id
int64
0
4.52k
code
stringlengths
142
31.2k
answer
stringclasses
7 values
prompt
stringlengths
1.64k
32.6k
test_prompt
stringlengths
1.7k
32.7k
token_length
int64
373
7.8k
__index_level_0__
int64
0
4.5k
136
import java.util.*; public class Test { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n= sc.nextInt(); int x= (int)Math.sqrt(n) ; int a[] = new int[n+5]; for(int i=1,o=n,j;i<=n;i+=x) for(j=(int)Math.min(i+x-1,n);j>=i;a[j--]=o--); for(int i=1;i<=n;i++)System.out.print(a[i]+" "); System.out.println(); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; public class Test { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n= sc.nextInt(); int x= (int)Math.sqrt(n) ; int a[] = new int[n+5]; for(int i=1,o=n,j;i<=n;i+=x) for(j=(int)Math.min(i+x-1,n);j>=i;a[j--]=o--); for(int i=1;i<=n;i++)System.out.print(a[i]+" "); System.out.println(); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; public class Test { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n= sc.nextInt(); int x= (int)Math.sqrt(n) ; int a[] = new int[n+5]; for(int i=1,o=n,j;i<=n;i+=x) for(j=(int)Math.min(i+x-1,n);j>=i;a[j--]=o--); for(int i=1;i<=n;i++)System.out.print(a[i]+" "); System.out.println(); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
441
136
1,765
import java.io.*; import java.util.*; public class Main implements Runnable { class House implements Comparable<House> { int x; int a; public House(int x, int a) { this.x = x; this.a = a; } @Override public int compareTo(House other) { return x - other.x; } } // private void solution() throws IOException { // int t = in.nextInt(); // while (t-- > 0) { // int n =in.nextInt(); // int m = in.nextInt(); // int x1 = in.nextInt(); // int y1 = in.nextInt(); // int x2 = in.nextInt(); // int y2 = in.nextInt(); // // } // } private void solution() throws IOException { int n = in.nextInt(); int t = in.nextInt(); House[] h = new House[n]; for (int i = 0; i < h.length; ++i) { h[i] = new House(in.nextInt(), in.nextInt()); } Arrays.sort(h); int res = 2; for (int i = 0; i < h.length - 1; ++i) { double dist = h[i + 1].x - h[i + 1].a / 2.0 - (h[i].x + h[i].a / 2.0); if (dist >= t) { if (dist == t) { ++res; } else { res += 2; } } } out.println(res); } public void run() { try { solution(); in.reader.close(); out.close(); } catch (Exception e) { e.printStackTrace(); System.exit(-1); } } private class Scanner { private BufferedReader reader; private StringTokenizer tokenizer; public Scanner(Reader reader) { this.reader = new BufferedReader(reader); this.tokenizer = new StringTokenizer(""); } public boolean hasNext() throws IOException { while (!tokenizer.hasMoreTokens()) { String next = reader.readLine(); if (next == null) { return false; } tokenizer = new StringTokenizer(next); } return true; } public String next() throws IOException { hasNext(); return tokenizer.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public String nextLine() throws IOException { tokenizer = new StringTokenizer(""); return reader.readLine(); } } public static void main(String[] args) throws IOException { new Thread(null, new Main(), "", 1 << 28).start(); } PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); Scanner in = new Scanner(new InputStreamReader(System.in)); }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main implements Runnable { class House implements Comparable<House> { int x; int a; public House(int x, int a) { this.x = x; this.a = a; } @Override public int compareTo(House other) { return x - other.x; } } // private void solution() throws IOException { // int t = in.nextInt(); // while (t-- > 0) { // int n =in.nextInt(); // int m = in.nextInt(); // int x1 = in.nextInt(); // int y1 = in.nextInt(); // int x2 = in.nextInt(); // int y2 = in.nextInt(); // // } // } private void solution() throws IOException { int n = in.nextInt(); int t = in.nextInt(); House[] h = new House[n]; for (int i = 0; i < h.length; ++i) { h[i] = new House(in.nextInt(), in.nextInt()); } Arrays.sort(h); int res = 2; for (int i = 0; i < h.length - 1; ++i) { double dist = h[i + 1].x - h[i + 1].a / 2.0 - (h[i].x + h[i].a / 2.0); if (dist >= t) { if (dist == t) { ++res; } else { res += 2; } } } out.println(res); } public void run() { try { solution(); in.reader.close(); out.close(); } catch (Exception e) { e.printStackTrace(); System.exit(-1); } } private class Scanner { private BufferedReader reader; private StringTokenizer tokenizer; public Scanner(Reader reader) { this.reader = new BufferedReader(reader); this.tokenizer = new StringTokenizer(""); } public boolean hasNext() throws IOException { while (!tokenizer.hasMoreTokens()) { String next = reader.readLine(); if (next == null) { return false; } tokenizer = new StringTokenizer(next); } return true; } public String next() throws IOException { hasNext(); return tokenizer.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public String nextLine() throws IOException { tokenizer = new StringTokenizer(""); return reader.readLine(); } } public static void main(String[] args) throws IOException { new Thread(null, new Main(), "", 1 << 28).start(); } PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); Scanner in = new Scanner(new InputStreamReader(System.in)); } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main implements Runnable { class House implements Comparable<House> { int x; int a; public House(int x, int a) { this.x = x; this.a = a; } @Override public int compareTo(House other) { return x - other.x; } } // private void solution() throws IOException { // int t = in.nextInt(); // while (t-- > 0) { // int n =in.nextInt(); // int m = in.nextInt(); // int x1 = in.nextInt(); // int y1 = in.nextInt(); // int x2 = in.nextInt(); // int y2 = in.nextInt(); // // } // } private void solution() throws IOException { int n = in.nextInt(); int t = in.nextInt(); House[] h = new House[n]; for (int i = 0; i < h.length; ++i) { h[i] = new House(in.nextInt(), in.nextInt()); } Arrays.sort(h); int res = 2; for (int i = 0; i < h.length - 1; ++i) { double dist = h[i + 1].x - h[i + 1].a / 2.0 - (h[i].x + h[i].a / 2.0); if (dist >= t) { if (dist == t) { ++res; } else { res += 2; } } } out.println(res); } public void run() { try { solution(); in.reader.close(); out.close(); } catch (Exception e) { e.printStackTrace(); System.exit(-1); } } private class Scanner { private BufferedReader reader; private StringTokenizer tokenizer; public Scanner(Reader reader) { this.reader = new BufferedReader(reader); this.tokenizer = new StringTokenizer(""); } public boolean hasNext() throws IOException { while (!tokenizer.hasMoreTokens()) { String next = reader.readLine(); if (next == null) { return false; } tokenizer = new StringTokenizer(next); } return true; } public String next() throws IOException { hasNext(); return tokenizer.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public String nextLine() throws IOException { tokenizer = new StringTokenizer(""); return reader.readLine(); } } public static void main(String[] args) throws IOException { new Thread(null, new Main(), "", 1 << 28).start(); } PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); Scanner in = new Scanner(new InputStreamReader(System.in)); } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
948
1,761
4,343
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.net.Inet4Address; import java.util.Arrays; import java.util.StringTokenizer; /** * Created by shirsh.bansal on 07/08/16. */ public class Main { public static void main(String[] args) throws IOException { FastScanner scanner = new FastScanner(); int n = scanner.nextInt(); int m = scanner.nextInt(); boolean graph[][] = new boolean[n][n]; for (int i = 0; i < m; i++) { int a = scanner.nextInt(); int b = scanner.nextInt(); graph[a-1][b-1] = true; graph[b-1][a-1] = true; } if(n <= 2) { System.out.println(0); return; } long dp[][] = new long[1<<n][n]; for (int i = 0; i < (1<<n); i++) { Arrays.fill(dp[i], -1); } for (int i = 1; i < (1<<n); i++) { for (int j = 0; j < n; j++) { f(i, j, dp, graph, n); } } long sum = 0; // for (int i = 7; i < (1 << n); i++) { // if(Integer.bitCount(i) < 3) continue; // for (int j = 0; j < n; j++) { // int startNode = Integer.numberOfTrailingZeros(Integer.highestOneBit(i)); // int endNode = j; // // if(graph[startNode][endNode] && dp[i][j] != -1) { //// System.out.println(i + " " + startNode + " " + endNode + " " + dp[i][j]); // sum += dp[i][j]; // } // } // } for (int i = 0; i < n; i++) { for (int j = 0; j < (1 << n); j++) { if(Integer.bitCount(j) >= 3 && graph[Integer.numberOfTrailingZeros(j)][i]) { sum += dp[j][i]; } } } System.out.println(sum/2); } private static long f(int mask, int i, long[][] dp, boolean[][] graph, int n) { if(dp[mask][i] != -1) return dp[mask][i]; if(Integer.bitCount(mask) == 1 && (mask&(1<<i)) != 0) { dp[mask][i] = 1; } else if(Integer.bitCount(mask) > 1 && (mask&(1<<i)) != 0 && i != Integer.numberOfTrailingZeros(mask)) { dp[mask][i] = 0; for (int j = 0; j < n; j++) { if(graph[i][j]) dp[mask][i] = dp[mask][i] + f(mask^(1<<i), j, dp, graph, n); } } else { dp[mask][i] = 0; } // int tmpMask = mask ^ (1<<i); // for (int j = 0; j <= firstNode; j++) { // if(((1<<j)&tmpMask) != 0 && graph[i][j]) { // dp[mask][i] += f(tmpMask, j, dp, graph, n, firstNode); // } // } // return dp[mask][i]; } static class FastScanner { BufferedReader br; StringTokenizer st; FastScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() throws IOException { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(br.readLine()); } return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(next()); } } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.net.Inet4Address; import java.util.Arrays; import java.util.StringTokenizer; /** * Created by shirsh.bansal on 07/08/16. */ public class Main { public static void main(String[] args) throws IOException { FastScanner scanner = new FastScanner(); int n = scanner.nextInt(); int m = scanner.nextInt(); boolean graph[][] = new boolean[n][n]; for (int i = 0; i < m; i++) { int a = scanner.nextInt(); int b = scanner.nextInt(); graph[a-1][b-1] = true; graph[b-1][a-1] = true; } if(n <= 2) { System.out.println(0); return; } long dp[][] = new long[1<<n][n]; for (int i = 0; i < (1<<n); i++) { Arrays.fill(dp[i], -1); } for (int i = 1; i < (1<<n); i++) { for (int j = 0; j < n; j++) { f(i, j, dp, graph, n); } } long sum = 0; // for (int i = 7; i < (1 << n); i++) { // if(Integer.bitCount(i) < 3) continue; // for (int j = 0; j < n; j++) { // int startNode = Integer.numberOfTrailingZeros(Integer.highestOneBit(i)); // int endNode = j; // // if(graph[startNode][endNode] && dp[i][j] != -1) { //// System.out.println(i + " " + startNode + " " + endNode + " " + dp[i][j]); // sum += dp[i][j]; // } // } // } for (int i = 0; i < n; i++) { for (int j = 0; j < (1 << n); j++) { if(Integer.bitCount(j) >= 3 && graph[Integer.numberOfTrailingZeros(j)][i]) { sum += dp[j][i]; } } } System.out.println(sum/2); } private static long f(int mask, int i, long[][] dp, boolean[][] graph, int n) { if(dp[mask][i] != -1) return dp[mask][i]; if(Integer.bitCount(mask) == 1 && (mask&(1<<i)) != 0) { dp[mask][i] = 1; } else if(Integer.bitCount(mask) > 1 && (mask&(1<<i)) != 0 && i != Integer.numberOfTrailingZeros(mask)) { dp[mask][i] = 0; for (int j = 0; j < n; j++) { if(graph[i][j]) dp[mask][i] = dp[mask][i] + f(mask^(1<<i), j, dp, graph, n); } } else { dp[mask][i] = 0; } // int tmpMask = mask ^ (1<<i); // for (int j = 0; j <= firstNode; j++) { // if(((1<<j)&tmpMask) != 0 && graph[i][j]) { // dp[mask][i] += f(tmpMask, j, dp, graph, n, firstNode); // } // } // return dp[mask][i]; } static class FastScanner { BufferedReader br; StringTokenizer st; FastScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() throws IOException { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(br.readLine()); } return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(next()); } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.net.Inet4Address; import java.util.Arrays; import java.util.StringTokenizer; /** * Created by shirsh.bansal on 07/08/16. */ public class Main { public static void main(String[] args) throws IOException { FastScanner scanner = new FastScanner(); int n = scanner.nextInt(); int m = scanner.nextInt(); boolean graph[][] = new boolean[n][n]; for (int i = 0; i < m; i++) { int a = scanner.nextInt(); int b = scanner.nextInt(); graph[a-1][b-1] = true; graph[b-1][a-1] = true; } if(n <= 2) { System.out.println(0); return; } long dp[][] = new long[1<<n][n]; for (int i = 0; i < (1<<n); i++) { Arrays.fill(dp[i], -1); } for (int i = 1; i < (1<<n); i++) { for (int j = 0; j < n; j++) { f(i, j, dp, graph, n); } } long sum = 0; // for (int i = 7; i < (1 << n); i++) { // if(Integer.bitCount(i) < 3) continue; // for (int j = 0; j < n; j++) { // int startNode = Integer.numberOfTrailingZeros(Integer.highestOneBit(i)); // int endNode = j; // // if(graph[startNode][endNode] && dp[i][j] != -1) { //// System.out.println(i + " " + startNode + " " + endNode + " " + dp[i][j]); // sum += dp[i][j]; // } // } // } for (int i = 0; i < n; i++) { for (int j = 0; j < (1 << n); j++) { if(Integer.bitCount(j) >= 3 && graph[Integer.numberOfTrailingZeros(j)][i]) { sum += dp[j][i]; } } } System.out.println(sum/2); } private static long f(int mask, int i, long[][] dp, boolean[][] graph, int n) { if(dp[mask][i] != -1) return dp[mask][i]; if(Integer.bitCount(mask) == 1 && (mask&(1<<i)) != 0) { dp[mask][i] = 1; } else if(Integer.bitCount(mask) > 1 && (mask&(1<<i)) != 0 && i != Integer.numberOfTrailingZeros(mask)) { dp[mask][i] = 0; for (int j = 0; j < n; j++) { if(graph[i][j]) dp[mask][i] = dp[mask][i] + f(mask^(1<<i), j, dp, graph, n); } } else { dp[mask][i] = 0; } // int tmpMask = mask ^ (1<<i); // for (int j = 0; j <= firstNode; j++) { // if(((1<<j)&tmpMask) != 0 && graph[i][j]) { // dp[mask][i] += f(tmpMask, j, dp, graph, n, firstNode); // } // } // return dp[mask][i]; } static class FastScanner { BufferedReader br; StringTokenizer st; FastScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() throws IOException { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(br.readLine()); } return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(next()); } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,229
4,332
1,428
import java.io.*; import java.math.*; import java.util.*; public class B { public static void main(String[] args) throws Exception { new B().solve(System.in, System.out); // new FileInputStream(new File("input.txt")), // new PrintStream(new FileOutputStream(new File("output.txt")))); } void solve(InputStream _in, PrintStream out) throws IOException { // BufferedReader in = new BufferedReader(new InputStreamReader(_in)); // String[] sp; Scanner sc = new Scanner(_in); long n = sc.nextLong(); long x = sc.nextLong() - 1; long y = sc.nextLong() - 1; long c = sc.nextLong(); long ub = 2 * n; long lb = -1; while (lb + 1 < ub) { long k = (lb + ub) / 2; long l, u, r, d; l = Math.max(0, x - k); u = Math.max(0, y - k); r = Math.min(n - 1, x + k); d = Math.min(n - 1, y + k); long ss = 0; // lu long lu = x - (k - (y - u)); if (l < lu) { long a = lu - l; ss += a * (a + 1) / 2; } // ld long ld = x - (k - (d - y)); if (l < ld) { long a = ld - l; ss += a * (a + 1) / 2; } // ru long ru = x + (k - (y - u)); if (ru < r) { long a = r - ru; ss += a * (a + 1) / 2; } // rd long rd = x + (k - (d - y)); if (rd < r) { long a = r - rd; ss += a * (a + 1) / 2; } long cc = (r + 1 - l) * (d + 1 - u) - ss; if (c <= cc) { // ok ub = k; } else { // ng lb = k; } } out.println(ub); } } // // // // // // // // // // // // // // // // // // // // // // // //
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.math.*; import java.util.*; public class B { public static void main(String[] args) throws Exception { new B().solve(System.in, System.out); // new FileInputStream(new File("input.txt")), // new PrintStream(new FileOutputStream(new File("output.txt")))); } void solve(InputStream _in, PrintStream out) throws IOException { // BufferedReader in = new BufferedReader(new InputStreamReader(_in)); // String[] sp; Scanner sc = new Scanner(_in); long n = sc.nextLong(); long x = sc.nextLong() - 1; long y = sc.nextLong() - 1; long c = sc.nextLong(); long ub = 2 * n; long lb = -1; while (lb + 1 < ub) { long k = (lb + ub) / 2; long l, u, r, d; l = Math.max(0, x - k); u = Math.max(0, y - k); r = Math.min(n - 1, x + k); d = Math.min(n - 1, y + k); long ss = 0; // lu long lu = x - (k - (y - u)); if (l < lu) { long a = lu - l; ss += a * (a + 1) / 2; } // ld long ld = x - (k - (d - y)); if (l < ld) { long a = ld - l; ss += a * (a + 1) / 2; } // ru long ru = x + (k - (y - u)); if (ru < r) { long a = r - ru; ss += a * (a + 1) / 2; } // rd long rd = x + (k - (d - y)); if (rd < r) { long a = r - rd; ss += a * (a + 1) / 2; } long cc = (r + 1 - l) * (d + 1 - u) - ss; if (c <= cc) { // ok ub = k; } else { // ng lb = k; } } out.println(ub); } } // // // // // // // // // // // // // // // // // // // // // // // // </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.math.*; import java.util.*; public class B { public static void main(String[] args) throws Exception { new B().solve(System.in, System.out); // new FileInputStream(new File("input.txt")), // new PrintStream(new FileOutputStream(new File("output.txt")))); } void solve(InputStream _in, PrintStream out) throws IOException { // BufferedReader in = new BufferedReader(new InputStreamReader(_in)); // String[] sp; Scanner sc = new Scanner(_in); long n = sc.nextLong(); long x = sc.nextLong() - 1; long y = sc.nextLong() - 1; long c = sc.nextLong(); long ub = 2 * n; long lb = -1; while (lb + 1 < ub) { long k = (lb + ub) / 2; long l, u, r, d; l = Math.max(0, x - k); u = Math.max(0, y - k); r = Math.min(n - 1, x + k); d = Math.min(n - 1, y + k); long ss = 0; // lu long lu = x - (k - (y - u)); if (l < lu) { long a = lu - l; ss += a * (a + 1) / 2; } // ld long ld = x - (k - (d - y)); if (l < ld) { long a = ld - l; ss += a * (a + 1) / 2; } // ru long ru = x + (k - (y - u)); if (ru < r) { long a = r - ru; ss += a * (a + 1) / 2; } // rd long rd = x + (k - (d - y)); if (rd < r) { long a = r - rd; ss += a * (a + 1) / 2; } long cc = (r + 1 - l) * (d + 1 - u) - ss; if (c <= cc) { // ok ub = k; } else { // ng lb = k; } } out.println(ub); } } // // // // // // // // // // // // // // // // // // // // // // // // </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
882
1,426
2,561
import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.*; // Warning: Printing unwanted or ill-formatted data to output will cause the test cases to fail public class Ideone { public static void main(String args[] ) throws Exception{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int n,i,j,k,temp ; n = ni(br.readLine()); int[] a = nia(br); Arrays.sort(a); int c = 0; for( i = 0; i< n ; i++) { if(a[i] > 0) { c++; temp = a[i]; for(j = i+1; j< n; j++) { if(a[j] % temp == 0) a[j] = 0; } } } System.out.println(c); } static Integer[] nIa(BufferedReader br) throws Exception{ String sa[]=br.readLine().split(" "); Integer [] a = new Integer [sa.length]; for(int i = 0; i< sa.length; i++){ a[i]= ni(sa[i]); } return a; } static int[] nia(BufferedReader br) throws Exception{ String sa[]=br.readLine().split(" "); int [] a = new int [sa.length]; for(int i = 0; i< sa.length; i++){ a[i]= ni(sa[i]); } return a; } static int ni(String s){ return Integer.parseInt(s); } static float nf(String s){ return Float.parseFloat(s); } static double nd(String s){ return Double.parseDouble(s); } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.*; // Warning: Printing unwanted or ill-formatted data to output will cause the test cases to fail public class Ideone { public static void main(String args[] ) throws Exception{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int n,i,j,k,temp ; n = ni(br.readLine()); int[] a = nia(br); Arrays.sort(a); int c = 0; for( i = 0; i< n ; i++) { if(a[i] > 0) { c++; temp = a[i]; for(j = i+1; j< n; j++) { if(a[j] % temp == 0) a[j] = 0; } } } System.out.println(c); } static Integer[] nIa(BufferedReader br) throws Exception{ String sa[]=br.readLine().split(" "); Integer [] a = new Integer [sa.length]; for(int i = 0; i< sa.length; i++){ a[i]= ni(sa[i]); } return a; } static int[] nia(BufferedReader br) throws Exception{ String sa[]=br.readLine().split(" "); int [] a = new int [sa.length]; for(int i = 0; i< sa.length; i++){ a[i]= ni(sa[i]); } return a; } static int ni(String s){ return Integer.parseInt(s); } static float nf(String s){ return Float.parseFloat(s); } static double nd(String s){ return Double.parseDouble(s); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.*; // Warning: Printing unwanted or ill-formatted data to output will cause the test cases to fail public class Ideone { public static void main(String args[] ) throws Exception{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int n,i,j,k,temp ; n = ni(br.readLine()); int[] a = nia(br); Arrays.sort(a); int c = 0; for( i = 0; i< n ; i++) { if(a[i] > 0) { c++; temp = a[i]; for(j = i+1; j< n; j++) { if(a[j] % temp == 0) a[j] = 0; } } } System.out.println(c); } static Integer[] nIa(BufferedReader br) throws Exception{ String sa[]=br.readLine().split(" "); Integer [] a = new Integer [sa.length]; for(int i = 0; i< sa.length; i++){ a[i]= ni(sa[i]); } return a; } static int[] nia(BufferedReader br) throws Exception{ String sa[]=br.readLine().split(" "); int [] a = new int [sa.length]; for(int i = 0; i< sa.length; i++){ a[i]= ni(sa[i]); } return a; } static int ni(String s){ return Integer.parseInt(s); } static float nf(String s){ return Float.parseFloat(s); } static double nd(String s){ return Double.parseDouble(s); } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
701
2,555
2,115
import java.util.ArrayList; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.Scanner; public class Solution { public static void main(String[] args) { Solution solution = new Solution(); System.out.println(solution.solve()); } private int solve() { Scanner in = new Scanner(System.in); int n = in.nextInt(); int m = in.nextInt(); int[] a = new int[m]; for (int i = 0; i < m; ++i) a[i] = in.nextInt(); if (n > m) return 0; Map<Integer, Integer> map = new HashMap<>(); for (int k: a) map.put(k, map.getOrDefault(k, 0) + 1); List<Integer> keySet = new ArrayList<>(map.keySet()); int end = m / n; keySet.sort((u, v) -> -Integer.compare(u, v)); do { int count = 0; for (int k: keySet) { count += map.get(k) / end; if (count >= n) return end; } } while (--end > 0); return 0; } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.ArrayList; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.Scanner; public class Solution { public static void main(String[] args) { Solution solution = new Solution(); System.out.println(solution.solve()); } private int solve() { Scanner in = new Scanner(System.in); int n = in.nextInt(); int m = in.nextInt(); int[] a = new int[m]; for (int i = 0; i < m; ++i) a[i] = in.nextInt(); if (n > m) return 0; Map<Integer, Integer> map = new HashMap<>(); for (int k: a) map.put(k, map.getOrDefault(k, 0) + 1); List<Integer> keySet = new ArrayList<>(map.keySet()); int end = m / n; keySet.sort((u, v) -> -Integer.compare(u, v)); do { int count = 0; for (int k: keySet) { count += map.get(k) / end; if (count >= n) return end; } } while (--end > 0); return 0; } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.ArrayList; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.Scanner; public class Solution { public static void main(String[] args) { Solution solution = new Solution(); System.out.println(solution.solve()); } private int solve() { Scanner in = new Scanner(System.in); int n = in.nextInt(); int m = in.nextInt(); int[] a = new int[m]; for (int i = 0; i < m; ++i) a[i] = in.nextInt(); if (n > m) return 0; Map<Integer, Integer> map = new HashMap<>(); for (int k: a) map.put(k, map.getOrDefault(k, 0) + 1); List<Integer> keySet = new ArrayList<>(map.keySet()); int end = m / n; keySet.sort((u, v) -> -Integer.compare(u, v)); do { int count = 0; for (int k: keySet) { count += map.get(k) / end; if (count >= n) return end; } } while (--end > 0); return 0; } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
