] = new long[n];
for(int i=0;i<n;i++)
a[i] = c.nextLong();
return a;
}
public void printArray(long[] a){
for(int i=0;i<a.length;i++)
w.print(a[i]+" ");
w.println();
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
private BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars==-1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
}
catch (IOException e) {
throw new InputMismatchException();
}
if(numChars <= 0)
return -1;
}
return buf[curChar++];
}
public String nextLine() {
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
public int nextInt() {
int c = read();
while(isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if(c<'0'||c>'9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public double nextDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
}
while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next() {
return readString();
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
public static void main(String args[]) throws Exception {
new Thread(null, new TaskA(),"TaskA",1<<26).start();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.lang.*;
import static java.lang.Math.*;
// _ h _ r _ t r _
// _ t _ t _ s t _
public class TaskA implements Runnable {
long m = (int)1e9+7;
PrintWriter w;
InputReader c;
final int MAXN = (int)1e6 + 100;
public void run() {
c = new InputReader(System.in);
w = new PrintWriter(System.out);
int n = c.nextInt(), hamming_distance = 0;
char[] s = c.next().toCharArray(), t = c.next().toCharArray();
HashMap<Character, HashSet<Character>> replace = new HashMap<>();
HashMap<Character, Integer> map = new HashMap<>();
for(int i=0;i<n;++i) if(s[i] != t[i]) {
HashSet<Character> temp;
if(replace.containsKey(s[i])){
temp = replace.get(s[i]);
temp.add(t[i]);
} else {
temp = new HashSet<>();
temp.add(t[i]);
}
map.put(s[i],i);
replace.put(s[i], temp);
hamming_distance++;
}
int l = -1, r = -1;
boolean global_check = false;
for(int i=0;i<n;i++) if(s[i] != t[i]) {
if(replace.containsKey(t[i])) {
HashSet<Character> indices = replace.get(t[i]);
int ind = map.get(t[i]);
l = i + 1;
r = ind + 1;
if (indices.contains(s[i])) {
hamming_distance -= 2;
global_check = true;
break;
}
}
if(global_check) break;
}
if(!global_check && l!=-1) hamming_distance--;
else if(global_check){
for(int i=0;i<n;i++) {
if(t[i] == s[l-1] && s[i] == t[l-1]){
r = i + 1;
break;
}
}
}
w.println(hamming_distance);
w.println(l+" "+r);
w.close();
}
static long gcd(long a, long b) {
if (b == 0)
return a;
return gcd(b, a % b);
}
public static void sortbyColumn(int arr[][], int col){
Arrays.sort(arr, new Comparator<int[]>()
{
public int compare(int[] o1, int[] o2){
return(Integer.valueOf(o1[col]).compareTo(o2[col]));
}
});
}
public static class DJSet {
public int[] upper;
public DJSet(int n) {
upper = new int[n];
Arrays.fill(upper, -1);
}
public int root(int x) {
return upper[x] < 0 ? x : (upper[x] = root(upper[x]));
}
public boolean equiv(int x, int y) {
return root(x) == root(y);
}
public boolean union(int x, int y) {
x = root(x);
y = root(y);
if (x != y) {
if (upper[y] < upper[x]) {
int d = x;
x = y;
y = d;
}
upper[x] += upper[y];
upper[y] = x;
}
return x == y;
}
}
public static int[] radixSort(int[] f) {
int[] to = new int[f.length];
{
int[] b = new int[65537];
for(int i = 0;i < f.length;i++)b[1+(f[i]&0xffff)]++;
for(int i = 1;i <= 65536;i++)b[i]+=b[i-1];
for(int i = 0;i < f.length;i++)to[b[f[i]&0xffff]++] = f[i];
int[] d = f; f = to;to = d;
}
{
int[] b = new int[65537];
for(int i = 0;i < f.length;i++)b[1+(f[i]>>>16)]++;
for(int i = 1;i <= 65536;i++)b[i]+=b[i-1];
for(int i = 0;i < f.length;i++)to[b[f[i]>>>16]++] = f[i];
int[] d = f; f = to;to = d;
}
return f;
}
public void printArray(int[] a){
for(int i=0;i<a.length;i++)
w.print(a[i]+" ");
w.println();
}
public int[] scanArrayI(int n){
int a[] = new int[n];
for(int i=0;i<n;i++)
a[i] = c.nextInt();
return a;
}
public long[] scanArrayL(int n){
long a[] = new long[n];
for(int i=0;i<n;i++)
a[i] = c.nextLong();
return a;
}
public void printArray(long[] a){
for(int i=0;i<a.length;i++)
w.print(a[i]+" ");
w.println();
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
private BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars==-1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
}
catch (IOException e) {
throw new InputMismatchException();
}
if(numChars <= 0)
return -1;
}
return buf[curChar++];
}
public String nextLine() {
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
public int nextInt() {
int c = read();
while(isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if(c<'0'||c>'9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public double nextDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
}
while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next() {
return readString();
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
public static void main(String args[]) throws Exception {
new Thread(null, new TaskA(),"TaskA",1<<26).start();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.lang.*;
import static java.lang.Math.*;
// _ h _ r _ t r _
// _ t _ t _ s t _
public class TaskA implements Runnable {
long m = (int)1e9+7;
PrintWriter w;
InputReader c;
final int MAXN = (int)1e6 + 100;
public void run() {
c = new InputReader(System.in);
w = new PrintWriter(System.out);
int n = c.nextInt(), hamming_distance = 0;
char[] s = c.next().toCharArray(), t = c.next().toCharArray();
HashMap<Character, HashSet<Character>> replace = new HashMap<>();
HashMap<Character, Integer> map = new HashMap<>();
for(int i=0;i<n;++i) if(s[i] != t[i]) {
HashSet<Character> temp;
if(replace.containsKey(s[i])){
temp = replace.get(s[i]);
temp.add(t[i]);
} else {
temp = new HashSet<>();
temp.add(t[i]);
}
map.put(s[i],i);
replace.put(s[i], temp);
hamming_distance++;
}
int l = -1, r = -1;
boolean global_check = false;
for(int i=0;i<n;i++) if(s[i] != t[i]) {
if(replace.containsKey(t[i])) {
HashSet<Character> indices = replace.get(t[i]);
int ind = map.get(t[i]);
l = i + 1;
r = ind + 1;
if (indices.contains(s[i])) {
hamming_distance -= 2;
global_check = true;
break;
}
}
if(global_check) break;
}
if(!global_check && l!=-1) hamming_distance--;
else if(global_check){
for(int i=0;i<n;i++) {
if(t[i] == s[l-1] && s[i] == t[l-1]){
r = i + 1;
break;
}
}
}
w.println(hamming_distance);
w.println(l+" "+r);
w.close();
}
static long gcd(long a, long b) {
if (b == 0)
return a;
return gcd(b, a % b);
}
public static void sortbyColumn(int arr[][], int col){
Arrays.sort(arr, new Comparator<int[]>()
{
public int compare(int[] o1, int[] o2){
return(Integer.valueOf(o1[col]).compareTo(o2[col]));
}
});
}
public static class DJSet {
public int[] upper;
public DJSet(int n) {
upper = new int[n];
Arrays.fill(upper, -1);
}
public int root(int x) {
return upper[x] < 0 ? x : (upper[x] = root(upper[x]));
}
public boolean equiv(int x, int y) {
return root(x) == root(y);
}
public boolean union(int x, int y) {
x = root(x);
y = root(y);
if (x != y) {
if (upper[y] < upper[x]) {
int d = x;
x = y;
y = d;
}
upper[x] += upper[y];
upper[y] = x;
}
return x == y;
}
}
public static int[] radixSort(int[] f) {
int[] to = new int[f.length];
{
int[] b = new int[65537];
for(int i = 0;i < f.length;i++)b[1+(f[i]&0xffff)]++;
for(int i = 1;i <= 65536;i++)b[i]+=b[i-1];
for(int i = 0;i < f.length;i++)to[b[f[i]&0xffff]++] = f[i];
int[] d = f; f = to;to = d;
}
{
int[] b = new int[65537];
for(int i = 0;i < f.length;i++)b[1+(f[i]>>>16)]++;
for(int i = 1;i <= 65536;i++)b[i]+=b[i-1];
for(int i = 0;i < f.length;i++)to[b[f[i]>>>16]++] = f[i];
int[] d = f; f = to;to = d;
}
return f;
}
public void printArray(int[] a){
for(int i=0;i<a.length;i++)
w.print(a[i]+" ");
w.println();
}
public int[] scanArrayI(int n){
int a[] = new int[n];
for(int i=0;i<n;i++)
a[i] = c.nextInt();
return a;
}
public long[] scanArrayL(int n){
long a[] = new long[n];
for(int i=0;i<n;i++)
a[i] = c.nextLong();
return a;
}
public void printArray(long[] a){
for(int i=0;i<a.length;i++)
w.print(a[i]+" ");
w.println();
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
private BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars==-1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
}
catch (IOException e) {
throw new InputMismatchException();
}
if(numChars <= 0)
return -1;
}
return buf[curChar++];
}
public String nextLine() {
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
public int nextInt() {
int c = read();
while(isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if(c<'0'||c>'9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public double nextDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
}
while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next() {
return readString();
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
public static void main(String args[]) throws Exception {
new Thread(null, new TaskA(),"TaskA",1<<26).start();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,383 | 445 |
2,268 |
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
/*
public class _909C {
}
*/
public class _909C {
int mod = (int) 1e9 + 7;
public void solve() throws FileNotFoundException {
InputStream inputStream = System.in;
InputHelper in = new InputHelper(inputStream);
// actual solution
int n = in.readInteger();
char[] a = new char[n];
for (int i = 0; i < n; i++) {
a[i] = in.read().charAt(0);
}
int[][][] dp = new int[2][n + 1][2];
dp[0][0][0] = dp[0][0][1] = 1;
for (int i = 1; i < n; i++) {
for (int j = n; j >= 0; j--) {
if (a[i - 1] == 's') {
dp[1][j][0] = dp[1][j][1] = dp[0][j][1];
} else {
if (j > 0)
dp[1][j][0] = dp[1][j][1] = dp[0][j - 1][0];
}
}
for (int j = 0; j <= n; j++) {
dp[0][j][0] = dp[1][j][0];
dp[0][j][1] = dp[1][j][1];
dp[1][j][0] = 0;
dp[1][j][1] = 0;
}
for (int j = n - 1; j >= 0; j--) {
dp[0][j][1] += dp[0][j + 1][1];
dp[0][j][1] %= mod;
}
}
System.out.println(dp[0][0][1]);
// end here
}
public static void main(String[] args) throws FileNotFoundException {
(new _909C()).solve();
}
class InputHelper {
StringTokenizer tokenizer = null;
private BufferedReader bufferedReader;
public InputHelper(InputStream inputStream) {
InputStreamReader inputStreamReader = new InputStreamReader(inputStream);
bufferedReader = new BufferedReader(inputStreamReader, 16384);
}
public String read() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
String line = bufferedReader.readLine();
if (line == null) {
return null;
}
tokenizer = new StringTokenizer(line);
} catch (IOException e) {
e.printStackTrace();
}
}
return tokenizer.nextToken();
}
public Integer readInteger() {
return Integer.parseInt(read());
}
public Long readLong() {
return Long.parseLong(read());
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
/*
public class _909C {
}
*/
public class _909C {
int mod = (int) 1e9 + 7;
public void solve() throws FileNotFoundException {
InputStream inputStream = System.in;
InputHelper in = new InputHelper(inputStream);
// actual solution
int n = in.readInteger();
char[] a = new char[n];
for (int i = 0; i < n; i++) {
a[i] = in.read().charAt(0);
}
int[][][] dp = new int[2][n + 1][2];
dp[0][0][0] = dp[0][0][1] = 1;
for (int i = 1; i < n; i++) {
for (int j = n; j >= 0; j--) {
if (a[i - 1] == 's') {
dp[1][j][0] = dp[1][j][1] = dp[0][j][1];
} else {
if (j > 0)
dp[1][j][0] = dp[1][j][1] = dp[0][j - 1][0];
}
}
for (int j = 0; j <= n; j++) {
dp[0][j][0] = dp[1][j][0];
dp[0][j][1] = dp[1][j][1];
dp[1][j][0] = 0;
dp[1][j][1] = 0;
}
for (int j = n - 1; j >= 0; j--) {
dp[0][j][1] += dp[0][j + 1][1];
dp[0][j][1] %= mod;
}
}
System.out.println(dp[0][0][1]);
// end here
}
public static void main(String[] args) throws FileNotFoundException {
(new _909C()).solve();
}
class InputHelper {
StringTokenizer tokenizer = null;
private BufferedReader bufferedReader;
public InputHelper(InputStream inputStream) {
InputStreamReader inputStreamReader = new InputStreamReader(inputStream);
bufferedReader = new BufferedReader(inputStreamReader, 16384);
}
public String read() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
String line = bufferedReader.readLine();
if (line == null) {
return null;
}
tokenizer = new StringTokenizer(line);
} catch (IOException e) {
e.printStackTrace();
}
}
return tokenizer.nextToken();
}
public Integer readInteger() {
return Integer.parseInt(read());
}
public Long readLong() {
return Long.parseLong(read());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
/*
public class _909C {
}
*/
public class _909C {
int mod = (int) 1e9 + 7;
public void solve() throws FileNotFoundException {
InputStream inputStream = System.in;
InputHelper in = new InputHelper(inputStream);
// actual solution
int n = in.readInteger();
char[] a = new char[n];
for (int i = 0; i < n; i++) {
a[i] = in.read().charAt(0);
}
int[][][] dp = new int[2][n + 1][2];
dp[0][0][0] = dp[0][0][1] = 1;
for (int i = 1; i < n; i++) {
for (int j = n; j >= 0; j--) {
if (a[i - 1] == 's') {
dp[1][j][0] = dp[1][j][1] = dp[0][j][1];
} else {
if (j > 0)
dp[1][j][0] = dp[1][j][1] = dp[0][j - 1][0];
}
}
for (int j = 0; j <= n; j++) {
dp[0][j][0] = dp[1][j][0];
dp[0][j][1] = dp[1][j][1];
dp[1][j][0] = 0;
dp[1][j][1] = 0;
}
for (int j = n - 1; j >= 0; j--) {
dp[0][j][1] += dp[0][j + 1][1];
dp[0][j][1] %= mod;
}
}
System.out.println(dp[0][0][1]);
// end here
}
public static void main(String[] args) throws FileNotFoundException {
(new _909C()).solve();
}
class InputHelper {
StringTokenizer tokenizer = null;
private BufferedReader bufferedReader;
public InputHelper(InputStream inputStream) {
InputStreamReader inputStreamReader = new InputStreamReader(inputStream);
bufferedReader = new BufferedReader(inputStreamReader, 16384);
}
public String read() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
String line = bufferedReader.readLine();
if (line == null) {
return null;
}
tokenizer = new StringTokenizer(line);
} catch (IOException e) {
e.printStackTrace();
}
}
return tokenizer.nextToken();
}
public Integer readInteger() {
return Integer.parseInt(read());
}
public Long readLong() {
return Long.parseLong(read());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 972 | 2,263 |
1,851 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Iterator;
import java.util.ListIterator;
import java.util.Collection;
import java.util.AbstractList;
import java.util.InputMismatchException;
import java.io.IOException;
import java.util.Deque;
import java.util.ArrayDeque;
import java.util.NoSuchElementException;
import java.util.ConcurrentModificationException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author cunbidun
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
DPairOfLines solver = new DPairOfLines();
solver.solve(1, in, out);
out.close();
}
static class DPairOfLines {
private static final int INF = (int) 2e9 + 7;
private InputReader in;
private PrintWriter out;
public void solve(int testNumber, InputReader in, PrintWriter out) {
this.in = in;
this.out = out;
int n = in.nextInt();
if (n <= 4) {
out.println("YES");
return;
}
TreeList<PairII> list = new TreeList<>();
PairII[] a = new PairII[n + 1];
for (int i = 1; i <= n; i++) {
a[i] = (new PairII(in.nextInt(), in.nextInt()));
list.add(a[i]);
}
PairII pos1 = new PairII(INF, INF);
PairII pos2 = new PairII(INF, INF);
for (int i = 1; i <= 5; i++) {
for (int j = i + 1; j <= 5; j++) {
for (int k = j + 1; k <= 5; k++) {
int x1 = a[i].first;
int y1 = a[i].second;
int x2 = a[j].first;
int y2 = a[j].second;
int x = a[k].first;
int y = a[k].second;
long s = (long) (y2 - y1) * x + (long) (x1 - x2) * y + ((long) x2 * y1 - (long) x1 * y2);
if (s == 0) {
pos1 = a[i];
pos2 = a[j];
}
}
}
}
if (pos1.equals(new PairII(INF, INF))) {
out.println("NO");
return;
}
int x1 = pos1.first;
int y1 = pos1.second;
int x2 = pos2.first;
int y2 = pos2.second;
for (int i = 0; i < list.size(); i++) {
int x = list.get(i).first;
int y = list.get(i).second;
long s = (long) (y2 - y1) * x + (long) (x1 - x2) * y + ((long) x2 * y1 - (long) x1 * y2);
if (s == 0) {
list.remove(i);
i--;
}
}
if (list.size() <= 2) {
out.println("YES");
return;
}
x1 = list.get(0).first;
y1 = list.get(0).second;
x2 = list.get(1).first;
y2 = list.get(1).second;
for (int i = 0; i < list.size(); i++) {
int x = list.get(i).first;
int y = list.get(i).second;
long s = (long) (y2 - y1) * x + (long) (x1 - x2) * y + ((long) x2 * y1 - (long) x1 * y2);
if (s == 0) {
list.remove(i);
i--;
}
}
if (list.size() == 0) {
out.println("YES");
} else out.println("NO");
}
}
static interface OrderedIterator<E> extends Iterator<E> {
}
static class PairII implements Comparable<PairII> {
public int first;
public int second;
public PairII(int first, int second) {
this.first = first;
this.second = second;
}
public boolean equals(Object o) {
if (this == o) {
return true;
}
if (o == null || getClass() != o.getClass()) {
return false;
}
PairII pair = (PairII) o;
return first == pair.first && second == pair.second;
}
public String toString() {
return "(" + first + "," + second + ")";
}
public int compareTo(PairII o) {
int value = Integer.compare(first, o.first);
if (value != 0) {
return value;
}
return Integer.compare(second, o.second);
}
}
static class TreeList<E> extends AbstractList<E> {
private TreeList.AVLNode<E> root;
private int size;
public TreeList() {
super();
}
public TreeList(final Collection<? extends E> coll) {
super();
if (!coll.isEmpty()) {
root = new TreeList.AVLNode<>(coll);
size = coll.size();
}
}
public E get(final int index) {
return root.get(index).getValue();
}
public int size() {
return size;
}
public Iterator<E> iterator() {
// override to go 75% faster
return listIterator(0);
}
public ListIterator<E> listIterator() {
// override to go 75% faster
return listIterator(0);
}
public ListIterator<E> listIterator(final int fromIndex) {
return new TreeList.TreeListIterator<>(this, fromIndex);
}
public int indexOf(final Object object) {
// override to go 75% faster
if (root == null) {
return -1;
}
return root.indexOf(object, root.relativePosition);
}
public boolean contains(final Object object) {
return indexOf(object) >= 0;
}
public Object[] toArray() {
final Object[] array = new Object[size()];
if (root != null) {
root.toArray(array, root.relativePosition);
}
return array;
}
public void add(final int index, final E obj) {
modCount++;
if (root == null) {
root = new TreeList.AVLNode<>(index, obj, null, null);
} else {
root = root.insert(index, obj);
}
size++;
}
public boolean addAll(final Collection<? extends E> c) {
if (c.isEmpty()) {
return false;
}
modCount += c.size();
final TreeList.AVLNode<E> cTree = new TreeList.AVLNode<>(c);
root = root == null ? cTree : root.addAll(cTree, size);
size += c.size();
return true;
}
public E set(final int index, final E obj) {
final TreeList.AVLNode<E> node = root.get(index);
final E result = node.value;
node.setValue(obj);
return result;
}
public E remove(final int index) {
modCount++;
final E result = get(index);
root = root.remove(index);
size--;
return result;
}
public void clear() {
modCount++;
root = null;
size = 0;
}
static class AVLNode<E> {
private TreeList.AVLNode<E> left;
private boolean leftIsPrevious;
private TreeList.AVLNode<E> right;
private boolean rightIsNext;
private int height;
private int relativePosition;
private E value;
private AVLNode(final int relativePosition, final E obj,
final TreeList.AVLNode<E> rightFollower, final TreeList.AVLNode<E> leftFollower) {
this.relativePosition = relativePosition;
value = obj;
rightIsNext = true;
leftIsPrevious = true;
right = rightFollower;
left = leftFollower;
}
private AVLNode(final Collection<? extends E> coll) {
this(coll.iterator(), 0, coll.size() - 1, 0, null, null);
}
private AVLNode(final Iterator<? extends E> iterator, final int start, final int end,
final int absolutePositionOfParent, final TreeList.AVLNode<E> prev, final TreeList.AVLNode<E> next) {
final int mid = start + (end - start) / 2;
if (start < mid) {
left = new TreeList.AVLNode<>(iterator, start, mid - 1, mid, prev, this);
} else {
leftIsPrevious = true;
left = prev;
}
value = iterator.next();
relativePosition = mid - absolutePositionOfParent;
if (mid < end) {
right = new TreeList.AVLNode<>(iterator, mid + 1, end, mid, this, next);
} else {
rightIsNext = true;
right = next;
}
recalcHeight();
}
E getValue() {
return value;
}
void setValue(final E obj) {
this.value = obj;
}
TreeList.AVLNode<E> get(final int index) {
final int indexRelativeToMe = index - relativePosition;
if (indexRelativeToMe == 0) {
return this;
}
final TreeList.AVLNode<E> nextNode = indexRelativeToMe < 0 ? getLeftSubTree() : getRightSubTree();
if (nextNode == null) {
return null;
}
return nextNode.get(indexRelativeToMe);
}
int indexOf(final Object object, final int index) {
if (getLeftSubTree() != null) {
final int result = left.indexOf(object, index + left.relativePosition);
if (result != -1) {
return result;
}
}
if (value == null ? value == object : value.equals(object)) {
return index;
}
if (getRightSubTree() != null) {
return right.indexOf(object, index + right.relativePosition);
}
return -1;
}
void toArray(final Object[] array, final int index) {
array[index] = value;
if (getLeftSubTree() != null) {
left.toArray(array, index + left.relativePosition);
}
if (getRightSubTree() != null) {
right.toArray(array, index + right.relativePosition);
}
}
TreeList.AVLNode<E> next() {
if (rightIsNext || right == null) {
return right;
}
return right.min();
}
TreeList.AVLNode<E> previous() {
if (leftIsPrevious || left == null) {
return left;
}
return left.max();
}
TreeList.AVLNode<E> insert(final int index, final E obj) {
final int indexRelativeToMe = index - relativePosition;
if (indexRelativeToMe <= 0) {
return insertOnLeft(indexRelativeToMe, obj);
}
return insertOnRight(indexRelativeToMe, obj);
}
private TreeList.AVLNode<E> insertOnLeft(final int indexRelativeToMe, final E obj) {
if (getLeftSubTree() == null) {
setLeft(new TreeList.AVLNode<>(-1, obj, this, left), null);
} else {
setLeft(left.insert(indexRelativeToMe, obj), null);
}
if (relativePosition >= 0) {
relativePosition++;
}
final TreeList.AVLNode<E> ret = balance();
recalcHeight();
return ret;
}
private TreeList.AVLNode<E> insertOnRight(final int indexRelativeToMe, final E obj) {
if (getRightSubTree() == null) {
setRight(new TreeList.AVLNode<>(+1, obj, right, this), null);
} else {
setRight(right.insert(indexRelativeToMe, obj), null);
}
if (relativePosition < 0) {
relativePosition--;
}
final TreeList.AVLNode<E> ret = balance();
recalcHeight();
return ret;
}
private TreeList.AVLNode<E> getLeftSubTree() {
return leftIsPrevious ? null : left;
}
private TreeList.AVLNode<E> getRightSubTree() {
return rightIsNext ? null : right;
}
private TreeList.AVLNode<E> max() {
return getRightSubTree() == null ? this : right.max();
}
private TreeList.AVLNode<E> min() {
return getLeftSubTree() == null ? this : left.min();
}
TreeList.AVLNode<E> remove(final int index) {
final int indexRelativeToMe = index - relativePosition;
if (indexRelativeToMe == 0) {
return removeSelf();
}
if (indexRelativeToMe > 0) {
setRight(right.remove(indexRelativeToMe), right.right);
if (relativePosition < 0) {
relativePosition++;
}
} else {
setLeft(left.remove(indexRelativeToMe), left.left);
if (relativePosition > 0) {
relativePosition--;
}
}
recalcHeight();
return balance();
}
private TreeList.AVLNode<E> removeMax() {
if (getRightSubTree() == null) {
return removeSelf();
}
setRight(right.removeMax(), right.right);
if (relativePosition < 0) {
relativePosition++;
}
recalcHeight();
return balance();
}
private TreeList.AVLNode<E> removeMin() {
if (getLeftSubTree() == null) {
return removeSelf();
}
setLeft(left.removeMin(), left.left);
if (relativePosition > 0) {
relativePosition--;
}
recalcHeight();
return balance();
}
private TreeList.AVLNode<E> removeSelf() {
if (getRightSubTree() == null && getLeftSubTree() == null) {
return null;
}
if (getRightSubTree() == null) {
if (relativePosition > 0) {
left.relativePosition += relativePosition;
}
left.max().setRight(null, right);
return left;
}
if (getLeftSubTree() == null) {
right.relativePosition += relativePosition - (relativePosition < 0 ? 0 : 1);
right.min().setLeft(null, left);
return right;
}
if (heightRightMinusLeft() > 0) {
// more on the right, so delete from the right
final TreeList.AVLNode<E> rightMin = right.min();
value = rightMin.value;
if (leftIsPrevious) {
left = rightMin.left;
}
right = right.removeMin();
if (relativePosition < 0) {
relativePosition++;
}
} else {
// more on the left or equal, so delete from the left
final TreeList.AVLNode<E> leftMax = left.max();
value = leftMax.value;
if (rightIsNext) {
right = leftMax.right;
}
final TreeList.AVLNode<E> leftPrevious = left.left;
left = left.removeMax();
if (left == null) {
// special case where left that was deleted was a double link
// only occurs when height difference is equal
left = leftPrevious;
leftIsPrevious = true;
}
if (relativePosition > 0) {
relativePosition--;
}
}
recalcHeight();
return this;
}
private TreeList.AVLNode<E> balance() {
switch (heightRightMinusLeft()) {
case 1:
case 0:
case -1:
return this;
case -2:
if (left.heightRightMinusLeft() > 0) {
setLeft(left.rotateLeft(), null);
}
return rotateRight();
case 2:
if (right.heightRightMinusLeft() < 0) {
setRight(right.rotateRight(), null);
}
return rotateLeft();
default:
throw new RuntimeException("tree inconsistent!");
}
}
private int getOffset(final TreeList.AVLNode<E> node) {
if (node == null) {
return 0;
}
return node.relativePosition;
}
private int setOffset(final TreeList.AVLNode<E> node, final int newOffest) {
if (node == null) {
return 0;
}
final int oldOffset = getOffset(node);
node.relativePosition = newOffest;
return oldOffset;
}
private void recalcHeight() {
height = Math.max(
getLeftSubTree() == null ? -1 : getLeftSubTree().height,
getRightSubTree() == null ? -1 : getRightSubTree().height) + 1;
}
private int getHeight(final TreeList.AVLNode<E> node) {
return node == null ? -1 : node.height;
}
private int heightRightMinusLeft() {
return getHeight(getRightSubTree()) - getHeight(getLeftSubTree());
}
private TreeList.AVLNode<E> rotateLeft() {
final TreeList.AVLNode<E> newTop = right; // can't be faedelung!
final TreeList.AVLNode<E> movedNode = getRightSubTree().getLeftSubTree();
final int newTopPosition = relativePosition + getOffset(newTop);
final int myNewPosition = -newTop.relativePosition;
final int movedPosition = getOffset(newTop) + getOffset(movedNode);
setRight(movedNode, newTop);
newTop.setLeft(this, null);
setOffset(newTop, newTopPosition);
setOffset(this, myNewPosition);
setOffset(movedNode, movedPosition);
return newTop;
}
private TreeList.AVLNode<E> rotateRight() {
final TreeList.AVLNode<E> newTop = left;
final TreeList.AVLNode<E> movedNode = getLeftSubTree().getRightSubTree();
final int newTopPosition = relativePosition + getOffset(newTop);
final int myNewPosition = -newTop.relativePosition;
final int movedPosition = getOffset(newTop) + getOffset(movedNode);
setLeft(movedNode, newTop);
newTop.setRight(this, null);
setOffset(newTop, newTopPosition);
setOffset(this, myNewPosition);
setOffset(movedNode, movedPosition);
return newTop;
}
private void setLeft(final TreeList.AVLNode<E> node, final TreeList.AVLNode<E> previous) {
leftIsPrevious = node == null;
left = leftIsPrevious ? previous : node;
recalcHeight();
}
private void setRight(final TreeList.AVLNode<E> node, final TreeList.AVLNode<E> next) {
rightIsNext = node == null;
right = rightIsNext ? next : node;
recalcHeight();
}
private TreeList.AVLNode<E> addAll(TreeList.AVLNode<E> otherTree, final int currentSize) {
final TreeList.AVLNode<E> maxNode = max();
final TreeList.AVLNode<E> otherTreeMin = otherTree.min();
// We need to efficiently merge the two AVL trees while keeping them
// balanced (or nearly balanced). To do this, we take the shorter
// tree and combine it with a similar-height subtree of the taller
// tree. There are two symmetric cases:
// * this tree is taller, or
// * otherTree is taller.
if (otherTree.height > height) {
// CASE 1: The other tree is taller than this one. We will thus
// merge this tree into otherTree.
// STEP 1: Remove the maximum element from this tree.
final TreeList.AVLNode<E> leftSubTree = removeMax();
// STEP 2: Navigate left from the root of otherTree until we
// contains a subtree, s, that is no taller than me. (While we are
// navigating left, we store the nodes we encounter in a stack
// so that we can re-balance them in step 4.)
final Deque<TreeList.AVLNode<E>> sAncestors = new ArrayDeque<>();
TreeList.AVLNode<E> s = otherTree;
int sAbsolutePosition = s.relativePosition + currentSize;
int sParentAbsolutePosition = 0;
while (s != null && s.height > getHeight(leftSubTree)) {
sParentAbsolutePosition = sAbsolutePosition;
sAncestors.push(s);
s = s.left;
if (s != null) {
sAbsolutePosition += s.relativePosition;
}
}
// STEP 3: Replace s with a newly constructed subtree whose root
// is maxNode, whose left subtree is leftSubTree, and whose right
// subtree is s.
maxNode.setLeft(leftSubTree, null);
maxNode.setRight(s, otherTreeMin);
if (leftSubTree != null) {
leftSubTree.max().setRight(null, maxNode);
leftSubTree.relativePosition -= currentSize - 1;
}
if (s != null) {
s.min().setLeft(null, maxNode);
s.relativePosition = sAbsolutePosition - currentSize + 1;
}
maxNode.relativePosition = currentSize - 1 - sParentAbsolutePosition;
otherTree.relativePosition += currentSize;
// STEP 4: Re-balance the tree and recalculate the heights of s's ancestors.
s = maxNode;
while (!sAncestors.isEmpty()) {
final TreeList.AVLNode<E> sAncestor = sAncestors.pop();
sAncestor.setLeft(s, null);
s = sAncestor.balance();
}
return s;
}
otherTree = otherTree.removeMin();
final Deque<TreeList.AVLNode<E>> sAncestors = new ArrayDeque<>();
TreeList.AVLNode<E> s = this;
int sAbsolutePosition = s.relativePosition;
int sParentAbsolutePosition = 0;
while (s != null && s.height > getHeight(otherTree)) {
sParentAbsolutePosition = sAbsolutePosition;
sAncestors.push(s);
s = s.right;
if (s != null) {
sAbsolutePosition += s.relativePosition;
}
}
otherTreeMin.setRight(otherTree, null);
otherTreeMin.setLeft(s, maxNode);
if (otherTree != null) {
otherTree.min().setLeft(null, otherTreeMin);
otherTree.relativePosition++;
}
if (s != null) {
s.max().setRight(null, otherTreeMin);
s.relativePosition = sAbsolutePosition - currentSize;
}
otherTreeMin.relativePosition = currentSize - sParentAbsolutePosition;
s = otherTreeMin;
while (!sAncestors.isEmpty()) {
final TreeList.AVLNode<E> sAncestor = sAncestors.pop();
sAncestor.setRight(s, null);
s = sAncestor.balance();
}
return s;
}
}
static class TreeListIterator<E> implements ListIterator<E>, OrderedIterator<E> {
private final TreeList<E> parent;
private TreeList.AVLNode<E> next;
private int nextIndex;
private TreeList.AVLNode<E> current;
private int currentIndex;
private int expectedModCount;
private TreeListIterator(final TreeList<E> parent, final int fromIndex) throws IndexOutOfBoundsException {
super();
this.parent = parent;
this.expectedModCount = parent.modCount;
this.next = parent.root == null ? null : parent.root.get(fromIndex);
this.nextIndex = fromIndex;
this.currentIndex = -1;
}
private void checkModCount() {
if (parent.modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
}
public boolean hasNext() {
return nextIndex < parent.size();
}
public E next() {
checkModCount();
if (!hasNext()) {
throw new NoSuchElementException("No element at index " + nextIndex + ".");
}
if (next == null) {
next = parent.root.get(nextIndex);
}
final E value = next.getValue();
current = next;
currentIndex = nextIndex++;
next = next.next();
return value;
}
public boolean hasPrevious() {
return nextIndex > 0;
}
public E previous() {
checkModCount();
if (!hasPrevious()) {
throw new NoSuchElementException("Already at start of list.");
}
if (next == null) {
next = parent.root.get(nextIndex - 1);
} else {
next = next.previous();
}
final E value = next.getValue();
current = next;
currentIndex = --nextIndex;
return value;
}
public int nextIndex() {
return nextIndex;
}
public int previousIndex() {
return nextIndex() - 1;
}
public void remove() {
checkModCount();
if (currentIndex == -1) {
throw new IllegalStateException();
}
parent.remove(currentIndex);
if (nextIndex != currentIndex) {
// remove() following next()
nextIndex--;
}
// the AVL node referenced by next may have become stale after a remove
// reset it now: will be retrieved by next call to next()/previous() via nextIndex
next = null;
current = null;
currentIndex = -1;
expectedModCount++;
}
public void set(final E obj) {
checkModCount();
if (current == null) {
throw new IllegalStateException();
}
current.setValue(obj);
}
public void add(final E obj) {
checkModCount();
parent.add(nextIndex, obj);
current = null;
currentIndex = -1;
nextIndex++;
expectedModCount++;
}
}
}
static class InputReader extends InputStream {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
private static boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Iterator;
import java.util.ListIterator;
import java.util.Collection;
import java.util.AbstractList;
import java.util.InputMismatchException;
import java.io.IOException;
import java.util.Deque;
import java.util.ArrayDeque;
import java.util.NoSuchElementException;
import java.util.ConcurrentModificationException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author cunbidun
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
DPairOfLines solver = new DPairOfLines();
solver.solve(1, in, out);
out.close();
}
static class DPairOfLines {
private static final int INF = (int) 2e9 + 7;
private InputReader in;
private PrintWriter out;
public void solve(int testNumber, InputReader in, PrintWriter out) {
this.in = in;
this.out = out;
int n = in.nextInt();
if (n <= 4) {
out.println("YES");
return;
}
TreeList<PairII> list = new TreeList<>();
PairII[] a = new PairII[n + 1];
for (int i = 1; i <= n; i++) {
a[i] = (new PairII(in.nextInt(), in.nextInt()));
list.add(a[i]);
}
PairII pos1 = new PairII(INF, INF);
PairII pos2 = new PairII(INF, INF);
for (int i = 1; i <= 5; i++) {
for (int j = i + 1; j <= 5; j++) {
for (int k = j + 1; k <= 5; k++) {
int x1 = a[i].first;
int y1 = a[i].second;
int x2 = a[j].first;
int y2 = a[j].second;
int x = a[k].first;
int y = a[k].second;
long s = (long) (y2 - y1) * x + (long) (x1 - x2) * y + ((long) x2 * y1 - (long) x1 * y2);
if (s == 0) {
pos1 = a[i];
pos2 = a[j];
}
}
}
}
if (pos1.equals(new PairII(INF, INF))) {
out.println("NO");
return;
}
int x1 = pos1.first;
int y1 = pos1.second;
int x2 = pos2.first;
int y2 = pos2.second;
for (int i = 0; i < list.size(); i++) {
int x = list.get(i).first;
int y = list.get(i).second;
long s = (long) (y2 - y1) * x + (long) (x1 - x2) * y + ((long) x2 * y1 - (long) x1 * y2);
if (s == 0) {
list.remove(i);
i--;
}
}
if (list.size() <= 2) {
out.println("YES");
return;
}
x1 = list.get(0).first;
y1 = list.get(0).second;
x2 = list.get(1).first;
y2 = list.get(1).second;
for (int i = 0; i < list.size(); i++) {
int x = list.get(i).first;
int y = list.get(i).second;
long s = (long) (y2 - y1) * x + (long) (x1 - x2) * y + ((long) x2 * y1 - (long) x1 * y2);
if (s == 0) {
list.remove(i);
i--;
}
}
if (list.size() == 0) {
out.println("YES");
} else out.println("NO");
}
}
static interface OrderedIterator<E> extends Iterator<E> {
}
static class PairII implements Comparable<PairII> {
public int first;
public int second;
public PairII(int first, int second) {
this.first = first;
this.second = second;
}
public boolean equals(Object o) {
if (this == o) {
return true;
}
if (o == null || getClass() != o.getClass()) {
return false;
}
PairII pair = (PairII) o;
return first == pair.first && second == pair.second;
}
public String toString() {
return "(" + first + "," + second + ")";
}
public int compareTo(PairII o) {
int value = Integer.compare(first, o.first);
if (value != 0) {
return value;
}
return Integer.compare(second, o.second);
}
}
static class TreeList<E> extends AbstractList<E> {
private TreeList.AVLNode<E> root;
private int size;
public TreeList() {
super();
}
public TreeList(final Collection<? extends E> coll) {
super();
if (!coll.isEmpty()) {
root = new TreeList.AVLNode<>(coll);
size = coll.size();
}
}
public E get(final int index) {
return root.get(index).getValue();
}
public int size() {
return size;
}
public Iterator<E> iterator() {
// override to go 75% faster
return listIterator(0);
}
public ListIterator<E> listIterator() {
// override to go 75% faster
return listIterator(0);
}
public ListIterator<E> listIterator(final int fromIndex) {
return new TreeList.TreeListIterator<>(this, fromIndex);
}
public int indexOf(final Object object) {
// override to go 75% faster
if (root == null) {
return -1;
}
return root.indexOf(object, root.relativePosition);
}
public boolean contains(final Object object) {
return indexOf(object) >= 0;
}
public Object[] toArray() {
final Object[] array = new Object[size()];
if (root != null) {
root.toArray(array, root.relativePosition);
}
return array;
}
public void add(final int index, final E obj) {
modCount++;
if (root == null) {
root = new TreeList.AVLNode<>(index, obj, null, null);
} else {
root = root.insert(index, obj);
}
size++;
}
public boolean addAll(final Collection<? extends E> c) {
if (c.isEmpty()) {
return false;
}
modCount += c.size();
final TreeList.AVLNode<E> cTree = new TreeList.AVLNode<>(c);
root = root == null ? cTree : root.addAll(cTree, size);
size += c.size();
return true;
}
public E set(final int index, final E obj) {
final TreeList.AVLNode<E> node = root.get(index);
final E result = node.value;
node.setValue(obj);
return result;
}
public E remove(final int index) {
modCount++;
final E result = get(index);
root = root.remove(index);
size--;
return result;
}
public void clear() {
modCount++;
root = null;
size = 0;
}
static class AVLNode<E> {
private TreeList.AVLNode<E> left;
private boolean leftIsPrevious;
private TreeList.AVLNode<E> right;
private boolean rightIsNext;
private int height;
private int relativePosition;
private E value;
private AVLNode(final int relativePosition, final E obj,
final TreeList.AVLNode<E> rightFollower, final TreeList.AVLNode<E> leftFollower) {
this.relativePosition = relativePosition;
value = obj;
rightIsNext = true;
leftIsPrevious = true;
right = rightFollower;
left = leftFollower;
}
private AVLNode(final Collection<? extends E> coll) {
this(coll.iterator(), 0, coll.size() - 1, 0, null, null);
}
private AVLNode(final Iterator<? extends E> iterator, final int start, final int end,
final int absolutePositionOfParent, final TreeList.AVLNode<E> prev, final TreeList.AVLNode<E> next) {
final int mid = start + (end - start) / 2;
if (start < mid) {
left = new TreeList.AVLNode<>(iterator, start, mid - 1, mid, prev, this);
} else {
leftIsPrevious = true;
left = prev;
}
value = iterator.next();
relativePosition = mid - absolutePositionOfParent;
if (mid < end) {
right = new TreeList.AVLNode<>(iterator, mid + 1, end, mid, this, next);
} else {
rightIsNext = true;
right = next;
}
recalcHeight();
}
E getValue() {
return value;
}
void setValue(final E obj) {
this.value = obj;
}
TreeList.AVLNode<E> get(final int index) {
final int indexRelativeToMe = index - relativePosition;
if (indexRelativeToMe == 0) {
return this;
}
final TreeList.AVLNode<E> nextNode = indexRelativeToMe < 0 ? getLeftSubTree() : getRightSubTree();
if (nextNode == null) {
return null;
}
return nextNode.get(indexRelativeToMe);
}
int indexOf(final Object object, final int index) {
if (getLeftSubTree() != null) {
final int result = left.indexOf(object, index + left.relativePosition);
if (result != -1) {
return result;
}
}
if (value == null ? value == object : value.equals(object)) {
return index;
}
if (getRightSubTree() != null) {
return right.indexOf(object, index + right.relativePosition);
}
return -1;
}
void toArray(final Object[] array, final int index) {
array[index] = value;
if (getLeftSubTree() != null) {
left.toArray(array, index + left.relativePosition);
}
if (getRightSubTree() != null) {
right.toArray(array, index + right.relativePosition);
}
}
TreeList.AVLNode<E> next() {
if (rightIsNext || right == null) {
return right;
}
return right.min();
}
TreeList.AVLNode<E> previous() {
if (leftIsPrevious || left == null) {
return left;
}
return left.max();
}
TreeList.AVLNode<E> insert(final int index, final E obj) {
final int indexRelativeToMe = index - relativePosition;
if (indexRelativeToMe <= 0) {
return insertOnLeft(indexRelativeToMe, obj);
}
return insertOnRight(indexRelativeToMe, obj);
}
private TreeList.AVLNode<E> insertOnLeft(final int indexRelativeToMe, final E obj) {
if (getLeftSubTree() == null) {
setLeft(new TreeList.AVLNode<>(-1, obj, this, left), null);
} else {
setLeft(left.insert(indexRelativeToMe, obj), null);
}
if (relativePosition >= 0) {
relativePosition++;
}
final TreeList.AVLNode<E> ret = balance();
recalcHeight();
return ret;
}
private TreeList.AVLNode<E> insertOnRight(final int indexRelativeToMe, final E obj) {
if (getRightSubTree() == null) {
setRight(new TreeList.AVLNode<>(+1, obj, right, this), null);
} else {
setRight(right.insert(indexRelativeToMe, obj), null);
}
if (relativePosition < 0) {
relativePosition--;
}
final TreeList.AVLNode<E> ret = balance();
recalcHeight();
return ret;
}
private TreeList.AVLNode<E> getLeftSubTree() {
return leftIsPrevious ? null : left;
}
private TreeList.AVLNode<E> getRightSubTree() {
return rightIsNext ? null : right;
}
private TreeList.AVLNode<E> max() {
return getRightSubTree() == null ? this : right.max();
}
private TreeList.AVLNode<E> min() {
return getLeftSubTree() == null ? this : left.min();
}
TreeList.AVLNode<E> remove(final int index) {
final int indexRelativeToMe = index - relativePosition;
if (indexRelativeToMe == 0) {
return removeSelf();
}
if (indexRelativeToMe > 0) {
setRight(right.remove(indexRelativeToMe), right.right);
if (relativePosition < 0) {
relativePosition++;
}
} else {
setLeft(left.remove(indexRelativeToMe), left.left);
if (relativePosition > 0) {
relativePosition--;
}
}
recalcHeight();
return balance();
}
private TreeList.AVLNode<E> removeMax() {
if (getRightSubTree() == null) {
return removeSelf();
}
setRight(right.removeMax(), right.right);
if (relativePosition < 0) {
relativePosition++;
}
recalcHeight();
return balance();
}
private TreeList.AVLNode<E> removeMin() {
if (getLeftSubTree() == null) {
return removeSelf();
}
setLeft(left.removeMin(), left.left);
if (relativePosition > 0) {
relativePosition--;
}
recalcHeight();
return balance();
}
private TreeList.AVLNode<E> removeSelf() {
if (getRightSubTree() == null && getLeftSubTree() == null) {
return null;
}
if (getRightSubTree() == null) {
if (relativePosition > 0) {
left.relativePosition += relativePosition;
}
left.max().setRight(null, right);
return left;
}
if (getLeftSubTree() == null) {
right.relativePosition += relativePosition - (relativePosition < 0 ? 0 : 1);
right.min().setLeft(null, left);
return right;
}
if (heightRightMinusLeft() > 0) {
// more on the right, so delete from the right
final TreeList.AVLNode<E> rightMin = right.min();
value = rightMin.value;
if (leftIsPrevious) {
left = rightMin.left;
}
right = right.removeMin();
if (relativePosition < 0) {
relativePosition++;
}
} else {
// more on the left or equal, so delete from the left
final TreeList.AVLNode<E> leftMax = left.max();
value = leftMax.value;
if (rightIsNext) {
right = leftMax.right;
}
final TreeList.AVLNode<E> leftPrevious = left.left;
left = left.removeMax();
if (left == null) {
// special case where left that was deleted was a double link
// only occurs when height difference is equal
left = leftPrevious;
leftIsPrevious = true;
}
if (relativePosition > 0) {
relativePosition--;
}
}
recalcHeight();
return this;
}
private TreeList.AVLNode<E> balance() {
switch (heightRightMinusLeft()) {
case 1:
case 0:
case -1:
return this;
case -2:
if (left.heightRightMinusLeft() > 0) {
setLeft(left.rotateLeft(), null);
}
return rotateRight();
case 2:
if (right.heightRightMinusLeft() < 0) {
setRight(right.rotateRight(), null);
}
return rotateLeft();
default:
throw new RuntimeException("tree inconsistent!");
}
}
private int getOffset(final TreeList.AVLNode<E> node) {
if (node == null) {
return 0;
}
return node.relativePosition;
}
private int setOffset(final TreeList.AVLNode<E> node, final int newOffest) {
if (node == null) {
return 0;
}
final int oldOffset = getOffset(node);
node.relativePosition = newOffest;
return oldOffset;
}
private void recalcHeight() {
height = Math.max(
getLeftSubTree() == null ? -1 : getLeftSubTree().height,
getRightSubTree() == null ? -1 : getRightSubTree().height) + 1;
}
private int getHeight(final TreeList.AVLNode<E> node) {
return node == null ? -1 : node.height;
}
private int heightRightMinusLeft() {
return getHeight(getRightSubTree()) - getHeight(getLeftSubTree());
}
private TreeList.AVLNode<E> rotateLeft() {
final TreeList.AVLNode<E> newTop = right; // can't be faedelung!
final TreeList.AVLNode<E> movedNode = getRightSubTree().getLeftSubTree();
final int newTopPosition = relativePosition + getOffset(newTop);
final int myNewPosition = -newTop.relativePosition;
final int movedPosition = getOffset(newTop) + getOffset(movedNode);
setRight(movedNode, newTop);
newTop.setLeft(this, null);
setOffset(newTop, newTopPosition);
setOffset(this, myNewPosition);
setOffset(movedNode, movedPosition);
return newTop;
}
private TreeList.AVLNode<E> rotateRight() {
final TreeList.AVLNode<E> newTop = left;
final TreeList.AVLNode<E> movedNode = getLeftSubTree().getRightSubTree();
final int newTopPosition = relativePosition + getOffset(newTop);
final int myNewPosition = -newTop.relativePosition;
final int movedPosition = getOffset(newTop) + getOffset(movedNode);
setLeft(movedNode, newTop);
newTop.setRight(this, null);
setOffset(newTop, newTopPosition);
setOffset(this, myNewPosition);
setOffset(movedNode, movedPosition);
return newTop;
}
private void setLeft(final TreeList.AVLNode<E> node, final TreeList.AVLNode<E> previous) {
leftIsPrevious = node == null;
left = leftIsPrevious ? previous : node;
recalcHeight();
}
private void setRight(final TreeList.AVLNode<E> node, final TreeList.AVLNode<E> next) {
rightIsNext = node == null;
right = rightIsNext ? next : node;
recalcHeight();
}
private TreeList.AVLNode<E> addAll(TreeList.AVLNode<E> otherTree, final int currentSize) {
final TreeList.AVLNode<E> maxNode = max();
final TreeList.AVLNode<E> otherTreeMin = otherTree.min();
// We need to efficiently merge the two AVL trees while keeping them
// balanced (or nearly balanced). To do this, we take the shorter
// tree and combine it with a similar-height subtree of the taller
// tree. There are two symmetric cases:
// * this tree is taller, or
// * otherTree is taller.
if (otherTree.height > height) {
// CASE 1: The other tree is taller than this one. We will thus
// merge this tree into otherTree.
// STEP 1: Remove the maximum element from this tree.
final TreeList.AVLNode<E> leftSubTree = removeMax();
// STEP 2: Navigate left from the root of otherTree until we
// contains a subtree, s, that is no taller than me. (While we are
// navigating left, we store the nodes we encounter in a stack
// so that we can re-balance them in step 4.)
final Deque<TreeList.AVLNode<E>> sAncestors = new ArrayDeque<>();
TreeList.AVLNode<E> s = otherTree;
int sAbsolutePosition = s.relativePosition + currentSize;
int sParentAbsolutePosition = 0;
while (s != null && s.height > getHeight(leftSubTree)) {
sParentAbsolutePosition = sAbsolutePosition;
sAncestors.push(s);
s = s.left;
if (s != null) {
sAbsolutePosition += s.relativePosition;
}
}
// STEP 3: Replace s with a newly constructed subtree whose root
// is maxNode, whose left subtree is leftSubTree, and whose right
// subtree is s.
maxNode.setLeft(leftSubTree, null);
maxNode.setRight(s, otherTreeMin);
if (leftSubTree != null) {
leftSubTree.max().setRight(null, maxNode);
leftSubTree.relativePosition -= currentSize - 1;
}
if (s != null) {
s.min().setLeft(null, maxNode);
s.relativePosition = sAbsolutePosition - currentSize + 1;
}
maxNode.relativePosition = currentSize - 1 - sParentAbsolutePosition;
otherTree.relativePosition += currentSize;
// STEP 4: Re-balance the tree and recalculate the heights of s's ancestors.
s = maxNode;
while (!sAncestors.isEmpty()) {
final TreeList.AVLNode<E> sAncestor = sAncestors.pop();
sAncestor.setLeft(s, null);
s = sAncestor.balance();
}
return s;
}
otherTree = otherTree.removeMin();
final Deque<TreeList.AVLNode<E>> sAncestors = new ArrayDeque<>();
TreeList.AVLNode<E> s = this;
int sAbsolutePosition = s.relativePosition;
int sParentAbsolutePosition = 0;
while (s != null && s.height > getHeight(otherTree)) {
sParentAbsolutePosition = sAbsolutePosition;
sAncestors.push(s);
s = s.right;
if (s != null) {
sAbsolutePosition += s.relativePosition;
}
}
otherTreeMin.setRight(otherTree, null);
otherTreeMin.setLeft(s, maxNode);
if (otherTree != null) {
otherTree.min().setLeft(null, otherTreeMin);
otherTree.relativePosition++;
}
if (s != null) {
s.max().setRight(null, otherTreeMin);
s.relativePosition = sAbsolutePosition - currentSize;
}
otherTreeMin.relativePosition = currentSize - sParentAbsolutePosition;
s = otherTreeMin;
while (!sAncestors.isEmpty()) {
final TreeList.AVLNode<E> sAncestor = sAncestors.pop();
sAncestor.setRight(s, null);
s = sAncestor.balance();
}
return s;
}
}
static class TreeListIterator<E> implements ListIterator<E>, OrderedIterator<E> {
private final TreeList<E> parent;
private TreeList.AVLNode<E> next;
private int nextIndex;
private TreeList.AVLNode<E> current;
private int currentIndex;
private int expectedModCount;
private TreeListIterator(final TreeList<E> parent, final int fromIndex) throws IndexOutOfBoundsException {
super();
this.parent = parent;
this.expectedModCount = parent.modCount;
this.next = parent.root == null ? null : parent.root.get(fromIndex);
this.nextIndex = fromIndex;
this.currentIndex = -1;
}
private void checkModCount() {
if (parent.modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
}
public boolean hasNext() {
return nextIndex < parent.size();
}
public E next() {
checkModCount();
if (!hasNext()) {
throw new NoSuchElementException("No element at index " + nextIndex + ".");
}
if (next == null) {
next = parent.root.get(nextIndex);
}
final E value = next.getValue();
current = next;
currentIndex = nextIndex++;
next = next.next();
return value;
}
public boolean hasPrevious() {
return nextIndex > 0;
}
public E previous() {
checkModCount();
if (!hasPrevious()) {
throw new NoSuchElementException("Already at start of list.");
}
if (next == null) {
next = parent.root.get(nextIndex - 1);
} else {
next = next.previous();
}
final E value = next.getValue();
current = next;
currentIndex = --nextIndex;
return value;
}
public int nextIndex() {
return nextIndex;
}
public int previousIndex() {
return nextIndex() - 1;
}
public void remove() {
checkModCount();
if (currentIndex == -1) {
throw new IllegalStateException();
}
parent.remove(currentIndex);
if (nextIndex != currentIndex) {
// remove() following next()
nextIndex--;
}
// the AVL node referenced by next may have become stale after a remove
// reset it now: will be retrieved by next call to next()/previous() via nextIndex
next = null;
current = null;
currentIndex = -1;
expectedModCount++;
}
public void set(final E obj) {
checkModCount();
if (current == null) {
throw new IllegalStateException();
}
current.setValue(obj);
}
public void add(final E obj) {
checkModCount();
parent.add(nextIndex, obj);
current = null;
currentIndex = -1;
nextIndex++;
expectedModCount++;
}
}
}
static class InputReader extends InputStream {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
private static boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Iterator;
import java.util.ListIterator;
import java.util.Collection;
import java.util.AbstractList;
import java.util.InputMismatchException;
import java.io.IOException;
import java.util.Deque;
import java.util.ArrayDeque;
import java.util.NoSuchElementException;
import java.util.ConcurrentModificationException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author cunbidun
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
DPairOfLines solver = new DPairOfLines();
solver.solve(1, in, out);
out.close();
}
static class DPairOfLines {
private static final int INF = (int) 2e9 + 7;
private InputReader in;
private PrintWriter out;
public void solve(int testNumber, InputReader in, PrintWriter out) {
this.in = in;
this.out = out;
int n = in.nextInt();
if (n <= 4) {
out.println("YES");
return;
}
TreeList<PairII> list = new TreeList<>();
PairII[] a = new PairII[n + 1];
for (int i = 1; i <= n; i++) {
a[i] = (new PairII(in.nextInt(), in.nextInt()));
list.add(a[i]);
}
PairII pos1 = new PairII(INF, INF);
PairII pos2 = new PairII(INF, INF);
for (int i = 1; i <= 5; i++) {
for (int j = i + 1; j <= 5; j++) {
for (int k = j + 1; k <= 5; k++) {
int x1 = a[i].first;
int y1 = a[i].second;
int x2 = a[j].first;
int y2 = a[j].second;
int x = a[k].first;
int y = a[k].second;
long s = (long) (y2 - y1) * x + (long) (x1 - x2) * y + ((long) x2 * y1 - (long) x1 * y2);
if (s == 0) {
pos1 = a[i];
pos2 = a[j];
}
}
}
}
if (pos1.equals(new PairII(INF, INF))) {
out.println("NO");
return;
}
int x1 = pos1.first;
int y1 = pos1.second;
int x2 = pos2.first;
int y2 = pos2.second;
for (int i = 0; i < list.size(); i++) {
int x = list.get(i).first;
int y = list.get(i).second;
long s = (long) (y2 - y1) * x + (long) (x1 - x2) * y + ((long) x2 * y1 - (long) x1 * y2);
if (s == 0) {
list.remove(i);
i--;
}
}
if (list.size() <= 2) {
out.println("YES");
return;
}
x1 = list.get(0).first;
y1 = list.get(0).second;
x2 = list.get(1).first;
y2 = list.get(1).second;
for (int i = 0; i < list.size(); i++) {
int x = list.get(i).first;
int y = list.get(i).second;
long s = (long) (y2 - y1) * x + (long) (x1 - x2) * y + ((long) x2 * y1 - (long) x1 * y2);
if (s == 0) {
list.remove(i);
i--;
}
}
if (list.size() == 0) {
out.println("YES");
} else out.println("NO");
}
}
static interface OrderedIterator<E> extends Iterator<E> {
}
static class PairII implements Comparable<PairII> {
public int first;
public int second;
public PairII(int first, int second) {
this.first = first;
this.second = second;
}
public boolean equals(Object o) {
if (this == o) {
return true;
}
if (o == null || getClass() != o.getClass()) {
return false;
}
PairII pair = (PairII) o;
return first == pair.first && second == pair.second;
}
public String toString() {
return "(" + first + "," + second + ")";
}
public int compareTo(PairII o) {
int value = Integer.compare(first, o.first);
if (value != 0) {
return value;
}
return Integer.compare(second, o.second);
}
}
static class TreeList<E> extends AbstractList<E> {
private TreeList.AVLNode<E> root;
private int size;
public TreeList() {
super();
}
public TreeList(final Collection<? extends E> coll) {
super();
if (!coll.isEmpty()) {
root = new TreeList.AVLNode<>(coll);
size = coll.size();
}
}
public E get(final int index) {
return root.get(index).getValue();
}
public int size() {
return size;
}
public Iterator<E> iterator() {
// override to go 75% faster
return listIterator(0);
}
public ListIterator<E> listIterator() {
// override to go 75% faster
return listIterator(0);
}
public ListIterator<E> listIterator(final int fromIndex) {
return new TreeList.TreeListIterator<>(this, fromIndex);
}
public int indexOf(final Object object) {
// override to go 75% faster
if (root == null) {
return -1;
}
return root.indexOf(object, root.relativePosition);
}
public boolean contains(final Object object) {
return indexOf(object) >= 0;
}
public Object[] toArray() {
final Object[] array = new Object[size()];
if (root != null) {
root.toArray(array, root.relativePosition);
}
return array;
}
public void add(final int index, final E obj) {
modCount++;
if (root == null) {
root = new TreeList.AVLNode<>(index, obj, null, null);
} else {
root = root.insert(index, obj);
}
size++;
}
public boolean addAll(final Collection<? extends E> c) {
if (c.isEmpty()) {
return false;
}
modCount += c.size();
final TreeList.AVLNode<E> cTree = new TreeList.AVLNode<>(c);
root = root == null ? cTree : root.addAll(cTree, size);
size += c.size();
return true;
}
public E set(final int index, final E obj) {
final TreeList.AVLNode<E> node = root.get(index);
final E result = node.value;
node.setValue(obj);
return result;
}
public E remove(final int index) {
modCount++;
final E result = get(index);
root = root.remove(index);
size--;
return result;
}
public void clear() {
modCount++;
root = null;
size = 0;
}
static class AVLNode<E> {
private TreeList.AVLNode<E> left;
private boolean leftIsPrevious;
private TreeList.AVLNode<E> right;
private boolean rightIsNext;
private int height;
private int relativePosition;
private E value;
private AVLNode(final int relativePosition, final E obj,
final TreeList.AVLNode<E> rightFollower, final TreeList.AVLNode<E> leftFollower) {
this.relativePosition = relativePosition;
value = obj;
rightIsNext = true;
leftIsPrevious = true;
right = rightFollower;
left = leftFollower;
}
private AVLNode(final Collection<? extends E> coll) {
this(coll.iterator(), 0, coll.size() - 1, 0, null, null);
}
private AVLNode(final Iterator<? extends E> iterator, final int start, final int end,
final int absolutePositionOfParent, final TreeList.AVLNode<E> prev, final TreeList.AVLNode<E> next) {
final int mid = start + (end - start) / 2;
if (start < mid) {
left = new TreeList.AVLNode<>(iterator, start, mid - 1, mid, prev, this);
} else {
leftIsPrevious = true;
left = prev;
}
value = iterator.next();
relativePosition = mid - absolutePositionOfParent;
if (mid < end) {
right = new TreeList.AVLNode<>(iterator, mid + 1, end, mid, this, next);
} else {
rightIsNext = true;
right = next;
}
recalcHeight();
}
E getValue() {
return value;
}
void setValue(final E obj) {
this.value = obj;
}
TreeList.AVLNode<E> get(final int index) {
final int indexRelativeToMe = index - relativePosition;
if (indexRelativeToMe == 0) {
return this;
}
final TreeList.AVLNode<E> nextNode = indexRelativeToMe < 0 ? getLeftSubTree() : getRightSubTree();
if (nextNode == null) {
return null;
}
return nextNode.get(indexRelativeToMe);
}
int indexOf(final Object object, final int index) {
if (getLeftSubTree() != null) {
final int result = left.indexOf(object, index + left.relativePosition);
if (result != -1) {
return result;
}
}
if (value == null ? value == object : value.equals(object)) {
return index;
}
if (getRightSubTree() != null) {
return right.indexOf(object, index + right.relativePosition);
}
return -1;
}
void toArray(final Object[] array, final int index) {
array[index] = value;
if (getLeftSubTree() != null) {
left.toArray(array, index + left.relativePosition);
}
if (getRightSubTree() != null) {
right.toArray(array, index + right.relativePosition);
}
}
TreeList.AVLNode<E> next() {
if (rightIsNext || right == null) {
return right;
}
return right.min();
}
TreeList.AVLNode<E> previous() {
if (leftIsPrevious || left == null) {
return left;
}
return left.max();
}
TreeList.AVLNode<E> insert(final int index, final E obj) {
final int indexRelativeToMe = index - relativePosition;
if (indexRelativeToMe <= 0) {
return insertOnLeft(indexRelativeToMe, obj);
}
return insertOnRight(indexRelativeToMe, obj);
}
private TreeList.AVLNode<E> insertOnLeft(final int indexRelativeToMe, final E obj) {
if (getLeftSubTree() == null) {
setLeft(new TreeList.AVLNode<>(-1, obj, this, left), null);
} else {
setLeft(left.insert(indexRelativeToMe, obj), null);
}
if (relativePosition >= 0) {
relativePosition++;
}
final TreeList.AVLNode<E> ret = balance();
recalcHeight();
return ret;
}
private TreeList.AVLNode<E> insertOnRight(final int indexRelativeToMe, final E obj) {
if (getRightSubTree() == null) {
setRight(new TreeList.AVLNode<>(+1, obj, right, this), null);
} else {
setRight(right.insert(indexRelativeToMe, obj), null);
}
if (relativePosition < 0) {
relativePosition--;
}
final TreeList.AVLNode<E> ret = balance();
recalcHeight();
return ret;
}
private TreeList.AVLNode<E> getLeftSubTree() {
return leftIsPrevious ? null : left;
}
private TreeList.AVLNode<E> getRightSubTree() {
return rightIsNext ? null : right;
}
private TreeList.AVLNode<E> max() {
return getRightSubTree() == null ? this : right.max();
}
private TreeList.AVLNode<E> min() {
return getLeftSubTree() == null ? this : left.min();
}
TreeList.AVLNode<E> remove(final int index) {
final int indexRelativeToMe = index - relativePosition;
if (indexRelativeToMe == 0) {
return removeSelf();
}
if (indexRelativeToMe > 0) {
setRight(right.remove(indexRelativeToMe), right.right);
if (relativePosition < 0) {
relativePosition++;
}
} else {
setLeft(left.remove(indexRelativeToMe), left.left);
if (relativePosition > 0) {
relativePosition--;
}
}
recalcHeight();
return balance();
}
private TreeList.AVLNode<E> removeMax() {
if (getRightSubTree() == null) {
return removeSelf();
}
setRight(right.removeMax(), right.right);
if (relativePosition < 0) {
relativePosition++;
}
recalcHeight();
return balance();
}
private TreeList.AVLNode<E> removeMin() {
if (getLeftSubTree() == null) {
return removeSelf();
}
setLeft(left.removeMin(), left.left);
if (relativePosition > 0) {
relativePosition--;
}
recalcHeight();
return balance();
}
private TreeList.AVLNode<E> removeSelf() {
if (getRightSubTree() == null && getLeftSubTree() == null) {
return null;
}
if (getRightSubTree() == null) {
if (relativePosition > 0) {
left.relativePosition += relativePosition;
}
left.max().setRight(null, right);
return left;
}
if (getLeftSubTree() == null) {
right.relativePosition += relativePosition - (relativePosition < 0 ? 0 : 1);
right.min().setLeft(null, left);
return right;
}
if (heightRightMinusLeft() > 0) {
// more on the right, so delete from the right
final TreeList.AVLNode<E> rightMin = right.min();
value = rightMin.value;
if (leftIsPrevious) {
left = rightMin.left;
}
right = right.removeMin();
if (relativePosition < 0) {
relativePosition++;
}
} else {
// more on the left or equal, so delete from the left
final TreeList.AVLNode<E> leftMax = left.max();
value = leftMax.value;
if (rightIsNext) {
right = leftMax.right;
}
final TreeList.AVLNode<E> leftPrevious = left.left;
left = left.removeMax();
if (left == null) {
// special case where left that was deleted was a double link
// only occurs when height difference is equal
left = leftPrevious;
leftIsPrevious = true;
}
if (relativePosition > 0) {
relativePosition--;
}
}
recalcHeight();
return this;
}
private TreeList.AVLNode<E> balance() {
switch (heightRightMinusLeft()) {
case 1:
case 0:
case -1:
return this;
case -2:
if (left.heightRightMinusLeft() > 0) {
setLeft(left.rotateLeft(), null);
}
return rotateRight();
case 2:
if (right.heightRightMinusLeft() < 0) {
setRight(right.rotateRight(), null);
}
return rotateLeft();
default:
throw new RuntimeException("tree inconsistent!");
}
}
private int getOffset(final TreeList.AVLNode<E> node) {
if (node == null) {
return 0;
}
return node.relativePosition;
}
private int setOffset(final TreeList.AVLNode<E> node, final int newOffest) {
if (node == null) {
return 0;
}
final int oldOffset = getOffset(node);
node.relativePosition = newOffest;
return oldOffset;
}
private void recalcHeight() {
height = Math.max(
getLeftSubTree() == null ? -1 : getLeftSubTree().height,
getRightSubTree() == null ? -1 : getRightSubTree().height) + 1;
}
private int getHeight(final TreeList.AVLNode<E> node) {
return node == null ? -1 : node.height;
}
private int heightRightMinusLeft() {
return getHeight(getRightSubTree()) - getHeight(getLeftSubTree());
}
private TreeList.AVLNode<E> rotateLeft() {
final TreeList.AVLNode<E> newTop = right; // can't be faedelung!
final TreeList.AVLNode<E> movedNode = getRightSubTree().getLeftSubTree();
final int newTopPosition = relativePosition + getOffset(newTop);
final int myNewPosition = -newTop.relativePosition;
final int movedPosition = getOffset(newTop) + getOffset(movedNode);
setRight(movedNode, newTop);
newTop.setLeft(this, null);
setOffset(newTop, newTopPosition);
setOffset(this, myNewPosition);
setOffset(movedNode, movedPosition);
return newTop;
}
private TreeList.AVLNode<E> rotateRight() {
final TreeList.AVLNode<E> newTop = left;
final TreeList.AVLNode<E> movedNode = getLeftSubTree().getRightSubTree();
final int newTopPosition = relativePosition + getOffset(newTop);
final int myNewPosition = -newTop.relativePosition;
final int movedPosition = getOffset(newTop) + getOffset(movedNode);
setLeft(movedNode, newTop);
newTop.setRight(this, null);
setOffset(newTop, newTopPosition);
setOffset(this, myNewPosition);
setOffset(movedNode, movedPosition);
return newTop;
}
private void setLeft(final TreeList.AVLNode<E> node, final TreeList.AVLNode<E> previous) {
leftIsPrevious = node == null;
left = leftIsPrevious ? previous : node;
recalcHeight();
}
private void setRight(final TreeList.AVLNode<E> node, final TreeList.AVLNode<E> next) {
rightIsNext = node == null;
right = rightIsNext ? next : node;
recalcHeight();
}
private TreeList.AVLNode<E> addAll(TreeList.AVLNode<E> otherTree, final int currentSize) {
final TreeList.AVLNode<E> maxNode = max();
final TreeList.AVLNode<E> otherTreeMin = otherTree.min();
// We need to efficiently merge the two AVL trees while keeping them
// balanced (or nearly balanced). To do this, we take the shorter
// tree and combine it with a similar-height subtree of the taller
// tree. There are two symmetric cases:
// * this tree is taller, or
// * otherTree is taller.
if (otherTree.height > height) {
// CASE 1: The other tree is taller than this one. We will thus
// merge this tree into otherTree.
// STEP 1: Remove the maximum element from this tree.
final TreeList.AVLNode<E> leftSubTree = removeMax();
// STEP 2: Navigate left from the root of otherTree until we
// contains a subtree, s, that is no taller than me. (While we are
// navigating left, we store the nodes we encounter in a stack
// so that we can re-balance them in step 4.)
final Deque<TreeList.AVLNode<E>> sAncestors = new ArrayDeque<>();
TreeList.AVLNode<E> s = otherTree;
int sAbsolutePosition = s.relativePosition + currentSize;
int sParentAbsolutePosition = 0;
while (s != null && s.height > getHeight(leftSubTree)) {
sParentAbsolutePosition = sAbsolutePosition;
sAncestors.push(s);
s = s.left;
if (s != null) {
sAbsolutePosition += s.relativePosition;
}
}
// STEP 3: Replace s with a newly constructed subtree whose root
// is maxNode, whose left subtree is leftSubTree, and whose right
// subtree is s.
maxNode.setLeft(leftSubTree, null);
maxNode.setRight(s, otherTreeMin);
if (leftSubTree != null) {
leftSubTree.max().setRight(null, maxNode);
leftSubTree.relativePosition -= currentSize - 1;
}
if (s != null) {
s.min().setLeft(null, maxNode);
s.relativePosition = sAbsolutePosition - currentSize + 1;
}
maxNode.relativePosition = currentSize - 1 - sParentAbsolutePosition;
otherTree.relativePosition += currentSize;
// STEP 4: Re-balance the tree and recalculate the heights of s's ancestors.
s = maxNode;
while (!sAncestors.isEmpty()) {
final TreeList.AVLNode<E> sAncestor = sAncestors.pop();
sAncestor.setLeft(s, null);
s = sAncestor.balance();
}
return s;
}
otherTree = otherTree.removeMin();
final Deque<TreeList.AVLNode<E>> sAncestors = new ArrayDeque<>();
TreeList.AVLNode<E> s = this;
int sAbsolutePosition = s.relativePosition;
int sParentAbsolutePosition = 0;
while (s != null && s.height > getHeight(otherTree)) {
sParentAbsolutePosition = sAbsolutePosition;
sAncestors.push(s);
s = s.right;
if (s != null) {
sAbsolutePosition += s.relativePosition;
}
}
otherTreeMin.setRight(otherTree, null);
otherTreeMin.setLeft(s, maxNode);
if (otherTree != null) {
otherTree.min().setLeft(null, otherTreeMin);
otherTree.relativePosition++;
}
if (s != null) {
s.max().setRight(null, otherTreeMin);
s.relativePosition = sAbsolutePosition - currentSize;
}
otherTreeMin.relativePosition = currentSize - sParentAbsolutePosition;
s = otherTreeMin;
while (!sAncestors.isEmpty()) {
final TreeList.AVLNode<E> sAncestor = sAncestors.pop();
sAncestor.setRight(s, null);
s = sAncestor.balance();
}
return s;
}
}
static class TreeListIterator<E> implements ListIterator<E>, OrderedIterator<E> {
private final TreeList<E> parent;
private TreeList.AVLNode<E> next;
private int nextIndex;
private TreeList.AVLNode<E> current;
private int currentIndex;
private int expectedModCount;
private TreeListIterator(final TreeList<E> parent, final int fromIndex) throws IndexOutOfBoundsException {
super();
this.parent = parent;
this.expectedModCount = parent.modCount;
this.next = parent.root == null ? null : parent.root.get(fromIndex);
this.nextIndex = fromIndex;
this.currentIndex = -1;
}
private void checkModCount() {
if (parent.modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
}
public boolean hasNext() {
return nextIndex < parent.size();
}
public E next() {
checkModCount();
if (!hasNext()) {
throw new NoSuchElementException("No element at index " + nextIndex + ".");
}
if (next == null) {
next = parent.root.get(nextIndex);
}
final E value = next.getValue();
current = next;
currentIndex = nextIndex++;
next = next.next();
return value;
}
public boolean hasPrevious() {
return nextIndex > 0;
}
public E previous() {
checkModCount();
if (!hasPrevious()) {
throw new NoSuchElementException("Already at start of list.");
}
if (next == null) {
next = parent.root.get(nextIndex - 1);
} else {
next = next.previous();
}
final E value = next.getValue();
current = next;
currentIndex = --nextIndex;
return value;
}
public int nextIndex() {
return nextIndex;
}
public int previousIndex() {
return nextIndex() - 1;
}
public void remove() {
checkModCount();
if (currentIndex == -1) {
throw new IllegalStateException();
}
parent.remove(currentIndex);
if (nextIndex != currentIndex) {
// remove() following next()
nextIndex--;
}
// the AVL node referenced by next may have become stale after a remove
// reset it now: will be retrieved by next call to next()/previous() via nextIndex
next = null;
current = null;
currentIndex = -1;
expectedModCount++;
}
public void set(final E obj) {
checkModCount();
if (current == null) {
throw new IllegalStateException();
}
current.setValue(obj);
}
public void add(final E obj) {
checkModCount();
parent.add(nextIndex, obj);
current = null;
currentIndex = -1;
nextIndex++;
expectedModCount++;
}
}
}
static class InputReader extends InputStream {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
private static boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 6,442 | 1,847 |
268 |
import java.util.*;
import java.io.*;
public class SonyaExhibition {
static BufferedReader br;
static StringTokenizer tokenizer;
public static void main(String[] args) throws Exception {
br = new BufferedReader(new InputStreamReader(System.in));
int n = nextInt();
int[] arr = {0,1};
for(int i = 0; i < n; i++) {
System.out.print(arr[i % 2]);
}
System.out.println();
}
public static String next() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
String line = br.readLine();
if (line == null)
throw new IOException();
tokenizer = new StringTokenizer(line);
}
return tokenizer.nextToken();
}
public static int nextInt() throws IOException {
return Integer.parseInt(next());
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class SonyaExhibition {
static BufferedReader br;
static StringTokenizer tokenizer;
public static void main(String[] args) throws Exception {
br = new BufferedReader(new InputStreamReader(System.in));
int n = nextInt();
int[] arr = {0,1};
for(int i = 0; i < n; i++) {
System.out.print(arr[i % 2]);
}
System.out.println();
}
public static String next() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
String line = br.readLine();
if (line == null)
throw new IOException();
tokenizer = new StringTokenizer(line);
}
return tokenizer.nextToken();
}
public static int nextInt() throws IOException {
return Integer.parseInt(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class SonyaExhibition {
static BufferedReader br;
static StringTokenizer tokenizer;
public static void main(String[] args) throws Exception {
br = new BufferedReader(new InputStreamReader(System.in));
int n = nextInt();
int[] arr = {0,1};
for(int i = 0; i < n; i++) {
System.out.print(arr[i % 2]);
}
System.out.println();
}
public static String next() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
String line = br.readLine();
if (line == null)
throw new IOException();
tokenizer = new StringTokenizer(line);
}
return tokenizer.nextToken();
}
public static int nextInt() throws IOException {
return Integer.parseInt(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 501 | 268 |
3,851 |
import java.io.*;
import java.util.*;
public class Codeforces
{
public static void main(String args[])throws Exception
{
BufferedReader bu=new BufferedReader(new InputStreamReader(System.in));
StringBuilder sb=new StringBuilder();
int t=Integer.parseInt(bu.readLine());
while(t-->0)
{
int n=Integer.parseInt(bu.readLine());
int cur[]=new int[n],i,cr=-1;
for(i=0;i<n;i++)
{
int j,d=Integer.parseInt(bu.readLine()),f=-1;
for(j=cr;j>=0;j--)
if(cur[j]==d-1) {f=j; break;}
if(f==-1)
{
cr++;
f=cr;
}
cur[f]=d;
cr=f;
for(j=f+1;j<n;j++) cur[j]=0;
sb.append(cur[0]);
for(j=1;j<n;j++)
if(cur[j]==0) break;
else sb.append("."+cur[j]);
sb.append("\n");
}
}
System.out.print(sb);
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Codeforces
{
public static void main(String args[])throws Exception
{
BufferedReader bu=new BufferedReader(new InputStreamReader(System.in));
StringBuilder sb=new StringBuilder();
int t=Integer.parseInt(bu.readLine());
while(t-->0)
{
int n=Integer.parseInt(bu.readLine());
int cur[]=new int[n],i,cr=-1;
for(i=0;i<n;i++)
{
int j,d=Integer.parseInt(bu.readLine()),f=-1;
for(j=cr;j>=0;j--)
if(cur[j]==d-1) {f=j; break;}
if(f==-1)
{
cr++;
f=cr;
}
cur[f]=d;
cr=f;
for(j=f+1;j<n;j++) cur[j]=0;
sb.append(cur[0]);
for(j=1;j<n;j++)
if(cur[j]==0) break;
else sb.append("."+cur[j]);
sb.append("\n");
}
}
System.out.print(sb);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Codeforces
{
public static void main(String args[])throws Exception
{
BufferedReader bu=new BufferedReader(new InputStreamReader(System.in));
StringBuilder sb=new StringBuilder();
int t=Integer.parseInt(bu.readLine());
while(t-->0)
{
int n=Integer.parseInt(bu.readLine());
int cur[]=new int[n],i,cr=-1;
for(i=0;i<n;i++)
{
int j,d=Integer.parseInt(bu.readLine()),f=-1;
for(j=cr;j>=0;j--)
if(cur[j]==d-1) {f=j; break;}
if(f==-1)
{
cr++;
f=cr;
}
cur[f]=d;
cr=f;
for(j=f+1;j<n;j++) cur[j]=0;
sb.append(cur[0]);
for(j=1;j<n;j++)
if(cur[j]==0) break;
else sb.append("."+cur[j]);
sb.append("\n");
}
}
System.out.print(sb);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 558 | 3,841 |
1,760 |
//package round15;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
public class A {
static StreamTokenizer in =
new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
static int nextInt() throws IOException{
in.nextToken();
return (int)in.nval;
}
static PrintWriter out = new PrintWriter(System.out);
public static void main(String[] args) throws IOException{
int n = nextInt(),
t = nextInt(),
x[] = new int[n],
a[] = new int[n];
for (int i=0; i<n; i++){
x[i] = nextInt();
a[i] = nextInt();
}
for (int i=0; i<n-1; i++)
for (int j=i+1; j<n; j++)
if (x[i] > x[j]){
int p = x[i]; x[i] = x[j]; x[j] = p;
p = a[i]; a[i] = a[j]; a[j] = p;
}
double l[] = new double[n];
double r[] = new double[n];
for (int i=0; i<n; i++){
l[i] = x[i]-a[i]/2.0;
r[i] = x[i]+a[i]/2.0;
}
int res = 2;
for (int i=1; i<n; i++){
if (Math.abs(l[i]-r[i-1]-t) < 0.000001) res++;
else if (l[i]-r[i-1] > t) res += 2;
}
out.println(res);
out.flush();
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
//package round15;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
public class A {
static StreamTokenizer in =
new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
static int nextInt() throws IOException{
in.nextToken();
return (int)in.nval;
}
static PrintWriter out = new PrintWriter(System.out);
public static void main(String[] args) throws IOException{
int n = nextInt(),
t = nextInt(),
x[] = new int[n],
a[] = new int[n];
for (int i=0; i<n; i++){
x[i] = nextInt();
a[i] = nextInt();
}
for (int i=0; i<n-1; i++)
for (int j=i+1; j<n; j++)
if (x[i] > x[j]){
int p = x[i]; x[i] = x[j]; x[j] = p;
p = a[i]; a[i] = a[j]; a[j] = p;
}
double l[] = new double[n];
double r[] = new double[n];
for (int i=0; i<n; i++){
l[i] = x[i]-a[i]/2.0;
r[i] = x[i]+a[i]/2.0;
}
int res = 2;
for (int i=1; i<n; i++){
if (Math.abs(l[i]-r[i-1]-t) < 0.000001) res++;
else if (l[i]-r[i-1] > t) res += 2;
}
out.println(res);
out.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
//package round15;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
public class A {
static StreamTokenizer in =
new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
static int nextInt() throws IOException{
in.nextToken();
return (int)in.nval;
}
static PrintWriter out = new PrintWriter(System.out);
public static void main(String[] args) throws IOException{
int n = nextInt(),
t = nextInt(),
x[] = new int[n],
a[] = new int[n];
for (int i=0; i<n; i++){
x[i] = nextInt();
a[i] = nextInt();
}
for (int i=0; i<n-1; i++)
for (int j=i+1; j<n; j++)
if (x[i] > x[j]){
int p = x[i]; x[i] = x[j]; x[j] = p;
p = a[i]; a[i] = a[j]; a[j] = p;
}
double l[] = new double[n];
double r[] = new double[n];
for (int i=0; i<n; i++){
l[i] = x[i]-a[i]/2.0;
r[i] = x[i]+a[i]/2.0;
}
int res = 2;
for (int i=1; i<n; i++){
if (Math.abs(l[i]-r[i-1]-t) < 0.000001) res++;
else if (l[i]-r[i-1] > t) res += 2;
}
out.println(res);
out.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 743 | 1,756 |
1,990 |
//package round113;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Comparator;
public class A {
InputStream is;
PrintWriter out;
String INPUT = "";
void solve()
{
int n = ni(), k = ni();
int[][] d = new int[n][2];
for(int i = 0;i < n;i++){
d[i][0] = ni();
d[i][1] = ni();
}
Arrays.sort(d, new Comparator<int[]>() {
public int compare(int[] a, int[] b) {
if(a[0] - b[0] != 0)return -(a[0] - b[0]);
return a[1] - b[1];
}
});
int b;
for(b = k-1;b >= 0 && d[k-1][0] == d[b][0] && d[k-1][1] == d[b][1];b--);
b++;
int a;
for(a = k-1;a < n && d[k-1][0] == d[a][0] && d[k-1][1] == d[a][1];a++);
a--;
out.println(a-b+1);
}
void run() throws Exception
{
is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception
{
new A().run();
}
public int ni()
{
try {
int num = 0;
boolean minus = false;
while((num = is.read()) != -1 && !((num >= '0' && num <= '9') || num == '-'));
if(num == '-'){
num = 0;
minus = true;
}else{
num -= '0';
}
while(true){
int b = is.read();
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
}
} catch (IOException e) {
}
return -1;
}
public long nl()
{
try {
long num = 0;
boolean minus = false;
while((num = is.read()) != -1 && !((num >= '0' && num <= '9') || num == '-'));
if(num == '-'){
num = 0;
minus = true;
}else{
num -= '0';
}
while(true){
int b = is.read();
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
}
} catch (IOException e) {
}
return -1;
}
public String ns()
{
try{
int b = 0;
StringBuilder sb = new StringBuilder();
while((b = is.read()) != -1 && (b == '\r' || b == '\n' || b == ' '));
if(b == -1)return "";
sb.append((char)b);
while(true){
b = is.read();
if(b == -1)return sb.toString();
if(b == '\r' || b == '\n' || b == ' ')return sb.toString();
sb.append((char)b);
}
} catch (IOException e) {
}
return "";
}
public char[] ns(int n)
{
char[] buf = new char[n];
try{
int b = 0, p = 0;
while((b = is.read()) != -1 && (b == ' ' || b == '\r' || b == '\n'));
if(b == -1)return null;
buf[p++] = (char)b;
while(p < n){
b = is.read();
if(b == -1 || b == ' ' || b == '\r' || b == '\n')break;
buf[p++] = (char)b;
}
return Arrays.copyOf(buf, p);
} catch (IOException e) {
}
return null;
}
double nd() { return Double.parseDouble(ns()); }
boolean oj = System.getProperty("ONLINE_JUDGE") != null;
void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); }
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
//package round113;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Comparator;
public class A {
InputStream is;
PrintWriter out;
String INPUT = "";
void solve()
{
int n = ni(), k = ni();
int[][] d = new int[n][2];
for(int i = 0;i < n;i++){
d[i][0] = ni();
d[i][1] = ni();
}
Arrays.sort(d, new Comparator<int[]>() {
public int compare(int[] a, int[] b) {
if(a[0] - b[0] != 0)return -(a[0] - b[0]);
return a[1] - b[1];
}
});
int b;
for(b = k-1;b >= 0 && d[k-1][0] == d[b][0] && d[k-1][1] == d[b][1];b--);
b++;
int a;
for(a = k-1;a < n && d[k-1][0] == d[a][0] && d[k-1][1] == d[a][1];a++);
a--;
out.println(a-b+1);
}
void run() throws Exception
{
is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception
{
new A().run();
}
public int ni()
{
try {
int num = 0;
boolean minus = false;
while((num = is.read()) != -1 && !((num >= '0' && num <= '9') || num == '-'));
if(num == '-'){
num = 0;
minus = true;
}else{
num -= '0';
}
while(true){
int b = is.read();
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
}
} catch (IOException e) {
}
return -1;
}
public long nl()
{
try {
long num = 0;
boolean minus = false;
while((num = is.read()) != -1 && !((num >= '0' && num <= '9') || num == '-'));
if(num == '-'){
num = 0;
minus = true;
}else{
num -= '0';
}
while(true){
int b = is.read();
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
}
} catch (IOException e) {
}
return -1;
}
public String ns()
{
try{
int b = 0;
StringBuilder sb = new StringBuilder();
while((b = is.read()) != -1 && (b == '\r' || b == '\n' || b == ' '));
if(b == -1)return "";
sb.append((char)b);
while(true){
b = is.read();
if(b == -1)return sb.toString();
if(b == '\r' || b == '\n' || b == ' ')return sb.toString();
sb.append((char)b);
}
} catch (IOException e) {
}
return "";
}
public char[] ns(int n)
{
char[] buf = new char[n];
try{
int b = 0, p = 0;
while((b = is.read()) != -1 && (b == ' ' || b == '\r' || b == '\n'));
if(b == -1)return null;
buf[p++] = (char)b;
while(p < n){
b = is.read();
if(b == -1 || b == ' ' || b == '\r' || b == '\n')break;
buf[p++] = (char)b;
}
return Arrays.copyOf(buf, p);
} catch (IOException e) {
}
return null;
}
double nd() { return Double.parseDouble(ns()); }
boolean oj = System.getProperty("ONLINE_JUDGE") != null;
void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); }
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
//package round113;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Comparator;
public class A {
InputStream is;
PrintWriter out;
String INPUT = "";
void solve()
{
int n = ni(), k = ni();
int[][] d = new int[n][2];
for(int i = 0;i < n;i++){
d[i][0] = ni();
d[i][1] = ni();
}
Arrays.sort(d, new Comparator<int[]>() {
public int compare(int[] a, int[] b) {
if(a[0] - b[0] != 0)return -(a[0] - b[0]);
return a[1] - b[1];
}
});
int b;
for(b = k-1;b >= 0 && d[k-1][0] == d[b][0] && d[k-1][1] == d[b][1];b--);
b++;
int a;
for(a = k-1;a < n && d[k-1][0] == d[a][0] && d[k-1][1] == d[a][1];a++);
a--;
out.println(a-b+1);
}
void run() throws Exception
{
is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception
{
new A().run();
}
public int ni()
{
try {
int num = 0;
boolean minus = false;
while((num = is.read()) != -1 && !((num >= '0' && num <= '9') || num == '-'));
if(num == '-'){
num = 0;
minus = true;
}else{
num -= '0';
}
while(true){
int b = is.read();
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
}
} catch (IOException e) {
}
return -1;
}
public long nl()
{
try {
long num = 0;
boolean minus = false;
while((num = is.read()) != -1 && !((num >= '0' && num <= '9') || num == '-'));
if(num == '-'){
num = 0;
minus = true;
}else{
num -= '0';
}
while(true){
int b = is.read();
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
}
} catch (IOException e) {
}
return -1;
}
public String ns()
{
try{
int b = 0;
StringBuilder sb = new StringBuilder();
while((b = is.read()) != -1 && (b == '\r' || b == '\n' || b == ' '));
if(b == -1)return "";
sb.append((char)b);
while(true){
b = is.read();
if(b == -1)return sb.toString();
if(b == '\r' || b == '\n' || b == ' ')return sb.toString();
sb.append((char)b);
}
} catch (IOException e) {
}
return "";
}
public char[] ns(int n)
{
char[] buf = new char[n];
try{
int b = 0, p = 0;
while((b = is.read()) != -1 && (b == ' ' || b == '\r' || b == '\n'));
if(b == -1)return null;
buf[p++] = (char)b;
while(p < n){
b = is.read();
if(b == -1 || b == ' ' || b == '\r' || b == '\n')break;
buf[p++] = (char)b;
}
return Arrays.copyOf(buf, p);
} catch (IOException e) {
}
return null;
}
double nd() { return Double.parseDouble(ns()); }
boolean oj = System.getProperty("ONLINE_JUDGE") != null;
void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); }
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,362 | 1,986 |
1,377 |
import java.util.Scanner;
public class b {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
long n = sc.nextLong() - 1, k = sc.nextLong() - 1;
int a = 0;
if ((k + 1) * k / 2 < n) {
System.out.println(-1);
return;
}
while (n > 0 && k > 0) {
long min = go(n, k);
a += (k - min + 1);
n -= (k + min) * (k - min + 1) / 2;
k = Math.min(min - 1, n);
}
if (n == 0)
System.out.println(a);
else
System.out.println(-1);
}
static long go(long n, long k) {
long low = 1, high = k;
while (low + 1 < high) {
long mid = (low + high) / 2;
if ((k + mid) * (k - mid + 1) / 2 <= n) {
high = mid;
} else
low = mid;
}
return high;
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class b {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
long n = sc.nextLong() - 1, k = sc.nextLong() - 1;
int a = 0;
if ((k + 1) * k / 2 < n) {
System.out.println(-1);
return;
}
while (n > 0 && k > 0) {
long min = go(n, k);
a += (k - min + 1);
n -= (k + min) * (k - min + 1) / 2;
k = Math.min(min - 1, n);
}
if (n == 0)
System.out.println(a);
else
System.out.println(-1);
}
static long go(long n, long k) {
long low = 1, high = k;
while (low + 1 < high) {
long mid = (low + high) / 2;
if ((k + mid) * (k - mid + 1) / 2 <= n) {
high = mid;
} else
low = mid;
}
return high;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class b {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
long n = sc.nextLong() - 1, k = sc.nextLong() - 1;
int a = 0;
if ((k + 1) * k / 2 < n) {
System.out.println(-1);
return;
}
while (n > 0 && k > 0) {
long min = go(n, k);
a += (k - min + 1);
n -= (k + min) * (k - min + 1) / 2;
k = Math.min(min - 1, n);
}
if (n == 0)
System.out.println(a);
else
System.out.println(-1);
}
static long go(long n, long k) {
long low = 1, high = k;
while (low + 1 < high) {
long mid = (low + high) / 2;
if ((k + mid) * (k - mid + 1) / 2 <= n) {
high = mid;
} else
low = mid;
}
return high;
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 624 | 1,375 |
282 |
import java.util.HashSet;
import java.util.Scanner;
public class Solution {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
HashSet<Integer> set = new HashSet<>();
for(int i = 0; i<n; i++){
int a = sc.nextInt();
if(a!=0){
set.add(a);
}
}
System.out.println(set.size());
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.HashSet;
import java.util.Scanner;
public class Solution {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
HashSet<Integer> set = new HashSet<>();
for(int i = 0; i<n; i++){
int a = sc.nextInt();
if(a!=0){
set.add(a);
}
}
System.out.println(set.size());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.HashSet;
import java.util.Scanner;
public class Solution {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
HashSet<Integer> set = new HashSet<>();
for(int i = 0; i<n; i++){
int a = sc.nextInt();
if(a!=0){
set.add(a);
}
}
System.out.println(set.size());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 423 | 282 |
1,936 |
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Scanner;
public class nA {
Scanner in;
PrintWriter out;
void solve() {
int n = in.nextInt();
int a[] = new int[n];
int sum = 0;
for (int i = 0; i < n; i++) {
a[i] = in.nextInt();
sum+=a[i];
}
Arrays.sort(a);
int nowsum = 0;
int kol = 0;
for(int i = n - 1; i >= 0; i--){
if(nowsum <= sum / 2){
nowsum+=a[i];
kol++;
}else{
break;
}
}
out.println(kol);
}
void run() {
in = new Scanner(System.in);
out = new PrintWriter(System.out);
try {
solve();
} finally {
out.close();
}
}
public static void main(String[] args) {
new nA().run();
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Scanner;
public class nA {
Scanner in;
PrintWriter out;
void solve() {
int n = in.nextInt();
int a[] = new int[n];
int sum = 0;
for (int i = 0; i < n; i++) {
a[i] = in.nextInt();
sum+=a[i];
}
Arrays.sort(a);
int nowsum = 0;
int kol = 0;
for(int i = n - 1; i >= 0; i--){
if(nowsum <= sum / 2){
nowsum+=a[i];
kol++;
}else{
break;
}
}
out.println(kol);
}
void run() {
in = new Scanner(System.in);
out = new PrintWriter(System.out);
try {
solve();
} finally {
out.close();
}
}
public static void main(String[] args) {
new nA().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Scanner;
public class nA {
Scanner in;
PrintWriter out;
void solve() {
int n = in.nextInt();
int a[] = new int[n];
int sum = 0;
for (int i = 0; i < n; i++) {
a[i] = in.nextInt();
sum+=a[i];
}
Arrays.sort(a);
int nowsum = 0;
int kol = 0;
for(int i = n - 1; i >= 0; i--){
if(nowsum <= sum / 2){
nowsum+=a[i];
kol++;
}else{
break;
}
}
out.println(kol);
}
void run() {
in = new Scanner(System.in);
out = new PrintWriter(System.out);
try {
solve();
} finally {
out.close();
}
}
public static void main(String[] args) {
new nA().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 555 | 1,932 |
2,464 |
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Scanner;
public class Main {
private static class Interval implements Comparable<Interval> {
public int start , end;
public Interval(int start , int end) {
this.start = start;
this.end = end;
}
@Override
public int compareTo(Interval interval) {
return this.end - interval.end;
}
}
private static int getTotal(List<Interval> list) {
int ans = 0 , i , n = list.size();
for (i = 0;i < n;i ++) {
int end = list.get(i).end;
while (i < n && list.get(i).start <= end) {
i ++;
}
i --;
ans ++;
}
return ans;
}
private static void solve(List<Interval> list) {
List<int[]> ans = new ArrayList<>();
int i , n = list.size();
for (i = 0;i < n;i ++) {
int start = list.get(i).start , end = list.get(i).end;
while (i < n && list.get(i).start <= end) {
i ++;
}
i --;
ans.add(new int[] {start , end});
}
System.out.println(ans.size());
for (int[] array : ans) {
System.out.println(array[0] + " " + array[1]);
}
}
private static long[] a = new long[2000];
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
Map<Long , List<Interval>> map = new HashMap<>();
int i , j , n = scan.nextInt() , max = 0;
long ans = 0;
for (i = 1;i <= n;i ++) {
a[i] = scan.nextLong();
}
for (i = 1;i <= n;i ++) {
long sum = 0;
for (j = i;j <= n;j ++) {
sum += a[j];
if (!map.containsKey(sum)) {
map.put(sum , new ArrayList<>());
}
map.get(sum).add(new Interval(i , j));
}
}
for (List<Interval> list : map.values()) {
Collections.sort(list);
}
for (Map.Entry<Long , List<Interval>> entry : map.entrySet()) {
int total = getTotal(entry.getValue());
if (total > max) {
max = total;
ans = entry.getKey();
}
}
solve(map.get(ans));
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Scanner;
public class Main {
private static class Interval implements Comparable<Interval> {
public int start , end;
public Interval(int start , int end) {
this.start = start;
this.end = end;
}
@Override
public int compareTo(Interval interval) {
return this.end - interval.end;
}
}
private static int getTotal(List<Interval> list) {
int ans = 0 , i , n = list.size();
for (i = 0;i < n;i ++) {
int end = list.get(i).end;
while (i < n && list.get(i).start <= end) {
i ++;
}
i --;
ans ++;
}
return ans;
}
private static void solve(List<Interval> list) {
List<int[]> ans = new ArrayList<>();
int i , n = list.size();
for (i = 0;i < n;i ++) {
int start = list.get(i).start , end = list.get(i).end;
while (i < n && list.get(i).start <= end) {
i ++;
}
i --;
ans.add(new int[] {start , end});
}
System.out.println(ans.size());
for (int[] array : ans) {
System.out.println(array[0] + " " + array[1]);
}
}
private static long[] a = new long[2000];
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
Map<Long , List<Interval>> map = new HashMap<>();
int i , j , n = scan.nextInt() , max = 0;
long ans = 0;
for (i = 1;i <= n;i ++) {
a[i] = scan.nextLong();
}
for (i = 1;i <= n;i ++) {
long sum = 0;
for (j = i;j <= n;j ++) {
sum += a[j];
if (!map.containsKey(sum)) {
map.put(sum , new ArrayList<>());
}
map.get(sum).add(new Interval(i , j));
}
}
for (List<Interval> list : map.values()) {
Collections.sort(list);
}
for (Map.Entry<Long , List<Interval>> entry : map.entrySet()) {
int total = getTotal(entry.getValue());
if (total > max) {
max = total;
ans = entry.getKey();
}
}
solve(map.get(ans));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Scanner;
public class Main {
private static class Interval implements Comparable<Interval> {
public int start , end;
public Interval(int start , int end) {
this.start = start;
this.end = end;
}
@Override
public int compareTo(Interval interval) {
return this.end - interval.end;
}
}
private static int getTotal(List<Interval> list) {
int ans = 0 , i , n = list.size();
for (i = 0;i < n;i ++) {
int end = list.get(i).end;
while (i < n && list.get(i).start <= end) {
i ++;
}
i --;
ans ++;
}
return ans;
}
private static void solve(List<Interval> list) {
List<int[]> ans = new ArrayList<>();
int i , n = list.size();
for (i = 0;i < n;i ++) {
int start = list.get(i).start , end = list.get(i).end;
while (i < n && list.get(i).start <= end) {
i ++;
}
i --;
ans.add(new int[] {start , end});
}
System.out.println(ans.size());
for (int[] array : ans) {
System.out.println(array[0] + " " + array[1]);
}
}
private static long[] a = new long[2000];
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
Map<Long , List<Interval>> map = new HashMap<>();
int i , j , n = scan.nextInt() , max = 0;
long ans = 0;
for (i = 1;i <= n;i ++) {
a[i] = scan.nextLong();
}
for (i = 1;i <= n;i ++) {
long sum = 0;
for (j = i;j <= n;j ++) {
sum += a[j];
if (!map.containsKey(sum)) {
map.put(sum , new ArrayList<>());
}
map.get(sum).add(new Interval(i , j));
}
}
for (List<Interval> list : map.values()) {
Collections.sort(list);
}
for (Map.Entry<Long , List<Interval>> entry : map.entrySet()) {
int total = getTotal(entry.getValue());
if (total > max) {
max = total;
ans = entry.getKey();
}
}
solve(map.get(ans));
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 955 | 2,459 |
3,434 |
import java.util.Scanner;
public class A {
public static void main(String[] args) {
new A().run();
}
private void run() {
Scanner sc = new Scanner(System.in);
String s = sc.next();
sc.close();
int res = 0;
for (int i = 0; i < s.length(); i++)
for (int j = i + 1; j <= s.length(); j++) {
String sub = s.substring(i, j);
int c = count(s, sub);
if (c >= 2)
res = Math.max(res, sub.length());
}
System.out.println(res);
}
private int count(String s, String sub) {
int res = 0;
while (s.length() > 0) {
if (s.startsWith(sub))
res++;
s = s.substring(1);
}
return res;
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class A {
public static void main(String[] args) {
new A().run();
}
private void run() {
Scanner sc = new Scanner(System.in);
String s = sc.next();
sc.close();
int res = 0;
for (int i = 0; i < s.length(); i++)
for (int j = i + 1; j <= s.length(); j++) {
String sub = s.substring(i, j);
int c = count(s, sub);
if (c >= 2)
res = Math.max(res, sub.length());
}
System.out.println(res);
}
private int count(String s, String sub) {
int res = 0;
while (s.length() > 0) {
if (s.startsWith(sub))
res++;
s = s.substring(1);
}
return res;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class A {
public static void main(String[] args) {
new A().run();
}
private void run() {
Scanner sc = new Scanner(System.in);
String s = sc.next();
sc.close();
int res = 0;
for (int i = 0; i < s.length(); i++)
for (int j = i + 1; j <= s.length(); j++) {
String sub = s.substring(i, j);
int c = count(s, sub);
if (c >= 2)
res = Math.max(res, sub.length());
}
System.out.println(res);
}
private int count(String s, String sub) {
int res = 0;
while (s.length() > 0) {
if (s.startsWith(sub))
res++;
s = s.substring(1);
}
return res;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 527 | 3,428 |
4,487 |
import java.io.*;
import java.math.BigInteger;
import java.util.*;
public class E implements Runnable {
public static void main (String[] args) {new Thread(null, new E(), "_cf", 1 << 28).start();}
int n, m;
char[] str;
int[][] occs, cost;
int[] dp;
public void run() {
FastScanner fs = new FastScanner();
PrintWriter out = new PrintWriter(System.out);
System.err.println("");
n = fs.nextInt(); m = fs.nextInt();
str = fs.next().toCharArray();
occs = new int[m][m];
for(int i = 0; i < n-1; i++) {
occs[str[i]-'a'][str[i+1]-'a']++;
occs[str[i+1]-'a'][str[i]-'a']++;
}
//cost[mask][v] = numPairs with v for some all bits on in mask
int all = (1<<m)-1;
cost = new int[m][1<<m];
for(int i = 0; i < m; i++) {
for(int mask = 1; mask < all; mask++) {
if(((1<<i)&mask) > 0) continue;
int lb = mask & (-mask);
int trail = Integer.numberOfTrailingZeros(lb);
int nmask = mask ^ lb;
cost[i][mask] = cost[i][nmask]+occs[i][trail];
}
}
dp = new int[1<<m];
Arrays.fill(dp, -1);
System.out.println(solve(0));
out.close();
}
int oo = (int)1e9;
int solve(int mask) {
if(mask == (1<<m)-1) return 0;
if(dp[mask] != -1) return dp[mask];
int res = oo;
int addOn = 0;
for(int nxt = 0; nxt < m; nxt++) {
if(((1<<nxt)&mask) > 0) continue;
addOn += cost[nxt][mask];
}
for(int nxt = 0; nxt < m; nxt++) {
if(((1<<nxt)&mask) > 0) continue;
int ret = addOn+solve(mask | (1<<nxt));
res = Math.min(res, ret);
}
return dp[mask] = res;
}
class FastScanner {
public int BS = 1<<16;
public char NC = (char)0;
byte[] buf = new byte[BS];
int bId = 0, size = 0;
char c = NC;
double num = 1;
BufferedInputStream in;
public FastScanner() {
in = new BufferedInputStream(System.in, BS);
}
public FastScanner(String s) {
try {
in = new BufferedInputStream(new FileInputStream(new File(s)), BS);
}
catch (Exception e) {
in = new BufferedInputStream(System.in, BS);
}
}
public char nextChar(){
while(bId==size) {
try {
size = in.read(buf);
}catch(Exception e) {
return NC;
}
if(size==-1)return NC;
bId=0;
}
return (char)buf[bId++];
}
public int nextInt() {
return (int)nextLong();
}
public long nextLong() {
num=1;
boolean neg = false;
if(c==NC)c=nextChar();
for(;(c<'0' || c>'9'); c = nextChar()) {
if(c=='-')neg=true;
}
long res = 0;
for(; c>='0' && c <='9'; c=nextChar()) {
res = (res<<3)+(res<<1)+c-'0';
num*=10;
}
return neg?-res:res;
}
public double nextDouble() {
double cur = nextLong();
return c!='.' ? cur:cur+nextLong()/num;
}
public String next() {
StringBuilder res = new StringBuilder();
while(c<=32)c=nextChar();
while(c>32) {
res.append(c);
c=nextChar();
}
return res.toString();
}
public String nextLine() {
StringBuilder res = new StringBuilder();
while(c<=32)c=nextChar();
while(c!='\n') {
res.append(c);
c=nextChar();
}
return res.toString();
}
public boolean hasNext() {
if(c>32)return true;
while(true) {
c=nextChar();
if(c==NC)return false;
else if(c>32)return true;
}
}
public int[] nextIntArray(int n) {
int[] res = new int[n];
for(int i = 0; i < n; i++) res[i] = nextInt();
return res;
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.math.BigInteger;
import java.util.*;
public class E implements Runnable {
public static void main (String[] args) {new Thread(null, new E(), "_cf", 1 << 28).start();}
int n, m;
char[] str;
int[][] occs, cost;
int[] dp;
public void run() {
FastScanner fs = new FastScanner();
PrintWriter out = new PrintWriter(System.out);
System.err.println("");
n = fs.nextInt(); m = fs.nextInt();
str = fs.next().toCharArray();
occs = new int[m][m];
for(int i = 0; i < n-1; i++) {
occs[str[i]-'a'][str[i+1]-'a']++;
occs[str[i+1]-'a'][str[i]-'a']++;
}
//cost[mask][v] = numPairs with v for some all bits on in mask
int all = (1<<m)-1;
cost = new int[m][1<<m];
for(int i = 0; i < m; i++) {
for(int mask = 1; mask < all; mask++) {
if(((1<<i)&mask) > 0) continue;
int lb = mask & (-mask);
int trail = Integer.numberOfTrailingZeros(lb);
int nmask = mask ^ lb;
cost[i][mask] = cost[i][nmask]+occs[i][trail];
}
}
dp = new int[1<<m];
Arrays.fill(dp, -1);
System.out.println(solve(0));
out.close();
}
int oo = (int)1e9;
int solve(int mask) {
if(mask == (1<<m)-1) return 0;
if(dp[mask] != -1) return dp[mask];
int res = oo;
int addOn = 0;
for(int nxt = 0; nxt < m; nxt++) {
if(((1<<nxt)&mask) > 0) continue;
addOn += cost[nxt][mask];
}
for(int nxt = 0; nxt < m; nxt++) {
if(((1<<nxt)&mask) > 0) continue;
int ret = addOn+solve(mask | (1<<nxt));
res = Math.min(res, ret);
}
return dp[mask] = res;
}
class FastScanner {
public int BS = 1<<16;
public char NC = (char)0;
byte[] buf = new byte[BS];
int bId = 0, size = 0;
char c = NC;
double num = 1;
BufferedInputStream in;
public FastScanner() {
in = new BufferedInputStream(System.in, BS);
}
public FastScanner(String s) {
try {
in = new BufferedInputStream(new FileInputStream(new File(s)), BS);
}
catch (Exception e) {
in = new BufferedInputStream(System.in, BS);
}
}
public char nextChar(){
while(bId==size) {
try {
size = in.read(buf);
}catch(Exception e) {
return NC;
}
if(size==-1)return NC;
bId=0;
}
return (char)buf[bId++];
}
public int nextInt() {
return (int)nextLong();
}
public long nextLong() {
num=1;
boolean neg = false;
if(c==NC)c=nextChar();
for(;(c<'0' || c>'9'); c = nextChar()) {
if(c=='-')neg=true;
}
long res = 0;
for(; c>='0' && c <='9'; c=nextChar()) {
res = (res<<3)+(res<<1)+c-'0';
num*=10;
}
return neg?-res:res;
}
public double nextDouble() {
double cur = nextLong();
return c!='.' ? cur:cur+nextLong()/num;
}
public String next() {
StringBuilder res = new StringBuilder();
while(c<=32)c=nextChar();
while(c>32) {
res.append(c);
c=nextChar();
}
return res.toString();
}
public String nextLine() {
StringBuilder res = new StringBuilder();
while(c<=32)c=nextChar();
while(c!='\n') {
res.append(c);
c=nextChar();
}
return res.toString();
}
public boolean hasNext() {
if(c>32)return true;
while(true) {
c=nextChar();
if(c==NC)return false;
else if(c>32)return true;
}
}
public int[] nextIntArray(int n) {
int[] res = new int[n];
for(int i = 0; i < n; i++) res[i] = nextInt();
return res;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.math.BigInteger;
import java.util.*;
public class E implements Runnable {
public static void main (String[] args) {new Thread(null, new E(), "_cf", 1 << 28).start();}
int n, m;
char[] str;
int[][] occs, cost;
int[] dp;
public void run() {
FastScanner fs = new FastScanner();
PrintWriter out = new PrintWriter(System.out);
System.err.println("");
n = fs.nextInt(); m = fs.nextInt();
str = fs.next().toCharArray();
occs = new int[m][m];
for(int i = 0; i < n-1; i++) {
occs[str[i]-'a'][str[i+1]-'a']++;
occs[str[i+1]-'a'][str[i]-'a']++;
}
//cost[mask][v] = numPairs with v for some all bits on in mask
int all = (1<<m)-1;
cost = new int[m][1<<m];
for(int i = 0; i < m; i++) {
for(int mask = 1; mask < all; mask++) {
if(((1<<i)&mask) > 0) continue;
int lb = mask & (-mask);
int trail = Integer.numberOfTrailingZeros(lb);
int nmask = mask ^ lb;
cost[i][mask] = cost[i][nmask]+occs[i][trail];
}
}
dp = new int[1<<m];
Arrays.fill(dp, -1);
System.out.println(solve(0));
out.close();
}
int oo = (int)1e9;
int solve(int mask) {
if(mask == (1<<m)-1) return 0;
if(dp[mask] != -1) return dp[mask];
int res = oo;
int addOn = 0;
for(int nxt = 0; nxt < m; nxt++) {
if(((1<<nxt)&mask) > 0) continue;
addOn += cost[nxt][mask];
}
for(int nxt = 0; nxt < m; nxt++) {
if(((1<<nxt)&mask) > 0) continue;
int ret = addOn+solve(mask | (1<<nxt));
res = Math.min(res, ret);
}
return dp[mask] = res;
}
class FastScanner {
public int BS = 1<<16;
public char NC = (char)0;
byte[] buf = new byte[BS];
int bId = 0, size = 0;
char c = NC;
double num = 1;
BufferedInputStream in;
public FastScanner() {
in = new BufferedInputStream(System.in, BS);
}
public FastScanner(String s) {
try {
in = new BufferedInputStream(new FileInputStream(new File(s)), BS);
}
catch (Exception e) {
in = new BufferedInputStream(System.in, BS);
}
}
public char nextChar(){
while(bId==size) {
try {
size = in.read(buf);
}catch(Exception e) {
return NC;
}
if(size==-1)return NC;
bId=0;
}
return (char)buf[bId++];
}
public int nextInt() {
return (int)nextLong();
}
public long nextLong() {
num=1;
boolean neg = false;
if(c==NC)c=nextChar();
for(;(c<'0' || c>'9'); c = nextChar()) {
if(c=='-')neg=true;
}
long res = 0;
for(; c>='0' && c <='9'; c=nextChar()) {
res = (res<<3)+(res<<1)+c-'0';
num*=10;
}
return neg?-res:res;
}
public double nextDouble() {
double cur = nextLong();
return c!='.' ? cur:cur+nextLong()/num;
}
public String next() {
StringBuilder res = new StringBuilder();
while(c<=32)c=nextChar();
while(c>32) {
res.append(c);
c=nextChar();
}
return res.toString();
}
public String nextLine() {
StringBuilder res = new StringBuilder();
while(c<=32)c=nextChar();
while(c!='\n') {
res.append(c);
c=nextChar();
}
return res.toString();
}
public boolean hasNext() {
if(c>32)return true;
while(true) {
c=nextChar();
if(c==NC)return false;
else if(c>32)return true;
}
}
public int[] nextIntArray(int n) {
int[] res = new int[n];
for(int i = 0; i < n; i++) res[i] = nextInt();
return res;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,483 | 4,476 |
4,138 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
public class LookingForOrder {
static int[] x, y;
static int[] dp;
static int n;
static int dist(int i, int j) {
return ((x[i] - x[j]) * (x[i] - x[j]))
+ ((y[i] - y[j]) * (y[i] - y[j]));
}
static int solve(int mask) {
if (mask == (1 << n) - 1)
return 0;
if (dp[mask] != -1)
return dp[mask];
int ans = Integer.MAX_VALUE;
int j = 0;
for (int i = 1; i < n; i++)
if ((mask & (1 << i)) == 0) {
if (j == 0) {
ans = Math
.min(ans, 2 * dist(0, i) + solve(mask | (1 << i)));
j = i;
} else
ans = Math.min(ans, dist(0, i) + dist(i, j) + dist(j, 0)
+ solve(mask | (1 << i) | (1 << j)));
}
return dp[mask] = ans;
}
static void prnt(int mask) {
if (mask == (1 << n) - 1)
return;
int j = 0;
for (int i = 1; i < n; i++)
if ((mask & (1 << i)) == 0) {
if (j == 0) {
j = i;
if (dp[mask] == 2 * dist(0, i) + solve(mask | (1 << i))) {
out.print(" " + i + " 0");
prnt(mask | (1 << i));
return;
}
} else if (dp[mask] == dist(0, i) + dist(i, j) + dist(j, 0)
+ solve(mask | (1 << i) | (1 << j))) {
out.print(" " + i + " " + j + " 0");
prnt(mask | (1 << i) | (1 << j));
return;
}
}
}
public static void main(String[] args) throws IOException {
sc = new StringTokenizer(br.readLine());
int a = nxtInt();
int b = nxtInt();
n = nxtInt() + 1;
x = new int[n];
y = new int[n];
dp = new int[1 << n];
Arrays.fill(dp, -1);
x[0] = a;
y[0] = b;
for (int i = 1; i < n; i++) {
x[i] = nxtInt();
y[i] = nxtInt();
}
out.println(solve(1 << 0));
out.print(0);
prnt(1 << 0);
out.println();
br.close();
out.close();
}
static BufferedReader br = new BufferedReader(new InputStreamReader(
System.in));
static PrintWriter out = new PrintWriter(System.out);
static StringTokenizer sc;
static String nxtTok() throws IOException {
while (!sc.hasMoreTokens())
sc = new StringTokenizer(br.readLine());
return sc.nextToken();
}
static int nxtInt() throws IOException {
return Integer.parseInt(nxtTok());
}
static long nxtLng() throws IOException {
return Long.parseLong(nxtTok());
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
public class LookingForOrder {
static int[] x, y;
static int[] dp;
static int n;
static int dist(int i, int j) {
return ((x[i] - x[j]) * (x[i] - x[j]))
+ ((y[i] - y[j]) * (y[i] - y[j]));
}
static int solve(int mask) {
if (mask == (1 << n) - 1)
return 0;
if (dp[mask] != -1)
return dp[mask];
int ans = Integer.MAX_VALUE;
int j = 0;
for (int i = 1; i < n; i++)
if ((mask & (1 << i)) == 0) {
if (j == 0) {
ans = Math
.min(ans, 2 * dist(0, i) + solve(mask | (1 << i)));
j = i;
} else
ans = Math.min(ans, dist(0, i) + dist(i, j) + dist(j, 0)
+ solve(mask | (1 << i) | (1 << j)));
}
return dp[mask] = ans;
}
static void prnt(int mask) {
if (mask == (1 << n) - 1)
return;
int j = 0;
for (int i = 1; i < n; i++)
if ((mask & (1 << i)) == 0) {
if (j == 0) {
j = i;
if (dp[mask] == 2 * dist(0, i) + solve(mask | (1 << i))) {
out.print(" " + i + " 0");
prnt(mask | (1 << i));
return;
}
} else if (dp[mask] == dist(0, i) + dist(i, j) + dist(j, 0)
+ solve(mask | (1 << i) | (1 << j))) {
out.print(" " + i + " " + j + " 0");
prnt(mask | (1 << i) | (1 << j));
return;
}
}
}
public static void main(String[] args) throws IOException {
sc = new StringTokenizer(br.readLine());
int a = nxtInt();
int b = nxtInt();
n = nxtInt() + 1;
x = new int[n];
y = new int[n];
dp = new int[1 << n];
Arrays.fill(dp, -1);
x[0] = a;
y[0] = b;
for (int i = 1; i < n; i++) {
x[i] = nxtInt();
y[i] = nxtInt();
}
out.println(solve(1 << 0));
out.print(0);
prnt(1 << 0);
out.println();
br.close();
out.close();
}
static BufferedReader br = new BufferedReader(new InputStreamReader(
System.in));
static PrintWriter out = new PrintWriter(System.out);
static StringTokenizer sc;
static String nxtTok() throws IOException {
while (!sc.hasMoreTokens())
sc = new StringTokenizer(br.readLine());
return sc.nextToken();
}
static int nxtInt() throws IOException {
return Integer.parseInt(nxtTok());
}
static long nxtLng() throws IOException {
return Long.parseLong(nxtTok());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
public class LookingForOrder {
static int[] x, y;
static int[] dp;
static int n;
static int dist(int i, int j) {
return ((x[i] - x[j]) * (x[i] - x[j]))
+ ((y[i] - y[j]) * (y[i] - y[j]));
}
static int solve(int mask) {
if (mask == (1 << n) - 1)
return 0;
if (dp[mask] != -1)
return dp[mask];
int ans = Integer.MAX_VALUE;
int j = 0;
for (int i = 1; i < n; i++)
if ((mask & (1 << i)) == 0) {
if (j == 0) {
ans = Math
.min(ans, 2 * dist(0, i) + solve(mask | (1 << i)));
j = i;
} else
ans = Math.min(ans, dist(0, i) + dist(i, j) + dist(j, 0)
+ solve(mask | (1 << i) | (1 << j)));
}
return dp[mask] = ans;
}
static void prnt(int mask) {
if (mask == (1 << n) - 1)
return;
int j = 0;
for (int i = 1; i < n; i++)
if ((mask & (1 << i)) == 0) {
if (j == 0) {
j = i;
if (dp[mask] == 2 * dist(0, i) + solve(mask | (1 << i))) {
out.print(" " + i + " 0");
prnt(mask | (1 << i));
return;
}
} else if (dp[mask] == dist(0, i) + dist(i, j) + dist(j, 0)
+ solve(mask | (1 << i) | (1 << j))) {
out.print(" " + i + " " + j + " 0");
prnt(mask | (1 << i) | (1 << j));
return;
}
}
}
public static void main(String[] args) throws IOException {
sc = new StringTokenizer(br.readLine());
int a = nxtInt();
int b = nxtInt();
n = nxtInt() + 1;
x = new int[n];
y = new int[n];
dp = new int[1 << n];
Arrays.fill(dp, -1);
x[0] = a;
y[0] = b;
for (int i = 1; i < n; i++) {
x[i] = nxtInt();
y[i] = nxtInt();
}
out.println(solve(1 << 0));
out.print(0);
prnt(1 << 0);
out.println();
br.close();
out.close();
}
static BufferedReader br = new BufferedReader(new InputStreamReader(
System.in));
static PrintWriter out = new PrintWriter(System.out);
static StringTokenizer sc;
static String nxtTok() throws IOException {
while (!sc.hasMoreTokens())
sc = new StringTokenizer(br.readLine());
return sc.nextToken();
}
static int nxtInt() throws IOException {
return Integer.parseInt(nxtTok());
}
static long nxtLng() throws IOException {
return Long.parseLong(nxtTok());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,125 | 4,127 |
69 |
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class D {
private void solve() {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
int n = nextInt(), m = nextInt();
boolean[][] used = new boolean[n + 1][m + 1];
for (int j = 1; j <= (m + 1) / 2; j++) {
int x1 = 1, x2 = n;
for (int i = 1; i <= n; i++) {
if (x1 <= n && !used[x1][j]) {
out.println(x1 + " " + j);
used[x1++][j] = true;
}
if (x2 > 0 && !used[x2][m - j + 1]) {
out.println(x2 + " " + (m - j + 1));
used[x2--][m - j + 1] = true;
}
}
}
out.close();
}
public static void main(String[] args) {
new D().solve();
}
private BufferedReader br;
private StringTokenizer st;
private PrintWriter out;
private String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
throw new RuntimeException(e);
}
}
return st.nextToken();
}
private int nextInt() {
return Integer.parseInt(next());
}
private long nextLong() {
return Long.parseLong(next());
}
private double nextDouble() {
return Double.parseDouble(next());
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class D {
private void solve() {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
int n = nextInt(), m = nextInt();
boolean[][] used = new boolean[n + 1][m + 1];
for (int j = 1; j <= (m + 1) / 2; j++) {
int x1 = 1, x2 = n;
for (int i = 1; i <= n; i++) {
if (x1 <= n && !used[x1][j]) {
out.println(x1 + " " + j);
used[x1++][j] = true;
}
if (x2 > 0 && !used[x2][m - j + 1]) {
out.println(x2 + " " + (m - j + 1));
used[x2--][m - j + 1] = true;
}
}
}
out.close();
}
public static void main(String[] args) {
new D().solve();
}
private BufferedReader br;
private StringTokenizer st;
private PrintWriter out;
private String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
throw new RuntimeException(e);
}
}
return st.nextToken();
}
private int nextInt() {
return Integer.parseInt(next());
}
private long nextLong() {
return Long.parseLong(next());
}
private double nextDouble() {
return Double.parseDouble(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class D {
private void solve() {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
int n = nextInt(), m = nextInt();
boolean[][] used = new boolean[n + 1][m + 1];
for (int j = 1; j <= (m + 1) / 2; j++) {
int x1 = 1, x2 = n;
for (int i = 1; i <= n; i++) {
if (x1 <= n && !used[x1][j]) {
out.println(x1 + " " + j);
used[x1++][j] = true;
}
if (x2 > 0 && !used[x2][m - j + 1]) {
out.println(x2 + " " + (m - j + 1));
used[x2--][m - j + 1] = true;
}
}
}
out.close();
}
public static void main(String[] args) {
new D().solve();
}
private BufferedReader br;
private StringTokenizer st;
private PrintWriter out;
private String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
throw new RuntimeException(e);
}
}
return st.nextToken();
}
private int nextInt() {
return Integer.parseInt(next());
}
private long nextLong() {
return Long.parseLong(next());
}
private double nextDouble() {
return Double.parseDouble(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 704 | 69 |
3,204 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class CF {
public static void main(String[] args) throws IOException {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
int n = in.nextInt();
if (n >= 0) {
out.println(n);
} else {
int res = n;
n = Math.abs(n);
String s = String.valueOf(Math.abs(n));
if (s.length() == 1) {
res = 0;
} else {
res = Math.max(-Integer.parseInt(s.substring(0, s.length() - 1)), res);
res = Math.max(-Integer.parseInt(s.substring(0, s.length() - 2) + s.charAt(s.length() - 1)), res);
}
out.println(res);
}
out.close();
}
}
class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class CF {
public static void main(String[] args) throws IOException {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
int n = in.nextInt();
if (n >= 0) {
out.println(n);
} else {
int res = n;
n = Math.abs(n);
String s = String.valueOf(Math.abs(n));
if (s.length() == 1) {
res = 0;
} else {
res = Math.max(-Integer.parseInt(s.substring(0, s.length() - 1)), res);
res = Math.max(-Integer.parseInt(s.substring(0, s.length() - 2) + s.charAt(s.length() - 1)), res);
}
out.println(res);
}
out.close();
}
}
class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class CF {
public static void main(String[] args) throws IOException {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
int n = in.nextInt();
if (n >= 0) {
out.println(n);
} else {
int res = n;
n = Math.abs(n);
String s = String.valueOf(Math.abs(n));
if (s.length() == 1) {
res = 0;
} else {
res = Math.max(-Integer.parseInt(s.substring(0, s.length() - 1)), res);
res = Math.max(-Integer.parseInt(s.substring(0, s.length() - 2) + s.charAt(s.length() - 1)), res);
}
out.println(res);
}
out.close();
}
}
class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 662 | 3,198 |
4,063 |
import java.util.*;
import java.io.*;
public class Main{
BufferedReader in;
StringTokenizer str = null;
PrintWriter out;
private String next() throws Exception{
if (str == null || !str.hasMoreElements())
str = new StringTokenizer(in.readLine());
return str.nextToken();
}
private int nextInt() throws Exception{
return Integer.parseInt(next());
}
int []x,y;
int n;
int []dp, prev;
public void run() throws Exception{
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
int xs = nextInt();
int ys = nextInt();
n = nextInt();
x = new int[n];
y = new int[n];
for(int i=0;i<n;i++){
x[i] = nextInt();
y[i] = nextInt();
}
int one[] = new int[n];
for(int i=0;i<n;i++){
one[i] = dist(xs, ys, x[i], y[i]);
}
int two[][] = new int[n][n];
for(int i=0;i<n;i++){
for(int j=i+1;j<n;j++){
two[i][j] = two[j][i] = dist(xs, ys, x[i], y[i]) + dist(x[i], y[i], x[j], y[j]) + dist(xs, ys, x[j], y[j]);
}
}
dp = new int[1<<n];
Arrays.fill(dp, Integer.MAX_VALUE/2);
dp[0] = 0;
prev = new int[1<<n];
Arrays.fill(prev, -1);
for(int mask=1;mask<(1<<n);mask++){
int i = 0;
while((mask & (1<<i)) == 0) i++;
dp[mask] = dp[mask ^ (1<<i)] + 2*one[i];
prev[mask] = i+1;
for(int j=i+1;j<n;j++){
if ((mask & (1<<j)) > 0) {
if (dp[mask] > dp[mask ^ (1<<i) ^ (1<<j)] + two[i][j]) {
dp[mask] = dp[mask ^ (1<<i) ^ (1<<j)] + two[i][j];
prev[mask] = 100 * (i+1) + (j+1);
}
}
}
}
out.println(dp[(1<<n)-1]);
out.print(0 + " ");
int cur = (1<<n)-1;
int i = 0, j = 0;
while(cur > 0) {
i = prev[cur]/100;
j = prev[cur]%100;
if (i > 0) {
cur^=1<<(i-1);
out.print(i + " ");
}
if (j > 0) {
cur^=1<<(j-1);
out.print(j + " ");
}
out.print(0 + " ");
}
// if (i == 0 || j == 0) {
// out.println(0);
// }
out.close();
}
private String bit2str(int mask, int n) {
String s = "";
for(int i=0;i<n;i++){
if ((mask & (1<<i)) > 0){
s+="1";
}else{
s+="0";
}
}
while(s.length() < n)
s+="0";
return new StringBuilder(s).reverse().toString();
}
private int dist(int x1, int y1, int x2, int y2) {
return (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2);
}
public static void main(String args[]) throws Exception{
new Main().run();
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Main{
BufferedReader in;
StringTokenizer str = null;
PrintWriter out;
private String next() throws Exception{
if (str == null || !str.hasMoreElements())
str = new StringTokenizer(in.readLine());
return str.nextToken();
}
private int nextInt() throws Exception{
return Integer.parseInt(next());
}
int []x,y;
int n;
int []dp, prev;
public void run() throws Exception{
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
int xs = nextInt();
int ys = nextInt();
n = nextInt();
x = new int[n];
y = new int[n];
for(int i=0;i<n;i++){
x[i] = nextInt();
y[i] = nextInt();
}
int one[] = new int[n];
for(int i=0;i<n;i++){
one[i] = dist(xs, ys, x[i], y[i]);
}
int two[][] = new int[n][n];
for(int i=0;i<n;i++){
for(int j=i+1;j<n;j++){
two[i][j] = two[j][i] = dist(xs, ys, x[i], y[i]) + dist(x[i], y[i], x[j], y[j]) + dist(xs, ys, x[j], y[j]);
}
}
dp = new int[1<<n];
Arrays.fill(dp, Integer.MAX_VALUE/2);
dp[0] = 0;
prev = new int[1<<n];
Arrays.fill(prev, -1);
for(int mask=1;mask<(1<<n);mask++){
int i = 0;
while((mask & (1<<i)) == 0) i++;
dp[mask] = dp[mask ^ (1<<i)] + 2*one[i];
prev[mask] = i+1;
for(int j=i+1;j<n;j++){
if ((mask & (1<<j)) > 0) {
if (dp[mask] > dp[mask ^ (1<<i) ^ (1<<j)] + two[i][j]) {
dp[mask] = dp[mask ^ (1<<i) ^ (1<<j)] + two[i][j];
prev[mask] = 100 * (i+1) + (j+1);
}
}
}
}
out.println(dp[(1<<n)-1]);
out.print(0 + " ");
int cur = (1<<n)-1;
int i = 0, j = 0;
while(cur > 0) {
i = prev[cur]/100;
j = prev[cur]%100;
if (i > 0) {
cur^=1<<(i-1);
out.print(i + " ");
}
if (j > 0) {
cur^=1<<(j-1);
out.print(j + " ");
}
out.print(0 + " ");
}
// if (i == 0 || j == 0) {
// out.println(0);
// }
out.close();
}
private String bit2str(int mask, int n) {
String s = "";
for(int i=0;i<n;i++){
if ((mask & (1<<i)) > 0){
s+="1";
}else{
s+="0";
}
}
while(s.length() < n)
s+="0";
return new StringBuilder(s).reverse().toString();
}
private int dist(int x1, int y1, int x2, int y2) {
return (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2);
}
public static void main(String args[]) throws Exception{
new Main().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Main{
BufferedReader in;
StringTokenizer str = null;
PrintWriter out;
private String next() throws Exception{
if (str == null || !str.hasMoreElements())
str = new StringTokenizer(in.readLine());
return str.nextToken();
}
private int nextInt() throws Exception{
return Integer.parseInt(next());
}
int []x,y;
int n;
int []dp, prev;
public void run() throws Exception{
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
int xs = nextInt();
int ys = nextInt();
n = nextInt();
x = new int[n];
y = new int[n];
for(int i=0;i<n;i++){
x[i] = nextInt();
y[i] = nextInt();
}
int one[] = new int[n];
for(int i=0;i<n;i++){
one[i] = dist(xs, ys, x[i], y[i]);
}
int two[][] = new int[n][n];
for(int i=0;i<n;i++){
for(int j=i+1;j<n;j++){
two[i][j] = two[j][i] = dist(xs, ys, x[i], y[i]) + dist(x[i], y[i], x[j], y[j]) + dist(xs, ys, x[j], y[j]);
}
}
dp = new int[1<<n];
Arrays.fill(dp, Integer.MAX_VALUE/2);
dp[0] = 0;
prev = new int[1<<n];
Arrays.fill(prev, -1);
for(int mask=1;mask<(1<<n);mask++){
int i = 0;
while((mask & (1<<i)) == 0) i++;
dp[mask] = dp[mask ^ (1<<i)] + 2*one[i];
prev[mask] = i+1;
for(int j=i+1;j<n;j++){
if ((mask & (1<<j)) > 0) {
if (dp[mask] > dp[mask ^ (1<<i) ^ (1<<j)] + two[i][j]) {
dp[mask] = dp[mask ^ (1<<i) ^ (1<<j)] + two[i][j];
prev[mask] = 100 * (i+1) + (j+1);
}
}
}
}
out.println(dp[(1<<n)-1]);
out.print(0 + " ");
int cur = (1<<n)-1;
int i = 0, j = 0;
while(cur > 0) {
i = prev[cur]/100;
j = prev[cur]%100;
if (i > 0) {
cur^=1<<(i-1);
out.print(i + " ");
}
if (j > 0) {
cur^=1<<(j-1);
out.print(j + " ");
}
out.print(0 + " ");
}
// if (i == 0 || j == 0) {
// out.println(0);
// }
out.close();
}
private String bit2str(int mask, int n) {
String s = "";
for(int i=0;i<n;i++){
if ((mask & (1<<i)) > 0){
s+="1";
}else{
s+="0";
}
}
while(s.length() < n)
s+="0";
return new StringBuilder(s).reverse().toString();
}
private int dist(int x1, int y1, int x2, int y2) {
return (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2);
}
public static void main(String args[]) throws Exception{
new Main().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,215 | 4,052 |
873 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.HashSet;
import java.util.Set;
import java.util.StringTokenizer;
public class B {
static BufferedReader in;
static StringTokenizer st;
static String next() throws IOException {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
static int nextInt() throws IOException {
return Integer.parseInt(next());
}
public static void main(String[] args) throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
int n = nextInt();
int k = nextInt();
int[] a = new int[n + 1];
for (int i = 1; i <= n; i++) {
a[i] = nextInt();
}
Set<Integer> set_1 = new HashSet<Integer>();
for (int i = 1; i <= n; i++) {
set_1.add(a[i]);
if (set_1.size() == k) {
Set<Integer> set_2 = new HashSet<Integer>();
for (int j = i; j >= 1; j--) {
set_2.add(a[j]);
if (set_2.size() == k) {
out.print(j + " " + i);
out.close();
return;
}
}
}
}
out.print("-1 -1");
out.close();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.HashSet;
import java.util.Set;
import java.util.StringTokenizer;
public class B {
static BufferedReader in;
static StringTokenizer st;
static String next() throws IOException {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
static int nextInt() throws IOException {
return Integer.parseInt(next());
}
public static void main(String[] args) throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
int n = nextInt();
int k = nextInt();
int[] a = new int[n + 1];
for (int i = 1; i <= n; i++) {
a[i] = nextInt();
}
Set<Integer> set_1 = new HashSet<Integer>();
for (int i = 1; i <= n; i++) {
set_1.add(a[i]);
if (set_1.size() == k) {
Set<Integer> set_2 = new HashSet<Integer>();
for (int j = i; j >= 1; j--) {
set_2.add(a[j]);
if (set_2.size() == k) {
out.print(j + " " + i);
out.close();
return;
}
}
}
}
out.print("-1 -1");
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.HashSet;
import java.util.Set;
import java.util.StringTokenizer;
public class B {
static BufferedReader in;
static StringTokenizer st;
static String next() throws IOException {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
static int nextInt() throws IOException {
return Integer.parseInt(next());
}
public static void main(String[] args) throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
int n = nextInt();
int k = nextInt();
int[] a = new int[n + 1];
for (int i = 1; i <= n; i++) {
a[i] = nextInt();
}
Set<Integer> set_1 = new HashSet<Integer>();
for (int i = 1; i <= n; i++) {
set_1.add(a[i]);
if (set_1.size() == k) {
Set<Integer> set_2 = new HashSet<Integer>();
for (int j = i; j >= 1; j--) {
set_2.add(a[j]);
if (set_2.size() == k) {
out.print(j + " " + i);
out.close();
return;
}
}
}
}
out.print("-1 -1");
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 665 | 872 |
3,208 |
import java.io.BufferedOutputStream;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class e {
public static class FastReader {
BufferedReader br;
StringTokenizer st;
//it reads the data about the specified point and divide the data about it ,it is quite fast
//than using direct
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception r) {
r.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());//converts string to integer
}
double nextDouble() {
return Double.parseDouble(next());
}
long nextLong() {
return Long.parseLong(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (Exception r) {
r.printStackTrace();
}
return str;
}
}
static ArrayList<String>list1=new ArrayList<String>();
static void combine(String instr, StringBuffer outstr, int index,int k)
{
if(outstr.length()==k)
{
list1.add(outstr.toString());return;
}
if(outstr.toString().length()==0)
outstr.append(instr.charAt(index));
for (int i = 0; i < instr.length(); i++)
{
outstr.append(instr.charAt(i));
combine(instr, outstr, i + 1,k);
outstr.deleteCharAt(outstr.length() - 1);
}
index++;
}
static ArrayList<ArrayList<Integer>>l=new ArrayList<>();
static void comb(int n,int k,int ind,ArrayList<Integer>list)
{
if(k==0)
{
l.add(new ArrayList<>(list));
return;
}
for(int i=ind;i<=n;i++)
{
list.add(i);
comb(n,k-1,ind+1,list);
list.remove(list.size()-1);
}
}
public static PrintWriter out = new PrintWriter (new BufferedOutputStream(System.out));
public static void main(String[] args) {
// TODO Auto-generated method stub
FastReader in=new FastReader();
HashMap<Integer,Integer>map=new HashMap<Integer,Integer>();
int n=in.nextInt();
int r=in.nextInt();
double theta=(double)360/(double)n;
double b=1-((double)2/(double)(1-Math.cos((double)2*Math.PI/(double)n)));
double x=Math.sqrt(1-b)-1;
double ans=(double)r/(double)x;
System.out.println(ans);
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedOutputStream;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class e {
public static class FastReader {
BufferedReader br;
StringTokenizer st;
//it reads the data about the specified point and divide the data about it ,it is quite fast
//than using direct
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception r) {
r.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());//converts string to integer
}
double nextDouble() {
return Double.parseDouble(next());
}
long nextLong() {
return Long.parseLong(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (Exception r) {
r.printStackTrace();
}
return str;
}
}
static ArrayList<String>list1=new ArrayList<String>();
static void combine(String instr, StringBuffer outstr, int index,int k)
{
if(outstr.length()==k)
{
list1.add(outstr.toString());return;
}
if(outstr.toString().length()==0)
outstr.append(instr.charAt(index));
for (int i = 0; i < instr.length(); i++)
{
outstr.append(instr.charAt(i));
combine(instr, outstr, i + 1,k);
outstr.deleteCharAt(outstr.length() - 1);
}
index++;
}
static ArrayList<ArrayList<Integer>>l=new ArrayList<>();
static void comb(int n,int k,int ind,ArrayList<Integer>list)
{
if(k==0)
{
l.add(new ArrayList<>(list));
return;
}
for(int i=ind;i<=n;i++)
{
list.add(i);
comb(n,k-1,ind+1,list);
list.remove(list.size()-1);
}
}
public static PrintWriter out = new PrintWriter (new BufferedOutputStream(System.out));
public static void main(String[] args) {
// TODO Auto-generated method stub
FastReader in=new FastReader();
HashMap<Integer,Integer>map=new HashMap<Integer,Integer>();
int n=in.nextInt();
int r=in.nextInt();
double theta=(double)360/(double)n;
double b=1-((double)2/(double)(1-Math.cos((double)2*Math.PI/(double)n)));
double x=Math.sqrt(1-b)-1;
double ans=(double)r/(double)x;
System.out.println(ans);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedOutputStream;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class e {
public static class FastReader {
BufferedReader br;
StringTokenizer st;
//it reads the data about the specified point and divide the data about it ,it is quite fast
//than using direct
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception r) {
r.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());//converts string to integer
}
double nextDouble() {
return Double.parseDouble(next());
}
long nextLong() {
return Long.parseLong(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (Exception r) {
r.printStackTrace();
}
return str;
}
}
static ArrayList<String>list1=new ArrayList<String>();
static void combine(String instr, StringBuffer outstr, int index,int k)
{
if(outstr.length()==k)
{
list1.add(outstr.toString());return;
}
if(outstr.toString().length()==0)
outstr.append(instr.charAt(index));
for (int i = 0; i < instr.length(); i++)
{
outstr.append(instr.charAt(i));
combine(instr, outstr, i + 1,k);
outstr.deleteCharAt(outstr.length() - 1);
}
index++;
}
static ArrayList<ArrayList<Integer>>l=new ArrayList<>();
static void comb(int n,int k,int ind,ArrayList<Integer>list)
{
if(k==0)
{
l.add(new ArrayList<>(list));
return;
}
for(int i=ind;i<=n;i++)
{
list.add(i);
comb(n,k-1,ind+1,list);
list.remove(list.size()-1);
}
}
public static PrintWriter out = new PrintWriter (new BufferedOutputStream(System.out));
public static void main(String[] args) {
// TODO Auto-generated method stub
FastReader in=new FastReader();
HashMap<Integer,Integer>map=new HashMap<Integer,Integer>();
int n=in.nextInt();
int r=in.nextInt();