592
2,111
994
import java.util.*; import java.io.*; public class template { public static void main(String[] args) { FastScanner sc = new FastScanner(); PrintWriter pw = new PrintWriter(new OutputStreamWriter(System.out)); int n = sc.nextInt(); int k = sc.nextInt(); long left = 0; long right = n; long mid = left+right/2; while(left<=right) { mid = (left+(right))/2; if(((mid+1)*mid)/2-(n-mid)==k) { pw.println(n-mid); pw.close(); break; } else if(((mid+1)*mid)/2-(n-mid)>k) { right = mid-1; } else left = mid+1; } } } @SuppressWarnings("all") class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(String s) { try { br = new BufferedReader(new FileReader(s)); } catch (FileNotFoundException e) { // TODO Auto-generated catch block e.printStackTrace(); } } public FastScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String nextToken() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(nextToken()); } long nextLong() { return Long.parseLong(nextToken()); } double nextDouble() { return Double.parseDouble(nextToken()); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; public class template { public static void main(String[] args) { FastScanner sc = new FastScanner(); PrintWriter pw = new PrintWriter(new OutputStreamWriter(System.out)); int n = sc.nextInt(); int k = sc.nextInt(); long left = 0; long right = n; long mid = left+right/2; while(left<=right) { mid = (left+(right))/2; if(((mid+1)*mid)/2-(n-mid)==k) { pw.println(n-mid); pw.close(); break; } else if(((mid+1)*mid)/2-(n-mid)>k) { right = mid-1; } else left = mid+1; } } } @SuppressWarnings("all") class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(String s) { try { br = new BufferedReader(new FileReader(s)); } catch (FileNotFoundException e) { // TODO Auto-generated catch block e.printStackTrace(); } } public FastScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String nextToken() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(nextToken()); } long nextLong() { return Long.parseLong(nextToken()); } double nextDouble() { return Double.parseDouble(nextToken()); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class template { public static void main(String[] args) { FastScanner sc = new FastScanner(); PrintWriter pw = new PrintWriter(new OutputStreamWriter(System.out)); int n = sc.nextInt(); int k = sc.nextInt(); long left = 0; long right = n; long mid = left+right/2; while(left<=right) { mid = (left+(right))/2; if(((mid+1)*mid)/2-(n-mid)==k) { pw.println(n-mid); pw.close(); break; } else if(((mid+1)*mid)/2-(n-mid)>k) { right = mid-1; } else left = mid+1; } } } @SuppressWarnings("all") class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(String s) { try { br = new BufferedReader(new FileReader(s)); } catch (FileNotFoundException e) { // TODO Auto-generated catch block e.printStackTrace(); } } public FastScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String nextToken() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(nextToken()); } long nextLong() { return Long.parseLong(nextToken()); } double nextDouble() { return Double.parseDouble(nextToken()); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
713
993
2,647
import java.io.*; import java.lang.reflect.Array; import java.math.BigInteger; import java.util.*; public class Mainm { static int mod1 = (int) (1e9 + 7); static class Reader { final private int BUFFER_SIZE = 1 << 16; Scanner scan = new Scanner(new BufferedReader(new InputStreamReader(System.in))); private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Reader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String nextString() throws IOException { String str00 = scan.next(); return str00; } public String readLine() throws IOException { byte[] buf = new byte[64]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } String next() throws IOException { int c; for (c = read(); c <= 32; c = read()); StringBuilder sb = new StringBuilder(); for (; c > 32; c = read()) { sb.append((char) c); } return sb.toString(); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } public int[] nextArray(int n) throws IOException { int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } } static int GCD(int a, int b) { if (b == 0) return a; return GCD(b, a % b); } static long power(long x, long y, long p) { int res = 1; // Initialize result return res; } static boolean primeCheck(long num0) { boolean b1 = true; if (num0 == 1) { b1 = false; } else { int num01 = (int) (Math.sqrt(num0)) + 1; me1: for (int i = 2; i < num01; i++) { if (num0 % i == 0) { b1 = false; break me1; } } } return b1; } public static int dev(long num1) { int count00=0; while (num1%2==0) { count00++; num1/=2; } HashMap<Long,Long> hashMap=new HashMap<>(); if(count00!=0) { hashMap.put(2L,(long)count00); } for (int i = 3; i <= (int)Math.sqrt(num1); i = i + 2) { // While i divides n, print i and divide n if(num1%i==0) { int count01 = 0; while (num1 % i == 0) { num1 /= i; count01++; } hashMap.put((long)i,(long)count01); } } if(num1>2) { hashMap.put((long)num1,1L); } long numOfDiv=1; for(long num00:hashMap.keySet()) { long cDiv0=hashMap.get(num00); numOfDiv*=(cDiv0+1); } return (int)(numOfDiv); } public static long solve(long[] arr1, long N) { int n=(int)N; HashMap<Long,Integer> hm=new HashMap<>(); for(int i=0;i<n;i++) { if(hm.containsKey(arr1[i])) { } else { hm.put(arr1[i],1); } } long count1=0; for(int i=0;i<n;i++) { long num1=arr1[i]*arr1[i]; if(hm.containsKey(num1)) { count1+=hm.get(num1); if(arr1[i]==1) { count1--; } } } return count1; } public static void main(String[] args) throws IOException { Reader r = new Reader(); //PrintWriter writer=new PrintWriter(System.out); //Scanner r = new Scanner(new BufferedReader(new InputStreamReader(System.in))); //Scanner r=new Scanner(System.in); OutputWriter770 out77 = new OutputWriter770(System.out); int num1=r.nextInt(); int[] arr1=r.nextArray(num1); Arrays.sort(arr1); int res1=0; for(int i=0;i<num1;i++) { if(arr1[i]!=-1) { res1++; int num2=arr1[i]; arr1[i]=-1; for(int j=i+1;j<num1;j++) { if(arr1[j]%num2==0) { arr1[j]=-1; } } } } out77.print(res1+""); r.close(); out77.close(); } } class OutputWriter770 { BufferedWriter writer; public OutputWriter770(OutputStream stream) { writer = new BufferedWriter(new OutputStreamWriter(stream)); } public void print(int i) throws IOException { writer.write(i + ""); } public void println(int i) throws IOException { writer.write(i + "\n"); } public void print(String s) throws IOException { writer.write(s + ""); } public void println(String s) throws IOException { writer.write(s + "\n"); } public void print(char[] c) throws IOException { writer.write(c); } public void close() throws IOException { writer.flush(); writer.close(); } } class node { int source,dest; long difDist; node(int source,int dest,long tDst, long hDst) { this.source=source; this.dest=dest; this.difDist=hDst-tDst; } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.lang.reflect.Array; import java.math.BigInteger; import java.util.*; public class Mainm { static int mod1 = (int) (1e9 + 7); static class Reader { final private int BUFFER_SIZE = 1 << 16; Scanner scan = new Scanner(new BufferedReader(new InputStreamReader(System.in))); private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Reader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String nextString() throws IOException { String str00 = scan.next(); return str00; } public String readLine() throws IOException { byte[] buf = new byte[64]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } String next() throws IOException { int c; for (c = read(); c <= 32; c = read()); StringBuilder sb = new StringBuilder(); for (; c > 32; c = read()) { sb.append((char) c); } return sb.toString(); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } public int[] nextArray(int n) throws IOException { int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } } static int GCD(int a, int b) { if (b == 0) return a; return GCD(b, a % b); } static long power(long x, long y, long p) { int res = 1; // Initialize result return res; } static boolean primeCheck(long num0) { boolean b1 = true; if (num0 == 1) { b1 = false; } else { int num01 = (int) (Math.sqrt(num0)) + 1; me1: for (int i = 2; i < num01; i++) { if (num0 % i == 0) { b1 = false; break me1; } } } return b1; } public static int dev(long num1) { int count00=0; while (num1%2==0) { count00++; num1/=2; } HashMap<Long,Long> hashMap=new HashMap<>(); if(count00!=0) { hashMap.put(2L,(long)count00); } for (int i = 3; i <= (int)Math.sqrt(num1); i = i + 2) { // While i divides n, print i and divide n if(num1%i==0) { int count01 = 0; while (num1 % i == 0) { num1 /= i; count01++; } hashMap.put((long)i,(long)count01); } } if(num1>2) { hashMap.put((long)num1,1L); } long numOfDiv=1; for(long num00:hashMap.keySet()) { long cDiv0=hashMap.get(num00); numOfDiv*=(cDiv0+1); } return (int)(numOfDiv); } public static long solve(long[] arr1, long N) { int n=(int)N; HashMap<Long,Integer> hm=new HashMap<>(); for(int i=0;i<n;i++) { if(hm.containsKey(arr1[i])) { } else { hm.put(arr1[i],1); } } long count1=0; for(int i=0;i<n;i++) { long num1=arr1[i]*arr1[i]; if(hm.containsKey(num1)) { count1+=hm.get(num1); if(arr1[i]==1) { count1--; } } } return count1; } public static void main(String[] args) throws IOException { Reader r = new Reader(); //PrintWriter writer=new PrintWriter(System.out); //Scanner r = new Scanner(new BufferedReader(new InputStreamReader(System.in))); //Scanner r=new Scanner(System.in); OutputWriter770 out77 = new OutputWriter770(System.out); int num1=r.nextInt(); int[] arr1=r.nextArray(num1); Arrays.sort(arr1); int res1=0; for(int i=0;i<num1;i++) { if(arr1[i]!=-1) { res1++; int num2=arr1[i]; arr1[i]=-1; for(int j=i+1;j<num1;j++) { if(arr1[j]%num2==0) { arr1[j]=-1; } } } } out77.print(res1+""); r.close(); out77.close(); } } class OutputWriter770 { BufferedWriter writer; public OutputWriter770(OutputStream stream) { writer = new BufferedWriter(new OutputStreamWriter(stream)); } public void print(int i) throws IOException { writer.write(i + ""); } public void println(int i) throws IOException { writer.write(i + "\n"); } public void print(String s) throws IOException { writer.write(s + ""); } public void println(String s) throws IOException { writer.write(s + "\n"); } public void print(char[] c) throws IOException { writer.write(c); } public void close() throws IOException { writer.flush(); writer.close(); } } class node { int source,dest; long difDist; node(int source,int dest,long tDst, long hDst) { this.source=source; this.dest=dest; this.difDist=hDst-tDst; } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.lang.reflect.Array; import java.math.BigInteger; import java.util.*; public class Mainm { static int mod1 = (int) (1e9 + 7); static class Reader { final private int BUFFER_SIZE = 1 << 16; Scanner scan = new Scanner(new BufferedReader(new InputStreamReader(System.in))); private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Reader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String nextString() throws IOException { String str00 = scan.next(); return str00; } public String readLine() throws IOException { byte[] buf = new byte[64]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } String next() throws IOException { int c; for (c = read(); c <= 32; c = read()); StringBuilder sb = new StringBuilder(); for (; c > 32; c = read()) { sb.append((char) c); } return sb.toString(); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } public int[] nextArray(int n) throws IOException { int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } } static int GCD(int a, int b) { if (b == 0) return a; return GCD(b, a % b); } static long power(long x, long y, long p) { int res = 1; // Initialize result return res; } static boolean primeCheck(long num0) { boolean b1 = true; if (num0 == 1) { b1 = false; } else { int num01 = (int) (Math.sqrt(num0)) + 1; me1: for (int i = 2; i < num01; i++) { if (num0 % i == 0) { b1 = false; break me1; } } } return b1; } public static int dev(long num1) { int count00=0; while (num1%2==0) { count00++; num1/=2; } HashMap<Long,Long> hashMap=new HashMap<>(); if(count00!=0) { hashMap.put(2L,(long)count00); } for (int i = 3; i <= (int)Math.sqrt(num1); i = i + 2) { // While i divides n, print i and divide n if(num1%i==0) { int count01 = 0; while (num1 % i == 0) { num1 /= i; count01++; } hashMap.put((long)i,(long)count01); } } if(num1>2) { hashMap.put((long)num1,1L); } long numOfDiv=1; for(long num00:hashMap.keySet()) { long cDiv0=hashMap.get(num00); numOfDiv*=(cDiv0+1); } return (int)(numOfDiv); } public static long solve(long[] arr1, long N) { int n=(int)N; HashMap<Long,Integer> hm=new HashMap<>(); for(int i=0;i<n;i++) { if(hm.containsKey(arr1[i])) { } else { hm.put(arr1[i],1); } } long count1=0; for(int i=0;i<n;i++) { long num1=arr1[i]*arr1[i]; if(hm.containsKey(num1)) { count1+=hm.get(num1); if(arr1[i]==1) { count1--; } } } return count1; } public static void main(String[] args) throws IOException { Reader r = new Reader(); //PrintWriter writer=new PrintWriter(System.out); //Scanner r = new Scanner(new BufferedReader(new InputStreamReader(System.in))); //Scanner r=new Scanner(System.in); OutputWriter770 out77 = new OutputWriter770(System.out); int num1=r.nextInt(); int[] arr1=r.nextArray(num1); Arrays.sort(arr1); int res1=0; for(int i=0;i<num1;i++) { if(arr1[i]!=-1) { res1++; int num2=arr1[i]; arr1[i]=-1; for(int j=i+1;j<num1;j++) { if(arr1[j]%num2==0) { arr1[j]=-1; } } } } out77.print(res1+""); r.close(); out77.close(); } } class OutputWriter770 { BufferedWriter writer; public OutputWriter770(OutputStream stream) { writer = new BufferedWriter(new OutputStreamWriter(stream)); } public void print(int i) throws IOException { writer.write(i + ""); } public void println(int i) throws IOException { writer.write(i + "\n"); } public void print(String s) throws IOException { writer.write(s + ""); } public void println(String s) throws IOException { writer.write(s + "\n"); } public void print(char[] c) throws IOException { writer.write(c); } public void close() throws IOException { writer.flush(); writer.close(); } } class node { int source,dest; long difDist; node(int source,int dest,long tDst, long hDst) { this.source=source; this.dest=dest; this.difDist=hDst-tDst; } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
2,214
2,641
1,541
import java.util.*; import java.io.*; import java.awt.Point; import java.math.BigInteger; import static java.lang.Math.*; // Solution is at the bottom of code public class _AAAA implements Runnable{ final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null; BufferedReader in; OutputWriter out; StringTokenizer tok = new StringTokenizer(""); public static void main(String[] args){ new Thread(null, new _AAAA(), "", 128 * (1L << 20)).start(); } ///////////////////////////////////////////////////////////////////// void init() throws FileNotFoundException{ Locale.setDefault(Locale.US); if (ONLINE_JUDGE){ in = new BufferedReader(new InputStreamReader(System.in)); out = new OutputWriter(System.out); }else{ in = new BufferedReader(new FileReader("input.txt")); out = new OutputWriter("output.txt"); } } //////////////////////////////////////////////////////////////// long timeBegin, timeEnd; void time(){ timeEnd = System.currentTimeMillis(); System.err.println("Time = " + (timeEnd - timeBegin)); } void debug(Object... objects){ if (ONLINE_JUDGE){ for (Object o: objects){ System.err.println(o.toString()); } } } ///////////////////////////////////////////////////////////////////// public void run(){ try{ timeBegin = System.currentTimeMillis(); Locale.setDefault(Locale.US); init(); solve(); out.close(); time(); }catch (Exception e){ e.printStackTrace(System.err); System.exit(-1); } } ///////////////////////////////////////////////////////////////////// String delim = " "; String readString() throws IOException{ while(!tok.hasMoreTokens()){ try{ tok = new StringTokenizer(in.readLine()); }catch (Exception e){ return null; } } return tok.nextToken(delim); } String readLine() throws IOException{ return in.readLine(); } ///////////////////////////////////////////////////////////////// final char NOT_A_SYMBOL = '\0'; char readChar() throws IOException{ int intValue = in.read(); if (intValue == -1){ return NOT_A_SYMBOL; } return (char) intValue; } char[] readCharArray() throws IOException{ return readLine().toCharArray(); } ///////////////////////////////////////////////////////////////// int readInt() throws IOException{ return Integer.parseInt(readString()); } int[] readIntArray(int size) throws IOException{ int[] array = new int[size]; for (int index = 0; index < size; ++index){ array[index] = readInt(); } return array; } /////////////////////////////////////////////////////////////////// long readLong() throws IOException{ return Long.parseLong(readString()); } long[] readLongArray(int size) throws IOException{ long[] array = new long[size]; for (int index = 0; index < size; ++index){ array[index] = readLong(); } return array; } //////////////////////////////////////////////////////////////////// double readDouble() throws IOException{ return Double.parseDouble(readString()); } double[] readDoubleArray(int size) throws IOException{ double[] array = new double[size]; for (int index = 0; index < size; ++index){ array[index] = readDouble(); } return array; } ///////////////////////////////////////////////////////////////////// Point readPoint() throws IOException{ return new Point(readInt(), readInt()); } Point[] readPointArray(int size) throws IOException{ Point[] array = new Point[size]; for (int index = 0; index < size; ++index){ array[index] = readPoint(); } return array; } ///////////////////////////////////////////////////////////////////// class OutputWriter extends PrintWriter{ final int DEFAULT_PRECISION = 12; int precision; String format, formatWithSpace; { precision = DEFAULT_PRECISION; format = createFormat(precision); formatWithSpace = format + " "; } public OutputWriter(OutputStream out) { super(out); } public OutputWriter(String fileName) throws FileNotFoundException { super(fileName); } public int getPrecision() { return precision; } public void setPrecision(int precision) { this.precision = precision; format = createFormat(precision); formatWithSpace = format + " "; } private String createFormat(int precision){ return "%." + precision + "f"; } @Override public void print(double d){ printf(format, d); } public void printWithSpace(double d){ printf(formatWithSpace, d); } public void printAll(double...d){ for (int i = 0; i < d.length - 1; ++i){ printWithSpace(d[i]); } print(d[d.length - 1]); } @Override public void println(double d){ printlnAll(d); } public void printlnAll(double... d){ printAll(d); println(); } } ///////////////////////////////////////////////////////////////////// int[][] steps = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}}; boolean check(int index, int lim){ return (0 <= index && index < lim); } ///////////////////////////////////////////////////////////////////// void solve() throws IOException{ int n = readInt(); int k = readInt(); Map<Long, Integer> map = new TreeMap<Long, Integer>(); for (int i = 0; i < n; ++i){ map.put(readLong(), i); } int ans = 0; boolean[] used = new boolean[n]; for (Map.Entry<Long, Integer> e: map.entrySet()){ if (used[e.getValue()]) continue; long value = e.getKey() * k; Integer index = map.get(value); if (index != null){ used[index] = true; } ++ans; } out.println(ans); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; import java.awt.Point; import java.math.BigInteger; import static java.lang.Math.*; // Solution is at the bottom of code public class _AAAA implements Runnable{ final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null; BufferedReader in; OutputWriter out; StringTokenizer tok = new StringTokenizer(""); public static void main(String[] args){ new Thread(null, new _AAAA(), "", 128 * (1L << 20)).start(); } ///////////////////////////////////////////////////////////////////// void init() throws FileNotFoundException{ Locale.setDefault(Locale.US); if (ONLINE_JUDGE){ in = new BufferedReader(new InputStreamReader(System.in)); out = new OutputWriter(System.out); }else{ in = new BufferedReader(new FileReader("input.txt")); out = new OutputWriter("output.txt"); } } //////////////////////////////////////////////////////////////// long timeBegin, timeEnd; void time(){ timeEnd = System.currentTimeMillis(); System.err.println("Time = " + (timeEnd - timeBegin)); } void debug(Object... objects){ if (ONLINE_JUDGE){ for (Object o: objects){ System.err.println(o.toString()); } } } ///////////////////////////////////////////////////////////////////// public void run(){ try{ timeBegin = System.currentTimeMillis(); Locale.setDefault(Locale.US); init(); solve(); out.close(); time(); }catch (Exception e){ e.printStackTrace(System.err); System.exit(-1); } } ///////////////////////////////////////////////////////////////////// String delim = " "; String readString() throws IOException{ while(!tok.hasMoreTokens()){ try{ tok = new StringTokenizer(in.readLine()); }catch (Exception e){ return null; } } return tok.nextToken(delim); } String readLine() throws IOException{ return in.readLine(); } ///////////////////////////////////////////////////////////////// final char NOT_A_SYMBOL = '\0'; char readChar() throws IOException{ int intValue = in.read(); if (intValue == -1){ return NOT_A_SYMBOL; } return (char) intValue; } char[] readCharArray() throws IOException{ return readLine().toCharArray(); } ///////////////////////////////////////////////////////////////// int readInt() throws IOException{ return Integer.parseInt(readString()); } int[] readIntArray(int size) throws IOException{ int[] array = new int[size]; for (int index = 0; index < size; ++index){ array[index] = readInt(); } return array; } /////////////////////////////////////////////////////////////////// long readLong() throws IOException{ return Long.parseLong(readString()); } long[] readLongArray(int size) throws IOException{ long[] array = new long[size]; for (int index = 0; index < size; ++index){ array[index] = readLong(); } return array; } //////////////////////////////////////////////////////////////////// double readDouble() throws IOException{ return Double.parseDouble(readString()); } double[] readDoubleArray(int size) throws IOException{ double[] array = new double[size]; for (int index = 0; index < size; ++index){ array[index] = readDouble(); } return array; } ///////////////////////////////////////////////////////////////////// Point readPoint() throws IOException{ return new Point(readInt(), readInt()); } Point[] readPointArray(int size) throws IOException{ Point[] array = new Point[size]; for (int index = 0; index < size; ++index){ array[index] = readPoint(); } return array; } ///////////////////////////////////////////////////////////////////// class OutputWriter extends PrintWriter{ final int DEFAULT_PRECISION = 12; int precision; String format, formatWithSpace; { precision = DEFAULT_PRECISION; format = createFormat(precision); formatWithSpace = format + " "; } public OutputWriter(OutputStream out) { super(out); } public OutputWriter(String fileName) throws FileNotFoundException { super(fileName); } public int getPrecision() { return precision; } public void setPrecision(int precision) { this.precision = precision; format = createFormat(precision); formatWithSpace = format + " "; } private String createFormat(int precision){ return "%." + precision + "f"; } @Override public void print(double d){ printf(format, d); } public void printWithSpace(double d){ printf(formatWithSpace, d); } public void printAll(double...d){ for (int i = 0; i < d.length - 1; ++i){ printWithSpace(d[i]); } print(d[d.length - 1]); } @Override public void println(double d){ printlnAll(d); } public void printlnAll(double... d){ printAll(d); println(); } } ///////////////////////////////////////////////////////////////////// int[][] steps = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}}; boolean check(int index, int lim){ return (0 <= index && index < lim); } ///////////////////////////////////////////////////////////////////// void solve() throws IOException{ int n = readInt(); int k = readInt(); Map<Long, Integer> map = new TreeMap<Long, Integer>(); for (int i = 0; i < n; ++i){ map.put(readLong(), i); } int ans = 0; boolean[] used = new boolean[n]; for (Map.Entry<Long, Integer> e: map.entrySet()){ if (used[e.getValue()]) continue; long value = e.getKey() * k; Integer index = map.get(value); if (index != null){ used[index] = true; } ++ans; } out.println(ans); } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; import java.awt.Point; import java.math.BigInteger; import static java.lang.Math.