double theta=(double)360/(double)n;
double b=1-((double)2/(double)(1-Math.cos((double)2*Math.PI/(double)n)));
double x=Math.sqrt(1-b)-1;
double ans=(double)r/(double)x;
System.out.println(ans);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 903 | 3,202 |
2,957 |
//package CF;
// Div One
import java.util.*;
public class CFA_200 {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
long x = sc.nextLong();
long y = sc.nextLong();
System.out.println(Wilf_tree(x, y));
sc.close();
}
static long Wilf_tree(long a,long b)
{
if(a==0||b==0)
return 0;
if(a>=b)
return a/b+Wilf_tree(a%b, b);
else
return b/a+Wilf_tree(a, b%a);
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
//package CF;
// Div One
import java.util.*;
public class CFA_200 {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
long x = sc.nextLong();
long y = sc.nextLong();
System.out.println(Wilf_tree(x, y));
sc.close();
}
static long Wilf_tree(long a,long b)
{
if(a==0||b==0)
return 0;
if(a>=b)
return a/b+Wilf_tree(a%b, b);
else
return b/a+Wilf_tree(a, b%a);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
//package CF;
// Div One
import java.util.*;
public class CFA_200 {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
long x = sc.nextLong();
long y = sc.nextLong();
System.out.println(Wilf_tree(x, y));
sc.close();
}
static long Wilf_tree(long a,long b)
{
if(a==0||b==0)
return 0;
if(a>=b)
return a/b+Wilf_tree(a%b, b);
else
return b/a+Wilf_tree(a, b%a);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 475 | 2,951 |
879 |
import java.io.*;
import java.math.BigInteger;
import java.util.*;
public class Main {
static final double eps = 1e-8;
public static void main(String[] args) throws IOException {
try {
int n = nextInt();
int k = nextInt();
int[] a = new int[n];
int[] d = new int[n];
int[] dr = new int[n];
boolean used[] = new boolean[100001];
a[0] = nextInt();
used[ a[0] ] = true;
d[0] = 1;
for(int i = 1; i < n; i++)
{
a[i] = nextInt();
if(!used[ a[i] ])
{
used[ a[i] ] = true;
d[i] = d[i - 1] + 1;
}
else
{
d[i] = d[i - 1];
}
}
Arrays.fill(used, false);
int r = Arrays.binarySearch(d, k);
if(r < 0)
{
pw.println("-1 -1");
return;
}
while( r > 0 && d[r] == d[r - 1] )
r--;
used[ a[r] ] = true;
dr[r] = 1;
for(int i = r - 1; i >= 0; i--)
{
if(!used[ a[i] ])
{
used[ a[i] ] = true;
dr[i] = dr[i + 1] + 1;
}
else
{
dr[i] = dr[i + 1];
}
}
int l = 0;
while(l < n - 1 && dr[l] == dr[l + 1] && r - l >= k)
l++;
pw.println(l + 1 + " " + (r + 1));
}
finally {
pw.close();
}
}
static Scanner sc = new Scanner(System.in);
static PrintWriter pw = new PrintWriter(System.out);
static StreamTokenizer in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
static BufferedReader bf = new BufferedReader(new InputStreamReader(System.in));
static StringTokenizer st ;
static int nextInt() throws IOException {
in.nextToken();
return (int) in.nval;
}
static long nextLong() throws IOException {
in.nextToken();
return (long) in.nval;
}
static double nextDouble() throws IOException {
in.nextToken();
return in.nval;
}
static String next() throws IOException {
in.nextToken();
return in.sval;
}
static void outArray(int[] O) {
for(int i = 0; i < O.length - 1; i++)
pw.print(O[i] + " ");
pw.println(O[O.length - 1]);
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.math.BigInteger;
import java.util.*;
public class Main {
static final double eps = 1e-8;
public static void main(String[] args) throws IOException {
try {
int n = nextInt();
int k = nextInt();
int[] a = new int[n];
int[] d = new int[n];
int[] dr = new int[n];
boolean used[] = new boolean[100001];
a[0] = nextInt();
used[ a[0] ] = true;
d[0] = 1;
for(int i = 1; i < n; i++)
{
a[i] = nextInt();
if(!used[ a[i] ])
{
used[ a[i] ] = true;
d[i] = d[i - 1] + 1;
}
else
{
d[i] = d[i - 1];
}
}
Arrays.fill(used, false);
int r = Arrays.binarySearch(d, k);
if(r < 0)
{
pw.println("-1 -1");
return;
}
while( r > 0 && d[r] == d[r - 1] )
r--;
used[ a[r] ] = true;
dr[r] = 1;
for(int i = r - 1; i >= 0; i--)
{
if(!used[ a[i] ])
{
used[ a[i] ] = true;
dr[i] = dr[i + 1] + 1;
}
else
{
dr[i] = dr[i + 1];
}
}
int l = 0;
while(l < n - 1 && dr[l] == dr[l + 1] && r - l >= k)
l++;
pw.println(l + 1 + " " + (r + 1));
}
finally {
pw.close();
}
}
static Scanner sc = new Scanner(System.in);
static PrintWriter pw = new PrintWriter(System.out);
static StreamTokenizer in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
static BufferedReader bf = new BufferedReader(new InputStreamReader(System.in));
static StringTokenizer st ;
static int nextInt() throws IOException {
in.nextToken();
return (int) in.nval;
}
static long nextLong() throws IOException {
in.nextToken();
return (long) in.nval;
}
static double nextDouble() throws IOException {
in.nextToken();
return in.nval;
}
static String next() throws IOException {
in.nextToken();
return in.sval;
}
static void outArray(int[] O) {
for(int i = 0; i < O.length - 1; i++)
pw.print(O[i] + " ");
pw.println(O[O.length - 1]);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.math.BigInteger;
import java.util.*;
public class Main {
static final double eps = 1e-8;
public static void main(String[] args) throws IOException {
try {
int n = nextInt();
int k = nextInt();
int[] a = new int[n];
int[] d = new int[n];
int[] dr = new int[n];
boolean used[] = new boolean[100001];
a[0] = nextInt();
used[ a[0] ] = true;
d[0] = 1;
for(int i = 1; i < n; i++)
{
a[i] = nextInt();
if(!used[ a[i] ])
{
used[ a[i] ] = true;
d[i] = d[i - 1] + 1;
}
else
{
d[i] = d[i - 1];
}
}
Arrays.fill(used, false);
int r = Arrays.binarySearch(d, k);
if(r < 0)
{
pw.println("-1 -1");
return;
}
while( r > 0 && d[r] == d[r - 1] )
r--;
used[ a[r] ] = true;
dr[r] = 1;
for(int i = r - 1; i >= 0; i--)
{
if(!used[ a[i] ])
{
used[ a[i] ] = true;
dr[i] = dr[i + 1] + 1;
}
else
{
dr[i] = dr[i + 1];
}
}
int l = 0;
while(l < n - 1 && dr[l] == dr[l + 1] && r - l >= k)
l++;
pw.println(l + 1 + " " + (r + 1));
}
finally {
pw.close();
}
}
static Scanner sc = new Scanner(System.in);
static PrintWriter pw = new PrintWriter(System.out);
static StreamTokenizer in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
static BufferedReader bf = new BufferedReader(new InputStreamReader(System.in));
static StringTokenizer st ;
static int nextInt() throws IOException {
in.nextToken();
return (int) in.nval;
}
static long nextLong() throws IOException {
in.nextToken();
return (long) in.nval;
}
static double nextDouble() throws IOException {
in.nextToken();
return in.nval;
}
static String next() throws IOException {
in.nextToken();
return in.sval;
}
static void outArray(int[] O) {
for(int i = 0; i < O.length - 1; i++)
pw.print(O[i] + " ");
pw.println(O[O.length - 1]);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 999 | 878 |
325 |
import java.io.*;
import java.util.*;
import java.math.*;
public class Main {
Scanner in;
PrintWriter out;
StreamTokenizer ST;
BufferedReader br;
int nextInt() throws IOException {
ST.nextToken();
return (int) ST.nval;
}
double nextDouble() throws IOException {
ST.nextToken();
return ST.nval;
}
String next() throws IOException {
ST.nextToken();
return ST.sval;
}
String nextLine() throws IOException {
return br.readLine();
}
void solve() throws IOException {
br.readLine();
char[]s = br.readLine().toCharArray();
int n = s.length;
int h=0;
for(int i=0;i<n;++i)if (s[i]=='H')++h;
int res=1000000;
for(int i=0;i<n;++i)
{
int t=0;
for(int j=0;j<h;++j)
{
if (s[(i+j)%n]=='T')++t;
}
res=Math.min(res,t);
}
out.println(res);
}
public void run() throws IOException {
// br = new BufferedReader(new FileReader(new File("input.txt")));
br = new BufferedReader(new InputStreamReader(System.in));
ST = new StreamTokenizer(br);
in = new Scanner(br);
out = new PrintWriter(System.out);
// out = new PrintWriter(new FileWriter(new File("output.txt")));
solve();
in.close();
out.close();
br.close();
}
public static void main(String[] args) throws Exception {
new Main().run();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.*;
public class Main {
Scanner in;
PrintWriter out;
StreamTokenizer ST;
BufferedReader br;
int nextInt() throws IOException {
ST.nextToken();
return (int) ST.nval;
}
double nextDouble() throws IOException {
ST.nextToken();
return ST.nval;
}
String next() throws IOException {
ST.nextToken();
return ST.sval;
}
String nextLine() throws IOException {
return br.readLine();
}
void solve() throws IOException {
br.readLine();
char[]s = br.readLine().toCharArray();
int n = s.length;
int h=0;
for(int i=0;i<n;++i)if (s[i]=='H')++h;
int res=1000000;
for(int i=0;i<n;++i)
{
int t=0;
for(int j=0;j<h;++j)
{
if (s[(i+j)%n]=='T')++t;
}
res=Math.min(res,t);
}
out.println(res);
}
public void run() throws IOException {
// br = new BufferedReader(new FileReader(new File("input.txt")));
br = new BufferedReader(new InputStreamReader(System.in));
ST = new StreamTokenizer(br);
in = new Scanner(br);
out = new PrintWriter(System.out);
// out = new PrintWriter(new FileWriter(new File("output.txt")));
solve();
in.close();
out.close();
br.close();
}
public static void main(String[] args) throws Exception {
new Main().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.*;
public class Main {
Scanner in;
PrintWriter out;
StreamTokenizer ST;
BufferedReader br;
int nextInt() throws IOException {
ST.nextToken();
return (int) ST.nval;
}
double nextDouble() throws IOException {
ST.nextToken();
return ST.nval;
}
String next() throws IOException {
ST.nextToken();
return ST.sval;
}
String nextLine() throws IOException {
return br.readLine();
}
void solve() throws IOException {
br.readLine();
char[]s = br.readLine().toCharArray();
int n = s.length;
int h=0;
for(int i=0;i<n;++i)if (s[i]=='H')++h;
int res=1000000;
for(int i=0;i<n;++i)
{
int t=0;
for(int j=0;j<h;++j)
{
if (s[(i+j)%n]=='T')++t;
}
res=Math.min(res,t);
}
out.println(res);
}
public void run() throws IOException {
// br = new BufferedReader(new FileReader(new File("input.txt")));
br = new BufferedReader(new InputStreamReader(System.in));
ST = new StreamTokenizer(br);
in = new Scanner(br);
out = new PrintWriter(System.out);
// out = new PrintWriter(new FileWriter(new File("output.txt")));
solve();
in.close();
out.close();
br.close();
}
public static void main(String[] args) throws Exception {
new Main().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 677 | 325 |
570 |
//package global14;
import java.util.Scanner;
public class B {
public static void main(String[] args){
Scanner in = new Scanner(System.in);
int t = in.nextInt();
while(t > 0){
t --;
int n = in.nextInt();
if(n % 2 != 0){
System.out.println("NO");
continue;
}
int a = n / 2;
int x = (int)Math.sqrt(a);
if(x * x == a || (x + 1) * (x + 1) == a){
System.out.println("YES");
continue;
}
a = n / 4;
if(n % 4 != 0){
System.out.println("NO");
continue;
}
x = (int)Math.sqrt(a);
if(x * x == a || (x + 1) * (x + 1) == a){
System.out.println("YES");
continue;
}
System.out.println("NO");
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
//package global14;
import java.util.Scanner;
public class B {
public static void main(String[] args){
Scanner in = new Scanner(System.in);
int t = in.nextInt();
while(t > 0){
t --;
int n = in.nextInt();
if(n % 2 != 0){
System.out.println("NO");
continue;
}
int a = n / 2;
int x = (int)Math.sqrt(a);
if(x * x == a || (x + 1) * (x + 1) == a){
System.out.println("YES");
continue;
}
a = n / 4;
if(n % 4 != 0){
System.out.println("NO");
continue;
}
x = (int)Math.sqrt(a);
if(x * x == a || (x + 1) * (x + 1) == a){
System.out.println("YES");
continue;
}
System.out.println("NO");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
//package global14;
import java.util.Scanner;
public class B {
public static void main(String[] args){
Scanner in = new Scanner(System.in);
int t = in.nextInt();
while(t > 0){
t --;
int n = in.nextInt();
if(n % 2 != 0){
System.out.println("NO");
continue;
}
int a = n / 2;
int x = (int)Math.sqrt(a);
if(x * x == a || (x + 1) * (x + 1) == a){
System.out.println("YES");
continue;
}
a = n / 4;
if(n % 4 != 0){
System.out.println("NO");
continue;
}
x = (int)Math.sqrt(a);
if(x * x == a || (x + 1) * (x + 1) == a){
System.out.println("YES");
continue;
}
System.out.println("NO");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 552 | 569 |
623 |
//package round495;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.HashSet;
import java.util.InputMismatchException;
import java.util.Set;
public class A {
InputStream is;
PrintWriter out;
String INPUT = "";
void solve()
{
int n = ni(), d = ni();
int[] a = na(n);
Set<Long> set = new HashSet<>();
for(int v : a){
set.add(v-(long)d);
set.add(v+(long)d);
}
int ct = 0;
for(long s : set){
long min = Long.MAX_VALUE;
for(int v : a){
min = Math.min(min, Math.abs(s-v));
}
if(min == d)ct++;
}
out.println(ct);
}
void run() throws Exception
{
is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception { new A().run(); }
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni()
{
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private boolean oj = System.getProperty("ONLINE_JUDGE") != null;
private void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); }
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
//package round495;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.HashSet;
import java.util.InputMismatchException;
import java.util.Set;
public class A {
InputStream is;
PrintWriter out;
String INPUT = "";
void solve()
{
int n = ni(), d = ni();
int[] a = na(n);
Set<Long> set = new HashSet<>();
for(int v : a){
set.add(v-(long)d);
set.add(v+(long)d);
}
int ct = 0;
for(long s : set){
long min = Long.MAX_VALUE;
for(int v : a){
min = Math.min(min, Math.abs(s-v));
}
if(min == d)ct++;
}
out.println(ct);
}
void run() throws Exception
{
is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception { new A().run(); }
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni()
{
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private boolean oj = System.getProperty("ONLINE_JUDGE") != null;
private void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); }
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
//package round495;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.HashSet;
import java.util.InputMismatchException;
import java.util.Set;
public class A {
InputStream is;
PrintWriter out;
String INPUT = "";
void solve()
{
int n = ni(), d = ni();
int[] a = na(n);
Set<Long> set = new HashSet<>();
for(int v : a){
set.add(v-(long)d);
set.add(v+(long)d);
}
int ct = 0;
for(long s : set){
long min = Long.MAX_VALUE;
for(int v : a){
min = Math.min(min, Math.abs(s-v));
}
if(min == d)ct++;
}
out.println(ct);
}
void run() throws Exception
{
is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception { new A().run(); }
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni()
{
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private boolean oj = System.getProperty("ONLINE_JUDGE") != null;
private void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); }
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,348 | 622 |
3,312 |
import java.util.*;
import java.io.*;
import java.text.*;
import java.math.*;
import static java.lang.Integer.*;
import static java.lang.Double.*;
import java.lang.Math.*;
public class two_squares {
public static void main(String[] args) throws Exception {
new two_squares().run();
}
public void run() throws Exception {
FastIO file = new FastIO();
double x1 = file.nextInt();
double y1 = file.nextInt();
double x2 = file.nextInt();
double y2 = file.nextInt();
double x3 = file.nextInt();
double y3 = file.nextInt();
double x4 = file.nextInt();
double y4 = file.nextInt();
double minx1, maxx1, miny1, maxy1;
minx1 = Math.min(x1, Math.min(x2, Math.min(x3, x4)));
maxx1 = Math.max(x1, Math.max(x2, Math.max(x3, x4)));
miny1 = Math.min(y1, Math.min(y2, Math.min(y3, y4)));
maxy1 = Math.max(y1, Math.max(y2, Math.max(y3, y4)));
double x5 = file.nextInt();
double y5 = file.nextInt();
double x6 = file.nextInt();
double y6 = file.nextInt();
double x7 = file.nextInt();
double y7 = file.nextInt();
double x8 = file.nextInt();
double y8 = file.nextInt();
double minx2, maxx2, miny2, maxy2;
minx2 = Math.min(x5, Math.min(x6, Math.min(x7, x8)));
maxx2 = Math.max(x5, Math.max(x6, Math.max(x7, x8)));
miny2 = Math.min(y5, Math.min(y6, Math.min(y7, y8)));
maxy2 = Math.max(y5, Math.max(y6, Math.max(y7, y8)));
Point _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16;
_1 = new Point(x1, y1);
_2 = new Point(x2, y2);
_3 = new Point(x3, y3);
_4 = new Point(x4, y4);
_5 = new Point(x5, y5);
_6 = new Point(x6, y6);
_7 = new Point(x7, y7);
_8 = new Point(x8, y8);
_9 = new Point(minx1, maxy1);
_10 = new Point(minx1, miny1);
_11 = new Point(maxx1, maxy1);
_12 = new Point(maxx1, miny1);
double m1 = (minx2 + maxx2) / 2;
double m2 = (miny2 + maxy2) / 2;
_13 = new Point(minx2, m2);
_14 = new Point(m1, miny2);
_15 = new Point(maxx2, m2);
_16 = new Point(m1, maxy2);
Point[] a = {_1, _2, _3, _4};
Point[] b = {_5, _6, _7, _8};
boolean works = false;
Line[] aa = {new Line(_9,_10), new Line(_10, _12), new Line(_12, _11), new Line(_11, _9)};
Line[] bb = {new Line(_13, _14), new Line(_14, _15), new Line(_15, _16), new Line(_16, _13)};
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
if (aa[i].intersection(bb[i]) != null) {
works = true;
}
}
}
for (Point p : b) {
if (p.x >= minx1 && p.x <= maxx1 && p.y >= miny1 && p.y <= maxy1) {
works = true;
}
}
for (Point p : a) {
boolean result = false;
for (int i = 0, j = b.length - 1; i < b.length; j = i++) {
if ((b[i].y > p.y) != (b[j].y > p.y) &&
(p.x < (b[j].x - b[i].x) * (p.y - b[i].y) / (b[j].y-b[i].y) + b[i].x)) {
result = !result;
}
}
if (result) works = true;
}
System.out.println(works ? "YES" : "NO");
}
public static class Point {
double x, y;
public Point(double a, double b) {
x = a;
y = b;
}
}
public static class Line {
Point a, b;
public Line(Point x, Point y) {
a = x;
b = y;
}
public Point intersection(Line o) {
double x1 = a.x;
double y1 = a.y;
double x2 = b.x;
double y2 = b.y;
double x3 = o.a.x;
double y3 = o.a.y;
double x4 = o.b.x;
double y4 = o.b.y;
double denom = (y4 - y3) * (x2 - x1) - (x4 - x3) * (y2 - y1);
double ua = ((x4 - x3) * (y1 - y3) - (y4 - y3) * (x1 - x3))/denom;
double ub = ((x2 - x1) * (y1 - y3) - (y2 - y1) * (x1 - x3))/denom;
if (ua >= 0.0f && ua <= 1.0f && ub >= 0.0f && ub <= 1.0f) {
return new Point((int) (x1 + ua*(x2 - x1)), (int) (y1 + ua*(y2 - y1)));
}
return null;
}
}
public static class FastIO {
BufferedReader br;
StringTokenizer st;
public FastIO() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static long pow(long n, long p, long mod) {
if (p == 0)
return 1;
if (p == 1)
return n % mod;
if (p % 2 == 0) {
long temp = pow(n, p / 2, mod);
return (temp * temp) % mod;
} else {
long temp = pow(n, p / 2, mod);
temp = (temp * temp) % mod;
return (temp * n) % mod;
}
}
public static long pow(long n, long p) {
if (p == 0)
return 1;
if (p == 1)
return n;
if (p % 2 == 0) {
long temp = pow(n, p / 2);
return (temp * temp);
} else {
long temp = pow(n, p / 2);
temp = (temp * temp);
return (temp * n);
}
}
public static long gcd(long x, long y) {
if (x == 0)
return y;
else
return gcd(y % x, x);
}
public static boolean isPrime(int n) {
if (n <= 1)
return false;
if (n <= 3)
return true;
if (n % 2 == 0 || n % 3 == 0)
return false;
for (int i = 5; i * i <= n; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0)
return false;
return true;
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.text.*;
import java.math.*;
import static java.lang.Integer.*;
import static java.lang.Double.*;
import java.lang.Math.*;
public class two_squares {
public static void main(String[] args) throws Exception {
new two_squares().run();
}
public void run() throws Exception {
FastIO file = new FastIO();
double x1 = file.nextInt();
double y1 = file.nextInt();
double x2 = file.nextInt();
double y2 = file.nextInt();
double x3 = file.nextInt();
double y3 = file.nextInt();
double x4 = file.nextInt();
double y4 = file.nextInt();
double minx1, maxx1, miny1, maxy1;
minx1 = Math.min(x1, Math.min(x2, Math.min(x3, x4)));
maxx1 = Math.max(x1, Math.max(x2, Math.max(x3, x4)));
miny1 = Math.min(y1, Math.min(y2, Math.min(y3, y4)));
maxy1 = Math.max(y1, Math.max(y2, Math.max(y3, y4)));
double x5 = file.nextInt();
double y5 = file.nextInt();
double x6 = file.nextInt();
double y6 = file.nextInt();
double x7 = file.nextInt();
double y7 = file.nextInt();
double x8 = file.nextInt();
double y8 = file.nextInt();
double minx2, maxx2, miny2, maxy2;
minx2 = Math.min(x5, Math.min(x6, Math.min(x7, x8)));
maxx2 = Math.max(x5, Math.max(x6, Math.max(x7, x8)));
miny2 = Math.min(y5, Math.min(y6, Math.min(y7, y8)));
maxy2 = Math.max(y5, Math.max(y6, Math.max(y7, y8)));
Point _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16;
_1 = new Point(x1, y1);
_2 = new Point(x2, y2);
_3 = new Point(x3, y3);
_4 = new Point(x4, y4);
_5 = new Point(x5, y5);
_6 = new Point(x6, y6);
_7 = new Point(x7, y7);
_8 = new Point(x8, y8);
_9 = new Point(minx1, maxy1);
_10 = new Point(minx1, miny1);
_11 = new Point(maxx1, maxy1);
_12 = new Point(maxx1, miny1);
double m1 = (minx2 + maxx2) / 2;
double m2 = (miny2 + maxy2) / 2;
_13 = new Point(minx2, m2);
_14 = new Point(m1, miny2);
_15 = new Point(maxx2, m2);
_16 = new Point(m1, maxy2);
Point[] a = {_1, _2, _3, _4};
Point[] b = {_5, _6, _7, _8};
boolean works = false;
Line[] aa = {new Line(_9,_10), new Line(_10, _12), new Line(_12, _11), new Line(_11, _9)};
Line[] bb = {new Line(_13, _14), new Line(_14, _15), new Line(_15, _16), new Line(_16, _13)};
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
if (aa[i].intersection(bb[i]) != null) {
works = true;
}
}
}
for (Point p : b) {
if (p.x >= minx1 && p.x <= maxx1 && p.y >= miny1 && p.y <= maxy1) {
works = true;
}
}
for (Point p : a) {
boolean result = false;
for (int i = 0, j = b.length - 1; i < b.length; j = i++) {
if ((b[i].y > p.y) != (b[j].y > p.y) &&
(p.x < (b[j].x - b[i].x) * (p.y - b[i].y) / (b[j].y-b[i].y) + b[i].x)) {
result = !result;
}
}
if (result) works = true;
}
System.out.println(works ? "YES" : "NO");
}
public static class Point {
double x, y;
public Point(double a, double b) {
x = a;
y = b;
}
}
public static class Line {
Point a, b;
public Line(Point x, Point y) {
a = x;
b = y;
}
public Point intersection(Line o) {
double x1 = a.x;
double y1 = a.y;
double x2 = b.x;
double y2 = b.y;
double x3 = o.a.x;
double y3 = o.a.y;
double x4 = o.b.x;
double y4 = o.b.y;
double denom = (y4 - y3) * (x2 - x1) - (x4 - x3) * (y2 - y1);
double ua = ((x4 - x3) * (y1 - y3) - (y4 - y3) * (x1 - x3))/denom;
double ub = ((x2 - x1) * (y1 - y3) - (y2 - y1) * (x1 - x3))/denom;
if (ua >= 0.0f && ua <= 1.0f && ub >= 0.0f && ub <= 1.0f) {
return new Point((int) (x1 + ua*(x2 - x1)), (int) (y1 + ua*(y2 - y1)));
}
return null;
}
}
public static class FastIO {
BufferedReader br;
StringTokenizer st;
public FastIO() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static long pow(long n, long p, long mod) {
if (p == 0)
return 1;
if (p == 1)
return n % mod;
if (p % 2 == 0) {
long temp = pow(n, p / 2, mod);
return (temp * temp) % mod;
} else {
long temp = pow(n, p / 2, mod);
temp = (temp * temp) % mod;
return (temp * n) % mod;
}
}
public static long pow(long n, long p) {
if (p == 0)
return 1;
if (p == 1)
return n;
if (p % 2 == 0) {
long temp = pow(n, p / 2);
return (temp * temp);
} else {
long temp = pow(n, p / 2);
temp = (temp * temp);
return (temp * n);
}
}
public static long gcd(long x, long y) {
if (x == 0)
return y;
else
return gcd(y % x, x);
}
public static boolean isPrime(int n) {
if (n <= 1)
return false;
if (n <= 3)
return true;
if (n % 2 == 0 || n % 3 == 0)
return false;
for (int i = 5; i * i <= n; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0)
return false;
return true;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.text.*;
import java.math.*;
import static java.lang.Integer.*;
import static java.lang.Double.*;
import java.lang.Math.*;
public class two_squares {
public static void main(String[] args) throws Exception {
new two_squares().run();
}
public void run() throws Exception {
FastIO file = new FastIO();
double x1 = file.nextInt();
double y1 = file.nextInt();
double x2 = file.nextInt();
double y2 = file.nextInt();
double x3 = file.nextInt();
double y3 = file.nextInt();
double x4 = file.nextInt();
double y4 = file.nextInt();
double minx1, maxx1, miny1, maxy1;
minx1 = Math.min(x1, Math.min(x2, Math.min(x3, x4)));
maxx1 = Math.max(x1, Math.max(x2, Math.max(x3, x4)));
miny1 = Math.min(y1, Math.min(y2, Math.min(y3, y4)));
maxy1 = Math.max(y1, Math.max(y2, Math.max(y3, y4)));
double x5 = file.nextInt();
double y5 = file.nextInt();
double x6 = file.nextInt();
double y6 = file.nextInt();
double x7 = file.nextInt();
double y7 = file.nextInt();
double x8 = file.nextInt();
double y8 = file.nextInt();
double minx2, maxx2, miny2, maxy2;
minx2 = Math.min(x5, Math.min(x6, Math.min(x7, x8)));
maxx2 = Math.max(x5, Math.max(x6, Math.max(x7, x8)));
miny2 = Math.min(y5, Math.min(y6, Math.min(y7, y8)));
maxy2 = Math.max(y5, Math.max(y6, Math.max(y7, y8)));
Point _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16;
_1 = new Point(x1, y1);
_2 = new Point(x2, y2);
_3 = new Point(x3, y3);
_4 = new Point(x4, y4);
_5 = new Point(x5, y5);
_6 = new Point(x6, y6);
_7 = new Point(x7, y7);
_8 = new Point(x8, y8);
_9 = new Point(minx1, maxy1);
_10 = new Point(minx1, miny1);
_11 = new Point(maxx1, maxy1);
_12 = new Point(maxx1, miny1);
double m1 = (minx2 + maxx2) / 2;
double m2 = (miny2 + maxy2) / 2;
_13 = new Point(minx2, m2);
_14 = new Point(m1, miny2);
_15 = new Point(maxx2, m2);
_16 = new Point(m1, maxy2);
Point[] a = {_1, _2, _3, _4};
Point[] b = {_5, _6, _7, _8};
boolean works = false;
Line[] aa = {new Line(_9,_10), new Line(_10, _12), new Line(_12, _11), new Line(_11, _9)};
Line[] bb = {new Line(_13, _14), new Line(_14, _15), new Line(_15, _16), new Line(_16, _13)};
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
if (aa[i].intersection(bb[i]) != null) {
works = true;
}
}
}
for (Point p : b) {
if (p.x >= minx1 && p.x <= maxx1 && p.y >= miny1 && p.y <= maxy1) {
works = true;
}
}
for (Point p : a) {
boolean result = false;
for (int i = 0, j = b.length - 1; i < b.length; j = i++) {
if ((b[i].y > p.y) != (b[j].y > p.y) &&
(p.x < (b[j].x - b[i].x) * (p.y - b[i].y) / (b[j].y-b[i].y) + b[i].x)) {
result = !result;
}
}
if (result) works = true;
}
System.out.println(works ? "YES" : "NO");
}
public static class Point {
double x, y;
public Point(double a, double b) {
x = a;
y = b;
}
}
public static class Line {
Point a, b;
public Line(Point x, Point y) {
a = x;
b = y;
}
public Point intersection(Line o) {
double x1 = a.x;
double y1 = a.y;
double x2 = b.x;
double y2 = b.y;
double x3 = o.a.x;
double y3 = o.a.y;
double x4 = o.b.x;
double y4 = o.b.y;
double denom = (y4 - y3) * (x2 - x1) - (x4 - x3) * (y2 - y1);
double ua = ((x4 - x3) * (y1 - y3) - (y4 - y3) * (x1 - x3))/denom;
double ub = ((x2 - x1) * (y1 - y3) - (y2 - y1) * (x1 - x3))/denom;
if (ua >= 0.0f && ua <= 1.0f && ub >= 0.0f && ub <= 1.0f) {
return new Point((int) (x1 + ua*(x2 - x1)), (int) (y1 + ua*(y2 - y1)));
}
return null;
}
}
public static class FastIO {
BufferedReader br;
StringTokenizer st;
public FastIO() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static long pow(long n, long p, long mod) {
if (p == 0)
return 1;
if (p == 1)
return n % mod;
if (p % 2 == 0) {
long temp = pow(n, p / 2, mod);
return (temp * temp) % mod;
} else {
long temp = pow(n, p / 2, mod);
temp = (temp * temp) % mod;
return (temp * n) % mod;
}
}
public static long pow(long n, long p) {
if (p == 0)
return 1;
if (p == 1)
return n;
if (p % 2 == 0) {
long temp = pow(n, p / 2);
return (temp * temp);
} else {
long temp = pow(n, p / 2);
temp = (temp * temp);
return (temp * n);
}
}
public static long gcd(long x, long y) {
if (x == 0)
return y;
else
return gcd(y % x, x);
}
public static boolean isPrime(int n) {
if (n <= 1)
return false;
if (n <= 3)
return true;
if (n % 2 == 0 || n % 3 == 0)
return false;
for (int i = 5; i * i <= n; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0)
return false;
return true;
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,358 | 3,306 |
4,133 |
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.util.Arrays;
import java.io.BufferedWriter;
import java.util.InputMismatchException;
import java.util.Comparator;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.NoSuchElementException;
import java.io.Writer;
import java.math.BigInteger;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author Nguyen Trung Hieu - [email protected]
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
}
class TaskC {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int xs = in.readInt();
int ys = in.readInt();
int n = in.readInt();
int[] x = new int[n];
int[] y = new int[n];
IOUtils.readIntArrays(in, x, y);
int[] res = new int[1 << n];
int[] last = new int[1 << n];
Arrays.fill(res, Integer.MAX_VALUE);
int[] ds = new int[n];
for (int i = 0; i < n; i++) {
ds[i] = (x[i] - xs) * (x[i] - xs) + (y[i] - ys) * (y[i] - ys);
}
int[][] d = new int[n][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++)
d[i][j] = (x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]);
}
res[0] = 0;
for (int i = 1; i < (1 << n); i++) {
for (int j = 0; j < n; j++) {
if (((i >> j) & 1) != 0) {
if (res[i - (1 << j)] + 2 * ds[j] < res[i]) {
res[i] = res[i - (1 << j)] + 2 * ds[j];
last[i] = i - (1 << j);
}
for (int k = j + 1; k < n; k++) {
if (((i >> k) & 1) != 0) {
if (res[i - (1 << j) - (1 << k)] + ds[j] + ds[k] + d[j][k] < res[i]) {
res[i] = res[i - (1 << j) - (1 << k)] + ds[j] + ds[k] + d[j][k];
last[i] = i - (1 << j) - (1 << k);
}
}
}
break;
}
}
}
int cur = (1 << n) - 1;
out.printLine(res[cur]);
while (cur != 0) {
out.print("0 ");
int dif = cur - last[cur];
for (int i = 0; i < n && dif != 0; i++) {
if (((dif >> i) & 1) != 0) {
out.print((i + 1) + " ");
dif -= (1 << i);
}
}
cur = last[cur];
}
out.printLine("0");
}
}
class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object...objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0)
writer.print(' ');
writer.print(objects[i]);
}
}
public void printLine(Object...objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
class IOUtils {
public static void readIntArrays(InputReader in, int[]... arrays) {
for (int i = 0; i < arrays[0].length; i++) {
for (int j = 0; j < arrays.length; j++)
arrays[j][i] = in.readInt();
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.util.Arrays;
import java.io.BufferedWriter;
import java.util.InputMismatchException;
import java.util.Comparator;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.NoSuchElementException;
import java.io.Writer;
import java.math.BigInteger;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author Nguyen Trung Hieu - [email protected]
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
}
class TaskC {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int xs = in.readInt();
int ys = in.readInt();
int n = in.readInt();
int[] x = new int[n];
int[] y = new int[n];
IOUtils.readIntArrays(in, x, y);
int[] res = new int[1 << n];
int[] last = new int[1 << n];
Arrays.fill(res, Integer.MAX_VALUE);
int[] ds = new int[n];
for (int i = 0; i < n; i++) {
ds[i] = (x[i] - xs) * (x[i] - xs) + (y[i] - ys) * (y[i] - ys);
}
int[][] d = new int[n][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++)
d[i][j] = (x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]);
}
res[0] = 0;
for (int i = 1; i < (1 << n); i++) {
for (int j = 0; j < n; j++) {
if (((i >> j) & 1) != 0) {
if (res[i - (1 << j)] + 2 * ds[j] < res[i]) {
res[i] = res[i - (1 << j)] + 2 * ds[j];
last[i] = i - (1 << j);
}
for (int k = j + 1; k < n; k++) {
if (((i >> k) & 1) != 0) {
if (res[i - (1 << j) - (1 << k)] + ds[j] + ds[k] + d[j][k] < res[i]) {
res[i] = res[i - (1 << j) - (1 << k)] + ds[j] + ds[k] + d[j][k];
last[i] = i - (1 << j) - (1 << k);
}
}
}
break;
}
}
}
int cur = (1 << n) - 1;
out.printLine(res[cur]);
while (cur != 0) {
out.print("0 ");
int dif = cur - last[cur];
for (int i = 0; i < n && dif != 0; i++) {
if (((dif >> i) & 1) != 0) {
out.print((i + 1) + " ");
dif -= (1 << i);
}
}
cur = last[cur];
}
out.printLine("0");
}
}
class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object...objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0)
writer.print(' ');
writer.print(objects[i]);
}
}
public void printLine(Object...objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
class IOUtils {
public static void readIntArrays(InputReader in, int[]... arrays) {
for (int i = 0; i < arrays[0].length; i++) {
for (int j = 0; j < arrays.length; j++)
arrays[j][i] = in.readInt();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.util.Arrays;
import java.io.BufferedWriter;
import java.util.InputMismatchException;
import java.util.Comparator;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.NoSuchElementException;
import java.io.Writer;
import java.math.BigInteger;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author Nguyen Trung Hieu - [email protected]
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
}
class TaskC {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int xs = in.readInt();
int ys = in.readInt();
int n = in.readInt();
int[] x = new int[n];
int[] y = new int[n];
IOUtils.readIntArrays(in, x, y);
int[] res = new int[1 << n];
int[] last = new int[1 << n];
Arrays.fill(res, Integer.MAX_VALUE);
int[] ds = new int[n];
for (int i = 0; i < n; i++) {
ds[i] = (x[i] - xs) * (x[i] - xs) + (y[i] - ys) * (y[i] - ys);
}
int[][] d = new int[n][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++)
d[i][j] = (x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]);
}
res[0] = 0;
for (int i = 1; i < (1 << n); i++) {
for (int j = 0; j < n; j++) {
if (((i >> j) & 1) != 0) {
if (res[i - (1 << j)] + 2 * ds[j] < res[i]) {
res[i] = res[i - (1 << j)] + 2 * ds[j];
last[i] = i - (1 << j);
}
for (int k = j + 1; k < n; k++) {
if (((i >> k) & 1) != 0) {
if (res[i - (1 << j) - (1 << k)] + ds[j] + ds[k] + d[j][k] < res[i]) {
res[i] = res[i - (1 << j) - (1 << k)] + ds[j] + ds[k] + d[j][k];
last[i] = i - (1 << j) - (1 << k);
}
}
}
break;
}
}
}
int cur = (1 << n) - 1;
out.printLine(res[cur]);
while (cur != 0) {
out.print("0 ");
int dif = cur - last[cur];
for (int i = 0; i < n && dif != 0; i++) {
if (((dif >> i) & 1) != 0) {
out.print((i + 1) + " ");
dif -= (1 << i);
}
}
cur = last[cur];
}
out.printLine("0");
}
}
class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object...objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0)
writer.print(' ');
writer.print(objects[i]);
}
}
public void printLine(Object...objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
class IOUtils {
public static void readIntArrays(InputReader in, int[]... arrays) {
for (int i = 0; i < arrays[0].length; i++) {
for (int j = 0; j < arrays.length; j++)
arrays[j][i] = in.readInt();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,698 | 4,122 |
1,872 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.FilterInputStream;
import java.io.BufferedInputStream;
import java.math.BigInteger;
import java.util.HashMap;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author khokharnikunj8
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
ScanReader in = new ScanReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskD solver = new TaskD();
solver.solve(1, in, out);
out.close();
}
static class TaskD {
public void solve(int testNumber, ScanReader in, PrintWriter out) {
int n = in.scanInt();
BigInteger ans = new BigInteger("0");
long val, index, index1, index2;
long sum[] = new long[n];
val = in.scanInt();
HashMap<Long, Integer> hs = new HashMap<>();
hs.put(val, 1);
sum[0] = val;
for (int i = 1; i < n; i++) {
val = in.scanInt();
sum[i] += sum[i - 1];
sum[i] += val;
if (!hs.containsKey(val)) hs.put(val, 0);
hs.put(val, hs.get(val) + 1);
ans = ans.add(BigInteger.valueOf(((i + 1) * val) - sum[i]));
index = (hs.containsKey(val + 1)) ? hs.get(val + 1) : 0;
index1 = (hs.containsKey(val - 1)) ? hs.get(val - 1) : 0;
index2 = (hs.containsKey(val)) ? hs.get(val) : 0;
ans = ans.subtract(BigInteger.valueOf(((index + index1 + index2) * val) - ((index * (val + 1)) + (index1 * (val - 1)) + (index2 * (val)))));
}
out.println(ans);
}
}
static class ScanReader {
private byte[] buf = new byte[4 * 1024];
private int index;
private BufferedInputStream in;
private int total;
public ScanReader(InputStream inputStream) {
in = new BufferedInputStream(inputStream);
}
private int scan() {
if (index >= total) {
index = 0;
try {
total = in.read(buf);
} catch (Exception e) {
e.printStackTrace();
}
if (total <= 0) return -1;
}
return buf[index++];
}
public int scanInt() {
int integer = 0;
int n = scan();
while (isWhiteSpace(n)) n = scan();
int neg = 1;
if (n == '-') {
neg = -1;
n = scan();
}
while (!isWhiteSpace(n)) {
if (n >= '0' && n <= '9') {
integer *= 10;
integer += n - '0';
n = scan();
}
}
return neg * integer;
}
private boolean isWhiteSpace(int n) {
if (n == ' ' || n == '\n' || n == '\r' || n == '\t' || n == -1) return true;
else return false;
}
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.FilterInputStream;
import java.io.BufferedInputStream;
import java.math.BigInteger;
import java.util.HashMap;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author khokharnikunj8
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
ScanReader in = new ScanReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskD solver = new TaskD();
solver.solve(1, in, out);
out.close();
}
static class TaskD {
public void solve(int testNumber, ScanReader in, PrintWriter out) {
int n = in.scanInt();
BigInteger ans = new BigInteger("0");
long val, index, index1, index2;
long sum[] = new long[n];
val = in.scanInt();
HashMap<Long, Integer> hs = new HashMap<>();
hs.put(val, 1);
sum[0] = val;
for (int i = 1; i < n; i++) {
val = in.scanInt();
sum[i] += sum[i - 1];
sum[i] += val;
if (!hs.containsKey(val)) hs.put(val, 0);
hs.put(val, hs.get(val) + 1);
ans = ans.add(BigInteger.valueOf(((i + 1) * val) - sum[i]));
index = (hs.containsKey(val + 1)) ? hs.get(val + 1) : 0;
index1 = (hs.containsKey(val - 1)) ? hs.get(val - 1) : 0;
index2 = (hs.containsKey(val)) ? hs.get(val) : 0;
ans = ans.subtract(BigInteger.valueOf(((index + index1 + index2) * val) - ((index * (val + 1)) + (index1 * (val - 1)) + (index2 * (val)))));
}
out.println(ans);
}
}
static class ScanReader {
private byte[] buf = new byte[4 * 1024];
private int index;
private BufferedInputStream in;
private int total;
public ScanReader(InputStream inputStream) {
in = new BufferedInputStream(inputStream);
}
private int scan() {
if (index >= total) {
index = 0;
try {
total = in.read(buf);
} catch (Exception e) {
e.printStackTrace();
}
if (total <= 0) return -1;
}
return buf[index++];
}
public int scanInt() {
int integer = 0;
int n = scan();
while (isWhiteSpace(n)) n = scan();
int neg = 1;
if (n == '-') {
neg = -1;
n = scan();
}
while (!isWhiteSpace(n)) {
if (n >= '0' && n <= '9') {
integer *= 10;
integer += n - '0';
n = scan();
}
}
return neg * integer;
}
private boolean isWhiteSpace(int n) {
if (n == ' ' || n == '\n' || n == '\r' || n == '\t' || n == -1) return true;
else return false;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.FilterInputStream;
import java.io.BufferedInputStream;
import java.math.BigInteger;
import java.util.HashMap;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author khokharnikunj8
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
ScanReader in = new ScanReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskD solver = new TaskD();
solver.solve(1, in, out);
out.close();
}
static class TaskD {
public void solve(int testNumber, ScanReader in, PrintWriter out) {
int n = in.scanInt();
BigInteger ans = new BigInteger("0");
long val, index, index1, index2;
long sum[] = new long[n];
val = in.scanInt();
HashMap<Long, Integer> hs = new HashMap<>();
hs.put(val, 1);
sum[0] = val;
for (int i = 1; i < n; i++) {
val = in.scanInt();
sum[i] += sum[i - 1];
sum[i] += val;
if (!hs.containsKey(val)) hs.put(val, 0);
hs.put(val, hs.get(val) + 1);
ans = ans.add(BigInteger.valueOf(((i + 1) * val) - sum[i]));
index = (hs.containsKey(val + 1)) ? hs.get(val + 1) : 0;
index1 = (hs.containsKey(val - 1)) ? hs.get(val - 1) : 0;
index2 = (hs.containsKey(val)) ? hs.get(val) : 0;
ans = ans.subtract(BigInteger.valueOf(((index + index1 + index2) * val) - ((index * (val + 1)) + (index1 * (val - 1)) + (index2 * (val)))));
}
out.println(ans);
}
}
static class ScanReader {
private byte[] buf = new byte[4 * 1024];
private int index;
private BufferedInputStream in;
private int total;
public ScanReader(InputStream inputStream) {
in = new BufferedInputStream(inputStream);
}
private int scan() {
if (index >= total) {
index = 0;
try {
total = in.read(buf);
} catch (Exception e) {
e.printStackTrace();
}
if (total <= 0) return -1;
}
return buf[index++];
}
public int scanInt() {
int integer = 0;
int n = scan();
while (isWhiteSpace(n)) n = scan();
int neg = 1;
if (n == '-') {
neg = -1;
n = scan();
}
while (!isWhiteSpace(n)) {
if (n >= '0' && n <= '9') {
integer *= 10;
integer += n - '0';
n = scan();
}
}
return neg * integer;
}
private boolean isWhiteSpace(int n) {
if (n == ' ' || n == '\n' || n == '\r' || n == '\t' || n == -1) return true;
else return false;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,094 | 1,868 |
2,097 |
import java.io.*;
import java.util.*;
public class A {
final String filename = new String("A").toLowerCase();
void solve() throws Exception {
int n = nextInt();
int[] a = new int[n];
int m = -1;
for (int i = 0; i < n; i++) {
a[i] = nextInt();
if (m == -1 || a[i] > a[m]) {
m = i;
}
}
if (a[m] == 1)
a[m] = 2;
else
a[m] = 1;
Arrays.sort(a);
for (int i = 0; i < n; i++) {
out.print(a[i] + " ");
}
}
void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
// in = new BufferedReader(new FileReader("input.txt"));
// out = new PrintWriter("output.txt");
solve();
out.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
BufferedReader in;
StringTokenizer st;
PrintWriter out;
String nextToken() throws Exception {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(in.readLine());
return st.nextToken();
}
int nextInt() throws Exception {
return Integer.parseInt(nextToken());
}
long nextLong() throws Exception {
return Long.parseLong(nextToken());
}
double nextDouble() throws Exception {
return Double.parseDouble(nextToken());
}
public static void main(String[] args) {
new A().run();
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class A {
final String filename = new String("A").toLowerCase();
void solve() throws Exception {
int n = nextInt();
int[] a = new int[n];
int m = -1;
for (int i = 0; i < n; i++) {
a[i] = nextInt();
if (m == -1 || a[i] > a[m]) {
m = i;
}
}
if (a[m] == 1)
a[m] = 2;
else
a[m] = 1;
Arrays.sort(a);
for (int i = 0; i < n; i++) {
out.print(a[i] + " ");
}
}
void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
// in = new BufferedReader(new FileReader("input.txt"));
// out = new PrintWriter("output.txt");
solve();
out.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
BufferedReader in;
StringTokenizer st;
PrintWriter out;
String nextToken() throws Exception {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(in.readLine());
return st.nextToken();
}
int nextInt() throws Exception {
return Integer.parseInt(nextToken());
}
long nextLong() throws Exception {
return Long.parseLong(nextToken());
}
double nextDouble() throws Exception {
return Double.parseDouble(nextToken());
}
public static void main(String[] args) {
new A().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class A {
final String filename = new String("A").toLowerCase();
void solve() throws Exception {
int n = nextInt();
int[] a = new int[n];
int m = -1;
for (int i = 0; i < n; i++) {
a[i] = nextInt();
if (m == -1 || a[i] > a[m]) {
m = i;
}
}
if (a[m] == 1)
a[m] = 2;
else
a[m] = 1;
Arrays.sort(a);
for (int i = 0; i < n; i++) {
out.print(a[i] + " ");
}
}
void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
// in = new BufferedReader(new FileReader("input.txt"));
// out = new PrintWriter("output.txt");
solve();
out.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
BufferedReader in;
StringTokenizer st;
PrintWriter out;
String nextToken() throws Exception {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(in.readLine());
return st.nextToken();
}
int nextInt() throws Exception {
return Integer.parseInt(nextToken());
}
long nextLong() throws Exception {
return Long.parseLong(nextToken());
}
double nextDouble() throws Exception {
return Double.parseDouble(nextToken());
}
public static void main(String[] args) {
new A().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 692 | 2,093 |
169 |
import java.util.*;
public class A
{
public static void main(String args[])
{
Scanner sc=new Scanner(System.in);
long n=sc.nextLong();
if(n==0)
System.out.println(0);
else if(n%2==1)
System.out.println((n+1)/2);
else
System.out.println(n+1);
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
public class A
{
public static void main(String args[])
{
Scanner sc=new Scanner(System.in);
long n=sc.nextLong();
if(n==0)
System.out.println(0);
else if(n%2==1)
System.out.println((n+1)/2);
else
System.out.println(n+1);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class A
{
public static void main(String args[])
{
Scanner sc=new Scanner(System.in);
long n=sc.nextLong();
if(n==0)
System.out.println(0);
else if(n%2==1)
System.out.println((n+1)/2);
else
System.out.println(n+1);
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 432 | 169 |
3,948 |
import java.util.*;
import java.io.*;
public class E {
void solve(BufferedReader in) throws Exception {
int[] xx = toInts(in.readLine());
int n = xx[0];
double k = xx[1];
int[][] board = new int[n][n];
for(int i = 0; i<n; i++) board[i] = toInts(in.readLine());
int fst = n/2;
int snd = n - fst;
int[] maxc = new int[1<<fst];
int max = 1;
for(int i = 0; i<(1<<fst); i++) {
for(int j = 0; j<fst; j++) {
if((i&(1<<j)) != 0) maxc[i] = Math.max(maxc[i], maxc[i^(1<<j)]);
}
boolean ok = true;
for(int a = 0; a<fst; a++) if(((1<<a)&i) != 0) {
for(int b = a+1; b<fst; b++) if(((1<<b)&i) != 0) {
if(board[a][b] == 0) ok = false;
}
}
if(ok) {
maxc[i] = Integer.bitCount(i);
max = Math.max(max, maxc[i]);
}
}
for(int i = 0; i<(1<<snd); i++) {
boolean ok = true;
for(int a = 0; a<snd; a++) if(((1<<a)&i) != 0) {
for(int b = a+1; b<snd; b++) if(((1<<b)&i) != 0) {
if(board[a+fst][b+fst] == 0) ok = false;
}
}
if(!ok) continue;
int mask = 0;
for(int a = 0; a<fst; a++) {
ok = true;
for(int b = 0; b<snd; b++) {
if(((1<<b)&i) != 0) {
if(board[a][b+fst] == 0) ok = false;
}
}
if(ok) mask |= (1<<a);
}
max = Math.max(Integer.bitCount(i) + maxc[mask], max);
}
System.out.println(k*k*(max-1.0)/(2*max));
}
int toInt(String s) {return Integer.parseInt(s);}
int[] toInts(String s) {
String[] a = s.split(" ");
int[] o = new int[a.length];
for(int i = 0; i<a.length; i++) o[i] = toInt(a[i]);
return o;
}
void e(Object o) {
System.err.println(o);
}
public static void main(String[] args) throws Exception{
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
(new E()).solve(in);
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class E {
void solve(BufferedReader in) throws Exception {
int[] xx = toInts(in.readLine());
int n = xx[0];
double k = xx[1];
int[][] board = new int[n][n];
for(int i = 0; i<n; i++) board[i] = toInts(in.readLine());
int fst = n/2;
int snd = n - fst;
int[] maxc = new int[1<<fst];
int max = 1;
for(int i = 0; i<(1<<fst); i++) {
for(int j = 0; j<fst; j++) {
if((i&(1<<j)) != 0) maxc[i] = Math.max(maxc[i], maxc[i^(1<<j)]);
}
boolean ok = true;
for(int a = 0; a<fst; a++) if(((1<<a)&i) != 0) {
for(int b = a+1; b<fst; b++) if(((1<<b)&i) != 0) {
if(board[a][b] == 0) ok = false;
}
}
if(ok) {
maxc[i] = Integer.bitCount(i);
max = Math.max(max, maxc[i]);
}
}
for(int i = 0; i<(1<<snd); i++) {
boolean ok = true;
for(int a = 0; a<snd; a++) if(((1<<a)&i) != 0) {
for(int b = a+1; b<snd; b++) if(((1<<b)&i) != 0) {
if(board[a+fst][b+fst] == 0) ok = false;
}
}
if(!ok) continue;
int mask = 0;
for(int a = 0; a<fst; a++) {
ok = true;
for(int b = 0; b<snd; b++) {
if(((1<<b)&i) != 0) {
if(board[a][b+fst] == 0) ok = false;
}
}
if(ok) mask |= (1<<a);
}
max = Math.max(Integer.bitCount(i) + maxc[mask], max);
}
System.out.println(k*k*(max-1.0)/(2*max));
}
int toInt(String s) {return Integer.parseInt(s);}
int[] toInts(String s) {
String[] a = s.split(" ");
int[] o = new int[a.length];
for(int i = 0; i<a.length; i++) o[i] = toInt(a[i]);
return o;
}
void e(Object o) {
System.err.println(o);
}
public static void main(String[] args) throws Exception{
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
(new E()).solve(in);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class E {
void solve(BufferedReader in) throws Exception {
int[] xx = toInts(in.readLine());
int n = xx[0];
double k = xx[1];
int[][] board = new int[n][n];
for(int i = 0; i<n; i++) board[i] = toInts(in.readLine());
int fst = n/2;
int snd = n - fst;
int[] maxc = new int[1<<fst];
int max = 1;
for(int i = 0; i<(1<<fst); i++) {
for(int j = 0; j<fst; j++) {
if((i&(1<<j)) != 0) maxc[i] = Math.max(maxc[i], maxc[i^(1<<j)]);
}
boolean ok = true;
for(int a = 0; a<fst; a++) if(((1<<a)&i) != 0) {
for(int b = a+1; b<fst; b++) if(((1<<b)&i) != 0) {
if(board[a][b] == 0) ok = false;
}
}
if(ok) {
maxc[i] = Integer.bitCount(i);
max = Math.max(max, maxc[i]);
}
}
for(int i = 0; i<(1<<snd); i++) {
boolean ok = true;
for(int a = 0; a<snd; a++) if(((1<<a)&i) != 0) {
for(int b = a+1; b<snd; b++) if(((1<<b)&i) != 0) {
if(board[a+fst][b+fst] == 0) ok = false;
}
}
if(!ok) continue;
int mask = 0;
for(int a = 0; a<fst; a++) {
ok = true;
for(int b = 0; b<snd; b++) {
if(((1<<b)&i) != 0) {
if(board[a][b+fst] == 0) ok = false;
}
}
if(ok) mask |= (1<<a);
}
max = Math.max(Integer.bitCount(i) + maxc[mask], max);
}
System.out.println(k*k*(max-1.0)/(2*max));
}
int toInt(String s) {return Integer.parseInt(s);}
int[] toInts(String s) {
String[] a = s.split(" ");
int[] o = new int[a.length];
for(int i = 0; i<a.length; i++) o[i] = toInt(a[i]);
return o;
}
void e(Object o) {
System.err.println(o);
}
public static void main(String[] args) throws Exception{
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
(new E()).solve(in);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 981 | 3,937 |
3,439 |
import static java.lang.Math.*;
import static java.util.Arrays.*;
import java.io.*;
import java.util.*;
public class Main {
static boolean LOCAL = false;//System.getSecurityManager() == null;
Scanner sc = new Scanner(System.in);
void run() {
char[] cs = sc.nextLine().toCharArray();
int res = 0;
for (int s1 = 0; s1 < cs.length; s1++) {
for (int s2 = s1 + 1; s2 < cs.length; s2++) {
int len = 0;
while (s2 + len < cs.length && cs[s1 + len] == cs[s2 + len]) {
len++;
}
res = max(res, len);
}
}
System.out.println(res);
}
class Scanner {
BufferedReader br;
StringTokenizer st;
Scanner(InputStream in) {
br = new BufferedReader(new InputStreamReader(in));
eat("");
}
void eat(String s) {
st = new StringTokenizer(s);
}
String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
boolean hasNext() {
while (!st.hasMoreTokens()) {
String s = nextLine();
if (s == null) return false;
eat(s);
}
return true;
}
String next() {
hasNext();
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
void debug(Object...os) {
System.err.println(deepToString(os));
}
public static void main(String[] args) {
if (LOCAL) {
try {
System.setIn(new FileInputStream("in.txt"));
} catch (Throwable e) {
LOCAL = false;
}
}
if (!LOCAL) {
try {
Locale.setDefault(Locale.US);
System.setOut(new PrintStream(new BufferedOutputStream(System.out)));
} catch (Throwable e) {
}
}
new Main().run();
System.out.flush();
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import static java.lang.Math.*;
import static java.util.Arrays.*;
import java.io.*;
import java.util.*;
public class Main {
static boolean LOCAL = false;//System.getSecurityManager() == null;
Scanner sc = new Scanner(System.in);
void run() {
char[] cs = sc.nextLine().toCharArray();
int res = 0;
for (int s1 = 0; s1 < cs.length; s1++) {
for (int s2 = s1 + 1; s2 < cs.length; s2++) {
int len = 0;
while (s2 + len < cs.length && cs[s1 + len] == cs[s2 + len]) {
len++;
}
res = max(res, len);
}
}
System.out.println(res);
}
class Scanner {
BufferedReader br;
StringTokenizer st;
Scanner(InputStream in) {
br = new BufferedReader(new InputStreamReader(in));
eat("");
}
void eat(String s) {
st = new StringTokenizer(s);
}
String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
boolean hasNext() {
while (!st.hasMoreTokens()) {
String s = nextLine();
if (s == null) return false;
eat(s);
}
return true;
}
String next() {
hasNext();
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
void debug(Object...os) {
System.err.println(deepToString(os));
}
public static void main(String[] args) {
if (LOCAL) {
try {
System.setIn(new FileInputStream("in.txt"));
} catch (Throwable e) {
LOCAL = false;
}
}
if (!LOCAL) {
try {
Locale.setDefault(Locale.US);
System.setOut(new PrintStream(new BufferedOutputStream(System.out)));
} catch (Throwable e) {
}
}
new Main().run();
System.out.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import static java.lang.Math.*;
import static java.util.Arrays.*;
import java.io.*;
import java.util.*;
public class Main {
static boolean LOCAL = false;//System.getSecurityManager() == null;
Scanner sc = new Scanner(System.in);
void run() {
char[] cs = sc.nextLine().toCharArray();
int res = 0;
for (int s1 = 0; s1 < cs.length; s1++) {
for (int s2 = s1 + 1; s2 < cs.length; s2++) {
int len = 0;
while (s2 + len < cs.length && cs[s1 + len] == cs[s2 + len]) {
len++;
}
res = max(res, len);
}
}
System.out.println(res);
}
class Scanner {
BufferedReader br;
StringTokenizer st;
Scanner(InputStream in) {
br = new BufferedReader(new InputStreamReader(in));
eat("");
}
void eat(String s) {
st = new StringTokenizer(s);
}
String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
boolean hasNext() {
while (!st.hasMoreTokens()) {
String s = nextLine();
if (s == null) return false;
eat(s);
}
return true;
}
String next() {
hasNext();
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
void debug(Object...os) {
System.err.println(deepToString(os));
}
public static void main(String[] args) {
if (LOCAL) {
try {
System.setIn(new FileInputStream("in.txt"));
} catch (Throwable e) {
LOCAL = false;
}
}
if (!LOCAL) {
try {
Locale.setDefault(Locale.US);
System.setOut(new PrintStream(new BufferedOutputStream(System.out)));
} catch (Throwable e) {
}
}
new Main().run();
System.out.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 807 | 3,433 |
2,513 |
import java.util.HashMap;
import java.util.Scanner;
public class Main{
int[] ints;
int[] prefix;
public static void main(String[] args)
{
new Main().run();
}
public void run()
{
Scanner file = new Scanner(System.in);
int N = file.nextInt();
ints = new int[N];
for(int i = 0;i<N;i++)
ints[i] = file.nextInt();
prefix = new int[N];
prefix[0] = ints[0];
for(int i =1;i<prefix.length;i++)
prefix[i] = prefix[i-1]+ints[i];
HashMap<Integer,Integer> ending = new HashMap<>();//ending for each sum
HashMap<Integer,Integer> amount = new HashMap<>();//k for each sum
for(int end = 0;end<prefix.length;end++)
{
for(int start = 0;start<=end;start++)
{
int sum = sum(start,end);
if(!ending.containsKey(sum))
ending.put(sum, -1);
if(!amount.containsKey(sum))
amount.put(sum,0);
if(ending.get(sum)<start)
{
amount.put(sum,amount.get(sum)+1);
ending.put(sum,end);
}
}
}
int max = 0;
int maxnum = -1;
for(int x:amount.keySet())
{
if(amount.get(x)>max)
{
max = amount.get(x);
maxnum = x;
}
}
System.out.println(max);
HashMap<Integer,Integer> occurrence = new HashMap<Integer,Integer>();
occurrence.put(0,0);
for(int i = 0;i<prefix.length;i++)
{
if(occurrence.containsKey(prefix[i]-maxnum))
{
System.out.println(occurrence.get(prefix[i]-maxnum)+1+" "+(i+1));
occurrence.clear();
}
occurrence.put(prefix[i],i+1);
}
}
public int sum(int L, int R)
{
return prefix[R] - prefix[L] + ints[L];
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.HashMap;
import java.util.Scanner;
public class Main{
int[] ints;
int[] prefix;
public static void main(String[] args)
{
new Main().run();
}
public void run()
{
Scanner file = new Scanner(System.in);
int N = file.nextInt();
ints = new int[N];
for(int i = 0;i<N;i++)
ints[i] = file.nextInt();
prefix = new int[N];
prefix[0] = ints[0];
for(int i =1;i<prefix.length;i++)
prefix[i] = prefix[i-1]+ints[i];
HashMap<Integer,Integer> ending = new HashMap<>();//ending for each sum
HashMap<Integer,Integer> amount = new HashMap<>();//k for each sum
for(int end = 0;end<prefix.length;end++)
{
for(int start = 0;start<=end;start++)
{
int sum = sum(start,end);
if(!ending.containsKey(sum))
ending.put(sum, -1);
if(!amount.containsKey(sum))
amount.put(sum,0);
if(ending.get(sum)<start)
{
amount.put(sum,amount.get(sum)+1);
ending.put(sum,end);
}
}
}
int max = 0;
int maxnum = -1;
for(int x:amount.keySet())
{
if(amount.get(x)>max)
{
max = amount.get(x);
maxnum = x;
}
}
System.out.println(max);
HashMap<Integer,Integer> occurrence = new HashMap<Integer,Integer>();
occurrence.put(0,0);
for(int i = 0;i<prefix.length;i++)
{
if(occurrence.containsKey(prefix[i]-maxnum))
{
System.out.println(occurrence.get(prefix[i]-maxnum)+1+" "+(i+1));
occurrence.clear();
}
occurrence.put(prefix[i],i+1);
}
}
public int sum(int L, int R)
{
return prefix[R] - prefix[L] + ints[L];
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.HashMap;
import java.util.Scanner;
public class Main{
int[] ints;
int[] prefix;
public static void main(String[] args)
{
new Main().run();
}
public void run()
{
Scanner file = new Scanner(System.in);
int N = file.nextInt();
ints = new int[N];
for(int i = 0;i<N;i++)
ints[i] = file.nextInt();
prefix = new int[N];
prefix[0] = ints[0];
for(int i =1;i<prefix.length;i++)
prefix[i] = prefix[i-1]+ints[i];
HashMap<Integer,Integer> ending = new HashMap<>();//ending for each sum
HashMap<Integer,Integer> amount = new HashMap<>();//k for each sum
for(int end = 0;end<prefix.length;end++)
{
for(int start = 0;start<=end;start++)
{
int sum = sum(start,end);
if(!ending.containsKey(sum))
ending.put(sum, -1);
if(!amount.containsKey(sum))
amount.put(sum,0);
if(ending.get(sum)<start)
{
amount.put(sum,amount.get(sum)+1);
ending.put(sum,end);
}
}
}
int max = 0;
int maxnum = -1;
for(int x:amount.keySet())
{
if(amount.get(x)>max)
{
max = amount.get(x);
maxnum = x;
}
}
System.out.println(max);
HashMap<Integer,Integer> occurrence = new HashMap<Integer,Integer>();
occurrence.put(0,0);
for(int i = 0;i<prefix.length;i++)
{
if(occurrence.containsKey(prefix[i]-maxnum))
{
System.out.println(occurrence.get(prefix[i]-maxnum)+1+" "+(i+1));
occurrence.clear();
}
occurrence.put(prefix[i],i+1);
}
}
public int sum(int L, int R)
{
return prefix[R] - prefix[L] + ints[L];
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 808 | 2,507 |
2,484 |
/*
Keep solving problems.
*/
import java.util.*;
import java.io.*;
public class CFA {
BufferedReader br;
PrintWriter out;
StringTokenizer st;
boolean eof;
private static final long MOD = 1000L * 1000L * 1000L + 7;
private static final int[] dx = {0, -1, 0, 1};
private static final int[] dy = {1, 0, -1, 0};
private static final String yes = "Yes";
private static final String no = "No";
int n;
int[] arr;
class Segment {
int start;
int end;
public Segment(int start, int end) {
this.start = start;
this.end = end;
}
@Override
public String toString() {
return start + " " + end;
}
}
Map<Integer, List<Segment>> hm = new HashMap<>();
void solve() throws IOException {
n = nextInt();
arr = nextIntArr(n);
for (int i = 0; i < n; i++) {
int sum = 0;
for (int j = i; j < n; j++) {
sum += arr[j];
if (!hm.containsKey(sum)) {
hm.put(sum, new ArrayList<>());
}
hm.get(sum).add(new Segment(i, j));
}
}
int max = -1;
int idx = -1;
for (Map.Entry<Integer, List<Segment>> entry : hm.entrySet()) {
int key = entry.getKey();
List<Segment> values = entry.getValue();
Collections.sort(values, new Comparator<Segment>() {
@Override
public int compare(Segment o1, Segment o2) {
return Integer.compare(o1.end, o2.end);
}
});
int cnt = findSeg(values).size();
if (cnt > max) {
max = cnt;
idx = key;
}
}
List<Segment> res = findSeg(hm.get(idx));
outln(res.size());
for (int i = 0; i < res.size(); i++) {
outln((1 + res.get(i).start) + " " + (1 + res.get(i).end));
}
}
List<Segment> findSeg(List<Segment> input) {
List<Segment> res = new ArrayList<>();
int bound = -1;
for (int i = 0; i < input.size(); i++) {
if (input.get(i).start > bound) {
res.add(input.get(i));
bound = input.get(i).end;
}
}
return res;
}
void shuffle(int[] a) {
int n = a.length;
for(int i = 0; i < n; i++) {
int r = i + (int) (Math.random() * (n - i));
int tmp = a[i];
a[i] = a[r];
a[r] = tmp;
}
}
long gcd(long a, long b) {
while(a != 0 && b != 0) {
long c = b;
b = a % b;
a = c;
}
return a + b;
}
private void outln(Object o) {
out.println(o);
}
private void out(Object o) {
out.print(o);
}
private void formatPrint(double val) {
outln(String.format("%.9f%n", val));
}
public CFA() throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.close();
}
public static void main(String[] args) throws IOException {
new CFA();
}
public long[] nextLongArr(int n) throws IOException{
long[] res = new long[n];
for(int i = 0; i < n; i++)
res[i] = nextLong();
return res;
}
public int[] nextIntArr(int n) throws IOException {
int[] res = new int[n];
for(int i = 0; i < n; i++)
res[i] = nextInt();
return res;
}
public String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
eof = true;
return null;
}
}
return st.nextToken();
}
public String nextString() {
try {
return br.readLine();
} catch (IOException e) {
eof = true;
return null;
}
}
public int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
public long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
public double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
/*
Keep solving problems.
*/
import java.util.*;
import java.io.*;
public class CFA {
BufferedReader br;
PrintWriter out;
StringTokenizer st;
boolean eof;
private static final long MOD = 1000L * 1000L * 1000L + 7;
private static final int[] dx = {0, -1, 0, 1};
private static final int[] dy = {1, 0, -1, 0};
private static final String yes = "Yes";
private static final String no = "No";
int n;
int[] arr;
class Segment {
int start;
int end;
public Segment(int start, int end) {
this.start = start;
this.end = end;
}
@Override
public String toString() {
return start + " " + end;
}
}
Map<Integer, List<Segment>> hm = new HashMap<>();
void solve() throws IOException {
n = nextInt();
arr = nextIntArr(n);
for (int i = 0; i < n; i++) {
int sum = 0;
for (int j = i; j < n; j++) {
sum += arr[j];
if (!hm.containsKey(sum)) {
hm.put(sum, new ArrayList<>());
}
hm.get(sum).add(new Segment(i, j));
}
}
int max = -1;
int idx = -1;
for (Map.Entry<Integer, List<Segment>> entry : hm.entrySet()) {
int key = entry.getKey();
List<Segment> values = entry.getValue();
Collections.sort(values, new Comparator<Segment>() {
@Override
public int compare(Segment o1, Segment o2) {
return Integer.compare(o1.end, o2.end);
}
});
int cnt = findSeg(values).size();
if (cnt > max) {
max = cnt;
idx = key;
}
}
List<Segment> res = findSeg(hm.get(idx));
outln(res.size());
for (int i = 0; i < res.size(); i++) {
outln((1 + res.get(i).start) + " " + (1 + res.get(i).end));
}
}
List<Segment> findSeg(List<Segment> input) {
List<Segment> res = new ArrayList<>();
int bound = -1;
for (int i = 0; i < input.size(); i++) {
if (input.get(i).start > bound) {
res.add(input.get(i));
bound = input.get(i).end;
}
}
return res;
}
void shuffle(int[] a) {
int n = a.length;
for(int i = 0; i < n; i++) {
int r = i + (int) (Math.random() * (n - i));
int tmp = a[i];
a[i] = a[r];
a[r] = tmp;
}
}
long gcd(long a, long b) {
while(a != 0 && b != 0) {
long c = b;
b = a % b;
a = c;
}
return a + b;
}
private void outln(Object o) {
out.println(o);
}
private void out(Object o) {
out.print(o);
}
private void formatPrint(double val) {
outln(String.format("%.9f%n", val));
}
public CFA() throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.close();
}
public static void main(String[] args) throws IOException {
new CFA();
}
public long[] nextLongArr(int n) throws IOException{
long[] res = new long[n];
for(int i = 0; i < n; i++)
res[i] = nextLong();
return res;
}
public int[] nextIntArr(int n) throws IOException {
int[] res = new int[n];
for(int i = 0; i < n; i++)
res[i] = nextInt();
return res;
}
public String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
eof = true;
return null;
}
}
return st.nextToken();
}
public String nextString() {
try {
return br.readLine();
} catch (IOException e) {
eof = true;
return null;
}
}
public int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
public long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
public double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
/*
Keep solving problems.
*/
import java.util.*;
import java.io.*;
public class CFA {
BufferedReader br;
PrintWriter out;
StringTokenizer st;
boolean eof;
private static final long MOD = 1000L * 1000L * 1000L + 7;
private static final int[] dx = {0, -1, 0, 1};
private static final int[] dy = {1, 0, -1, 0};
private static final String yes = "Yes";
private static final String no = "No";
int n;
int[] arr;
class Segment {
int start;
int end;
public Segment(int start, int end) {
this.start = start;
this.end = end;
}
@Override
public String toString() {
return start + " " + end;
}
}
Map<Integer, List<Segment>> hm = new HashMap<>();
void solve() throws IOException {
n = nextInt();
arr = nextIntArr(n);
for (int i = 0; i < n; i++) {
int sum = 0;
for (int j = i; j < n; j++) {
sum += arr[j];
if (!hm.containsKey(sum)) {
hm.put(sum, new ArrayList<>());
}
hm.get(sum).add(new Segment(i, j));
}
}
int max = -1;
int idx = -1;
for (Map.Entry<Integer, List<Segment>> entry : hm.entrySet()) {
int key = entry.getKey();
List<Segment> values = entry.getValue();
Collections.sort(values, new Comparator<Segment>() {
@Override
public int compare(Segment o1, Segment o2) {
return Integer.compare(o1.end, o2.end);
}
});
int cnt = findSeg(values).size();
if (cnt > max) {
max = cnt;
idx = key;
}
}
List<Segment> res = findSeg(hm.get(idx));
outln(res.size());
for (int i = 0; i < res.size(); i++) {
outln((1 + res.get(i).start) + " " + (1 + res.get(i).end));
}
}
List<Segment> findSeg(List<Segment> input) {
List<Segment> res = new ArrayList<>();
int bound = -1;
for (int i = 0; i < input.size(); i++) {
if (input.get(i).start > bound) {
res.add(input.get(i));
bound = input.get(i).end;
}
}
return res;
}
void shuffle(int[] a) {
int n = a.length;
for(int i = 0; i < n; i++) {
int r = i + (int) (Math.random() * (n - i));
int tmp = a[i];
a[i] = a[r];
a[r] = tmp;
}
}
long gcd(long a, long b) {
while(a != 0 && b != 0) {
long c = b;
b = a % b;
a = c;
}
return a + b;
}
private void outln(Object o) {
out.println(o);
}
private void out(Object o) {
out.print(o);
}
private void formatPrint(double val) {
outln(String.format("%.9f%n", val));
}
public CFA() throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.close();
}
public static void main(String[] args) throws IOException {
new CFA();
}
public long[] nextLongArr(int n) throws IOException{
long[] res = new long[n];
for(int i = 0; i < n; i++)
res[i] = nextLong();
return res;
}
public int[] nextIntArr(int n) throws IOException {
int[] res = new int[n];
for(int i = 0; i < n; i++)
res[i] = nextInt();
return res;
}
public String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
eof = true;
return null;
}
}
return st.nextToken();
}
public String nextString() {
try {
return br.readLine();
} catch (IOException e) {
eof = true;
return null;
}
}
public int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
public long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
public double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,400 | 2,479 |
3,576 |
import java.io.*;
import java.util.*;
public class Main implements Runnable {
public void _main() throws IOException {
int height = nextInt();
int width = nextInt();
int k = nextInt();
int[] r = new int[k];
int[] c = new int[k];
for (int i = 0; i < k; i++) {
r[i] = nextInt() - 1;
c[i] = nextInt() - 1;
}
int res = 0, R = r[0], C = c[0];
for (int i = 0; i < height; i++)
for (int j = 0; j < width; j++) {
int cur = Integer.MAX_VALUE;
for (int z = 0; z < k; z++)
cur = Math.min(cur, Math.abs(i - r[z]) + Math.abs(j - c[z]));
if (res < cur) {
res = cur;
R = i;
C = j;
}
}
out.print((R + 1) + " " + (C + 1));
}
private BufferedReader in;
private PrintWriter out;
private StringTokenizer st;
private String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(in.readLine());
return st.nextToken();
}
private int nextInt() throws IOException {
return Integer.parseInt(next());
}
private long nextLong() throws IOException {
return Long.parseLong(next());
}
private double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public static void main(String[] args) {
new Thread(new Main()).start();
}
public void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter(new FileWriter("output.txt"));
_main();
out.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(202);
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main implements Runnable {
public void _main() throws IOException {
int height = nextInt();
int width = nextInt();
int k = nextInt();
int[] r = new int[k];
int[] c = new int[k];
for (int i = 0; i < k; i++) {
r[i] = nextInt() - 1;
c[i] = nextInt() - 1;
}
int res = 0, R = r[0], C = c[0];
for (int i = 0; i < height; i++)
for (int j = 0; j < width; j++) {
int cur = Integer.MAX_VALUE;
for (int z = 0; z < k; z++)
cur = Math.min(cur, Math.abs(i - r[z]) + Math.abs(j - c[z]));
if (res < cur) {
res = cur;
R = i;
C = j;
}
}
out.print((R + 1) + " " + (C + 1));
}
private BufferedReader in;
private PrintWriter out;
private StringTokenizer st;
private String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(in.readLine());
return st.nextToken();
}
private int nextInt() throws IOException {
return Integer.parseInt(next());
}
private long nextLong() throws IOException {
return Long.parseLong(next());
}
private double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public static void main(String[] args) {
new Thread(new Main()).start();
}
public void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter(new FileWriter("output.txt"));
_main();
out.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(202);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main implements Runnable {
public void _main() throws IOException {
int height = nextInt();
int width = nextInt();
int k = nextInt();
int[] r = new int[k];
int[] c = new int[k];
for (int i = 0; i < k; i++) {
r[i] = nextInt() - 1;
c[i] = nextInt() - 1;
}
int res = 0, R = r[0], C = c[0];
for (int i = 0; i < height; i++)
for (int j = 0; j < width; j++) {
int cur = Integer.MAX_VALUE;
for (int z = 0; z < k; z++)
cur = Math.min(cur, Math.abs(i - r[z]) + Math.abs(j - c[z]));
if (res < cur) {
res = cur;
R = i;
C = j;
}
}
out.print((R + 1) + " " + (C + 1));
}
private BufferedReader in;
private PrintWriter out;
private StringTokenizer st;
private String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(in.readLine());
return st.nextToken();
}
private int nextInt() throws IOException {
return Integer.parseInt(next());
}
private long nextLong() throws IOException {
return Long.parseLong(next());
}
private double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public static void main(String[] args) {
new Thread(new Main()).start();
}
public void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter(new FileWriter("output.txt"));
_main();
out.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(202);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 779 | 3,568 |
2,195 |
import java.util.*;
import java.io.*;
public class C
{
static long time = System.currentTimeMillis();
public static void main(String[] args) throws IOException
{
//FastReader infile = new FastReader("test.txt");
FastReader infile = new FastReader(System.in);
int N = infile.nextInt();
int R = infile.nextInt();
double[] xPos = new double[N];
for(int x = 0; x < N; x++)
xPos[x] = infile.nextDouble();
double[] yPos = new double[N];
Arrays.fill(yPos, R);
for(int x = 1; x < N; x++)
{
for(int y = 0; y < x; y++)
if(Math.abs(xPos[x]-xPos[y])<=2*R)
{
yPos[x] = Math.max(yPos[x], yPos[y]+Math.sqrt((2*R)*(2*R)-Math.abs(xPos[x]-xPos[y])*Math.abs(xPos[x]-xPos[y])));
}
}
System.out.print(yPos[0]);
for(int x = 1; x < N; x++)
System.out.print(" "+yPos[x]);
//System.out.println(System.currentTimeMillis()-time);
}
}
class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader(String file) throws IOException
{
br = new BufferedReader(new FileReader(file));
}
public FastReader(InputStream i) throws IOException
{
br = new BufferedReader(new InputStreamReader(System.in));
}
boolean hasNext()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (Exception e)
{
return false;
}
}
return true;
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class C
{
static long time = System.currentTimeMillis();
public static void main(String[] args) throws IOException
{
//FastReader infile = new FastReader("test.txt");
FastReader infile = new FastReader(System.in);
int N = infile.nextInt();
int R = infile.nextInt();
double[] xPos = new double[N];
for(int x = 0; x < N; x++)
xPos[x] = infile.nextDouble();
double[] yPos = new double[N];
Arrays.fill(yPos, R);
for(int x = 1; x < N; x++)
{
for(int y = 0; y < x; y++)
if(Math.abs(xPos[x]-xPos[y])<=2*R)
{
yPos[x] = Math.max(yPos[x], yPos[y]+Math.sqrt((2*R)*(2*R)-Math.abs(xPos[x]-xPos[y])*Math.abs(xPos[x]-xPos[y])));
}
}
System.out.print(yPos[0]);
for(int x = 1; x < N; x++)
System.out.print(" "+yPos[x]);
//System.out.println(System.currentTimeMillis()-time);
}
}
class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader(String file) throws IOException
{
br = new BufferedReader(new FileReader(file));
}
public FastReader(InputStream i) throws IOException
{
br = new BufferedReader(new InputStreamReader(System.in));
}
boolean hasNext()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (Exception e)
{
return false;
}
}
return true;
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class C
{
static long time = System.currentTimeMillis();
public static void main(String[] args) throws IOException
{
//FastReader infile = new FastReader("test.txt");
FastReader infile = new FastReader(System.in);
int N = infile.nextInt();
int R = infile.nextInt();
double[] xPos = new double[N];
for(int x = 0; x < N; x++)
xPos[x] = infile.nextDouble();
double[] yPos = new double[N];
Arrays.fill(yPos, R);
for(int x = 1; x < N; x++)
{
for(int y = 0; y < x; y++)
if(Math.abs(xPos[x]-xPos[y])<=2*R)
{
yPos[x] = Math.max(yPos[x], yPos[y]+Math.sqrt((2*R)*(2*R)-Math.abs(xPos[x]-xPos[y])*Math.abs(xPos[x]-xPos[y])));
}
}
System.out.print(yPos[0]);
for(int x = 1; x < N; x++)
System.out.print(" "+yPos[x]);
//System.out.println(System.currentTimeMillis()-time);
}
}
class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader(String file) throws IOException
{
br = new BufferedReader(new FileReader(file));
}
public FastReader(InputStream i) throws IOException
{
br = new BufferedReader(new InputStreamReader(System.in));
}
boolean hasNext()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (Exception e)
{
return false;
}
}
return true;
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 887 | 2,191 |
703 |
import java.util.Scanner;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class Main {
public static void main(String[] args) {
Scanner scn = new Scanner(System.in);
int t = scn.nextInt();
while(t-- >0){
String str = scn.next();
Pattern p = Pattern.compile("R[0-9]+C[0-9]+");
Matcher m = p.matcher(str);
if (m.matches()){
String nums[] = str.split("[RC]");
String first = nums[1];
String second = nums[2];
String ans = "";
long num = Integer.parseInt(second);
while(num >0){
if (num % 26 > 0){
ans += (char)(num%26+'A'-1);
num/=26;
} else {
ans += 'Z';
num/=26;
num--;
}
}
for (int i = ans.length()-1; i>=0;--i){
System.out.print(ans.charAt(i));
}
System.out.println(first);
} else {
String first = str.split("[0-9]+")[0];
String second = str.split("[A-Z]+")[1];
System.out.print("R"+second);
long num = 0, pow = 1;
for (int i = first.length()-1; i>=0; --i){
num += (long)(first.charAt(i)-'A'+1) * pow;
pow*=26;
}
System.out.println("C"+num);
}
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class Main {
public static void main(String[] args) {
Scanner scn = new Scanner(System.in);
int t = scn.nextInt();
while(t-- >0){
String str = scn.next();
Pattern p = Pattern.compile("R[0-9]+C[0-9]+");
Matcher m = p.matcher(str);
if (m.matches()){
String nums[] = str.split("[RC]");
String first = nums[1];
String second = nums[2];
String ans = "";
long num = Integer.parseInt(second);
while(num >0){
if (num % 26 > 0){
ans += (char)(num%26+'A'-1);
num/=26;
} else {
ans += 'Z';
num/=26;
num--;
}
}
for (int i = ans.length()-1; i>=0;--i){
System.out.print(ans.charAt(i));
}
System.out.println(first);
} else {
String first = str.split("[0-9]+")[0];
String second = str.split("[A-Z]+")[1];
System.out.print("R"+second);
long num = 0, pow = 1;
for (int i = first.length()-1; i>=0; --i){
num += (long)(first.charAt(i)-'A'+1) * pow;
pow*=26;
}
System.out.println("C"+num);
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class Main {
public static void main(String[] args) {
Scanner scn = new Scanner(System.in);
int t = scn.nextInt();
while(t-- >0){
String str = scn.next();
Pattern p = Pattern.compile("R[0-9]+C[0-9]+");
Matcher m = p.matcher(str);
if (m.matches()){
String nums[] = str.split("[RC]");
String first = nums[1];
String second = nums[2];
String ans = "";
long num = Integer.parseInt(second);
while(num >0){
if (num % 26 > 0){
ans += (char)(num%26+'A'-1);
num/=26;
} else {
ans += 'Z';
num/=26;
num--;
}
}
for (int i = ans.length()-1; i>=0;--i){
System.out.print(ans.charAt(i));
}
System.out.println(first);
} else {
String first = str.split("[0-9]+")[0];
String second = str.split("[A-Z]+")[1];
System.out.print("R"+second);
long num = 0, pow = 1;
for (int i = first.length()-1; i>=0; --i){
num += (long)(first.charAt(i)-'A'+1) * pow;
pow*=26;
}
System.out.println("C"+num);
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 686 | 702 |
155 |
import java.util.Scanner;
public class MargariteBestPresent_1080B {
private static int f(int x) {
return (x%2==0)?x/2:(x-1)/2-x;
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n,r,l;
n = sc.nextInt();
while(n-->0) {
l = sc.nextInt();
r = sc.nextInt();
System.out.println(f(r)-f(l-1));
}
sc.close();
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class MargariteBestPresent_1080B {
private static int f(int x) {
return (x%2==0)?x/2:(x-1)/2-x;
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n,r,l;
n = sc.nextInt();
while(n-->0) {
l = sc.nextInt();
r = sc.nextInt();
System.out.println(f(r)-f(l-1));
}
sc.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class MargariteBestPresent_1080B {
private static int f(int x) {
return (x%2==0)?x/2:(x-1)/2-x;
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n,r,l;
n = sc.nextInt();
while(n-->0) {
l = sc.nextInt();
r = sc.nextInt();
System.out.println(f(r)-f(l-1));
}
sc.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 472 | 155 |
2,759 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////// SOLUTION ///////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
public class Solution{
// main();
public static void main(String[] args) throws IOException{
///input
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
String[] str=br.readLine().split(" ");
long n=Long.parseLong(str[0]);
if(n<3)
System.out.println(n);
else if(n%2==1)
System.out.println(n*(n-1)*(n-2));
else
{
if(n%3!=0)
System.out.println(n*(n-1)*(n-3));
else
System.out.println((n-1)*(n-2)*(n-3));
}
}//void main
}//class main
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////// SOLUTION ///////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
public class Solution{
// main();
public static void main(String[] args) throws IOException{
///input
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
String[] str=br.readLine().split(" ");
long n=Long.parseLong(str[0]);
if(n<3)
System.out.println(n);
else if(n%2==1)
System.out.println(n*(n-1)*(n-2));
else
{
if(n%3!=0)
System.out.println(n*(n-1)*(n-3));
else
System.out.println((n-1)*(n-2)*(n-3));
}
}//void main
}//class main
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////// SOLUTION ///////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
public class Solution{
// main();
public static void main(String[] args) throws IOException{
///input
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
String[] str=br.readLine().split(" ");
long n=Long.parseLong(str[0]);
if(n<3)
System.out.println(n);
else if(n%2==1)
System.out.println(n*(n-1)*(n-2));
else
{
if(n%3!=0)
System.out.println(n*(n-1)*(n-3));
else
System.out.println((n-1)*(n-2)*(n-3));
}
}//void main
}//class main
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 540 | 2,753 |
3,546 |
// upsolve with rainboy
import java.io.*;
import java.util.*;
public class CF1187G extends PrintWriter {
CF1187G() { super(System.out); }
static class Scanner {
Scanner(InputStream in) { this.in = in; } InputStream in;
int k, l; byte[] bb = new byte[1 << 15];
byte getc() {
if (k >= l) {
k = 0;
try { l = in.read(bb); } catch (IOException e) { l = 0; }
if (l <= 0) return -1;
}
return bb[k++];
}
int nextInt() {
byte c = 0; while (c <= 32) c = getc();
int a = 0;
while (c > 32) { a = a * 10 + c - '0'; c = getc(); }
return a;
}
}
Scanner sc = new Scanner(System.in);
public static void main(String[] $) {
CF1187G o = new CF1187G(); o.main(); o.flush();
}
static final int INF = 0x3f3f3f3f;
ArrayList[] aa_;
int n_, m_;
int[] pi, dd, bb;
int[] uu, vv, uv, cost;
int[] cc;
void init() {
aa_ = new ArrayList[n_];
for (int u = 0; u < n_; u++)
aa_[u] = new ArrayList<Integer>();
pi = new int[n_];
dd = new int[n_];
bb = new int[n_];
qq = new int[nq];
iq = new boolean[n_];
uu = new int[m_];
vv = new int[m_];
uv = new int[m_];
cost = new int[m_];
cc = new int[m_ * 2];
m_ = 0;
}
void link(int u, int v, int cap, int cos) {
int h = m_++;
uu[h] = u;
vv[h] = v;
uv[h] = u ^ v;
cost[h] = cos;
cc[h << 1 ^ 0] = cap;
aa_[u].add(h << 1 ^ 0);
aa_[v].add(h << 1 ^ 1);
}
int[] qq;
int nq = 1 << 20, head, cnt;
boolean[] iq;
void enqueue(int v) {
if (iq[v])
return;
if (head + cnt == nq) {
if (cnt * 2 <= nq)
System.arraycopy(qq, head, qq, 0, cnt);
else {
int[] qq_ = new int[nq *= 2];
System.arraycopy(qq, head, qq_, 0, cnt);
qq = qq_;
}
head = 0;
}
qq[head + cnt++] = v; iq[v] = true;
}
int dequeue() {
int u = qq[head++]; cnt--; iq[u] = false;
return u;
}
boolean spfa(int s, int t) {
Arrays.fill(pi, INF);
pi[s] = 0;
head = cnt = 0;
enqueue(s);
while (cnt > 0) {
int u = dequeue();
int d = dd[u] + 1;
ArrayList<Integer> adj = aa_[u];
for (int h_ : adj)
if (cc[h_] > 0) {
int h = h_ >> 1;
int p = pi[u] + ((h_ & 1) == 0 ? cost[h] : -cost[h]);
int v = u ^ uv[h];
if (pi[v] > p || pi[v] == p && dd[v] > d) {
pi[v] = p;
dd[v] = d;
bb[v] = h_;
enqueue(v);
}
}
}
return pi[t] != INF;
}
void push(int s, int t) {
int c = INF;
for (int u = t, h_, h; u != s; u ^= uv[h]) {
h = (h_ = bb[u]) >> 1;
c = Math.min(c, cc[h_]);
}
for (int u = t, h_, h; u != s; u ^= uv[h]) {
h = (h_ = bb[u]) >> 1;
cc[h_] -= c; cc[h_ ^ 1] += c;
}
}
void push1(int s, int t) {
for (int u = t, h_, h; u != s; u ^= uv[h]) {
h = (h_ = bb[u]) >> 1;
cc[h_]--; cc[h_ ^ 1]++;
}
}
int edmonds_karp(int s, int t) {
while (spfa(s, t))
push1(s, t);
int c = 0;
for (int h = 0; h < m_; h++)
c += cost[h] * cc[h << 1 ^ 1];
return c;
}
void main() {
int n = sc.nextInt();
int m = sc.nextInt();
int k = sc.nextInt();
int c = sc.nextInt();
int d = sc.nextInt();
int[] ii = new int[k];
for (int h = 0; h < k; h++)
ii[h] = sc.nextInt() - 1;
ArrayList[] aa = new ArrayList[n];
for (int i = 0; i < n; i++)
aa[i] = new ArrayList<Integer>();
for (int h = 0; h < m; h++) {
int i = sc.nextInt() - 1;
int j = sc.nextInt() - 1;
aa[i].add(j);
aa[j].add(i);
}
int t = n + k + 1;
n_ = n * t + 1;
m_ = k + (m * 2 * k + n) * (t - 1);
init();
for (int i = 0; i < n; i++) {
ArrayList<Integer> adj = aa[i];
for (int s = 0; s < t - 1; s++) {
int u = i * t + s;
for (int j : adj) {
int v = j * t + s + 1;
for (int x = 1; x <= k; x++)
link(u, v, 1, c + (x * 2 - 1) * d);
}
}
}
for (int i = 0; i < n; i++)
for (int s = 0; s < t - 1; s++) {
int u = i * t + s, v = u + 1;
link(u, v, k, i == 0 ? 0 : c);
}
for (int h = 0; h < k; h++)
link(n_ - 1, ii[h] * t + 0, 1, 0);
println(edmonds_karp(n_ - 1, 0 * t + t - 1));
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
// upsolve with rainboy
import java.io.*;
import java.util.*;
public class CF1187G extends PrintWriter {
CF1187G() { super(System.out); }
static class Scanner {
Scanner(InputStream in) { this.in = in; } InputStream in;
int k, l; byte[] bb = new byte[1 << 15];
byte getc() {
if (k >= l) {
k = 0;
try { l = in.read(bb); } catch (IOException e) { l = 0; }
if (l <= 0) return -1;
}
return bb[k++];
}
int nextInt() {
byte c = 0; while (c <= 32) c = getc();
int a = 0;
while (c > 32) { a = a * 10 + c - '0'; c = getc(); }
return a;
}
}
Scanner sc = new Scanner(System.in);
public static void main(String[] $) {
CF1187G o = new CF1187G(); o.main(); o.flush();
}
static final int INF = 0x3f3f3f3f;
ArrayList[] aa_;
int n_, m_;
int[] pi, dd, bb;
int[] uu, vv, uv, cost;
int[] cc;
void init() {
aa_ = new ArrayList[n_];
for (int u = 0; u < n_; u++)
aa_[u] = new ArrayList<Integer>();
pi = new int[n_];
dd = new int[n_];
bb = new int[n_];
qq = new int[nq];
iq = new boolean[n_];
uu = new int[m_];
vv = new int[m_];
uv = new int[m_];
cost = new int[m_];
cc = new int[m_ * 2];
m_ = 0;
}
void link(int u, int v, int cap, int cos) {
int h = m_++;
uu[h] = u;
vv[h] = v;
uv[h] = u ^ v;
cost[h] = cos;
cc[h << 1 ^ 0] = cap;
aa_[u].add(h << 1 ^ 0);
aa_[v].add(h << 1 ^ 1);
}
int[] qq;
int nq = 1 << 20, head, cnt;
boolean[] iq;
void enqueue(int v) {
if (iq[v])
return;
if (head + cnt == nq) {
if (cnt * 2 <= nq)
System.arraycopy(qq, head, qq, 0, cnt);
else {
int[] qq_ = new int[nq *= 2];
System.arraycopy(qq, head, qq_, 0, cnt);
qq = qq_;
}
head = 0;
}
qq[head + cnt++] = v; iq[v] = true;
}
int dequeue() {
int u = qq[head++]; cnt--; iq[u] = false;
return u;
}
boolean spfa(int s, int t) {
Arrays.fill(pi, INF);
pi[s] = 0;
head = cnt = 0;
enqueue(s);
while (cnt > 0) {
int u = dequeue();
int d = dd[u] + 1;
ArrayList<Integer> adj = aa_[u];
for (int h_ : adj)
if (cc[h_] > 0) {
int h = h_ >> 1;
int p = pi[u] + ((h_ & 1) == 0 ? cost[h] : -cost[h]);
int v = u ^ uv[h];
if (pi[v] > p || pi[v] == p && dd[v] > d) {
pi[v] = p;
dd[v] = d;
bb[v] = h_;
enqueue(v);
}
}
}
return pi[t] != INF;
}
void push(int s, int t) {
int c = INF;
for (int u = t, h_, h; u != s; u ^= uv[h]) {
h = (h_ = bb[u]) >> 1;
c = Math.min(c, cc[h_]);
}
for (int u = t, h_, h; u != s; u ^= uv[h]) {
h = (h_ = bb[u]) >> 1;
cc[h_] -= c; cc[h_ ^ 1] += c;
}
}
void push1(int s, int t) {
for (int u = t, h_, h; u != s; u ^= uv[h]) {
h = (h_ = bb[u]) >> 1;
cc[h_]--; cc[h_ ^ 1]++;
}
}
int edmonds_karp(int s, int t) {
while (spfa(s, t))
push1(s, t);
int c = 0;
for (int h = 0; h < m_; h++)
c += cost[h] * cc[h << 1 ^ 1];
return c;
}
void main() {
int n = sc.nextInt();
int m = sc.nextInt();
int k = sc.nextInt();
int c = sc.nextInt();
int d = sc.nextInt();
int[] ii = new int[k];
for (int h = 0; h < k; h++)
ii[h] = sc.nextInt() - 1;
ArrayList[] aa = new ArrayList[n];
for (int i = 0; i < n; i++)
aa[i] = new ArrayList<Integer>();
for (int h = 0; h < m; h++) {
int i = sc.nextInt() - 1;
int j = sc.nextInt() - 1;
aa[i].add(j);
aa[j].add(i);
}
int t = n + k + 1;
n_ = n * t + 1;
m_ = k + (m * 2 * k + n) * (t - 1);
init();
for (int i = 0; i < n; i++) {
ArrayList<Integer> adj = aa[i];
for (int s = 0; s < t - 1; s++) {
int u = i * t + s;
for (int j : adj) {
int v = j * t + s + 1;
for (int x = 1; x <= k; x++)
link(u, v, 1, c + (x * 2 - 1) * d);
}
}
}
for (int i = 0; i < n; i++)
for (int s = 0; s < t - 1; s++) {
int u = i * t + s, v = u + 1;
link(u, v, k, i == 0 ? 0 : c);
}
for (int h = 0; h < k; h++)
link(n_ - 1, ii[h] * t + 0, 1, 0);
println(edmonds_karp(n_ - 1, 0 * t + t - 1));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
// upsolve with rainboy
import java.io.*;
import java.util.*;
public class CF1187G extends PrintWriter {
CF1187G() { super(System.out); }
static class Scanner {
Scanner(InputStream in) { this.in = in; } InputStream in;
int k, l; byte[] bb = new byte[1 << 15];
byte getc() {
if (k >= l) {
k = 0;
try { l = in.read(bb); } catch (IOException e) { l = 0; }
if (l <= 0) return -1;
}
return bb[k++];
}
int nextInt() {
byte c = 0; while (c <= 32) c = getc();
int a = 0;
while (c > 32) { a = a * 10 + c - '0'; c = getc(); }
return a;
}
}
Scanner sc = new Scanner(System.in);
public static void main(String[] $) {
CF1187G o = new CF1187G(); o.main(); o.flush();
}
static final int INF = 0x3f3f3f3f;
ArrayList[] aa_;
int n_, m_;
int[] pi, dd, bb;
int[] uu, vv, uv, cost;
int[] cc;
void init() {
aa_ = new ArrayList[n_];
for (int u = 0; u < n_; u++)
aa_[u] = new ArrayList<Integer>();
pi = new int[n_];
dd = new int[n_];
bb = new int[n_];
qq = new int[nq];
iq = new boolean[n_];
uu = new int[m_];
vv = new int[m_];
uv = new int[m_];
cost = new int[m_];
cc = new int[m_ * 2];
m_ = 0;
}
void link(int u, int v, int cap, int cos) {
int h = m_++;
uu[h] = u;
vv[h] = v;
uv[h] = u ^ v;
cost[h] = cos;
cc[h << 1 ^ 0] = cap;
aa_[u].add(h << 1 ^ 0);
aa_[v].add(h << 1 ^ 1);
}
int[] qq;
int nq = 1 << 20, head, cnt;
boolean[] iq;
void enqueue(int v) {
if (iq[v])
return;
if (head + cnt == nq) {
if (cnt * 2 <= nq)
System.arraycopy(qq, head, qq, 0, cnt);
else {
int[] qq_ = new int[nq *= 2];
System.arraycopy(qq, head, qq_, 0, cnt);
qq = qq_;
}
head = 0;
}
qq[head + cnt++] = v; iq[v] = true;
}
int dequeue() {
int u = qq[head++]; cnt--; iq[u] = false;
return u;
}
boolean spfa(int s, int t) {
Arrays.fill(pi, INF);
pi[s] = 0;
head = cnt = 0;
enqueue(s);
while (cnt > 0) {
int u = dequeue();
int d = dd[u] + 1;
ArrayList<Integer> adj = aa_[u];
for (int h_ : adj)
if (cc[h_] > 0) {
int h = h_ >> 1;
int p = pi[u] + ((h_ & 1) == 0 ? cost[h] : -cost[h]);
int v = u ^ uv[h];
if (pi[v] > p || pi[v] == p && dd[v] > d) {
pi[v] = p;
dd[v] = d;
bb[v] = h_;
enqueue(v);
}
}
}
return pi[t] != INF;
}
void push(int s, int t) {
int c = INF;
for (int u = t, h_, h; u != s; u ^= uv[h]) {
h = (h_ = bb[u]) >> 1;
c = Math.min(c, cc[h_]);
}
for (int u = t, h_, h; u != s; u ^= uv[h]) {
h = (h_ = bb[u]) >> 1;
cc[h_] -= c; cc[h_ ^ 1] += c;
}
}
void push1(int s, int t) {
for (int u = t, h_, h; u != s; u ^= uv[h]) {
h = (h_ = bb[u]) >> 1;
cc[h_]--; cc[h_ ^ 1]++;
}
}
int edmonds_karp(int s, int t) {
while (spfa(s, t))
push1(s, t);
int c = 0;
for (int h = 0; h < m_; h++)
c += cost[h] * cc[h << 1 ^ 1];
return c;
}
void main() {
int n = sc.nextInt();
int m = sc.nextInt();
int k = sc.nextInt();
int c = sc.nextInt();
int d = sc.nextInt();
int[] ii = new int[k];
for (int h = 0; h < k; h++)
ii[h] = sc.nextInt() - 1;
ArrayList[] aa = new ArrayList[n];
for (int i = 0; i < n; i++)
aa[i] = new ArrayList<Integer>();
for (int h = 0; h < m; h++) {
int i = sc.nextInt() - 1;
int j = sc.nextInt() - 1;
aa[i].add(j);
aa[j].add(i);
}
int t = n + k + 1;
n_ = n * t + 1;
m_ = k + (m * 2 * k + n) * (t - 1);
init();
for (int i = 0; i < n; i++) {
ArrayList<Integer> adj = aa[i];
for (int s = 0; s < t - 1; s++) {
int u = i * t + s;
for (int j : adj) {
int v = j * t + s + 1;
for (int x = 1; x <= k; x++)
link(u, v, 1, c + (x * 2 - 1) * d);
}
}
}
for (int i = 0; i < n; i++)
for (int s = 0; s < t - 1; s++) {
int u = i * t + s, v = u + 1;
link(u, v, k, i == 0 ? 0 : c);
}
for (int h = 0; h < k; h++)
link(n_ - 1, ii[h] * t + 0, 1, 0);
println(edmonds_karp(n_ - 1, 0 * t + t - 1));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,008 | 3,539 |
930 |
import java.io.*;
import java.math.BigInteger;
import java.util.*;
public class Main {
static int inf = (int) 1e9;
public static void main(String[] args) throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(System.out);
int n = nextInt();
int k = nextInt();
long l = -1;
long r = 100000;
while(l != r - 1) {
long mid = (l + r) / 2;
if (mid * (mid + 1) / 2 - (n - mid) > k) r = mid;
else l = mid;
}
pw.println(n - l);
pw.close();
}
static BufferedReader br;
static StringTokenizer st = new StringTokenizer("");
static PrintWriter pw;
static String next() throws IOException {
while (!st.hasMoreTokens()) st = new StringTokenizer(br.readLine());
return st.nextToken();
}
static int nextInt() throws IOException {
return Integer.parseInt(next());
}
static long nextLong() throws IOException {
return Long.parseLong(next());
}
static Double nextDouble() throws IOException {
return Double.parseDouble(next());
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.math.BigInteger;
import java.util.*;
public class Main {
static int inf = (int) 1e9;
public static void main(String[] args) throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(System.out);
int n = nextInt();
int k = nextInt();
long l = -1;
long r = 100000;
while(l != r - 1) {
long mid = (l + r) / 2;
if (mid * (mid + 1) / 2 - (n - mid) > k) r = mid;
else l = mid;
}
pw.println(n - l);
pw.close();
}
static BufferedReader br;
static StringTokenizer st = new StringTokenizer("");
static PrintWriter pw;
static String next() throws IOException {
while (!st.hasMoreTokens()) st = new StringTokenizer(br.readLine());
return st.nextToken();
}
static int nextInt() throws IOException {
return Integer.parseInt(next());
}
static long nextLong() throws IOException {
return Long.parseLong(next());
}
static Double nextDouble() throws IOException {
return Double.parseDouble(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.math.BigInteger;
import java.util.*;
public class Main {
static int inf = (int) 1e9;
public static void main(String[] args) throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(System.out);
int n = nextInt();
int k = nextInt();
long l = -1;
long r = 100000;
while(l != r - 1) {
long mid = (l + r) / 2;
if (mid * (mid + 1) / 2 - (n - mid) > k) r = mid;
else l = mid;
}
pw.println(n - l);
pw.close();
}
static BufferedReader br;
static StringTokenizer st = new StringTokenizer("");
static PrintWriter pw;
static String next() throws IOException {
while (!st.hasMoreTokens()) st = new StringTokenizer(br.readLine());
return st.nextToken();
}
static int nextInt() throws IOException {
return Integer.parseInt(next());
}
static long nextLong() throws IOException {
return Long.parseLong(next());
}
static Double nextDouble() throws IOException {
return Double.parseDouble(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 614 | 929 |
3,225 |
import java.util.Scanner;
/**
* Feb 18, 2016 | 4:00:49 PM
* <pre>
* <u>Description</u>
*
* </pre>
*
* @author Essiennta Emmanuel ([email protected])
*/
public class ProblemA{
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
sc.next();
System.out.println(25);
sc.close();
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
/**
* Feb 18, 2016 | 4:00:49 PM
* <pre>
* <u>Description</u>
*
* </pre>
*
* @author Essiennta Emmanuel ([email protected])
*/
public class ProblemA{
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
sc.next();
System.out.println(25);
sc.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
/**
* Feb 18, 2016 | 4:00:49 PM
* <pre>
* <u>Description</u>
*
* </pre>
*
* @author Essiennta Emmanuel ([email protected])
*/
public class ProblemA{
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
sc.next();
System.out.println(25);
sc.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 457 | 3,219 |
1,242 |
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
/**
* Created by hama_du on 15/09/10.
*/
public class A {
private static final long MOD = 1000000009;
public static void main(String[] args) {
InputReader in = new InputReader(System.in);
PrintWriter out = new PrintWriter(System.out);
long n = in.nextInt();
long correct = in.nextInt();
long k = in.nextInt();
long wrong = n - correct;
long set = wrong * k + k - 1;
if (set >= n) {
out.println(correct);
} else {
long needExtraCorrect = n - (wrong * k + k - 1);
long firstSet = needExtraCorrect + k - 1;
long otherSet = correct - firstSet;
long firstDouble = firstSet / k;
otherSet += firstSet % k;
long[][] mat = new long[][]{ {2, 2*k}, {0, 1}};
long[][] A = pow(mat, firstDouble, MOD);
long score = (A[0][1] + otherSet) % MOD;
out.println(score);
}
out.flush();
}
public static long[][] pow(long[][] a, long n, long mod) {
long i = 1;
long[][] res = E(a.length);
long[][] ap = mul(E(a.length), a, mod);
while (i <= n) {
if ((n & i) >= 1) {
res = mul(res, ap, mod);
}
i *= 2;
ap = mul(ap, ap, mod);
}
return res;
}
public static long[][] E(int n) {
long[][] a = new long[n][n];
for (int i = 0 ; i < n ; i++) {
a[i][i] = 1;
}
return a;
}
public static long[][] mul(long[][] a, long[][] b, long mod) {
long[][] c = new long[a.length][b[0].length];
if (a[0].length != b.length) {
System.err.print("err");
}
for (int i = 0 ; i < a.length ; i++) {
for (int j = 0 ; j < b[0].length ; j++) {
long sum = 0;
for (int k = 0 ; k < a[0].length ; k++) {
sum = (sum + a[i][k] * b[k][j]) % mod;
}
c[i][j] = sum;
}
}
return c;
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
private int next() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public char nextChar() {
int c = next();
while (isSpaceChar(c))
c = next();
if ('a' <= c && c <= 'z') {
return (char) c;
}
if ('A' <= c && c <= 'Z') {
return (char) c;
}
throw new InputMismatchException();
}
public String nextToken() {
int c = next();
while (isSpaceChar(c))
c = next();
StringBuilder res = new StringBuilder();
do {
res.append((char) c);
c = next();
} while (!isSpaceChar(c));
return res.toString();
}
public int nextInt() {
int c = next();
while (isSpaceChar(c))
c = next();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = next();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c-'0';
c = next();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = next();
while (isSpaceChar(c))
c = next();
long sgn = 1;
if (c == '-') {
sgn = -1;
c = next();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c-'0';
c = next();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static void debug(Object... o) {
System.err.println(Arrays.deepToString(o));
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
/**
* Created by hama_du on 15/09/10.
*/
public class A {
private static final long MOD = 1000000009;
public static void main(String[] args) {
InputReader in = new InputReader(System.in);
PrintWriter out = new PrintWriter(System.out);
long n = in.nextInt();
long correct = in.nextInt();
long k = in.nextInt();
long wrong = n - correct;
long set = wrong * k + k - 1;
if (set >= n) {
out.println(correct);
} else {
long needExtraCorrect = n - (wrong * k + k - 1);
long firstSet = needExtraCorrect + k - 1;
long otherSet = correct - firstSet;
long firstDouble = firstSet / k;
otherSet += firstSet % k;
long[][] mat = new long[][]{ {2, 2*k}, {0, 1}};
long[][] A = pow(mat, firstDouble, MOD);
long score = (A[0][1] + otherSet) % MOD;
out.println(score);
}
out.flush();
}
public static long[][] pow(long[][] a, long n, long mod) {
long i = 1;
long[][] res = E(a.length);
long[][] ap = mul(E(a.length), a, mod);
while (i <= n) {
if ((n & i) >= 1) {
res = mul(res, ap, mod);
}
i *= 2;
ap = mul(ap, ap, mod);
}
return res;
}
public static long[][] E(int n) {
long[][] a = new long[n][n];
for (int i = 0 ; i < n ; i++) {
a[i][i] = 1;
}
return a;
}
public static long[][] mul(long[][] a, long[][] b, long mod) {
long[][] c = new long[a.length][b[0].length];
if (a[0].length != b.length) {
System.err.print("err");
}
for (int i = 0 ; i < a.length ; i++) {
for (int j = 0 ; j < b[0].length ; j++) {
long sum = 0;
for (int k = 0 ; k < a[0].length ; k++) {
sum = (sum + a[i][k] * b[k][j]) % mod;
}
c[i][j] = sum;
}
}
return c;
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
private int next() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public char nextChar() {
int c = next();
while (isSpaceChar(c))
c = next();
if ('a' <= c && c <= 'z') {
return (char) c;
}
if ('A' <= c && c <= 'Z') {
return (char) c;
}
throw new InputMismatchException();
}
public String nextToken() {
int c = next();
while (isSpaceChar(c))
c = next();
StringBuilder res = new StringBuilder();
do {
res.append((char) c);
c = next();
} while (!isSpaceChar(c));
return res.toString();
}
public int nextInt() {
int c = next();
while (isSpaceChar(c))
c = next();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = next();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c-'0';
c = next();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = next();
while (isSpaceChar(c))
c = next();
long sgn = 1;
if (c == '-') {
sgn = -1;
c = next();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c-'0';
c = next();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static void debug(Object... o) {
System.err.println(Arrays.deepToString(o));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
/**
* Created by hama_du on 15/09/10.
*/
public class A {
private static final long MOD = 1000000009;
public static void main(String[] args) {
InputReader in = new InputReader(System.in);
PrintWriter out = new PrintWriter(System.out);
long n = in.nextInt();
long correct = in.nextInt();
long k = in.nextInt();
long wrong = n - correct;
long set = wrong * k + k - 1;
if (set >= n) {
out.println(correct);
} else {
long needExtraCorrect = n - (wrong * k + k - 1);
long firstSet = needExtraCorrect + k - 1;
long otherSet = correct - firstSet;
long firstDouble = firstSet / k;
otherSet += firstSet % k;
long[][] mat = new long[][]{ {2, 2*k}, {0, 1}};
long[][] A = pow(mat, firstDouble, MOD);
long score = (A[0][1] + otherSet) % MOD;
out.println(score);
}
out.flush();
}
public static long[][] pow(long[][] a, long n, long mod) {
long i = 1;
long[][] res = E(a.length);
long[][] ap = mul(E(a.length), a, mod);
while (i <= n) {
if ((n & i) >= 1) {
res = mul(res, ap, mod);
}
i *= 2;
ap = mul(ap, ap, mod);
}
return res;
}
public static long[][] E(int n) {
long[][] a = new long[n][n];
for (int i = 0 ; i < n ; i++) {
a[i][i] = 1;
}
return a;
}
public static long[][] mul(long[][] a, long[][] b, long mod) {
long[][] c = new long[a.length][b[0].length];
if (a[0].length != b.length) {
System.err.print("err");
}
for (int i = 0 ; i < a.length ; i++) {
for (int j = 0 ; j < b[0].length ; j++) {
long sum = 0;
for (int k = 0 ; k < a[0].length ; k++) {
sum = (sum + a[i][k] * b[k][j]) % mod;
}
c[i][j] = sum;
}
}
return c;
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
private int next() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public char nextChar() {
int c = next();
while (isSpaceChar(c))
c = next();
if ('a' <= c && c <= 'z') {
return (char) c;
}
if ('A' <= c && c <= 'Z') {
return (char) c;
}
throw new InputMismatchException();
}
public String nextToken() {
int c = next();
while (isSpaceChar(c))
c = next();
StringBuilder res = new StringBuilder();
do {
res.append((char) c);
c = next();
} while (!isSpaceChar(c));
return res.toString();
}
public int nextInt() {
int c = next();
while (isSpaceChar(c))
c = next();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = next();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c-'0';
c = next();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = next();
while (isSpaceChar(c))
c = next();
long sgn = 1;
if (c == '-') {
sgn = -1;
c = next();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c-'0';
c = next();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static void debug(Object... o) {
System.err.println(Arrays.deepToString(o));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,575 | 1,241 |
2,479 |
import java.io.PrintWriter;
import java.util.*;
public class Main{
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
PrintWriter out=new PrintWriter(System.out);
int n=sc.nextInt();
int a[]=new int[n];
for (int i = 0; i <n ; i++) {
a[i]=sc.nextInt();
}
HashMap<Integer,ArrayList<Node>> h=new HashMap<>();
for (int i = 0; i <n ; i++) {
int sum=0;
for (int j = i; j <n ; j++) {
sum+=a[j];
if(h.containsKey(sum)){
h.get(sum).add(new Node(i,j));
}
else{
ArrayList<Node> temp=new ArrayList<>();
temp.add(new Node(i,j));
h.put(sum,temp);
}
}
}
long ans=0;
ArrayList<Integer> ansList=new ArrayList<>();
for(int x:h.keySet()){
Collections.sort(h.get(x), new Comparator<Node>() {
@Override
public int compare(Node o1, Node o2) {
return Integer.compare(o1.r,o2.r);
}
});
ArrayList<Node> l=h.get(x);
//out.println(l);
ArrayList<Integer> temp=new ArrayList<>();
int lasty=Integer.MIN_VALUE;
for (int i = 0; i <l.size() ; i++) {
if(l.get(i).l>lasty){
lasty=l.get(i).r;
temp.add(l.get(i).l);
temp.add(l.get(i).r);
}
}
if(ans<temp.size()){
ansList=temp;
ans=ansList.size();
}
}
out.println(ans/2);
for (int i = 0; i <ansList.size() ; i++) {
out.print((ansList.get(i)+1)+" ");
i++;
out.println((ansList.get(i)+1)+" ");
}
out.close();
}
static class Node{
int l,r;
public Node(int a,int b){
l=a;
r=b;
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.PrintWriter;
import java.util.*;
public class Main{
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
PrintWriter out=new PrintWriter(System.out);
int n=sc.nextInt();
int a[]=new int[n];
for (int i = 0; i <n ; i++) {
a[i]=sc.nextInt();
}
HashMap<Integer,ArrayList<Node>> h=new HashMap<>();
for (int i = 0; i <n ; i++) {
int sum=0;
for (int j = i; j <n ; j++) {
sum+=a[j];
if(h.containsKey(sum)){
h.get(sum).add(new Node(i,j));
}
else{
ArrayList<Node> temp=new ArrayList<>();
temp.add(new Node(i,j));
h.put(sum,temp);
}
}
}
long ans=0;
ArrayList<Integer> ansList=new ArrayList<>();
for(int x:h.keySet()){
Collections.sort(h.get(x), new Comparator<Node>() {
@Override
public int compare(Node o1, Node o2) {
return Integer.compare(o1.r,o2.r);
}
});
ArrayList<Node> l=h.get(x);
//out.println(l);
ArrayList<Integer> temp=new ArrayList<>();
int lasty=Integer.MIN_VALUE;
for (int i = 0; i <l.size() ; i++) {
if(l.get(i).l>lasty){
lasty=l.get(i).r;
temp.add(l.get(i).l);
temp.add(l.get(i).r);
}
}
if(ans<temp.size()){
ansList=temp;
ans=ansList.size();
}
}
out.println(ans/2);
for (int i = 0; i <ansList.size() ; i++) {
out.print((ansList.get(i)+1)+" ");
i++;
out.println((ansList.get(i)+1)+" ");
}
out.close();
}
static class Node{
int l,r;
public Node(int a,int b){
l=a;
r=b;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.PrintWriter;
import java.util.*;
public class Main{
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
PrintWriter out=new PrintWriter(System.out);
int n=sc.nextInt();
int a[]=new int[n];
for (int i = 0; i <n ; i++) {
a[i]=sc.nextInt();
}
HashMap<Integer,ArrayList<Node>> h=new HashMap<>();
for (int i = 0; i <n ; i++) {
int sum=0;
for (int j = i; j <n ; j++) {
sum+=a[j];
if(h.containsKey(sum)){
h.get(sum).add(new Node(i,j));
}
else{
ArrayList<Node> temp=new ArrayList<>();
temp.add(new Node(i,j));
h.put(sum,temp);
}
}
}
long ans=0;
ArrayList<Integer> ansList=new ArrayList<>();
for(int x:h.keySet()){
Collections.sort(h.get(x), new Comparator<Node>() {
@Override
public int compare(Node o1, Node o2) {
return Integer.compare(o1.r,o2.r);
}
});
ArrayList<Node> l=h.get(x);
//out.println(l);
ArrayList<Integer> temp=new ArrayList<>();
int lasty=Integer.MIN_VALUE;
for (int i = 0; i <l.size() ; i++) {
if(l.get(i).l>lasty){
lasty=l.get(i).r;
temp.add(l.get(i).l);
temp.add(l.get(i).r);
}
}
if(ans<temp.size()){
ansList=temp;
ans=ansList.size();
}
}
out.println(ans/2);
for (int i = 0; i <ansList.size() ; i++) {
out.print((ansList.get(i)+1)+" ");
i++;
out.println((ansList.get(i)+1)+" ");
}
out.close();
}
static class Node{
int l,r;
public Node(int a,int b){
l=a;
r=b;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 806 | 2,474 |
2,098 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintStream;
import java.util.Arrays;
import java.util.StringTokenizer;
import java.util.logging.Level;
import java.util.logging.Logger;
public class ProblemA {
private final BufferedReader in;
private final PrintStream out;
private StringTokenizer tok = new StringTokenizer("");
private String nextLine = null;
public static void main(String[] args) throws Exception {
new ProblemA();
}
private ProblemA() throws Exception {
in = new BufferedReader(new InputStreamReader(System.in));
out = System.out;
start();
end();
}
private int nextInt() {
return Integer.parseInt(nextWord());
}
private String nextWord() {
if (tok.hasMoreTokens()) {
return tok.nextToken();
} else {
while (!tok.hasMoreTokens()) {
try {
nextLine = in.readLine();
if (nextLine == null) {
return null;
} else {
tok = new StringTokenizer(nextLine);
}
} catch (IOException ex) {
Logger.getLogger(ProblemA.class.getName()).log(Level.SEVERE, null, ex);
}
}
return tok.nextToken();
}
}
private void start() {
int n = nextInt();
int[] a = new int[n];
boolean allOne = true;
for (int i = 0; i < n; i++) {
a[i] = nextInt();
if (a[i] != 1) {
allOne = false;
}
}
Arrays.sort(a);
int[] res = new int[n];
res[0] = 1;
for (int i = 1; i < n; i++) {
res[i] = a[i - 1];
}
if (allOne) {
for (int i = 0; i < n - 1; i++) {
out.print(a[i] + " ");
}
out.print(2);
} else {
for (int i = 0; i < n; i++) {
out.print(res[i] + " ");
}
}
}
private void end() {
out.close();
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintStream;
import java.util.Arrays;
import java.util.StringTokenizer;
import java.util.logging.Level;
import java.util.logging.Logger;
public class ProblemA {
private final BufferedReader in;
private final PrintStream out;
private StringTokenizer tok = new StringTokenizer("");
private String nextLine = null;
public static void main(String[] args) throws Exception {
new ProblemA();
}
private ProblemA() throws Exception {
in = new BufferedReader(new InputStreamReader(System.in));
out = System.out;
start();
end();
}
private int nextInt() {
return Integer.parseInt(nextWord());
}
private String nextWord() {
if (tok.hasMoreTokens()) {
return tok.nextToken();
} else {
while (!tok.hasMoreTokens()) {
try {
nextLine = in.readLine();
if (nextLine == null) {
return null;
} else {
tok = new StringTokenizer(nextLine);
}
} catch (IOException ex) {
Logger.getLogger(ProblemA.class.getName()).log(Level.SEVERE, null, ex);
}
}
return tok.nextToken();
}
}
private void start() {
int n = nextInt();
int[] a = new int[n];
boolean allOne = true;
for (int i = 0; i < n; i++) {
a[i] = nextInt();
if (a[i] != 1) {
allOne = false;
}
}
Arrays.sort(a);
int[] res = new int[n];
res[0] = 1;
for (int i = 1; i < n; i++) {
res[i] = a[i - 1];
}
if (allOne) {
for (int i = 0; i < n - 1; i++) {
out.print(a[i] + " ");
}
out.print(2);
} else {
for (int i = 0; i < n; i++) {
out.print(res[i] + " ");
}
}
}
private void end() {
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintStream;
import java.util.Arrays;
import java.util.StringTokenizer;
import java.util.logging.Level;
import java.util.logging.Logger;
public class ProblemA {
private final BufferedReader in;
private final PrintStream out;
private StringTokenizer tok = new StringTokenizer("");
private String nextLine = null;
public static void main(String[] args) throws Exception {
new ProblemA();
}
private ProblemA() throws Exception {
in = new BufferedReader(new InputStreamReader(System.in));
out = System.out;
start();
end();
}
private int nextInt() {
return Integer.parseInt(nextWord());
}
private String nextWord() {
if (tok.hasMoreTokens()) {
return tok.nextToken();
} else {
while (!tok.hasMoreTokens()) {
try {
nextLine = in.readLine();
if (nextLine == null) {
return null;
} else {
tok = new StringTokenizer(nextLine);
}
} catch (IOException ex) {
Logger.getLogger(ProblemA.class.getName()).log(Level.SEVERE, null, ex);
}
}
return tok.nextToken();
}
}
private void start() {
int n = nextInt();
int[] a = new int[n];
boolean allOne = true;
for (int i = 0; i < n; i++) {
a[i] = nextInt();
if (a[i] != 1) {
allOne = false;
}
}
Arrays.sort(a);
int[] res = new int[n];
res[0] = 1;
for (int i = 1; i < n; i++) {
res[i] = a[i - 1];
}
if (allOne) {
for (int i = 0; i < n - 1; i++) {
out.print(a[i] + " ");
}
out.print(2);
} else {
for (int i = 0; i < n; i++) {
out.print(res[i] + " ");
}
}
}
private void end() {
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 801 | 2,094 |
4,077 |
import java.util.Arrays;
import java.util.Scanner;
/**
* @author vstepanov on 3/29/2017.
*/
public class Main {
public static void main(String[] args) {
try(Scanner in = new Scanner(System.in)) {
int bx = in.nextInt();
int by = in.nextInt();
int n = in.nextInt();
int[][] xy = new int[n][2];
int[] res = new int[1 << n];
int[] last = new int[1 << n];
for (int i = 0; i < n; i++) {
xy[i] = new int[]{in.nextInt(), in.nextInt()};
}
int[] ds = new int[n];
for (int i = 0; i < ds.length; i++) {
ds[i] = time(xy[i][0], xy[i][1], bx, by);
}
int[][] d = new int[n][n];
for (int i = 0; i < d.length; i++) {
for (int j = 0; j < d.length; j++) {
d[i][j] = time(xy[i][0], xy[i][1], xy[j][0], xy[j][1]);
}
}
Arrays.fill(res, Integer.MAX_VALUE);
res[0] = 0;
for (int i = 0; i < (1 << n); i++) {
for (int j = 0; j < n; j++) {
if ((i & mask(j)) != 0) {
if (res[i - mask(j)] + 2*ds[j] < res[i]) {
res[i] = res[i - mask(j)] + 2*ds[j];
last[i] = i - mask(j);
}
for (int k = j + 1; k < n; k++) {
if ((i & mask(k)) != 0) {
if (res[i - mask(k) - mask(j)] + ds[j] + ds[k] + d[j][k] < res[i]) {
res[i] = res[i - mask(k) - mask(j)] + ds[j] + ds[k] + d[j][k];
last[i] = i - mask(j) - mask(k);
}
}
}
break;
}
}
}
int cur = (1 << n) - 1;
System.out.println(res[cur]);
int k = cur;
while (k != 0) {
System.out.print("0 ");
int diff = k - last[k];
for (int i = 0; i < n && diff != 0; i++) {
if (((diff >> i) & 1) != 0) {
System.out.print((i + 1) + " ");
diff -= (1 << i);
}
}
k = last[k];
}
System.out.println("0");
}
}
static int mask(int i) {
return 1 << i;
}
static int time(int x, int y, int x1, int y1) {
return (x - x1)*(x - x1) + (y - y1)*(y - y1);
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
/**
* @author vstepanov on 3/29/2017.
*/
public class Main {
public static void main(String[] args) {
try(Scanner in = new Scanner(System.in)) {
int bx = in.nextInt();
int by = in.nextInt();
int n = in.nextInt();
int[][] xy = new int[n][2];
int[] res = new int[1 << n];
int[] last = new int[1 << n];
for (int i = 0; i < n; i++) {
xy[i] = new int[]{in.nextInt(), in.nextInt()};
}
int[] ds = new int[n];
for (int i = 0; i < ds.length; i++) {
ds[i] = time(xy[i][0], xy[i][1], bx, by);
}
int[][] d = new int[n][n];
for (int i = 0; i < d.length; i++) {
for (int j = 0; j < d.length; j++) {
d[i][j] = time(xy[i][0], xy[i][1], xy[j][0], xy[j][1]);
}
}
Arrays.fill(res, Integer.MAX_VALUE);
res[0] = 0;
for (int i = 0; i < (1 << n); i++) {
for (int j = 0; j < n; j++) {
if ((i & mask(j)) != 0) {
if (res[i - mask(j)] + 2*ds[j] < res[i]) {
res[i] = res[i - mask(j)] + 2*ds[j];
last[i] = i - mask(j);
}
for (int k = j + 1; k < n; k++) {
if ((i & mask(k)) != 0) {
if (res[i - mask(k) - mask(j)] + ds[j] + ds[k] + d[j][k] < res[i]) {
res[i] = res[i - mask(k) - mask(j)] + ds[j] + ds[k] + d[j][k];
last[i] = i - mask(j) - mask(k);
}
}
}
break;
}
}
}
int cur = (1 << n) - 1;
System.out.println(res[cur]);
int k = cur;
while (k != 0) {
System.out.print("0 ");
int diff = k - last[k];
for (int i = 0; i < n && diff != 0; i++) {
if (((diff >> i) & 1) != 0) {
System.out.print((i + 1) + " ");
diff -= (1 << i);
}
}
k = last[k];
}
System.out.println("0");
}
}
static int mask(int i) {
return 1 << i;
}
static int time(int x, int y, int x1, int y1) {
return (x - x1)*(x - x1) + (y - y1)*(y - y1);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
/**
* @author vstepanov on 3/29/2017.