*; // Solution is at the bottom of code public class _AAAA implements Runnable{ final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null; BufferedReader in; OutputWriter out; StringTokenizer tok = new StringTokenizer(""); public static void main(String[] args){ new Thread(null, new _AAAA(), "", 128 * (1L << 20)).start(); } ///////////////////////////////////////////////////////////////////// void init() throws FileNotFoundException{ Locale.setDefault(Locale.US); if (ONLINE_JUDGE){ in = new BufferedReader(new InputStreamReader(System.in)); out = new OutputWriter(System.out); }else{ in = new BufferedReader(new FileReader("input.txt")); out = new OutputWriter("output.txt"); } } //////////////////////////////////////////////////////////////// long timeBegin, timeEnd; void time(){ timeEnd = System.currentTimeMillis(); System.err.println("Time = " + (timeEnd - timeBegin)); } void debug(Object... objects){ if (ONLINE_JUDGE){ for (Object o: objects){ System.err.println(o.toString()); } } } ///////////////////////////////////////////////////////////////////// public void run(){ try{ timeBegin = System.currentTimeMillis(); Locale.setDefault(Locale.US); init(); solve(); out.close(); time(); }catch (Exception e){ e.printStackTrace(System.err); System.exit(-1); } } ///////////////////////////////////////////////////////////////////// String delim = " "; String readString() throws IOException{ while(!tok.hasMoreTokens()){ try{ tok = new StringTokenizer(in.readLine()); }catch (Exception e){ return null; } } return tok.nextToken(delim); } String readLine() throws IOException{ return in.readLine(); } ///////////////////////////////////////////////////////////////// final char NOT_A_SYMBOL = '\0'; char readChar() throws IOException{ int intValue = in.read(); if (intValue == -1){ return NOT_A_SYMBOL; } return (char) intValue; } char[] readCharArray() throws IOException{ return readLine().toCharArray(); } ///////////////////////////////////////////////////////////////// int readInt() throws IOException{ return Integer.parseInt(readString()); } int[] readIntArray(int size) throws IOException{ int[] array = new int[size]; for (int index = 0; index < size; ++index){ array[index] = readInt(); } return array; } /////////////////////////////////////////////////////////////////// long readLong() throws IOException{ return Long.parseLong(readString()); } long[] readLongArray(int size) throws IOException{ long[] array = new long[size]; for (int index = 0; index < size; ++index){ array[index] = readLong(); } return array; } //////////////////////////////////////////////////////////////////// double readDouble() throws IOException{ return Double.parseDouble(readString()); } double[] readDoubleArray(int size) throws IOException{ double[] array = new double[size]; for (int index = 0; index < size; ++index){ array[index] = readDouble(); } return array; } ///////////////////////////////////////////////////////////////////// Point readPoint() throws IOException{ return new Point(readInt(), readInt()); } Point[] readPointArray(int size) throws IOException{ Point[] array = new Point[size]; for (int index = 0; index < size; ++index){ array[index] = readPoint(); } return array; } ///////////////////////////////////////////////////////////////////// class OutputWriter extends PrintWriter{ final int DEFAULT_PRECISION = 12; int precision; String format, formatWithSpace; { precision = DEFAULT_PRECISION; format = createFormat(precision); formatWithSpace = format + " "; } public OutputWriter(OutputStream out) { super(out); } public OutputWriter(String fileName) throws FileNotFoundException { super(fileName); } public int getPrecision() { return precision; } public void setPrecision(int precision) { this.precision = precision; format = createFormat(precision); formatWithSpace = format + " "; } private String createFormat(int precision){ return "%." + precision + "f"; } @Override public void print(double d){ printf(format, d); } public void printWithSpace(double d){ printf(formatWithSpace, d); } public void printAll(double...d){ for (int i = 0; i < d.length - 1; ++i){ printWithSpace(d[i]); } print(d[d.length - 1]); } @Override public void println(double d){ printlnAll(d); } public void printlnAll(double... d){ printAll(d); println(); } } ///////////////////////////////////////////////////////////////////// int[][] steps = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}}; boolean check(int index, int lim){ return (0 <= index && index < lim); } ///////////////////////////////////////////////////////////////////// void solve() throws IOException{ int n = readInt(); int k = readInt(); Map<Long, Integer> map = new TreeMap<Long, Integer>(); for (int i = 0; i < n; ++i){ map.put(readLong(), i); } int ans = 0; boolean[] used = new boolean[n]; for (Map.Entry<Long, Integer> e: map.entrySet()){ if (used[e.getValue()]) continue; long value = e.getKey() * k; Integer index = map.get(value); if (index != null){ used[index] = true; } ++ans; } out.println(ans); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,655
1,539
3,554
import java.util.*; import java.io.*; import static java.lang.Math.*; import java.awt.*; public class PracticeProblem { /* * This FastReader code is taken from GeeksForGeeks.com * https://www.geeksforgeeks.org/fast-io-in-java-in-competitive-programming/ * * The article was written by Rishabh Mahrsee */ public static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() throws FileNotFoundException { br = new BufferedReader(new FileReader(new File("input.txt"))); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static FastReader in; public static PrintWriter out; public static final int INF = Integer.MAX_VALUE; public static int n, m; public static final int[] dr = {-1, 0, 0, +1}; public static final int[] dc = {0, -1, +1, 0}; public static void main(String[] args) throws FileNotFoundException { in = new FastReader(); out = new PrintWriter(new File("output.txt")); solve(); out.close(); } private static void solve() { n = in.nextInt(); m = in.nextInt(); int k = in.nextInt(); int[][] timeToBurn = new int[n][m]; for (int i = 0; i < n; i++) Arrays.fill(timeToBurn[i], INF); for (int i = 0; i < k; i++) { int r = in.nextInt() - 1; int c = in.nextInt() - 1; for (int j = 0; j < n; j++) { for (int l = 0; l < m; l++) { timeToBurn[j][l] = min(timeToBurn[j][l], abs(r - j) + abs(c - l)); } } } int max = -1; Point p = null; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { if (timeToBurn[i][j] > max) { max = timeToBurn[i][j]; p = new Point(i, j); } } } out.println((p.x + 1) + " " + (p.y + 1)); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; import static java.lang.Math.*; import java.awt.*; public class PracticeProblem { /* * This FastReader code is taken from GeeksForGeeks.com * https://www.geeksforgeeks.org/fast-io-in-java-in-competitive-programming/ * * The article was written by Rishabh Mahrsee */ public static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() throws FileNotFoundException { br = new BufferedReader(new FileReader(new File("input.txt"))); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static FastReader in; public static PrintWriter out; public static final int INF = Integer.MAX_VALUE; public static int n, m; public static final int[] dr = {-1, 0, 0, +1}; public static final int[] dc = {0, -1, +1, 0}; public static void main(String[] args) throws FileNotFoundException { in = new FastReader(); out = new PrintWriter(new File("output.txt")); solve(); out.close(); } private static void solve() { n = in.nextInt(); m = in.nextInt(); int k = in.nextInt(); int[][] timeToBurn = new int[n][m]; for (int i = 0; i < n; i++) Arrays.fill(timeToBurn[i], INF); for (int i = 0; i < k; i++) { int r = in.nextInt() - 1; int c = in.nextInt() - 1; for (int j = 0; j < n; j++) { for (int l = 0; l < m; l++) { timeToBurn[j][l] = min(timeToBurn[j][l], abs(r - j) + abs(c - l)); } } } int max = -1; Point p = null; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { if (timeToBurn[i][j] > max) { max = timeToBurn[i][j]; p = new Point(i, j); } } } out.println((p.x + 1) + " " + (p.y + 1)); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; import static java.lang.Math.*; import java.awt.*; public class PracticeProblem { /* * This FastReader code is taken from GeeksForGeeks.com * https://www.geeksforgeeks.org/fast-io-in-java-in-competitive-programming/ * * The article was written by Rishabh Mahrsee */ public static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() throws FileNotFoundException { br = new BufferedReader(new FileReader(new File("input.txt"))); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static FastReader in; public static PrintWriter out; public static final int INF = Integer.MAX_VALUE; public static int n, m; public static final int[] dr = {-1, 0, 0, +1}; public static final int[] dc = {0, -1, +1, 0}; public static void main(String[] args) throws FileNotFoundException { in = new FastReader(); out = new PrintWriter(new File("output.txt")); solve(); out.close(); } private static void solve() { n = in.nextInt(); m = in.nextInt(); int k = in.nextInt(); int[][] timeToBurn = new int[n][m]; for (int i = 0; i < n; i++) Arrays.fill(timeToBurn[i], INF); for (int i = 0; i < k; i++) { int r = in.nextInt() - 1; int c = in.nextInt() - 1; for (int j = 0; j < n; j++) { for (int l = 0; l < m; l++) { timeToBurn[j][l] = min(timeToBurn[j][l], abs(r - j) + abs(c - l)); } } } int max = -1; Point p = null; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { if (timeToBurn[i][j] > max) { max = timeToBurn[i][j]; p = new Point(i, j); } } } out.println((p.x + 1) + " " + (p.y + 1)); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,020
3,547
1,705
import java.io.BufferedReader; import static java.lang.Math.*; import java.io.File; import java.io.FileReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; public class CodeforcesA implements Runnable { public static final String taskname = "A"; BufferedReader in; PrintWriter out; StringTokenizer tok; public static void main(String[] args) { new Thread(new CodeforcesA()).start(); } static class Square implements Comparable<Square>{ int x, a; public Square(int x, int a) { this.x = x; this.a = a; } @Override public int compareTo(Square o) { return x - o.x; } int distance(Square a, int t) { double dist = a.x - x - this.a / 2.0 - a.a / 2.0; if(dist > t) return 2; else if(abs(dist - t) < 1e-9) return 1; return 0; } public String toString() { return x + " " + a; } } void solve() throws IOException { int n = nextInt(), t = nextInt(); Square[] x = new Square[n]; for(int i = 0; i < n; ++i) { x[i] = new Square(nextInt(), nextInt()); } Arrays.sort(x); long res = 2; for(int i = 0; i < n - 1; ++i) { res += x[i].distance(x[i + 1], t); } out.println(res); } @Override public void run() { try { in = new BufferedReader(new InputStreamReader(System.in)); //in = new BufferedReader(new FileReader(new File("input.txt"))); out = new PrintWriter(System.out); //out = new PrintWriter(new File("output.txt")); solve(); out.flush(); out.close(); in.close(); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } } String nextLine() throws IOException { tok = null; return in.readLine(); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } String nextToken() throws IOException { while (tok == null || !tok.hasMoreTokens()) { tok = new StringTokenizer(in.readLine()); } return tok.nextToken(); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import static java.lang.Math.*; import java.io.File; import java.io.FileReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; public class CodeforcesA implements Runnable { public static final String taskname = "A"; BufferedReader in; PrintWriter out; StringTokenizer tok; public static void main(String[] args) { new Thread(new CodeforcesA()).start(); } static class Square implements Comparable<Square>{ int x, a; public Square(int x, int a) { this.x = x; this.a = a; } @Override public int compareTo(Square o) { return x - o.x; } int distance(Square a, int t) { double dist = a.x - x - this.a / 2.0 - a.a / 2.0; if(dist > t) return 2; else if(abs(dist - t) < 1e-9) return 1; return 0; } public String toString() { return x + " " + a; } } void solve() throws IOException { int n = nextInt(), t = nextInt(); Square[] x = new Square[n]; for(int i = 0; i < n; ++i) { x[i] = new Square(nextInt(), nextInt()); } Arrays.sort(x); long res = 2; for(int i = 0; i < n - 1; ++i) { res += x[i].distance(x[i + 1], t); } out.println(res); } @Override public void run() { try { in = new BufferedReader(new InputStreamReader(System.in)); //in = new BufferedReader(new FileReader(new File("input.txt"))); out = new PrintWriter(System.out); //out = new PrintWriter(new File("output.txt")); solve(); out.flush(); out.close(); in.close(); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } } String nextLine() throws IOException { tok = null; return in.readLine(); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } String nextToken() throws IOException { while (tok == null || !tok.hasMoreTokens()) { tok = new StringTokenizer(in.readLine()); } return tok.nextToken(); } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import static java.lang.Math.*; import java.io.File; import java.io.FileReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; public class CodeforcesA implements Runnable { public static final String taskname = "A"; BufferedReader in; PrintWriter out; StringTokenizer tok; public static void main(String[] args) { new Thread(new CodeforcesA()).start(); } static class Square implements Comparable<Square>{ int x, a; public Square(int x, int a) { this.x = x; this.a = a; } @Override public int compareTo(Square o) { return x - o.x; } int distance(Square a, int t) { double dist = a.x - x - this.a / 2.0 - a.a / 2.0; if(dist > t) return 2; else if(abs(dist - t) < 1e-9) return 1; return 0; } public String toString() { return x + " " + a; } } void solve() throws IOException { int n = nextInt(), t = nextInt(); Square[] x = new Square[n]; for(int i = 0; i < n; ++i) { x[i] = new Square(nextInt(), nextInt()); } Arrays.sort(x); long res = 2; for(int i = 0; i < n - 1; ++i) { res += x[i].distance(x[i + 1], t); } out.println(res); } @Override public void run() { try { in = new BufferedReader(new InputStreamReader(System.in)); //in = new BufferedReader(new FileReader(new File("input.txt"))); out = new PrintWriter(System.out); //out = new PrintWriter(new File("output.txt")); solve(); out.flush(); out.close(); in.close(); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } } String nextLine() throws IOException { tok = null; return in.readLine(); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } String nextToken() throws IOException { while (tok == null || !tok.hasMoreTokens()) { tok = new StringTokenizer(in.readLine()); } return tok.nextToken(); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
888
1,701
3,959
import java.util.*; import java.io.*; public class MotherOfDragons { public static void main(String[] args) { FastScanner scanner = new FastScanner(); PrintWriter out = new PrintWriter(System.out, false); int n = scanner.nextInt(); double k = scanner.nextInt(); long[] graph = new long[n]; for(int i = 0; i < n; i++) { for(int j =0; j < n; j++) { int val = scanner.nextInt(); if (val == 1 || i == j) graph[i] |= 1L << j; } } //meet in the middle approach int szLeft = n/2; int szRight = n - szLeft; //max size of clique int[] dp = new int[1 << szLeft]; int maxMask = 1 << szLeft; //iterate over every left mask for(int mask = 1; mask <maxMask; mask++) { int curMask = mask; //go over every bit in the mask for(int j = 0; j < szLeft; j++) { if (((1 << j) & mask) > 0) { //update the union of reachability curMask &= graph[j + szRight] >> szRight; //can also attempt to pull from prev mask for max size //will not be optimal if end update happens, but otherwise is useful for dp dp[mask] = Math.max(dp[mask], dp[mask ^ (1 << j)]); } } //if the union of connectedness is the starting mask then we have a clique if (mask == curMask) { dp[mask] = Math.max(dp[mask],Integer.bitCount(mask)); } } int ans = 0; int rmaxMask = 1 << szRight; for(int mask = 0; mask < rmaxMask; mask++) { //mask to track if the current creates its own clique int curMask = mask; //mask to track the connection between the halves int oMask = maxMask -1; for(int j = 0; j < szRight; j++) { if (((1 << j) & mask) > 0) { //need to mask out the left side bits curMask &= (graph[j] & (rmaxMask-1)); //update corresp avail in the left side oMask &= graph[j] >> szRight; } } //not a clique portion if (curMask != mask) continue; //update answer ans = Math.max(ans, Integer.bitCount(mask) + dp[oMask]); } k/=ans; out.println(k * k * (ans * (ans-1))/2); out.flush(); } public static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(Reader in) { br = new BufferedReader(in); } public FastScanner() { this(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String readNextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class MotherOfDragons { public static void main(String[] args) { FastScanner scanner = new FastScanner(); PrintWriter out = new PrintWriter(System.out, false); int n = scanner.nextInt(); double k = scanner.nextInt(); long[] graph = new long[n]; for(int i = 0; i < n; i++) { for(int j =0; j < n; j++) { int val = scanner.nextInt(); if (val == 1 || i == j) graph[i] |= 1L << j; } } //meet in the middle approach int szLeft = n/2; int szRight = n - szLeft; //max size of clique int[] dp = new int[1 << szLeft]; int maxMask = 1 << szLeft; //iterate over every left mask for(int mask = 1; mask <maxMask; mask++) { int curMask = mask; //go over every bit in the mask for(int j = 0; j < szLeft; j++) { if (((1 << j) & mask) > 0) { //update the union of reachability curMask &= graph[j + szRight] >> szRight; //can also attempt to pull from prev mask for max size //will not be optimal if end update happens, but otherwise is useful for dp dp[mask] = Math.max(dp[mask], dp[mask ^ (1 << j)]); } } //if the union of connectedness is the starting mask then we have a clique if (mask == curMask) { dp[mask] = Math.max(dp[mask],Integer.bitCount(mask)); } } int ans = 0; int rmaxMask = 1 << szRight; for(int mask = 0; mask < rmaxMask; mask++) { //mask to track if the current creates its own clique int curMask = mask; //mask to track the connection between the halves int oMask = maxMask -1; for(int j = 0; j < szRight; j++) { if (((1 << j) & mask) > 0) { //need to mask out the left side bits curMask &= (graph[j] & (rmaxMask-1)); //update corresp avail in the left side oMask &= graph[j] >> szRight; } } //not a clique portion if (curMask != mask) continue; //update answer ans = Math.max(ans, Integer.bitCount(mask) + dp[oMask]); } k/=ans; out.println(k * k * (ans * (ans-1))/2); out.flush(); } public static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(Reader in) { br = new BufferedReader(in); } public FastScanner() { this(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String readNextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class MotherOfDragons { public static void main(String[] args) { FastScanner scanner = new FastScanner(); PrintWriter out = new PrintWriter(System.out, false); int n = scanner.nextInt(); double k = scanner.nextInt(); long[] graph = new long[n]; for(int i = 0; i < n; i++) { for(int j =0; j < n; j++) { int val = scanner.nextInt(); if (val == 1 || i == j) graph[i] |= 1L << j; } } //meet in the middle approach int szLeft = n/2; int szRight = n - szLeft; //max size of clique int[] dp = new int[1 << szLeft]; int maxMask = 1 << szLeft; //iterate over every left mask for(int mask = 1; mask <maxMask; mask++) { int curMask = mask; //go over every bit in the mask for(int j = 0; j < szLeft; j++) { if (((1 << j) & mask) > 0) { //update the union of reachability curMask &= graph[j + szRight] >> szRight; //can also attempt to pull from prev mask for max size //will not be optimal if end update happens, but otherwise is useful for dp dp[mask] = Math.max(dp[mask], dp[mask ^ (1 << j)]); } } //if the union of connectedness is the starting mask then we have a clique if (mask == curMask) { dp[mask] = Math.max(dp[mask],Integer.bitCount(mask)); } } int ans = 0; int rmaxMask = 1 << szRight; for(int mask = 0; mask < rmaxMask; mask++) { //mask to track if the current creates its own clique int curMask = mask; //mask to track the connection between the halves int oMask = maxMask -1; for(int j = 0; j < szRight; j++) { if (((1 << j) & mask) > 0) { //need to mask out the left side bits curMask &= (graph[j] & (rmaxMask-1)); //update corresp avail in the left side oMask &= graph[j] >> szRight; } } //not a clique portion if (curMask != mask) continue; //update answer ans = Math.max(ans, Integer.bitCount(mask) + dp[oMask]); } k/=ans; out.println(k * k * (ans * (ans-1))/2); out.flush(); } public static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(Reader in) { br = new BufferedReader(in); } public FastScanner() { this(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String readNextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } } </CODE> <EVALUATION_RUBRIC> - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,136
3,948
2,279