*/
public class Main {
public static void main(String[] args) {
try(Scanner in = new Scanner(System.in)) {
int bx = in.nextInt();
int by = in.nextInt();
int n = in.nextInt();
int[][] xy = new int[n][2];
int[] res = new int[1 << n];
int[] last = new int[1 << n];
for (int i = 0; i < n; i++) {
xy[i] = new int[]{in.nextInt(), in.nextInt()};
}
int[] ds = new int[n];
for (int i = 0; i < ds.length; i++) {
ds[i] = time(xy[i][0], xy[i][1], bx, by);
}
int[][] d = new int[n][n];
for (int i = 0; i < d.length; i++) {
for (int j = 0; j < d.length; j++) {
d[i][j] = time(xy[i][0], xy[i][1], xy[j][0], xy[j][1]);
}
}
Arrays.fill(res, Integer.MAX_VALUE);
res[0] = 0;
for (int i = 0; i < (1 << n); i++) {
for (int j = 0; j < n; j++) {
if ((i & mask(j)) != 0) {
if (res[i - mask(j)] + 2*ds[j] < res[i]) {
res[i] = res[i - mask(j)] + 2*ds[j];
last[i] = i - mask(j);
}
for (int k = j + 1; k < n; k++) {
if ((i & mask(k)) != 0) {
if (res[i - mask(k) - mask(j)] + ds[j] + ds[k] + d[j][k] < res[i]) {
res[i] = res[i - mask(k) - mask(j)] + ds[j] + ds[k] + d[j][k];
last[i] = i - mask(j) - mask(k);
}
}
}
break;
}
}
}
int cur = (1 << n) - 1;
System.out.println(res[cur]);
int k = cur;
while (k != 0) {
System.out.print("0 ");
int diff = k - last[k];
for (int i = 0; i < n && diff != 0; i++) {
if (((diff >> i) & 1) != 0) {
System.out.print((i + 1) + " ");
diff -= (1 << i);
}
}
k = last[k];
}
System.out.println("0");
}
}
static int mask(int i) {
return 1 << i;
}
static int time(int x, int y, int x1, int y1) {
return (x - x1)*(x - x1) + (y - y1)*(y - y1);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,055 | 4,066 |
2,504 |
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.InputMismatchException;
import java.util.List;
public class Q6 {
public static void main(String[] args) {
InputReader s = new InputReader(System.in);
PrintWriter out = new PrintWriter(System.out);
int t = 1;
// t = s.nextInt();
nexttest:
while (t-- > 0) {
int n = s.nextInt();
int a[] = s.nextIntArray(n);
HashMap<Integer, List<Pair>> sets = new HashMap<>();
int pre[] = new int[n + 1];
for (int i = 1; i <= n; i++) {
pre[i] = a[i - 1] + pre[i - 1];
}
for (int i = 1; i <= n; i++) {
for (int j = i; j <= n; j++) {
final Integer key = pre[j] - pre[i - 1];
if (!sets.containsKey(key)) {
sets.put(key, new ArrayList<>());
}
sets.get(key).add(new Pair(i, j));
}
}
// System.out.println(sets);
int ans = 0;
List<Pair> answer = new ArrayList<>();
int[] ansNextPos = new int[1];
boolean[] ansTaken = new boolean[1];
for (List<Pair> intervals : sets.values()) {
Collections.sort(intervals);
int[] nextPos = new int[intervals.size()];
boolean[] taken = new boolean[intervals.size()];
int[] dp = new int[intervals.size()];
dp[intervals.size() - 1] = 1;
taken[intervals.size() - 1] = true;
nextPos[intervals.size() - 1] = -1;
for (int i = intervals.size() - 2; i >= 0; i--) {
dp[i] = dp[i + 1];
taken[i] = false;
nextPos[i] = i + 1;
int ll = i + 1;
int rr = intervals.size();
while (ll < rr) {
int mid = ll + rr;
mid /= 2;
if (intervals.get(mid).x > intervals.get(i).y) {
rr = mid;
} else {
ll = mid + 1;
}
}
if (ll < intervals.size()) {
if (dp[i] < 1 + dp[ll]) {
dp[i] = Math.max(dp[i], 1 + dp[ll]);
taken[i] = true;
nextPos[i] = ll;
}
}
}
if (dp[0] > ans) {
ans = dp[0];
answer = intervals;
ansNextPos = nextPos;
ansTaken = taken;
}
}
out.println(ans);
int cur = 0;
while (cur != -1) {
if (ansTaken[cur]) {
out.println(answer.get(cur));
}
cur = ansNextPos[cur];
}
}
out.close();
}
static class Pair implements Comparable<Pair> {
int x;
int y;
@Override
public String toString() {
return x + " " + y;
}
public Pair(final int x, final int y) {
this.x = x;
this.y = y;
}
@Override
public int compareTo(final Pair o) {
return this.x - o.x;
}
}
static class InputReader {
private final InputStream stream;
private final byte[] buf = new byte[8192];
private int curChar, snumChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int snext() {
if (snumChars == -1) {
throw new InputMismatchException();
}
if (curChar >= snumChars) {
curChar = 0;
try {
snumChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (snumChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int nextInt() {
int c = snext();
while (isSpaceChar(c)) {
c = snext();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = snext();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = snext();
while (isSpaceChar(c)) {
c = snext();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = snext();
}
long res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public int[] nextIntArray(int n) {
int a[] = new int[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt();
}
return a;
}
public String readString() {
int c = snext();
while (isSpaceChar(c)) {
c = snext();
}
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = snext();
} while (!isSpaceChar(c));
return res.toString();
}
public String nextLine() {
int c = snext();
while (isSpaceChar(c)) {
c = snext();
}
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = snext();
} while (!isEndOfLine(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c) {
return c == '\n' || c == '\r' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.InputMismatchException;
import java.util.List;
public class Q6 {
public static void main(String[] args) {
InputReader s = new InputReader(System.in);
PrintWriter out = new PrintWriter(System.out);
int t = 1;
// t = s.nextInt();
nexttest:
while (t-- > 0) {
int n = s.nextInt();
int a[] = s.nextIntArray(n);
HashMap<Integer, List<Pair>> sets = new HashMap<>();
int pre[] = new int[n + 1];
for (int i = 1; i <= n; i++) {
pre[i] = a[i - 1] + pre[i - 1];
}
for (int i = 1; i <= n; i++) {
for (int j = i; j <= n; j++) {
final Integer key = pre[j] - pre[i - 1];
if (!sets.containsKey(key)) {
sets.put(key, new ArrayList<>());
}
sets.get(key).add(new Pair(i, j));
}
}
// System.out.println(sets);
int ans = 0;
List<Pair> answer = new ArrayList<>();
int[] ansNextPos = new int[1];
boolean[] ansTaken = new boolean[1];
for (List<Pair> intervals : sets.values()) {
Collections.sort(intervals);
int[] nextPos = new int[intervals.size()];
boolean[] taken = new boolean[intervals.size()];
int[] dp = new int[intervals.size()];
dp[intervals.size() - 1] = 1;
taken[intervals.size() - 1] = true;
nextPos[intervals.size() - 1] = -1;
for (int i = intervals.size() - 2; i >= 0; i--) {
dp[i] = dp[i + 1];
taken[i] = false;
nextPos[i] = i + 1;
int ll = i + 1;
int rr = intervals.size();
while (ll < rr) {
int mid = ll + rr;
mid /= 2;
if (intervals.get(mid).x > intervals.get(i).y) {
rr = mid;
} else {
ll = mid + 1;
}
}
if (ll < intervals.size()) {
if (dp[i] < 1 + dp[ll]) {
dp[i] = Math.max(dp[i], 1 + dp[ll]);
taken[i] = true;
nextPos[i] = ll;
}
}
}
if (dp[0] > ans) {
ans = dp[0];
answer = intervals;
ansNextPos = nextPos;
ansTaken = taken;
}
}
out.println(ans);
int cur = 0;
while (cur != -1) {
if (ansTaken[cur]) {
out.println(answer.get(cur));
}
cur = ansNextPos[cur];
}
}
out.close();
}
static class Pair implements Comparable<Pair> {
int x;
int y;
@Override
public String toString() {
return x + " " + y;
}
public Pair(final int x, final int y) {
this.x = x;
this.y = y;
}
@Override
public int compareTo(final Pair o) {
return this.x - o.x;
}
}
static class InputReader {
private final InputStream stream;
private final byte[] buf = new byte[8192];
private int curChar, snumChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int snext() {
if (snumChars == -1) {
throw new InputMismatchException();
}
if (curChar >= snumChars) {
curChar = 0;
try {
snumChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (snumChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int nextInt() {
int c = snext();
while (isSpaceChar(c)) {
c = snext();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = snext();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = snext();
while (isSpaceChar(c)) {
c = snext();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = snext();
}
long res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public int[] nextIntArray(int n) {
int a[] = new int[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt();
}
return a;
}
public String readString() {
int c = snext();
while (isSpaceChar(c)) {
c = snext();
}
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = snext();
} while (!isSpaceChar(c));
return res.toString();
}
public String nextLine() {
int c = snext();
while (isSpaceChar(c)) {
c = snext();
}
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = snext();
} while (!isEndOfLine(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c) {
return c == '\n' || c == '\r' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.InputMismatchException;
import java.util.List;
public class Q6 {
public static void main(String[] args) {
InputReader s = new InputReader(System.in);
PrintWriter out = new PrintWriter(System.out);
int t = 1;
// t = s.nextInt();
nexttest:
while (t-- > 0) {
int n = s.nextInt();
int a[] = s.nextIntArray(n);
HashMap<Integer, List<Pair>> sets = new HashMap<>();
int pre[] = new int[n + 1];
for (int i = 1; i <= n; i++) {
pre[i] = a[i - 1] + pre[i - 1];
}
for (int i = 1; i <= n; i++) {
for (int j = i; j <= n; j++) {
final Integer key = pre[j] - pre[i - 1];
if (!sets.containsKey(key)) {
sets.put(key, new ArrayList<>());
}
sets.get(key).add(new Pair(i, j));
}
}
// System.out.println(sets);
int ans = 0;
List<Pair> answer = new ArrayList<>();
int[] ansNextPos = new int[1];
boolean[] ansTaken = new boolean[1];
for (List<Pair> intervals : sets.values()) {
Collections.sort(intervals);
int[] nextPos = new int[intervals.size()];
boolean[] taken = new boolean[intervals.size()];
int[] dp = new int[intervals.size()];
dp[intervals.size() - 1] = 1;
taken[intervals.size() - 1] = true;
nextPos[intervals.size() - 1] = -1;
for (int i = intervals.size() - 2; i >= 0; i--) {
dp[i] = dp[i + 1];
taken[i] = false;
nextPos[i] = i + 1;
int ll = i + 1;
int rr = intervals.size();
while (ll < rr) {
int mid = ll + rr;
mid /= 2;
if (intervals.get(mid).x > intervals.get(i).y) {
rr = mid;
} else {
ll = mid + 1;
}
}
if (ll < intervals.size()) {
if (dp[i] < 1 + dp[ll]) {
dp[i] = Math.max(dp[i], 1 + dp[ll]);
taken[i] = true;
nextPos[i] = ll;
}
}
}
if (dp[0] > ans) {
ans = dp[0];
answer = intervals;
ansNextPos = nextPos;
ansTaken = taken;
}
}
out.println(ans);
int cur = 0;
while (cur != -1) {
if (ansTaken[cur]) {
out.println(answer.get(cur));
}
cur = ansNextPos[cur];
}
}
out.close();
}
static class Pair implements Comparable<Pair> {
int x;
int y;
@Override
public String toString() {
return x + " " + y;
}
public Pair(final int x, final int y) {
this.x = x;
this.y = y;
}
@Override
public int compareTo(final Pair o) {
return this.x - o.x;
}
}
static class InputReader {
private final InputStream stream;
private final byte[] buf = new byte[8192];
private int curChar, snumChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int snext() {
if (snumChars == -1) {
throw new InputMismatchException();
}
if (curChar >= snumChars) {
curChar = 0;
try {
snumChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (snumChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int nextInt() {
int c = snext();
while (isSpaceChar(c)) {
c = snext();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = snext();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = snext();
while (isSpaceChar(c)) {
c = snext();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = snext();
}
long res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public int[] nextIntArray(int n) {
int a[] = new int[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt();
}
return a;
}
public String readString() {
int c = snext();
while (isSpaceChar(c)) {
c = snext();
}
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = snext();
} while (!isSpaceChar(c));
return res.toString();
}
public String nextLine() {
int c = snext();
while (isSpaceChar(c)) {
c = snext();
}
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = snext();
} while (!isEndOfLine(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c) {
return c == '\n' || c == '\r' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,872 | 2,498 |
3,680 |
import java.util.*;
import java.io.*;
public class C {
private static int[] dx = {1, -1, 0, 0};
private static int[] dy = {0, 0, -1, 1};
public static void main(String[] args) throws Exception{
Thread t = new Thread(null, null, "~", Runtime.getRuntime().maxMemory()){
@Override
public void run(){
try {
solve();
} catch(Exception e) {
System.err.println("ERROR");
}
}
};
t.start();
t.join();
}
public static void solve() throws Exception {
Scanner in = new Scanner(new File("input.txt"));
PrintWriter out = new PrintWriter(new File("output.txt"));
int n = in.nextInt();
int m = in.nextInt();
int[][] time = new int[n][m];
for(int i = 0; i < n; ++i) {
Arrays.fill(time[i], Integer.MAX_VALUE);
}
int qq = in.nextInt();
int[] xs = new int[qq];
int[] ys = new int[qq];
for(int i = 0; i < qq; ++i){
xs[i] = in.nextInt() - 1;
ys[i] = in.nextInt() - 1;
}
for(int i = 0; i < n; ++i) {
for(int j = 0; j < m; ++j) {
for(int k = 0; k < qq; ++k) {
int dist = Math.abs(i - xs[k]) + Math.abs(j - ys[k]);
time[i][j] = Math.min(time[i][j], dist);
}
}
}
int max = -1;
int x = -1;
int y = -1;
for(int i = 0; i < n; ++i) {
for(int j = 0; j < m; ++j) if(max < time[i][j]) {
max = time[i][j];
x = i + 1;
y = j + 1;
}
}
out.println(x + " " + y);
out.flush();
out.close();
}
private static class Pair {
int f, s;
int time;
public Pair(int f, int s) {
this.f = f;
this.s = s;
}
public Pair(int f, int s, int time) {
this(f, s);
this.time = time;
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class C {
private static int[] dx = {1, -1, 0, 0};
private static int[] dy = {0, 0, -1, 1};
public static void main(String[] args) throws Exception{
Thread t = new Thread(null, null, "~", Runtime.getRuntime().maxMemory()){
@Override
public void run(){
try {
solve();
} catch(Exception e) {
System.err.println("ERROR");
}
}
};
t.start();
t.join();
}
public static void solve() throws Exception {
Scanner in = new Scanner(new File("input.txt"));
PrintWriter out = new PrintWriter(new File("output.txt"));
int n = in.nextInt();
int m = in.nextInt();
int[][] time = new int[n][m];
for(int i = 0; i < n; ++i) {
Arrays.fill(time[i], Integer.MAX_VALUE);
}
int qq = in.nextInt();
int[] xs = new int[qq];
int[] ys = new int[qq];
for(int i = 0; i < qq; ++i){
xs[i] = in.nextInt() - 1;
ys[i] = in.nextInt() - 1;
}
for(int i = 0; i < n; ++i) {
for(int j = 0; j < m; ++j) {
for(int k = 0; k < qq; ++k) {
int dist = Math.abs(i - xs[k]) + Math.abs(j - ys[k]);
time[i][j] = Math.min(time[i][j], dist);
}
}
}
int max = -1;
int x = -1;
int y = -1;
for(int i = 0; i < n; ++i) {
for(int j = 0; j < m; ++j) if(max < time[i][j]) {
max = time[i][j];
x = i + 1;
y = j + 1;
}
}
out.println(x + " " + y);
out.flush();
out.close();
}
private static class Pair {
int f, s;
int time;
public Pair(int f, int s) {
this.f = f;
this.s = s;
}
public Pair(int f, int s, int time) {
this(f, s);
this.time = time;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class C {
private static int[] dx = {1, -1, 0, 0};
private static int[] dy = {0, 0, -1, 1};
public static void main(String[] args) throws Exception{
Thread t = new Thread(null, null, "~", Runtime.getRuntime().maxMemory()){
@Override
public void run(){
try {
solve();
} catch(Exception e) {
System.err.println("ERROR");
}
}
};
t.start();
t.join();
}
public static void solve() throws Exception {
Scanner in = new Scanner(new File("input.txt"));
PrintWriter out = new PrintWriter(new File("output.txt"));
int n = in.nextInt();
int m = in.nextInt();
int[][] time = new int[n][m];
for(int i = 0; i < n; ++i) {
Arrays.fill(time[i], Integer.MAX_VALUE);
}
int qq = in.nextInt();
int[] xs = new int[qq];
int[] ys = new int[qq];
for(int i = 0; i < qq; ++i){
xs[i] = in.nextInt() - 1;
ys[i] = in.nextInt() - 1;
}
for(int i = 0; i < n; ++i) {
for(int j = 0; j < m; ++j) {
for(int k = 0; k < qq; ++k) {
int dist = Math.abs(i - xs[k]) + Math.abs(j - ys[k]);
time[i][j] = Math.min(time[i][j], dist);
}
}
}
int max = -1;
int x = -1;
int y = -1;
for(int i = 0; i < n; ++i) {
for(int j = 0; j < m; ++j) if(max < time[i][j]) {
max = time[i][j];
x = i + 1;
y = j + 1;
}
}
out.println(x + " " + y);
out.flush();
out.close();
}
private static class Pair {
int f, s;
int time;
public Pair(int f, int s) {
this.f = f;
this.s = s;
}
public Pair(int f, int s, int time) {
this(f, s);
this.time = time;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 894 | 3,672 |
3,907 |
import java.util.*;
public class CompressionAndExpansion {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int T = in.nextInt();
for (int t = 0; t < T; t++) {
int N = in.nextInt();
List<Integer> list = new ArrayList<>();
for (int i = 0; i < N; i++) {
int n = in.nextInt();
if (n == 1) {
list.add(n);
} else {
for (int j = list.size() - 1; j >= 0; j--) {
if (list.get(j) == n - 1) {
list.set(j, n);
break;
}
list.remove(j);
}
}
for (int j = 0; j < list.size(); j++) {
System.out.print(list.get(j) + (j == list.size() - 1 ? "\n" : "."));
}
}
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class CompressionAndExpansion {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int T = in.nextInt();
for (int t = 0; t < T; t++) {
int N = in.nextInt();
List<Integer> list = new ArrayList<>();
for (int i = 0; i < N; i++) {
int n = in.nextInt();
if (n == 1) {
list.add(n);
} else {
for (int j = list.size() - 1; j >= 0; j--) {
if (list.get(j) == n - 1) {
list.set(j, n);
break;
}
list.remove(j);
}
}
for (int j = 0; j < list.size(); j++) {
System.out.print(list.get(j) + (j == list.size() - 1 ? "\n" : "."));
}
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class CompressionAndExpansion {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int T = in.nextInt();
for (int t = 0; t < T; t++) {
int N = in.nextInt();
List<Integer> list = new ArrayList<>();
for (int i = 0; i < N; i++) {
int n = in.nextInt();
if (n == 1) {
list.add(n);
} else {
for (int j = list.size() - 1; j >= 0; j--) {
if (list.get(j) == n - 1) {
list.set(j, n);
break;
}
list.remove(j);
}
}
for (int j = 0; j < list.size(); j++) {
System.out.print(list.get(j) + (j == list.size() - 1 ? "\n" : "."));
}
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 548 | 3,897 |
2,363 |
import java.io.BufferedReader;
import java.io.Closeable;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.math.BigInteger;
import java.util.Arrays;
import java.util.HashMap;
import java.util.LinkedList;
import java.util.Scanner;
import java.util.StringTokenizer;
public class D {
public static class BIT {
int[] dat;
public BIT(int n){
dat = new int[n + 1];
}
public void add(int k, int a){ // k : 0-indexed
for(int i = k + 1; i < dat.length; i += i & -i){
dat[i] += a;
}
}
public int sum(int s, int t){ // [s, t)
if(s > 0) return sum(0, t) - sum(0, s);
int ret = 0;
for(int i = t; i > 0; i -= i & -i) {
ret += dat[i];
}
return ret;
}
}
public static void main(String[] args) {
try (final Scanner sc = new Scanner(System.in)) {
final int N = sc.nextInt();
int[] array = new int[N];
for(int i = 0; i < N; i++){
array[i] = sc.nextInt() - 1;
}
long inv = 0;
BIT bit = new BIT(N);
for(int i = 0; i < N; i++){
inv += bit.sum(array[i], N);
bit.add(array[i], 1);
}
//System.out.println(inv);
int mod2 = (int)(inv % 2);
final int M = sc.nextInt();
for(int i = 0; i < M; i++){
final int l = sc.nextInt() - 1;
final int r = sc.nextInt() - 1;
final long size = (r - l) + 1;
if(size > 1){
//System.out.println(size + " " + ((size * (size - 1) / 2)));
if((size * (size - 1) / 2) % 2 == 1){
mod2 = 1 - mod2;
}
}
System.out.println((mod2 == 0) ? "even" : "odd");
}
}
}
public static class Scanner implements Closeable {
private BufferedReader br;
private StringTokenizer tok;
public Scanner(InputStream is) {
br = new BufferedReader(new InputStreamReader(is));
}
private void getLine() {
try {
while (!hasNext()) {
tok = new StringTokenizer(br.readLine());
}
} catch (IOException e) { /* ignore */
}
}
private boolean hasNext() {
return tok != null && tok.hasMoreTokens();
}
public String next() {
getLine();
return tok.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public void close() {
try {
br.close();
} catch (IOException e) { /* ignore */
}
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.Closeable;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.math.BigInteger;
import java.util.Arrays;
import java.util.HashMap;
import java.util.LinkedList;
import java.util.Scanner;
import java.util.StringTokenizer;
public class D {
public static class BIT {
int[] dat;
public BIT(int n){
dat = new int[n + 1];
}
public void add(int k, int a){ // k : 0-indexed
for(int i = k + 1; i < dat.length; i += i & -i){
dat[i] += a;
}
}
public int sum(int s, int t){ // [s, t)
if(s > 0) return sum(0, t) - sum(0, s);
int ret = 0;
for(int i = t; i > 0; i -= i & -i) {
ret += dat[i];
}
return ret;
}
}
public static void main(String[] args) {
try (final Scanner sc = new Scanner(System.in)) {
final int N = sc.nextInt();
int[] array = new int[N];
for(int i = 0; i < N; i++){
array[i] = sc.nextInt() - 1;
}
long inv = 0;
BIT bit = new BIT(N);
for(int i = 0; i < N; i++){
inv += bit.sum(array[i], N);
bit.add(array[i], 1);
}
//System.out.println(inv);
int mod2 = (int)(inv % 2);
final int M = sc.nextInt();
for(int i = 0; i < M; i++){
final int l = sc.nextInt() - 1;
final int r = sc.nextInt() - 1;
final long size = (r - l) + 1;
if(size > 1){
//System.out.println(size + " " + ((size * (size - 1) / 2)));
if((size * (size - 1) / 2) % 2 == 1){
mod2 = 1 - mod2;
}
}
System.out.println((mod2 == 0) ? "even" : "odd");
}
}
}
public static class Scanner implements Closeable {
private BufferedReader br;
private StringTokenizer tok;
public Scanner(InputStream is) {
br = new BufferedReader(new InputStreamReader(is));
}
private void getLine() {
try {
while (!hasNext()) {
tok = new StringTokenizer(br.readLine());
}
} catch (IOException e) { /* ignore */
}
}
private boolean hasNext() {
return tok != null && tok.hasMoreTokens();
}
public String next() {
getLine();
return tok.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public void close() {
try {
br.close();
} catch (IOException e) { /* ignore */
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.Closeable;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.math.BigInteger;
import java.util.Arrays;
import java.util.HashMap;
import java.util.LinkedList;
import java.util.Scanner;
import java.util.StringTokenizer;
public class D {
public static class BIT {
int[] dat;
public BIT(int n){
dat = new int[n + 1];
}
public void add(int k, int a){ // k : 0-indexed
for(int i = k + 1; i < dat.length; i += i & -i){
dat[i] += a;
}
}
public int sum(int s, int t){ // [s, t)
if(s > 0) return sum(0, t) - sum(0, s);
int ret = 0;
for(int i = t; i > 0; i -= i & -i) {
ret += dat[i];
}
return ret;
}
}
public static void main(String[] args) {
try (final Scanner sc = new Scanner(System.in)) {
final int N = sc.nextInt();
int[] array = new int[N];
for(int i = 0; i < N; i++){
array[i] = sc.nextInt() - 1;
}
long inv = 0;
BIT bit = new BIT(N);
for(int i = 0; i < N; i++){
inv += bit.sum(array[i], N);
bit.add(array[i], 1);
}
//System.out.println(inv);
int mod2 = (int)(inv % 2);
final int M = sc.nextInt();
for(int i = 0; i < M; i++){
final int l = sc.nextInt() - 1;
final int r = sc.nextInt() - 1;
final long size = (r - l) + 1;
if(size > 1){
//System.out.println(size + " " + ((size * (size - 1) / 2)));
if((size * (size - 1) / 2) % 2 == 1){
mod2 = 1 - mod2;
}
}
System.out.println((mod2 == 0) ? "even" : "odd");
}
}
}
public static class Scanner implements Closeable {
private BufferedReader br;
private StringTokenizer tok;
public Scanner(InputStream is) {
br = new BufferedReader(new InputStreamReader(is));
}
private void getLine() {
try {
while (!hasNext()) {
tok = new StringTokenizer(br.readLine());
}
} catch (IOException e) { /* ignore */
}
}
private boolean hasNext() {
return tok != null && tok.hasMoreTokens();
}
public String next() {
getLine();
return tok.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public void close() {
try {
br.close();
} catch (IOException e) { /* ignore */
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,075 | 2,358 |
1,844 |
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] wide = new int[n], sta = new int[n];
HashMap<Integer, Integer> hm = new HashMap<Integer, Integer>();
for (int i = 0; i < n; i++) {
wide[i] = sc.nextInt();
hm.put(wide[i], i + 1);
}
Util.sort(wide);
sc.nextLine();
String s = sc.nextLine();
int tp = 0, pos = 0;
StringBuilder out = new StringBuilder();
for (int i = 0; i < s.length(); i++) {
int t;
if (s.charAt(i) == '0') {
t = wide[pos++];
sta[tp++] = t;
} else t = sta[--tp];
out.append(hm.get(t) + " ");
}
System.out.println(out.toString());
sc.close();
}
public static class Util {
public static <T extends Comparable<T> > void merge_sort(T[] a) {
Object[] aux = new Object[a.length];
merge_sort0(a, aux, 0, a.length);
}
public static <T extends Comparable<T> > void merge_sort(T[] a, int l, int r) {
Object[] aux = new Object[a.length];
merge_sort0(a, aux, l, r);
}
@SuppressWarnings("unchecked")
private static <T extends Comparable<T> > void merge_sort0(T[] a, Object[] temp, int l, int r) {
if (l + 1 == r) return;
int mid = (l + r) >> 1;
merge_sort0(a, temp, l, mid);
merge_sort0(a, temp, mid, r);
int x = l, y = mid, c = l;
while (x < mid || y < r) {
if (y == r || (x < mid && a[x].compareTo(a[y]) <= 0)) temp[c++] = a[x++];
else temp[c++] = a[y++];
}
for (int i = l; i < r; i++) a[i] = (T)temp[i];
}
static final Random RAN = new Random();
public static <T extends Comparable<T> > void quick_sort(T[] a) {
quick_sort0(a, 0, a.length);
}
public static <T extends Comparable<T> > void quick_sort(T[] a, int l, int r) {
quick_sort0(a, l, r);
}
private static <T extends Comparable<T> > void quick_sort0(T[] a, int l, int r) {
if (l + 1 >= r) return;
int p = l + RAN.nextInt(r - l);
T t = a[p]; a[p] = a[l]; a[l] = t;
int x = l, y = r - 1;
while (x < y) {
while (x < y && a[y].compareTo(t) > 0) --y;
while (x < y && a[x].compareTo(t) < 0) ++x;
if (x < y) {
T b = a[x]; a[x] = a[y]; a[y] = b;
++x; --y;
}
}
quick_sort0(a, l, y + 1);
quick_sort0(a, x, r);
}
static final int BOUND = 8;
public static void bucket_sort(int[] a) {
bucket_sort(a, 0, a.length);
}
public static void bucket_sort(int[] a, int l, int r) {
int[] cnt = new int[1 << BOUND], b = new int[r - l + 1];
int y = 0;
for (int i = l; i < r; i++) ++cnt[a[i] & (1 << BOUND) - 1];
while (y < Integer.SIZE) {
for (int i = 1; i < 1 << BOUND; i++) cnt[i] += cnt[i - 1];
for (int i = r - 1; i >= l; i--) b[--cnt[a[i] >> y & (1 << BOUND) - 1]] = a[i];
y += BOUND;
Arrays.fill(cnt, 0);
for (int i = l; i < r; i++) {
a[i] = b[i - l];
++cnt[a[i] >> y & (1 << BOUND) - 1];
}
}
}
public static void bucket_sort(long[] a) {
bucket_sort(a, 0, a.length);
}
public static void bucket_sort(long[] a, int l, int r) {
int[] cnt = new int[1 << BOUND];
long[] b = new long[r - l + 1];
int y = 0;
while (y < Long.SIZE) {
Arrays.fill(cnt, 0);
for (int i = l; i < r; i++) ++cnt[(int) (a[i] >> y & (1 << BOUND) - 1)];
for (int i = 1; i < 1 << BOUND; i++) cnt[i] += cnt[i - 1];
for (int i = r - 1; i >= l; i--) b[--cnt[(int) (a[i] >> y & (1 << BOUND) - 1)]] = a[i];
for (int i = l; i < r; i++) a[i] = b[i - l];
y += BOUND;
}
}
public static void sort(int[] a) {
if (a.length <= 1 << BOUND) {
Integer[] b = new Integer[a.length];
for (int i = 0; i < a.length; i++) b[i] = a[i];
quick_sort(b);
for (int i = 0; i < a.length; i++) a[i] = b[i];
} else bucket_sort(a);
}
public static void sort(long[] a) {
if (a.length <= 1 << BOUND) {
Long[] b = new Long[a.length];
for (int i = 0; i < a.length; i++) b[i] = a[i];
quick_sort(b);
for (int i = 0; i < a.length; i++) a[i] = b[i];
} else bucket_sort(a);
}
public static <T extends Comparable<T> > void sort(T[] a) {
quick_sort(a);
}
public static void shuffle(int[] a) {
Random ran = new Random();
for (int i = 0; i < a.length; i++) {
int p = ran.nextInt(i + 1);
int q = a[p]; a[p] = a[i]; a[i] = q;
}
}
public static void shuffle(long[] a) {
Random ran = new Random();
for (int i = 0; i < a.length; i++) {
int p = ran.nextInt(i + 1);
long q = a[p]; a[p] = a[i]; a[i] = q;
}
}
public static <T> void shuffle(T[] a) {
Random ran = new Random();
for (int i = 0; i < a.length; i++) {
int p = ran.nextInt(i + 1);
T q = a[p]; a[p] = a[i]; a[i] = q;
}
}
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] wide = new int[n], sta = new int[n];
HashMap<Integer, Integer> hm = new HashMap<Integer, Integer>();
for (int i = 0; i < n; i++) {
wide[i] = sc.nextInt();
hm.put(wide[i], i + 1);
}
Util.sort(wide);
sc.nextLine();
String s = sc.nextLine();
int tp = 0, pos = 0;
StringBuilder out = new StringBuilder();
for (int i = 0; i < s.length(); i++) {
int t;
if (s.charAt(i) == '0') {
t = wide[pos++];
sta[tp++] = t;
} else t = sta[--tp];
out.append(hm.get(t) + " ");
}
System.out.println(out.toString());
sc.close();
}
public static class Util {
public static <T extends Comparable<T> > void merge_sort(T[] a) {
Object[] aux = new Object[a.length];
merge_sort0(a, aux, 0, a.length);
}
public static <T extends Comparable<T> > void merge_sort(T[] a, int l, int r) {
Object[] aux = new Object[a.length];
merge_sort0(a, aux, l, r);
}
@SuppressWarnings("unchecked")
private static <T extends Comparable<T> > void merge_sort0(T[] a, Object[] temp, int l, int r) {
if (l + 1 == r) return;
int mid = (l + r) >> 1;
merge_sort0(a, temp, l, mid);
merge_sort0(a, temp, mid, r);
int x = l, y = mid, c = l;
while (x < mid || y < r) {
if (y == r || (x < mid && a[x].compareTo(a[y]) <= 0)) temp[c++] = a[x++];
else temp[c++] = a[y++];
}
for (int i = l; i < r; i++) a[i] = (T)temp[i];
}
static final Random RAN = new Random();
public static <T extends Comparable<T> > void quick_sort(T[] a) {
quick_sort0(a, 0, a.length);
}
public static <T extends Comparable<T> > void quick_sort(T[] a, int l, int r) {
quick_sort0(a, l, r);
}
private static <T extends Comparable<T> > void quick_sort0(T[] a, int l, int r) {
if (l + 1 >= r) return;
int p = l + RAN.nextInt(r - l);
T t = a[p]; a[p] = a[l]; a[l] = t;
int x = l, y = r - 1;
while (x < y) {
while (x < y && a[y].compareTo(t) > 0) --y;
while (x < y && a[x].compareTo(t) < 0) ++x;
if (x < y) {
T b = a[x]; a[x] = a[y]; a[y] = b;
++x; --y;
}
}
quick_sort0(a, l, y + 1);
quick_sort0(a, x, r);
}
static final int BOUND = 8;
public static void bucket_sort(int[] a) {
bucket_sort(a, 0, a.length);
}
public static void bucket_sort(int[] a, int l, int r) {
int[] cnt = new int[1 << BOUND], b = new int[r - l + 1];
int y = 0;
for (int i = l; i < r; i++) ++cnt[a[i] & (1 << BOUND) - 1];
while (y < Integer.SIZE) {
for (int i = 1; i < 1 << BOUND; i++) cnt[i] += cnt[i - 1];
for (int i = r - 1; i >= l; i--) b[--cnt[a[i] >> y & (1 << BOUND) - 1]] = a[i];
y += BOUND;
Arrays.fill(cnt, 0);
for (int i = l; i < r; i++) {
a[i] = b[i - l];
++cnt[a[i] >> y & (1 << BOUND) - 1];
}
}
}
public static void bucket_sort(long[] a) {
bucket_sort(a, 0, a.length);
}
public static void bucket_sort(long[] a, int l, int r) {
int[] cnt = new int[1 << BOUND];
long[] b = new long[r - l + 1];
int y = 0;
while (y < Long.SIZE) {
Arrays.fill(cnt, 0);
for (int i = l; i < r; i++) ++cnt[(int) (a[i] >> y & (1 << BOUND) - 1)];
for (int i = 1; i < 1 << BOUND; i++) cnt[i] += cnt[i - 1];
for (int i = r - 1; i >= l; i--) b[--cnt[(int) (a[i] >> y & (1 << BOUND) - 1)]] = a[i];
for (int i = l; i < r; i++) a[i] = b[i - l];
y += BOUND;
}
}
public static void sort(int[] a) {
if (a.length <= 1 << BOUND) {
Integer[] b = new Integer[a.length];
for (int i = 0; i < a.length; i++) b[i] = a[i];
quick_sort(b);
for (int i = 0; i < a.length; i++) a[i] = b[i];
} else bucket_sort(a);
}
public static void sort(long[] a) {
if (a.length <= 1 << BOUND) {
Long[] b = new Long[a.length];
for (int i = 0; i < a.length; i++) b[i] = a[i];
quick_sort(b);
for (int i = 0; i < a.length; i++) a[i] = b[i];
} else bucket_sort(a);
}
public static <T extends Comparable<T> > void sort(T[] a) {
quick_sort(a);
}
public static void shuffle(int[] a) {
Random ran = new Random();
for (int i = 0; i < a.length; i++) {
int p = ran.nextInt(i + 1);
int q = a[p]; a[p] = a[i]; a[i] = q;
}
}
public static void shuffle(long[] a) {
Random ran = new Random();
for (int i = 0; i < a.length; i++) {
int p = ran.nextInt(i + 1);
long q = a[p]; a[p] = a[i]; a[i] = q;
}
}
public static <T> void shuffle(T[] a) {
Random ran = new Random();
for (int i = 0; i < a.length; i++) {
int p = ran.nextInt(i + 1);
T q = a[p]; a[p] = a[i]; a[i] = q;
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] wide = new int[n], sta = new int[n];
HashMap<Integer, Integer> hm = new HashMap<Integer, Integer>();
for (int i = 0; i < n; i++) {
wide[i] = sc.nextInt();
hm.put(wide[i], i + 1);
}
Util.sort(wide);
sc.nextLine();
String s = sc.nextLine();
int tp = 0, pos = 0;
StringBuilder out = new StringBuilder();
for (int i = 0; i < s.length(); i++) {
int t;
if (s.charAt(i) == '0') {
t = wide[pos++];
sta[tp++] = t;
} else t = sta[--tp];
out.append(hm.get(t) + " ");
}
System.out.println(out.toString());
sc.close();
}
public static class Util {
public static <T extends Comparable<T> > void merge_sort(T[] a) {
Object[] aux = new Object[a.length];
merge_sort0(a, aux, 0, a.length);
}
public static <T extends Comparable<T> > void merge_sort(T[] a, int l, int r) {
Object[] aux = new Object[a.length];
merge_sort0(a, aux, l, r);
}
@SuppressWarnings("unchecked")
private static <T extends Comparable<T> > void merge_sort0(T[] a, Object[] temp, int l, int r) {
if (l + 1 == r) return;
int mid = (l + r) >> 1;
merge_sort0(a, temp, l, mid);
merge_sort0(a, temp, mid, r);
int x = l, y = mid, c = l;
while (x < mid || y < r) {
if (y == r || (x < mid && a[x].compareTo(a[y]) <= 0)) temp[c++] = a[x++];
else temp[c++] = a[y++];
}
for (int i = l; i < r; i++) a[i] = (T)temp[i];
}
static final Random RAN = new Random();
public static <T extends Comparable<T> > void quick_sort(T[] a) {
quick_sort0(a, 0, a.length);
}
public static <T extends Comparable<T> > void quick_sort(T[] a, int l, int r) {
quick_sort0(a, l, r);
}
private static <T extends Comparable<T> > void quick_sort0(T[] a, int l, int r) {
if (l + 1 >= r) return;
int p = l + RAN.nextInt(r - l);
T t = a[p]; a[p] = a[l]; a[l] = t;
int x = l, y = r - 1;
while (x < y) {
while (x < y && a[y].compareTo(t) > 0) --y;
while (x < y && a[x].compareTo(t) < 0) ++x;
if (x < y) {
T b = a[x]; a[x] = a[y]; a[y] = b;
++x; --y;
}
}
quick_sort0(a, l, y + 1);
quick_sort0(a, x, r);
}
static final int BOUND = 8;
public static void bucket_sort(int[] a) {
bucket_sort(a, 0, a.length);
}
public static void bucket_sort(int[] a, int l, int r) {
int[] cnt = new int[1 << BOUND], b = new int[r - l + 1];
int y = 0;
for (int i = l; i < r; i++) ++cnt[a[i] & (1 << BOUND) - 1];
while (y < Integer.SIZE) {
for (int i = 1; i < 1 << BOUND; i++) cnt[i] += cnt[i - 1];
for (int i = r - 1; i >= l; i--) b[--cnt[a[i] >> y & (1 << BOUND) - 1]] = a[i];
y += BOUND;
Arrays.fill(cnt, 0);
for (int i = l; i < r; i++) {
a[i] = b[i - l];
++cnt[a[i] >> y & (1 << BOUND) - 1];
}
}
}
public static void bucket_sort(long[] a) {
bucket_sort(a, 0, a.length);
}
public static void bucket_sort(long[] a, int l, int r) {
int[] cnt = new int[1 << BOUND];
long[] b = new long[r - l + 1];
int y = 0;
while (y < Long.SIZE) {
Arrays.fill(cnt, 0);
for (int i = l; i < r; i++) ++cnt[(int) (a[i] >> y & (1 << BOUND) - 1)];
for (int i = 1; i < 1 << BOUND; i++) cnt[i] += cnt[i - 1];
for (int i = r - 1; i >= l; i--) b[--cnt[(int) (a[i] >> y & (1 << BOUND) - 1)]] = a[i];
for (int i = l; i < r; i++) a[i] = b[i - l];
y += BOUND;
}
}
public static void sort(int[] a) {
if (a.length <= 1 << BOUND) {
Integer[] b = new Integer[a.length];
for (int i = 0; i < a.length; i++) b[i] = a[i];
quick_sort(b);
for (int i = 0; i < a.length; i++) a[i] = b[i];
} else bucket_sort(a);
}
public static void sort(long[] a) {
if (a.length <= 1 << BOUND) {
Long[] b = new Long[a.length];
for (int i = 0; i < a.length; i++) b[i] = a[i];
quick_sort(b);
for (int i = 0; i < a.length; i++) a[i] = b[i];
} else bucket_sort(a);
}
public static <T extends Comparable<T> > void sort(T[] a) {
quick_sort(a);
}
public static void shuffle(int[] a) {
Random ran = new Random();
for (int i = 0; i < a.length; i++) {
int p = ran.nextInt(i + 1);
int q = a[p]; a[p] = a[i]; a[i] = q;
}
}
public static void shuffle(long[] a) {
Random ran = new Random();
for (int i = 0; i < a.length; i++) {
int p = ran.nextInt(i + 1);
long q = a[p]; a[p] = a[i]; a[i] = q;
}
}
public static <T> void shuffle(T[] a) {
Random ran = new Random();
for (int i = 0; i < a.length; i++) {
int p = ran.nextInt(i + 1);
T q = a[p]; a[p] = a[i]; a[i] = q;
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,080 | 1,840 |
989 |
import java.io.*;
import java.math.*;
import java.text.*;
import java.util.*;
import java.util.regex.*;
public class Main {
public static void main(String[] args) throws IOException {
InputStreamReader r = new InputStreamReader(System.in);
BufferedReader f = new BufferedReader(r);
Scanner sc = new Scanner(System.in);
long n=sc.nextLong();
long m=sc.nextLong();
long sum=0;
if(n==1){
}else {
for (long i = 1; i <= n; i++) {
sum += i;
if (sum - (n - i) == m) {
sum = n - i;
break;
}
}
}
System.out.println(sum);
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.math.*;
import java.text.*;
import java.util.*;
import java.util.regex.*;
public class Main {
public static void main(String[] args) throws IOException {
InputStreamReader r = new InputStreamReader(System.in);
BufferedReader f = new BufferedReader(r);
Scanner sc = new Scanner(System.in);
long n=sc.nextLong();
long m=sc.nextLong();
long sum=0;
if(n==1){
}else {
for (long i = 1; i <= n; i++) {
sum += i;
if (sum - (n - i) == m) {
sum = n - i;
break;
}
}
}
System.out.println(sum);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.math.*;
import java.text.*;
import java.util.*;
import java.util.regex.*;
public class Main {
public static void main(String[] args) throws IOException {
InputStreamReader r = new InputStreamReader(System.in);
BufferedReader f = new BufferedReader(r);
Scanner sc = new Scanner(System.in);
long n=sc.nextLong();
long m=sc.nextLong();
long sum=0;
if(n==1){
}else {
for (long i = 1; i <= n; i++) {
sum += i;
if (sum - (n - i) == m) {
sum = n - i;
break;
}
}
}
System.out.println(sum);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 487 | 988 |
223 |
import java.util.*;
import java.io.*;
import java.lang.*;
import java.math.*;
public class B {
public static void main(String[] args) throws Exception {
BufferedReader bf = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
int n = Integer.parseInt(bf.readLine());
StringTokenizer st = new StringTokenizer(bf.readLine());
Integer[] a = new Integer[n]; for(int i=0; i<n; i++) a[i] = Integer.parseInt(st.nextToken());
Arrays.sort(a);
int[] b = new int[n];
for(int i=0; i<n; i++) b[i] = a[i].intValue();
boolean diff = false;
boolean diff2 = false;
Set<Integer> vals = new HashSet<Integer>();
vals.add(b[0]);
int valval = 0;
for(int i=1; i<n; i++) {
vals.add(b[i]);
if(b[i] == b[i-1]) {
if(!diff) {
diff = true;
valval = b[i];
}
else diff2 = true;
}
}
long sum = 0;
for(int i : b) sum += i;
sum -= 1L*n*(n-1)/2;
if(diff && !diff2) {
if(!vals.contains((valval-1)) && (valval > 0)) {
if(sum%2 == 0) out.println("cslnb"); else out.println("sjfnb");
}
else out.println("cslnb");
}
else if(diff2) out.println("cslnb");
else if(sum%2 == 0) out.println("cslnb"); else out.println("sjfnb");
// int n = Integer.parseInt(st.nextToken());
out.close(); System.exit(0);
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.lang.*;
import java.math.*;
public class B {
public static void main(String[] args) throws Exception {
BufferedReader bf = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
int n = Integer.parseInt(bf.readLine());
StringTokenizer st = new StringTokenizer(bf.readLine());
Integer[] a = new Integer[n]; for(int i=0; i<n; i++) a[i] = Integer.parseInt(st.nextToken());
Arrays.sort(a);
int[] b = new int[n];
for(int i=0; i<n; i++) b[i] = a[i].intValue();
boolean diff = false;
boolean diff2 = false;
Set<Integer> vals = new HashSet<Integer>();
vals.add(b[0]);
int valval = 0;
for(int i=1; i<n; i++) {
vals.add(b[i]);
if(b[i] == b[i-1]) {
if(!diff) {
diff = true;
valval = b[i];
}
else diff2 = true;
}
}
long sum = 0;
for(int i : b) sum += i;
sum -= 1L*n*(n-1)/2;
if(diff && !diff2) {
if(!vals.contains((valval-1)) && (valval > 0)) {
if(sum%2 == 0) out.println("cslnb"); else out.println("sjfnb");
}
else out.println("cslnb");
}
else if(diff2) out.println("cslnb");
else if(sum%2 == 0) out.println("cslnb"); else out.println("sjfnb");
// int n = Integer.parseInt(st.nextToken());
out.close(); System.exit(0);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.lang.*;
import java.math.*;
public class B {
public static void main(String[] args) throws Exception {
BufferedReader bf = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
int n = Integer.parseInt(bf.readLine());
StringTokenizer st = new StringTokenizer(bf.readLine());
Integer[] a = new Integer[n]; for(int i=0; i<n; i++) a[i] = Integer.parseInt(st.nextToken());
Arrays.sort(a);
int[] b = new int[n];
for(int i=0; i<n; i++) b[i] = a[i].intValue();
boolean diff = false;
boolean diff2 = false;
Set<Integer> vals = new HashSet<Integer>();
vals.add(b[0]);
int valval = 0;
for(int i=1; i<n; i++) {
vals.add(b[i]);
if(b[i] == b[i-1]) {
if(!diff) {
diff = true;
valval = b[i];
}
else diff2 = true;
}
}
long sum = 0;
for(int i : b) sum += i;
sum -= 1L*n*(n-1)/2;
if(diff && !diff2) {
if(!vals.contains((valval-1)) && (valval > 0)) {
if(sum%2 == 0) out.println("cslnb"); else out.println("sjfnb");
}
else out.println("cslnb");
}
else if(diff2) out.println("cslnb");
else if(sum%2 == 0) out.println("cslnb"); else out.println("sjfnb");
// int n = Integer.parseInt(st.nextToken());
out.close(); System.exit(0);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 757 | 223 |
317 |
import java.io.*;
import java.util.*;
public class Main {
static InputReader in = new InputReader(System.in);
static PrintWriter out = new PrintWriter(System.out);
static long oo = 1000000000000L;
public static void main(String[] args) throws IOException {
int n = in.nextInt();
int q = in.nextInt();
ArrayDeque<Integer> dq = new ArrayDeque<>();
int max = -1;
for(int i = 0; i < n; ++i) {
int x = in.nextInt();
dq.add(x);
max = Math.max(max, x);
}
ArrayList<Pair> ans = new ArrayList<>();
while(dq.peekFirst() != max) {
int a = dq.pollFirst();
int b = dq.pollFirst();
ans.add(new Pair(a, b));
if(a > b) {
dq.addFirst(a);
dq.addLast(b);
}
else {
dq.addFirst(b);
dq.addLast(a);
}
}
ArrayList<Integer> a = new ArrayList<>();
dq.pollFirst();
for(int x : dq)
a.add(x);
while(q --> 0) {
long m = in.nextLong() - 1;
if(m < ans.size()) {
System.out.println(ans.get((int)m).first + " " + ans.get((int)m).second);
}
else {
int idx = (int)((m - ans.size()) % a.size());
System.out.println(max + " " + a.get(idx));
}
}
out.close();
}
static long lcm(long a, long b) {
return a * b / gcd(a, b);
}
static boolean nextPermutation(int[] a) {
for(int i = a.length - 2; i >= 0; --i) {
if(a[i] < a[i+1]) {
for(int j = a.length - 1; ; --j) {
if(a[i] < a[j]) {
int t = a[i];
a[i] = a[j];
a[j] = t;
for(i++, j = a.length - 1; i < j; ++i, --j) {
t = a[i];
a[i] = a[j];
a[j] = t;
}
return true;
}
}
}
}
return false;
}
static void shuffle(int[] a) {
Random r = new Random();
for(int i = a.length - 1; i > 0; --i) {
int si = r.nextInt(i);
int t = a[si];
a[si] = a[i];
a[i] = t;
}
}
static void shuffle(long[] a) {
Random r = new Random();
for(int i = a.length - 1; i > 0; --i) {
int si = r.nextInt(i);
long t = a[si];
a[si] = a[i];
a[i] = t;
}
}
static int lower_bound(int[] a, int n, int k) {
int s = 0;
int e = n;
int m;
while (e - s > 0) {
m = (s + e) / 2;
if (a[m] < k)
s = m + 1;
else
e = m;
}
return e;
}
static int lower_bound(long[] a, int n, long k) {
int s = 0;
int e = n;
int m;
while (e - s > 0) {
m = (s + e) / 2;
if (a[m] < k)
s = m + 1;
else
e = m;
}
return e;
}
static int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a % b);
}
static long gcd(long a, long b) {
return b == 0 ? a : gcd(b, a % b);
}
static class Pair implements Comparable<Pair> {
int first, second;
public Pair(int first, int second) {
super();
this.first = first;
this.second = second;
}
@Override
public int compareTo(Pair o) {
return this.first != o.first ? this.first - o.first : this.second - o.second;
}
@Override
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + first;
result = prime * result + second;
return result;
}
@Override
public boolean equals(Object obj) {
if (this == obj)
return true;
if (obj == null)
return false;
if (getClass() != obj.getClass())
return false;
Pair other = (Pair) obj;
if (first != other.first)
return false;
if (second != other.second)
return false;
return true;
}
}
}
class InputReader {
private final InputStream stream;
private final byte[] buf = new byte[8192];
private int curChar, snumChars;
public InputReader(InputStream st) {
this.stream = st;
}
public int read() {
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars) {
curChar = 0;
try {
snumChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public int[] nextIntArray(int n) {
int a[] = new int[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt();
}
return a;
}
public String readString() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public String nextLine() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndOfLine(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c) {
return c == '\n' || c == '\r' || c == -1;
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
static InputReader in = new InputReader(System.in);
static PrintWriter out = new PrintWriter(System.out);
static long oo = 1000000000000L;
public static void main(String[] args) throws IOException {
int n = in.nextInt();
int q = in.nextInt();
ArrayDeque<Integer> dq = new ArrayDeque<>();
int max = -1;
for(int i = 0; i < n; ++i) {
int x = in.nextInt();
dq.add(x);
max = Math.max(max, x);
}
ArrayList<Pair> ans = new ArrayList<>();
while(dq.peekFirst() != max) {
int a = dq.pollFirst();
int b = dq.pollFirst();
ans.add(new Pair(a, b));
if(a > b) {
dq.addFirst(a);
dq.addLast(b);
}
else {
dq.addFirst(b);
dq.addLast(a);
}
}
ArrayList<Integer> a = new ArrayList<>();
dq.pollFirst();
for(int x : dq)
a.add(x);
while(q --> 0) {
long m = in.nextLong() - 1;
if(m < ans.size()) {
System.out.println(ans.get((int)m).first + " " + ans.get((int)m).second);
}
else {
int idx = (int)((m - ans.size()) % a.size());
System.out.println(max + " " + a.get(idx));
}
}
out.close();
}
static long lcm(long a, long b) {
return a * b / gcd(a, b);
}
static boolean nextPermutation(int[] a) {
for(int i = a.length - 2; i >= 0; --i) {
if(a[i] < a[i+1]) {
for(int j = a.length - 1; ; --j) {
if(a[i] < a[j]) {
int t = a[i];
a[i] = a[j];
a[j] = t;
for(i++, j = a.length - 1; i < j; ++i, --j) {
t = a[i];
a[i] = a[j];
a[j] = t;
}
return true;
}
}
}
}
return false;
}
static void shuffle(int[] a) {
Random r = new Random();
for(int i = a.length - 1; i > 0; --i) {
int si = r.nextInt(i);
int t = a[si];
a[si] = a[i];
a[i] = t;
}
}
static void shuffle(long[] a) {
Random r = new Random();
for(int i = a.length - 1; i > 0; --i) {
int si = r.nextInt(i);
long t = a[si];
a[si] = a[i];
a[i] = t;
}
}
static int lower_bound(int[] a, int n, int k) {
int s = 0;
int e = n;
int m;
while (e - s > 0) {
m = (s + e) / 2;
if (a[m] < k)
s = m + 1;
else
e = m;
}
return e;
}
static int lower_bound(long[] a, int n, long k) {
int s = 0;
int e = n;
int m;
while (e - s > 0) {
m = (s + e) / 2;
if (a[m] < k)
s = m + 1;
else
e = m;
}
return e;
}
static int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a % b);
}
static long gcd(long a, long b) {
return b == 0 ? a : gcd(b, a % b);
}
static class Pair implements Comparable<Pair> {
int first, second;
public Pair(int first, int second) {
super();
this.first = first;
this.second = second;
}
@Override
public int compareTo(Pair o) {
return this.first != o.first ? this.first - o.first : this.second - o.second;
}
@Override
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + first;
result = prime * result + second;
return result;
}
@Override
public boolean equals(Object obj) {
if (this == obj)
return true;
if (obj == null)
return false;
if (getClass() != obj.getClass())
return false;
Pair other = (Pair) obj;
if (first != other.first)
return false;
if (second != other.second)
return false;
return true;
}
}
}
class InputReader {
private final InputStream stream;
private final byte[] buf = new byte[8192];
private int curChar, snumChars;
public InputReader(InputStream st) {
this.stream = st;
}
public int read() {
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars) {
curChar = 0;
try {
snumChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public int[] nextIntArray(int n) {
int a[] = new int[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt();
}
return a;
}
public String readString() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public String nextLine() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndOfLine(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c) {
return c == '\n' || c == '\r' || c == -1;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
static InputReader in = new InputReader(System.in);
static PrintWriter out = new PrintWriter(System.out);
static long oo = 1000000000000L;
public static void main(String[] args) throws IOException {
int n = in.nextInt();
int q = in.nextInt();
ArrayDeque<Integer> dq = new ArrayDeque<>();
int max = -1;
for(int i = 0; i < n; ++i) {
int x = in.nextInt();
dq.add(x);
max = Math.max(max, x);
}
ArrayList<Pair> ans = new ArrayList<>();
while(dq.peekFirst() != max) {
int a = dq.pollFirst();
int b = dq.pollFirst();
ans.add(new Pair(a, b));
if(a > b) {
dq.addFirst(a);
dq.addLast(b);
}
else {
dq.addFirst(b);
dq.addLast(a);
}
}
ArrayList<Integer> a = new ArrayList<>();
dq.pollFirst();
for(int x : dq)
a.add(x);
while(q --> 0) {
long m = in.nextLong() - 1;
if(m < ans.size()) {
System.out.println(ans.get((int)m).first + " " + ans.get((int)m).second);
}
else {
int idx = (int)((m - ans.size()) % a.size());
System.out.println(max + " " + a.get(idx));
}
}
out.close();
}
static long lcm(long a, long b) {
return a * b / gcd(a, b);
}
static boolean nextPermutation(int[] a) {
for(int i = a.length - 2; i >= 0; --i) {
if(a[i] < a[i+1]) {
for(int j = a.length - 1; ; --j) {
if(a[i] < a[j]) {
int t = a[i];
a[i] = a[j];
a[j] = t;
for(i++, j = a.length - 1; i < j; ++i, --j) {
t = a[i];
a[i] = a[j];
a[j] = t;
}
return true;
}
}
}
}
return false;
}
static void shuffle(int[] a) {
Random r = new Random();
for(int i = a.length - 1; i > 0; --i) {
int si = r.nextInt(i);
int t = a[si];
a[si] = a[i];
a[i] = t;
}
}
static void shuffle(long[] a) {
Random r = new Random();
for(int i = a.length - 1; i > 0; --i) {
int si = r.nextInt(i);
long t = a[si];
a[si] = a[i];
a[i] = t;
}
}
static int lower_bound(int[] a, int n, int k) {
int s = 0;
int e = n;
int m;
while (e - s > 0) {
m = (s + e) / 2;
if (a[m] < k)
s = m + 1;
else
e = m;
}
return e;
}
static int lower_bound(long[] a, int n, long k) {
int s = 0;
int e = n;
int m;
while (e - s > 0) {
m = (s + e) / 2;
if (a[m] < k)
s = m + 1;
else
e = m;
}
return e;
}
static int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a % b);
}
static long gcd(long a, long b) {
return b == 0 ? a : gcd(b, a % b);
}
static class Pair implements Comparable<Pair> {
int first, second;
public Pair(int first, int second) {
super();
this.first = first;
this.second = second;
}
@Override
public int compareTo(Pair o) {
return this.first != o.first ? this.first - o.first : this.second - o.second;
}
@Override
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + first;
result = prime * result + second;
return result;
}
@Override
public boolean equals(Object obj) {
if (this == obj)
return true;
if (obj == null)
return false;
if (getClass() != obj.getClass())
return false;
Pair other = (Pair) obj;
if (first != other.first)
return false;
if (second != other.second)
return false;
return true;
}
}
}
class InputReader {
private final InputStream stream;
private final byte[] buf = new byte[8192];
private int curChar, snumChars;
public InputReader(InputStream st) {
this.stream = st;
}
public int read() {
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars) {
curChar = 0;
try {
snumChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public int[] nextIntArray(int n) {
int a[] = new int[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt();
}
return a;
}
public String readString() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public String nextLine() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndOfLine(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c) {
return c == '\n' || c == '\r' || c == -1;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,133 | 317 |
4,312 |
import java.util.*;
import java.io.*;
import static java.lang.Math.*;
public class B{
public static void main(String[] args) throws Exception{
new B().run();
}
double ans = 0;
int n, candy, A, half;
void run() throws Exception{
Scanner sc = new Scanner(System.in);
//BufferedReader sc = new BufferedReader(new InputStreamReader(System.in));
// only sc.readLine() is available
n = sc.nextInt();
candy = sc.nextInt();
A = sc.nextInt();
half = n/2;
//int[] level = new int[n];
//int[] loyal = new int[n];
S[] ss = new S[n];
for(int i = 0; i < n; i++){
ss[i] = new S(sc.nextInt(), sc.nextInt());
}
Arrays.sort(ss);
int need = 0;
for(int i = n-1; i >= n-half-1; i--)
need += (100-ss[i].loyal)/10;
if(need <= candy){
System.out.println(1.0);
return;
}
tra(ss, 0, candy);
/*
while(candy > 0){
int ind = 0;
for(int i = 1; i < n; i++)
if(ss[i].loyal < 100 && ss[ind].level < ss[i].level)
ind = i;
ss[ind].loyal += 10;
ss[ind].loyal = min(100, ss[ind].loyal);
candy--;
}
*/
System.out.printf("%.10f\n", ans);
}
void tra(S[] ss, int pos, int rest){
if(pos == n){
double sum = 0;
int lim = 1<<n;
for(int m = 0; m < lim; m++){
int app = Integer.bitCount(m);
double p = 1;
int B = 0;
for(int i = 0; i < n; i++){
if(((m>>i) & 1) == 1){
p = p * ss[i].loyal / 100;
}else{
p = p * (100 - ss[i].loyal) / 100;
B += ss[i].level;
}
}
if(app > half)sum += p;
else{
sum += p * A / (A+B);
}
}
ans = max(ans, sum);
return;
}
for(int i = 0; i <= rest; i++){
int old = ss[pos].loyal;
int nl = ss[pos].loyal + i * 10;
if(nl > 100)break;
ss[pos].loyal = nl;
tra(ss, pos+1, rest-i);
ss[pos].loyal = old;
}
}
}
class S implements Comparable<S>{
int level, loyal;
S(int a, int b){
level = a;
loyal = b;
}
public int compareTo(S s){
return this.loyal - s.loyal;
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import static java.lang.Math.*;
public class B{
public static void main(String[] args) throws Exception{
new B().run();
}
double ans = 0;
int n, candy, A, half;
void run() throws Exception{
Scanner sc = new Scanner(System.in);
//BufferedReader sc = new BufferedReader(new InputStreamReader(System.in));
// only sc.readLine() is available
n = sc.nextInt();
candy = sc.nextInt();
A = sc.nextInt();
half = n/2;
//int[] level = new int[n];
//int[] loyal = new int[n];
S[] ss = new S[n];
for(int i = 0; i < n; i++){
ss[i] = new S(sc.nextInt(), sc.nextInt());
}
Arrays.sort(ss);
int need = 0;
for(int i = n-1; i >= n-half-1; i--)
need += (100-ss[i].loyal)/10;
if(need <= candy){
System.out.println(1.0);
return;
}
tra(ss, 0, candy);
/*
while(candy > 0){
int ind = 0;
for(int i = 1; i < n; i++)
if(ss[i].loyal < 100 && ss[ind].level < ss[i].level)
ind = i;
ss[ind].loyal += 10;
ss[ind].loyal = min(100, ss[ind].loyal);
candy--;
}
*/
System.out.printf("%.10f\n", ans);
}
void tra(S[] ss, int pos, int rest){
if(pos == n){
double sum = 0;
int lim = 1<<n;
for(int m = 0; m < lim; m++){
int app = Integer.bitCount(m);
double p = 1;
int B = 0;
for(int i = 0; i < n; i++){
if(((m>>i) & 1) == 1){
p = p * ss[i].loyal / 100;
}else{
p = p * (100 - ss[i].loyal) / 100;
B += ss[i].level;
}
}
if(app > half)sum += p;
else{
sum += p * A / (A+B);
}
}
ans = max(ans, sum);
return;
}
for(int i = 0; i <= rest; i++){
int old = ss[pos].loyal;
int nl = ss[pos].loyal + i * 10;
if(nl > 100)break;
ss[pos].loyal = nl;
tra(ss, pos+1, rest-i);
ss[pos].loyal = old;
}
}
}
class S implements Comparable<S>{
int level, loyal;
S(int a, int b){
level = a;
loyal = b;
}
public int compareTo(S s){
return this.loyal - s.loyal;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import static java.lang.Math.*;
public class B{
public static void main(String[] args) throws Exception{
new B().run();
}
double ans = 0;
int n, candy, A, half;
void run() throws Exception{
Scanner sc = new Scanner(System.in);
//BufferedReader sc = new BufferedReader(new InputStreamReader(System.in));
// only sc.readLine() is available
n = sc.nextInt();
candy = sc.nextInt();
A = sc.nextInt();
half = n/2;
//int[] level = new int[n];
//int[] loyal = new int[n];
S[] ss = new S[n];
for(int i = 0; i < n; i++){
ss[i] = new S(sc.nextInt(), sc.nextInt());
}
Arrays.sort(ss);
int need = 0;
for(int i = n-1; i >= n-half-1; i--)
need += (100-ss[i].loyal)/10;
if(need <= candy){
System.out.println(1.0);
return;
}
tra(ss, 0, candy);
/*
while(candy > 0){
int ind = 0;
for(int i = 1; i < n; i++)
if(ss[i].loyal < 100 && ss[ind].level < ss[i].level)
ind = i;
ss[ind].loyal += 10;
ss[ind].loyal = min(100, ss[ind].loyal);
candy--;
}
*/
System.out.printf("%.10f\n", ans);
}
void tra(S[] ss, int pos, int rest){
if(pos == n){
double sum = 0;
int lim = 1<<n;
for(int m = 0; m < lim; m++){
int app = Integer.bitCount(m);
double p = 1;
int B = 0;
for(int i = 0; i < n; i++){
if(((m>>i) & 1) == 1){
p = p * ss[i].loyal / 100;
}else{
p = p * (100 - ss[i].loyal) / 100;
B += ss[i].level;
}
}
if(app > half)sum += p;
else{
sum += p * A / (A+B);
}
}
ans = max(ans, sum);
return;
}
for(int i = 0; i <= rest; i++){
int old = ss[pos].loyal;
int nl = ss[pos].loyal + i * 10;
if(nl > 100)break;
ss[pos].loyal = nl;
tra(ss, pos+1, rest-i);
ss[pos].loyal = old;
}
}
}
class S implements Comparable<S>{
int level, loyal;
S(int a, int b){
level = a;
loyal = b;
}
public int compareTo(S s){
return this.loyal - s.loyal;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,028 | 4,301 |
2,456 |
//package com.example.programming;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
public class Test {
static class Pair {
int f,s;
public Pair(int x, int y) {f = x; s = y;}
}
public static void main(String[] args) throws Exception{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(br.readLine());
String[] s = br.readLine().split(" ");
int[] arr = new int[n];
for(int i = 0; i<n; i++) arr[i] = Integer.parseInt(s[i]);
HashMap<Integer, ArrayList<Pair>> map = new HashMap<>();
for(int i = 0; i<n; i++) {
int sum = 0;
for(int j = i; j>=0; j--) {
sum += arr[j];
ArrayList<Pair> list = map.get(sum);
if(list == null) {
list = new ArrayList<>();
map.put(sum, list);
}
list.add(new Pair(j, i));
}
}
Iterator it = map.entrySet().iterator();
ArrayList<Pair> ans = new ArrayList<>();
for(;it.hasNext();){
Map.Entry<Integer, ArrayList<Pair>> entry = (Map.Entry<Integer, ArrayList<Pair>>)it.next();
ArrayList<Pair> list = entry.getValue();
ArrayList<Pair> pre = new ArrayList<>();
int r = -1;
for(Pair p : list) {
if(p.f > r) {
pre.add(p);
r = p.s;
}
}
if(ans.size()<pre.size()) ans = pre;
}
StringBuilder sb = new StringBuilder();
sb.append(ans.size()).append('\n');
for(Pair p : ans) {
sb.append(p.f+1).append(' ').append(p.s+1).append('\n');
}
System.out.print(sb);
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
//package com.example.programming;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
public class Test {
static class Pair {
int f,s;
public Pair(int x, int y) {f = x; s = y;}
}
public static void main(String[] args) throws Exception{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(br.readLine());
String[] s = br.readLine().split(" ");
int[] arr = new int[n];
for(int i = 0; i<n; i++) arr[i] = Integer.parseInt(s[i]);
HashMap<Integer, ArrayList<Pair>> map = new HashMap<>();
for(int i = 0; i<n; i++) {
int sum = 0;
for(int j = i; j>=0; j--) {
sum += arr[j];
ArrayList<Pair> list = map.get(sum);
if(list == null) {
list = new ArrayList<>();
map.put(sum, list);
}
list.add(new Pair(j, i));
}
}
Iterator it = map.entrySet().iterator();
ArrayList<Pair> ans = new ArrayList<>();
for(;it.hasNext();){
Map.Entry<Integer, ArrayList<Pair>> entry = (Map.Entry<Integer, ArrayList<Pair>>)it.next();
ArrayList<Pair> list = entry.getValue();
ArrayList<Pair> pre = new ArrayList<>();
int r = -1;
for(Pair p : list) {
if(p.f > r) {
pre.add(p);
r = p.s;
}
}
if(ans.size()<pre.size()) ans = pre;
}
StringBuilder sb = new StringBuilder();
sb.append(ans.size()).append('\n');
for(Pair p : ans) {
sb.append(p.f+1).append(' ').append(p.s+1).append('\n');
}
System.out.print(sb);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
//package com.example.programming;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
public class Test {
static class Pair {
int f,s;
public Pair(int x, int y) {f = x; s = y;}
}
public static void main(String[] args) throws Exception{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(br.readLine());
String[] s = br.readLine().split(" ");
int[] arr = new int[n];
for(int i = 0; i<n; i++) arr[i] = Integer.parseInt(s[i]);
HashMap<Integer, ArrayList<Pair>> map = new HashMap<>();
for(int i = 0; i<n; i++) {
int sum = 0;
for(int j = i; j>=0; j--) {
sum += arr[j];
ArrayList<Pair> list = map.get(sum);
if(list == null) {
list = new ArrayList<>();
map.put(sum, list);
}
list.add(new Pair(j, i));
}
}
Iterator it = map.entrySet().iterator();
ArrayList<Pair> ans = new ArrayList<>();
for(;it.hasNext();){
Map.Entry<Integer, ArrayList<Pair>> entry = (Map.Entry<Integer, ArrayList<Pair>>)it.next();
ArrayList<Pair> list = entry.getValue();
ArrayList<Pair> pre = new ArrayList<>();
int r = -1;
for(Pair p : list) {
if(p.f > r) {
pre.add(p);
r = p.s;
}
}
if(ans.size()<pre.size()) ans = pre;
}
StringBuilder sb = new StringBuilder();
sb.append(ans.size()).append('\n');
for(Pair p : ans) {
sb.append(p.f+1).append(' ').append(p.s+1).append('\n');
}
System.out.print(sb);
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 752 | 2,451 |
1,274 |
import java.io.*;
import java.util.*;
import java.math.*;
import java.lang.*;
import static java.lang.Math.*;
public class Main implements Runnable {
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
private BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars==-1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
}
catch (IOException e) {
throw new InputMismatchException();
}
if(numChars <= 0)
return -1;
}
return buf[curChar++];
}
public String nextLine() {
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
public int nextInt() {
int c = read();
while(isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if(c<'0'||c>'9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public double nextDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
}
while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next() {
return readString();
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
public static void main(String args[]) throws Exception {
new Thread(null, new Main(),"Main",1<<26).start();
}
long fast_pow(long a, long b) {
if(b == 0)
return 1L;
long val = fast_pow(a, b / 2);
if(b % 2 == 0)
return val * val % mod;
else
return val * val % mod * a % mod;
}
long mod = (long)1e9 + 7;
public void run() {
InputReader sc = new InputReader(System.in);
PrintWriter w = new PrintWriter(System.out);
long x = sc.nextLong();
long k = sc.nextLong();
if(x == 0) {
w.print("0");
w.close();
return;
}
x = x % mod;
long pkp1 = fast_pow(2, k + 1L);
long pk = fast_pow(2, k);
long sub = (pk - 1 + mod) % mod * pk % mod;
long add = x * pkp1 % mod * pk % mod;
long num = (add - sub + mod) % mod;
long deninv = fast_pow(pk, mod - 2);
long ans = num * deninv % mod;
w.print(ans);
w.close();
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.*;
import java.lang.*;
import static java.lang.Math.*;
public class Main implements Runnable {
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
private BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars==-1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
}
catch (IOException e) {
throw new InputMismatchException();
}
if(numChars <= 0)
return -1;
}
return buf[curChar++];
}
public String nextLine() {
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
public int nextInt() {
int c = read();
while(isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if(c<'0'||c>'9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public double nextDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
}
while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next() {
return readString();
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
public static void main(String args[]) throws Exception {
new Thread(null, new Main(),"Main",1<<26).start();
}
long fast_pow(long a, long b) {
if(b == 0)
return 1L;
long val = fast_pow(a, b / 2);
if(b % 2 == 0)
return val * val % mod;
else
return val * val % mod * a % mod;
}
long mod = (long)1e9 + 7;
public void run() {
InputReader sc = new InputReader(System.in);
PrintWriter w = new PrintWriter(System.out);
long x = sc.nextLong();
long k = sc.nextLong();
if(x == 0) {
w.print("0");
w.close();
return;
}
x = x % mod;
long pkp1 = fast_pow(2, k + 1L);
long pk = fast_pow(2, k);
long sub = (pk - 1 + mod) % mod * pk % mod;
long add = x * pkp1 % mod * pk % mod;
long num = (add - sub + mod) % mod;
long deninv = fast_pow(pk, mod - 2);
long ans = num * deninv % mod;
w.print(ans);
w.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.*;
import java.lang.*;
import static java.lang.Math.*;
public class Main implements Runnable {
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
private BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars==-1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
}
catch (IOException e) {
throw new InputMismatchException();
}
if(numChars <= 0)
return -1;
}
return buf[curChar++];
}
public String nextLine() {
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
public int nextInt() {
int c = read();
while(isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if(c<'0'||c>'9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public double nextDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
}
while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next() {
return readString();
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
public static void main(String args[]) throws Exception {
new Thread(null, new Main(),"Main",1<<26).start();
}
long fast_pow(long a, long b) {
if(b == 0)
return 1L;
long val = fast_pow(a, b / 2);
if(b % 2 == 0)
return val * val % mod;
else
return val * val % mod * a % mod;
}
long mod = (long)1e9 + 7;
public void run() {
InputReader sc = new InputReader(System.in);
PrintWriter w = new PrintWriter(System.out);
long x = sc.nextLong();
long k = sc.nextLong();
if(x == 0) {
w.print("0");
w.close();
return;
}
x = x % mod;
long pkp1 = fast_pow(2, k + 1L);
long pk = fast_pow(2, k);
long sub = (pk - 1 + mod) % mod * pk % mod;
long add = x * pkp1 % mod * pk % mod;
long num = (add - sub + mod) % mod;
long deninv = fast_pow(pk, mod - 2);
long ans = num * deninv % mod;
w.print(ans);
w.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,545 | 1,272 |
2,491 |
/*
* To change this license header, choose License Headers in Project Properties.
* To change this template file, choose Tools | Templates
* and open the template in the editor.
*/
//package Round547;
import java.io.DataInputStream;
import java.io.FileInputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.PriorityQueue;
import java.util.Set;
/**
*
* @author Hemant Dhanuka
*/
public class F1 {
static class Reader
{
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Reader()
{
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Reader(String file_name) throws IOException
{
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException
{
byte[] buf = new byte[64]; // line length
int cnt = 0, c;
while ((c = read()) != -1)
{
if (c == '\n')
break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException
{
int ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do
{
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long nextLong() throws IOException
{
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException
{
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (c == '.')
{
while ((c = read()) >= '0' && c <= '9')
{
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException
{
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException
{
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException
{
if (din == null)
return;
din.close();
}
}
public static void main(String[] args) throws IOException {
// Scanner s=new Scanner(System.in);
Reader s=new Reader();
int n=s.nextInt();
int a[]=new int[n];
for(int i=0;i<n;i++){
a[i]=s.nextInt();
}
Map<Long,PriorityQueue<Node>> map=new HashMap();
for(int i=0;i<n;i++){
long sum=0;
for(int j=i;j<n;j++){
sum=sum+a[j];
PriorityQueue<Node> pq=map.get(sum);
if(pq==null){
pq=new PriorityQueue();
map.put(sum, pq);
}
pq.add(new Node(i,j));
}
}
Set<Long> keys=map.keySet();
Iterator<Long> itr=keys.iterator();
int max=0;
int solbackDp[]=null;
Node solA[]=new Node[0];
while(itr.hasNext()){
Long sum=itr.next();
PriorityQueue<Node> pq1=map.get(sum);
//Node rangelist[]=new Node[pq1.size()+1];
ArrayList<Node> rangelist=new ArrayList<>();
rangelist.add(new Node(-1, -1));
//int count=1;
//rangelist[0]=new Node(-1,-1);
Node last=rangelist.get(0);
while(!pq1.isEmpty()){
Node n1=pq1.poll();
if(n1.l!=last.l){
rangelist.add(n1);
last=n1;
}
}
int backTrack[]=new int[rangelist.size()];
int dp[]=new int[rangelist.size()];
Arrays.fill(dp, -1);
int ans=fun(0,dp,rangelist,backTrack);
if(ans>max){
max=ans;
solA=rangelist.toArray(solA);
solbackDp=backTrack;
}
}
System.out.println(max);
int pos=0;
while(solbackDp[pos]!=-1){
pos=solbackDp[pos];
System.out.println((solA[pos].l+1)+" "+(solA[pos].r+1));
}
}
static int fun(int pos, int[] dp, ArrayList<Node> rangeList, int[] bactTrack){
if(pos==rangeList.size()-1){
bactTrack[pos]=-1;
return 0;
}
if(dp[pos]!=-1){
return dp[pos];
}
int i=pos+1;
int maxAns=0;
int nextPos=-1;
for(;i<=rangeList.size()-1;i++){
if(rangeList.get(i).l>rangeList.get(pos).r){
int tempAns=1+fun(i, dp,rangeList, bactTrack);
if(tempAns>maxAns){
maxAns=tempAns;
nextPos=i;
}
}
}
dp[pos]=maxAns;
bactTrack[pos]=nextPos;
return maxAns;
}
static class Node implements Comparable<Node>{
int l;
int r;
public Node(int l, int r) {
this.l = l;
this.r = r;
}
@Override
public int compareTo(Node o2) {
if(this.l!=o2.l){
return this.l-o2.l;
} else{
return this.r-o2.r;
}
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
/*
* To change this license header, choose License Headers in Project Properties.
* To change this template file, choose Tools | Templates
* and open the template in the editor.
*/
//package Round547;
import java.io.DataInputStream;
import java.io.FileInputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.PriorityQueue;
import java.util.Set;
/**
*
* @author Hemant Dhanuka
*/
public class F1 {
static class Reader
{
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Reader()
{
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Reader(String file_name) throws IOException
{
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException
{
byte[] buf = new byte[64]; // line length
int cnt = 0, c;
while ((c = read()) != -1)
{
if (c == '\n')
break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException
{
int ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do
{
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long nextLong() throws IOException
{
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException
{
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (c == '.')
{
while ((c = read()) >= '0' && c <= '9')
{
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException
{
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException
{
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException
{
if (din == null)
return;
din.close();
}
}
public static void main(String[] args) throws IOException {
// Scanner s=new Scanner(System.in);
Reader s=new Reader();
int n=s.nextInt();
int a[]=new int[n];
for(int i=0;i<n;i++){
a[i]=s.nextInt();
}
Map<Long,PriorityQueue<Node>> map=new HashMap();
for(int i=0;i<n;i++){
long sum=0;
for(int j=i;j<n;j++){
sum=sum+a[j];
PriorityQueue<Node> pq=map.get(sum);
if(pq==null){
pq=new PriorityQueue();
map.put(sum, pq);
}
pq.add(new Node(i,j));
}
}
Set<Long> keys=map.keySet();
Iterator<Long> itr=keys.iterator();
int max=0;
int solbackDp[]=null;
Node solA[]=new Node[0];
while(itr.hasNext()){
Long sum=itr.next();
PriorityQueue<Node> pq1=map.get(sum);
//Node rangelist[]=new Node[pq1.size()+1];
ArrayList<Node> rangelist=new ArrayList<>();
rangelist.add(new Node(-1, -1));
//int count=1;
//rangelist[0]=new Node(-1,-1);
Node last=rangelist.get(0);
while(!pq1.isEmpty()){
Node n1=pq1.poll();
if(n1.l!=last.l){
rangelist.add(n1);
last=n1;
}
}
int backTrack[]=new int[rangelist.size()];
int dp[]=new int[rangelist.size()];
Arrays.fill(dp, -1);
int ans=fun(0,dp,rangelist,backTrack);
if(ans>max){
max=ans;
solA=rangelist.toArray(solA);
solbackDp=backTrack;
}
}
System.out.println(max);
int pos=0;
while(solbackDp[pos]!=-1){
pos=solbackDp[pos];
System.out.println((solA[pos].l+1)+" "+(solA[pos].r+1));
}
}
static int fun(int pos, int[] dp, ArrayList<Node> rangeList, int[] bactTrack){
if(pos==rangeList.size()-1){
bactTrack[pos]=-1;
return 0;
}
if(dp[pos]!=-1){
return dp[pos];
}
int i=pos+1;
int maxAns=0;
int nextPos=-1;
for(;i<=rangeList.size()-1;i++){
if(rangeList.get(i).l>rangeList.get(pos).r){
int tempAns=1+fun(i, dp,rangeList, bactTrack);
if(tempAns>maxAns){
maxAns=tempAns;
nextPos=i;
}
}
}
dp[pos]=maxAns;
bactTrack[pos]=nextPos;
return maxAns;
}
static class Node implements Comparable<Node>{
int l;
int r;
public Node(int l, int r) {
this.l = l;
this.r = r;
}
@Override
public int compareTo(Node o2) {
if(this.l!=o2.l){
return this.l-o2.l;
} else{
return this.r-o2.r;
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
/*
* To change this license header, choose License Headers in Project Properties.
* To change this template file, choose Tools | Templates
* and open the template in the editor.
*/
//package Round547;
import java.io.DataInputStream;
import java.io.FileInputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.PriorityQueue;
import java.util.Set;
/**
*
* @author Hemant Dhanuka
*/
public class F1 {
static class Reader
{
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Reader()
{
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Reader(String file_name) throws IOException
{
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException
{
byte[] buf = new byte[64]; // line length
int cnt = 0, c;
while ((c = read()) != -1)
{
if (c == '\n')
break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException
{
int ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do
{
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long nextLong() throws IOException
{
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException
{
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (c == '.')