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastScanner in = new FastScanner(inputStream); PrintWriter out = new PrintWriter(outputStream); C909 solver = new C909(); solver.solve(1, in, out); out.close(); } static class C909 { int N; long MOD = 1_000_000_007; boolean[] type; long[][] memo; long dp(int cmd, int dep) { // safe if we came out of a statement, we can traverse if (dep < 0) return 0; if (cmd == N) return 1; if (memo[cmd][dep] != -1) return memo[cmd][dep]; boolean safe = cmd == 0 ? true : !type[cmd - 1]; int d = type[cmd] ? 1 : 0; long ways = 0; if (!safe) { // we must use this indentation ways += dp(cmd + 1, dep + d); ways %= MOD; } else { ways += dp(cmd + 1, dep + d); ways %= MOD; ways += dp(cmd, dep - 1); ways %= MOD; } return memo[cmd][dep] = ways; } public void solve(int testNumber, FastScanner s, PrintWriter out) { N = s.nextInt(); type = new boolean[N]; for (int i = 0; i < N; i++) { type[i] = s.next().charAt(0) == 'f'; } memo = new long[N][N + 1]; for (long[] a : memo) Arrays.fill(a, -1); out.println(dp(0, 0)); } } static class FastScanner { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public FastScanner(InputStream stream) { this.stream = stream; } int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public int nextInt() { return Integer.parseInt(next()); } public String next() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastScanner in = new FastScanner(inputStream); PrintWriter out = new PrintWriter(outputStream); C909 solver = new C909(); solver.solve(1, in, out); out.close(); } static class C909 { int N; long MOD = 1_000_000_007; boolean[] type; long[][] memo; long dp(int cmd, int dep) { // safe if we came out of a statement, we can traverse if (dep < 0) return 0; if (cmd == N) return 1; if (memo[cmd][dep] != -1) return memo[cmd][dep]; boolean safe = cmd == 0 ? true : !type[cmd - 1]; int d = type[cmd] ? 1 : 0; long ways = 0; if (!safe) { // we must use this indentation ways += dp(cmd + 1, dep + d); ways %= MOD; } else { ways += dp(cmd + 1, dep + d); ways %= MOD; ways += dp(cmd, dep - 1); ways %= MOD; } return memo[cmd][dep] = ways; } public void solve(int testNumber, FastScanner s, PrintWriter out) { N = s.nextInt(); type = new boolean[N]; for (int i = 0; i < N; i++) { type[i] = s.next().charAt(0) == 'f'; } memo = new long[N][N + 1]; for (long[] a : memo) Arrays.fill(a, -1); out.println(dp(0, 0)); } } static class FastScanner { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public FastScanner(InputStream stream) { this.stream = stream; } int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public int nextInt() { return Integer.parseInt(next()); } public String next() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastScanner in = new FastScanner(inputStream); PrintWriter out = new PrintWriter(outputStream); C909 solver = new C909(); solver.solve(1, in, out); out.close(); } static class C909 { int N; long MOD = 1_000_000_007; boolean[] type; long[][] memo; long dp(int cmd, int dep) { // safe if we came out of a statement, we can traverse if (dep < 0) return 0; if (cmd == N) return 1; if (memo[cmd][dep] != -1) return memo[cmd][dep]; boolean safe = cmd == 0 ? true : !type[cmd - 1]; int d = type[cmd] ? 1 : 0; long ways = 0; if (!safe) { // we must use this indentation ways += dp(cmd + 1, dep + d); ways %= MOD; } else { ways += dp(cmd + 1, dep + d); ways %= MOD; ways += dp(cmd, dep - 1); ways %= MOD; } return memo[cmd][dep] = ways; } public void solve(int testNumber, FastScanner s, PrintWriter out) { N = s.nextInt(); type = new boolean[N]; for (int i = 0; i < N; i++) { type[i] = s.next().charAt(0) == 'f'; } memo = new long[N][N + 1]; for (long[] a : memo) Arrays.fill(a, -1); out.println(dp(0, 0)); } } static class FastScanner { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public FastScanner(InputStream stream) { this.stream = stream; } int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public int nextInt() { return Integer.parseInt(next()); } public String next() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } } } </CODE> <EVALUATION_RUBRIC> - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,074
2,274
4,396
import java.util.Scanner; import static java.lang.Integer.bitCount; import static java.lang.Integer.numberOfTrailingZeros; import static java.lang.System.out; /** * 11D * * @author artyom */ public class ASimpleTask { public static void main(String args[]) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int[][] d = new int[n][n]; for (int i = 0, m = sc.nextInt(); i < m; i++) { int a = sc.nextInt() - 1, b = sc.nextInt() - 1; d[a][b] = 1; d[b][a] = 1; } long[][] dp = new long[1 << n][n]; // SOLUTION BEGINS for (int mask = 1; mask < 1 << n; mask++) { int start = numberOfTrailingZeros(mask); // the starting vertex of a Hamiltonian walk if (bitCount(mask) == 1) { dp[mask][start] = 1; continue; } for (int i = 0; i < n; i++) { if ((mask & (1 << i)) > 0 && i != start) { int xmask = mask ^ (1 << i); // mask without vertex i for (int j = 0; j < n; j++) { if (d[j][i] > 0) { dp[mask][i] += dp[xmask][j]; } } } } } // SOLUTION ENDS long sum = 0; for (int mask = 1; mask < 1 << n; mask++) { if (bitCount(mask) >= 3) { // We need at least 3 vertices for a cycle for (int i = 0; i < n; i++) { if (d[numberOfTrailingZeros(mask)][i] > 0) { sum += dp[mask][i]; } } } } out.print(sum / 2); } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; import static java.lang.Integer.bitCount; import static java.lang.Integer.numberOfTrailingZeros; import static java.lang.System.out; /** * 11D * * @author artyom */ public class ASimpleTask { public static void main(String args[]) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int[][] d = new int[n][n]; for (int i = 0, m = sc.nextInt(); i < m; i++) { int a = sc.nextInt() - 1, b = sc.nextInt() - 1; d[a][b] = 1; d[b][a] = 1; } long[][] dp = new long[1 << n][n]; // SOLUTION BEGINS for (int mask = 1; mask < 1 << n; mask++) { int start = numberOfTrailingZeros(mask); // the starting vertex of a Hamiltonian walk if (bitCount(mask) == 1) { dp[mask][start] = 1; continue; } for (int i = 0; i < n; i++) { if ((mask & (1 << i)) > 0 && i != start) { int xmask = mask ^ (1 << i); // mask without vertex i for (int j = 0; j < n; j++) { if (d[j][i] > 0) { dp[mask][i] += dp[xmask][j]; } } } } } // SOLUTION ENDS long sum = 0; for (int mask = 1; mask < 1 << n; mask++) { if (bitCount(mask) >= 3) { // We need at least 3 vertices for a cycle for (int i = 0; i < n; i++) { if (d[numberOfTrailingZeros(mask)][i] > 0) { sum += dp[mask][i]; } } } } out.print(sum / 2); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; import static java.lang.Integer.bitCount; import static java.lang.Integer.numberOfTrailingZeros; import static java.lang.System.out; /** * 11D * * @author artyom */ public class ASimpleTask { public static void main(String args[]) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int[][] d = new int[n][n]; for (int i = 0, m = sc.nextInt(); i < m; i++) { int a = sc.nextInt() - 1, b = sc.nextInt() - 1; d[a][b] = 1; d[b][a] = 1; } long[][] dp = new long[1 << n][n]; // SOLUTION BEGINS for (int mask = 1; mask < 1 << n; mask++) { int start = numberOfTrailingZeros(mask); // the starting vertex of a Hamiltonian walk if (bitCount(mask) == 1) { dp[mask][start] = 1; continue; } for (int i = 0; i < n; i++) { if ((mask & (1 << i)) > 0 && i != start) { int xmask = mask ^ (1 << i); // mask without vertex i for (int j = 0; j < n; j++) { if (d[j][i] > 0) { dp[mask][i] += dp[xmask][j]; } } } } } // SOLUTION ENDS long sum = 0; for (int mask = 1; mask < 1 << n; mask++) { if (bitCount(mask) >= 3) { // We need at least 3 vertices for a cycle for (int i = 0; i < n; i++) { if (d[numberOfTrailingZeros(mask)][i] > 0) { sum += dp[mask][i]; } } } } out.print(sum / 2); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
813
4,385
3,017
import java.io.*; import java.util.*; public class z3 { public static boolean divch(int i,int a) { if (a>1000) return false; if ((a>0)&&(i%a==0)) return true; return (divch(i,a*10+4)||divch(i,a*10+7)); } public static void main(String[] args) throws IOException { Scanner in = new Scanner(System.in); System.out.println(divch(in.nextInt(),0)?"YES":"NO"); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class z3 { public static boolean divch(int i,int a) { if (a>1000) return false; if ((a>0)&&(i%a==0)) return true; return (divch(i,a*10+4)||divch(i,a*10+7)); } public static void main(String[] args) throws IOException { Scanner in = new Scanner(System.in); System.out.println(divch(in.nextInt(),0)?"YES":"NO"); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class z3 { public static boolean divch(int i,int a) { if (a>1000) return false; if ((a>0)&&(i%a==0)) return true; return (divch(i,a*10+4)||divch(i,a*10+7)); } public static void main(String[] args) throws IOException { Scanner in = new Scanner(System.in); System.out.println(divch(in.nextInt(),0)?"YES":"NO"); } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
465
3,011
3,345
import java.util.Scanner; public class P23A { public static void main(String[] args) { Scanner scan = new Scanner(System.in); String input = scan.nextLine(); System.out.println(F(input)); } static int F(String string){ int ans =0; for (int i = 0; i < string.length(); i++) { for (int j = 1; j < string.length()-i; j++) { String s = string.substring(i, i+j); int a=string.indexOf(s); int b=string.lastIndexOf(s); if ( a >= 0 && b >=0 && a !=b) ans =Math.max(ans, s.length()); } } return ans; } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Scanner; public class P23A { public static void main(String[] args) { Scanner scan = new Scanner(System.in); String input = scan.nextLine(); System.out.println(F(input)); } static int F(String string){ int ans =0; for (int i = 0; i < string.length(); i++) { for (int j = 1; j < string.length()-i; j++) { String s = string.substring(i, i+j); int a=string.indexOf(s); int b=string.lastIndexOf(s); if ( a >= 0 && b >=0 && a !=b) ans =Math.max(ans, s.length()); } } return ans; } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; public class P23A { public static void main(String[] args) { Scanner scan = new Scanner(System.in); String input = scan.nextLine(); System.out.println(F(input)); } static int F(String string){ int ans =0; for (int i = 0; i < string.length(); i++) { for (int j = 1; j < string.length()-i; j++) { String s = string.substring(i, i+j); int a=string.indexOf(s); int b=string.lastIndexOf(s); if ( a >= 0 && b >=0 && a !=b) ans =Math.max(ans, s.length()); } } return ans; } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
493
3,339
947
import java.io.*; import java.util.*; public class icpc { public static void main(String[] args) throws IOException { Reader in = new Reader(); // BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); long n = in.nextLong(); long k = in.nextLong(); long val = 2 * n + 2 * k; long D = 9 + 4 * val; long sqrtD = (long)Math.sqrt((double)D); double r1 = (-3 + sqrtD) / 2; long r1DAsh = (long)r1; System.out.println(n - r1DAsh); } } class NumberTheory { public boolean isPrime(long n) { if(n < 2) return false; for(long x = 2;x * x <= n;x++) { if(n % x == 0) return false; } return true; } public ArrayList<Integer> primeFactorisation(int n) { ArrayList<Integer> f = new ArrayList<>(); for(int x=2;x * x <= n;x++) { while(n % x == 0) { f.add(x); n /= x; } } if(n > 1) f.add(n); return f; } public int[] sieveOfEratosthenes(int n) { int[] sieve = new int[n + 1]; for(int x=2;x<=n;x++) { if(sieve[x] != 0) continue; sieve[x] = x; for(int u=2*x;u<=n;u+=x) if(sieve[u] == 0) sieve[u] = x; } return sieve; } public long gcd(long a, long b) { if(b == 0) return a; return gcd(b, a % b); } public long phi(long n) { double result = n; for(long p=2;p*p<=n;p++) { if(n % p == 0) { while (n % p == 0) n /= p; result *= (1.0 - (1.0 / (double)p)); } } if(n > 1) result *= (1.0 - (1.0 / (double)n)); return (long)result; } public Name extendedEuclid(long a, long b) { if(b == 0) return new Name(a, 1, 0); Name n1 = extendedEuclid(b, a % b); Name n2 = new Name(n1.d, n1.y, n1.x - (long)Math.floor((double)a / b) * n1.y); return n2; } public long modularExponentiation(long a, long b, long n) { long d = 1L; String bString = Long.toBinaryString(b); for(int i=0;i<bString.length();i++) { d = (d * d) % n; if(bString.charAt(i) == '1') d = (d * a) % n; } return d; } } class Name { long d; long x; long y; public Name(long d, long x, long y) { this.d = d; this.x = x; this.y = y; } } class SuffixArray { int ALPHABET_SZ = 256, N; int[] T, lcp, sa, sa2, rank, tmp, c; public SuffixArray(String str) { this(toIntArray(str)); } private static int[] toIntArray(String s) { int[] text = new int[s.length()]; for (int i = 0; i < s.length(); i++) text[i] = s.charAt(i); return text; } public SuffixArray(int[] text) { T = text; N = text.length; sa = new int[N]; sa2 = new int[N]; rank = new int[N]; c = new int[Math.max(ALPHABET_SZ, N)]; construct(); kasai(); } private void construct() { int i, p, r; for (i = 0; i < N; ++i) c[rank[i] = T[i]]++; for (i = 1; i < ALPHABET_SZ; ++i) c[i] += c[i - 1]; for (i = N - 1; i >= 0; --i) sa[--c[T[i]]] = i; for (p = 1; p < N; p <<= 1) { for (r = 0, i = N - p; i < N; ++i) sa2[r++] = i; for (i = 0; i < N; ++i) if (sa[i] >= p) sa2[r++] = sa[i] - p; Arrays.fill(c, 0, ALPHABET_SZ, 0); for (i = 0; i < N; ++i) c[rank[i]]++; for (i = 1; i < ALPHABET_SZ; ++i) c[i] += c[i - 1]; for (i = N - 1; i >= 0; --i) sa[--c[rank[sa2[i]]]] = sa2[i]; for (sa2[sa[0]] = r = 0, i = 1; i < N; ++i) { if (!(rank[sa[i - 1]] == rank[sa[i]] && sa[i - 1] + p < N && sa[i] + p < N && rank[sa[i - 1] + p] == rank[sa[i] + p])) r++; sa2[sa[i]] = r; } tmp = rank; rank = sa2; sa2 = tmp; if (r == N - 1) break; ALPHABET_SZ = r + 1; } } private void kasai() { lcp = new int[N]; int[] inv = new int[N]; for (int i = 0; i < N; i++) inv[sa[i]] = i; for (int i = 0, len = 0; i < N; i++) { if (inv[i] > 0) { int k = sa[inv[i] - 1]; while ((i + len < N) && (k + len < N) && T[i + len] == T[k + len]) len++; lcp[inv[i] - 1] = len; if (len > 0) len--; } } } } class ZAlgorithm { public int[] calculateZ(char input[]) { int Z[] = new int[input.length]; int left = 0; int right = 0; for(int k = 1; k < input.length; k++) { if(k > right) { left = right = k; while(right < input.length && input[right] == input[right - left]) { right++; } Z[k] = right - left; right--; } else { //we are operating inside box int k1 = k - left; //if value does not stretches till right bound then just copy it. if(Z[k1] < right - k + 1) { Z[k] = Z[k1]; } else { //otherwise try to see if there are more matches. left = k; while(right < input.length && input[right] == input[right - left]) { right++; } Z[k] = right - left; right--; } } } return Z; } public ArrayList<Integer> matchPattern(char text[], char pattern[]) { char newString[] = new char[text.length + pattern.length + 1]; int i = 0; for(char ch : pattern) { newString[i] = ch; i++; } newString[i] = '$'; i++; for(char ch : text) { newString[i] = ch; i++; } ArrayList<Integer> result = new ArrayList<>(); int Z[] = calculateZ(newString); for(i = 0; i < Z.length ; i++) { if(Z[i] == pattern.length) { result.add(i - pattern.length - 1); } } return result; } } class KMPAlgorithm { public int[] computeTemporalArray(char[] pattern) { int[] lps = new int[pattern.length]; int index = 0; for(int i=1;i<pattern.length;) { if(pattern[i] == pattern[index]) { lps[i] = index + 1; index++; i++; } else { if(index != 0) { index = lps[index - 1]; } else { lps[i] = 0; i++; } } } return lps; } public ArrayList<Integer> KMPMatcher(char[] text, char[] pattern) { int[] lps = computeTemporalArray(pattern); int j = 0; int i = 0; int n = text.length; int m = pattern.length; ArrayList<Integer> indices = new ArrayList<>(); while(i < n) { if(pattern[j] == text[i]) { i++; j++; } if(j == m) { indices.add(i - j); j = lps[j - 1]; } else if(i < n && pattern[j] != text[i]) { if(j != 0) j = lps[j - 1]; else i = i + 1; } } return indices; } } class Hashing { public long[] computePowers(long p, int n, long m) { long[] powers = new long[n]; powers[0] = 1; for(int i=1;i<n;i++) { powers[i] = (powers[i - 1] * p) % m; } return powers; } public long computeHash(String s) { long p = 31; long m = 1_000_000_009; long hashValue = 0L; long[] powers = computePowers(p, s.length(), m); for(int i=0;i<s.length();i++) { char ch = s.charAt(i); hashValue = (hashValue + (ch - 'a' + 1) * powers[i]) % m; } return hashValue; } } class BasicFunctions { public long min(long[] A) { long min = Long.MAX_VALUE; for(int i=0;i<A.length;i++) { min = Math.min(min, A[i]); } return min; } public long max(long[] A) { long max = Long.MAX_VALUE; for(int i=0;i<A.length;i++) { max = Math.max(max, A[i]); } return max; } } class Matrix { long a; long b; long c; long d; public Matrix(long a, long b, long c, long d) { this.a = a; this.b = b; this.c = c; this.d = d; } } class MergeSortInt { // Merges two subarrays of arr[]. // First subarray is arr[l..m] // Second subarray is arr[m+1..r] void merge(int arr[], int l, int m, int r) { // Find sizes of two subarrays to be merged int n1 = m - l + 1; int n2 = r - m; /* Create temp arrays */ int L[] = new int[n1]; int R[] = new int[n2]; /*Copy data to temp arrays*/ for (int i = 0; i < n1; ++i) L[i] = arr[l + i]; for (int j = 0; j < n2; ++j) R[j] = arr[m + 1 + j]; /* Merge the temp arrays */ // Initial indexes of first and second subarrays int i = 0, j = 0; // Initial index of merged subarry array int k = l; while (i < n1 && j < n2) { if (L[i] <= R[j]) { arr[k] = L[i]; i++; } else { arr[k] = R[j]; j++; } k++; } /* Copy remaining elements of L[] if any */ while (i < n1) { arr[k] = L[i]; i++; k++; } /* Copy remaining elements of R[] if any */ while (j < n2) { arr[k] = R[j]; j++; k++; } } // Main function that sorts arr[l..r] using // merge() void sort(int arr[], int l, int r) { if (l < r) { // Find the middle point int m = (l + r) / 2; // Sort first and second halves sort(arr, l, m); sort(arr, m + 1, r); // Merge the sorted halves merge(arr, l, m, r); } } } class MergeSortLong { // Merges two subarrays of arr[]. // First subarray is arr[l..m] // Second subarray is arr[m+1..r] void merge(long arr[], int l, int m, int r) { // Find sizes of two subarrays to be merged int n1 = m - l + 1; int n2 = r - m; /* Create temp arrays */ long L[] = new long[n1]; long R[] = new long[n2]; /*Copy data to temp arrays*/ for (int i = 0; i < n1; ++i) L[i] = arr[l + i]; for (int j = 0; j < n2; ++j) R[j] = arr[m + 1 + j]; /* Merge the temp arrays */ // Initial indexes of first and second subarrays int i = 0, j = 0; // Initial index of merged subarry array int k = l; while (i < n1 && j < n2) { if (L[i] <= R[j]) { arr[k] = L[i]; i++; } else { arr[k] = R[j]; j++; } k++; } /* Copy remaining elements of L[] if any */ while (i < n1) { arr[k] = L[i]; i++; k++; } /* Copy remaining elements of R[] if any */ while (j < n2) { arr[k] = R[j]; j++; k++; } } // Main function that sorts arr[l..r] using // merge() void sort(long arr[], int l, int r) { if (l < r) { // Find the middle point int m = (l + r) / 2; // Sort first and second halves sort(arr, l, m); sort(arr, m + 1, r); // Merge the sorted halves merge(arr, l, m, r); } } } class Node { String a; String b; Node(String s1,String s2) { this.a = s1; this.b = s2; } @Override public boolean equals(Object ob) { if(ob == null) return false; if(!(ob instanceof Node)) return false; if(ob == this) return true; Node obj = (Node)ob; if(this.a.equals(obj.a) && this.b.equals(obj.b)) return true; return false; } @Override public int hashCode() { return (int)this.a.length(); } } class Reader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Reader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[64]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } class FenwickTree { public void update(long[] fenwickTree,long delta,int index) { index += 1; while(index < fenwickTree.length) { fenwickTree[index] += delta; index = index + (index & (-index)); } } public long prefixSum(long[] fenwickTree,int index) { long sum = 0L; index += 1; while(index > 0) { sum += fenwickTree[index]; index -= (index & (-index)); } return sum; } } class SegmentTree { public int nextPowerOfTwo(int num) { if(num == 0) return 1; if(num > 0 && (num & (num - 1)) == 0) return num; while((num &(num - 1)) > 0) { num = num & (num - 1); } return num << 1; } public int[] createSegmentTree(int[] input) { int np2 = nextPowerOfTwo(input.length); int[] segmentTree = new int[np2 * 2 - 1]; for(int i=0;i<segmentTree.length;i++) segmentTree[i] = Integer.MIN_VALUE; constructSegmentTree(segmentTree,input,0,input.length-1,0); return segmentTree; } private void constructSegmentTree(int[] segmentTree,int[] input,int low,int high,int pos) { if(low == high) { segmentTree[pos] = input[low]; return; } int mid = (low + high)/ 2; constructSegmentTree(segmentTree,input,low,mid,2*pos + 1); constructSegmentTree(segmentTree,input,mid+1,high,2*pos + 2); segmentTree[pos] = Math.max(segmentTree[2*pos + 1],segmentTree[2*pos + 2]); } public int rangeMinimumQuery(int []segmentTree,int qlow,int qhigh,int len) { return rangeMinimumQuery(segmentTree,0,len-1,qlow,qhigh,0); } private int rangeMinimumQuery(int segmentTree[],int low,int high,int qlow,int qhigh,int pos) { if(qlow <= low && qhigh >= high){ return segmentTree[pos]; } if(qlow > high || qhigh < low){ return Integer.MIN_VALUE; } int mid = (low+high)/2; return Math.max(rangeMinimumQuery(segmentTree, low, mid, qlow, qhigh, 2 * pos + 1), rangeMinimumQuery(segmentTree, mid + 1, high, qlow, qhigh, 2 * pos + 2)); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class icpc { public static void main(String[] args) throws IOException { Reader in = new Reader(); // BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); long n = in.nextLong(); long k = in.nextLong(); long val = 2 * n + 2 * k; long D = 9 + 4 * val; long sqrtD = (long)Math.sqrt((double)D); double r1 = (-3 + sqrtD) / 2; long r1DAsh = (long)r1; System.out.println(n - r1DAsh); } } class NumberTheory { public boolean isPrime(long n) { if(n < 2) return false; for(long x = 2;x * x <= n;x++) { if(n % x == 0) return false; } return true; } public ArrayList<Integer> primeFactorisation(int n) { ArrayList<Integer> f = new ArrayList<>(); for(int x=2;x * x <= n;x++) { while(n % x == 0) { f.add(x); n /= x; } } if(n > 1) f.add(n); return f; } public int[] sieveOfEratosthenes(int n) { int[] sieve = new int[n + 1]; for(int x=2;x<=n;x++) { if(sieve[x] != 0) continue; sieve[x] = x; for(int u=2*x;u<=n;u+=x) if(sieve[u] == 0) sieve[u] = x; } return sieve; } public long gcd(long a, long b) { if(b == 0) return a; return gcd(b, a % b); } public long phi(long n) { double result = n; for(long p=2;p*p<=n;p++) { if(n % p == 0) { while (n % p == 0) n /= p; result *= (1.0 - (1.0 / (double)p)); } } if(n > 1) result *= (1.0 - (1.0 / (double)n)); return (long)result; } public Name extendedEuclid(long a, long b) { if(b == 0) return new Name(a, 1, 0); Name n1 = extendedEuclid(b, a % b); Name n2 = new Name(n1.d, n1.y, n1.x - (long)Math.floor((double)a / b) * n1.y); return n2; } public long modularExponentiation(long a, long b, long n) { long d = 1L; String bString = Long.toBinaryString(b); for(int i=0;i<bString.length();i++) { d = (d * d) % n; if(bString.charAt(i) == '1') d = (d * a) % n; } return d; } } class Name { long d; long x; long y; public Name(long d, long x, long y) { this.d = d; this.x = x; this.y = y; } } class SuffixArray { int ALPHABET_SZ = 256, N; int[] T, lcp, sa, sa2, rank, tmp, c; public SuffixArray(String str) { this(toIntArray(str)); } private static int[] toIntArray(String s) { int[] text = new int[s.length()]; for (int i = 0; i < s.length(); i++) text[i] = s.charAt(i); return text; } public SuffixArray(int[] text) { T = text; N = text.length; sa = new int[N]; sa2 = new int[N]; rank = new int[N]; c = new int[Math.max(ALPHABET_SZ, N)]; construct(); kasai(); } private void construct() { int i, p, r; for (i = 0; i < N; ++i) c[rank[i] = T[i]]++; for (i = 1; i < ALPHABET_SZ; ++i) c[i] += c[i - 1]; for (i = N - 1; i >= 0; --i) sa[--c[T[i]]] = i; for (p = 1; p < N; p <<= 1) { for (r = 0, i = N - p; i < N; ++i) sa2[r++] = i; for (i = 0; i < N; ++i) if (sa[i] >= p) sa2[r++] = sa[i] - p; Arrays.fill(c, 0, ALPHABET_SZ, 0); for (i = 0; i < N; ++i) c[rank[i]]++; for (i = 1; i < ALPHABET_SZ; ++i) c[i] += c[i - 1]; for (i = N - 1; i >= 0; --i) sa[--c[rank[sa2[i]]]] = sa2[i]; for (sa2[sa[0]] = r = 0, i = 1; i < N; ++i) { if (!