{
while ((c = read()) >= '0' && c <= '9')
{
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException
{
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException
{
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException
{
if (din == null)
return;
din.close();
}
}
public static void main(String[] args) throws IOException {
// Scanner s=new Scanner(System.in);
Reader s=new Reader();
int n=s.nextInt();
int a[]=new int[n];
for(int i=0;i<n;i++){
a[i]=s.nextInt();
}
Map<Long,PriorityQueue<Node>> map=new HashMap();
for(int i=0;i<n;i++){
long sum=0;
for(int j=i;j<n;j++){
sum=sum+a[j];
PriorityQueue<Node> pq=map.get(sum);
if(pq==null){
pq=new PriorityQueue();
map.put(sum, pq);
}
pq.add(new Node(i,j));
}
}
Set<Long> keys=map.keySet();
Iterator<Long> itr=keys.iterator();
int max=0;
int solbackDp[]=null;
Node solA[]=new Node[0];
while(itr.hasNext()){
Long sum=itr.next();
PriorityQueue<Node> pq1=map.get(sum);
//Node rangelist[]=new Node[pq1.size()+1];
ArrayList<Node> rangelist=new ArrayList<>();
rangelist.add(new Node(-1, -1));
//int count=1;
//rangelist[0]=new Node(-1,-1);
Node last=rangelist.get(0);
while(!pq1.isEmpty()){
Node n1=pq1.poll();
if(n1.l!=last.l){
rangelist.add(n1);
last=n1;
}
}
int backTrack[]=new int[rangelist.size()];
int dp[]=new int[rangelist.size()];
Arrays.fill(dp, -1);
int ans=fun(0,dp,rangelist,backTrack);
if(ans>max){
max=ans;
solA=rangelist.toArray(solA);
solbackDp=backTrack;
}
}
System.out.println(max);
int pos=0;
while(solbackDp[pos]!=-1){
pos=solbackDp[pos];
System.out.println((solA[pos].l+1)+" "+(solA[pos].r+1));
}
}
static int fun(int pos, int[] dp, ArrayList<Node> rangeList, int[] bactTrack){
if(pos==rangeList.size()-1){
bactTrack[pos]=-1;
return 0;
}
if(dp[pos]!=-1){
return dp[pos];
}
int i=pos+1;
int maxAns=0;
int nextPos=-1;
for(;i<=rangeList.size()-1;i++){
if(rangeList.get(i).l>rangeList.get(pos).r){
int tempAns=1+fun(i, dp,rangeList, bactTrack);
if(tempAns>maxAns){
maxAns=tempAns;
nextPos=i;
}
}
}
dp[pos]=maxAns;
bactTrack[pos]=nextPos;
return maxAns;
}
static class Node implements Comparable<Node>{
int l;
int r;
public Node(int l, int r) {
this.l = l;
this.r = r;
}
@Override
public int compareTo(Node o2) {
if(this.l!=o2.l){
return this.l-o2.l;
} else{
return this.r-o2.r;
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,993 | 2,486 |
2,083 |
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.AbstractList;
import java.io.Writer;
import java.util.List;
import java.io.IOException;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.math.BigInteger;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author Egor Kulikov ([email protected])
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int size = in.readInt();
int[] array = IOUtils.readIntArray(in, size);
Arrays.sort(array);
if (array[size - 1] == 1)
array[size - 1] = 2;
else
array[size - 1] = 1;
Arrays.sort(array);
out.printLine(Array.wrap(array).toArray());
}
}
class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public static boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(outputStream);
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object...objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0)
writer.print(' ');
writer.print(objects[i]);
}
}
public void printLine(Object...objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
class IOUtils {
public static int[] readIntArray(InputReader in, int size) {
int[] array = new int[size];
for (int i = 0; i < size; i++)
array[i] = in.readInt();
return array;
}
}
abstract class Array<T> extends AbstractList<T> {
public static List<Integer> wrap(int...array) {
return new IntArray(array);
}
protected static class IntArray extends Array<Integer> {
protected final int[] array;
protected IntArray(int[] array) {
this.array = array;
}
public int size() {
return array.length;
}
public Integer get(int index) {
return array[index];
}
public Integer set(int index, Integer value) {
int result = array[index];
array[index] = value;
return result;
}
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.AbstractList;
import java.io.Writer;
import java.util.List;
import java.io.IOException;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.math.BigInteger;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author Egor Kulikov ([email protected])
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int size = in.readInt();
int[] array = IOUtils.readIntArray(in, size);
Arrays.sort(array);
if (array[size - 1] == 1)
array[size - 1] = 2;
else
array[size - 1] = 1;
Arrays.sort(array);
out.printLine(Array.wrap(array).toArray());
}
}
class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public static boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(outputStream);
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object...objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0)
writer.print(' ');
writer.print(objects[i]);
}
}
public void printLine(Object...objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
class IOUtils {
public static int[] readIntArray(InputReader in, int size) {
int[] array = new int[size];
for (int i = 0; i < size; i++)
array[i] = in.readInt();
return array;
}
}
abstract class Array<T> extends AbstractList<T> {
public static List<Integer> wrap(int...array) {
return new IntArray(array);
}
protected static class IntArray extends Array<Integer> {
protected final int[] array;
protected IntArray(int[] array) {
this.array = array;
}
public int size() {
return array.length;
}
public Integer get(int index) {
return array[index];
}
public Integer set(int index, Integer value) {
int result = array[index];
array[index] = value;
return result;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.AbstractList;
import java.io.Writer;
import java.util.List;
import java.io.IOException;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.math.BigInteger;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author Egor Kulikov ([email protected])
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int size = in.readInt();
int[] array = IOUtils.readIntArray(in, size);
Arrays.sort(array);
if (array[size - 1] == 1)
array[size - 1] = 2;
else
array[size - 1] = 1;
Arrays.sort(array);
out.printLine(Array.wrap(array).toArray());
}
}
class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public static boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(outputStream);
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object...objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0)
writer.print(' ');
writer.print(objects[i]);
}
}
public void printLine(Object...objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
class IOUtils {
public static int[] readIntArray(InputReader in, int size) {
int[] array = new int[size];
for (int i = 0; i < size; i++)
array[i] = in.readInt();
return array;
}
}
abstract class Array<T> extends AbstractList<T> {
public static List<Integer> wrap(int...array) {
return new IntArray(array);
}
protected static class IntArray extends Array<Integer> {
protected final int[] array;
protected IntArray(int[] array) {
this.array = array;
}
public int size() {
return array.length;
}
public Integer get(int index) {
return array[index];
}
public Integer set(int index, Integer value) {
int result = array[index];
array[index] = value;
return result;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,222 | 2,079 |
4,145 |
import java.util.*;
import java.io.*;
public class Main {
static final int MAXN = 24;
int[] x = new int[MAXN];
int[] y = new int[MAXN];
int[][] dist = new int[MAXN][MAXN];
int[] single = new int[MAXN];
int sqr(int x) { return x * x; }
void run(int nT) {
int xs = cin.nextInt();
int ys = cin.nextInt();
int n = cin.nextInt();
for (int i = 0; i < n; ++i) {
x[i] = cin.nextInt();
y[i] = cin.nextInt();
}
for (int i = 0; i < n; ++i) {
for (int j = i + 1; j < n; ++j) {
dist[i][j] = sqr(x[i] - xs) + sqr(y[i] - ys)
+ sqr(x[i] - x[j]) + sqr(y[i] - y[j]) + sqr(x[j] - xs) + sqr(y[j] - ys);
}
}
for (int i = 0; i < n; ++i) {
single[i] = (sqr(x[i] - xs) + sqr(y[i] - ys)) * 2;
}
int[] dp = new int[1 << n];
int[] pre = new int[1 << n];
int tot = 1 << n;
for (int s = 1; s < tot; ++s) {
int i;
for (i = 0; i < n; ++i) {
if ((s & (1 << i)) != 0) break;
}
dp[s] = dp[s^(1<<i)] + single[i];
pre[s] = i + 1;
for (int j = i + 1; j < n; ++j) {
if ((s & (1 << j)) != 0) {
int cur = dp[s^(1 << i) ^(1<<j)] + dist[i][j];
if (cur < dp[s]) {
dp[s] = cur;
pre[s] = (i + 1) * 100 + (j + 1);
}
}
}
}
out.println(dp[tot - 1]);
int now = tot - 1;
out.print("0");
while (now > 0) {
int what = pre[now];
int px = what % 100 - 1;
int py = what / 100 - 1;
if (px >= 0) {
out.print(" ");
out.print(px + 1);
now ^= 1 << px;
}
if (py >= 0) {
out.print(" ");
out.print(py + 1);
now ^= 1 << py;
}
out.print(" ");
out.print("0");
}
out.println("");
}
public static void main(String[] argv) {
Main solved = new Main();
int T = 1;
// T = solved.cin.nextInt();
for (int nT = 1; nT <= T; ++nT) {
solved.run(nT);
}
solved.out.close();
}
InputReader cin = new InputReader(System.in);
PrintWriter out = new PrintWriter(System.out);
}
class InputReader {
BufferedReader reader;
StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Main {
static final int MAXN = 24;
int[] x = new int[MAXN];
int[] y = new int[MAXN];
int[][] dist = new int[MAXN][MAXN];
int[] single = new int[MAXN];
int sqr(int x) { return x * x; }
void run(int nT) {
int xs = cin.nextInt();
int ys = cin.nextInt();
int n = cin.nextInt();
for (int i = 0; i < n; ++i) {
x[i] = cin.nextInt();
y[i] = cin.nextInt();
}
for (int i = 0; i < n; ++i) {
for (int j = i + 1; j < n; ++j) {
dist[i][j] = sqr(x[i] - xs) + sqr(y[i] - ys)
+ sqr(x[i] - x[j]) + sqr(y[i] - y[j]) + sqr(x[j] - xs) + sqr(y[j] - ys);
}
}
for (int i = 0; i < n; ++i) {
single[i] = (sqr(x[i] - xs) + sqr(y[i] - ys)) * 2;
}
int[] dp = new int[1 << n];
int[] pre = new int[1 << n];
int tot = 1 << n;
for (int s = 1; s < tot; ++s) {
int i;
for (i = 0; i < n; ++i) {
if ((s & (1 << i)) != 0) break;
}
dp[s] = dp[s^(1<<i)] + single[i];
pre[s] = i + 1;
for (int j = i + 1; j < n; ++j) {
if ((s & (1 << j)) != 0) {
int cur = dp[s^(1 << i) ^(1<<j)] + dist[i][j];
if (cur < dp[s]) {
dp[s] = cur;
pre[s] = (i + 1) * 100 + (j + 1);
}
}
}
}
out.println(dp[tot - 1]);
int now = tot - 1;
out.print("0");
while (now > 0) {
int what = pre[now];
int px = what % 100 - 1;
int py = what / 100 - 1;
if (px >= 0) {
out.print(" ");
out.print(px + 1);
now ^= 1 << px;
}
if (py >= 0) {
out.print(" ");
out.print(py + 1);
now ^= 1 << py;
}
out.print(" ");
out.print("0");
}
out.println("");
}
public static void main(String[] argv) {
Main solved = new Main();
int T = 1;
// T = solved.cin.nextInt();
for (int nT = 1; nT <= T; ++nT) {
solved.run(nT);
}
solved.out.close();
}
InputReader cin = new InputReader(System.in);
PrintWriter out = new PrintWriter(System.out);
}
class InputReader {
BufferedReader reader;
StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Main {
static final int MAXN = 24;
int[] x = new int[MAXN];
int[] y = new int[MAXN];
int[][] dist = new int[MAXN][MAXN];
int[] single = new int[MAXN];
int sqr(int x) { return x * x; }
void run(int nT) {
int xs = cin.nextInt();
int ys = cin.nextInt();
int n = cin.nextInt();
for (int i = 0; i < n; ++i) {
x[i] = cin.nextInt();
y[i] = cin.nextInt();
}
for (int i = 0; i < n; ++i) {
for (int j = i + 1; j < n; ++j) {
dist[i][j] = sqr(x[i] - xs) + sqr(y[i] - ys)
+ sqr(x[i] - x[j]) + sqr(y[i] - y[j]) + sqr(x[j] - xs) + sqr(y[j] - ys);
}
}
for (int i = 0; i < n; ++i) {
single[i] = (sqr(x[i] - xs) + sqr(y[i] - ys)) * 2;
}
int[] dp = new int[1 << n];
int[] pre = new int[1 << n];
int tot = 1 << n;
for (int s = 1; s < tot; ++s) {
int i;
for (i = 0; i < n; ++i) {
if ((s & (1 << i)) != 0) break;
}
dp[s] = dp[s^(1<<i)] + single[i];
pre[s] = i + 1;
for (int j = i + 1; j < n; ++j) {
if ((s & (1 << j)) != 0) {
int cur = dp[s^(1 << i) ^(1<<j)] + dist[i][j];
if (cur < dp[s]) {
dp[s] = cur;
pre[s] = (i + 1) * 100 + (j + 1);
}
}
}
}
out.println(dp[tot - 1]);
int now = tot - 1;
out.print("0");
while (now > 0) {
int what = pre[now];
int px = what % 100 - 1;
int py = what / 100 - 1;
if (px >= 0) {
out.print(" ");
out.print(px + 1);
now ^= 1 << px;
}
if (py >= 0) {
out.print(" ");
out.print(py + 1);
now ^= 1 << py;
}
out.print(" ");
out.print("0");
}
out.println("");
}
public static void main(String[] argv) {
Main solved = new Main();
int T = 1;
// T = solved.cin.nextInt();
for (int nT = 1; nT <= T; ++nT) {
solved.run(nT);
}
solved.out.close();
}
InputReader cin = new InputReader(System.in);
PrintWriter out = new PrintWriter(System.out);
}
class InputReader {
BufferedReader reader;
StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,196 | 4,134 |
2,506 |
import javax.print.attribute.standard.PrinterMessageFromOperator;
import java.io.*;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.util.*;
public class Main {
public static void main(String[] args) throws Exception {
new Main().run();}
// int[] h,ne,to,wt;
// int ct = 0;
// int n;
// void graph(int n,int m){
// h = new int[n];
// Arrays.fill(h,-1);
//// sccno = new int[n];
//// dfn = new int[n];
//// low = new int[n];
//// iscut = new boolean[n];
// ne = new int[2*m];
// to = new int[2*m];
// wt = new int[2*m];
// ct = 0;
// }
// void add(int u,int v,int w){
// to[ct] = v;
// ne[ct] = h[u];
// wt[ct] = w;
// h[u] = ct++;
// }
//
// int color[],dfn[],low[],stack[] = new int[1000000],cnt[];
// int sccno[];
// boolean iscut[];
// int time = 0,top = 0;
// int scc_cnt = 0;
//
// // 有向图的强连通分量
// void tarjan(int u) {
// low[u] = dfn[u]= ++time;
// stack[top++] = u;
// for(int i=h[u];i!=-1;i=ne[i]) {
// int v = to[i];
// if(dfn[v]==0) {
// tarjan(v);
// low[u]=Math.min(low[u],low[v]);
// } else if(sccno[v]==0) {
// // dfn>0 but sccno==0, means it's in current stack
// low[u]=Math.min(low[u],low[v]);
// }
// }
//
// if(dfn[u]==low[u]) {
// sccno[u] = ++scc_cnt;
// while(stack[top-1]!=u) {
// sccno[stack[top-1]] = scc_cnt;
// --top;
// }
// --top;
// }
// }
//
// //缩点, topology sort
// int[] h1,to1,ne1;
// int ct1 = 0;
// void point(){
// for(int i=0;i<n;i++) {
// if(dfn[i]==0) tarjan(i);//有可能图不连通,所以要循环判断。
// }
// // 入度
// int du[] = new int[scc_cnt+1];
// h1 = new int[scc_cnt+1];
// Arrays.fill(h1, -1);
// to1 = new int[scc_cnt*scc_cnt];
// ne1 = new int[scc_cnt*scc_cnt];
// // scc_cnt 个点
//
// for(int i=1;i<=n;i++) {
// for(int j=h[i]; j!=-1; j=ne[j]) {
// int y = to[j];
// if(sccno[i] != sccno[y]) {
// // add(sccno[i],sccno[y]); // 建新图
// to1[ct1] = sccno[y];
// ne1[ct1] = h[sccno[i]];
// h[sccno[i]] = ct1++;
// du[sccno[y]]++; //存入度
// }
// }
// }
//
// int q[] = new int[100000];
// int end = 0;
// int st = 0;
// for(int i=1;i<=scc_cnt;++i){
// if(du[i]==0){
// q[end++] = i;
// }
// }
//
// int dp[] = new int[scc_cnt+1];
// while(st<end){
// int cur = q[st++];
// for(int i=h1[cur];i!=-1;i=ne1[i]){
// int y = to[i];
// // dp[y] += dp[cur];
// if(--du[y]==0){
// q[end++] = y;
// }
// }
// }
// }
//
//
//
//
// int fa[];
// int faw[];
//
// int dep = -1;
// int pt = 0;
// void go(int rt,int f,int dd){
//
// int p = 0;
// stk[p] = rt;
// lk[p] = 0;
// fk[p] = f;p++;
// while(p>0) {
// int cur = stk[p - 1];
// int fp = fk[p - 1];
// int ll = lk[p - 1];
// p--;
//
//
// if (ll > dep) {
// dep = ll;
// pt = cur;
// }
// for (int i = h[cur]; i != -1; i = ne[i]) {
// int v = to[i];
// if (fp == v) continue;
//
// stk[p] = v;
// lk[p] = ll + wt[i];
// fk[p] = cur;
// p++;
// }
// }
// }
// int pt1 = -1;
// void go1(int rt,int f,int dd){
//
// int p = 0;
// stk[p] = rt;
// lk[p] = 0;
// fk[p] = f;p++;
// while(p>0) {
// int cur = stk[p - 1];
// int fp = fk[p - 1];
// int ll = lk[p - 1];
// p--;
//
//
// if (ll > dep) {
// dep = ll;
// pt1 = cur;
// }
//
// fa[cur] = fp;
// for (int i = h[cur]; i != -1; i = ne[i]) {
// int v = to[i];
// if (v == fp) continue;
// faw[v] = wt[i];
// stk[p] = v;
// lk[p] = ll + wt[i];
// fk[p] = cur;
// p++;
// }
// }
// }
//
// int r = 0;
// int stk[] = new int[301];
// int fk[] = new int[301];
// int lk[] = new int[301];
// void ddfs(int rt,int t1,int t2,int t3,int l){
//
//
// int p = 0;
// stk[p] = rt;
// lk[p] = 0;
// fk[p] = t3;p++;
// while(p>0){
// int cur = stk[p-1];
// int fp = fk[p-1];
// int ll = lk[p-1];
// p--;
// r = Math.max(r,ll);
// for(int i=h[cur];i!=-1;i=ne[i]){
// int v = to[i];
// if(v==t1||v==t2||v==fp) continue;
// stk[p] = v;
// lk[p] = ll+wt[i];
// fk[p] = cur;p++;
// }
// }
//
//
//
// }
static long mul(long a, long b, long p)
{
long res=0,base=a;
while(b>0)
{
if((b&1L)>0)
res=(res+base)%p;
base=(base+base)%p;
b>>=1;
}
return res;
}
static long mod_pow(long k,long n,long p){
long res = 1L;
long temp = k;
while(n!=0L){
if((n&1L)==1L){
res = (res*temp)%p;
}
temp = (temp*temp)%p;
n = n>>1L;
}
return res%p;
}
int ct = 0;
int f[] =new int[200001];
int b[] =new int[200001];
int str[] =new int[200001];
void go(int rt,List<Integer> g[]){
str[ct] = rt;
f[rt] = ct;
for(int cd:g[rt]){
ct++;
go(cd,g);
}
b[rt] = ct;
}
int add =0;
void go(int rt,int sd,int k,List<Integer> g[],int n){
if(add>n) {
return;
}
Queue<Integer> q =new LinkedList<>();
q.offer(rt);
for(int i=1;i<=sd;++i){
int sz =q.size();
if(sz==0) break;
int f = (i==1?2:1);
while(sz-->0){
int cur = q.poll();
for(int j=0;j<k-f;++j){
q.offer(add);
g[cur].add(add);add++;
if(add==n+1){
return;
}
}
}
}
}
void solve() {
int n = ni();
long s[] = new long[n+1];
for(int i=0;i<n;++i){
s[i+1] = s[i] + ni();
}
Map<Long,List<int[]>> mp = new HashMap<>();
for(int i=0;i<n;++i) {
for (int j = i; j>=0; --j) {
long v = s[i+1]-s[j];
if(!mp.containsKey(v)){
mp.put(v, new ArrayList<>());
}
mp.get(v).add(new int[]{j,i});
}
}
int all = 0;long vv = -1;
for(long v:mp.keySet()){
List<int[]> r = mp.get(v);
int sz = r.size();int c = 0;
int ri = -2000000000;
for(int j=0;j<sz;++j){
if(r.get(j)[0]>ri){
ri = r.get(j)[1];c++;
}
}
if(c>all){
all = c;
vv = v;
}
}
println(all);
List<int[]> r = mp.get(vv);
int sz = r.size();int c = 0;
int ri = -2000000000;
for(int j=0;j<sz;++j){
if(r.get(j)[0]>ri){
ri = r.get(j)[1];println((1+r.get(j)[0])+" "+(1+r.get(j)[1]));
}
}
//N , M , K , a , b , c , d . 其中N , M是矩阵的行列数;K 是上锁的房间数目,(a, b)是起始位置,(c, d)是出口位置
// int n = ni();
// int m = ni();
// int k = ni();
// int a = ni();
// int b = ni();
// int c = ni();
// int d = ni();
//
//
// char cc[][] = nm(n,m);
// char keys[][] = new char[n][m];
//
// char ky = 'a';
// for(int i=0;i<k;++i){
// int x = ni();
// int y = ni();
// keys[x][y] = ky;
// ky++;
// }
// int f1[] = {a,b,0};
//
// int dd[][] = {{0,1},{0,-1},{1,0},{-1,0}};
//
// Queue<int[]> q = new LinkedList<>();
// q.offer(f1);
// int ts = 1;
//
// boolean vis[][][] = new boolean[n][m][33];
//
// while(q.size()>0){
// int sz = q.size();
// while(sz-->0) {
// int cur[] = q.poll();
// vis[cur[0]][cur[1]][cur[2]] = true;
//
// int x = cur[0];
// int y = cur[1];
//
// for (int u[] : dd) {
// int lx = x + u[0];
// int ly = y + u[1];
// if (lx >= 0 && ly >= 0 && lx < n && ly < m && (cc[lx][ly] != '#')&&!vis[lx][ly][cur[2]]){
// char ck =cc[lx][ly];
// if(ck=='.'){
// if(lx==c&&ly==d){
// println(ts); return;
// }
// if(keys[lx][ly]>='a'&&keys[lx][ly]<='z') {
// int cao = cur[2] | (1 << (keys[lx][ly] - 'a'));
// q.offer(new int[]{lx, ly, cao});
// vis[lx][ly][cao] = true;
// }else {
//
// q.offer(new int[]{lx, ly, cur[2]});
// }
//
// }else if(ck>='A'&&ck<='Z'){
// int g = 1<<(ck-'A');
// if((g&cur[2])>0){
// if(lx==c&&ly==d){
// println(ts); return;
// }
// if(keys[lx][ly]>='a'&&keys[lx][ly]<='z') {
//
// int cao = cur[2] | (1 << (keys[lx][ly] - 'a'));
// q.offer(new int[]{lx, ly, cao});
// vis[lx][ly][cao] = true;;
// }else {
//
// q.offer(new int[]{lx, ly, cur[2]});
// }
// }
// }
// }
// }
//
// }
// ts++;
// }
// println(-1);
// int n = ni();
//
// HashSet<String> st = new HashSet<>();
// HashMap<String,Integer> mp = new HashMap<>();
//
//
// for(int i=0;i<n;++i){
// String s = ns();
// int id= 1;
// if(mp.containsKey(s)){
// int u = mp.get(s);
// id = u;
//
// }
//
// if(st.contains(s)) {
//
// while (true) {
// String ts = s + id;
// if (!st.contains(ts)) {
// s = ts;
// break;
// }
// id++;
// }
// mp.put(s,id+1);
// }else{
// mp.put(s,1);
// }
// println(s);
// st.add(s);
//
// }
// int t = ni();
//
// for(int i=0;i<t;++i){
// int n = ni();
// long w[] = nal(n);
//
// Map<Long,Long> mp = new HashMap<>();
// PriorityQueue<long[]> q =new PriorityQueue<>((xx,xy)->{return Long.compare(xx[0],xy[0]);});
//
// for(int j=0;j<n;++j){
// q.offer(new long[]{w[j],0});
// mp.put(w[j],mp.getOrDefault(w[j],0L)+1L);
// }
//
// while(q.size()>=2){
// long f[] = q.poll();
// long y1 = f[1];
// if(y1==0){
// y1 = mp.get(f[0]);
// if(y1==1){
// mp.remove(f[0]);
// }else{
// mp.put(f[0],y1-1);
// }
// }
// long g[] = q.poll();
// long y2 = g[1];
// if(y2==0){
// y2 = mp.get(g[0]);
// if(y2==1){
// mp.remove(g[0]);
// }else{
// mp.put(g[0],y2-1);
// }
// }
// q.offer(new long[]{f[0]+g[0],2L*y1*y2});
//
// }
// long r[] = q.poll();
// println(r[1]);
//
//
//
//
// }
// int o= 9*8*7*6;
// println(o);
// int t = ni();
// for(int i=0;i<t;++i){
// long a = nl();
// int k = ni();
// if(k==1){
// println(a);
// continue;
// }
//
// int f = (int)(a%10L);
// int s = 1;
// int j = 0;
// for(;j<30;j+=2){
// int u = f-j;
// if(u<0){
// u = 10+u;
// }
// s = u*s;
// s = s%10;
// if(s==k){
// break;
// }
// }
//
// if(s==k) {
// println(a - j - 2);
// }else{
// println(-1);
// }
//
//
//
//
// }
// int m = ni();
// h = new int[n];
// to = new int[2*(n-1)];
// ne = new int[2*(n-1)];
// wt = new int[2*(n-1)];
//
// for(int i=0;i<n-1;++i){
// int u = ni()-1;
// int v = ni()-1;
//
// }
// long a[] = nal(n);
// int n = ni();
// int k = ni();
// t1 = new long[200002];
//
// int p[][] = new int[n][3];
//
// for(int i=0;i<n;++i){
// p[i][0] = ni();
// p[i][1] = ni();
// p[i][2] = i+1;
// }
// Arrays.sort(p, new Comparator<int[]>() {
// @Override
// public int compare(int[] x, int[] y) {
// if(x[1]!=y[1]){
// return Integer.compare(x[1],y[1]);
// }
// return Integer.compare(y[0], x[0]);
// }
// });
//
// for(int i=0;i<n;++i){
// int ck = p[i][0];
//
// }
}
// int []h,to,ne,wt;
long t1[];
// long t2[];
void update(long[] t,int i,long v){
for(;i<t.length;i+=(i&-i)){
t[i] += v;
}
}
long get(long[] t,int i){
long s = 0;
for(;i>0;i-=(i&-i)){
s += t[i];
}
return s;
}
int equal_bigger(long t[],long v){
int s=0,p=0;
for(int i=Integer.numberOfTrailingZeros(Integer.highestOneBit(t.length));i>=0;--i) {
if(p+(1<<i)< t.length && s + t[p+(1<<i)] < v){
v -= t[p+(1<<i)];
p |= 1<<i;
}
}
return p+1;
}
static class S{
int l = 0;
int r = 0 ;
long le = 0;
long ri = 0;
long tot = 0;
long all = 0;
public S(int l,int r) {
this.l = l;
this.r = r;
}
}
static S a[];
static int[] o;
static void init(int[] f){
o = f;
int len = o.length;
a = new S[len*4];
build(1,0,len-1);
}
static void build(int num,int l,int r){
S cur = new S(l,r);
if(l==r){
a[num] = cur;
return;
}else{
int m = (l+r)>>1;
int le = num<<1;
int ri = le|1;
build(le, l,m);
build(ri, m+1,r);
a[num] = cur;
pushup(num, le, ri);
}
}
// static int query(int num,int l,int r){
//
// if(a[num].l>=l&&a[num].r<=r){
// return a[num].tot;
// }else{
// int m = (a[num].l+a[num].r)>>1;
// int le = num<<1;
// int ri = le|1;
// pushdown(num, le, ri);
// int ma = 1;
// int mi = 100000001;
// if(l<=m) {
// int r1 = query(le, l, r);
// ma = ma*r1;
//
// }
// if(r>m){
// int r2 = query(ri, l, r);
// ma = ma*r2;
// }
// return ma;
// }
// }
static long dd = 10007;
static void update(int num,int l,long v){
if(a[num].l==a[num].r){
a[num].le = v%dd;
a[num].ri = v%dd;
a[num].all = v%dd;
a[num].tot = v%dd;
}else{
int m = (a[num].l+a[num].r)>>1;
int le = num<<1;
int ri = le|1;
pushdown(num, le, ri);
if(l<=m){
update(le,l,v);
}
if(l>m){
update(ri,l,v);
}
pushup(num,le,ri);
}
}
static void pushup(int num,int le,int ri){
a[num].all = (a[le].all*a[ri].all)%dd;
a[num].le = (a[le].le + a[le].all*a[ri].le)%dd;
a[num].ri = (a[ri].ri + a[ri].all*a[le].ri)%dd;
a[num].tot = (a[le].tot + a[ri].tot + a[le].ri*a[ri].le)%dd;
//a[num].res[1] = Math.min(a[le].res[1],a[ri].res[1]);
}
static void pushdown(int num,int le,int ri){
}
int gcd(int a,int b){ return b==0?a: gcd(b,a%b);}
InputStream is;PrintWriter out;
void run() throws Exception {is = System.in;out = new PrintWriter(System.out);solve();out.flush();}
private byte[] inbuf = new byte[2];
public int lenbuf = 0, ptrbuf = 0;
private int readByte() {
if (lenbuf == -1) throw new InputMismatchException();
if (ptrbuf >= lenbuf) {
ptrbuf = 0;
try {lenbuf = is.read(inbuf);} catch (IOException e) {throw new InputMismatchException();}
if (lenbuf <= 0) return -1;
}
return inbuf[ptrbuf++];}
private boolean isSpaceChar(int c) {return !(c >= 33 && c <= 126);}
private int skip() {int b;while((b = readByte()) != -1 && isSpaceChar(b));return b;}
private double nd() {return Double.parseDouble(ns());}
private char nc() {return (char) skip();}
private char ncc() {int b;while((b = readByte()) != -1 && !(b >= 32 && b <= 126));return (char)b;}
private String ns() {int b = skip();StringBuilder sb = new StringBuilder();
while (!(isSpaceChar(b))) { // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);b = readByte(); }
return sb.toString();}
private char[] ns(int n) {char[] buf = new char[n];int b = skip(), p = 0;
while (p < n && !(isSpaceChar(b))) { buf[p++] = (char) b;b = readByte(); }
return n == p ? buf : Arrays.copyOf(buf, p);}
private String nline() {int b = skip();StringBuilder sb = new StringBuilder();
while (!isSpaceChar(b) || b == ' ') { sb.appendCodePoint(b);b = readByte(); }
return sb.toString();}
private char[][] nm(int n, int m) {char[][] a = new char[n][];for (int i = 0; i < n; i++) a[i] = ns(m);return a;}
private int[] na(int n) {int[] a = new int[n];for (int i = 0; i < n; i++) a[i] = ni();return a;}
private long[] nal(int n) { long[] a = new long[n];for (int i = 0; i < n; i++) a[i] = nl();return a;}
private int ni() { int num = 0, b; boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')){};
if (b == '-') { minus = true; b = readByte(); }
while (true) {
if (b >= '0' && b <= '9') num = (num << 3) + (num << 1) + (b - '0');
else return minus ? -num : num;
b = readByte();}}
private long nl() { long num = 0; int b;
boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')){};
if (b == '-') { minus = true; b = readByte(); }
while (true) {
if (b >= '0' && b <= '9') num = num * 10 + (b - '0');
else return minus ? -num : num;
b = readByte();}}
void print(Object obj){out.print(obj);}
void println(Object obj){out.println(obj);}
void println(){out.println();}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import javax.print.attribute.standard.PrinterMessageFromOperator;
import java.io.*;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.util.*;
public class Main {
public static void main(String[] args) throws Exception {
new Main().run();}
// int[] h,ne,to,wt;
// int ct = 0;
// int n;
// void graph(int n,int m){
// h = new int[n];
// Arrays.fill(h,-1);
//// sccno = new int[n];
//// dfn = new int[n];
//// low = new int[n];
//// iscut = new boolean[n];
// ne = new int[2*m];
// to = new int[2*m];
// wt = new int[2*m];
// ct = 0;
// }
// void add(int u,int v,int w){
// to[ct] = v;
// ne[ct] = h[u];
// wt[ct] = w;
// h[u] = ct++;
// }
//
// int color[],dfn[],low[],stack[] = new int[1000000],cnt[];
// int sccno[];
// boolean iscut[];
// int time = 0,top = 0;
// int scc_cnt = 0;
//
// // 有向图的强连通分量
// void tarjan(int u) {
// low[u] = dfn[u]= ++time;
// stack[top++] = u;
// for(int i=h[u];i!=-1;i=ne[i]) {
// int v = to[i];
// if(dfn[v]==0) {
// tarjan(v);
// low[u]=Math.min(low[u],low[v]);
// } else if(sccno[v]==0) {
// // dfn>0 but sccno==0, means it's in current stack
// low[u]=Math.min(low[u],low[v]);
// }
// }
//
// if(dfn[u]==low[u]) {
// sccno[u] = ++scc_cnt;
// while(stack[top-1]!=u) {
// sccno[stack[top-1]] = scc_cnt;
// --top;
// }
// --top;
// }
// }
//
// //缩点, topology sort
// int[] h1,to1,ne1;
// int ct1 = 0;
// void point(){
// for(int i=0;i<n;i++) {
// if(dfn[i]==0) tarjan(i);//有可能图不连通,所以要循环判断。
// }
// // 入度
// int du[] = new int[scc_cnt+1];
// h1 = new int[scc_cnt+1];
// Arrays.fill(h1, -1);
// to1 = new int[scc_cnt*scc_cnt];
// ne1 = new int[scc_cnt*scc_cnt];
// // scc_cnt 个点
//
// for(int i=1;i<=n;i++) {
// for(int j=h[i]; j!=-1; j=ne[j]) {
// int y = to[j];
// if(sccno[i] != sccno[y]) {
// // add(sccno[i],sccno[y]); // 建新图
// to1[ct1] = sccno[y];
// ne1[ct1] = h[sccno[i]];
// h[sccno[i]] = ct1++;
// du[sccno[y]]++; //存入度
// }
// }
// }
//
// int q[] = new int[100000];
// int end = 0;
// int st = 0;
// for(int i=1;i<=scc_cnt;++i){
// if(du[i]==0){
// q[end++] = i;
// }
// }
//
// int dp[] = new int[scc_cnt+1];
// while(st<end){
// int cur = q[st++];
// for(int i=h1[cur];i!=-1;i=ne1[i]){
// int y = to[i];
// // dp[y] += dp[cur];
// if(--du[y]==0){
// q[end++] = y;
// }
// }
// }
// }
//
//
//
//
// int fa[];
// int faw[];
//
// int dep = -1;
// int pt = 0;
// void go(int rt,int f,int dd){
//
// int p = 0;
// stk[p] = rt;
// lk[p] = 0;
// fk[p] = f;p++;
// while(p>0) {
// int cur = stk[p - 1];
// int fp = fk[p - 1];
// int ll = lk[p - 1];
// p--;
//
//
// if (ll > dep) {
// dep = ll;
// pt = cur;
// }
// for (int i = h[cur]; i != -1; i = ne[i]) {
// int v = to[i];
// if (fp == v) continue;
//
// stk[p] = v;
// lk[p] = ll + wt[i];
// fk[p] = cur;
// p++;
// }
// }
// }
// int pt1 = -1;
// void go1(int rt,int f,int dd){
//
// int p = 0;
// stk[p] = rt;
// lk[p] = 0;
// fk[p] = f;p++;
// while(p>0) {
// int cur = stk[p - 1];
// int fp = fk[p - 1];
// int ll = lk[p - 1];
// p--;
//
//
// if (ll > dep) {
// dep = ll;
// pt1 = cur;
// }
//
// fa[cur] = fp;
// for (int i = h[cur]; i != -1; i = ne[i]) {
// int v = to[i];
// if (v == fp) continue;
// faw[v] = wt[i];
// stk[p] = v;
// lk[p] = ll + wt[i];
// fk[p] = cur;
// p++;
// }
// }
// }
//
// int r = 0;
// int stk[] = new int[301];
// int fk[] = new int[301];
// int lk[] = new int[301];
// void ddfs(int rt,int t1,int t2,int t3,int l){
//
//
// int p = 0;
// stk[p] = rt;
// lk[p] = 0;
// fk[p] = t3;p++;
// while(p>0){
// int cur = stk[p-1];
// int fp = fk[p-1];
// int ll = lk[p-1];
// p--;
// r = Math.max(r,ll);
// for(int i=h[cur];i!=-1;i=ne[i]){
// int v = to[i];
// if(v==t1||v==t2||v==fp) continue;
// stk[p] = v;
// lk[p] = ll+wt[i];
// fk[p] = cur;p++;
// }
// }
//
//
//
// }
static long mul(long a, long b, long p)
{
long res=0,base=a;
while(b>0)
{
if((b&1L)>0)
res=(res+base)%p;
base=(base+base)%p;
b>>=1;
}
return res;
}
static long mod_pow(long k,long n,long p){
long res = 1L;
long temp = k;
while(n!=0L){
if((n&1L)==1L){
res = (res*temp)%p;
}
temp = (temp*temp)%p;
n = n>>1L;
}
return res%p;
}
int ct = 0;
int f[] =new int[200001];
int b[] =new int[200001];
int str[] =new int[200001];
void go(int rt,List<Integer> g[]){
str[ct] = rt;
f[rt] = ct;
for(int cd:g[rt]){
ct++;
go(cd,g);
}
b[rt] = ct;
}
int add =0;
void go(int rt,int sd,int k,List<Integer> g[],int n){
if(add>n) {
return;
}
Queue<Integer> q =new LinkedList<>();
q.offer(rt);
for(int i=1;i<=sd;++i){
int sz =q.size();
if(sz==0) break;
int f = (i==1?2:1);
while(sz-->0){
int cur = q.poll();
for(int j=0;j<k-f;++j){
q.offer(add);
g[cur].add(add);add++;
if(add==n+1){
return;
}
}
}
}
}
void solve() {
int n = ni();
long s[] = new long[n+1];
for(int i=0;i<n;++i){
s[i+1] = s[i] + ni();
}
Map<Long,List<int[]>> mp = new HashMap<>();
for(int i=0;i<n;++i) {
for (int j = i; j>=0; --j) {
long v = s[i+1]-s[j];
if(!mp.containsKey(v)){
mp.put(v, new ArrayList<>());
}
mp.get(v).add(new int[]{j,i});
}
}
int all = 0;long vv = -1;
for(long v:mp.keySet()){
List<int[]> r = mp.get(v);
int sz = r.size();int c = 0;
int ri = -2000000000;
for(int j=0;j<sz;++j){
if(r.get(j)[0]>ri){
ri = r.get(j)[1];c++;
}
}
if(c>all){
all = c;
vv = v;
}
}
println(all);
List<int[]> r = mp.get(vv);
int sz = r.size();int c = 0;
int ri = -2000000000;
for(int j=0;j<sz;++j){
if(r.get(j)[0]>ri){
ri = r.get(j)[1];println((1+r.get(j)[0])+" "+(1+r.get(j)[1]));
}
}
//N , M , K , a , b , c , d . 其中N , M是矩阵的行列数;K 是上锁的房间数目,(a, b)是起始位置,(c, d)是出口位置
// int n = ni();
// int m = ni();
// int k = ni();
// int a = ni();
// int b = ni();
// int c = ni();
// int d = ni();
//
//
// char cc[][] = nm(n,m);
// char keys[][] = new char[n][m];
//
// char ky = 'a';
// for(int i=0;i<k;++i){
// int x = ni();
// int y = ni();
// keys[x][y] = ky;
// ky++;
// }
// int f1[] = {a,b,0};
//
// int dd[][] = {{0,1},{0,-1},{1,0},{-1,0}};
//
// Queue<int[]> q = new LinkedList<>();
// q.offer(f1);
// int ts = 1;
//
// boolean vis[][][] = new boolean[n][m][33];
//
// while(q.size()>0){
// int sz = q.size();
// while(sz-->0) {
// int cur[] = q.poll();
// vis[cur[0]][cur[1]][cur[2]] = true;
//
// int x = cur[0];
// int y = cur[1];
//
// for (int u[] : dd) {
// int lx = x + u[0];
// int ly = y + u[1];
// if (lx >= 0 && ly >= 0 && lx < n && ly < m && (cc[lx][ly] != '#')&&!vis[lx][ly][cur[2]]){
// char ck =cc[lx][ly];
// if(ck=='.'){
// if(lx==c&&ly==d){
// println(ts); return;
// }
// if(keys[lx][ly]>='a'&&keys[lx][ly]<='z') {
// int cao = cur[2] | (1 << (keys[lx][ly] - 'a'));
// q.offer(new int[]{lx, ly, cao});
// vis[lx][ly][cao] = true;
// }else {
//
// q.offer(new int[]{lx, ly, cur[2]});
// }
//
// }else if(ck>='A'&&ck<='Z'){
// int g = 1<<(ck-'A');
// if((g&cur[2])>0){
// if(lx==c&&ly==d){
// println(ts); return;
// }
// if(keys[lx][ly]>='a'&&keys[lx][ly]<='z') {
//
// int cao = cur[2] | (1 << (keys[lx][ly] - 'a'));
// q.offer(new int[]{lx, ly, cao});
// vis[lx][ly][cao] = true;;
// }else {
//
// q.offer(new int[]{lx, ly, cur[2]});
// }
// }
// }
// }
// }
//
// }
// ts++;
// }
// println(-1);
// int n = ni();
//
// HashSet<String> st = new HashSet<>();
// HashMap<String,Integer> mp = new HashMap<>();
//
//
// for(int i=0;i<n;++i){
// String s = ns();
// int id= 1;
// if(mp.containsKey(s)){
// int u = mp.get(s);
// id = u;
//
// }
//
// if(st.contains(s)) {
//
// while (true) {
// String ts = s + id;
// if (!st.contains(ts)) {
// s = ts;
// break;
// }
// id++;
// }
// mp.put(s,id+1);
// }else{
// mp.put(s,1);
// }
// println(s);
// st.add(s);
//
// }
// int t = ni();
//
// for(int i=0;i<t;++i){
// int n = ni();
// long w[] = nal(n);
//
// Map<Long,Long> mp = new HashMap<>();
// PriorityQueue<long[]> q =new PriorityQueue<>((xx,xy)->{return Long.compare(xx[0],xy[0]);});
//
// for(int j=0;j<n;++j){
// q.offer(new long[]{w[j],0});
// mp.put(w[j],mp.getOrDefault(w[j],0L)+1L);
// }
//
// while(q.size()>=2){
// long f[] = q.poll();
// long y1 = f[1];
// if(y1==0){
// y1 = mp.get(f[0]);
// if(y1==1){
// mp.remove(f[0]);
// }else{
// mp.put(f[0],y1-1);
// }
// }
// long g[] = q.poll();
// long y2 = g[1];
// if(y2==0){
// y2 = mp.get(g[0]);
// if(y2==1){
// mp.remove(g[0]);
// }else{
// mp.put(g[0],y2-1);
// }
// }
// q.offer(new long[]{f[0]+g[0],2L*y1*y2});
//
// }
// long r[] = q.poll();
// println(r[1]);
//
//
//
//
// }
// int o= 9*8*7*6;
// println(o);
// int t = ni();
// for(int i=0;i<t;++i){
// long a = nl();
// int k = ni();
// if(k==1){
// println(a);
// continue;
// }
//
// int f = (int)(a%10L);
// int s = 1;
// int j = 0;
// for(;j<30;j+=2){
// int u = f-j;
// if(u<0){
// u = 10+u;
// }
// s = u*s;
// s = s%10;
// if(s==k){
// break;
// }
// }
//
// if(s==k) {
// println(a - j - 2);
// }else{
// println(-1);
// }
//
//
//
//
// }
// int m = ni();
// h = new int[n];
// to = new int[2*(n-1)];
// ne = new int[2*(n-1)];
// wt = new int[2*(n-1)];
//
// for(int i=0;i<n-1;++i){
// int u = ni()-1;
// int v = ni()-1;
//
// }
// long a[] = nal(n);
// int n = ni();
// int k = ni();
// t1 = new long[200002];
//
// int p[][] = new int[n][3];
//
// for(int i=0;i<n;++i){
// p[i][0] = ni();
// p[i][1] = ni();
// p[i][2] = i+1;
// }
// Arrays.sort(p, new Comparator<int[]>() {
// @Override
// public int compare(int[] x, int[] y) {
// if(x[1]!=y[1]){
// return Integer.compare(x[1],y[1]);
// }
// return Integer.compare(y[0], x[0]);
// }
// });
//
// for(int i=0;i<n;++i){
// int ck = p[i][0];
//
// }
}
// int []h,to,ne,wt;
long t1[];
// long t2[];
void update(long[] t,int i,long v){
for(;i<t.length;i+=(i&-i)){
t[i] += v;
}
}
long get(long[] t,int i){
long s = 0;
for(;i>0;i-=(i&-i)){
s += t[i];
}
return s;
}
int equal_bigger(long t[],long v){
int s=0,p=0;
for(int i=Integer.numberOfTrailingZeros(Integer.highestOneBit(t.length));i>=0;--i) {
if(p+(1<<i)< t.length && s + t[p+(1<<i)] < v){
v -= t[p+(1<<i)];
p |= 1<<i;
}
}
return p+1;
}
static class S{
int l = 0;
int r = 0 ;
long le = 0;
long ri = 0;
long tot = 0;
long all = 0;
public S(int l,int r) {
this.l = l;
this.r = r;
}
}
static S a[];
static int[] o;
static void init(int[] f){
o = f;
int len = o.length;
a = new S[len*4];
build(1,0,len-1);
}
static void build(int num,int l,int r){
S cur = new S(l,r);
if(l==r){
a[num] = cur;
return;
}else{
int m = (l+r)>>1;
int le = num<<1;
int ri = le|1;
build(le, l,m);
build(ri, m+1,r);
a[num] = cur;
pushup(num, le, ri);
}
}
// static int query(int num,int l,int r){
//
// if(a[num].l>=l&&a[num].r<=r){
// return a[num].tot;
// }else{
// int m = (a[num].l+a[num].r)>>1;
// int le = num<<1;
// int ri = le|1;
// pushdown(num, le, ri);
// int ma = 1;
// int mi = 100000001;
// if(l<=m) {
// int r1 = query(le, l, r);
// ma = ma*r1;
//
// }
// if(r>m){
// int r2 = query(ri, l, r);
// ma = ma*r2;
// }
// return ma;
// }
// }
static long dd = 10007;
static void update(int num,int l,long v){
if(a[num].l==a[num].r){
a[num].le = v%dd;
a[num].ri = v%dd;
a[num].all = v%dd;
a[num].tot = v%dd;
}else{
int m = (a[num].l+a[num].r)>>1;
int le = num<<1;
int ri = le|1;
pushdown(num, le, ri);
if(l<=m){
update(le,l,v);
}
if(l>m){
update(ri,l,v);
}
pushup(num,le,ri);
}
}
static void pushup(int num,int le,int ri){
a[num].all = (a[le].all*a[ri].all)%dd;
a[num].le = (a[le].le + a[le].all*a[ri].le)%dd;
a[num].ri = (a[ri].ri + a[ri].all*a[le].ri)%dd;
a[num].tot = (a[le].tot + a[ri].tot + a[le].ri*a[ri].le)%dd;
//a[num].res[1] = Math.min(a[le].res[1],a[ri].res[1]);
}
static void pushdown(int num,int le,int ri){
}
int gcd(int a,int b){ return b==0?a: gcd(b,a%b);}
InputStream is;PrintWriter out;
void run() throws Exception {is = System.in;out = new PrintWriter(System.out);solve();out.flush();}
private byte[] inbuf = new byte[2];
public int lenbuf = 0, ptrbuf = 0;
private int readByte() {
if (lenbuf == -1) throw new InputMismatchException();
if (ptrbuf >= lenbuf) {
ptrbuf = 0;
try {lenbuf = is.read(inbuf);} catch (IOException e) {throw new InputMismatchException();}
if (lenbuf <= 0) return -1;
}
return inbuf[ptrbuf++];}
private boolean isSpaceChar(int c) {return !(c >= 33 && c <= 126);}
private int skip() {int b;while((b = readByte()) != -1 && isSpaceChar(b));return b;}
private double nd() {return Double.parseDouble(ns());}
private char nc() {return (char) skip();}
private char ncc() {int b;while((b = readByte()) != -1 && !(b >= 32 && b <= 126));return (char)b;}
private String ns() {int b = skip();StringBuilder sb = new StringBuilder();
while (!(isSpaceChar(b))) { // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);b = readByte(); }
return sb.toString();}
private char[] ns(int n) {char[] buf = new char[n];int b = skip(), p = 0;
while (p < n && !(isSpaceChar(b))) { buf[p++] = (char) b;b = readByte(); }
return n == p ? buf : Arrays.copyOf(buf, p);}
private String nline() {int b = skip();StringBuilder sb = new StringBuilder();
while (!isSpaceChar(b) || b == ' ') { sb.appendCodePoint(b);b = readByte(); }
return sb.toString();}
private char[][] nm(int n, int m) {char[][] a = new char[n][];for (int i = 0; i < n; i++) a[i] = ns(m);return a;}
private int[] na(int n) {int[] a = new int[n];for (int i = 0; i < n; i++) a[i] = ni();return a;}
private long[] nal(int n) { long[] a = new long[n];for (int i = 0; i < n; i++) a[i] = nl();return a;}
private int ni() { int num = 0, b; boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')){};
if (b == '-') { minus = true; b = readByte(); }
while (true) {
if (b >= '0' && b <= '9') num = (num << 3) + (num << 1) + (b - '0');
else return minus ? -num : num;
b = readByte();}}
private long nl() { long num = 0; int b;
boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')){};
if (b == '-') { minus = true; b = readByte(); }
while (true) {
if (b >= '0' && b <= '9') num = num * 10 + (b - '0');
else return minus ? -num : num;
b = readByte();}}
void print(Object obj){out.print(obj);}
void println(Object obj){out.println(obj);}
void println(){out.println();}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import javax.print.attribute.standard.PrinterMessageFromOperator;
import java.io.*;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.util.*;
public class Main {
public static void main(String[] args) throws Exception {
new Main().run();}
// int[] h,ne,to,wt;
// int ct = 0;
// int n;
// void graph(int n,int m){
// h = new int[n];
// Arrays.fill(h,-1);
//// sccno = new int[n];
//// dfn = new int[n];
//// low = new int[n];
//// iscut = new boolean[n];
// ne = new int[2*m];
// to = new int[2*m];
// wt = new int[2*m];
// ct = 0;
// }
// void add(int u,int v,int w){
// to[ct] = v;
// ne[ct] = h[u];
// wt[ct] = w;
// h[u] = ct++;
// }
//
// int color[],dfn[],low[],stack[] = new int[1000000],cnt[];
// int sccno[];
// boolean iscut[];
// int time = 0,top = 0;
// int scc_cnt = 0;
//
// // 有向图的强连通分量
// void tarjan(int u) {
// low[u] = dfn[u]= ++time;
// stack[top++] = u;
// for(int i=h[u];i!=-1;i=ne[i]) {
// int v = to[i];
// if(dfn[v]==0) {
// tarjan(v);
// low[u]=Math.min(low[u],low[v]);
// } else if(sccno[v]==0) {
// // dfn>0 but sccno==0, means it's in current stack
// low[u]=Math.min(low[u],low[v]);
// }
// }
//
// if(dfn[u]==low[u]) {
// sccno[u] = ++scc_cnt;
// while(stack[top-1]!=u) {
// sccno[stack[top-1]] = scc_cnt;
// --top;
// }
// --top;
// }
// }
//
// //缩点, topology sort
// int[] h1,to1,ne1;
// int ct1 = 0;
// void point(){
// for(int i=0;i<n;i++) {
// if(dfn[i]==0) tarjan(i);//有可能图不连通,所以要循环判断。
// }
// // 入度
// int du[] = new int[scc_cnt+1];
// h1 = new int[scc_cnt+1];
// Arrays.fill(h1, -1);
// to1 = new int[scc_cnt*scc_cnt];
// ne1 = new int[scc_cnt*scc_cnt];
// // scc_cnt 个点
//
// for(int i=1;i<=n;i++) {
// for(int j=h[i]; j!=-1; j=ne[j]) {
// int y = to[j];
// if(sccno[i] != sccno[y]) {
// // add(sccno[i],sccno[y]); // 建新图
// to1[ct1] = sccno[y];
// ne1[ct1] = h[sccno[i]];
// h[sccno[i]] = ct1++;
// du[sccno[y]]++; //存入度
// }
// }
// }
//
// int q[] = new int[100000];
// int end = 0;
// int st = 0;
// for(int i=1;i<=scc_cnt;++i){
// if(du[i]==0){
// q[end++] = i;
// }
// }
//
// int dp[] = new int[scc_cnt+1];
// while(st<end){
// int cur = q[st++];
// for(int i=h1[cur];i!=-1;i=ne1[i]){
// int y = to[i];
// // dp[y] += dp[cur];
// if(--du[y]==0){
// q[end++] = y;
// }
// }
// }
// }
//
//
//
//
// int fa[];
// int faw[];
//
// int dep = -1;
// int pt = 0;
// void go(int rt,int f,int dd){
//
// int p = 0;
// stk[p] = rt;
// lk[p] = 0;
// fk[p] = f;p++;
// while(p>0) {
// int cur = stk[p - 1];
// int fp = fk[p - 1];
// int ll = lk[p - 1];
// p--;
//
//
// if (ll > dep) {
// dep = ll;
// pt = cur;
// }
// for (int i = h[cur]; i != -1; i = ne[i]) {
// int v = to[i];
// if (fp == v) continue;
//
// stk[p] = v;
// lk[p] = ll + wt[i];
// fk[p] = cur;
// p++;
// }
// }
// }
// int pt1 = -1;
// void go1(int rt,int f,int dd){
//
// int p = 0;
// stk[p] = rt;
// lk[p] = 0;
// fk[p] = f;p++;
// while(p>0) {
// int cur = stk[p - 1];
// int fp = fk[p - 1];
// int ll = lk[p - 1];
// p--;
//
//
// if (ll > dep) {
// dep = ll;
// pt1 = cur;
// }
//
// fa[cur] = fp;
// for (int i = h[cur]; i != -1; i = ne[i]) {
// int v = to[i];
// if (v == fp) continue;
// faw[v] = wt[i];
// stk[p] = v;
// lk[p] = ll + wt[i];
// fk[p] = cur;
// p++;
// }
// }
// }
//
// int r = 0;
// int stk[] = new int[301];
// int fk[] = new int[301];
// int lk[] = new int[301];
// void ddfs(int rt,int t1,int t2,int t3,int l){
//
//
// int p = 0;
// stk[p] = rt;
// lk[p] = 0;
// fk[p] = t3;p++;
// while(p>0){
// int cur = stk[p-1];
// int fp = fk[p-1];
// int ll = lk[p-1];
// p--;
// r = Math.max(r,ll);
// for(int i=h[cur];i!=-1;i=ne[i]){
// int v = to[i];
// if(v==t1||v==t2||v==fp) continue;
// stk[p] = v;
// lk[p] = ll+wt[i];
// fk[p] = cur;p++;
// }
// }
//
//
//
// }
static long mul(long a, long b, long p)
{
long res=0,base=a;
while(b>0)
{
if((b&1L)>0)
res=(res+base)%p;
base=(base+base)%p;
b>>=1;
}
return res;
}
static long mod_pow(long k,long n,long p){
long res = 1L;
long temp = k;
while(n!=0L){
if((n&1L)==1L){
res = (res*temp)%p;
}
temp = (temp*temp)%p;
n = n>>1L;
}
return res%p;
}
int ct = 0;
int f[] =new int[200001];
int b[] =new int[200001];
int str[] =new int[200001];
void go(int rt,List<Integer> g[]){
str[ct] = rt;
f[rt] = ct;
for(int cd:g[rt]){
ct++;
go(cd,g);
}
b[rt] = ct;
}
int add =0;
void go(int rt,int sd,int k,List<Integer> g[],int n){
if(add>n) {
return;
}
Queue<Integer> q =new LinkedList<>();
q.offer(rt);
for(int i=1;i<=sd;++i){
int sz =q.size();
if(sz==0) break;
int f = (i==1?2:1);
while(sz-->0){
int cur = q.poll();
for(int j=0;j<k-f;++j){
q.offer(add);
g[cur].add(add);add++;
if(add==n+1){
return;
}
}
}
}
}
void solve() {
int n = ni();
long s[] = new long[n+1];
for(int i=0;i<n;++i){
s[i+1] = s[i] + ni();
}
Map<Long,List<int[]>> mp = new HashMap<>();
for(int i=0;i<n;++i) {
for (int j = i; j>=0; --j) {
long v = s[i+1]-s[j];
if(!mp.containsKey(v)){
mp.put(v, new ArrayList<>());
}
mp.get(v).add(new int[]{j,i});
}
}
int all = 0;long vv = -1;
for(long v:mp.keySet()){
List<int[]> r = mp.get(v);
int sz = r.size();int c = 0;
int ri = -2000000000;
for(int j=0;j<sz;++j){
if(r.get(j)[0]>ri){
ri = r.get(j)[1];c++;
}
}
if(c>all){
all = c;
vv = v;
}
}
println(all);
List<int[]> r = mp.get(vv);
int sz = r.size();int c = 0;
int ri = -2000000000;
for(int j=0;j<sz;++j){
if(r.get(j)[0]>ri){
ri = r.get(j)[1];println((1+r.get(j)[0])+" "+(1+r.get(j)[1]));
}
}
//N , M , K , a , b , c , d . 其中N , M是矩阵的行列数;K 是上锁的房间数目,(a, b)是起始位置,(c, d)是出口位置
// int n = ni();
// int m = ni();
// int k = ni();
// int a = ni();
// int b = ni();
// int c = ni();
// int d = ni();
//
//
// char cc[][] = nm(n,m);
// char keys[][] = new char[n][m];
//
// char ky = 'a';
// for(int i=0;i<k;++i){
// int x = ni();
// int y = ni();
// keys[x][y] = ky;
// ky++;
// }
// int f1[] = {a,b,0};
//
// int dd[][] = {{0,1},{0,-1},{1,0},{-1,0}};
//
// Queue<int[]> q = new LinkedList<>();
// q.offer(f1);
// int ts = 1;
//
// boolean vis[][][] = new boolean[n][m][33];
//
// while(q.size()>0){
// int sz = q.size();
// while(sz-->0) {
// int cur[] = q.poll();
// vis[cur[0]][cur[1]][cur[2]] = true;
//
// int x = cur[0];
// int y = cur[1];
//
// for (int u[] : dd) {
// int lx = x + u[0];
// int ly = y + u[1];
// if (lx >= 0 && ly >= 0 && lx < n && ly < m && (cc[lx][ly] != '#')&&!vis[lx][ly][cur[2]]){
// char ck =cc[lx][ly];
// if(ck=='.'){
// if(lx==c&&ly==d){
// println(ts); return;
// }
// if(keys[lx][ly]>='a'&&keys[lx][ly]<='z') {
// int cao = cur[2] | (1 << (keys[lx][ly] - 'a'));
// q.offer(new int[]{lx, ly, cao});
// vis[lx][ly][cao] = true;
// }else {
//
// q.offer(new int[]{lx, ly, cur[2]});
// }
//
// }else if(ck>='A'&&ck<='Z'){
// int g = 1<<(ck-'A');
// if((g&cur[2])>0){
// if(lx==c&&ly==d){
// println(ts); return;
// }
// if(keys[lx][ly]>='a'&&keys[lx][ly]<='z') {
//
// int cao = cur[2] | (1 << (keys[lx][ly] - 'a'));
// q.offer(new int[]{lx, ly, cao});
// vis[lx][ly][cao] = true;;
// }else {
//
// q.offer(new int[]{lx, ly, cur[2]});
// }
// }
// }
// }
// }
//
// }
// ts++;
// }
// println(-1);
// int n = ni();
//
// HashSet<String> st = new HashSet<>();
// HashMap<String,Integer> mp = new HashMap<>();
//
//
// for(int i=0;i<n;++i){
// String s = ns();
// int id= 1;
// if(mp.containsKey(s)){
// int u = mp.get(s);
// id = u;
//
// }
//
// if(st.contains(s)) {
//
// while (true) {
// String ts = s + id;
// if (!st.contains(ts)) {
// s = ts;
// break;
// }
// id++;
// }
// mp.put(s,id+1);
// }else{
// mp.put(s,1);
// }
// println(s);
// st.add(s);
//
// }
// int t = ni();
//
// for(int i=0;i<t;++i){
// int n = ni();
// long w[] = nal(n);
//
// Map<Long,Long> mp = new HashMap<>();
// PriorityQueue<long[]> q =new PriorityQueue<>((xx,xy)->{return Long.compare(xx[0],xy[0]);});
//
// for(int j=0;j<n;++j){
// q.offer(new long[]{w[j],0});
// mp.put(w[j],mp.getOrDefault(w[j],0L)+1L);
// }
//
// while(q.size()>=2){
// long f[] = q.poll();
// long y1 = f[1];
// if(y1==0){
// y1 = mp.get(f[0]);
// if(y1==1){
// mp.remove(f[0]);
// }else{
// mp.put(f[0],y1-1);
// }
// }
// long g[] = q.poll();
// long y2 = g[1];
// if(y2==0){
// y2 = mp.get(g[0]);
// if(y2==1){
// mp.remove(g[0]);
// }else{
// mp.put(g[0],y2-1);
// }
// }
// q.offer(new long[]{f[0]+g[0],2L*y1*y2});
//
// }
// long r[] = q.poll();
// println(r[1]);
//
//
//
//
// }
// int o= 9*8*7*6;
// println(o);
// int t = ni();
// for(int i=0;i<t;++i){
// long a = nl();
// int k = ni();
// if(k==1){
// println(a);
// continue;
// }
//
// int f = (int)(a%10L);
// int s = 1;
// int j = 0;
// for(;j<30;j+=2){
// int u = f-j;
// if(u<0){
// u = 10+u;
// }
// s = u*s;
// s = s%10;
// if(s==k){
// break;
// }
// }
//
// if(s==k) {
// println(a - j - 2);
// }else{
// println(-1);
// }
//
//
//
//
// }
// int m = ni();
// h = new int[n];
// to = new int[2*(n-1)];
// ne = new int[2*(n-1)];
// wt = new int[2*(n-1)];
//
// for(int i=0;i<n-1;++i){
// int u = ni()-1;
// int v = ni()-1;
//
// }
// long a[] = nal(n);
// int n = ni();
// int k = ni();
// t1 = new long[200002];
//
// int p[][] = new int[n][3];
//
// for(int i=0;i<n;++i){
// p[i][0] = ni();
// p[i][1] = ni();
// p[i][2] = i+1;
// }
// Arrays.sort(p, new Comparator<int[]>() {
// @Override
// public int compare(int[] x, int[] y) {
// if(x[1]!=y[1]){
// return Integer.compare(x[1],y[1]);
// }
// return Integer.compare(y[0], x[0]);
// }
// });
//
// for(int i=0;i<n;++i){
// int ck = p[i][0];
//
// }
}
// int []h,to,ne,wt;
long t1[];
// long t2[];
void update(long[] t,int i,long v){
for(;i<t.length;i+=(i&-i)){
t[i] += v;
}
}
long get(long[] t,int i){
long s = 0;
for(;i>0;i-=(i&-i)){
s += t[i];
}
return s;
}
int equal_bigger(long t[],long v){
int s=0,p=0;
for(int i=Integer.numberOfTrailingZeros(Integer.highestOneBit(t.length));i>=0;--i) {
if(p+(1<<i)< t.length && s + t[p+(1<<i)] < v){
v -= t[p+(1<<i)];
p |= 1<<i;
}
}
return p+1;
}
static class S{
int l = 0;
int r = 0 ;
long le = 0;
long ri = 0;
long tot = 0;
long all = 0;
public S(int l,int r) {
this.l = l;
this.r = r;
}
}
static S a[];
static int[] o;
static void init(int[] f){
o = f;
int len = o.length;
a = new S[len*4];
build(1,0,len-1);
}
static void build(int num,int l,int r){
S cur = new S(l,r);
if(l==r){
a[num] = cur;
return;
}else{
int m = (l+r)>>1;
int le = num<<1;
int ri = le|1;
build(le, l,m);
build(ri, m+1,r);
a[num] = cur;
pushup(num, le, ri);
}
}
// static int query(int num,int l,int r){
//
// if(a[num].l>=l&&a[num].r<=r){
// return a[num].tot;
// }else{
// int m = (a[num].l+a[num].r)>>1;
// int le = num<<1;
// int ri = le|1;
// pushdown(num, le, ri);
// int ma = 1;
// int mi = 100000001;
// if(l<=m) {
// int r1 = query(le, l, r);
// ma = ma*r1;
//
// }
// if(r>m){
// int r2 = query(ri, l, r);
// ma = ma*r2;
// }
// return ma;
// }
// }
static long dd = 10007;
static void update(int num,int l,long v){
if(a[num].l==a[num].r){
a[num].le = v%dd;
a[num].ri = v%dd;
a[num].all = v%dd;
a[num].tot = v%dd;
}else{
int m = (a[num].l+a[num].r)>>1;
int le = num<<1;
int ri = le|1;
pushdown(num, le, ri);
if(l<=m){
update(le,l,v);
}
if(l>m){
update(ri,l,v);
}
pushup(num,le,ri);
}
}
static void pushup(int num,int le,int ri){
a[num].all = (a[le].all*a[ri].all)%dd;
a[num].le = (a[le].le + a[le].all*a[ri].le)%dd;
a[num].ri = (a[ri].ri + a[ri].all*a[le].ri)%dd;
a[num].tot = (a[le].tot + a[ri].tot + a[le].ri*a[ri].le)%dd;
//a[num].res[1] = Math.min(a[le].res[1],a[ri].res[1]);
}
static void pushdown(int num,int le,int ri){
}
int gcd(int a,int b){ return b==0?a: gcd(b,a%b);}
InputStream is;PrintWriter out;
void run() throws Exception {is = System.in;out = new PrintWriter(System.out);solve();out.flush();}
private byte[] inbuf = new byte[2];
public int lenbuf = 0, ptrbuf = 0;
private int readByte() {
if (lenbuf == -1) throw new InputMismatchException();
if (ptrbuf >= lenbuf) {
ptrbuf = 0;
try {lenbuf = is.read(inbuf);} catch (IOException e) {throw new InputMismatchException();}
if (lenbuf <= 0) return -1;
}
return inbuf[ptrbuf++];}
private boolean isSpaceChar(int c) {return !(c >= 33 && c <= 126);}
private int skip() {int b;while((b = readByte()) != -1 && isSpaceChar(b));return b;}
private double nd() {return Double.parseDouble(ns());}
private char nc() {return (char) skip();}
private char ncc() {int b;while((b = readByte()) != -1 && !(b >= 32 && b <= 126));return (char)b;}
private String ns() {int b = skip();StringBuilder sb = new StringBuilder();
while (!(isSpaceChar(b))) { // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);b = readByte(); }
return sb.toString();}
private char[] ns(int n) {char[] buf = new char[n];int b = skip(), p = 0;
while (p < n && !(isSpaceChar(b))) { buf[p++] = (char) b;b = readByte(); }
return n == p ? buf : Arrays.copyOf(buf, p);}
private String nline() {int b = skip();StringBuilder sb = new StringBuilder();
while (!isSpaceChar(b) || b == ' ') { sb.appendCodePoint(b);b = readByte(); }
return sb.toString();}
private char[][] nm(int n, int m) {char[][] a = new char[n][];for (int i = 0; i < n; i++) a[i] = ns(m);return a;}
private int[] na(int n) {int[] a = new int[n];for (int i = 0; i < n; i++) a[i] = ni();return a;}
private long[] nal(int n) { long[] a = new long[n];for (int i = 0; i < n; i++) a[i] = nl();return a;}
private int ni() { int num = 0, b; boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')){};
if (b == '-') { minus = true; b = readByte(); }
while (true) {
if (b >= '0' && b <= '9') num = (num << 3) + (num << 1) + (b - '0');
else return minus ? -num : num;
b = readByte();}}
private long nl() { long num = 0; int b;
boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')){};
if (b == '-') { minus = true; b = readByte(); }
while (true) {
if (b >= '0' && b <= '9') num = num * 10 + (b - '0');
else return minus ? -num : num;
b = readByte();}}
void print(Object obj){out.print(obj);}
void println(Object obj){out.println(obj);}
void println(){out.println();}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 6,345 | 2,500 |
2,720 |
import java.io.*;
import java.util.*;
public class Lcm
{
public static void main(String args[])throws Exception
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
PrintWriter pw=new PrintWriter(System.out);
long n=Long.parseLong(br.readLine());
if(n<=2)
pw.println(n);
else
{
if(n%6==0)
{
pw.println(((n-1)*(n-2)*(n-3)));
}
else if(n%2==0)
{
pw.println((n*(n-1)*(n-3)));
}
else
{
pw.println((n*(n-1)*(n-2)));
}
}
pw.flush();
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Lcm
{
public static void main(String args[])throws Exception
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
PrintWriter pw=new PrintWriter(System.out);
long n=Long.parseLong(br.readLine());
if(n<=2)
pw.println(n);
else
{
if(n%6==0)
{
pw.println(((n-1)*(n-2)*(n-3)));
}
else if(n%2==0)
{
pw.println((n*(n-1)*(n-3)));
}
else
{
pw.println((n*(n-1)*(n-2)));
}
}
pw.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Lcm
{
public static void main(String args[])throws Exception
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
PrintWriter pw=new PrintWriter(System.out);
long n=Long.parseLong(br.readLine());
if(n<=2)
pw.println(n);
else
{
if(n%6==0)
{
pw.println(((n-1)*(n-2)*(n-3)));
}
else if(n%2==0)
{
pw.println((n*(n-1)*(n-3)));
}
else
{
pw.println((n*(n-1)*(n-2)));
}
}
pw.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 464 | 2,714 |
4,180 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
public class A {
static double[][] a;
static int N;
static double[] memo;
static double dp(int alive)
{
int count = Integer.bitCount(alive);
if(count == N)
return 1;
if(memo[alive] > -5)
return memo[alive];
double ret = 0;
for(int j = 0; j < N; ++j)
if((alive & (1<<j)) == 0)
ret += die[j][alive | 1<<j] * dp(alive | 1<<j);
return memo[alive] = ret;
}
static double[][] die;
static void f()
{
die = new double[N][1<<N];
for(int i = 0; i < N; ++i)
for(int j = 0; j < 1<<N; ++j)
{
int count = Integer.bitCount(j);
if(count <= 1)
continue;
double prop = 1.0 / (count * (count - 1) >> 1);
for(int k = 0; k < N; ++k)
if((j & (1<<k)) != 0)
die[i][j] += prop * a[k][i];
}
}
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
N = sc.nextInt();
a = new double[N][N];
for(int i = 0; i < N; ++i)
for(int j = 0; j < N; ++j)
a[i][j] = sc.nextDouble();
memo = new double[1<<N];
f();
Arrays.fill(memo, -10);
for(int i = 0; i < N - 1; ++i)
out.printf("%.8f ", dp(1 << i));
out.printf("%.8f\n", dp(1 << N - 1));
out.flush();
out.close();
}
static class Scanner
{
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s){ br = new BufferedReader(new InputStreamReader(s));}
public String next() throws IOException
{
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public double nextDouble() throws NumberFormatException, IOException
{
return Double.parseDouble(next());
}
public int nextInt() throws IOException {return Integer.parseInt(next());}
public long nextLong() throws IOException {return Long.parseLong(next());}
public String nextLine() throws IOException {return br.readLine();}
public boolean ready() throws IOException {return br.ready();}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
public class A {
static double[][] a;
static int N;
static double[] memo;
static double dp(int alive)
{
int count = Integer.bitCount(alive);
if(count == N)
return 1;
if(memo[alive] > -5)
return memo[alive];
double ret = 0;
for(int j = 0; j < N; ++j)
if((alive & (1<<j)) == 0)
ret += die[j][alive | 1<<j] * dp(alive | 1<<j);
return memo[alive] = ret;
}
static double[][] die;
static void f()
{
die = new double[N][1<<N];
for(int i = 0; i < N; ++i)
for(int j = 0; j < 1<<N; ++j)
{
int count = Integer.bitCount(j);
if(count <= 1)
continue;
double prop = 1.0 / (count * (count - 1) >> 1);
for(int k = 0; k < N; ++k)
if((j & (1<<k)) != 0)
die[i][j] += prop * a[k][i];
}
}
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
N = sc.nextInt();
a = new double[N][N];
for(int i = 0; i < N; ++i)
for(int j = 0; j < N; ++j)
a[i][j] = sc.nextDouble();
memo = new double[1<<N];
f();
Arrays.fill(memo, -10);
for(int i = 0; i < N - 1; ++i)
out.printf("%.8f ", dp(1 << i));
out.printf("%.8f\n", dp(1 << N - 1));
out.flush();
out.close();
}
static class Scanner
{
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s){ br = new BufferedReader(new InputStreamReader(s));}
public String next() throws IOException
{
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public double nextDouble() throws NumberFormatException, IOException
{
return Double.parseDouble(next());
}
public int nextInt() throws IOException {return Integer.parseInt(next());}
public long nextLong() throws IOException {return Long.parseLong(next());}
public String nextLine() throws IOException {return br.readLine();}
public boolean ready() throws IOException {return br.ready();}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
public class A {
static double[][] a;
static int N;
static double[] memo;
static double dp(int alive)
{
int count = Integer.bitCount(alive);
if(count == N)
return 1;
if(memo[alive] > -5)
return memo[alive];
double ret = 0;
for(int j = 0; j < N; ++j)
if((alive & (1<<j)) == 0)
ret += die[j][alive | 1<<j] * dp(alive | 1<<j);
return memo[alive] = ret;
}
static double[][] die;
static void f()
{
die = new double[N][1<<N];
for(int i = 0; i < N; ++i)
for(int j = 0; j < 1<<N; ++j)
{
int count = Integer.bitCount(j);
if(count <= 1)
continue;
double prop = 1.0 / (count * (count - 1) >> 1);
for(int k = 0; k < N; ++k)
if((j & (1<<k)) != 0)
die[i][j] += prop * a[k][i];
}
}
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
N = sc.nextInt();
a = new double[N][N];
for(int i = 0; i < N; ++i)
for(int j = 0; j < N; ++j)
a[i][j] = sc.nextDouble();
memo = new double[1<<N];
f();
Arrays.fill(memo, -10);
for(int i = 0; i < N - 1; ++i)
out.printf("%.8f ", dp(1 << i));
out.printf("%.8f\n", dp(1 << N - 1));
out.flush();
out.close();
}
static class Scanner
{
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s){ br = new BufferedReader(new InputStreamReader(s));}
public String next() throws IOException
{
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public double nextDouble() throws NumberFormatException, IOException
{
return Double.parseDouble(next());
}
public int nextInt() throws IOException {return Integer.parseInt(next());}
public long nextLong() throws IOException {return Long.parseLong(next());}
public String nextLine() throws IOException {return br.readLine();}
public boolean ready() throws IOException {return br.ready();}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 989 | 4,169 |
1,073 |
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.Scanner;
public class Main {
static ArrayList<BigInteger> bs = new ArrayList<>();
static void getBs(int n, BigInteger k) {
BigInteger four = BigInteger.valueOf(4);
BigInteger tmp4 = BigInteger.valueOf(1);
BigInteger sum = BigInteger.ZERO;
for (int i = 1; i <= n; i++) {
sum = sum.add(tmp4);
bs.add(sum);
if (sum.compareTo(k) >= 0) break;
tmp4 = tmp4.multiply(four);
}
}
static int ss(int n, BigInteger k) {
bs = new ArrayList<>();
BigInteger two = BigInteger.valueOf(2);
BigInteger s1;
BigInteger ts = BigInteger.ZERO;
getBs(n - 1, k);
int idx = bs.size() - 1;
BigInteger tx = BigInteger.valueOf(-1);
int ans = -1;
for (int i = 1; i <= n; i++) {
two = two.shiftLeft(1);
s1 = two.add(BigInteger.valueOf(-i - 2));
if (idx >= 0) {
tx = tx.add(BigInteger.ONE).multiply(BigInteger.valueOf(2)).add(BigInteger.ONE);
ts = ts.add(tx.multiply(bs.get(idx--)));
}
if (k.compareTo(s1) >= 0) {
if (k.subtract(s1).compareTo(ts) <= 0) {
ans = n - i;
break;
}
}
}
return ans;
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int T = sc.nextInt();
while (T-- > 0) {
int n = sc.nextInt();
BigInteger k = sc.nextBigInteger();
int ans = ss(n, k);
if (ans == -1) {
System.out.println("NO");
} else {
System.out.println("YES " + ans);
}
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.Scanner;
public class Main {
static ArrayList<BigInteger> bs = new ArrayList<>();
static void getBs(int n, BigInteger k) {
BigInteger four = BigInteger.valueOf(4);
BigInteger tmp4 = BigInteger.valueOf(1);
BigInteger sum = BigInteger.ZERO;
for (int i = 1; i <= n; i++) {
sum = sum.add(tmp4);
bs.add(sum);
if (sum.compareTo(k) >= 0) break;
tmp4 = tmp4.multiply(four);
}
}
static int ss(int n, BigInteger k) {
bs = new ArrayList<>();
BigInteger two = BigInteger.valueOf(2);
BigInteger s1;
BigInteger ts = BigInteger.ZERO;
getBs(n - 1, k);
int idx = bs.size() - 1;
BigInteger tx = BigInteger.valueOf(-1);
int ans = -1;
for (int i = 1; i <= n; i++) {
two = two.shiftLeft(1);
s1 = two.add(BigInteger.valueOf(-i - 2));
if (idx >= 0) {
tx = tx.add(BigInteger.ONE).multiply(BigInteger.valueOf(2)).add(BigInteger.ONE);
ts = ts.add(tx.multiply(bs.get(idx--)));
}
if (k.compareTo(s1) >= 0) {
if (k.subtract(s1).compareTo(ts) <= 0) {
ans = n - i;
break;
}
}
}
return ans;
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int T = sc.nextInt();
while (T-- > 0) {
int n = sc.nextInt();
BigInteger k = sc.nextBigInteger();
int ans = ss(n, k);
if (ans == -1) {
System.out.println("NO");
} else {
System.out.println("YES " + ans);
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.Scanner;
public class Main {
static ArrayList<BigInteger> bs = new ArrayList<>();
static void getBs(int n, BigInteger k) {
BigInteger four = BigInteger.valueOf(4);
BigInteger tmp4 = BigInteger.valueOf(1);
BigInteger sum = BigInteger.ZERO;
for (int i = 1; i <= n; i++) {
sum = sum.add(tmp4);
bs.add(sum);