(rank[sa[i - 1]] == rank[sa[i]] && sa[i - 1] + p < N && sa[i] + p < N && rank[sa[i - 1] + p] == rank[sa[i] + p])) r++; sa2[sa[i]] = r; } tmp = rank; rank = sa2; sa2 = tmp; if (r == N - 1) break; ALPHABET_SZ = r + 1; } } private void kasai() { lcp = new int[N]; int[] inv = new int[N]; for (int i = 0; i < N; i++) inv[sa[i]] = i; for (int i = 0, len = 0; i < N; i++) { if (inv[i] > 0) { int k = sa[inv[i] - 1]; while ((i + len < N) && (k + len < N) && T[i + len] == T[k + len]) len++; lcp[inv[i] - 1] = len; if (len > 0) len--; } } } } class ZAlgorithm { public int[] calculateZ(char input[]) { int Z[] = new int[input.length]; int left = 0; int right = 0; for(int k = 1; k < input.length; k++) { if(k > right) { left = right = k; while(right < input.length && input[right] == input[right - left]) { right++; } Z[k] = right - left; right--; } else { //we are operating inside box int k1 = k - left; //if value does not stretches till right bound then just copy it. if(Z[k1] < right - k + 1) { Z[k] = Z[k1]; } else { //otherwise try to see if there are more matches. left = k; while(right < input.length && input[right] == input[right - left]) { right++; } Z[k] = right - left; right--; } } } return Z; } public ArrayList<Integer> matchPattern(char text[], char pattern[]) { char newString[] = new char[text.length + pattern.length + 1]; int i = 0; for(char ch : pattern) { newString[i] = ch; i++; } newString[i] = '$'; i++; for(char ch : text) { newString[i] = ch; i++; } ArrayList<Integer> result = new ArrayList<>(); int Z[] = calculateZ(newString); for(i = 0; i < Z.length ; i++) { if(Z[i] == pattern.length) { result.add(i - pattern.length - 1); } } return result; } } class KMPAlgorithm { public int[] computeTemporalArray(char[] pattern) { int[] lps = new int[pattern.length]; int index = 0; for(int i=1;i<pattern.length;) { if(pattern[i] == pattern[index]) { lps[i] = index + 1; index++; i++; } else { if(index != 0) { index = lps[index - 1]; } else { lps[i] = 0; i++; } } } return lps; } public ArrayList<Integer> KMPMatcher(char[] text, char[] pattern) { int[] lps = computeTemporalArray(pattern); int j = 0; int i = 0; int n = text.length; int m = pattern.length; ArrayList<Integer> indices = new ArrayList<>(); while(i < n) { if(pattern[j] == text[i]) { i++; j++; } if(j == m) { indices.add(i - j); j = lps[j - 1]; } else if(i < n && pattern[j] != text[i]) { if(j != 0) j = lps[j - 1]; else i = i + 1; } } return indices; } } class Hashing { public long[] computePowers(long p, int n, long m) { long[] powers = new long[n]; powers[0] = 1; for(int i=1;i<n;i++) { powers[i] = (powers[i - 1] * p) % m; } return powers; } public long computeHash(String s) { long p = 31; long m = 1_000_000_009; long hashValue = 0L; long[] powers = computePowers(p, s.length(), m); for(int i=0;i<s.length();i++) { char ch = s.charAt(i); hashValue = (hashValue + (ch - 'a' + 1) * powers[i]) % m; } return hashValue; } } class BasicFunctions { public long min(long[] A) { long min = Long.MAX_VALUE; for(int i=0;i<A.length;i++) { min = Math.min(min, A[i]); } return min; } public long max(long[] A) { long max = Long.MAX_VALUE; for(int i=0;i<A.length;i++) { max = Math.max(max, A[i]); } return max; } } class Matrix { long a; long b; long c; long d; public Matrix(long a, long b, long c, long d) { this.a = a; this.b = b; this.c = c; this.d = d; } } class MergeSortInt { // Merges two subarrays of arr[]. // First subarray is arr[l..m] // Second subarray is arr[m+1..r] void merge(int arr[], int l, int m, int r) { // Find sizes of two subarrays to be merged int n1 = m - l + 1; int n2 = r - m; /* Create temp arrays */ int L[] = new int[n1]; int R[] = new int[n2]; /*Copy data to temp arrays*/ for (int i = 0; i < n1; ++i) L[i] = arr[l + i]; for (int j = 0; j < n2; ++j) R[j] = arr[m + 1 + j]; /* Merge the temp arrays */ // Initial indexes of first and second subarrays int i = 0, j = 0; // Initial index of merged subarry array int k = l; while (i < n1 && j < n2) { if (L[i] <= R[j]) { arr[k] = L[i]; i++; } else { arr[k] = R[j]; j++; } k++; } /* Copy remaining elements of L[] if any */ while (i < n1) { arr[k] = L[i]; i++; k++; } /* Copy remaining elements of R[] if any */ while (j < n2) { arr[k] = R[j]; j++; k++; } } // Main function that sorts arr[l..r] using // merge() void sort(int arr[], int l, int r) { if (l < r) { // Find the middle point int m = (l + r) / 2; // Sort first and second halves sort(arr, l, m); sort(arr, m + 1, r); // Merge the sorted halves merge(arr, l, m, r); } } } class MergeSortLong { // Merges two subarrays of arr[]. // First subarray is arr[l..m] // Second subarray is arr[m+1..r] void merge(long arr[], int l, int m, int r) { // Find sizes of two subarrays to be merged int n1 = m - l + 1; int n2 = r - m; /* Create temp arrays */ long L[] = new long[n1]; long R[] = new long[n2]; /*Copy data to temp arrays*/ for (int i = 0; i < n1; ++i) L[i] = arr[l + i]; for (int j = 0; j < n2; ++j) R[j] = arr[m + 1 + j]; /* Merge the temp arrays */ // Initial indexes of first and second subarrays int i = 0, j = 0; // Initial index of merged subarry array int k = l; while (i < n1 && j < n2) { if (L[i] <= R[j]) { arr[k] = L[i]; i++; } else { arr[k] = R[j]; j++; } k++; } /* Copy remaining elements of L[] if any */ while (i < n1) { arr[k] = L[i]; i++; k++; } /* Copy remaining elements of R[] if any */ while (j < n2) { arr[k] = R[j]; j++; k++; } } // Main function that sorts arr[l..r] using // merge() void sort(long arr[], int l, int r) { if (l < r) { // Find the middle point int m = (l + r) / 2; // Sort first and second halves sort(arr, l, m); sort(arr, m + 1, r); // Merge the sorted halves merge(arr, l, m, r); } } } class Node { String a; String b; Node(String s1,String s2) { this.a = s1; this.b = s2; } @Override public boolean equals(Object ob) { if(ob == null) return false; if(!(ob instanceof Node)) return false; if(ob == this) return true; Node obj = (Node)ob; if(this.a.equals(obj.a) && this.b.equals(obj.b)) return true; return false; } @Override public int hashCode() { return (int)this.a.length(); } } class Reader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Reader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[64]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } class FenwickTree { public void update(long[] fenwickTree,long delta,int index) { index += 1; while(index < fenwickTree.length) { fenwickTree[index] += delta; index = index + (index & (-index)); } } public long prefixSum(long[] fenwickTree,int index) { long sum = 0L; index += 1; while(index > 0) { sum += fenwickTree[index]; index -= (index & (-index)); } return sum; } } class SegmentTree { public int nextPowerOfTwo(int num) { if(num == 0) return 1; if(num > 0 && (num & (num - 1)) == 0) return num; while((num &(num - 1)) > 0) { num = num & (num - 1); } return num << 1; } public int[] createSegmentTree(int[] input) { int np2 = nextPowerOfTwo(input.length); int[] segmentTree = new int[np2 * 2 - 1]; for(int i=0;i<segmentTree.length;i++) segmentTree[i] = Integer.MIN_VALUE; constructSegmentTree(segmentTree,input,0,input.length-1,0); return segmentTree; } private void constructSegmentTree(int[] segmentTree,int[] input,int low,int high,int pos) { if(low == high) { segmentTree[pos] = input[low]; return; } int mid = (low + high)/ 2; constructSegmentTree(segmentTree,input,low,mid,2*pos + 1); constructSegmentTree(segmentTree,input,mid+1,high,2*pos + 2); segmentTree[pos] = Math.max(segmentTree[2*pos + 1],segmentTree[2*pos + 2]); } public int rangeMinimumQuery(int []segmentTree,int qlow,int qhigh,int len) { return rangeMinimumQuery(segmentTree,0,len-1,qlow,qhigh,0); } private int rangeMinimumQuery(int segmentTree[],int low,int high,int qlow,int qhigh,int pos) { if(qlow <= low && qhigh >= high){ return segmentTree[pos]; } if(qlow > high || qhigh < low){ return Integer.MIN_VALUE; } int mid = (low+high)/2; return Math.max(rangeMinimumQuery(segmentTree, low, mid, qlow, qhigh, 2 * pos + 1), rangeMinimumQuery(segmentTree, mid + 1, high, qlow, qhigh, 2 * pos + 2)); } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class icpc { public static void main(String[] args) throws IOException { Reader in = new Reader(); // BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); long n = in.nextLong(); long k = in.nextLong(); long val = 2 * n + 2 * k; long D = 9 + 4 * val; long sqrtD = (long)Math.sqrt((double)D); double r1 = (-3 + sqrtD) / 2; long r1DAsh = (long)r1; System.out.println(n - r1DAsh); } } class NumberTheory { public boolean isPrime(long n) { if(n < 2) return false; for(long x = 2;x * x <= n;x++) { if(n % x == 0) return false; } return true; } public ArrayList<Integer> primeFactorisation(int n) { ArrayList<Integer> f = new ArrayList<>(); for(int x=2;x * x <= n;x++) { while(n % x == 0) { f.add(x); n /= x; } } if(n > 1) f.add(n); return f; } public int[] sieveOfEratosthenes(int n) { int[] sieve = new int[n + 1]; for(int x=2;x<=n;x++) { if(sieve[x] != 0) continue; sieve[x] = x; for(int u=2*x;u<=n;u+=x) if(sieve[u] == 0) sieve[u] = x; } return sieve; } public long gcd(long a, long b) { if(b == 0) return a; return gcd(b, a % b); } public long phi(long n) { double result = n; for(long p=2;p*p<=n;p++) { if(n % p == 0) { while (n % p == 0) n /= p; result *= (1.0 - (1.0 / (double)p)); } } if(n > 1) result *= (1.0 - (1.0 / (double)n)); return (long)result; } public Name extendedEuclid(long a, long b) { if(b == 0) return new Name(a, 1, 0); Name n1 = extendedEuclid(b, a % b); Name n2 = new Name(n1.d, n1.y, n1.x - (long)Math.floor((double)a / b) * n1.y); return n2; } public long modularExponentiation(long a, long b, long n) { long d = 1L; String bString = Long.toBinaryString(b); for(int i=0;i<bString.length();i++) { d = (d * d) % n; if(bString.charAt(i) == '1') d = (d * a) % n; } return d; } } class Name { long d; long x; long y; public Name(long d, long x, long y) { this.d = d; this.x = x; this.y = y; } } class SuffixArray { int ALPHABET_SZ = 256, N; int[] T, lcp, sa, sa2, rank, tmp, c; public SuffixArray(String str) { this(toIntArray(str)); } private static int[] toIntArray(String s) { int[] text = new int[s.length()]; for (int i = 0; i < s.length(); i++) text[i] = s.charAt(i); return text; } public SuffixArray(int[] text) { T = text; N = text.length; sa = new int[N]; sa2 = new int[N]; rank = new int[N]; c = new int[Math.max(ALPHABET_SZ, N)]; construct(); kasai(); } private void construct() { int i, p, r; for (i = 0; i < N; ++i) c[rank[i] = T[i]]++; for (i = 1; i < ALPHABET_SZ; ++i) c[i] += c[i - 1]; for (i = N - 1; i >= 0; --i) sa[--c[T[i]]] = i; for (p = 1; p < N; p <<= 1) { for (r = 0, i = N - p; i < N; ++i) sa2[r++] = i; for (i = 0; i < N; ++i) if (sa[i] >= p) sa2[r++] = sa[i] - p; Arrays.fill(c, 0, ALPHABET_SZ, 0); for (i = 0; i < N; ++i) c[rank[i]]++; for (i = 1; i < ALPHABET_SZ; ++i) c[i] += c[i - 1]; for (i = N - 1; i >= 0; --i) sa[--c[rank[sa2[i]]]] = sa2[i]; for (sa2[sa[0]] = r = 0, i = 1; i < N; ++i) { if (!(rank[sa[i - 1]] == rank[sa[i]] && sa[i - 1] + p < N && sa[i] + p < N && rank[sa[i - 1] + p] == rank[sa[i] + p])) r++; sa2[sa[i]] = r; } tmp = rank; rank = sa2; sa2 = tmp; if (r == N - 1) break; ALPHABET_SZ = r + 1; } } private void kasai() { lcp = new int[N]; int[] inv = new int[N]; for (int i = 0; i < N; i++) inv[sa[i]] = i; for (int i = 0, len = 0; i < N; i++) { if (inv[i] > 0) { int k = sa[inv[i] - 1]; while ((i + len < N) && (k + len < N) && T[i + len] == T[k + len]) len++; lcp[inv[i] - 1] = len; if (len > 0) len--; } } } } class ZAlgorithm { public int[] calculateZ(char input[]) { int Z[] = new int[input.length]; int left = 0; int right = 0; for(int k = 1; k < input.length; k++) { if(k > right) { left = right = k; while(right < input.length && input[right] == input[right - left]) { right++; } Z[k] = right - left; right--; } else { //we are operating inside box int k1 = k - left; //if value does not stretches till right bound then just copy it. if(Z[k1] < right - k + 1) { Z[k] = Z[k1]; } else { //otherwise try to see if there are more matches. left = k; while(right < input.length && input[right] == input[right - left]) { right++; } Z[k] = right - left; right--; } } } return Z; } public ArrayList<Integer> matchPattern(char text[], char pattern[]) { char newString[] = new char[text.length + pattern.length + 1]; int i = 0; for(char ch : pattern) { newString[i] = ch; i++; } newString[i] = '$'; i++; for(char ch : text) { newString[i] = ch; i++; } ArrayList<Integer> result = new ArrayList<>(); int Z[] = calculateZ(newString); for(i = 0; i < Z.length ; i++) { if(Z[i] == pattern.length) { result.add(i - pattern.length - 1); } } return result; } } class KMPAlgorithm { public int[] computeTemporalArray(char[] pattern) { int[] lps = new int[pattern.length]; int index = 0; for(int i=1;i<pattern.length;) { if(pattern[i] == pattern[index]) { lps[i] = index + 1; index++; i++; } else { if(index != 0) { index = lps[index - 1]; } else { lps[i] = 0; i++; } } } return lps; } public ArrayList<Integer> KMPMatcher(char[] text, char[] pattern) { int[] lps = computeTemporalArray(pattern); int j = 0; int i = 0; int n = text.length; int m = pattern.length; ArrayList<Integer> indices = new ArrayList<>(); while(i < n) { if(pattern[j] == text[i]) { i++; j++; } if(j == m) { indices.add(i - j); j = lps[j - 1]; } else if(i < n && pattern[j] != text[i]) { if(j != 0) j = lps[j - 1]; else i = i + 1; } } return indices; } } class Hashing { public long[] computePowers(long p, int n, long m) { long[] powers = new long[n]; powers[0] = 1; for(int i=1;i<n;i++) { powers[i] = (powers[i - 1] * p) % m; } return powers; } public long computeHash(String s) { long p = 31; long m = 1_000_000_009; long hashValue = 0L; long[] powers = computePowers(p, s.length(), m); for(int i=0;i<s.length();i++) { char ch = s.charAt(i); hashValue = (hashValue + (ch - 'a' + 1) * powers[i]) % m; } return hashValue; } } class BasicFunctions { public long min(long[] A) { long min = Long.MAX_VALUE; for(int i=0;i<A.length;i++) { min = Math.min(min, A[i]); } return min; } public long max(long[] A) { long max = Long.MAX_VALUE; for(int i=0;i<A.length;i++) { max = Math.max(max, A[i]); } return max; } } class Matrix { long a; long b; long c; long d; public Matrix(long a, long b, long c, long d) { this.a = a; this.b = b; this.c = c; this.d = d; } } class MergeSortInt { // Merges two subarrays of arr[]. // First subarray is arr[l..m] // Second subarray is arr[m+1..r] void merge(int arr[], int l, int m, int r) { // Find sizes of two subarrays to be merged int n1 = m - l + 1; int n2 = r - m; /* Create temp arrays */ int L[] = new int[n1]; int R[] = new int[n2]; /*Copy data to temp arrays*/ for (int i = 0; i < n1; ++i) L[i] = arr[l + i]; for (int j = 0; j < n2; ++j) R[j] = arr[m + 1 + j]; /* Merge the temp arrays */ // Initial indexes of first and second subarrays int i = 0, j = 0; // Initial index of merged subarry array int k = l; while (i < n1 && j < n2) { if (L[i] <= R[j]) { arr[k] = L[i]; i++; } else { arr[k] = R[j]; j++; } k++; } /* Copy remaining elements of L[] if any */ while (i < n1) { arr[k] = L[i]; i++; k++; } /* Copy remaining elements of R[] if any */ while (j < n2) { arr[k] = R[j]; j++; k++; } } // Main function that sorts arr[l..r] using // merge() void sort(int arr[], int l, int r) { if (l < r) { // Find the middle point int m = (l + r) / 2; // Sort first and second halves sort(arr, l, m); sort(arr, m + 1, r); // Merge the sorted halves merge(arr, l, m, r); } } } class MergeSortLong { // Merges two subarrays of arr[]. // First subarray is arr[l..m] // Second subarray is arr[m+1..r] void merge(long arr[], int l, int m, int r) { // Find sizes of two subarrays to be merged int n1 = m - l + 1; int n2 = r - m; /* Create temp arrays */ long L[] = new long[n1]; long R[] = new long[n2]; /*Copy data to temp arrays*/ for (int i = 0; i < n1; ++i) L[i] = arr[l + i]; for (int j = 0; j < n2; ++j) R[j] = arr[m + 1 + j]; /* Merge the temp arrays */ // Initial indexes of first and second subarrays int i = 0, j = 0; // Initial index of merged subarry array int k = l; while (i < n1 && j < n2) { if (L[i] <= R[j]) { arr[k] = L[i]; i++; } else { arr[k] = R[j]; j++; } k++; } /* Copy remaining elements of L[] if any */ while (i < n1) { arr[k] = L[i]; i++; k++; } /* Copy remaining elements of R[] if any */ while (j < n2) { arr[k] = R[j]; j++; k++; } } // Main function that sorts arr[l..r] using // merge() void sort(long arr[], int l, int r) { if (l < r) { // Find the middle point int m = (l + r) / 2; // Sort first and second halves sort(arr, l, m); sort(arr, m + 1, r); // Merge the sorted halves merge(arr, l, m, r); } } } class Node { String a; String b; Node(String s1,String s2) { this.a = s1; this.b = s2; } @Override public boolean equals(Object ob) { if(ob == null) return false; if(!(ob instanceof Node)) return false; if(ob == this) return true; Node obj = (Node)ob; if(this.a.equals(obj.a) && this.b.equals(obj.b)) return true; return false; } @Override public int hashCode() { return (int)this.a.length(); } } class Reader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Reader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[64]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } class FenwickTree { public void update(long[] fenwickTree,long delta,int index) { index += 1; while(index < fenwickTree.length) { fenwickTree[index] += delta; index = index + (index & (-index)); } } public long prefixSum(long[] fenwickTree,int index) { long sum = 0L; index += 1; while(index > 0) { sum += fenwickTree[index]; index -= (index & (-index)); } return sum; } } class SegmentTree { public int nextPowerOfTwo(int num) { if(num == 0) return 1; if(num > 0 && (num & (num - 1)) == 0) return num; while((num &(num - 1)) > 0) { num = num & (num - 1); } return num << 1; } public int[] createSegmentTree(int[] input) { int np2 = nextPowerOfTwo(input.length); int[] segmentTree = new int[np2 * 2 - 1]; for(int i=0;i<segmentTree.length;i++) segmentTree[i] = Integer.MIN_VALUE; constructSegmentTree(segmentTree,input,0,input.length-1,0); return segmentTree; } private void constructSegmentTree(int[] segmentTree,int[] input,int low,int high,int pos) { if(low == high) { segmentTree[pos] = input[low]; return; } int mid = (low + high)/ 2; constructSegmentTree(segmentTree,input,low,mid,2*pos + 1); constructSegmentTree(segmentTree,input,mid+1,high,2*pos + 2); segmentTree[pos] = Math.max(segmentTree[2*pos + 1],segmentTree[2*pos + 2]); } public int rangeMinimumQuery(int []segmentTree,int qlow,int qhigh,int len) { return rangeMinimumQuery(segmentTree,0,len-1,qlow,qhigh,0); } private int rangeMinimumQuery(int segmentTree[],int low,int high,int qlow,int qhigh,int pos) { if(qlow <= low && qhigh >= high){ return segmentTree[pos]; } if(qlow > high || qhigh < low){ return Integer.MIN_VALUE; } int mid = (low+high)/2; return Math.max(rangeMinimumQuery(segmentTree, low, mid, qlow, qhigh, 2 * pos + 1), rangeMinimumQuery(segmentTree, mid + 1, high, qlow, qhigh, 2 * pos + 2)); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
5,291
946
1,819
import java.util.*; public class a { public static void main(String[] args) { Scanner input = new Scanner(System.in); int n = input.nextInt(), m = input.nextInt(), k = input.nextInt(); int[] data = new int[n]; for(int i = 0; i<n; i++) data[i] = input.nextInt(); Arrays.sort(data); m -= k; int at = n-1; int count = 0; while(at>=0 && m>0) { count++; m++; m -= data[at]; at--; } if(m>0) System.out.println(-1); else System.out.println(count); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; public class a { public static void main(String[] args) { Scanner input = new Scanner(System.in); int n = input.nextInt(), m = input.nextInt(), k = input.nextInt(); int[] data = new int[n]; for(int i = 0; i<n; i++) data[i] = input.nextInt(); Arrays.sort(data); m -= k; int at = n-1; int count = 0; while(at>=0 && m>0) { count++; m++; m -= data[at]; at--; } if(m>0) System.out.println(-1); else System.out.println(count); } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; public class a { public static void main(String[] args) { Scanner input = new Scanner(System.in); int n = input.nextInt(), m = input.nextInt(), k = input.nextInt(); int[] data = new int[n]; for(int i = 0; i<n; i++) data[i] = input.nextInt(); Arrays.sort(data); m -= k; int at = n-1; int count = 0; while(at>=0 && m>0) { count++; m++; m -= data[at]; at--; } if(m>0) System.out.println(-1); else System.out.println(count); } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
502
1,815
2,795
import java.util.*; import java.io.*; public class Solution { public static void main(String[] args) { Scanner s = new Scanner(System.in); s.nextLine(); while(s.hasNext()) { int first = s.nextInt(); int second = s.nextInt(); System.out.println(calculate(first,second)); } } public static int calculate(int first, int second) { int operations = 0; while(first != 0 && second != 0) { int temp; if(first < second) { temp = second/first; operations += temp; second -= (first*temp); } else { temp = first/second; operations += temp; first -= (second*temp); } } return operations; } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; public class Solution { public static void main(String[] args) { Scanner s = new Scanner(System.in); s.nextLine(); while(s.hasNext()) { int first = s.nextInt(); int second = s.nextInt(); System.out.println(calculate(first,second)); } } public static int calculate(int first, int second) { int operations = 0; while(first != 0 && second != 0) { int temp; if(first < second) { temp = second/first; operations += temp; second -= (first*temp); } else { temp = first/second; operations += temp; first -= (second*temp); } } return operations; } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class Solution { public static void main(String[] args) { Scanner s = new Scanner(System.in); s.nextLine(); while(s.hasNext()) { int first = s.nextInt(); int second = s.nextInt(); System.out.println(calculate(first,second)); } } public static int calculate(int first, int second) { int operations = 0; while(first != 0 && second != 0) { int temp; if(first < second) { temp = second/first; operations += temp; second -= (first*temp); } else { temp = first/second; operations += temp; first -= (second*temp); } } return operations; } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
521
2,789
953