if (sum.compareTo(k) >= 0) break;
tmp4 = tmp4.multiply(four);
}
}
static int ss(int n, BigInteger k) {
bs = new ArrayList<>();
BigInteger two = BigInteger.valueOf(2);
BigInteger s1;
BigInteger ts = BigInteger.ZERO;
getBs(n - 1, k);
int idx = bs.size() - 1;
BigInteger tx = BigInteger.valueOf(-1);
int ans = -1;
for (int i = 1; i <= n; i++) {
two = two.shiftLeft(1);
s1 = two.add(BigInteger.valueOf(-i - 2));
if (idx >= 0) {
tx = tx.add(BigInteger.ONE).multiply(BigInteger.valueOf(2)).add(BigInteger.ONE);
ts = ts.add(tx.multiply(bs.get(idx--)));
}
if (k.compareTo(s1) >= 0) {
if (k.subtract(s1).compareTo(ts) <= 0) {
ans = n - i;
break;
}
}
}
return ans;
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int T = sc.nextInt();
while (T-- > 0) {
int n = sc.nextInt();
BigInteger k = sc.nextBigInteger();
int ans = ss(n, k);
if (ans == -1) {
System.out.println("NO");
} else {
System.out.println("YES " + ans);
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 778 | 1,072 |
257 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskD solver = new TaskD();
solver.solve(1, in, out);
out.close();
}
static class TaskD {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = in.nextInt();
}
int inv = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < i; j++) {
if (a[j] > a[i]) {
inv++;
}
}
}
int m = in.nextInt();
for (int i = 0; i < m; i++) {
int l = in.nextInt();
int r = in.nextInt();
int s = (r - l + 1) * (r - l) / 2;
inv = (inv + s) % 2;
out.println(inv % 2 == 0 ? "even" : "odd");
}
}
}
static class InputReader {
private BufferedReader reader;
private StringTokenizer stt;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
}
public String nextLine() {
try {
return reader.readLine();
} catch (IOException e) {
return null;
}
}
public String next() {
while (stt == null || !stt.hasMoreTokens()) {
stt = new StringTokenizer(nextLine());
}
return stt.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskD solver = new TaskD();
solver.solve(1, in, out);
out.close();
}
static class TaskD {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = in.nextInt();
}
int inv = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < i; j++) {
if (a[j] > a[i]) {
inv++;
}
}
}
int m = in.nextInt();
for (int i = 0; i < m; i++) {
int l = in.nextInt();
int r = in.nextInt();
int s = (r - l + 1) * (r - l) / 2;
inv = (inv + s) % 2;
out.println(inv % 2 == 0 ? "even" : "odd");
}
}
}
static class InputReader {
private BufferedReader reader;
private StringTokenizer stt;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
}
public String nextLine() {
try {
return reader.readLine();
} catch (IOException e) {
return null;
}
}
public String next() {
while (stt == null || !stt.hasMoreTokens()) {
stt = new StringTokenizer(nextLine());
}
return stt.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskD solver = new TaskD();
solver.solve(1, in, out);
out.close();
}
static class TaskD {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = in.nextInt();
}
int inv = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < i; j++) {
if (a[j] > a[i]) {
inv++;
}
}
}
int m = in.nextInt();
for (int i = 0; i < m; i++) {
int l = in.nextInt();
int r = in.nextInt();
int s = (r - l + 1) * (r - l) / 2;
inv = (inv + s) % 2;
out.println(inv % 2 == 0 ? "even" : "odd");
}
}
}
static class InputReader {
private BufferedReader reader;
private StringTokenizer stt;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
}
public String nextLine() {
try {
return reader.readLine();
} catch (IOException e) {
return null;
}
}
public String next() {
while (stt == null || !stt.hasMoreTokens()) {
stt = new StringTokenizer(nextLine());
}
return stt.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 830 | 257 |
848 |
import java.util.*;
import java.util.regex.*;
import java.text.*;
import java.math.*;
public class Main
{
Scanner cin;
int []prime;
int top;
void work()
{
cin=new Scanner(System.in);
int n=cin.nextInt();
int k=cin.nextInt();
top=0;
prime=new int[2000];
for(int i=2;i<=n;i++)
{
if(isprime(i))
prime[top++]=i;
}
int cnt=0;
for(int i=0;i<top;i++)
{
if(cando(prime[i]))
cnt++;
}
if(cnt>=k) System.out.println("YES");
else System.out.println("NO");
}
boolean cando(int n)
{
for(int i=0;i<top-1;i++)
{
if(prime[i]+prime[i+1]+1==n) return true;
}
return false;
}
boolean isprime(int n)
{
for(int i=2;i*i<=n;i++)
if(n%i==0)return false;
return true;
}
public static void main(String args[]) throws Exception
{
new Main().work();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.util.regex.*;
import java.text.*;
import java.math.*;
public class Main
{
Scanner cin;
int []prime;
int top;
void work()
{
cin=new Scanner(System.in);
int n=cin.nextInt();
int k=cin.nextInt();
top=0;
prime=new int[2000];
for(int i=2;i<=n;i++)
{
if(isprime(i))
prime[top++]=i;
}
int cnt=0;
for(int i=0;i<top;i++)
{
if(cando(prime[i]))
cnt++;
}
if(cnt>=k) System.out.println("YES");
else System.out.println("NO");
}
boolean cando(int n)
{
for(int i=0;i<top-1;i++)
{
if(prime[i]+prime[i+1]+1==n) return true;
}
return false;
}
boolean isprime(int n)
{
for(int i=2;i*i<=n;i++)
if(n%i==0)return false;
return true;
}
public static void main(String args[]) throws Exception
{
new Main().work();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.util.regex.*;
import java.text.*;
import java.math.*;
public class Main
{
Scanner cin;
int []prime;
int top;
void work()
{
cin=new Scanner(System.in);
int n=cin.nextInt();
int k=cin.nextInt();
top=0;
prime=new int[2000];
for(int i=2;i<=n;i++)
{
if(isprime(i))
prime[top++]=i;
}
int cnt=0;
for(int i=0;i<top;i++)
{
if(cando(prime[i]))
cnt++;
}
if(cnt>=k) System.out.println("YES");
else System.out.println("NO");
}
boolean cando(int n)
{
for(int i=0;i<top-1;i++)
{
if(prime[i]+prime[i+1]+1==n) return true;
}
return false;
}
boolean isprime(int n)
{
for(int i=2;i*i<=n;i++)
if(n%i==0)return false;
return true;
}
public static void main(String args[]) throws Exception
{
new Main().work();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 603 | 847 |
1,104 |
import java.io.*;
import java.util.*;
public class B {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
Task solver = new Task();
solver.solve(1, in, out);
out.close();
}
static class Task {
int n = 0;
int query(int p, InputReader in) {
p %= n;
if (p <= 0) p += n;
System.out.println("? " + p);
System.out.flush();
int x = in.nextInt();
return x;
}
public void solve(int testNumber, InputReader in, PrintWriter out) {
n = in.nextInt();
if (n % 4 != 0) {
out.println("! -1");
return;
}
int p = query(0, in);
int q = query(n / 2, in);
int l = 0;
int r = n / 2;
if (p == q) {
out.println("! " + (n / 2));
return;
}
while (l + 1 < r) {
int mid = (l + r) / 2;
int u = query(mid, in);
int v = query(mid + n / 2, in);
if (u == v) {
out.println("! " + (mid + n / 2));
return;
}
if ((p < q) == (u < v)) {
l = mid;
} else {
r = mid;
}
}
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class B {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
Task solver = new Task();
solver.solve(1, in, out);
out.close();
}
static class Task {
int n = 0;
int query(int p, InputReader in) {
p %= n;
if (p <= 0) p += n;
System.out.println("? " + p);
System.out.flush();
int x = in.nextInt();
return x;
}
public void solve(int testNumber, InputReader in, PrintWriter out) {
n = in.nextInt();
if (n % 4 != 0) {
out.println("! -1");
return;
}
int p = query(0, in);
int q = query(n / 2, in);
int l = 0;
int r = n / 2;
if (p == q) {
out.println("! " + (n / 2));
return;
}
while (l + 1 < r) {
int mid = (l + r) / 2;
int u = query(mid, in);
int v = query(mid + n / 2, in);
if (u == v) {
out.println("! " + (mid + n / 2));
return;
}
if ((p < q) == (u < v)) {
l = mid;
} else {
r = mid;
}
}
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class B {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
Task solver = new Task();
solver.solve(1, in, out);
out.close();
}
static class Task {
int n = 0;
int query(int p, InputReader in) {
p %= n;
if (p <= 0) p += n;
System.out.println("? " + p);
System.out.flush();
int x = in.nextInt();
return x;
}
public void solve(int testNumber, InputReader in, PrintWriter out) {
n = in.nextInt();
if (n % 4 != 0) {
out.println("! -1");
return;
}
int p = query(0, in);
int q = query(n / 2, in);
int l = 0;
int r = n / 2;
if (p == q) {
out.println("! " + (n / 2));
return;
}
while (l + 1 < r) {
int mid = (l + r) / 2;
int u = query(mid, in);
int v = query(mid + n / 2, in);
if (u == v) {
out.println("! " + (mid + n / 2));
return;
}
if ((p < q) == (u < v)) {
l = mid;
} else {
r = mid;
}
}
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 845 | 1,103 |
62 |
import java.io.BufferedOutputStream;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class e {
public static class FastReader {
BufferedReader br;
StringTokenizer st;
//it reads the data about the specified point and divide the data about it ,it is quite fast
//than using direct
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception r) {
r.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());//converts string to integer
}
double nextDouble() {
return Double.parseDouble(next());
}
long nextLong() {
return Long.parseLong(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (Exception r) {
r.printStackTrace();
}
return str;
}
}
static ArrayList<String>list1=new ArrayList<String>();
static void combine(String instr, StringBuffer outstr, int index,int k)
{
if(outstr.length()==k)
{
list1.add(outstr.toString());return;
}
if(outstr.toString().length()==0)
outstr.append(instr.charAt(index));
for (int i = 0; i < instr.length(); i++)
{
outstr.append(instr.charAt(i));
combine(instr, outstr, i + 1,k);
outstr.deleteCharAt(outstr.length() - 1);
}
index++;
}
static ArrayList<ArrayList<Integer>>l=new ArrayList<>();
static void comb(int n,int k,int ind,ArrayList<Integer>list)
{
if(k==0)
{
l.add(new ArrayList<>(list));
return;
}
for(int i=ind;i<=n;i++)
{
list.add(i);
comb(n,k-1,ind+1,list);
list.remove(list.size()-1);
}
}
public static PrintWriter out = new PrintWriter (new BufferedOutputStream(System.out));
public static void main(String[] args) {
// TODO Auto-generated method stub
FastReader in=new FastReader();
HashMap<Integer,Integer>map=new HashMap<Integer,Integer>();
int n=in.nextInt();
int r=in.nextInt();
double theta=(double)360/(double)n;
double b=1-((double)2/(double)(1-Math.cos((double)2*Math.PI/(double)n)));
double x=Math.sqrt(1-b)-1;
double ans=(double)r/(double)x;
System.out.println(ans);
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedOutputStream;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class e {
public static class FastReader {
BufferedReader br;
StringTokenizer st;
//it reads the data about the specified point and divide the data about it ,it is quite fast
//than using direct
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception r) {
r.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());//converts string to integer
}
double nextDouble() {
return Double.parseDouble(next());
}
long nextLong() {
return Long.parseLong(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (Exception r) {
r.printStackTrace();
}
return str;
}
}
static ArrayList<String>list1=new ArrayList<String>();
static void combine(String instr, StringBuffer outstr, int index,int k)
{
if(outstr.length()==k)
{
list1.add(outstr.toString());return;
}
if(outstr.toString().length()==0)
outstr.append(instr.charAt(index));
for (int i = 0; i < instr.length(); i++)
{
outstr.append(instr.charAt(i));
combine(instr, outstr, i + 1,k);
outstr.deleteCharAt(outstr.length() - 1);
}
index++;
}
static ArrayList<ArrayList<Integer>>l=new ArrayList<>();
static void comb(int n,int k,int ind,ArrayList<Integer>list)
{
if(k==0)
{
l.add(new ArrayList<>(list));
return;
}
for(int i=ind;i<=n;i++)
{
list.add(i);
comb(n,k-1,ind+1,list);
list.remove(list.size()-1);
}
}
public static PrintWriter out = new PrintWriter (new BufferedOutputStream(System.out));
public static void main(String[] args) {
// TODO Auto-generated method stub
FastReader in=new FastReader();
HashMap<Integer,Integer>map=new HashMap<Integer,Integer>();
int n=in.nextInt();
int r=in.nextInt();
double theta=(double)360/(double)n;
double b=1-((double)2/(double)(1-Math.cos((double)2*Math.PI/(double)n)));
double x=Math.sqrt(1-b)-1;
double ans=(double)r/(double)x;
System.out.println(ans);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedOutputStream;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class e {
public static class FastReader {
BufferedReader br;
StringTokenizer st;
//it reads the data about the specified point and divide the data about it ,it is quite fast
//than using direct
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception r) {
r.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());//converts string to integer
}
double nextDouble() {
return Double.parseDouble(next());
}
long nextLong() {
return Long.parseLong(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (Exception r) {
r.printStackTrace();
}
return str;
}
}
static ArrayList<String>list1=new ArrayList<String>();
static void combine(String instr, StringBuffer outstr, int index,int k)
{
if(outstr.length()==k)
{
list1.add(outstr.toString());return;
}
if(outstr.toString().length()==0)
outstr.append(instr.charAt(index));
for (int i = 0; i < instr.length(); i++)
{
outstr.append(instr.charAt(i));
combine(instr, outstr, i + 1,k);
outstr.deleteCharAt(outstr.length() - 1);
}
index++;
}
static ArrayList<ArrayList<Integer>>l=new ArrayList<>();
static void comb(int n,int k,int ind,ArrayList<Integer>list)
{
if(k==0)
{
l.add(new ArrayList<>(list));
return;
}
for(int i=ind;i<=n;i++)
{
list.add(i);
comb(n,k-1,ind+1,list);
list.remove(list.size()-1);
}
}
public static PrintWriter out = new PrintWriter (new BufferedOutputStream(System.out));
public static void main(String[] args) {
// TODO Auto-generated method stub
FastReader in=new FastReader();
HashMap<Integer,Integer>map=new HashMap<Integer,Integer>();
int n=in.nextInt();
int r=in.nextInt();
double theta=(double)360/(double)n;
double b=1-((double)2/(double)(1-Math.cos((double)2*Math.PI/(double)n)));
double x=Math.sqrt(1-b)-1;
double ans=(double)r/(double)x;
System.out.println(ans);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 900 | 62 |
1,084 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author kessido
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
DOlyaAndMagicalSquare solver = new DOlyaAndMagicalSquare();
int testCount = Integer.parseInt(in.next());
for (int i = 1; i <= testCount; i++)
solver.solve(i, in, out);
out.close();
}
static class DOlyaAndMagicalSquare {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.NextInt();
long k = in.NextLong();
if (k == 0) {
out.println("YES " + n);
return;
}
long operationTillNow = 0, numberOfCubeOnTheSide = 1;
ArrayList<CubeCount> cubes = new ArrayList<>();
for (int i = n - 1; i >= 0; i--) {
cubes.add(new CubeCount(i, (numberOfCubeOnTheSide - 1) * 2 * 2 + 1));
operationTillNow = operationTillNow + 2 * numberOfCubeOnTheSide - 1;
numberOfCubeOnTheSide *= 2;
long operationLeft = k - operationTillNow;
if (operationLeft == 0) {
out.println("YES " + i);
return;
} else if (operationLeft < 0) {
out.println("NO");
return;
}
for (CubeCount c : cubes) {
if (!c.hasLessThen(operationLeft)) {
out.println("YES " + i);
return;
} else {
operationLeft = c.removeMeFrom(operationLeft);
}
}
if (operationLeft <= 0) {
out.println("YES " + i);
return;
}
}
out.println("NO");
return;
}
class CubeCount {
int sideSizeLogScale;
long repeats;
public CubeCount(int sideSizeLogScale, long repeats) {
this.repeats = repeats;
this.sideSizeLogScale = sideSizeLogScale;
}
public boolean hasLessThen(long k) {
return hasLessThen(k, sideSizeLogScale, repeats);
}
private boolean hasLessThen(long k, int sideLog, long repeats) {
while (true) {
if (k <= 0) return false;
if (sideLog == 0) return true;
k -= repeats;
sideLog--;
repeats *= 4;
}
}
public long removeMeFrom(long k) {
return removeMeFrom(k, sideSizeLogScale, repeats);
}
private long removeMeFrom(long k, int sideLog, long repeats) {
while (true) {
if (sideLog == 0) return k;
k -= repeats;
sideLog--;
repeats *= 4;
}
}
}
}
static class InputReader {
BufferedReader reader;
StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine(), " \t\n\r\f,");
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int NextInt() {
return Integer.parseInt(next());
}
public long NextLong() {
return Long.parseLong(next());
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author kessido
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
DOlyaAndMagicalSquare solver = new DOlyaAndMagicalSquare();
int testCount = Integer.parseInt(in.next());
for (int i = 1; i <= testCount; i++)
solver.solve(i, in, out);
out.close();
}
static class DOlyaAndMagicalSquare {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.NextInt();
long k = in.NextLong();
if (k == 0) {
out.println("YES " + n);
return;
}
long operationTillNow = 0, numberOfCubeOnTheSide = 1;
ArrayList<CubeCount> cubes = new ArrayList<>();
for (int i = n - 1; i >= 0; i--) {
cubes.add(new CubeCount(i, (numberOfCubeOnTheSide - 1) * 2 * 2 + 1));
operationTillNow = operationTillNow + 2 * numberOfCubeOnTheSide - 1;
numberOfCubeOnTheSide *= 2;
long operationLeft = k - operationTillNow;
if (operationLeft == 0) {
out.println("YES " + i);
return;
} else if (operationLeft < 0) {
out.println("NO");
return;
}
for (CubeCount c : cubes) {
if (!c.hasLessThen(operationLeft)) {
out.println("YES " + i);
return;
} else {
operationLeft = c.removeMeFrom(operationLeft);
}
}
if (operationLeft <= 0) {
out.println("YES " + i);
return;
}
}
out.println("NO");
return;
}
class CubeCount {
int sideSizeLogScale;
long repeats;
public CubeCount(int sideSizeLogScale, long repeats) {
this.repeats = repeats;
this.sideSizeLogScale = sideSizeLogScale;
}
public boolean hasLessThen(long k) {
return hasLessThen(k, sideSizeLogScale, repeats);
}
private boolean hasLessThen(long k, int sideLog, long repeats) {
while (true) {
if (k <= 0) return false;
if (sideLog == 0) return true;
k -= repeats;
sideLog--;
repeats *= 4;
}
}
public long removeMeFrom(long k) {
return removeMeFrom(k, sideSizeLogScale, repeats);
}
private long removeMeFrom(long k, int sideLog, long repeats) {
while (true) {
if (sideLog == 0) return k;
k -= repeats;
sideLog--;
repeats *= 4;
}
}
}
}
static class InputReader {
BufferedReader reader;
StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine(), " \t\n\r\f,");
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int NextInt() {
return Integer.parseInt(next());
}
public long NextLong() {
return Long.parseLong(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author kessido
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
DOlyaAndMagicalSquare solver = new DOlyaAndMagicalSquare();
int testCount = Integer.parseInt(in.next());
for (int i = 1; i <= testCount; i++)
solver.solve(i, in, out);
out.close();
}
static class DOlyaAndMagicalSquare {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.NextInt();
long k = in.NextLong();
if (k == 0) {
out.println("YES " + n);
return;
}
long operationTillNow = 0, numberOfCubeOnTheSide = 1;
ArrayList<CubeCount> cubes = new ArrayList<>();
for (int i = n - 1; i >= 0; i--) {
cubes.add(new CubeCount(i, (numberOfCubeOnTheSide - 1) * 2 * 2 + 1));
operationTillNow = operationTillNow + 2 * numberOfCubeOnTheSide - 1;
numberOfCubeOnTheSide *= 2;
long operationLeft = k - operationTillNow;
if (operationLeft == 0) {
out.println("YES " + i);
return;
} else if (operationLeft < 0) {
out.println("NO");
return;
}
for (CubeCount c : cubes) {
if (!c.hasLessThen(operationLeft)) {
out.println("YES " + i);
return;
} else {
operationLeft = c.removeMeFrom(operationLeft);
}
}
if (operationLeft <= 0) {
out.println("YES " + i);
return;
}
}
out.println("NO");
return;
}
class CubeCount {
int sideSizeLogScale;
long repeats;
public CubeCount(int sideSizeLogScale, long repeats) {
this.repeats = repeats;
this.sideSizeLogScale = sideSizeLogScale;
}
public boolean hasLessThen(long k) {
return hasLessThen(k, sideSizeLogScale, repeats);
}
private boolean hasLessThen(long k, int sideLog, long repeats) {
while (true) {
if (k <= 0) return false;
if (sideLog == 0) return true;
k -= repeats;
sideLog--;
repeats *= 4;
}
}
public long removeMeFrom(long k) {
return removeMeFrom(k, sideSizeLogScale, repeats);
}
private long removeMeFrom(long k, int sideLog, long repeats) {
while (true) {
if (sideLog == 0) return k;
k -= repeats;
sideLog--;
repeats *= 4;
}
}
}
}
static class InputReader {
BufferedReader reader;
StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine(), " \t\n\r\f,");
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int NextInt() {
return Integer.parseInt(next());
}
public long NextLong() {
return Long.parseLong(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,198 | 1,083 |
596 |
import javafx.collections.transformation.SortedList;
import java.io.IOException;
import java.io.InputStream;
import java.lang.reflect.Array;
import java.util.*;
public class Main {
public static void main(String[] args) throws IOException {
Scan scan = new Scan();
int n = scan.scanInt();
long d = scan.scanLong();
long a[]=new long[n];
for(int i=0;i<n;i++){
a[i]=scan.scanLong();
}
Arrays.sort(a);
int count=0;
for(int i=0;i<n-1;i++){
if((a[i+1]-d)>(a[i]+d)){
count+=2;
}else if((a[i+1]-d)==(a[i]+d)){
count++;
}
}
count+=2;
System.out.println(count);
}
static class Scan
{
private byte[] buf=new byte[1024];
private int index;
private InputStream in;
private int total;
public Scan()
{
in=System.in;
}
public int scan()throws IOException
{
if(total<0)
throw new InputMismatchException();
if(index>=total)
{
index=0;
total=in.read(buf);
if(total<=0)
return -1;
}
return buf[index++];
}
public int scanInt()throws IOException
{
int integer=0;
int n=scan();
while(isWhiteSpace(n))
n=scan();
int neg=1;
if(n=='-')
{
neg=-1;
n=scan();
}
while(!isWhiteSpace(n))
{
if(n>='0'&&n<='9')
{
integer*=10;
integer+=n-'0';
n=scan();
}
else throw new InputMismatchException();
}
return neg*integer;
}
public char scanchar()throws IOException
{
int n=scan();
while(isWhiteSpace(n))
n=scan();
return (char)n;
// int neg=1;
// while(!isWhiteSpace(n))
// {
// if(n>='0'&&n<='9')
// {
// integer*=10;
// integer+=n-'0';
// n=scan();
// }
// else throw new InputMismatchException();
// }
// return neg*integer;
}
public long scanLong()throws IOException
{
long lng=0;
int n=scan();
while(isWhiteSpace(n))
n=scan();
int neg=1;
if(n=='-')
{
neg=-1;
n=scan();
}
while(!isWhiteSpace(n) && n!='.')
{
if(n>='0'&&n<='9')
{
lng*=10;
lng+=n-'0';
n=scan();
}
else throw new InputMismatchException();
}
if(n=='.')
{
n=scan();
long temp=1;
while(!isWhiteSpace(n))
{
if(n>='0'&&n<='9')
{
temp/=10;
lng+=(n-'0')*temp;
n=scan();
}
else throw new InputMismatchException();
}
}
return neg*lng;
}
public double scanDouble()throws IOException
{
double doub=0;
int n=scan();
while(isWhiteSpace(n))
n=scan();
int neg=1;
if(n=='-')
{
neg=-1;
n=scan();
}
while(!isWhiteSpace(n)&&n!='.')
{
if(n>='0'&&n<='9')
{
doub*=10;
doub+=n-'0';
n=scan();
}
else throw new InputMismatchException();
}
if(n=='.')
{
n=scan();
double temp=1;
while(!isWhiteSpace(n))
{
if(n>='0'&&n<='9')
{
temp/=10;
doub+=(n-'0')*temp;
n=scan();
}
else throw new InputMismatchException();
}
}
return doub*neg;
}
public String scanString()throws IOException
{
StringBuilder sb=new StringBuilder();
int n=scan();
while(isWhiteSpace(n))
n=scan();
while(!isWhiteSpace(n))
{
sb.append((char)n);
n=scan();
}
return sb.toString();
}
private boolean isWhiteSpace(int n)
{
if(n==' '||n=='\n'||n=='\r'||n=='\t'||n==-1)
return true;
return false;
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import javafx.collections.transformation.SortedList;
import java.io.IOException;
import java.io.InputStream;
import java.lang.reflect.Array;
import java.util.*;
public class Main {
public static void main(String[] args) throws IOException {
Scan scan = new Scan();
int n = scan.scanInt();
long d = scan.scanLong();
long a[]=new long[n];
for(int i=0;i<n;i++){
a[i]=scan.scanLong();
}
Arrays.sort(a);
int count=0;
for(int i=0;i<n-1;i++){
if((a[i+1]-d)>(a[i]+d)){
count+=2;
}else if((a[i+1]-d)==(a[i]+d)){
count++;
}
}
count+=2;
System.out.println(count);
}
static class Scan
{
private byte[] buf=new byte[1024];
private int index;
private InputStream in;
private int total;
public Scan()
{
in=System.in;
}
public int scan()throws IOException
{
if(total<0)
throw new InputMismatchException();
if(index>=total)
{
index=0;
total=in.read(buf);
if(total<=0)
return -1;
}
return buf[index++];
}
public int scanInt()throws IOException
{
int integer=0;
int n=scan();
while(isWhiteSpace(n))
n=scan();
int neg=1;
if(n=='-')
{
neg=-1;
n=scan();
}
while(!isWhiteSpace(n))
{
if(n>='0'&&n<='9')
{
integer*=10;
integer+=n-'0';
n=scan();
}
else throw new InputMismatchException();
}
return neg*integer;
}
public char scanchar()throws IOException
{
int n=scan();
while(isWhiteSpace(n))
n=scan();
return (char)n;
// int neg=1;
// while(!isWhiteSpace(n))
// {
// if(n>='0'&&n<='9')
// {
// integer*=10;
// integer+=n-'0';
// n=scan();
// }
// else throw new InputMismatchException();
// }
// return neg*integer;
}
public long scanLong()throws IOException
{
long lng=0;
int n=scan();
while(isWhiteSpace(n))
n=scan();
int neg=1;
if(n=='-')
{
neg=-1;
n=scan();
}
while(!isWhiteSpace(n) && n!='.')
{
if(n>='0'&&n<='9')
{
lng*=10;
lng+=n-'0';
n=scan();
}
else throw new InputMismatchException();
}
if(n=='.')
{
n=scan();
long temp=1;
while(!isWhiteSpace(n))
{
if(n>='0'&&n<='9')
{
temp/=10;
lng+=(n-'0')*temp;
n=scan();
}
else throw new InputMismatchException();
}
}
return neg*lng;
}
public double scanDouble()throws IOException
{
double doub=0;
int n=scan();
while(isWhiteSpace(n))
n=scan();
int neg=1;
if(n=='-')
{
neg=-1;
n=scan();
}
while(!isWhiteSpace(n)&&n!='.')
{
if(n>='0'&&n<='9')
{
doub*=10;
doub+=n-'0';
n=scan();
}
else throw new InputMismatchException();
}
if(n=='.')
{
n=scan();
double temp=1;
while(!isWhiteSpace(n))
{
if(n>='0'&&n<='9')
{
temp/=10;
doub+=(n-'0')*temp;
n=scan();
}
else throw new InputMismatchException();
}
}
return doub*neg;
}
public String scanString()throws IOException
{
StringBuilder sb=new StringBuilder();
int n=scan();
while(isWhiteSpace(n))
n=scan();
while(!isWhiteSpace(n))
{
sb.append((char)n);
n=scan();
}
return sb.toString();
}
private boolean isWhiteSpace(int n)
{
if(n==' '||n=='\n'||n=='\r'||n=='\t'||n==-1)
return true;
return false;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import javafx.collections.transformation.SortedList;
import java.io.IOException;
import java.io.InputStream;
import java.lang.reflect.Array;
import java.util.*;
public class Main {
public static void main(String[] args) throws IOException {
Scan scan = new Scan();
int n = scan.scanInt();
long d = scan.scanLong();
long a[]=new long[n];
for(int i=0;i<n;i++){
a[i]=scan.scanLong();
}
Arrays.sort(a);
int count=0;
for(int i=0;i<n-1;i++){
if((a[i+1]-d)>(a[i]+d)){
count+=2;
}else if((a[i+1]-d)==(a[i]+d)){
count++;
}
}
count+=2;
System.out.println(count);
}
static class Scan
{
private byte[] buf=new byte[1024];
private int index;
private InputStream in;
private int total;
public Scan()
{
in=System.in;
}
public int scan()throws IOException
{
if(total<0)
throw new InputMismatchException();
if(index>=total)
{
index=0;
total=in.read(buf);
if(total<=0)
return -1;
}
return buf[index++];
}
public int scanInt()throws IOException
{
int integer=0;
int n=scan();
while(isWhiteSpace(n))
n=scan();
int neg=1;
if(n=='-')
{
neg=-1;
n=scan();
}
while(!isWhiteSpace(n))
{
if(n>='0'&&n<='9')
{
integer*=10;
integer+=n-'0';
n=scan();
}
else throw new InputMismatchException();
}
return neg*integer;
}
public char scanchar()throws IOException
{
int n=scan();
while(isWhiteSpace(n))
n=scan();
return (char)n;
// int neg=1;
// while(!isWhiteSpace(n))
// {
// if(n>='0'&&n<='9')
// {
// integer*=10;
// integer+=n-'0';
// n=scan();
// }
// else throw new InputMismatchException();
// }
// return neg*integer;
}
public long scanLong()throws IOException
{
long lng=0;
int n=scan();
while(isWhiteSpace(n))
n=scan();
int neg=1;
if(n=='-')
{
neg=-1;
n=scan();
}
while(!isWhiteSpace(n) && n!='.')
{
if(n>='0'&&n<='9')
{
lng*=10;
lng+=n-'0';
n=scan();
}
else throw new InputMismatchException();
}
if(n=='.')
{
n=scan();
long temp=1;
while(!isWhiteSpace(n))
{
if(n>='0'&&n<='9')
{
temp/=10;
lng+=(n-'0')*temp;
n=scan();
}
else throw new InputMismatchException();
}
}
return neg*lng;
}
public double scanDouble()throws IOException
{
double doub=0;
int n=scan();
while(isWhiteSpace(n))
n=scan();
int neg=1;
if(n=='-')
{
neg=-1;
n=scan();
}
while(!isWhiteSpace(n)&&n!='.')
{
if(n>='0'&&n<='9')
{
doub*=10;
doub+=n-'0';
n=scan();
}
else throw new InputMismatchException();
}
if(n=='.')
{
n=scan();
double temp=1;
while(!isWhiteSpace(n))
{
if(n>='0'&&n<='9')
{
temp/=10;
doub+=(n-'0')*temp;
n=scan();
}
else throw new InputMismatchException();
}
}
return doub*neg;
}
public String scanString()throws IOException
{
StringBuilder sb=new StringBuilder();
int n=scan();
while(isWhiteSpace(n))
n=scan();
while(!isWhiteSpace(n))
{
sb.append((char)n);
n=scan();
}
return sb.toString();
}
private boolean isWhiteSpace(int n)
{
if(n==' '||n=='\n'||n=='\r'||n=='\t'||n==-1)
return true;
return false;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,370 | 595 |
2,608 |
import java.util.*;
import java.io.*;
import java.text.*;
import java.math.*;
import static java.lang.Integer.*;
import static java.lang.Double.*;
import java.lang.Math.*;
public class A {
public static void main(String[] args) throws Exception {
new A().run();
}
public void run() throws Exception {
FastIO file = new FastIO();
int n = file.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) a[i] = file.nextInt();
Arrays.sort(a);
boolean[] used = new boolean[n];
int count = 0;
for (int i = 0; i < n; i++) {
if (!used[i]) {
count++;
for (int j = i; j < n; j++) {
if (a[j] % a[i] == 0) {
used[j] = true;
}
}
}
}
System.out.println(count);
}
public static class FastIO {
BufferedReader br;
StringTokenizer st;
public FastIO() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static long pow(long n, long p, long mod) {
if (p == 0)
return 1;
if (p == 1)
return n % mod;
if (p % 2 == 0) {
long temp = pow(n, p / 2, mod);
return (temp * temp) % mod;
} else {
long temp = pow(n, (p - 1) / 2, mod);
temp = (temp * temp) % mod;
return (temp * n) % mod;
}
}
public static long pow(long n, long p) {
if (p == 0)
return 1;
if (p == 1)
return n;
if (p % 2 == 0) {
long temp = pow(n, p / 2);
return (temp * temp);
} else {
long temp = pow(n, (p - 1) / 2);
temp = (temp * temp);
return (temp * n);
}
}
public static long gcd(long x, long y) {
if (x == 0)
return y;
else
return gcd(y % x, x);
}
public static boolean isPrime(int n) {
if (n <= 1)
return false;
if (n <= 3)
return true;
if (n % 2 == 0 || n % 3 == 0)
return false;
for (int i = 5; i * i <= n; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0)
return false;
return true;
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.text.*;
import java.math.*;
import static java.lang.Integer.*;
import static java.lang.Double.*;
import java.lang.Math.*;
public class A {
public static void main(String[] args) throws Exception {
new A().run();
}
public void run() throws Exception {
FastIO file = new FastIO();
int n = file.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) a[i] = file.nextInt();
Arrays.sort(a);
boolean[] used = new boolean[n];
int count = 0;
for (int i = 0; i < n; i++) {
if (!used[i]) {
count++;
for (int j = i; j < n; j++) {
if (a[j] % a[i] == 0) {
used[j] = true;
}
}
}
}
System.out.println(count);
}
public static class FastIO {
BufferedReader br;
StringTokenizer st;
public FastIO() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static long pow(long n, long p, long mod) {
if (p == 0)
return 1;
if (p == 1)
return n % mod;
if (p % 2 == 0) {
long temp = pow(n, p / 2, mod);
return (temp * temp) % mod;
} else {
long temp = pow(n, (p - 1) / 2, mod);
temp = (temp * temp) % mod;
return (temp * n) % mod;
}
}
public static long pow(long n, long p) {
if (p == 0)
return 1;
if (p == 1)
return n;
if (p % 2 == 0) {
long temp = pow(n, p / 2);
return (temp * temp);
} else {
long temp = pow(n, (p - 1) / 2);
temp = (temp * temp);
return (temp * n);
}
}
public static long gcd(long x, long y) {
if (x == 0)
return y;
else
return gcd(y % x, x);
}
public static boolean isPrime(int n) {
if (n <= 1)
return false;
if (n <= 3)
return true;
if (n % 2 == 0 || n % 3 == 0)
return false;
for (int i = 5; i * i <= n; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0)
return false;
return true;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.text.*;
import java.math.*;
import static java.lang.Integer.*;
import static java.lang.Double.*;
import java.lang.Math.*;
public class A {
public static void main(String[] args) throws Exception {
new A().run();
}
public void run() throws Exception {
FastIO file = new FastIO();
int n = file.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) a[i] = file.nextInt();
Arrays.sort(a);
boolean[] used = new boolean[n];
int count = 0;
for (int i = 0; i < n; i++) {
if (!used[i]) {
count++;
for (int j = i; j < n; j++) {
if (a[j] % a[i] == 0) {
used[j] = true;
}
}
}
}
System.out.println(count);
}
public static class FastIO {
BufferedReader br;
StringTokenizer st;
public FastIO() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static long pow(long n, long p, long mod) {
if (p == 0)
return 1;
if (p == 1)
return n % mod;
if (p % 2 == 0) {
long temp = pow(n, p / 2, mod);
return (temp * temp) % mod;
} else {
long temp = pow(n, (p - 1) / 2, mod);
temp = (temp * temp) % mod;
return (temp * n) % mod;
}
}
public static long pow(long n, long p) {
if (p == 0)
return 1;
if (p == 1)
return n;
if (p % 2 == 0) {
long temp = pow(n, p / 2);
return (temp * temp);
} else {
long temp = pow(n, (p - 1) / 2);
temp = (temp * temp);
return (temp * n);
}
}
public static long gcd(long x, long y) {
if (x == 0)
return y;
else
return gcd(y % x, x);
}
public static boolean isPrime(int n) {
if (n <= 1)
return false;
if (n <= 3)
return true;
if (n % 2 == 0 || n % 3 == 0)
return false;
for (int i = 5; i * i <= n; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0)
return false;
return true;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,113 | 2,602 |
41 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
public class D909 {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
char[] line = br.readLine().toCharArray();
int n = line.length;
int l = 0;
ArrayList<Node> groups = new ArrayList<>();
Node node = new Node(line[0], 1);
groups.add(node);
for (int i = 1; i < n; i++) {
if (line[i] == groups.get(l).letter) {
groups.get(l).count++;
} else {
node = new Node(line[i], 1);
groups.add(node);
l++;
}
}
int moves = 0;
ArrayList<Node> temp = new ArrayList<>();
while (groups.size() > 1) {
moves++;
l = groups.size();
groups.get(0).count--;
groups.get(l - 1).count--;
for (int i = 1; i < l - 1; i++) {
groups.get(i).count -= 2;
}
int p;
for (p = 0; p < l; p++) {
if (groups.get(p).count > 0) {
temp.add(groups.get(p));
break;
}
}
int lTemp = temp.size();
for (p++; p < l; p++) {
if (groups.get(p).count <= 0) {
continue;
}
if (groups.get(p).letter == temp.get(lTemp - 1).letter) {
temp.get(lTemp - 1).count += groups.get(p).count;
} else {
temp.add(groups.get(p));
lTemp++;
}
}
groups.clear();
groups.addAll(temp);
temp.clear();
}
System.out.println(moves);
}
private static class Node {
char letter;
int count;
Node(char letter, int count) {
this.letter = letter;
this.count = count;
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
public class D909 {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
char[] line = br.readLine().toCharArray();
int n = line.length;
int l = 0;
ArrayList<Node> groups = new ArrayList<>();
Node node = new Node(line[0], 1);
groups.add(node);
for (int i = 1; i < n; i++) {
if (line[i] == groups.get(l).letter) {
groups.get(l).count++;
} else {
node = new Node(line[i], 1);
groups.add(node);
l++;
}
}
int moves = 0;
ArrayList<Node> temp = new ArrayList<>();
while (groups.size() > 1) {
moves++;
l = groups.size();
groups.get(0).count--;
groups.get(l - 1).count--;
for (int i = 1; i < l - 1; i++) {
groups.get(i).count -= 2;
}
int p;
for (p = 0; p < l; p++) {
if (groups.get(p).count > 0) {
temp.add(groups.get(p));
break;
}
}
int lTemp = temp.size();
for (p++; p < l; p++) {
if (groups.get(p).count <= 0) {
continue;
}
if (groups.get(p).letter == temp.get(lTemp - 1).letter) {
temp.get(lTemp - 1).count += groups.get(p).count;
} else {
temp.add(groups.get(p));
lTemp++;
}
}
groups.clear();
groups.addAll(temp);
temp.clear();
}
System.out.println(moves);
}
private static class Node {
char letter;
int count;
Node(char letter, int count) {
this.letter = letter;
this.count = count;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
public class D909 {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
char[] line = br.readLine().toCharArray();
int n = line.length;
int l = 0;
ArrayList<Node> groups = new ArrayList<>();
Node node = new Node(line[0], 1);
groups.add(node);
for (int i = 1; i < n; i++) {
if (line[i] == groups.get(l).letter) {
groups.get(l).count++;
} else {
node = new Node(line[i], 1);
groups.add(node);
l++;
}
}
int moves = 0;
ArrayList<Node> temp = new ArrayList<>();
while (groups.size() > 1) {
moves++;
l = groups.size();
groups.get(0).count--;
groups.get(l - 1).count--;
for (int i = 1; i < l - 1; i++) {
groups.get(i).count -= 2;
}
int p;
for (p = 0; p < l; p++) {
if (groups.get(p).count > 0) {
temp.add(groups.get(p));
break;
}
}
int lTemp = temp.size();
for (p++; p < l; p++) {
if (groups.get(p).count <= 0) {
continue;
}
if (groups.get(p).letter == temp.get(lTemp - 1).letter) {
temp.get(lTemp - 1).count += groups.get(p).count;
} else {
temp.add(groups.get(p));
lTemp++;
}
}
groups.clear();
groups.addAll(temp);
temp.clear();
}
System.out.println(moves);
}
private static class Node {
char letter;
int count;
Node(char letter, int count) {
this.letter = letter;
this.count = count;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 788 | 41 |
24 |
import java.util.*;
public class Main {
static int n=5;
static int[] arr=new int[5];
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n=sc.nextInt();
int arr[]=new int[n];
for (int i=0;i<n;i++)
{
arr[i]=sc.nextInt();
}
for (int i=0;i<n;i++)
{
if (arr[i]>=0)
{
arr[i]=-arr[i]-1;
}
}
if (n%2!=0)
{
int min=0;
for (int i=1;i<n;i++)
{
if (arr[i]<arr[min])
min=i;
}
arr[min]=-arr[min]-1;
}
for (int x:arr)
{
System.out.print(x + " ");
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
public class Main {
static int n=5;
static int[] arr=new int[5];
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n=sc.nextInt();
int arr[]=new int[n];
for (int i=0;i<n;i++)
{
arr[i]=sc.nextInt();
}
for (int i=0;i<n;i++)
{
if (arr[i]>=0)
{
arr[i]=-arr[i]-1;
}
}
if (n%2!=0)
{
int min=0;
for (int i=1;i<n;i++)
{
if (arr[i]<arr[min])
min=i;
}
arr[min]=-arr[min]-1;
}
for (int x:arr)
{
System.out.print(x + " ");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
public class Main {
static int n=5;
static int[] arr=new int[5];
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n=sc.nextInt();
int arr[]=new int[n];
for (int i=0;i<n;i++)
{
arr[i]=sc.nextInt();
}
for (int i=0;i<n;i++)
{
if (arr[i]>=0)
{
arr[i]=-arr[i]-1;
}
}
if (n%2!=0)
{
int min=0;
for (int i=1;i<n;i++)
{
if (arr[i]<arr[min])
min=i;
}
arr[min]=-arr[min]-1;
}
for (int x:arr)
{
System.out.print(x + " ");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 547 | 24 |
857 |
import java.util.*;
import java.io.*;
public class A{
public static void main(String args[]){
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int ans = 0;
for(int i = 1; i <= n; i++){
ans += ((i*2) <= n) ? i : n-i+1;
}
System.out.println(ans);
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class A{
public static void main(String args[]){
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int ans = 0;
for(int i = 1; i <= n; i++){
ans += ((i*2) <= n) ? i : n-i+1;
}
System.out.println(ans);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class A{
public static void main(String args[]){
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int ans = 0;
for(int i = 1; i <= n; i++){
ans += ((i*2) <= n) ? i : n-i+1;
}
System.out.println(ans);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 420 | 856 |
2,344 |
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.InputMismatchException;
import java.util.NoSuchElementException;
public class Main {
static PrintWriter out;
static InputReader ir;
static void solve() {
int n=ir.nextInt();
int[] a=ir.nextIntArray(n);
int m=ir.nextInt();
long ret=mergeSort(a,0,n)%2;
int p,q;
for(int i=0;i<m;i++){
p=ir.nextInt()-1;
q=ir.nextInt()-1;
if((q-p)%4==1||(q-p)%4==2)
ret^=1;
f(ret);
}
}
public static void f(long a){
if(a==0){
out.println("even");
}
else
out.println("odd");
}
public static long mergeSort(int[] a, int left, int right) {
long cnt = 0;
if (left + 1 < right) {
int mid = (left + right) / 2;
cnt += mergeSort(a, left, mid);
cnt += mergeSort(a, mid, right);
cnt += merge(a, left, mid, right);
}
return cnt;
}
public static long merge(int[] a, int left, int mid, int right) {
long cnt = 0;
int n1 = mid - left;
int n2 = right - mid;
int[] l = new int[n1 + 1];
int[] r = new int[n2 + 1];
for (int i = 0; i < n1; i++) {
l[i] = a[left + i];
}
for (int i = 0; i < n2; i++) {
r[i] = a[mid + i];
}
l[n1] = Integer.MAX_VALUE;
r[n2] = Integer.MAX_VALUE;
for (int i = 0, j = 0, k = left; k < right; k++) {
if (l[i] <= r[j]) {
a[k] = l[i];
i++;
} else {
a[k] = r[j];
j++;
cnt += n1 - i;
}
}
return cnt;
}
public static void main(String[] args) throws Exception {
ir = new InputReader(System.in);
out = new PrintWriter(System.out);
solve();
out.flush();
}
static class InputReader {
private InputStream in;
private byte[] buffer = new byte[1024];
private int curbuf;
private int lenbuf;
public InputReader(InputStream in) {
this.in = in;
this.curbuf = this.lenbuf = 0;
}
public boolean hasNextByte() {
if (curbuf >= lenbuf) {
curbuf = 0;
try {
lenbuf = in.read(buffer);
} catch (IOException e) {
throw new InputMismatchException();
}
if (lenbuf <= 0)
return false;
}
return true;
}
private int readByte() {
if (hasNextByte())
return buffer[curbuf++];
else
return -1;
}
private boolean isSpaceChar(int c) {
return !(c >= 33 && c <= 126);
}
private void skip() {
while (hasNextByte() && isSpaceChar(buffer[curbuf]))
curbuf++;
}
public boolean hasNext() {
skip();
return hasNextByte();
}
public String next() {
if (!hasNext())
throw new NoSuchElementException();
StringBuilder sb = new StringBuilder();
int b = readByte();
while (!isSpaceChar(b)) {
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
public int nextInt() {
if (!hasNext())
throw new NoSuchElementException();
int c = readByte();
while (isSpaceChar(c))
c = readByte();
boolean minus = false;
if (c == '-') {
minus = true;
c = readByte();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res = res * 10 + c - '0';
c = readByte();
} while (!isSpaceChar(c));
return (minus) ? -res : res;
}
public long nextLong() {
if (!hasNext())
throw new NoSuchElementException();
int c = readByte();
while (isSpaceChar(c))
c = readByte();
boolean minus = false;
if (c == '-') {
minus = true;
c = readByte();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res = res * 10 + c - '0';
c = readByte();
} while (!isSpaceChar(c));
return (minus) ? -res : res;
}
public double nextDouble() {
return Double.parseDouble(next());
}
public int[] nextIntArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public long[] nextLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public char[][] nextCharMap(int n, int m) {
char[][] map = new char[n][m];
for (int i = 0; i < n; i++)
map[i] = next().toCharArray();
return map;
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.InputMismatchException;
import java.util.NoSuchElementException;
public class Main {
static PrintWriter out;
static InputReader ir;
static void solve() {
int n=ir.nextInt();
int[] a=ir.nextIntArray(n);
int m=ir.nextInt();
long ret=mergeSort(a,0,n)%2;
int p,q;
for(int i=0;i<m;i++){
p=ir.nextInt()-1;
q=ir.nextInt()-1;
if((q-p)%4==1||(q-p)%4==2)
ret^=1;
f(ret);
}
}
public static void f(long a){
if(a==0){
out.println("even");
}
else
out.println("odd");
}
public static long mergeSort(int[] a, int left, int right) {
long cnt = 0;
if (left + 1 < right) {
int mid = (left + right) / 2;
cnt += mergeSort(a, left, mid);
cnt += mergeSort(a, mid, right);
cnt += merge(a, left, mid, right);
}
return cnt;
}
public static long merge(int[] a, int left, int mid, int right) {
long cnt = 0;
int n1 = mid - left;
int n2 = right - mid;
int[] l = new int[n1 + 1];
int[] r = new int[n2 + 1];
for (int i = 0; i < n1; i++) {
l[i] = a[left + i];
}
for (int i = 0; i < n2; i++) {
r[i] = a[mid + i];
}
l[n1] = Integer.MAX_VALUE;
r[n2] = Integer.MAX_VALUE;
for (int i = 0, j = 0, k = left; k < right; k++) {
if (l[i] <= r[j]) {
a[k] = l[i];
i++;
} else {
a[k] = r[j];
j++;
cnt += n1 - i;
}
}
return cnt;
}
public static void main(String[] args) throws Exception {
ir = new InputReader(System.in);
out = new PrintWriter(System.out);
solve();
out.flush();
}
static class InputReader {
private InputStream in;
private byte[] buffer = new byte[1024];
private int curbuf;
private int lenbuf;
public InputReader(InputStream in) {
this.in = in;
this.curbuf = this.lenbuf = 0;
}
public boolean hasNextByte() {
if (curbuf >= lenbuf) {
curbuf = 0;
try {
lenbuf = in.read(buffer);
} catch (IOException e) {
throw new InputMismatchException();
}
if (lenbuf <= 0)
return false;
}
return true;
}
private int readByte() {
if (hasNextByte())
return buffer[curbuf++];
else
return -1;
}
private boolean isSpaceChar(int c) {
return !(c >= 33 && c <= 126);
}
private void skip() {
while (hasNextByte() && isSpaceChar(buffer[curbuf]))
curbuf++;
}
public boolean hasNext() {
skip();
return hasNextByte();
}
public String next() {
if (!hasNext())
throw new NoSuchElementException();
StringBuilder sb = new StringBuilder();
int b = readByte();
while (!isSpaceChar(b)) {
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
public int nextInt() {
if (!hasNext())
throw new NoSuchElementException();
int c = readByte();
while (isSpaceChar(c))
c = readByte();
boolean minus = false;
if (c == '-') {
minus = true;
c = readByte();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res = res * 10 + c - '0';
c = readByte();
} while (!isSpaceChar(c));
return (minus) ? -res : res;
}
public long nextLong() {
if (!hasNext())
throw new NoSuchElementException();
int c = readByte();
while (isSpaceChar(c))
c = readByte();
boolean minus = false;
if (c == '-') {
minus = true;
c = readByte();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res = res * 10 + c - '0';
c = readByte();
} while (!isSpaceChar(c));
return (minus) ? -res : res;
}
public double nextDouble() {
return Double.parseDouble(next());
}
public int[] nextIntArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public long[] nextLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public char[][] nextCharMap(int n, int m) {
char[][] map = new char[n][m];
for (int i = 0; i < n; i++)
map[i] = next().toCharArray();
return map;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.InputMismatchException;
import java.util.NoSuchElementException;
public class Main {
static PrintWriter out;
static InputReader ir;
static void solve() {
int n=ir.nextInt();
int[] a=ir.nextIntArray(n);
int m=ir.nextInt();
long ret=mergeSort(a,0,n)%2;
int p,q;
for(int i=0;i<m;i++){
p=ir.nextInt()-1;
q=ir.nextInt()-1;
if((q-p)%4==1||(q-p)%4==2)
ret^=1;
f(ret);
}
}
public static void f(long a){
if(a==0){
out.println("even");
}
else
out.println("odd");
}
public static long mergeSort(int[] a, int left, int right) {
long cnt = 0;
if (left + 1 < right) {
int mid = (left + right) / 2;
cnt += mergeSort(a, left, mid);
cnt += mergeSort(a, mid, right);
cnt += merge(a, left, mid, right);
}
return cnt;
}
public static long merge(int[] a, int left, int mid, int right) {
long cnt = 0;
int n1 = mid - left;
int n2 = right - mid;
int[] l = new int[n1 + 1];
int[] r = new int[n2 + 1];
for (int i = 0; i < n1; i++) {
l[i] = a[left + i];
}
for (int i = 0; i < n2; i++) {
r[i] = a[mid + i];
}
l[n1] = Integer.MAX_VALUE;
r[n2] = Integer.MAX_VALUE;
for (int i = 0, j = 0, k = left; k < right; k++) {
if (l[i] <= r[j]) {
a[k] = l[i];
i++;
} else {
a[k] = r[j];
j++;
cnt += n1 - i;
}
}
return cnt;
}
public static void main(String[] args) throws Exception {
ir = new InputReader(System.in);
out = new PrintWriter(System.out);
solve();
out.flush();
}
static class InputReader {
private InputStream in;
private byte[] buffer = new byte[1024];
private int curbuf;
private int lenbuf;
public InputReader(InputStream in) {
this.in = in;
this.curbuf = this.lenbuf = 0;
}
public boolean hasNextByte() {
if (curbuf >= lenbuf) {
curbuf = 0;
try {
lenbuf = in.read(buffer);
} catch (IOException e) {
throw new InputMismatchException();
}
if (lenbuf <= 0)
return false;
}
return true;
}
private int readByte() {
if (hasNextByte())
return buffer[curbuf++];
else
return -1;
}
private boolean isSpaceChar(int c) {
return !(c >= 33 && c <= 126);
}
private void skip() {
while (hasNextByte() && isSpaceChar(buffer[curbuf]))
curbuf++;
}
public boolean hasNext() {
skip();
return hasNextByte();
}
public String next() {
if (!hasNext())
throw new NoSuchElementException();
StringBuilder sb = new StringBuilder();
int b = readByte();
while (!isSpaceChar(b)) {
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
public int nextInt() {
if (!hasNext())
throw new NoSuchElementException();
int c = readByte();
while (isSpaceChar(c))
c = readByte();
boolean minus = false;
if (c == '-') {
minus = true;
c = readByte();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res = res * 10 + c - '0';
c = readByte();
} while (!isSpaceChar(c));
return (minus) ? -res : res;
}
public long nextLong() {
if (!hasNext())
throw new NoSuchElementException();
int c = readByte();
while (isSpaceChar(c))
c = readByte();
boolean minus = false;
if (c == '-') {
minus = true;
c = readByte();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res = res * 10 + c - '0';
c = readByte();
} while (!isSpaceChar(c));
return (minus) ? -res : res;
}
public double nextDouble() {
return Double.parseDouble(next());
}
public int[] nextIntArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public long[] nextLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public char[][] nextCharMap(int n, int m) {
char[][] map = new char[n][m];
for (int i = 0; i < n; i++)
map[i] = next().toCharArray();
return map;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,657 | 2,339 |
1,930 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
public class con111_A {
public static void main( final String[] args ) throws IOException {
final BufferedReader br = new BufferedReader( new InputStreamReader( System.in ) );
final int n = Integer.parseInt( br.readLine() );
final int[] a = new int[n];
final String[] parts = br.readLine().split( " " );
for ( int i = 0; i < n; ++i ) {
a[ i ] = Integer.parseInt( parts[ i ] );
}
System.out.println( solve( n, a ) );
}
private static int solve( final int n, final int[] a ) {
Arrays.sort( a );
int sum = 0;
for ( int i = 0; i < n; ++i ) {
sum += a[ i ];
}
int res = 0;
int ms = 0;
for ( int i = n - 1; i >= 0; --i ) {
if ( ms > sum / 2 ) {
break;
} else {
ms += a[ i ];
++res;
}
}
return res;
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
public class con111_A {
public static void main( final String[] args ) throws IOException {
final BufferedReader br = new BufferedReader( new InputStreamReader( System.in ) );
final int n = Integer.parseInt( br.readLine() );
final int[] a = new int[n];
final String[] parts = br.readLine().split( " " );
for ( int i = 0; i < n; ++i ) {
a[ i ] = Integer.parseInt( parts[ i ] );
}
System.out.println( solve( n, a ) );
}
private static int solve( final int n, final int[] a ) {
Arrays.sort( a );
int sum = 0;
for ( int i = 0; i < n; ++i ) {
sum += a[ i ];
}
int res = 0;
int ms = 0;
for ( int i = n - 1; i >= 0; --i ) {
if ( ms > sum / 2 ) {
break;
} else {
ms += a[ i ];
++res;
}
}
return res;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
public class con111_A {
public static void main( final String[] args ) throws IOException {
final BufferedReader br = new BufferedReader( new InputStreamReader( System.in ) );
final int n = Integer.parseInt( br.readLine() );
final int[] a = new int[n];
final String[] parts = br.readLine().split( " " );
for ( int i = 0; i < n; ++i ) {
a[ i ] = Integer.parseInt( parts[ i ] );
}
System.out.println( solve( n, a ) );
}
private static int solve( final int n, final int[] a ) {
Arrays.sort( a );
int sum = 0;
for ( int i = 0; i < n; ++i ) {
sum += a[ i ];
}
int res = 0;
int ms = 0;
for ( int i = n - 1; i >= 0; --i ) {
if ( ms > sum / 2 ) {
break;
} else {
ms += a[ i ];
++res;
}
}
return res;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 601 | 1,926 |
4,211 |
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
public class Main {
public static void main(String[] args) throws Exception {
StreamTokenizer in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
PrintWriter pw = new PrintWriter(System.out);
in.nextToken();
int n = (int) in.nval;
double[][] a = new double[n][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
in.nextToken();
a[i][j] = in.nval;
}
}
double[] dp = new double[1 << n];
dp[(1 << n) - 1] = 1.0;
for (int mask = (1 << n) - 2; mask > 0; mask--) {
int count = Integer.bitCount(mask);
double pPair = 2.0 / ((double) count * (count + 1));
double ans = 0.0;
for (int j = 0; j < n; j++) {
int jj = 1 << j;
if ((jj & mask) != 0) continue;
double p = dp[mask | jj];
double s = 0;
for (int k = 0; k < n; k++) {
int kk = 1 << k;
if ((kk & mask) == 0) continue;
s += a[k][j];
}
ans += s * pPair * p;
}
dp[mask] = ans;
}
for (int i = 0; i < n; i++) {
pw.print(dp[1 << i]);
pw.print(' ');
}
pw.close();
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
public class Main {
public static void main(String[] args) throws Exception {
StreamTokenizer in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
PrintWriter pw = new PrintWriter(System.out);
in.nextToken();
int n = (int) in.nval;
double[][] a = new double[n][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
in.nextToken();
a[i][j] = in.nval;
}
}
double[] dp = new double[1 << n];
dp[(1 << n) - 1] = 1.0;
for (int mask = (1 << n) - 2; mask > 0; mask--) {
int count = Integer.bitCount(mask);
double pPair = 2.0 / ((double) count * (count + 1));
double ans = 0.0;
for (int j = 0; j < n; j++) {
int jj = 1 << j;
if ((jj & mask) != 0) continue;
double p = dp[mask | jj];
double s = 0;
for (int k = 0; k < n; k++) {
int kk = 1 << k;
if ((kk & mask) == 0) continue;
s += a[k][j];
}
ans += s * pPair * p;
}
dp[mask] = ans;
}
for (int i = 0; i < n; i++) {
pw.print(dp[1 << i]);
pw.print(' ');
}
pw.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
public class Main {
public static void main(String[] args) throws Exception {
StreamTokenizer in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
PrintWriter pw = new PrintWriter(System.out);
in.nextToken();
int n = (int) in.nval;
double[][] a = new double[n][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
in.nextToken();
a[i][j] = in.nval;
}
}
double[] dp = new double[1 << n];
dp[(1 << n) - 1] = 1.0;
for (int mask = (1 << n) - 2; mask > 0; mask--) {
int count = Integer.bitCount(mask);
double pPair = 2.0 / ((double) count * (count + 1));
double ans = 0.0;
for (int j = 0; j < n; j++) {
int jj = 1 << j;
if ((jj & mask) != 0) continue;
double p = dp[mask | jj];
double s = 0;
for (int k = 0; k < n; k++) {
int kk = 1 << k;
if ((kk & mask) == 0) continue;
s += a[k][j];
}
ans += s * pPair * p;
}
dp[mask] = ans;
}
for (int i = 0; i < n; i++) {
pw.print(dp[1 << i]);
pw.print(' ');
}
pw.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 728 | 4,200 |
3,347 |
import java.util.Scanner;
public class Prob023A
{
public static void main( String[] Args )
{
Scanner scan = new Scanner( System.in );
String s = scan.next();
all: for ( int x = s.length() - 1; x >= 0; x-- )
for ( int y = 0; x + y <= s.length(); y++ )
{
String sub = s.substring( y, y + x );
if ( s.indexOf( sub, y + 1 ) >= 0 )
{
System.out.println( x );
break all;
}
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class Prob023A
{
public static void main( String[] Args )
{
Scanner scan = new Scanner( System.in );
String s = scan.next();
all: for ( int x = s.length() - 1; x >= 0; x-- )
for ( int y = 0; x + y <= s.length(); y++ )
{
String sub = s.substring( y, y + x );
if ( s.indexOf( sub, y + 1 ) >= 0 )
{
System.out.println( x );
break all;
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class Prob023A
{
public static void main( String[] Args )
{
Scanner scan = new Scanner( System.in );
String s = scan.next();
all: for ( int x = s.length() - 1; x >= 0; x-- )
for ( int y = 0; x + y <= s.length(); y++ )
{
String sub = s.substring( y, y + x );
if ( s.indexOf( sub, y + 1 ) >= 0 )
{
System.out.println( x );
break all;
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 488 | 3,341 |
2,435 |
import java.util.*;
public class vas2 {
public static void main( String[] args ) {
Scanner in = new Scanner( System.in );
int n = in.nextInt();
String st = in.next();
int[] a = new int[n];
for ( int i = 0; i < n; i++ )
a[i] = st.charAt( i ) - 48;
boolean c = false;
for ( int i = 1; !c && i < n; i++ ) {
int s = 0;
for ( int j = 0; j < i; j++ )
s += a[j];
int t = 0;
for ( int j = i; j < n; j++ ) {
t += a[j];
if ( t > s )
if ( t - a[j] != s )
break;
else
t = a[j];
}
if ( t == s )
c = true;
}
System.out.println( c ? "YES" : "NO" );
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
public class vas2 {
public static void main( String[] args ) {
Scanner in = new Scanner( System.in );
int n = in.nextInt();
String st = in.next();
int[] a = new int[n];
for ( int i = 0; i < n; i++ )
a[i] = st.charAt( i ) - 48;
boolean c = false;
for ( int i = 1; !c && i < n; i++ ) {
int s = 0;
for ( int j = 0; j < i; j++ )
s += a[j];
int t = 0;
for ( int j = i; j < n; j++ ) {
t += a[j];
if ( t > s )
if ( t - a[j] != s )
break;
else
t = a[j];
}
if ( t == s )
c = true;
}
System.out.println( c ? "YES" : "NO" );
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
public class vas2 {
public static void main( String[] args ) {
Scanner in = new Scanner( System.in );
int n = in.nextInt();
String st = in.next();
int[] a = new int[n];
for ( int i = 0; i < n; i++ )
a[i] = st.charAt( i ) - 48;
boolean c = false;
for ( int i = 1; !c && i < n; i++ ) {
int s = 0;
for ( int j = 0; j < i; j++ )
s += a[j];
int t = 0;
for ( int j = i; j < n; j++ ) {
t += a[j];
if ( t > s )
if ( t - a[j] != s )
break;
else
t = a[j];
}
if ( t == s )
c = true;
}
System.out.println( c ? "YES" : "NO" );
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 553 | 2,430 |
1,485 |
import java.util.*;
import java.io.*;
import java.math.*;
import java.awt.geom.*;
import static java.lang.Math.*;
public class Solution implements Runnable {
boolean hasBit(long n, int pos) {
return (n & (1L << pos)) != 0;
}
public void solve() throws Exception {
long l = sc.nextLong(), r = sc.nextLong();
int bit = 62;
while (bit >= 0 && (hasBit(l, bit) == hasBit(r, bit))) {
bit--;
}
out.println((1L << (bit + 1)) - 1);
}
static Throwable uncaught;
BufferedReader in;
FastScanner sc;
PrintWriter out;
@Override
public void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
sc = new FastScanner(in);
solve();
} catch (Throwable uncaught) {
Solution.uncaught = uncaught;
} finally {
out.close();
}
}
public static void main(String[] args) throws Throwable {
Thread thread = new Thread (null, new Solution(), "", (1 << 26));
thread.start();
thread.join();
if (Solution.uncaught != null) {
throw Solution.uncaught;
}
}
}
class FastScanner {
BufferedReader in;
StringTokenizer st;
public FastScanner(BufferedReader in) {
this.in = in;
}
public String nextToken() throws Exception {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
public int nextInt() throws Exception {
return Integer.parseInt(nextToken());
}
public long nextLong() throws Exception {
return Long.parseLong(nextToken());
}
public double nextDouble() throws Exception {
return Double.parseDouble(nextToken());
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.math.*;
import java.awt.geom.*;
import static java.lang.Math.*;
public class Solution implements Runnable {
boolean hasBit(long n, int pos) {
return (n & (1L << pos)) != 0;
}
public void solve() throws Exception {
long l = sc.nextLong(), r = sc.nextLong();
int bit = 62;
while (bit >= 0 && (hasBit(l, bit) == hasBit(r, bit))) {
bit--;
}
out.println((1L << (bit + 1)) - 1);
}
static Throwable uncaught;
BufferedReader in;
FastScanner sc;
PrintWriter out;
@Override
public void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
sc = new FastScanner(in);
solve();
} catch (Throwable uncaught) {
Solution.uncaught = uncaught;
} finally {
out.close();
}
}
public static void main(String[] args) throws Throwable {
Thread thread = new Thread (null, new Solution(), "", (1 << 26));
thread.start();
thread.join();
if (Solution.uncaught != null) {
throw Solution.uncaught;
}
}
}
class FastScanner {
BufferedReader in;
StringTokenizer st;
public FastScanner(BufferedReader in) {
this.in = in;
}
public String nextToken() throws Exception {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
public int nextInt() throws Exception {
return Integer.parseInt(nextToken());
}
public long nextLong() throws Exception {
return Long.parseLong(nextToken());
}
public double nextDouble() throws Exception {
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.math.*;
import java.awt.geom.*;
import static java.lang.Math.*;
public class Solution implements Runnable {
boolean hasBit(long n, int pos) {
return (n & (1L << pos)) != 0;
}
public void solve() throws Exception {
long l = sc.nextLong(), r = sc.nextLong();
int bit = 62;
while (bit >= 0 && (hasBit(l, bit) == hasBit(r, bit))) {
bit--;
}
out.println((1L << (bit + 1)) - 1);
}
static Throwable uncaught;
BufferedReader in;
FastScanner sc;
PrintWriter out;
@Override
public void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
sc = new FastScanner(in);
solve();
} catch (Throwable uncaught) {
Solution.uncaught = uncaught;
} finally {
out.close();
}
}
public static void main(String[] args) throws Throwable {
Thread thread = new Thread (null, new Solution(), "", (1 << 26));
thread.start();
thread.join();
if (Solution.uncaught != null) {
throw Solution.uncaught;
}
}
}
class FastScanner {
BufferedReader in;
StringTokenizer st;
public FastScanner(BufferedReader in) {
this.in = in;
}
public String nextToken() throws Exception {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
public int nextInt() throws Exception {
return Integer.parseInt(nextToken());
}
public long nextLong() throws Exception {
return Long.parseLong(nextToken());
}
public double nextDouble() throws Exception {
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 772 | 1,483 |
1,119 |
import java.util.*;
public class ehab4 {
public static void main( String[] args ) {
Scanner in = new Scanner( System.in );
int a = 0, b = 0;
System.out.println( "? 0 0 " );
System.out.flush();
int c = in.nextInt();
for ( int i = 29; i >= 0; i-- ) {
System.out.println( "? " + ( a + ( 1 << i ) ) + " " + b );
System.out.flush();
int q1 = in.nextInt();
System.out.println( "? " + a + " " + ( b + ( 1 << i ) ) );
System.out.flush();
int q2 = in.nextInt();
if ( q1 == q2 ) {
if ( c == 1 )
a += ( 1 << i );
else if ( c == -1 )
b += ( 1 << i );
c = q1;
}
else if ( q1 == -1 ) {
a += ( 1 << i );
b += ( 1 << i );
}
else if ( q1 == -2 )
return;
}
System.out.println( "! " + a + " " + b );
System.out.flush();
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
public class ehab4 {
public static void main( String[] args ) {
Scanner in = new Scanner( System.in );
int a = 0, b = 0;
System.out.println( "? 0 0 " );
System.out.flush();
int c = in.nextInt();
for ( int i = 29; i >= 0; i-- ) {
System.out.println( "? " + ( a + ( 1 << i ) ) + " " + b );
System.out.flush();
int q1 = in.nextInt();
System.out.println( "? " + a + " " + ( b + ( 1 << i ) ) );
System.out.flush();
int q2 = in.nextInt();
if ( q1 == q2 ) {
if ( c == 1 )
a += ( 1 << i );
else if ( c == -1 )
b += ( 1 << i );
c = q1;
}
else if ( q1 == -1 ) {
a += ( 1 << i );
b += ( 1 << i );
}
else if ( q1 == -2 )
return;
}
System.out.println( "! " + a + " " + b );
System.out.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class ehab4 {
public static void main( String[] args ) {
Scanner in = new Scanner( System.in );
int a = 0, b = 0;
System.out.println( "? 0 0 " );
System.out.flush();
int c = in.nextInt();
for ( int i = 29; i >= 0; i-- ) {
System.out.println( "? " + ( a + ( 1 << i ) ) + " " + b );
System.out.flush();
int q1 = in.nextInt();
System.out.println( "? " + a + " " + ( b + ( 1 << i ) ) );
System.out.flush();
int q2 = in.nextInt();
if ( q1 == q2 ) {
if ( c == 1 )
a += ( 1 << i );
else if ( c == -1 )
b += ( 1 << i );
c = q1;
}
else if ( q1 == -1 ) {
a += ( 1 << i );
b += ( 1 << i );
}
else if ( q1 == -2 )
return;
}
System.out.println( "! " + a + " " + b );
System.out.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 626 | 1,118 |
413 |
import java.util.ArrayList;
import java.util.HashMap;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.List;
import java.util.Scanner;
public class Main2 {
static List<List<Integer>> getLayers(int[] numbers, int a, int b) {
boolean[] used = new boolean[numbers.length];
HashSet<Integer> hs = new HashSet<Integer>();
for (int i = 0; i < numbers.length; i++) {
hs.add(numbers[i]);
}
HashMap<Integer, Integer> numberToIndex = new HashMap<Integer, Integer>();
for (int i = 0; i < numbers.length; i++) {
numberToIndex.put(numbers[i], i);
}
List<List<Integer>> ans = new ArrayList<List<Integer>>();
for (int i = 0; i < numbers.length; i++) {
if (!used[i]) {
List<Integer> ansRow = new ArrayList<Integer>();
LinkedList<Integer> current = new LinkedList<Integer>();
current.add(numbers[i]);
while (!current.isEmpty()) {
int c = current.removeFirst();
used[numberToIndex.get(c)] = true;
boolean found = false;
if (hs.contains(a - c)) {
found = true;
if (a - c != c)
current.add(a - c);
}
if (hs.contains(b - c)) {
found = true;
if (b - c != c)
current.add(b - c);
}
if (found || ansRow.size() > 0)
ansRow.add(c);
hs.remove(c);
}
ans.add(ansRow);
}
}
return ans;
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int a = sc.nextInt();
int b = sc.nextInt();
int[] numbers = new int[n];
for (int i = 0; i < numbers.length; i++) {
numbers[i] = sc.nextInt();
}
HashSet<Integer> hs = new HashSet<Integer>();
for (int i = 0; i < numbers.length; i++) {
hs.add(numbers[i]);
}
int[] belongs = new int[n];
for (int i = 0; i < belongs.length; i++) {
belongs[i] = -1;
}
HashMap<Integer, Integer> numberToIndex = new HashMap<Integer, Integer>();
for (int i = 0; i < numbers.length; i++) {
numberToIndex.put(numbers[i], i);
}
boolean possible = true;
List<List<Integer>> layers = getLayers(numbers, a, b);
for (List<Integer> layer : layers) {
if (layer.size() == 0) {
System.out.println("NO");
return;
}
int starting = -1;
for (int j = 0; j < layer.size(); j++) {
int cur = layer.get(j);
int nei = 0;
if (hs.contains(a - cur)) {
nei++;
}
if (hs.contains(b - cur)) {
nei++;
}
if (nei == 1 || (a == b && nei == 2)) {
starting = j;
}
}
if (starting == -1)
throw new Error();
int c = layer.get(starting);
HashSet<Integer> layerset = new HashSet<Integer>(layer);
while (true) {
if (layerset.contains(c) && layerset.contains(a - c)) {
belongs[numberToIndex.get(c)] = 0;
belongs[numberToIndex.get(a - c)] = 0;
layerset.remove(c);
layerset.remove(a - c);
c = b - (a - c);
} else if (layerset.contains(c) && layerset.contains(b - c)) {
belongs[numberToIndex.get(c)] = 1;
belongs[numberToIndex.get(b - c)] = 1;
layerset.remove(c);
layerset.remove(b - c);
c = a - (b - c);
} else {
break;
}
}
}
printResult(belongs);
}
static void printResult(int[] belongs) {
boolean ok = true;
for (int i = 0; i < belongs.length; i++) {
if (belongs[i] < 0)
ok = false;
}
if (ok) {
System.out.println("YES");
StringBuffer sb = new StringBuffer();
for (int i = 0; i < belongs.length; i++) {
sb.append(belongs[i]);
if (i != belongs.length - 1)
sb.append(" ");
}
System.out.println(sb.toString());
} else {
System.out.println("NO");
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.ArrayList;
import java.util.HashMap;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.List;
import java.util.Scanner;
public class Main2 {
static List<List<Integer>> getLayers(int[] numbers, int a, int b) {
boolean[] used = new boolean[numbers.length];
HashSet<Integer> hs = new HashSet<Integer>();
for (int i = 0; i < numbers.length; i++) {
hs.add(numbers[i]);
}
HashMap<Integer, Integer> numberToIndex = new HashMap<Integer, Integer>();
for (int i = 0; i < numbers.length; i++) {
numberToIndex.put(numbers[i], i);
}
List<List<Integer>> ans = new ArrayList<List<Integer>>();
for (int i = 0; i < numbers.length; i++) {
if (!used[i]) {
List<Integer> ansRow = new ArrayList<Integer>();
LinkedList<Integer> current = new LinkedList<Integer>();
current.add(numbers[i]);
while (!current.isEmpty()) {
int c = current.removeFirst();
used[numberToIndex.get(c)] = true;
boolean found = false;
if (hs.contains(a - c)) {
found = true;
if (a - c != c)
current.add(a - c);
}
if (hs.contains(b - c)) {
found = true;
if (b - c != c)
current.add(b - c);
}
if (found || ansRow.size() > 0)
ansRow.add(c);
hs.remove(c);
}
ans.add(ansRow);
}
}
return ans;
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int a = sc.nextInt();
int b = sc.nextInt();
int[] numbers = new int[n];
for (int i = 0; i < numbers.length; i++) {
numbers[i] = sc.nextInt();
}
HashSet<Integer> hs = new HashSet<Integer>();
for (int i = 0; i < numbers.length; i++) {
hs.add(numbers[i]);
}
int[] belongs = new int[n];
for (int i = 0; i < belongs.length; i++) {
belongs[i] = -1;
}
HashMap<Integer, Integer> numberToIndex = new HashMap<Integer, Integer>();
for (int i = 0; i < numbers.length; i++) {
numberToIndex.put(numbers[i], i);
}
boolean possible = true;
List<List<Integer>> layers = getLayers(numbers, a, b);
for (List<Integer> layer : layers) {
if (layer.size() == 0) {
System.out.println("NO");
return;
}
int starting = -1;
for (int j = 0; j < layer.size(); j++) {
int cur = layer.get(j);
int nei = 0;
if (hs.contains(a - cur)) {
nei++;
}
if (hs.contains(b - cur)) {
nei++;
}
if (nei == 1 || (a == b && nei == 2)) {
starting = j;
}
}
if (starting == -1)
throw new Error();
int c = layer.get(starting);
HashSet<Integer> layerset = new HashSet<Integer>(layer);
while (true) {
if (layerset.contains(c) && layerset.contains(a - c)) {
belongs[numberToIndex.get(c)] = 0;
belongs[numberToIndex.get(a - c)] = 0;
layerset.remove(c);
layerset.remove(a - c);
c = b - (a - c);
} else if (layerset.contains(c) && layerset.contains(b - c)) {
belongs[numberToIndex.get(c)] = 1;
belongs[numberToIndex.get(b - c)] = 1;
layerset.remove(c);
layerset.remove(b - c);
c = a - (b - c);
} else {
break;
}
}
}
printResult(belongs);
}
static void printResult(int[] belongs) {
boolean ok = true;
for (int i = 0; i < belongs.length; i++) {
if (belongs[i] < 0)
ok = false;
}
if (ok) {
System.out.println("YES");
StringBuffer sb = new StringBuffer();
for (int i = 0; i < belongs.length; i++) {
sb.append(belongs[i]);
if (i != belongs.length - 1)
sb.append(" ");
}
System.out.println(sb.toString());
} else {
System.out.println("NO");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.ArrayList;
import java.util.HashMap;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.List;
import java.util.Scanner;
public class Main2 {
static List<List<Integer>> getLayers(int[] numbers, int a, int b) {
boolean[] used = new boolean[numbers.length];
HashSet<Integer> hs = new HashSet<Integer>();
for (int i = 0; i < numbers.length; i++) {
hs.add(numbers[i]);
}
HashMap<Integer, Integer> numberToIndex = new HashMap<Integer, Integer>();
for (int i = 0; i < numbers.length; i++) {
numberToIndex.put(numbers[i], i);
}
List<List<Integer>> ans = new ArrayList<List<Integer>>();
for (int i = 0; i < numbers.length; i++) {
if (!used[i]) {
List<Integer> ansRow = new ArrayList<Integer>();
LinkedList<Integer> current = new LinkedList<Integer>();
current.add(numbers[i]);
while (!current.isEmpty()) {
int c = current.removeFirst();
used[numberToIndex.get(c)] = true;
boolean found = false;
if (hs.contains(a - c)) {
found = true;
if (a - c != c)
current.add(a - c);
}
if (hs.contains(b - c)) {
found = true;
if (b - c != c)
current.add(b - c);
}
if (found || ansRow.size() > 0)
ansRow.add(c);
hs.remove(c);
}
ans.add(ansRow);
}
}
return ans;
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int a = sc.nextInt();
int b = sc.nextInt();
int[] numbers = new int[n];
for (int i = 0; i < numbers.length; i++) {
numbers[i] = sc.nextInt();
}
HashSet<Integer> hs = new HashSet<Integer>();
for (int i = 0; i < numbers.length; i++) {
hs.add(numbers[i]);
}
int[] belongs = new int[n];
for (int i = 0; i < belongs.length; i++) {
belongs[i] = -1;
}
HashMap<Integer, Integer> numberToIndex = new HashMap<Integer, Integer>();
for (int i = 0; i < numbers.length; i++) {
numberToIndex.put(numbers[i], i);
}
boolean possible = true;
List<List<Integer>> layers = getLayers(numbers, a, b);
for (List<Integer> layer : layers) {
if (layer.size() == 0) {
System.out.println("NO");
return;
}
int starting = -1;
for (int j = 0; j < layer.size(); j++) {
int cur = layer.get(j);
int nei = 0;
if (hs.contains(a - cur)) {
nei++;
}
if (hs.contains(b - cur)) {
nei++;
}
if (nei == 1 || (a == b && nei == 2)) {
starting = j;
}
}
if (starting == -1)
throw new Error();
int c = layer.get(starting);
HashSet<Integer> layerset = new HashSet<Integer>(layer);
while (true) {
if (layerset.contains(c) && layerset.contains(a - c)) {
belongs[numberToIndex.get(c)] = 0;
belongs[numberToIndex.get(a - c)] = 0;
layerset.remove(c);
layerset.remove(a - c);
c = b - (a - c);
} else if (layerset.contains(c) && layerset.contains(b - c)) {
belongs[numberToIndex.get(c)] = 1;
belongs[numberToIndex.get(b - c)] = 1;
layerset.remove(c);
layerset.remove(b - c);
c = a - (b - c);
} else {
break;
}
}
}
printResult(belongs);
}
static void printResult(int[] belongs) {
boolean ok = true;
for (int i = 0; i < belongs.length; i++) {
if (belongs[i] < 0)
ok = false;
}
if (ok) {
System.out.println("YES");
StringBuffer sb = new StringBuffer();
for (int i = 0; i < belongs.length; i++) {
sb.append(belongs[i]);
if (i != belongs.length - 1)
sb.append(" ");
}
System.out.println(sb.toString());
} else {
System.out.println("NO");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,426 | 412 |
3,349 |
/**
* MxNINJA 04:06:52 ص 14/01/2014
*/
import java.io.BufferedReader;
import java.io.InputStreamReader;
public class Main {
public static void main(String[] args) throws Exception {
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
StringBuilder line = new StringBuilder(reader.readLine());
int length = 0;
for (int head = 0; head < line.length(); head++) {
for (int tail = line.length() - 1; tail > head; tail--) {
String subString = line.substring(head, tail);
if(line.indexOf(subString,head+1)>-1){
length = Math.max(subString.length(), length);
}
}
}
System.out.println(length);
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
/**
* MxNINJA 04:06:52 ص 14/01/2014
*/
import java.io.BufferedReader;
import java.io.InputStreamReader;
public class Main {
public static void main(String[] args) throws Exception {
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
StringBuilder line = new StringBuilder(reader.readLine());
int length = 0;
for (int head = 0; head < line.length(); head++) {
for (int tail = line.length() - 1; tail > head; tail--) {
String subString = line.substring(head, tail);
if(line.indexOf(subString,head+1)>-1){
length = Math.max(subString.length(), length);
}
}
}
System.out.println(length);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
/**
* MxNINJA 04:06:52 ص 14/01/2014
*/
import java.io.BufferedReader;
import java.io.InputStreamReader;
public class Main {
public static void main(String[] args) throws Exception {
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
StringBuilder line = new StringBuilder(reader.readLine());
int length = 0;
for (int head = 0; head < line.length(); head++) {
for (int tail = line.length() - 1; tail > head; tail--) {
String subString = line.substring(head, tail);
if(line.indexOf(subString,head+1)>-1){
length = Math.max(subString.length(), length);
}
}
}
System.out.println(length);
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 500 | 3,343 |
919 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader sc = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
Task solver = new Task();
solver.solve(1, sc, out);
out.close();
}
static class Task {
public void solve(int testNumber, InputReader sc, PrintWriter out) {
double n=sc.nextInt();
double k=sc.nextInt();
double ans=n-(-1.5+Math.sqrt(9.0/4+2*(n+k)));
out.printf("%.0f\n",ans);
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader sc = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
Task solver = new Task();
solver.solve(1, sc, out);
out.close();
}
static class Task {
public void solve(int testNumber, InputReader sc, PrintWriter out) {
double n=sc.nextInt();
double k=sc.nextInt();
double ans=n-(-1.5+Math.sqrt(9.0/4+2*(n+k)));
out.printf("%.0f\n",ans);
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader sc = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
Task solver = new Task();
solver.solve(1, sc, out);
out.close();
}
static class Task {
public void solve(int testNumber, InputReader sc, PrintWriter out) {
double n=sc.nextInt();
double k=sc.nextInt();
double ans=n-(-1.5+Math.sqrt(9.0/4+2*(n+k)));
out.printf("%.0f\n",ans);
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 673 | 918 |
411 |
import java.util.HashMap;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Scanner;
public class TwoSets<V> {
private static int n;
private static int a;
private static int b;
private static List<Node<Integer>> nodes = new LinkedList<Node<Integer>>();
private static Map<Integer, Node<Integer>> datas = new HashMap<Integer, Node<Integer>>();
private static Node<Integer> first;
private static Node<Integer> second;
private static TwoSets<Integer> sets = new TwoSets<Integer>();
private static class Node<V> {
V node;
Node<V> parent;
int rank;
int color = -1;
boolean inprogress;
public Node() {
this.parent = this;
}
@Override
public String toString() {
return String.format("{node: %s, parent: %s, rank: %s, color:%s}",
node, parent.node, rank, color);
}
}
public Node<V> makeSet(V x) {
Node<V> node = new Node<V>();
node.node = x;
node.parent = node;
node.rank = 0;
return node;
}
public void link(Node<V> x, Node<V> y) {
if (x.rank > y.rank) {
y.parent = x;
} else {
x.parent = y;
if (x.rank == y.rank) {
y.rank++;
}
}
}
public Node<V> findSet(Node<V> x) {
if (x.parent != x) {
x.parent = findSet(x.parent);
}
return x.parent;
}
public void union(Node<V> x, Node<V> y) {
Node<V> rtX = findSet(x);
Node<V> rtY = findSet(y);
if (rtX.parent != rtY.parent) {
link(rtX, rtY);
}
}
public V getNode(Node<V> x) {
return x.node;
}
private int getColor(Node<V> node) {
int color;
Node<V> parent = findSet(node);
color = parent.color;
return color;
}
private void setColor(Node<V> node, int color) {
Node<V> parent = findSet(node);
parent.color = color;
}
private static Node<Integer> getOrInitNode(Integer key) {
Node<Integer> node = datas.get(key);
if (node == null) {
node = sets.makeSet(key);
datas.put(key, node);
}
return node;
}
private static void initNodes(Scanner scanner) {
int key;
Node<Integer> node;
for (int i = 0; i < n; i++) {
key = scanner.nextInt();
node = getOrInitNode(key);
nodes.add(node);
}
}
private static void unionAll(Node<Integer> value) {
int color = sets.getColor(value);
if (color == 0) {
if (first == null) {
first = value;
} else {
sets.union(first, value);
}
} else if (color == 1) {
if (second == null) {
second = value;
} else {
sets.union(second, value);
}
}
}
private static int getKey(Node<Integer> value, int color) {
int key = value.node;
if (color == 0) {
key = a - key;
} else {
key = b - key;
}
return key;
}
private static boolean checkOpposite(Node<Integer> value, int color) {
boolean valid;
if (value.inprogress) {
valid = Boolean.TRUE;
} else {
value.inprogress = Boolean.TRUE;
int opColor = 1 - color;
int key = getKey(value, opColor);
Node<Integer> node = datas.get(key);
valid = (value.node.equals(key)) || (node == null);
if (!valid) {
key = getKey(node, color);
Node<Integer> child = datas.get(key);
valid = (child != null);
if (valid) {
valid = checkOpposite(child, color);
if (valid) {
sets.union(value, node);
sets.union(value, child);
value.inprogress = Boolean.FALSE;
}
}
}
value.inprogress = Boolean.FALSE;
}
return valid;
}
private static boolean checkNodes(Node<Integer> value, int color) {
boolean valid;
int key = getKey(value, color);
int opColor = 1 - color;
Node<Integer> node = datas.get(key);
valid = (value.node.equals(key)) || (node != null);
if (valid) {
valid = checkOpposite(value, color);
if (valid) {
sets.union(value, node);
sets.setColor(value, color);
} else if (color == 0) {
valid = checkNodes(value, opColor);
}
} else if (color == 0) {
valid = checkNodes(value, opColor);
}
return valid;
}
private static void format(StringBuilder builder, int i) {
if (i > 0) {
builder.append(' ');
}
}
private static String printNodes() {
String text;
StringBuilder builder = new StringBuilder();
Iterator<Node<Integer>> iterator = nodes.iterator();
int i = 0;
Node<Integer> node;
while (iterator.hasNext()) {
format(builder, i);
node = iterator.next();
builder.append(sets.getColor(node));
i++;
}
text = builder.toString().trim();
return text;
}
private static boolean checkNodes(int color) {
boolean valid = Boolean.TRUE;
for (Node<Integer> value : nodes) {
if (sets.getColor(value) == -1) {
valid = checkNodes(value, color);
if (valid) {
unionAll(value);
} else {
break;
}
}
}
return valid;
}
private static void calculate() {
int color = 0;
boolean valid = checkNodes(color);
String message = "NO";
if (valid) {
message = "YES";
String array = printNodes();
System.out.println(message);
System.out.println(array);
} else {
System.out.println(message);
}
}
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
try {
n = scanner.nextInt();
a = scanner.nextInt();
b = scanner.nextInt();
initNodes(scanner);
calculate();
} finally {
scanner.close();
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.HashMap;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Scanner;
public class TwoSets<V> {
private static int n;
private static int a;
private static int b;
private static List<Node<Integer>> nodes = new LinkedList<Node<Integer>>();
private static Map<Integer, Node<Integer>> datas = new HashMap<Integer, Node<Integer>>();
private static Node<Integer> first;
private static Node<Integer> second;
private static TwoSets<Integer> sets = new TwoSets<Integer>();
private static class Node<V> {
V node;
Node<V> parent;
int rank;
int color = -1;
boolean inprogress;
public Node() {
this.parent = this;
}
@Override
public String toString() {
return String.format("{node: %s, parent: %s, rank: %s, color:%s}",
node, parent.node, rank, color);
}
}
public Node<V> makeSet(V x) {
Node<V> node = new Node<V>();
node.node = x;
node.parent = node;
node.rank = 0;
return node;
}
public void link(Node<V> x, Node<V> y) {
if (x.rank > y.rank) {
y.parent = x;
} else {
x.parent = y;
if (x.rank == y.rank) {
y.rank++;
}
}
}
public Node<V> findSet(Node<V> x) {
if (x.parent != x) {
x.parent = findSet(x.parent);
}
return x.parent;
}
public void union(Node<V> x, Node<V> y) {
Node<V> rtX = findSet(x);
Node<V> rtY = findSet(y);
if (rtX.parent != rtY.parent) {
link(rtX, rtY);
}
}
public V getNode(Node<V> x) {
return x.node;
}
private int getColor(Node<V> node) {
int color;
Node<V> parent = findSet(node);
color = parent.color;
return color;
}
private void setColor(Node<V> node, int color) {
Node<V> parent = findSet(node);
parent.color = color;
}
private static Node<Integer> getOrInitNode(Integer key) {
Node<Integer> node = datas.get(key);
if (node == null) {
node = sets.makeSet(key);
datas.put(key, node);
}
return node;
}
private static void initNodes(Scanner scanner) {
int key;
Node<Integer> node;
for (int i = 0; i < n; i++) {
key = scanner.nextInt();
node = getOrInitNode(key);
nodes.add(node);
}
}
private static void unionAll(Node<Integer> value) {
int color = sets.getColor(value);
if (color == 0) {
if (first == null) {
first = value;
} else {
sets.union(first, value);
}
} else if (color == 1) {
if (second == null) {
second = value;
} else {
sets.union(second, value);
}
}
}
private static int getKey(Node<Integer> value, int color) {
int key = value.node;
if (color == 0) {
key = a - key;
} else {
key = b - key;
}
return key;
}
private static boolean checkOpposite(Node<Integer> value, int color) {
boolean valid;
if (value.inprogress) {
valid = Boolean.TRUE;
} else {
value.inprogress = Boolean.TRUE;
int opColor = 1 - color;
int key = getKey(value, opColor);
Node<Integer> node = datas.get(key);
valid = (value.node.equals(key)) || (node == null);
if (!valid) {
key = getKey(node, color);
Node<Integer> child = datas.get(key);
valid = (child != null);
if (valid) {
valid = checkOpposite(child, color);
if (valid) {
sets.union(value, node);
sets.union(value, child);
value.inprogress = Boolean.FALSE;
}
}
}
value.inprogress = Boolean.FALSE;
}
return valid;
}
private static boolean checkNodes(Node<Integer> value, int color) {
boolean valid;
int key = getKey(value, color);
int opColor = 1 - color;
Node<Integer> node = datas.get(key);
valid = (value.node.equals(key)) || (node != null);
if (valid) {
valid = checkOpposite(value, color);
if (valid) {
sets.union(value, node);
sets.setColor(value, color);
} else if (color == 0) {
valid = checkNodes(value, opColor);
}
} else if (color == 0) {
valid = checkNodes(value, opColor);
}
return valid;
}
private static void format(StringBuilder builder, int i) {
if (i > 0) {
builder.append(' ');
}
}
private static String printNodes() {
String text;
StringBuilder builder = new StringBuilder();
Iterator<Node<Integer>> iterator = nodes.iterator();
int i = 0;
Node<Integer> node;
while (iterator.hasNext()) {
format(builder, i);
node = iterator.next();
builder.append(sets.getColor(node));
i++;
}
text = builder.toString().trim();
return text;
}
private static boolean checkNodes(int color) {
boolean valid = Boolean.TRUE;
for (Node<Integer> value : nodes) {
if (sets.getColor(value) == -1) {
valid = checkNodes(value, color);
if (valid) {
unionAll(value);
} else {
break;
}
}
}
return valid;
}
private static void calculate() {
int color = 0;
boolean valid = checkNodes(color);
String message = "NO";
if (valid) {
message = "YES";
String array = printNodes();
System.out.println(message);
System.out.println(array);
} else {
System.out.println(message);
}
}
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
try {
n = scanner.nextInt();
a = scanner.nextInt();
b = scanner.nextInt();
initNodes(scanner);
calculate();
} finally {
scanner.close();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.HashMap;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Scanner;
public class TwoSets<V> {
private static int n;
private static int a;
private static int b;
private static List<Node<Integer>> nodes = new LinkedList<Node<Integer>>();
private static Map<Integer, Node<Integer>> datas = new HashMap<Integer, Node<Integer>>();
private static Node<Integer> first;
private static Node<Integer> second;
private static TwoSets<Integer> sets = new TwoSets<Integer>();
private static class Node<V> {
V node;
Node<V> parent;
int rank;
int color = -1;
boolean inprogress;
public Node() {
this.parent = this;
}
@Override
public String toString() {
return String.format("{node: %s, parent: %s, rank: %s, color:%s}",
node, parent.node, rank, color);
}
}
public Node<V> makeSet(V x) {
Node<V> node = new Node<V>();
node.node = x;
node.parent = node;
node.rank = 0;
return node;
}
public void link(Node<V> x, Node<V> y) {
if (x.rank > y.rank) {
y.parent = x;
} else {
x.parent = y;
if (x.rank == y.rank) {
y.rank++;
}
}
}
public Node<V> findSet(Node<V> x) {
if (x.parent != x) {
x.parent = findSet(x.parent);
}
return x.parent;
}
public void union(Node<V> x, Node<V> y) {
Node<V> rtX = findSet(x);
Node<V> rtY = findSet(y);
if (rtX.parent != rtY.parent) {
link(rtX, rtY);
}
}
public V getNode(Node<V> x) {
return x.node;
}
private int getColor(Node<V> node) {
int color;
Node<V> parent = findSet(node);
color = parent.color;
return color;
}
private void setColor(Node<V> node, int color) {
Node<V> parent = findSet(node);
parent.color = color;
}
private static Node<Integer> getOrInitNode(Integer key) {
Node<Integer> node = datas.get(key);
if (node == null) {
node = sets.makeSet(key);
datas.put(key, node);
}
return node;
}
private static void initNodes(Scanner scanner) {
int key;
Node<Integer> node;
for (int i = 0; i < n; i++) {
key = scanner.nextInt();
node = getOrInitNode(key);
nodes.add(node);
}
}
private static void unionAll(Node<Integer> value) {
int color = sets.getColor(value);
if (color == 0) {
if (first == null) {
first = value;
} else {
sets.union(first, value);
}
} else if (color == 1) {
if (second == null) {
second = value;
} else {
sets.union(second, value);
}
}
}
private static int getKey(Node<Integer> value, int color) {
int key = value.node;
if (color == 0) {
key = a - key;
} else {
key = b - key;
}
return key;
}
private static boolean checkOpposite(Node<Integer> value, int color) {
boolean valid;
if (value.inprogress) {
valid = Boolean.TRUE;
} else {
value.inprogress = Boolean.TRUE;
int opColor = 1 - color;
int key = getKey(value, opColor);
Node<Integer> node = datas.get(key);
valid = (value.node.equals(key)) || (node == null);
if (!valid) {
key = getKey(node, color);
Node<Integer> child = datas.get(key);
valid = (child != null);
if (valid) {
valid = checkOpposite(child, color);
if (valid) {
sets.union(value, node);
sets.union(value, child);
value.inprogress = Boolean.FALSE;
}
}
}
value.inprogress = Boolean.FALSE;
}
return valid;
}
private static boolean checkNodes(Node<Integer> value, int color) {
boolean valid;
int key = getKey(value, color);
int opColor = 1 - color;
Node<Integer> node = datas.get(key);
valid = (value.node.equals(key)) || (node != null);
if (valid) {
valid = checkOpposite(value, color);
if (valid) {
sets.union(value, node);
sets.setColor(value, color);
} else if (color == 0) {
valid = checkNodes(value, opColor);
}
} else if (color == 0) {
valid = checkNodes(value, opColor);
}
return valid;
}
private static void format(StringBuilder builder, int i) {
if (i > 0) {
builder.append(' ');
}
}
private static String printNodes() {
String text;
StringBuilder builder = new StringBuilder();
Iterator<Node<Integer>> iterator = nodes.iterator();
int i = 0;
Node<Integer> node;
while (iterator.hasNext()) {
format(builder, i);
node = iterator.next();
builder.append(sets.getColor(node));
i++;
}
text = builder.toString().trim();
return text;
}
private static boolean checkNodes(int color) {
boolean valid = Boolean.TRUE;
for (Node<Integer> value : nodes) {
if (sets.getColor(value) == -1) {
valid = checkNodes(value, color);
if (valid) {
unionAll(value);
} else {
break;
}
}
}
return valid;
}
private static void calculate() {
int color = 0;
boolean valid = checkNodes(color);
String message = "NO";
if (valid) {
message = "YES";
String array = printNodes();
System.out.println(message);
System.out.println(array);
} else {
System.out.println(message);
}
}
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
try {
n = scanner.nextInt();
a = scanner.nextInt();
b = scanner.nextInt();
initNodes(scanner);
calculate();
} finally {
scanner.close();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,722 | 410 |
3,509 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.PriorityQueue;
import java.util.Random;
import java.util.StringTokenizer;
import java.util.TreeMap;
import java.util.TreeSet;
@SuppressWarnings("unused")
public class Solution{
static long mod = -1;
static long[] fact, invfact, pow;
static long[][] C;
static long[][] dp;
static final int N = 405;
static int n;
public static void main(String[] args) throws IOException {
FastScanner fs = new FastScanner();
PrintWriter out = new PrintWriter(System.out);
int tt = 1;
outer:
while(tt-->0) {
n = fs.nextInt();
mod = fs.nextLong();
dp = new long[N][N];
precompute();
dp[0][0] = 1;
for(int i=0;i<n;i++) {
for(int j=0;j<=i;j++) {
for(int k=1;i+k<=n;k++) {
dp[i+k+1][j+k] += (((dp[i][j]*pow[k-1])%mod)*C[j+k][k])%mod;
dp[i+k+1][j+k] %= mod;
}
}
}
long ans = 0;
for(int i=0;i<=n;i++) {
ans = (ans + dp[n+1][i])%mod;
}
out.println(ans);
}
out.close();
}
static void precompute() {
fact = new long[N]; invfact = new long[N]; C = new long[N][N]; pow = new long[N];
fact[0] = 1;
for(int i=1;i<=n;i++) fact[i] = (fact[i-1]*i)%mod;
invfact[n] = inv(fact[n]);
for(int i=n-1;i>=0;i--) invfact[i] = (invfact[i+1]*(i+1))%mod;
pow[0] = 1;
for(int i=1;i<=n;i++) pow[i] = (pow[i-1]*2)%mod;
for(int i=1;i<=n;i++) {
for(int j=0;j<=i;j++) {
if(j==0 || j==i) C[i][j] = 1;
else C[i][j] = (C[i-1][j-1] + C[i-1][j])%mod;
}
}
}
static long exp(long a, long n) {
long res = 1;
while(n>0) {
if((n&1)==1) res = (res*a)%mod;
a = (a*a)%mod;
n = n>>1;
}
return res;
}
static long inv(long n) {
return exp(n, mod-2);
}
static final Random random=new Random();
static <T> void shuffle(T[] arr) {
int n = arr.length;
for(int i=0;i<n;i++ ) {
int k = random.nextInt(n);
T temp = arr[k]; arr[k] = arr[i]; arr[i] = temp;
}
}
static void ruffleSort(int[] a) {
int n=a.length;//shuffle, then sort
for (int i=0; i<n; i++) {
int oi=random.nextInt(n); int temp=a[oi];
a[oi]=a[i]; a[i]=temp;
}
Arrays.sort(a);
}
static void ruffleSort(long[] a) {
int n=a.length;//shuffle, then sort
for (int i=0; i<n; i++) {
int oi=random.nextInt(n); long temp=a[oi];
a[oi]=a[i]; a[i]=temp;
}
Arrays.sort(a);
}
static void reverse(int[] arr, int l, int r) {
for(int i=l;i<l+(r-l)/2;i++){
int temp = arr[i]; arr[i] = arr[r-i+l-1]; arr[r-i+l-1] = temp;
}
}
static void reverse(long[] arr, int l, int r) {
for(int i=l;i<l+(r-l)/2;i++){
long temp = arr[i]; arr[i] = arr[r-i+l-1]; arr[r-i+l-1] = temp;
}
}
static <T> void reverse(T[] arr, int l, int r) {
for(int i=l;i<l+(r-l)/2;i++) {
T temp = arr[i]; arr[i] = arr[r-i+l-1]; arr[r-i+l-1] = temp;
}
}
static class FastScanner{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
public String next(){
while(!st.hasMoreElements()){
try{
st = new StringTokenizer(br.readLine());
} catch(IOException e){
e.printStackTrace();
}
}
return st.nextToken();
}
public String nextLine() throws IOException {
return br.readLine();
}
public int nextInt(){
return Integer.parseInt(next());
}
public int[] readArray(int n){
int[] a = new int[n];
for(int i=0;i<n;i++)
a[i] = nextInt();
return a;
}
public long nextLong() {
return Long.parseLong(next());
}
public char nextChar() {
return next().toCharArray()[0];
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.PriorityQueue;
import java.util.Random;
import java.util.StringTokenizer;
import java.util.TreeMap;
import java.util.TreeSet;
@SuppressWarnings("unused")
public class Solution{
static long mod = -1;
static long[] fact, invfact, pow;
static long[][] C;
static long[][] dp;
static final int N = 405;
static int n;
public static void main(String[] args) throws IOException {
FastScanner fs = new FastScanner();
PrintWriter out = new PrintWriter(System.out);
int tt = 1;
outer:
while(tt-->0) {
n = fs.nextInt();
mod = fs.nextLong();
dp = new long[N][N];
precompute();
dp[0][0] = 1;
for(int i=0;i<n;i++) {
for(int j=0;j<=i;j++) {
for(int k=1;i+k<=n;k++) {
dp[i+k+1][j+k] += (((dp[i][j]*pow[k-1])%mod)*C[j+k][k])%mod;
dp[i+k+1][j+k] %= mod;
}
}
}
long ans = 0;
for(int i=0;i<=n;i++) {
ans = (ans + dp[n+1][i])%mod;
}
out.println(ans);
}
out.close();
}
static void precompute() {
fact = new long[N]; invfact = new long[N]; C = new long[N][N]; pow = new long[N];
fact[0] = 1;
for(int i=1;i<=n;i++) fact[i] = (fact[i-1]*i)%mod;
invfact[n] = inv(fact[n]);
for(int i=n-1;i>=0;i--) invfact[i] = (invfact[i+1]*(i+1))%mod;
pow[0] = 1;
for(int i=1;i<=n;i++) pow[i] = (pow[i-1]*2)%mod;
for(int i=1;i<=n;i++) {
for(int j=0;j<=i;j++) {
if(j==0 || j==i) C[i][j] = 1;
else C[i][j] = (C[i-1][j-1] + C[i-1][j])%mod;
}
}
}
static long exp(long a, long n) {
long res = 1;
while(n>0) {
if((n&1)==1) res = (res*a)%mod;
a = (a*a)%mod;
n = n>>1;
}
return res;
}
static long inv(long n) {
return exp(n, mod-2);
}
static final Random random=new Random();
static <T> void shuffle(T[] arr) {
int n = arr.length;
for(int i=0;i<n;i++ ) {
int k = random.nextInt(n);
T temp = arr[k]; arr[k] = arr[i]; arr[i] = temp;
}
}
static void ruffleSort(int[] a) {
int n=a.length;//shuffle, then sort
for (int i=0; i<n; i++) {
int oi=random.nextInt(n); int temp=a[oi];
a[oi]=a[i]; a[i]=temp;
}
Arrays.sort(a);
}
static void ruffleSort(long[] a) {
int n=a.length;//shuffle, then sort
for (int i=0; i<n; i++) {
int oi=random.nextInt(n); long temp=a[oi];
a[oi]=a[i]; a[i]=temp;
}
Arrays.sort(a);
}
static void reverse(int[] arr, int l, int r) {
for(int i=l;i<l+(r-l)/2;i++){
int temp = arr[i]; arr[i] = arr[r-i+l-1]; arr[r-i+l-1] = temp;
}
}
static void reverse(long[] arr, int l, int r) {
for(int i=l;i<l+(r-l)/2;i++){
long temp = arr[i]; arr[i] = arr[r-i+l-1]; arr[r-i+l-1] = temp;
}
}
static <T> void reverse(T[] arr, int l, int r) {
for(int i=l;i<l+(r-l)/2;i++) {
T temp = arr[i]; arr[i] = arr[r-i+l-1]; arr[r-i+l-1] = temp;
}
}
static class FastScanner{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
public String next(){
while(!st.hasMoreElements()){
try{
st = new StringTokenizer(br.readLine());
} catch(IOException e){
e.printStackTrace();
}
}
return st.nextToken();
}
public String nextLine() throws IOException {
return br.readLine();
}
public int nextInt(){
return Integer.parseInt(next());
}
public int[] readArray(int n){
int[] a = new int[n];
for(int i=0;i<n;i++)
a[i] = nextInt();
return a;
}
public long nextLong() {
return Long.parseLong(next());
}
public char nextChar() {
return next().toCharArray()[0];
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.PriorityQueue;
import java.util.Random;
import java.util.StringTokenizer;
import java.util.TreeMap;
import java.util.TreeSet;
@SuppressWarnings("unused")
public class Solution{
static long mod = -1;
static long[] fact, invfact, pow;
static long[][] C;
static long[][] dp;
static final int N = 405;
static int n;
public static void main(String[] args) throws IOException {
FastScanner fs = new FastScanner();
PrintWriter out = new PrintWriter(System.out);
int tt = 1;
outer:
while(tt-->0) {
n = fs.nextInt();
mod = fs.nextLong();
dp = new long[N][N];
precompute();
dp[0][0] = 1;
for(int i=0;i<n;i++) {
for(int j=0;j<=i;j++) {
for(int k=1;i+k<=n;k++) {
dp[i+k+1][j+k] += (((dp[i][j]*pow[k-1])%mod)*C[j+k][k])%mod;
dp[i+k+1][j+k] %= mod;
}
}
}
long ans = 0;
for(int i=0;i<=n;i++) {
ans = (ans + dp[n+1][i])%mod;
}
out.println(ans);
}
out.close();
}
static void precompute() {
fact = new long[N]; invfact = new long[N]; C = new long[N][N]; pow = new long[N];
fact[0] = 1;
for(int i=1;i<=n;i++) fact[i] = (fact[i-1]*i)%mod;
invfact[n] = inv(fact[n]);
for(int i=n-1;i>=0;i--) invfact[i] = (invfact[i+1]*(i+1))%mod;
pow[0] = 1;
for(int i=1;i<=n;i++) pow[i] = (pow[i-1]*2)%mod;
for(int i=1;i<=n;i++) {
for(int j=0;j<=i;j++) {
if(j==0 || j==i) C[i][j] = 1;
else C[i][j] = (C[i-1][j-1] + C[i-1][j])%mod;
}
}
}
static long exp(long a, long n) {
long res = 1;
while(n>0) {
if((n&1)==1) res = (res*a)%mod;
a = (a*a)%mod;
n = n>>1;
}
return res;
}
static long inv(long n) {
return exp(n, mod-2);
}
static final Random random=new Random();
static <T> void shuffle(T[] arr) {
int n = arr.length;
for(int i=0;i<n;i++ ) {
int k = random.nextInt(n);
T temp = arr[k]; arr[k] = arr[i]; arr[i] = temp;
}
}
static void ruffleSort(int[] a) {
int n=a.length;//shuffle, then sort
for (int i=0; i<n; i++) {
int oi=random.nextInt(n); int temp=a[oi];
a[oi]=a[i]; a[i]=temp;
}
Arrays.sort(a);
}
static void ruffleSort(long[] a) {
int n=a.length;//shuffle, then sort
for (int i=0; i<n; i++) {
int oi=random.nextInt(n); long temp=a[oi];
a[oi]=a[i]; a[i]=temp;
}
Arrays.sort(a);
}
static void reverse(int[] arr, int l, int r) {
for(int i=l;i<l+(r-l)/2;i++){
int temp = arr[i]; arr[i] = arr[r-i+l-1]; arr[r-i+l-1] = temp;
}
}
static void reverse(long[] arr, int l, int r) {
for(int i=l;i<l+(r-l)/2;i++){
long temp = arr[i]; arr[i] = arr[r-i+l-1]; arr[r-i+l-1] = temp;
}
}
static <T> void reverse(T[] arr, int l, int r) {
for(int i=l;i<l+(r-l)/2;i++) {
T temp = arr[i]; arr[i] = arr[r-i+l-1]; arr[r-i+l-1] = temp;
}
}
static class FastScanner{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
public String next(){
while(!st.hasMoreElements()){
try{
st = new StringTokenizer(br.readLine());
} catch(IOException e){
e.printStackTrace();
}
}
return st.nextToken();
}
public String nextLine() throws IOException {
return br.readLine();
}
public int nextInt(){
return Integer.parseInt(next());
}
public int[] readArray(int n){
int[] a = new int[n];
for(int i=0;i<n;i++)
a[i] = nextInt();
return a;
}
public long nextLong() {
return Long.parseLong(next());
}
public char nextChar() {
return next().toCharArray()[0];
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,657 | 3,503 |
137 |
/**
* BaZ :D
*/
import java.util.*;
import java.io.*;
import static java.lang.Math.*;
public class Main
{
static Reader scan;
static PrintWriter pw;
static int n,k,left[],right[],arr[];
static long MOD = 1000000007,count[],dp[];
public static void main(String[] args) {
new Thread(null,null,"BaZ",1<<25)
{
public void run()
{
try
{
solve();
}
catch(Exception e)
{
e.printStackTrace();
System.exit(1);
}
}
}.start();
}
static void solve() throws IOException
{
scan = new Reader();
pw = new PrintWriter(System.out,true);
StringBuilder sb = new StringBuilder();
n = ni();
k = ni();
int stack[] = new int[1000001];
int top = -1;
arr = new int[n];
left = new int[n];
right = new int[n];
for(int i=0;i<n;++i) {
arr[i] = ni();
while(top>=0 && arr[stack[top]]<=arr[i])
top--;
if(top==-1)
left[i] = 0;
else left[i] = stack[top]+1;
stack[++top] = i;
}
top = -1;
for(int i=n-1;i>=0;--i) {
while(top>=0 && arr[stack[top]]<arr[i])
top--;
if(top==-1)
right[i] = n-1;
else right[i] = stack[top]-1;
stack[++top] = i;
}
//pa("left", left);
//pa("right", right);
dp = new long[n+1];
for(int i=0;i<=n;++i) {
if(i<k)
continue;
dp[i] = dp[i-k+1] + (i-k+1);
}
count = new long[n];
long ans = 0;
for(int i=0;i<n;++i) {
int len = right[i]-left[i]+1;
int lef = i-left[i];
int rig = right[i]-i;
long count = dp[len] - dp[lef] - dp[rig];
if(count>=MOD)
count%=MOD;
ans += count*arr[i];
if(ans>=MOD)
ans%=MOD;
}
pl(ans);
pw.flush();
pw.close();
}
static int ni() throws IOException
{
return scan.nextInt();
}
static long nl() throws IOException
{
return scan.nextLong();
}
static double nd() throws IOException
{
return scan.nextDouble();
}
static void pl()
{
pw.println();
}
static void p(Object o)
{
pw.print(o+" ");
}
static void pl(Object o)
{
pw.println(o);
}
static void psb(StringBuilder sb)
{
pw.print(sb);
}
static void pa(String arrayName, Object arr[])
{
pl(arrayName+" : ");
for(Object o : arr)
p(o);
pl();
}
static void pa(String arrayName, int arr[])
{
pl(arrayName+" : ");
for(int o : arr)
p(o);
pl();
}
static void pa(String arrayName, long arr[])
{
pl(arrayName+" : ");
for(long o : arr)
p(o);
pl();
}
static void pa(String arrayName, double arr[])
{
pl(arrayName+" : ");
for(double o : arr)
p(o);
pl();
}
static void pa(String arrayName, char arr[])
{
pl(arrayName+" : ");
for(char o : arr)
p(o);
pl();
}
static void pa(String listName, List list)
{
pl(listName+" : ");
for(Object o : list)
p(o);
pl();
}
static void pa(String arrayName, Object[][] arr) {
pl(arrayName+" : ");
for(int i=0;i<arr.length;++i) {
for(Object o : arr[i])
p(o);
pl();
}
}
static void pa(String arrayName, int[][] arr) {
pl(arrayName+" : ");
for(int i=0;i<arr.length;++i) {
for(int o : arr[i])
p(o);
pl();
}
}
static void pa(String arrayName, long[][] arr) {
pl(arrayName+" : ");
for(int i=0;i<arr.length;++i) {
for(long o : arr[i])
p(o);
pl();
}
}
static void pa(String arrayName, char[][] arr) {
pl(arrayName+" : ");
for(int i=0;i<arr.length;++i) {
for(char o : arr[i])
p(o);
pl();
}
}
static void pa(String arrayName, double[][] arr) {
pl(arrayName+" : ");
for(int i=0;i<arr.length;++i) {
for(double o : arr[i])
p(o);
pl();
}
}
static class Reader {
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Reader() {
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Reader(String file_name) throws IOException {
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException {
byte[] buf = new byte[64];
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n') break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException {
int ret = 0;
byte c = read();
while (c <= ' ') c = read();
boolean neg = (c == '-');
if (neg) c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg) return -ret;
return ret;
}
public long nextLong() throws IOException {
long ret = 0;
byte c = read();
while (c <= ' ') c = read();
boolean neg = (c == '-');
if (neg) c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg) return -ret;
return ret;
}
public double nextDouble() throws IOException {
double ret = 0, div = 1;
byte c = read();
while (c <= ' ') c = read();
boolean neg = (c == '-');
if (neg) c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (c == '.') while ((c = read()) >= '0' && c <= '9') ret += (c - '0') / (div *= 10);
if (neg) return -ret;
return ret;
}
private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1) buffer[0] = -1;
}
private byte read() throws IOException {
if (bufferPointer == bytesRead) fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException {
if (din == null) return;
din.close();
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
/**
* BaZ :D
*/
import java.util.*;
import java.io.*;
import static java.lang.Math.*;
public class Main
{
static Reader scan;
static PrintWriter pw;
static int n,k,left[],right[],arr[];
static long MOD = 1000000007,count[],dp[];
public static void main(String[] args) {
new Thread(null,null,"BaZ",1<<25)
{
public void run()
{
try
{
solve();
}
catch(Exception e)
{
e.printStackTrace();
System.exit(1);
}
}
}.start();
}
static void solve() throws IOException
{
scan = new Reader();
pw = new PrintWriter(System.out,true);
StringBuilder sb = new StringBuilder();
n = ni();
k = ni();
int stack[] = new int[1000001];
int top = -1;
arr = new int[n];
left = new int[n];
right = new int[n];
for(int i=0;i<n;++i) {
arr[i] = ni();
while(top>=0 && arr[stack[top]]<=arr[i])
top--;
if(top==-1)
left[i] = 0;
else left[i] = stack[top]+1;
stack[++top] = i;
}
top = -1;
for(int i=n-1;i>=0;--i) {
while(top>=0 && arr[stack[top]]<arr[i])
top--;
if(top==-1)
right[i] = n-1;
else right[i] = stack[top]-1;
stack[++top] = i;
}
//pa("left", left);
//pa("right", right);
dp = new long[n+1];
for(int i=0;i<=n;++i) {
if(i<k)
continue;
dp[i] = dp[i-k+1] + (i-k+1);
}
count = new long[n];
long ans = 0;
for(int i=0;i<n;++i) {
int len = right[i]-left[i]+1;
int lef = i-left[i];
int rig = right[i]-i;
long count = dp[len] - dp[lef] - dp[rig];
if(count>=MOD)
count%=MOD;
ans += count*arr[i];
if(ans>=MOD)
ans%=MOD;
}
pl(ans);
pw.flush();
pw.close();
}
static int ni() throws IOException
{
return scan.nextInt();
}
static long nl() throws IOException
{
return scan.nextLong();
}
static double nd() throws IOException
{
return scan.nextDouble();
}
static void pl()
{
pw.println();
}
static void p(Object o)
{
pw.print(o+" ");
}
static void pl(Object o)
{
pw.println(o);
}
static void psb(StringBuilder sb)
{
pw.print(sb);
}
static void pa(String arrayName, Object arr[])
{
pl(arrayName+" : ");
for(Object o : arr)
p(o);
pl();
}
static void pa(String arrayName, int arr[])
{
pl(arrayName+" : ");
for(int o : arr)
p(o);
pl();
}
static void pa(String arrayName, long arr[])
{
pl(arrayName+" : ");
for(long o : arr)
p(o);
pl();
}
static void pa(String arrayName, double arr[])
{
pl(arrayName+" : ");
for(double o : arr)
p(o);
pl();
}
static void pa(String arrayName, char arr[])
{
pl(arrayName+" : ");
for(char o : arr)
p(o);
pl();
}
static void pa(String listName, List list)
{
pl(listName+" : ");
for(Object o : list)
p(o);
pl();
}
static void pa(String arrayName, Object[][] arr) {
pl(arrayName+" : ");
for(int i=0;i<arr.length;++i) {
for(Object o : arr[i])
p(o);
pl();
}
}
static void pa(String arrayName, int[][] arr) {
pl(arrayName+" : ");
for(int i=0;i<arr.length;++i) {
for(int o : arr[i])
p(o);
pl();
}
}
static void pa(String arrayName, long[][] arr) {
pl(arrayName+" : ");
for(int i=0;i<arr.length;++i) {
for(long o : arr[i])
p(o);
pl();
}
}
static void pa(String arrayName, char[][] arr) {
pl(arrayName+" : ");
for(int i=0;i<arr.length;++i) {
for(char o : arr[i])
p(o);
pl();
}
}
static void pa(String arrayName, double[][] arr) {
pl(arrayName+" : ");
for(int i=0;i<arr.length;++i) {
for(double o : arr[i])
p(o);
pl();
}
}
static class Reader {
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Reader() {
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Reader(String file_name) throws IOException {
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException {
byte[] buf = new byte[64];
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n') break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException {
int ret = 0;
byte c = read();
while (c <= ' ') c = read();
boolean neg = (c == '-');
if (neg) c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg) return -ret;
return ret;
}
public long nextLong() throws IOException {
long ret = 0;
byte c = read();
while (c <= ' ') c = read();
boolean neg = (c == '-');
if (neg) c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg) return -ret;
return ret;
}
public double nextDouble() throws IOException {
double ret = 0, div = 1;
byte c = read();
while (c <= ' ') c = read();
boolean neg = (c == '-');
if (neg) c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (c == '.') while ((c = read()) >= '0' && c <= '9') ret += (c - '0') / (div *= 10);
if (neg) return -ret;
return ret;
}
private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1) buffer[0] = -1;
}
private byte read() throws IOException {
if (bufferPointer == bytesRead) fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException {
if (din == null) return;
din.close();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
/**
* BaZ :D
*/
import java.util.*;
import java.io.*;
import static java.lang.Math.*;
public class Main
{
static Reader scan;
static PrintWriter pw;
static int n,k,left[],right[],arr[];
static long MOD = 1000000007,count[],dp[];
public static void main(String[] args) {
new Thread(null,null,"BaZ",1<<25)
{
public void run()
{
try
{
solve();
}
catch(Exception e)
{
e.printStackTrace();
System.exit(1);
}
}
}.start();
}
static void solve() throws IOException
{
scan = new Reader();
pw = new PrintWriter(System.out,true);
StringBuilder sb = new StringBuilder();
n = ni();
k = ni();
int stack[] = new int[1000001];
int top = -1;
arr = new int[n];
left = new int[n];
right = new int[n];
for(int i=0;i<n;++i) {
arr[i] = ni();
while(top>=0 && arr[stack[top]]<=arr[i])
top--;
if(top==-1)
left[i] = 0;
else left[i] = stack[top]+1;
stack[++top] = i;
}
top = -1;
for(int i=n-1;i>=0;--i) {
while(top>=0 && arr[stack[top]]<arr[i])
top--;
if(top==-1)
right[i] = n-1;
else right[i] = stack[top]-1;
stack[++top] = i;
}
//pa("left", left);
//pa("right", right);
dp = new long[n+1];
for(int i=0;i<=n;++i) {
if(i<k)
continue;
dp[i] = dp[i-k+1] + (i-k+1);
}
count = new long[n];
long ans = 0;
for(int i=0;i<n;++i) {
int len = right[i]-left[i]+1;
int lef = i-left[i];
int rig = right[i]-i;
long count = dp[len] - dp[lef] - dp[rig];
if(count>=MOD)
count%=MOD;
ans += count*arr[i];
if(ans>=MOD)
ans%=MOD;
}
pl(ans);
pw.flush();
pw.close();
}
static int ni() throws IOException
{
return scan.nextInt();
}
static long nl() throws IOException
{
return scan.nextLong();
}
static double nd() throws IOException
{
return scan.nextDouble();
}
static void pl()
{
pw.println();
}
static void p(Object o)
{
pw.print(o+" ");
}
static void pl(Object o)
{
pw.println(o);
}
static void psb(StringBuilder sb)
{
pw.print(sb);
}
static void pa(String arrayName, Object arr[])
{
pl(arrayName+" : ");
for(Object o : arr)
p(o);
pl();
}
static void pa(String arrayName, int arr[])
{
pl(arrayName+" : ");
for(int o : arr)
p(o);
pl();
}
static void pa(String arrayName, long arr[])
{
pl(arrayName+" : ");
for(long o : arr)
p(o);
pl();
}
static void pa(String arrayName, double arr[])
{
pl(arrayName+" : ");
for(double o : arr)
p(o);
pl();
}
static void pa(String arrayName, char arr[])
{
pl(arrayName+" : ");
for(char o : arr)
p(o);
pl();
}
static void pa(String listName, List list)
{
pl(listName+" : ");
for(Object o : list)
p(o);
pl();
}
static void pa(String arrayName, Object[][] arr) {
pl(arrayName+" : ");
for(int i=0;i<arr.length;++i) {
for(Object o : arr[i])
p(o);
pl();
}
}
static void pa(String arrayName, int[][] arr) {
pl(arrayName+" : ");
for(int i=0;i<arr.length;++i) {
for(int o : arr[i])
p(o);
pl();
}
}
static void pa(String arrayName, long[][] arr) {
pl(arrayName+" : ");
for(int i=0;i<arr.length;++i) {
for(long o : arr[i])
p(o);
pl();
}
}
static void pa(String arrayName, char[][] arr) {
pl(arrayName+" : ");
for(int i=0;i<arr.length;++i) {
for(char o : arr[i])
p(o);
pl();
}
}
static void pa(String arrayName, double[][] arr) {
pl(arrayName+" : ");
for(int i=0;i<arr.length;++i) {
for(double o : arr[i])
p(o);
pl();
}
}
static class Reader {
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Reader() {
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Reader(String file_name) throws IOException {
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException {
byte[] buf = new byte[64];
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n') break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException {
int ret = 0;
byte c = read();
while (c <= ' ') c = read();
boolean neg = (c == '-');
if (neg) c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg) return -ret;
return ret;
}
public long nextLong() throws IOException {
long ret = 0;
byte c = read();
while (c <= ' ') c = read();
boolean neg = (c == '-');
if (neg) c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg) return -ret;
return ret;
}
public double nextDouble() throws IOException {
double ret = 0, div = 1;
byte c = read();
while (c <= ' ') c = read();
boolean neg = (c == '-');
if (neg) c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (c == '.') while ((c = read()) >= '0' && c <= '9') ret += (c - '0') / (div *= 10);
if (neg) return -ret;
return ret;
}
private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1) buffer[0] = -1;
}
private byte read() throws IOException {
if (bufferPointer == bytesRead) fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException {
if (din == null) return;
din.close();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,119 | 137 |
1,794 |
import java.util.Arrays;
import java.util.InputMismatchException;
import java.io.*;
/**
* Generated by Contest helper plug-in
* Actual solution is at the bottom
*/
public class Main {
public static void main(String[] args) {
InputReader in = new StreamInputReader(System.in);
PrintWriter out = new PrintWriter(System.out);
run(in, out);
}
public static void run(InputReader in, PrintWriter out) {
Solver solver = new TaskB();
solver.solve(1, in, out);
Exit.exit(in, out);
}
}
abstract class InputReader {
private boolean finished = false;
public abstract int read();
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuffer res = new StringBuffer();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public void setFinished(boolean finished) {
this.finished = finished;
}
public abstract void close();
}
class StreamInputReader extends InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar, numChars;
public StreamInputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public void close() {
try {
stream.close();
} catch (IOException ignored) {
}
}
}
class Exit {
private Exit() {
}
public static void exit(InputReader in, PrintWriter out) {
in.setFinished(true);
in.close();
out.close();
}
}
interface Solver {
public void solve(int testNumber, InputReader in, PrintWriter out);
}
class TaskB implements Solver
{
public void solve(int testNumber, InputReader in, PrintWriter out)
{
int n = in.readInt();
int m = in.readInt();
int k = in.readInt();
int[] a = new int[n];
for(int i=0;i<n;i++) a[i] = in.readInt();
Arrays.sort(a);
if(k>=m)
{
out.println(0);
}
else
{
for(int i=n-1;i>=0;i--)
{
k += (a[i]-1);
if(k>=m)
{
out.println(n-i);
return;
}
}
if(k<m) out.println(-1);
}
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.InputMismatchException;
import java.io.*;
/**
* Generated by Contest helper plug-in
* Actual solution is at the bottom
*/
public class Main {
public static void main(String[] args) {
InputReader in = new StreamInputReader(System.in);
PrintWriter out = new PrintWriter(System.out);
run(in, out);
}
public static void run(InputReader in, PrintWriter out) {
Solver solver = new TaskB();
solver.solve(1, in, out);
Exit.exit(in, out);
}
}
abstract class InputReader {
private boolean finished = false;
public abstract int read();
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuffer res = new StringBuffer();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public void setFinished(boolean finished) {
this.finished = finished;
}
public abstract void close();
}
class StreamInputReader extends InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar, numChars;
public StreamInputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public void close() {
try {
stream.close();
} catch (IOException ignored) {
}
}
}
class Exit {
private Exit() {
}
public static void exit(InputReader in, PrintWriter out) {
in.setFinished(true);
in.close();
out.close();
}
}
interface Solver {
public void solve(int testNumber, InputReader in, PrintWriter out);
}
class TaskB implements Solver
{
public void solve(int testNumber, InputReader in, PrintWriter out)
{
int n = in.readInt();
int m = in.readInt();
int k = in.readInt();
int[] a = new int[n];
for(int i=0;i<n;i++) a[i] = in.readInt();
Arrays.sort(a);
if(k>=m)
{
out.println(0);
}
else
{
for(int i=n-1;i>=0;i--)
{
k += (a[i]-1);
if(k>=m)
{
out.println(n-i);
return;
}
}
if(k<m) out.println(-1);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.InputMismatchException;
import java.io.*;
/**
* Generated by Contest helper plug-in
* Actual solution is at the bottom
*/
public class Main {
public static void main(String[] args) {
InputReader in = new StreamInputReader(System.in);
PrintWriter out = new PrintWriter(System.out);
run(in, out);
}
public static void run(InputReader in, PrintWriter out) {
Solver solver = new TaskB();
solver.solve(1, in, out);
Exit.exit(in, out);
}
}
abstract class InputReader {
private boolean finished = false;
public abstract int read();
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuffer res = new StringBuffer();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public void setFinished(boolean finished) {
this.finished = finished;
}
public abstract void close();
}
class StreamInputReader extends InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar, numChars;
public StreamInputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public void close() {
try {
stream.close();
} catch (IOException ignored) {
}
}
}
class Exit {
private Exit() {
}
public static void exit(InputReader in, PrintWriter out) {
in.setFinished(true);
in.close();
out.close();
}
}
interface Solver {
public void solve(int testNumber, InputReader in, PrintWriter out);
}
class TaskB implements Solver
{
public void solve(int testNumber, InputReader in, PrintWriter out)
{
int n = in.readInt();
int m = in.readInt();
int k = in.readInt();
int[] a = new int[n];
for(int i=0;i<n;i++) a[i] = in.readInt();
Arrays.sort(a);
if(k>=m)
{
out.println(0);
}
else
{
for(int i=n-1;i>=0;i--)
{
k += (a[i]-1);
if(k>=m)
{
out.println(n-i);
return;
}
}
if(k<m) out.println(-1);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,128 | 1,790 |
1,290 |
import java.util.*;
import java.io.*;
import java.lang.*;
import java.math.*;
public class C {
public static void main(String[] args) throws Exception {
BufferedReader bf = new BufferedReader(new InputStreamReader(System.in));
// Scanner scan = new Scanner(System.in);
PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
// int n = Integer.parseInt(bf.readLine());
StringTokenizer st = new StringTokenizer(bf.readLine());
// int[] a = new int[n]; for(int i=0; i<n; i++) a[i] = Integer.parseInt(st.nextToken());
long n = Long.parseLong(st.nextToken());
long k = Long.parseLong(st.nextToken());
int mod = 1000000007;
if(n == 0) {
out.println(0);
out.close(); System.exit(0);
}
n %= mod;
long ans = exp(2, (int)((k+1) % (mod-1)), mod);
ans = (1L*ans * n) % mod;
ans = ans + mod + 1 - exp(2, (int)((k) % (mod-1)), mod);
ans %= mod;
out.println(ans);
// int n = scan.nextInt();
out.close(); System.exit(0);
}
public static int exp(int base, int e, int mod) {
if(e == 0) return 1;
if(e == 1) return base;
int val = exp(base, e/2, mod);
int ans = (int)(1L*val*val % mod);
if(e % 2 == 1)
ans = (int)(1L*ans*base % mod);
return ans;
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.lang.*;
import java.math.*;
public class C {
public static void main(String[] args) throws Exception {
BufferedReader bf = new BufferedReader(new InputStreamReader(System.in));
// Scanner scan = new Scanner(System.in);
PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
// int n = Integer.parseInt(bf.readLine());
StringTokenizer st = new StringTokenizer(bf.readLine());
// int[] a = new int[n]; for(int i=0; i<n; i++) a[i] = Integer.parseInt(st.nextToken());
long n = Long.parseLong(st.nextToken());
long k = Long.parseLong(st.nextToken());
int mod = 1000000007;
if(n == 0) {
out.println(0);
out.close(); System.exit(0);
}
n %= mod;
long ans = exp(2, (int)((k+1) % (mod-1)), mod);
ans = (1L*ans * n) % mod;
ans = ans + mod + 1 - exp(2, (int)((k) % (mod-1)), mod);
ans %= mod;
out.println(ans);
// int n = scan.nextInt();
out.close(); System.exit(0);
}
public static int exp(int base, int e, int mod) {
if(e == 0) return 1;
if(e == 1) return base;
int val = exp(base, e/2, mod);
int ans = (int)(1L*val*val % mod);
if(e % 2 == 1)
ans = (int)(1L*ans*base % mod);
return ans;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.lang.*;
import java.math.*;
public class C {
public static void main(String[] args) throws Exception {
BufferedReader bf = new BufferedReader(new InputStreamReader(System.in));
// Scanner scan = new Scanner(System.in);
PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
// int n = Integer.parseInt(bf.readLine());
StringTokenizer st = new StringTokenizer(bf.readLine());
// int[] a = new int[n]; for(int i=0; i<n; i++) a[i] = Integer.parseInt(st.nextToken());
long n = Long.parseLong(st.nextToken());
long k = Long.parseLong(st.nextToken());
int mod = 1000000007;
if(n == 0) {
out.println(0);
out.close(); System.exit(0);
}
n %= mod;
long ans = exp(2, (int)((k+1) % (mod-1)), mod);
ans = (1L*ans * n) % mod;
ans = ans + mod + 1 - exp(2, (int)((k) % (mod-1)), mod);
ans %= mod;
out.println(ans);
// int n = scan.nextInt();
out.close(); System.exit(0);
}
public static int exp(int base, int e, int mod) {
if(e == 0) return 1;
if(e == 1) return base;
int val = exp(base, e/2, mod);
int ans = (int)(1L*val*val % mod);
if(e % 2 == 1)
ans = (int)(1L*ans*base % mod);
return ans;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 721 | 1,288 |
2,256 |
import java.util.Scanner;
public class maestro{
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
int N = sc.nextInt();
long mod = (long)Math.pow(10,9)+7;
long[][] arr = new long[N][N];
arr[0][0]=1;
for (int i=1;i<N;i++){
char c = sc.next().charAt(0);
if (c=='f'){
for (int j=1;j<N;j++) arr[i][j] = arr[i - 1][j - 1];
}
else {
long sum=0;
for (int j=N-1;j>=0;j--){
sum=(sum+arr[i-1][j])%mod;
arr[i][j] = sum;
}
}
}
long ans=0;
for (int i=0;i<N;i++) ans=(ans+arr[N-1][i])%mod;
System.out.println(ans);
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class maestro{
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
int N = sc.nextInt();
long mod = (long)Math.pow(10,9)+7;
long[][] arr = new long[N][N];
arr[0][0]=1;
for (int i=1;i<N;i++){
char c = sc.next().charAt(0);
if (c=='f'){
for (int j=1;j<N;j++) arr[i][j] = arr[i - 1][j - 1];
}
else {
long sum=0;
for (int j=N-1;j>=0;j--){
sum=(sum+arr[i-1][j])%mod;
arr[i][j] = sum;
}
}
}
long ans=0;
for (int i=0;i<N;i++) ans=(ans+arr[N-1][i])%mod;
System.out.println(ans);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class maestro{
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
int N = sc.nextInt();
long mod = (long)Math.pow(10,9)+7;
long[][] arr = new long[N][N];
arr[0][0]=1;
for (int i=1;i<N;i++){
char c = sc.next().charAt(0);
if (c=='f'){
for (int j=1;j<N;j++) arr[i][j] = arr[i - 1][j - 1];
}
else {
long sum=0;
for (int j=N-1;j>=0;j--){
sum=(sum+arr[i-1][j])%mod;
arr[i][j] = sum;
}
}
}
long ans=0;
for (int i=0;i<N;i++) ans=(ans+arr[N-1][i])%mod;
System.out.println(ans);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 554 | 2,251 |
2,678 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
public class A {
public static void main(String[] args) throws IOException {
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(reader.readLine());
String str[] = reader.readLine().split(" ");
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = Integer.parseInt(str[i]);
}
Arrays.sort(a);
int k = 0;
for (int i = 0; i < n; i++) {
if (a[i] == 0){
continue;
}
for (int j = i + 1; j < n; j++) {
if (a[j] % a[i] == 0){
a[j] = 0;
}
}
k++;
}
System.out.println(k);
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
public class A {
public static void main(String[] args) throws IOException {
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(reader.readLine());
String str[] = reader.readLine().split(" ");
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = Integer.parseInt(str[i]);
}
Arrays.sort(a);
int k = 0;
for (int i = 0; i < n; i++) {
if (a[i] == 0){
continue;
}
for (int j = i + 1; j < n; j++) {
if (a[j] % a[i] == 0){
a[j] = 0;
}
}
k++;
}
System.out.println(k);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
public class A {
public static void main(String[] args) throws IOException {
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(reader.readLine());
String str[] = reader.readLine().split(" ");
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = Integer.parseInt(str[i]);
}
Arrays.sort(a);
int k = 0;
for (int i = 0; i < n; i++) {
if (a[i] == 0){
continue;
}
for (int j = i + 1; j < n; j++) {
if (a[j] % a[i] == 0){
a[j] = 0;
}
}
k++;
}
System.out.println(k);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 556 | 2,672 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.