import java.io.*; import java.util.StringTokenizer; public class TaskB { void run() { FastReader in = new FastReader(System.in); // FastReader in = new FastReader(new FileInputStream("input.txt")); PrintWriter out = new PrintWriter(System.out); // PrintWriter out = new PrintWriter(new FileOutputStream("output.txt")); long n = in.nextLong(); long k = in.nextLong(); long a = 1; long b = -(2 * n + 3); long c = n * n + n - 2 * k; long d = b * b - 4 * a * c; long ans1 = (-b + (long) Math.sqrt(d)) / 2; long ans2 = (-b - (long) Math.sqrt(d)) / 2; if (ans1 >= 0 && ans1 <= n) { out.println(ans1); } else { out.println(ans2); } out.close(); } class FastReader { BufferedReader br; StringTokenizer st; FastReader(InputStream is) { br = new BufferedReader(new InputStreamReader(is)); } Integer nextInt() { return Integer.parseInt(next()); } Long nextLong() { return Long.parseLong(next()); } Double nextDouble() { return Double.parseDouble(next()); } String next() { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(nextLine()); return st.nextToken(); } String nextLine() { String s = ""; try { s = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return s; } } public static void main(String[] args) { new TaskB().run(); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.StringTokenizer; public class TaskB { void run() { FastReader in = new FastReader(System.in); // FastReader in = new FastReader(new FileInputStream("input.txt")); PrintWriter out = new PrintWriter(System.out); // PrintWriter out = new PrintWriter(new FileOutputStream("output.txt")); long n = in.nextLong(); long k = in.nextLong(); long a = 1; long b = -(2 * n + 3); long c = n * n + n - 2 * k; long d = b * b - 4 * a * c; long ans1 = (-b + (long) Math.sqrt(d)) / 2; long ans2 = (-b - (long) Math.sqrt(d)) / 2; if (ans1 >= 0 && ans1 <= n) { out.println(ans1); } else { out.println(ans2); } out.close(); } class FastReader { BufferedReader br; StringTokenizer st; FastReader(InputStream is) { br = new BufferedReader(new InputStreamReader(is)); } Integer nextInt() { return Integer.parseInt(next()); } Long nextLong() { return Long.parseLong(next()); } Double nextDouble() { return Double.parseDouble(next()); } String next() { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(nextLine()); return st.nextToken(); } String nextLine() { String s = ""; try { s = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return s; } } public static void main(String[] args) { new TaskB().run(); } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.StringTokenizer; public class TaskB { void run() { FastReader in = new FastReader(System.in); // FastReader in = new FastReader(new FileInputStream("input.txt")); PrintWriter out = new PrintWriter(System.out); // PrintWriter out = new PrintWriter(new FileOutputStream("output.txt")); long n = in.nextLong(); long k = in.nextLong(); long a = 1; long b = -(2 * n + 3); long c = n * n + n - 2 * k; long d = b * b - 4 * a * c; long ans1 = (-b + (long) Math.sqrt(d)) / 2; long ans2 = (-b - (long) Math.sqrt(d)) / 2; if (ans1 >= 0 && ans1 <= n) { out.println(ans1); } else { out.println(ans2); } out.close(); } class FastReader { BufferedReader br; StringTokenizer st; FastReader(InputStream is) { br = new BufferedReader(new InputStreamReader(is)); } Integer nextInt() { return Integer.parseInt(next()); } Long nextLong() { return Long.parseLong(next()); } Double nextDouble() { return Double.parseDouble(next()); } String next() { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(nextLine()); return st.nextToken(); } String nextLine() { String s = ""; try { s = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return s; } } public static void main(String[] args) { new TaskB().run(); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
729
952
2,712
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.util.Arrays; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author gaidash */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } static class TaskC { public void solve(int testNumber, InputReader in, OutputWriter out) { final int SIZE = 256; final int UNDEF = -1; int nPixels = in.nextInt(); int groupSize = in.nextInt(); int[] a = in.nextIntArray(nPixels); boolean[] exists = new boolean[SIZE]; int[] left = new int[SIZE]; int[] right = new int[SIZE]; int[] ret = new int[nPixels]; Arrays.fill(ret, UNDEF); for (int i = 0; i < nPixels; i++) { for (int p = 0; p < SIZE; p++) { if (exists[p] && left[p] <= a[i] && a[i] <= right[p]) { ret[i] = left[p]; left[a[i]] = left[p]; right[a[i]] = right[p]; break; } } if (ret[i] == UNDEF) { int l = Math.max(a[i] - groupSize + 1, 0); int r = l + groupSize - 1; for (int p = a[i] - 1; p >= 0; p--) { if (exists[p]) { if (p >= l) { int d = p - l; l = p + 1; r += d + 1; } if (right[p] >= l) { right[p] = l - 1; } } } for (int p = a[i] + 1; p < SIZE; p++) { if (exists[p] && left[p] <= r) { r = left[p] - 1; } } left[a[i]] = l; right[a[i]] = r; ret[i] = l; } exists[a[i]] = true; } // for (int p : a) { // System.out.println("Segment for pixel " + p + " = " + "(" + left[p] + " , " + right[p] + ")"); // } out.print(ret); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(int[] array) { for (int i = 0; i < array.length; i++) { if (i != 0) { writer.print(' '); } writer.print(array[i]); } } public void close() { writer.close(); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public int[] nextIntArray(int n) { int[] array = new int[n]; for (int i = 0; i < n; ++i) array[i] = nextInt(); return array; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.util.Arrays; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author gaidash */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } static class TaskC { public void solve(int testNumber, InputReader in, OutputWriter out) { final int SIZE = 256; final int UNDEF = -1; int nPixels = in.nextInt(); int groupSize = in.nextInt(); int[] a = in.nextIntArray(nPixels); boolean[] exists = new boolean[SIZE]; int[] left = new int[SIZE]; int[] right = new int[SIZE]; int[] ret = new int[nPixels]; Arrays.fill(ret, UNDEF); for (int i = 0; i < nPixels; i++) { for (int p = 0; p < SIZE; p++) { if (exists[p] && left[p] <= a[i] && a[i] <= right[p]) { ret[i] = left[p]; left[a[i]] = left[p]; right[a[i]] = right[p]; break; } } if (ret[i] == UNDEF) { int l = Math.max(a[i] - groupSize + 1, 0); int r = l + groupSize - 1; for (int p = a[i] - 1; p >= 0; p--) { if (exists[p]) { if (p >= l) { int d = p - l; l = p + 1; r += d + 1; } if (right[p] >= l) { right[p] = l - 1; } } } for (int p = a[i] + 1; p < SIZE; p++) { if (exists[p] && left[p] <= r) { r = left[p] - 1; } } left[a[i]] = l; right[a[i]] = r; ret[i] = l; } exists[a[i]] = true; } // for (int p : a) { // System.out.println("Segment for pixel " + p + " = " + "(" + left[p] + " , " + right[p] + ")"); // } out.print(ret); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(int[] array) { for (int i = 0; i < array.length; i++) { if (i != 0) { writer.print(' '); } writer.print(array[i]); } } public void close() { writer.close(); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public int[] nextIntArray(int n) { int[] array = new int[n]; for (int i = 0; i < n; ++i) array[i] = nextInt(); return array; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.util.Arrays; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author gaidash */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } static class TaskC { public void solve(int testNumber, InputReader in, OutputWriter out) { final int SIZE = 256; final int UNDEF = -1; int nPixels = in.nextInt(); int groupSize = in.nextInt(); int[] a = in.nextIntArray(nPixels); boolean[] exists = new boolean[SIZE]; int[] left = new int[SIZE]; int[] right = new int[SIZE]; int[] ret = new int[nPixels]; Arrays.fill(ret, UNDEF); for (int i = 0; i < nPixels; i++) { for (int p = 0; p < SIZE; p++) { if (exists[p] && left[p] <= a[i] && a[i] <= right[p]) { ret[i] = left[p]; left[a[i]] = left[p]; right[a[i]] = right[p]; break; } } if (ret[i] == UNDEF) { int l = Math.max(a[i] - groupSize + 1, 0); int r = l + groupSize - 1; for (int p = a[i] - 1; p >= 0; p--) { if (exists[p]) { if (p >= l) { int d = p - l; l = p + 1; r += d + 1; } if (right[p] >= l) { right[p] = l - 1; } } } for (int p = a[i] + 1; p < SIZE; p++) { if (exists[p] && left[p] <= r) { r = left[p] - 1; } } left[a[i]] = l; right[a[i]] = r; ret[i] = l; } exists[a[i]] = true; } // for (int p : a) { // System.out.println("Segment for pixel " + p + " = " + "(" + left[p] + " , " + right[p] + ")"); // } out.print(ret); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(int[] array) { for (int i = 0; i < array.length; i++) { if (i != 0) { writer.print(' '); } writer.print(array[i]); } } public void close() { writer.close(); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public int[] nextIntArray(int n) { int[] array = new int[n]; for (int i = 0; i < n; ++i) array[i] = nextInt(); return array; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,526
2,706
228
import java.io.*; import java.util.*; public class Main { public static void main(String[] args) throws Exception { new Main().go(); } PrintWriter out; Reader in; BufferedReader br; Main() throws IOException { try { //br = new BufferedReader( new FileReader("input.txt") ); //in = new Reader("input.txt"); in = new Reader("input.txt"); out = new PrintWriter( new BufferedWriter(new FileWriter("output.txt")) ); } catch (Exception e) { //br = new BufferedReader( new InputStreamReader( System.in ) ); in = new Reader(); out = new PrintWriter( new BufferedWriter(new OutputStreamWriter(System.out)) ); } } void go() throws Exception { //int t = in.nextInt(); int t = 1; while (t > 0) { solve(); t--; } out.flush(); out.close(); } int inf = 2000000000; int mod = 1000000007; double eps = 0.000000001; int n; int m; ArrayList<Pair>[] g; String s; int[][] a; void solve() throws IOException { int n = in.nextInt(); int m = in.nextInt(); a = new int[n][m]; for (int i = 0; i < n; i++) { String s = in.nextLine(); for (int j = 0; j < m; j++) { a[i][j] = s.charAt(j); } } int[][] f = new int[n][m]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) f[i][j] = inf; for (int i = 0; i < n; i++) { int cnt = 0; for (int j = 0; j < m; j++) { if (a[i][j] == '*') { f[i][j] = Math.min(f[i][j], cnt); cnt++; } else { cnt = 0; } } } for (int i = 0; i < n; i++) { int cnt = 0; for (int j = m - 1; j >= 0; j--) { if (a[i][j] == '*') { f[i][j] = Math.min(f[i][j], cnt); cnt++; } else { cnt = 0; } } } for (int j = 0; j < m; j++) { int cnt = 0; for (int i = 0; i < n; i++) { if (a[i][j] == '*') { f[i][j] = Math.min(f[i][j], cnt); cnt++; } else { cnt = 0; } } } for (int j = 0; j < m; j++) { int cnt = 0; for (int i = n - 1; i >= 0; i--) { if (a[i][j] == '*') { f[i][j] = Math.min(f[i][j], cnt); cnt++; } else { cnt = 0; } } } ArrayList<Item> ans = new ArrayList<>(); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) { if (a[i][j] == '*' && f[i][j] > 0) ans.add(new Item(i + 1, j + 1, f[i][j])); } boolean[][] used = new boolean[n][m]; for (int i = 0; i < n; i++) { int cnt = 0; for (int j = 0; j < m; j++) { if (a[i][j] == '*' && f[i][j] > 0) { cnt = Math.max(cnt, f[i][j] + 1); } if (cnt > 0) used[i][j] = true; cnt--; } cnt = 0; for (int j = m - 1; j >= 0; j--) { if (a[i][j] == '*' && f[i][j] > 0) { cnt = Math.max(cnt, f[i][j] + 1); } if (cnt > 0) used[i][j] = true; cnt--; } } for (int j = 0; j < m; j++) { int cnt = 0; for (int i = 0; i < n; i++) { if (a[i][j] == '*' && f[i][j] > 0) { cnt = Math.max(cnt, f[i][j] + 1); } if (cnt > 0) used[i][j] = true; cnt--; } cnt = 0; for (int i = n - 1; i >= 0; i--) { if (a[i][j] == '*' && f[i][j] > 0) { cnt = Math.max(cnt, f[i][j] + 1); } if (cnt > 0) used[i][j] = true; cnt--; } } for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) if (a[i][j] == '*' && !used[i][j]) { out.println(-1); return; } out.println(ans.size()); for (Item i : ans) out.println(i.a + " " + i.b + " " + i.c); } class Pair implements Comparable<Pair>{ int a; int b; Pair(int a, int b) { this.a = a; this.b = b; } public int compareTo(Pair p) { if (a != p.a) return Integer.compare(a, p.a); else return Integer.compare(b, p.b); } } class Item { int a; int b; int c; Item(int a, int b, int c) { this.a = a; this.b = b; this.c = c; } } class Reader { BufferedReader br; StringTokenizer tok; Reader(String file) throws IOException { br = new BufferedReader( new FileReader(file) ); } Reader() throws IOException { br = new BufferedReader( new InputStreamReader(System.in) ); } String next() throws IOException { while (tok == null || !tok.hasMoreElements()) tok = new StringTokenizer(br.readLine()); return tok.nextToken(); } int nextInt() throws NumberFormatException, IOException { return Integer.valueOf(next()); } long nextLong() throws NumberFormatException, IOException { return Long.valueOf(next()); } double nextDouble() throws NumberFormatException, IOException { return Double.valueOf(next()); } String nextLine() throws IOException { return br.readLine(); } } static class InputReader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public InputReader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public InputReader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[64]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main { public static void main(String[] args) throws Exception { new Main().go(); } PrintWriter out; Reader in; BufferedReader br; Main() throws IOException { try { //br = new BufferedReader( new FileReader("input.txt") ); //in = new Reader("input.txt"); in = new Reader("input.txt"); out = new PrintWriter( new BufferedWriter(new FileWriter("output.txt")) ); } catch (Exception e) { //br = new BufferedReader( new InputStreamReader( System.in ) ); in = new Reader(); out = new PrintWriter( new BufferedWriter(new OutputStreamWriter(System.out)) ); } } void go() throws Exception { //int t = in.nextInt(); int t = 1; while (t > 0) { solve(); t--; } out.flush(); out.close(); } int inf = 2000000000; int mod = 1000000007; double eps = 0.000000001; int n; int m; ArrayList<Pair>[] g; String s; int[][] a; void solve() throws IOException { int n = in.nextInt(); int m = in.nextInt(); a = new int[n][m]; for (int i = 0; i < n; i++) { String s = in.nextLine(); for (int j = 0; j < m; j++) { a[i][j] = s.charAt(j); } } int[][] f = new int[n][m]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) f[i][j] = inf; for (int i = 0; i < n; i++) { int cnt = 0; for (int j = 0; j < m; j++) { if (a[i][j] == '*') { f[i][j] = Math.min(f[i][j], cnt); cnt++; } else { cnt = 0; } } } for (int i = 0; i < n; i++) { int cnt = 0; for (int j = m - 1; j >= 0; j--) { if (a[i][j] == '*') { f[i][j] = Math.min(f[i][j], cnt); cnt++; } else { cnt = 0; } } } for (int j = 0; j < m; j++) { int cnt = 0; for (int i = 0; i < n; i++) { if (a[i][j] == '*') { f[i][j] = Math.min(f[i][j], cnt); cnt++; } else { cnt = 0; } } } for (int j = 0; j < m; j++) { int cnt = 0; for (int i = n - 1; i >= 0; i--) { if (a[i][j] == '*') { f[i][j] = Math.min(f[i][j], cnt); cnt++; } else { cnt = 0; } } } ArrayList<Item> ans = new ArrayList<>(); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) { if (a[i][j] == '*' && f[i][j] > 0) ans.add(new Item(i + 1, j + 1, f[i][j])); } boolean[][] used = new boolean[n][m]; for (int i = 0; i < n; i++) { int cnt = 0; for (int j = 0; j < m; j++) { if (a[i][j] == '*' && f[i][j] > 0) { cnt = Math.max(cnt, f[i][j] + 1); } if (cnt > 0) used[i][j] = true; cnt--; } cnt = 0; for (int j = m - 1; j >= 0; j--) { if (a[i][j] == '*' && f[i][j] > 0) { cnt = Math.max(cnt, f[i][j] + 1); } if (cnt > 0) used[i][j] = true; cnt--; } } for (int j = 0; j < m; j++) { int cnt = 0; for (int i = 0; i < n; i++) { if (a[i][j] == '*' && f[i][j] > 0) { cnt = Math.max(cnt, f[i][j] + 1); } if (cnt > 0) used[i][j] = true; cnt--; } cnt = 0; for (int i = n - 1; i >= 0; i--) { if (a[i][j] == '*' && f[i][j] > 0) { cnt = Math.max(cnt, f[i][j] + 1); } if (cnt > 0) used[i][j] = true; cnt--; } } for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) if (a[i][j] == '*' && !used[i][j]) { out.println(-1); return; } out.println(ans.size()); for (Item i : ans) out.println(i.a + " " + i.b + " " + i.c); } class Pair implements Comparable<Pair>{ int a; int b; Pair(int a, int b) { this.a = a; this.b = b; } public int compareTo(Pair p) { if (a != p.a) return Integer.compare(a, p.a); else return Integer.compare(b, p.b); } } class Item { int a; int b; int c; Item(int a, int b, int c) { this.a = a; this.b = b; this.c = c; } } class Reader { BufferedReader br; StringTokenizer tok; Reader(String file) throws IOException { br = new BufferedReader( new FileReader(file) ); } Reader() throws IOException { br = new BufferedReader( new InputStreamReader(System.in) ); } String next() throws IOException { while (tok == null || !tok.hasMoreElements()) tok = new StringTokenizer(br.readLine()); return tok.nextToken(); } int nextInt() throws NumberFormatException, IOException { return Integer.valueOf(next()); } long nextLong() throws NumberFormatException, IOException { return Long.valueOf(next()); } double nextDouble() throws NumberFormatException, IOException { return Double.valueOf(next()); } String nextLine() throws IOException { return br.readLine(); } } static class InputReader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public InputReader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public InputReader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[64]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main { public static void main(String[] args) throws Exception { new Main().go(); } PrintWriter out; Reader in; BufferedReader br; Main() throws IOException { try { //br = new BufferedReader( new FileReader("input.txt") ); //in = new Reader("input.txt"); in = new Reader("input.txt"); out = new PrintWriter( new BufferedWriter(new FileWriter("output.txt")) ); } catch (Exception e) { //br = new BufferedReader( new InputStreamReader( System.in ) ); in = new Reader(); out = new PrintWriter( new BufferedWriter(new OutputStreamWriter(System.out)) ); } } void go() throws Exception { //int t = in.nextInt(); int t = 1; while (t > 0) { solve(); t--; } out.flush(); out.close(); } int inf = 2000000000; int mod = 1000000007; double eps = 0.000000001; int n; int m; ArrayList<Pair>[] g; String s; int[][] a; void solve() throws IOException { int n = in.nextInt(); int m = in.nextInt(); a = new int[n][m]; for (int i = 0; i < n; i++) { String s = in.nextLine(); for (int j = 0; j < m; j++) { a[i][j] = s.charAt(j); } } int[][] f = new int[n][m]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) f[i][j] = inf; for (int i = 0; i < n; i++) { int cnt = 0; for (int j = 0; j < m; j++) { if (a[i][j] == '*') { f[i][j] = Math.min(f[i][j], cnt); cnt++; } else { cnt = 0; } } } for (int i = 0; i < n; i++) { int cnt = 0; for (int j = m - 1; j >= 0; j--) { if (a[i][j] == '*') { f[i][j] = Math.min(f[i][j], cnt); cnt++; } else { cnt = 0; } } } for (int j = 0; j < m; j++) { int cnt = 0; for (int i = 0; i < n; i++) { if (a[i][j] == '*') { f[i][j] = Math.min(f[i][j], cnt); cnt++; } else { cnt = 0; } } } for (int j = 0; j < m; j++) { int cnt = 0; for (int i = n - 1; i >= 0; i--) { if (a[i][j] == '*') { f[i][j] = Math.min(f[i][j], cnt); cnt++; } else { cnt = 0; } } } ArrayList<Item> ans = new ArrayList<>(); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) { if (a[i][j] == '*' && f[i][j] > 0) ans.add(new Item(i + 1, j + 1, f[i][j])); } boolean[][] used = new boolean[n][m]; for (int i = 0; i < n; i++) { int cnt = 0; for (int j = 0; j < m; j++) { if (a[i][j] == '*' && f[i][j] > 0) { cnt = Math.max(cnt, f[i][j] + 1); } if (cnt > 0) used[i][j] = true; cnt--; } cnt = 0; for (int j = m - 1; j >= 0; j--) { if (a[i][j] == '*' && f[i][j] > 0) { cnt = Math.max(cnt, f[i][j] + 1); } if (cnt > 0) used[i][j] = true; cnt--; } } for (int j = 0; j < m; j++) { int cnt = 0; for (int i = 0; i < n; i++) { if (a[i][j] == '*' && f[i][j] > 0) { cnt = Math.max(cnt, f[i][j] + 1); } if (cnt > 0) used[i][j] = true; cnt--; } cnt = 0; for (int i = n - 1; i >= 0; i--) { if (a[i][j] == '*' && f[i][j] > 0) { cnt = Math.max(cnt, f[i][j] + 1); } if (cnt > 0) used[i][j] = true; cnt--; } } for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) if (a[i][j] == '*' && !used[i][j]) { out.println(-1); return; } out.println(ans.size()); for (Item i : ans) out.println(i.a + " " + i.b + " " + i.c); } class Pair implements Comparable<Pair>{ int a; int b; Pair(int a, int b) { this.a = a; this.b = b; } public int compareTo(Pair p) { if (a != p.a) return Integer.compare(a, p.a); else return Integer.compare(b, p.b); } } class Item { int a; int b; int c; Item(int a, int b, int c) { this.a = a; this.b = b; this.c = c; } } class Reader { BufferedReader br; StringTokenizer tok; Reader(String file) throws IOException { br = new BufferedReader( new FileReader(file) ); } Reader() throws IOException { br = new BufferedReader( new InputStreamReader(System.in) ); } String next() throws IOException { while (tok == null || !tok.hasMoreElements()) tok = new StringTokenizer(br.readLine()); return tok.nextToken(); } int nextInt() throws NumberFormatException, IOException { return Integer.valueOf(next()); } long nextLong() throws NumberFormatException, IOException { return Long.valueOf(next()); } double nextDouble() throws NumberFormatException, IOException { return Double.valueOf(next()); } String nextLine() throws IOException { return br.readLine(); } } static class InputReader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public InputReader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public InputReader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[64]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
2,624
228
835
import java.io.*; import java.util.Arrays; import java.util.StringTokenizer; public class Naldbah implements Runnable { boolean isLocalMode = false; public static void main(String[] args) { new Naldbah().run(); } BufferedReader reader; StringTokenizer tokenizer; PrintWriter writer; public void run() { try { reader = new BufferedReader(getReader()); tokenizer = null; writer = new PrintWriter(System.out); //do job doJob(); reader.close(); writer.close(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } private void doJob() throws IOException { int n = nextInt(); int k = nextInt(); boolean[] primes = sieve(n + 1); for(int i=n;i>=2;i--){ if(primes[i]){ int solve = i-1; int sn=getNextD(primes,solve); int en = getNextD(primes,n); while(en!=-1&&sn+en>=solve){ if((sn+en)==solve)k--; sn=en; en=getNextD(primes,en); } } } writer.write(k<=0?"YES":"NO"); } private int getNextD(boolean[] primes, int i) { for(int p = i-1;p>=2;p--){ if(primes[p])return p; } return -1; } public boolean[] sieve(int n) { boolean[] prime=new boolean[n+1]; Arrays.fill(prime,true); prime[0]=false; prime[1]=false; int m= (int) Math.sqrt(n); for (int i=2; i<=m; i++) if (prime[i]) for (int k=i*i; k<=n; k+=i) prime[k]=false; return prime; } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } String nextToken() throws IOException { while (tokenizer == null || !tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(reader.readLine()); } return tokenizer.nextToken(); } public Reader getReader() throws FileNotFoundException { if (isLocalMode) { return new FileReader("input.txt"); } else { return new InputStreamReader(System.in); } } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.Arrays; import java.util.StringTokenizer; public class Naldbah implements Runnable { boolean isLocalMode = false; public static void main(String[] args) { new Naldbah().run(); } BufferedReader reader; StringTokenizer tokenizer; PrintWriter writer; public void run() { try { reader = new BufferedReader(getReader()); tokenizer = null; writer = new PrintWriter(System.out); //do job doJob(); reader.close(); writer.close(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } private void doJob() throws IOException { int n = nextInt(); int k = nextInt(); boolean[] primes = sieve(n + 1); for(int i=n;i>=2;i--){ if(primes[i]){ int solve = i-1; int sn=getNextD(primes,solve); int en = getNextD(primes,n); while(en!=-1&&sn+en>=solve){ if((sn+en)==solve)k--; sn=en; en=getNextD(primes,en); } } } writer.write(k<=0?"YES":"NO"); } private int getNextD(boolean[] primes, int i) { for(int p = i-1;p>=2;p--){ if(primes[p])return p; } return -1; } public boolean[] sieve(int n) { boolean[] prime=new boolean[n+1]; Arrays.fill(prime,true); prime[0]=false; prime[1]=false; int m= (int) Math.sqrt(n); for (int i=2; i<=m; i++) if (prime[i]) for (int k=i*i; k<=n; k+=i) prime[k]=false; return prime; } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } String nextToken() throws IOException { while (tokenizer == null || !tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(reader.readLine()); } return tokenizer.nextToken(); } public Reader getReader() throws FileNotFoundException { if (isLocalMode) { return new FileReader("input.txt"); } else { return new InputStreamReader(System.in); } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.Arrays; import java.util.StringTokenizer; public class Naldbah implements Runnable { boolean isLocalMode = false; public static void main(String[] args) { new Naldbah().run(); } BufferedReader reader; StringTokenizer tokenizer; PrintWriter writer; public void run() { try { reader = new BufferedReader(getReader()); tokenizer = null; writer = new PrintWriter(System.out); //do job doJob(); reader.close(); writer.close(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } private void doJob() throws IOException { int n = nextInt(); int k = nextInt(); boolean[] primes = sieve(n + 1); for(int i=n;i>=2;i--){ if(primes[i]){ int solve = i-1; int sn=getNextD(primes,solve); int en = getNextD(primes,n); while(en!=-1&&sn+en>=solve){ if((sn+en)==solve)k--; sn=en; en=getNextD(primes,en); } } } writer.write(k<=0?"YES":"NO"); } private int getNextD(boolean[] primes, int i) { for(int p = i-1;p>=2;p--){ if(primes[p])return p; } return -1; } public boolean[] sieve(int n) { boolean[] prime=new boolean[n+1]; Arrays.fill(prime,true); prime[0]=false; prime[1]=false; int m= (int) Math.sqrt(n); for (int i=2; i<=m; i++) if (prime[i]) for (int k=i*i; k<=n; k+=i) prime[k]=false; return prime; } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } String nextToken() throws IOException { while (tokenizer == null || !tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(reader.readLine()); } return tokenizer.nextToken(); } public Reader getReader() throws FileNotFoundException { if (isLocalMode) { return new FileReader("input.txt"); } else { return new InputStreamReader(System.in); } } } </CODE> <EVALUATION_RUBRIC> - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
874
834
542
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.Collections; import java.util.StringTokenizer; public class B { public static void main(String[] args) { FastScanner fs=new FastScanner(); int T=fs.nextInt(); for (int tt=0; tt<T; tt++) { int n=fs.nextInt(); boolean isEven=n%2==0; while (n%2==0) n/=2; if (isSquare(n) && isEven) { System.out.println("YES"); } else { System.out.println("NO"); } } } static boolean isSquare(long n) { long sqrt=(long) Math.sqrt(n); for (int i=(int) Math.max(1, sqrt-5); i<=sqrt+5; i++) if (i*i==n) return true; return false; } static void sort(int[] a) { ArrayList<Integer> l=new ArrayList<>(); for (int i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.Collections; import java.util.StringTokenizer; public class B { public static void main(String[] args) { FastScanner fs=new FastScanner(); int T=fs.nextInt(); for (int tt=0; tt<T; tt++) { int n=fs.nextInt(); boolean isEven=n%2==0; while (n%2==0) n/=2; if (isSquare(n) && isEven) { System.out.println("YES"); } else { System.out.println("NO"); } } } static boolean isSquare(long n) { long sqrt=(long) Math.sqrt(n); for (int i=(int) Math.max(1, sqrt-5); i<=sqrt+5; i++) if (i*i==n) return true; return false; } static void sort(int[] a) { ArrayList<Integer> l=new ArrayList<>(); for (int i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.Collections; import java.util.StringTokenizer; public class B { public static void main(String[] args) { FastScanner fs=new FastScanner(); int T=fs.nextInt(); for (int tt=0; tt<T; tt++) { int n=fs.nextInt(); boolean isEven=n%2==0; while (n%2==0) n/=2; if (isSquare(n) && isEven) { System.out.println("YES"); } else { System.out.println("NO"); } } } static boolean isSquare(long n) { long sqrt=(long) Math.sqrt(n); for (int i=(int) Math.max(1, sqrt-5); i<=sqrt+5; i++) if (i*i==n) return true; return false; } static void sort(int[] a) { ArrayList<Integer> l=new ArrayList<>(); for (int i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
737
541
2,453
/* If you want to aim high, aim high Don't let that studying and grades consume you Just live life young ****************************** If I'm the sun, you're the moon Because when I go up, you go down ******************************* I'm working for the day I will surpass you https://www.a2oj.com/Ladder16.html */ import java.util.*; import java.io.*; import java.math.*; public class x1141F { public static void main(String omkar[]) throws Exception { BufferedReader infile = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(infile.readLine()); int N = Integer.parseInt(st.nextToken()); int[] arr = new int[N]; st = new StringTokenizer(infile.readLine()); for(int i=0; i < N; i++) arr[i] = Integer.parseInt(st.nextToken()); HashMap<Long, ArrayList<Integer>> map = new HashMap<Long, ArrayList<Integer>>(); for(int r=0; r < N; r++) { long sum = 0L; for(int i=r; i >= 0; i--) { sum += arr[i]; if(!map.containsKey(sum)) map.put(sum, new ArrayList<Integer>()); map.get(sum).add(i); map.get(sum).add(r); } } ArrayList<Integer> res = new ArrayList<Integer>(); for(long key: map.keySet()) { ArrayList<Integer> ls = map.get(key); ArrayList<Integer> temp = new ArrayList<Integer>(); temp.add(ls.get(0)); temp.add(ls.get(1)); int r = ls.get(1); for(int i=2; i < ls.size(); i+=2) if(r < ls.get(i)) { r = ls.get(i+1); temp.add(ls.get(i)); temp.add(ls.get(i+1)); } if(res.size() < temp.size()) res = temp; } System.out.println(res.size()/2); StringBuilder sb = new StringBuilder(); for(int i=0; i < res.size(); i+=2) { sb.append((1+res.get(i))+" "+(1+res.get(i+1))); sb.append("\n"); } System.out.print(sb); } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> /* If you want to aim high, aim high Don't let that studying and grades consume you Just live life young ****************************** If I'm the sun, you're the moon Because when I go up, you go down ******************************* I'm working for the day I will surpass you https://www.a2oj.com/Ladder16.html */ import java.util.*; import java.io.*; import java.math.*; public class x1141F { public static void main(String omkar[]) throws Exception { BufferedReader infile = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(infile.readLine()); int N = Integer.parseInt(st.nextToken()); int[] arr = new int[N]; st = new StringTokenizer(infile.readLine()); for(int i=0; i < N; i++) arr[i] = Integer.parseInt(st.nextToken()); HashMap<Long, ArrayList<Integer>> map = new HashMap<Long, ArrayList<Integer>>(); for(int r=0; r < N; r++) { long sum = 0L; for(int i=r; i >= 0; i--) { sum += arr[i]; if(!map.containsKey(sum)) map.put(sum, new ArrayList<Integer>()); map.get(sum).add(i); map.get(sum).add(r); } } ArrayList<Integer> res = new ArrayList<Integer>(); for(long key: map.keySet()) { ArrayList<Integer> ls = map.get(key); ArrayList<Integer> temp = new ArrayList<Integer>(); temp.add(ls.get(0)); temp.add(ls.get(1)); int r = ls.get(1); for(int i=2; i < ls.size(); i+=2) if(r < ls.get(i)) { r = ls.get(i+1); temp.add(ls.get(i)); temp.add(ls.get(i+1)); } if(res.size() < temp.size()) res = temp; } System.out.println(res.size()/2); StringBuilder sb = new StringBuilder(); for(int i=0; i < res.size(); i+=2) { sb.append((1+res.get(i))+" "+(1+res.get(i+1))); sb.append("\n"); } System.out.print(sb); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> /* If you want to aim high, aim high Don't let that studying and grades consume you Just live life young ****************************** If I'm the sun, you're the moon Because when I go up, you go down ******************************* I'm working for the day I will surpass you https://www.a2oj.com/Ladder16.html */ import java.util.*; import java.io.*; import java.math.*; public class x1141F { public static void main(String omkar[]) throws Exception { BufferedReader infile = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(infile.readLine()); int N = Integer.parseInt(st.nextToken()); int[] arr = new int[N]; st = new StringTokenizer(infile.readLine()); for(int i=0; i < N; i++) arr[i] = Integer.parseInt(st.nextToken()); HashMap<Long, ArrayList<Integer>> map = new HashMap<Long, ArrayList<Integer>>(); for(int r=0; r < N; r++) { long sum = 0L; for(int i=r; i >= 0; i--) { sum += arr[i]; if(!map.containsKey(sum)) map.put(sum, new ArrayList<Integer>()); map.get(sum).add(i); map.get(sum).add(r); } } ArrayList<Integer> res = new ArrayList<Integer>(); for(long key: map.keySet()) { ArrayList<Integer> ls = map.get(key); ArrayList<Integer> temp = new ArrayList<Integer>(); temp.add(ls.get(0)); temp.add(ls.get(1)); int r = ls.get(1); for(int i=2; i < ls.size(); i+=2) if(r < ls.get(i)) { r = ls.get(i+1); temp.add(ls.get(i)); temp.add(ls.get(i+1)); } if(res.size() < temp.size()) res = temp; } System.out.println(res.size()/2); StringBuilder sb = new StringBuilder(); for(int i=0; i < res.size(); i+=2) { sb.append((1+res.get(i))+" "+(1+res.get(i+1))); sb.append("\n"); } System.out.print(sb); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
819
2,448
3,984
import static java.lang.Math.max; import static java.lang.Math.min; import static java.util.Arrays.copyOf; import static java.util.Arrays.deepToString; import java.io.*; import java.math.BigInteger; import java.util.*; public class C { static int[] dx = new int[] { 0, 1, 0, -1, 0 }; static int[] dy = new int[] { 0, 0, -1, 0, 1 }; static int[][] g; static int ans; static void fill() { cache[1][1] = 0; cache[1][1] = 0; cache[2][1] = 1; cache[1][2] = 1; cache[2][2] = 2; cache[2][2] = 2; cache[3][1] = 2; cache[1][3] = 2; cache[3][2] = 4; cache[2][3] = 4; cache[3][3] = 6; cache[3][3] = 6; cache[4][1] = 2; cache[1][4] = 2; cache[4][2] = 5; cache[2][4] = 5; cache[4][3] = 8; cache[3][4] = 8; cache[4][4] = 12; cache[4][4] = 12; cache[5][1] = 3; cache[1][5] = 3; cache[5][2] = 7; cache[2][5] = 7; cache[5][3] = 11; cache[3][5] = 11; cache[5][4] = 14; cache[4][5] = 14; cache[5][5] = 18; cache[5][5] = 18; cache[6][1] = 4; cache[1][6] = 4; cache[6][2] = 8; cache[2][6] = 8; cache[6][3] = 13; cache[3][6] = 13; cache[6][4] = 17; cache[4][6] = 17; cache[6][5] = 22; cache[5][6] = 22; cache[6][6] = 26; cache[6][6] = 26; cache[7][1] = 4; cache[1][7] = 4; cache[7][2] = 10; cache[2][7] = 10; cache[7][3] = 15; cache[3][7] = 15; cache[7][4] = 21; cache[4][7] = 21; cache[7][5] = 26; cache[5][7] = 26; cache[8][1] = 5; cache[1][8] = 5; cache[8][2] = 11; cache[2][8] = 11; cache[8][3] = 17; cache[3][8] = 17; cache[8][4] = 24; cache[4][8] = 24; cache[8][5] = 29; cache[5][8] = 29; cache[9][1] = 6; cache[1][9] = 6; cache[9][2] = 13; cache[2][9] = 13; cache[9][3] = 20; cache[3][9] = 20; cache[9][4] = 26; cache[4][9] = 26; cache[10][1] = 6; cache[1][10] = 6; cache[10][2] = 14; cache[2][10] = 14; cache[10][3] = 22; cache[3][10] = 22; cache[10][4] = 30; cache[4][10] = 30; cache[11][1] = 7; cache[1][11] = 7; cache[11][2] = 16; cache[2][11] = 16; cache[11][3] = 24; cache[3][11] = 24; cache[12][1] = 8; cache[1][12] = 8; cache[12][2] = 17; cache[2][12] = 17; cache[12][3] = 26; cache[3][12] = 26; cache[13][1] = 8; cache[1][13] = 8; cache[13][2] = 19; cache[2][13] = 19; cache[13][3] = 29; cache[3][13] = 29; cache[14][1] = 9; cache[1][14] = 9; cache[14][2] = 20; cache[2][14] = 20; cache[15][1] = 10; cache[1][15] = 10; cache[15][2] = 22; cache[2][15] = 22; cache[16][1] = 10; cache[1][16] = 10; cache[16][2] = 23; cache[2][16] = 23; cache[17][1] = 11; cache[1][17] = 11; cache[17][2] = 25; cache[2][17] = 25; cache[18][1] = 12; cache[1][18] = 12; cache[18][2] = 26; cache[2][18] = 26; cache[19][1] = 12; cache[1][19] = 12; cache[19][2] = 28; cache[2][19] = 28; cache[20][1] = 13; cache[1][20] = 13; cache[20][2] = 29; cache[2][20] = 29; cache[21][1] = 14; cache[1][21] = 14; cache[22][1] = 14; cache[1][22] = 14; cache[23][1] = 15; cache[1][23] = 15; cache[24][1] = 16; cache[1][24] = 16; cache[25][1] = 16; cache[1][25] = 16; cache[26][1] = 17; cache[1][26] = 17; cache[27][1] = 18; cache[1][27] = 18; cache[28][1] = 18; cache[1][28] = 18; cache[29][1] = 19; cache[1][29] = 19; cache[30][1] = 20; cache[1][30] = 20; cache[31][1] = 20; cache[1][31] = 20; cache[32][1] = 21; cache[1][32] = 21; cache[33][1] = 22; cache[1][33] = 22; cache[34][1] = 22; cache[1][34] = 22; cache[35][1] = 23; cache[1][35] = 23; cache[36][1] = 24; cache[1][36] = 24; cache[37][1] = 24; cache[1][37] = 24; cache[38][1] = 25; cache[1][38] = 25; cache[39][1] = 26; cache[1][39] = 26; cache[40][1] = 26; cache[1][40] = 26; } static void go(int n, int m, long used, long left) { // debug(Long.toBinaryString(used) + " " + Long.toBinaryString(left)); if (left == 0) { ans = max(ans, n * m - Long.bitCount(used)); return; } if (n * m - Long.bitCount(used) <= ans) return; int who = Long.numberOfTrailingZeros(left); // debug(who); for (int w : g[who]) { long nused = used | (1L << w); long nleft = left; for (int v : g[w]) { nleft &= ~(1L << v); } go(n, m, nused, nleft); } } static int solve(int n, int m) throws Exception { ans = 0; g = new int[n * m][]; for (int x = 0; x < m; x++) { for (int y = 0; y < n; y++) { int[] w = new int[5]; int cnt = 0; for (int dir = 0; dir < 5; dir++) { int nx = x + dx[dir]; int ny = y + dy[dir]; if (nx >= 0 && nx < m && ny >= 0 && ny < n) { w[cnt++] = ny * m + nx; } } g[y * m + x] = copyOf(w, cnt); } } go(n, m, 0, (1L << (n * m)) - 1); return ans; } static int[][] cache; public static void main(String[] args) { try { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); // debug(solve(1, 4)); // debug(solve(6, 6)); // debug(solve(7,5) == solve(5,7)); // PrintWriter out2 = new PrintWriter("file.txt"); // // cache = new int[41][41]; fill(); // // // for (int i = 1; i <= 40; i++) { // for (int j = 1; j <= i; j++) { // if (i * j <= 40) { // int k = solve(i, j); // out2.printf("cache[%d][%d] = %d;\n", i, j, k); // out2.printf("cache[%d][%d] = %d;\n", j, i, k); // // cache[i][j] = solve(i, j); // debug(i + " " + j); // } // } // } // out2.close(); int n = nextInt(); int m = nextInt(); //int res = solve(n, m); out.println(cache[n][m]); // for (int i = 1; i <= 5; i++) { // for (int j = 1; j <= 5; j++) { // assert(solve(i, j) == cache[i][j]); // //debug(i + " " + j + " " + solve(i, j)); // } // } out.close(); } catch (Throwable e) { e.printStackTrace(); System.exit(1); } } static BufferedReader in; static PrintWriter out; static StringTokenizer tok; static long launchTimer; static void debug(Object... o) { System.err.println(deepToString(o)); } static void setTime() { launchTimer = System.currentTimeMillis(); } static void printTime() { System.err.println(System.currentTimeMillis() - launchTimer); } static void printMemory() { System.err.println((Runtime.getRuntime().totalMemory() - Runtime .getRuntime().freeMemory()) / 1000 + "kb"); } static boolean hasMoreTokens() throws IOException { while (tok == null || !tok.hasMoreTokens()) { String line = in.readLine(); if (line == null) { return false; } tok = new StringTokenizer(line); } return true; } static String next() throws IOException { return hasMoreTokens() ? tok.nextToken() : null; } static int nextInt() throws IOException { return Integer.parseInt(next()); } static long nextLong() throws IOException { return Long.parseLong(next()); } static double nextDouble() throws IOException { return Double.parseDouble(next()); } static BigInteger nextBig() throws IOException { return new BigInteger(next()); } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import static java.lang.Math.max; import static java.lang.Math.min; import static java.util.Arrays.copyOf; import static java.util.Arrays.deepToString; import java.io.*; import java.math.BigInteger; import java.util.*; public class C { static int[] dx = new int[] { 0, 1, 0, -1, 0 }; static int[] dy = new int[] { 0, 0, -1, 0, 1 }; static int[][] g; static int ans; static void fill() { cache[1][1] = 0; cache[1][1] = 0; cache[2][1] = 1; cache[1][2] = 1; cache[2][2] = 2; cache[2][2] = 2; cache[3][1] = 2; cache[1][3] = 2; cache[3][2] = 4; cache[2][3] = 4; cache[3][3] = 6; cache[3][3] = 6; cache[4][1] = 2; cache[1][4] = 2; cache[4][2] = 5; cache[2][4] = 5; cache[4][3] = 8; cache[3][4] = 8; cache[4][4] = 12; cache[4][4] = 12; cache[5][1] = 3; cache[1][5] = 3; cache[5][2] = 7; cache[2][5] = 7; cache[5][3] = 11; cache[3][5] = 11; cache[5][4] = 14; cache[4][5] = 14; cache[5][5] = 18; cache[5][5] = 18; cache[6][1] = 4; cache[1][6] = 4; cache[6][2] = 8; cache[2][6] = 8; cache[6][3] = 13; cache[3][6] = 13; cache[6][4] = 17; cache[4][6] = 17; cache[6][5] = 22; cache[5][6] = 22; cache[6][6] = 26; cache[6][6] = 26; cache[7][1] = 4; cache[1][7] = 4; cache[7][2] = 10; cache[2][7] = 10; cache[7][3] = 15; cache[3][7] = 15; cache[7][4] = 21; cache[4][7] = 21; cache[7][5] = 26; cache[5][7] = 26; cache[8][1] = 5; cache[1][8] = 5; cache[8][2] = 11; cache[2][8] = 11; cache[8][3] = 17; cache[3][8] = 17; cache[8][4] = 24; cache[4][8] = 24; cache[8][5] = 29; cache[5][8] = 29; cache[9][1] = 6; cache[1][9] = 6; cache[9][2] = 13; cache[2][9] = 13; cache[9][3] = 20; cache[3][9] = 20; cache[9][4] = 26; cache[4][9] = 26; cache[10][1] = 6; cache[1][10] = 6; cache[10][2] = 14; cache[2][10] = 14; cache[10][3] = 22; cache[3][10] = 22; cache[10][4] = 30; cache[4][10] = 30; cache[11][1] = 7; cache[1][11] = 7; cache[11][2] = 16; cache[2][11] = 16; cache[11][3] = 24; cache[3][11] = 24; cache[12][1] = 8; cache[1][12] = 8; cache[12][2] = 17; cache[2][12] = 17; cache[12][3] = 26; cache[3][12] = 26; cache[13][1] = 8; cache[1][13] = 8; cache[13][2] = 19; cache[2][13] = 19; cache[13][3] = 29; cache[3][13] = 29; cache[14][1] = 9; cache[1][14] = 9; cache[14][2] = 20; cache[2][14] = 20; cache[15][1] = 10; cache[1][15] = 10; cache[15][2] = 22; cache[2][15] = 22; cache[16][1] = 10; cache[1][16] = 10; cache[16][2] = 23; cache[2][16] = 23; cache[17][1] = 11; cache[1][17] = 11; cache[17][2] = 25; cache[2][17] = 25; cache[18][1] = 12; cache[1][18] = 12; cache[18][2] = 26; cache[2][18] = 26; cache[19][1] = 12; cache[1][19] = 12; cache[19][2] = 28; cache[2][19] = 28; cache[20][1] = 13; cache[1][20] = 13; cache[20][2] = 29; cache[2][20] = 29; cache[21][1] = 14; cache[1][21] = 14; cache[22][1] = 14; cache[1][22] = 14; cache[23][1] = 15; cache[1][23] = 15; cache[24][1] = 16; cache[1][24] = 16; cache[25][1] = 16; cache[1][25] = 16; cache[26][1] = 17; cache[1][26] = 17; cache[27][1] = 18; cache[1][27] = 18; cache[28][1] = 18; cache[1][28] = 18; cache[29][1] = 19; cache[1][29] = 19; cache[30][1] = 20; cache[1][30] = 20; cache[31][1] = 20; cache[1][31] = 20; cache[32][1] = 21; cache[1][32] = 21; cache[33][1] = 22; cache[1][33] = 22; cache[34][1] = 22; cache[1][34] = 22; cache[35][1] = 23; cache[1][35] = 23; cache[36][1] = 24; cache[1][36] = 24; cache[37][1] = 24; cache[1][37] = 24; cache[38][1] = 25; cache[1][38] = 25; cache[39][1] = 26; cache[1][39] = 26; cache[40][1] = 26; cache[1][40] = 26; } static void go(int n, int m, long used, long left) { // debug(Long.toBinaryString(used) + " " + Long.toBinaryString(left)); if (left == 0) { ans = max(ans, n * m - Long.bitCount(used)); return; } if (n * m - Long.bitCount(used) <= ans) return; int who = Long.numberOfTrailingZeros(left); // debug(who); for (int w : g[who]) { long nused = used | (1L << w); long nleft = left; for (int v : g[w]) { nleft &= ~(1L << v); } go(n, m, nused, nleft); } } static int solve(int n, int m) throws Exception { ans = 0; g = new int[n * m][]; for (int x = 0; x < m; x++) { for (int y = 0; y < n; y++) { int[] w = new int[5]; int cnt = 0; for (int dir = 0; dir < 5; dir++) { int nx = x + dx[dir]; int ny = y + dy[dir]; if (nx >= 0 && nx < m && ny >= 0 && ny < n) { w[cnt++] = ny * m + nx; } } g[y * m + x] = copyOf(w, cnt); } } go(n, m, 0, (1L << (n * m)) - 1); return ans; } static int[][] cache; public static void main(String[] args) { try { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); // debug(solve(1, 4)); // debug(solve(6, 6)); // debug(solve(7,5) == solve(5,7)); // PrintWriter out2 = new PrintWriter("file.txt"); // // cache = new int[41][41]; fill(); // // // for (int i = 1; i <= 40; i++) { // for (int j = 1; j <= i; j++) { // if (i * j <= 40) { // int k = solve(i, j); // out2.printf("cache[%d][%d] = %d;\n", i, j, k); // out2.printf("cache[%d][%d] = %d;\n", j, i, k); // // cache[i][j] = solve(i, j); // debug(i + " " + j); // } // } // } // out2.close(); int n = nextInt(); int m = nextInt(); //int res = solve(n, m); out.println(cache[n][m]); // for (int i = 1; i <= 5; i++) { // for (int j = 1; j <= 5; j++) { // assert(solve(i, j) == cache[i][j]); // //debug(i + " " + j + " " + solve(i, j)); // } // } out.close(); } catch (Throwable e) { e.printStackTrace(); System.exit(1); } } static BufferedReader in; static PrintWriter out; static StringTokenizer tok; static long launchTimer; static void debug(Object... o) { System.err.println(deepToString(o)); } static void setTime() { launchTimer = System.currentTimeMillis(); } static void printTime() { System.err.println(System.currentTimeMillis() - launchTimer); } static void printMemory() { System.err.println((Runtime.getRuntime().totalMemory() - Runtime .getRuntime().freeMemory()) / 1000 + "kb"); } static boolean hasMoreTokens() throws IOException { while (tok == null || !tok.hasMoreTokens()) { String line = in.readLine(); if (line == null) { return false; } tok = new StringTokenizer(line); } return true; } static String next() throws IOException { return hasMoreTokens() ? tok.nextToken() : null; } static int nextInt() throws IOException { return Integer.parseInt(next()); } static long nextLong() throws IOException { return Long.parseLong(next()); } static double nextDouble() throws IOException { return Double.parseDouble(next()); } static BigInteger nextBig() throws IOException { return new BigInteger(next()); } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import static java.lang.Math.max; import static java.lang.Math.min; import static java.util.Arrays.copyOf; import static java.util.Arrays.deepToString; import java.io.*; import java.math.BigInteger; import java.util.*; public class C { static int[] dx = new int[] { 0, 1, 0, -1, 0 }; static int[] dy = new int[] { 0, 0, -1, 0, 1 }; static int[][] g; static int ans; static void fill() { cache[1][1] = 0; cache[1][1] = 0; cache[2][1] = 1; cache[1][2] = 1; cache[2][2] = 2; cache[2][2] = 2; cache[3][1] = 2; cache[1][3] = 2; cache[3][2] = 4; cache[2][3] = 4; cache[3][3] = 6; cache[3][3] = 6; cache[4][1] = 2; cache[1][4] = 2; cache[4][2] = 5; cache[2][4] = 5; cache[4][3] = 8; cache[3][4] = 8; cache[4][4] = 12; cache[4][4] = 12; cache[5][1] = 3; cache[1][5] = 3; cache[5][2] = 7; cache[2][5] = 7; cache[5][3] = 11; cache[3][5] = 11; cache[5][4] = 14; cache[4][5] = 14; cache[5][5] = 18; cache[5][5] = 18; cache[6][1] = 4; cache[1][6] = 4; cache[6][2] = 8; cache[2][6] = 8; cache[6][3] = 13; cache[3][6] = 13; cache[6][4] = 17; cache[4][6] = 17; cache[6][5] = 22; cache[5][6] = 22; cache[6][6] = 26; cache[6][6] = 26; cache[7][1] = 4; cache[1][7] = 4; cache[7][2] = 10; cache[2][7] = 10; cache[7][3] = 15; cache[3][7] = 15; cache[7][4] = 21; cache[4][7] = 21; cache[7][5] = 26; cache[5][7] = 26; cache[8][1] = 5; cache[1][8] = 5; cache[8][2] = 11; cache[2][8] = 11; cache[8][3] = 17; cache[3][8] = 17; cache[8][4] = 24; cache[4][8] = 24; cache[8][5] = 29; cache[5][8] = 29; cache[9][1] = 6; cache[1][9] = 6; cache[9][2] = 13; cache[2][9] = 13; cache[9][3] = 20; cache[3][9] = 20; cache[9][4] = 26; cache[4][9] = 26; cache[10][1] = 6; cache[1][10] = 6; cache[10][2] = 14; cache[2][10] = 14; cache[10][3] = 22; cache[3][10] = 22; cache[10][4] = 30; cache[4][10] = 30; cache[11][1] = 7; cache[1][11] = 7; cache[11][2] = 16; cache[2][11] = 16; cache[11][3] = 24; cache[3][11] = 24; cache[12][1] = 8; cache[1][12] = 8; cache[12][2] = 17; cache[2][12] = 17; cache[12][3] = 26; cache[3][12] = 26; cache[13][1] = 8; cache[1][13] = 8; cache[13][2] = 19; cache[2][13] = 19; cache[13][3] = 29; cache[3][13] = 29; cache[14][1] = 9; cache[1][14] = 9; cache[14][2] = 20; cache[2][14] = 20; cache[15][1] = 10; cache[1][15] = 10; cache[15][2] = 22; cache[2][15] = 22; cache[16][1] = 10; cache[1][16] = 10; cache[16][2] = 23; cache[2][16] = 23; cache[17][1] = 11; cache[1][17] = 11; cache[17][2] = 25; cache[2][17] = 25; cache[18][1] = 12; cache[1][18] = 12; cache[18][2] = 26; cache[2][18] = 26; cache[19][1] = 12; cache[1][19] = 12; cache[19][2] = 28; cache[2][19] = 28; cache[20][1] = 13; cache[1][20] = 13; cache[20][2] = 29; cache[2][20] = 29; cache[21][1] = 14; cache[1][21] = 14; cache[22][1] = 14; cache[1][22] = 14; cache[23][1] = 15; cache[1][23] = 15; cache[24][1] = 16; cache[1][24] = 16; cache[25][1] = 16; cache[1][25] = 16; cache[26][1] = 17; cache[1][26] = 17; cache[27][1] = 18; cache[1][27] = 18; cache[28][1] = 18; cache[1][28] = 18; cache[29][1] = 19; cache[1][29] = 19; cache[30][1] = 20; cache[1][30] = 20; cache[31][1] = 20; cache[1][31] = 20; cache[32][1] = 21; cache[1][32] = 21; cache[33][1] = 22; cache[1][33] = 22; cache[34][1] = 22; cache[1][34] = 22; cache[35][1] = 23; cache[1][35] = 23; cache[36][1] = 24; cache[1][36] = 24; cache[37][1] = 24; cache[1][37] = 24; cache[38][1] = 25; cache[1][38] = 25; cache[39][1] = 26; cache[1][39] = 26; cache[40][1] = 26; cache[1][40] = 26; } static void go(int n, int m, long used, long left) { // debug(Long.toBinaryString(used) + " " + Long.toBinaryString(left)); if (left == 0) { ans = max(ans, n * m - Long.bitCount(used)); return; } if (n * m - Long.bitCount(used) <= ans) return; int who = Long.numberOfTrailingZeros(left); // debug(who); for (int w : g[who]) { long nused = used | (1L << w); long nleft = left; for (int v : g[w]) { nleft &= ~(1L << v); } go(n, m, nused, nleft); } } static int solve(int n, int m) throws Exception { ans = 0; g = new int[n * m][]; for (int x = 0; x < m; x++) { for (int y = 0; y < n; y++) { int[] w = new int[5]; int cnt = 0; for (int dir = 0; dir < 5; dir++) { int nx = x + dx[dir]; int ny = y + dy[dir]; if (nx >= 0 && nx < m && ny >= 0 && ny < n) { w[cnt++] = ny * m + nx; } } g[y * m + x] = copyOf(w, cnt); } } go(n, m, 0, (1L << (n * m)) - 1); return ans; } static int[][] cache; public static void main(String[] args) { try { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); // debug(solve(1, 4)); // debug(solve(6, 6)); // debug(solve(7,5) == solve(5,7)); // PrintWriter out2 = new PrintWriter("file.txt"); // // cache = new int[41][41]; fill(); // // // for (int i = 1; i <= 40; i++) { // for (int j = 1; j <= i; j++) { // if (i * j <= 40) { // int k = solve(i, j); // out2.printf("cache[%d][%d] = %d;\n", i, j, k); // out2.printf("cache[%d][%d] = %d;\n", j, i, k); // // cache[i][j] = solve(i, j); // debug(i + " " + j); // } // } // } // out2.close(); int n = nextInt(); int m = nextInt(); //int res = solve(n, m); out.println(cache[n][m]); // for (int i = 1; i <= 5; i++) { // for (int j = 1; j <= 5; j++) { // assert(solve(i, j) == cache[i][j]); // //debug(i + " " + j + " " + solve(i, j)); // } // } out.close(); } catch (Throwable e) { e.printStackTrace(); System.exit(1); } } static BufferedReader in; static PrintWriter out; static StringTokenizer tok; static long launchTimer; static void debug(Object... o) { System.err.println(deepToString(o)); } static void setTime() { launchTimer = System.currentTimeMillis(); } static void printTime() { System.err.println(System.currentTimeMillis() - launchTimer); } static void printMemory() { System.err.println((Runtime.getRuntime().totalMemory() - Runtime .getRuntime().freeMemory()) / 1000 + "kb"); } static boolean hasMoreTokens() throws IOException { while (tok == null || !tok.hasMoreTokens()) { String line = in.readLine(); if (line == null) { return false; } tok = new StringTokenizer(line); } return true; } static String next() throws IOException { return hasMoreTokens() ? tok.nextToken() : null; } static int nextInt() throws IOException { return Integer.parseInt(next()); } static long nextLong() throws IOException { return Long.parseLong(next()); } static double nextDouble() throws IOException { return Double.parseDouble(next()); } static BigInteger nextBig() throws IOException { return new BigInteger(next()); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
3,521
3,973
4,191
import java.util.*; import java.io.*; public class Fish { public static void main(String[] args) throws Exception { new Fish(); } public Fish() throws Exception { Scanner sc = new Scanner(System.in); int N = sc.nextInt(); double[][] P = new double[N][N]; for(int i = 0; i < N; i++) for(int j = 0; j < N; j++) P[i][j] = sc.nextDouble(); double[] best = new double[1 << N]; best[(1 << N)-1] = 1; for(int mask = (1 << N)-1; mask > 0; mask--) { int C = Integer.bitCount(mask); if(C == 1) continue; for(int i = 0; i < N; i++) if (on(mask, i)) for(int j = i+1; j < N; j++) if(on(mask, j)) { int nmask = mask & ~(1 << j); best[nmask] += P[i][j] * best[mask] * 2.0 / (C*(C-1.0)); nmask = mask & ~(1 << i); best[nmask] += P[j][i] * best[mask] * 2.0/ (C*(C-1.0)); } } for(int i = 0; i < N; i++) System.out.printf("%.7f ", best[1 << i] + 1e-9); System.out.println(); } boolean on(int mask, int pos) { return (mask & (1 << pos)) > 0; } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class Fish { public static void main(String[] args) throws Exception { new Fish(); } public Fish() throws Exception { Scanner sc = new Scanner(System.in); int N = sc.nextInt(); double[][] P = new double[N][N]; for(int i = 0; i < N; i++) for(int j = 0; j < N; j++) P[i][j] = sc.nextDouble(); double[] best = new double[1 << N]; best[(1 << N)-1] = 1; for(int mask = (1 << N)-1; mask > 0; mask--) { int C = Integer.bitCount(mask); if(C == 1) continue; for(int i = 0; i < N; i++) if (on(mask, i)) for(int j = i+1; j < N; j++) if(on(mask, j)) { int nmask = mask & ~(1 << j); best[nmask] += P[i][j] * best[mask] * 2.0 / (C*(C-1.0)); nmask = mask & ~(1 << i); best[nmask] += P[j][i] * best[mask] * 2.0/ (C*(C-1.0)); } } for(int i = 0; i < N; i++) System.out.printf("%.7f ", best[1 << i] + 1e-9); System.out.println(); } boolean on(int mask, int pos) { return (mask & (1 << pos)) > 0; } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class Fish { public static void main(String[] args) throws Exception { new Fish(); } public Fish() throws Exception { Scanner sc = new Scanner(System.in); int N = sc.nextInt(); double[][] P = new double[N][N]; for(int i = 0; i < N; i++) for(int j = 0; j < N; j++) P[i][j] = sc.nextDouble(); double[] best = new double[1 << N]; best[(1 << N)-1] = 1; for(int mask = (1 << N)-1; mask > 0; mask--) { int C = Integer.bitCount(mask); if(C == 1) continue; for(int i = 0; i < N; i++) if (on(mask, i)) for(int j = i+1; j < N; j++) if(on(mask, j)) { int nmask = mask & ~(1 << j); best[nmask] += P[i][j] * best[mask] * 2.0 / (C*(C-1.0)); nmask = mask & ~(1 << i); best[nmask] += P[j][i] * best[mask] * 2.0/ (C*(C-1.0)); } } for(int i = 0; i < N; i++) System.out.printf("%.7f ", best[1 << i] + 1e-9); System.out.println(); } boolean on(int mask, int pos) { return (mask & (1 << pos)) > 0; } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
700
4,180
1,164
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Amine L */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastInput in = new FastInput(inputStream); FastOutput out = new FastOutput(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } static class TaskC { public void solve(int testNumber, FastInput in, FastOutput out) { long n = in.nextLong(); long s = in.nextLong(); long cnt = 0; long res = 0; for (long i = s; i <= Math.min(s + 200, n); i++) { long d = i; int sum = 0; while (d > 0) { long l = d % 10; sum += l; d /= 10; } if ((i - sum) >= s) { cnt++; } } long tmp = n - Math.min(n, s + 200); if (tmp < 0) tmp = 0; cnt += tmp; out.println(cnt); } } static class FastInput { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private FastInput.SpaceCharFilter filter; public FastInput(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public long nextLong() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static class FastOutput { private final PrintWriter writer; public FastOutput(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public FastOutput(Writer writer) { this.writer = new PrintWriter(writer); } public void close() { writer.close(); } public void println(long i) { writer.println(i); } } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Amine L */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastInput in = new FastInput(inputStream); FastOutput out = new FastOutput(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } static class TaskC { public void solve(int testNumber, FastInput in, FastOutput out) { long n = in.nextLong(); long s = in.nextLong(); long cnt = 0; long res = 0; for (long i = s; i <= Math.min(s + 200, n); i++) { long d = i; int sum = 0; while (d > 0) { long l = d % 10; sum += l; d /= 10; } if ((i - sum) >= s) { cnt++; } } long tmp = n - Math.min(n, s + 200); if (tmp < 0) tmp = 0; cnt += tmp; out.println(cnt); } } static class FastInput { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private FastInput.SpaceCharFilter filter; public FastInput(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public long nextLong() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static class FastOutput { private final PrintWriter writer; public FastOutput(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public FastOutput(Writer writer) { this.writer = new PrintWriter(writer); } public void close() { writer.close(); } public void println(long i) { writer.println(i); } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Amine L */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastInput in = new FastInput(inputStream); FastOutput out = new FastOutput(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } static class TaskC { public void solve(int testNumber, FastInput in, FastOutput out) { long n = in.nextLong(); long s = in.nextLong(); long cnt = 0; long res = 0; for (long i = s; i <= Math.min(s + 200, n); i++) { long d = i; int sum = 0; while (d > 0) { long l = d % 10; sum += l; d /= 10; } if ((i - sum) >= s) { cnt++; } } long tmp = n - Math.min(n, s + 200); if (tmp < 0) tmp = 0; cnt += tmp; out.println(cnt); } } static class FastInput { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private FastInput.SpaceCharFilter filter; public FastInput(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public long nextLong() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static class FastOutput { private final PrintWriter writer; public FastOutput(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public FastOutput(Writer writer) { this.writer = new PrintWriter(writer); } public void close() { writer.close(); } public void println(long i) { writer.println(i); } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,148
1,163
2,765
import java.util.*; public class LCMChallenge { public static void main(String[] args) { Scanner in = new Scanner(System.in); long n = in.nextInt(); if(n == 1l) System.out.println(1); else if(n == 2l) System.out.println(2); else { long c1 = n*(n-1)*(n-2); long c2 = n*(n-1)*(n-3); long c3 = (n-1)*(n-2)*(n-3); if(n%2==0) c1/=2; else c3/=2; if(n%3==0) c2/=3; long ans = Math.max(c1, c2); ans = Math.max(ans, c3); System.out.println(ans); } } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; public class LCMChallenge { public static void main(String[] args) { Scanner in = new Scanner(System.in); long n = in.nextInt(); if(n == 1l) System.out.println(1); else if(n == 2l) System.out.println(2); else { long c1 = n*(n-1)*(n-2); long c2 = n*(n-1)*(n-3); long c3 = (n-1)*(n-2)*(n-3); if(n%2==0) c1/=2; else c3/=2; if(n%3==0) c2/=3; long ans = Math.max(c1, c2); ans = Math.max(ans, c3); System.out.println(ans); } } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; public class LCMChallenge { public static void main(String[] args) { Scanner in = new Scanner(System.in); long n = in.nextInt(); if(n == 1l) System.out.println(1); else if(n == 2l) System.out.println(2); else { long c1 = n*(n-1)*(n-2); long c2 = n*(n-1)*(n-3); long c3 = (n-1)*(n-2)*(n-3); if(n%2==0) c1/=2; else c3/=2; if(n%3==0) c2/=3; long ans = Math.max(c1, c2); ans = Math.max(ans, c3); System.out.println(ans); } } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
523
2,759
2,933
/** * Author: Ridam Nagar * Date: 27 February 2019 * Time: 01:17:36 **/ /* package codechef; // don't place package name! */ import java.util.*; import java.lang.*; import java.io.*; import java.math.BigInteger; /* Name of the class has to be "Main" only if the class is public. */ public class Codechef { static String reverse(String s){ String reverse=""; for(int i=s.length()-1;i>=0;i--){ reverse=reverse + s.charAt(i); } return reverse; } public static void main (String[] args) throws java.lang.Exception { Scanner sc=new Scanner(System.in); int n=sc.nextInt(); int m=sc.nextInt(); int x=m%(int)Math.pow(2,n); System.out.println(x); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> /** * Author: Ridam Nagar * Date: 27 February 2019 * Time: 01:17:36 **/ /* package codechef; // don't place package name! */ import java.util.*; import java.lang.*; import java.io.*; import java.math.BigInteger; /* Name of the class has to be "Main" only if the class is public. */ public class Codechef { static String reverse(String s){ String reverse=""; for(int i=s.length()-1;i>=0;i--){ reverse=reverse + s.charAt(i); } return reverse; } public static void main (String[] args) throws java.lang.Exception { Scanner sc=new Scanner(System.in); int n=sc.nextInt(); int m=sc.nextInt(); int x=m%(int)Math.pow(2,n); System.out.println(x); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> /** * Author: Ridam Nagar * Date: 27 February 2019 * Time: 01:17:36 **/ /* package codechef; // don't place package name! */ import java.util.*; import java.lang.*; import java.io.*; import java.math.BigInteger; /* Name of the class has to be "Main" only if the class is public. */ public class Codechef { static String reverse(String s){ String reverse=""; for(int i=s.length()-1;i>=0;i--){ reverse=reverse + s.charAt(i); } return reverse; } public static void main (String[] args) throws java.lang.Exception { Scanner sc=new Scanner(System.in); int n=sc.nextInt(); int m=sc.nextInt(); int x=m%(int)Math.pow(2,n); System.out.println(x); } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
523
2,927
4,134
import java.util.*; import static java.lang.System.out; public final class LookingForOrder { private static Map<Integer, Integer> es = new HashMap<Integer, Integer>(); private static void init() { for (int i = 0; i <= 24; i++) es.put(1 << i, i); } private static int x, y; private static int[] xs, ys; private static int sqr(int i) { return i * i; } private static int dist(int i, int j) { return sqr(x - xs[i]) + sqr(y - ys[i]) + sqr(xs[i] - xs[j]) + sqr(ys[i] - ys[j]) + sqr(x - xs[j]) + sqr(y - ys[j]); } private static int n; private static int[] tb, prevs; private static int recur(int j) { if (j == 0 || es.get(j) != null || tb[j] != 0) return tb[j]; int bl = j & -j; int b = j ^ bl; tb[j] = recur(bl) + recur(b); prevs[j] = bl; for (int i = es.get(bl) + 1; i <25; i++) { if (((1 << i) & b) == 0) continue; int k = bl | 1 << i; int v = dist(es.get(bl), es.get(1 << i)) + recur(j ^ k); if (v >= tb[j]) continue; tb[j] = v; prevs[j] = k; } return tb[j]; } public static void main(String[] args) { init(); Scanner s = new Scanner(System.in); x = s.nextInt(); y = s.nextInt(); n = s.nextInt(); xs = new int[n]; ys = new int[n]; tb = new int[1 << n]; prevs = new int[1 << n]; for (int i = 0; i < n; i++) { xs[i] = s.nextInt(); ys[i] = s.nextInt(); tb[1 << i] = sqr(x - xs[i]) + sqr(y - ys[i]) << 1; } int all = (1 << n) - 1; out.println(recur(all)); StringBuilder sb = new StringBuilder(); int p = prevs[all]; int c = all; while(p != 0 && p != c) { if ((p ^ (p & -p)) == 0) sb.append("0 " + (es.get(p & -p) + 1) + " "); else sb.append("0 " + (es.get(p & -p) + 1) + " " + (es.get(p ^ (p & -p)) + 1) + " "); c = c ^ p; p = prevs[c]; } if ((c ^ (c & -c)) == 0) sb.append("0 " + (es.get(c & -c) + 1) + " 0"); else sb.append("0 " + (es.get(c & -c) + 1) + " " + (es.get(c ^ (c & -c)) + 1) + " 0"); out.println(sb); } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import static java.lang.System.out; public final class LookingForOrder { private static Map<Integer, Integer> es = new HashMap<Integer, Integer>(); private static void init() { for (int i = 0; i <= 24; i++) es.put(1 << i, i); } private static int x, y; private static int[] xs, ys; private static int sqr(int i) { return i * i; } private static int dist(int i, int j) { return sqr(x - xs[i]) + sqr(y - ys[i]) + sqr(xs[i] - xs[j]) + sqr(ys[i] - ys[j]) + sqr(x - xs[j]) + sqr(y - ys[j]); } private static int n; private static int[] tb, prevs; private static int recur(int j) { if (j == 0 || es.get(j) != null || tb[j] != 0) return tb[j]; int bl = j & -j; int b = j ^ bl; tb[j] = recur(bl) + recur(b); prevs[j] = bl; for (int i = es.get(bl) + 1; i <25; i++) { if (((1 << i) & b) == 0) continue; int k = bl | 1 << i; int v = dist(es.get(bl), es.get(1 << i)) + recur(j ^ k); if (v >= tb[j]) continue; tb[j] = v; prevs[j] = k; } return tb[j]; } public static void main(String[] args) { init(); Scanner s = new Scanner(System.in); x = s.nextInt(); y = s.nextInt(); n = s.nextInt(); xs = new int[n]; ys = new int[n]; tb = new int[1 << n]; prevs = new int[1 << n]; for (int i = 0; i < n; i++) { xs[i] = s.nextInt(); ys[i] = s.nextInt(); tb[1 << i] = sqr(x - xs[i]) + sqr(y - ys[i]) << 1; } int all = (1 << n) - 1; out.println(recur(all)); StringBuilder sb = new StringBuilder(); int p = prevs[all]; int c = all; while(p != 0 && p != c) { if ((p ^ (p & -p)) == 0) sb.append("0 " + (es.get(p & -p) + 1) + " "); else sb.append("0 " + (es.get(p & -p) + 1) + " " + (es.get(p ^ (p & -p)) + 1) + " "); c = c ^ p; p = prevs[c]; } if ((c ^ (c & -c)) == 0) sb.append("0 " + (es.get(c & -c) + 1) + " 0"); else sb.append("0 " + (es.get(c & -c) + 1) + " " + (es.get(c ^ (c & -c)) + 1) + " 0"); out.println(sb); } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import static java.lang.System.out; public final class LookingForOrder { private static Map<Integer, Integer> es = new HashMap<Integer, Integer>(); private static void init() { for (int i = 0; i <= 24; i++) es.put(1 << i, i); } private static int x, y; private static int[] xs, ys; private static int sqr(int i) { return i * i; } private static int dist(int i, int j) { return sqr(x - xs[i]) + sqr(y - ys[i]) + sqr(xs[i] - xs[j]) + sqr(ys[i] - ys[j]) + sqr(x - xs[j]) + sqr(y - ys[j]); } private static int n; private static int[] tb, prevs; private static int recur(int j) { if (j == 0 || es.get(j) != null || tb[j] != 0) return tb[j]; int bl = j & -j; int b = j ^ bl; tb[j] = recur(bl) + recur(b); prevs[j] = bl; for (int i = es.get(bl) + 1; i <25; i++) { if (((1 << i) & b) == 0) continue; int k = bl | 1 << i; int v = dist(es.get(bl), es.get(1 << i)) + recur(j ^ k); if (v >= tb[j]) continue; tb[j] = v; prevs[j] = k; } return tb[j]; } public static void main(String[] args) { init(); Scanner s = new Scanner(System.in); x = s.nextInt(); y = s.nextInt(); n = s.nextInt(); xs = new int[n]; ys = new int[n]; tb = new int[1 << n]; prevs = new int[1 << n]; for (int i = 0; i < n; i++) { xs[i] = s.nextInt(); ys[i] = s.nextInt(); tb[1 << i] = sqr(x - xs[i]) + sqr(y - ys[i]) << 1; } int all = (1 << n) - 1; out.println(recur(all)); StringBuilder sb = new StringBuilder(); int p = prevs[all]; int c = all; while(p != 0 && p != c) { if ((p ^ (p & -p)) == 0) sb.append("0 " + (es.get(p & -p) + 1) + " "); else sb.append("0 " + (es.get(p & -p) + 1) + " " + (es.get(p ^ (p & -p)) + 1) + " "); c = c ^ p; p = prevs[c]; } if ((c ^ (c & -c)) == 0) sb.append("0 " + (es.get(c & -c) + 1) + " 0"); else sb.append("0 " + (es.get(c & -c) + 1) + " " + (es.get(c ^ (c & -c)) + 1) + " 0"); out.println(sb); } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,054
4,123
491
// //package ; import java.io.*; import java.util.*; public class A { public static int sol(String n,String p) { int sol=0; for(int i=0;i<n.length();i++) { if(n.charAt(i)!=p.charAt(i)) sol++; } return sol; } public static void main(String[] args) throws IOException { Scanner sc = new Scanner(); PrintWriter pw = new PrintWriter(System.out); int n=sc.nextInt(); ArrayList<String>p=new ArrayList<>(); ArrayList<String>ne=new ArrayList<>(); for(int i=0;i<n;i++) p.add(sc.nextLine()); for(int i=0;i<n;i++) { String t=sc.nextLine(); if(p.contains(t)) p.remove(t); else ne.add(t); } Collections.sort(p); Collections.sort(ne); int ans=0; for(int i=0;i<ne.size();i++) { ans+=sol(ne.get(i),p.get(i)); } System.out.println(ans); pw.close(); } static class Scanner { BufferedReader br; StringTokenizer st; Scanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() throws IOException { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(br.readLine()); } return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(next()); } long nextLong() throws IOException { return Long.parseLong(next()); } double nextDouble() throws IOException { return Double.parseDouble(next()); } String nextLine() throws IOException { return br.readLine(); } boolean hasnext() throws IOException{ return br.ready(); } } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> // //package ; import java.io.*; import java.util.*; public class A { public static int sol(String n,String p) { int sol=0; for(int i=0;i<n.length();i++) { if(n.charAt(i)!=p.charAt(i)) sol++; } return sol; } public static void main(String[] args) throws IOException { Scanner sc = new Scanner(); PrintWriter pw = new PrintWriter(System.out); int n=sc.nextInt(); ArrayList<String>p=new ArrayList<>(); ArrayList<String>ne=new ArrayList<>(); for(int i=0;i<n;i++) p.add(sc.nextLine()); for(int i=0;i<n;i++) { String t=sc.nextLine(); if(p.contains(t)) p.remove(t); else ne.add(t); } Collections.sort(p); Collections.sort(ne); int ans=0; for(int i=0;i<ne.size();i++) { ans+=sol(ne.get(i),p.get(i)); } System.out.println(ans); pw.close(); } static class Scanner { BufferedReader br; StringTokenizer st; Scanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() throws IOException { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(br.readLine()); } return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(next()); } long nextLong() throws IOException { return Long.parseLong(next()); } double nextDouble() throws IOException { return Double.parseDouble(next()); } String nextLine() throws IOException { return br.readLine(); } boolean hasnext() throws IOException{ return br.ready(); } } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> // //package ; import java.io.*; import java.util.*; public class A { public static int sol(String n,String p) { int sol=0; for(int i=0;i<n.length();i++) { if(n.charAt(i)!=p.charAt(i)) sol++; } return sol; } public static void main(String[] args) throws IOException { Scanner sc = new Scanner(); PrintWriter pw = new PrintWriter(System.out); int n=sc.nextInt(); ArrayList<String>p=new ArrayList<>(); ArrayList<String>ne=new ArrayList<>(); for(int i=0;i<n;i++) p.add(sc.nextLine()); for(int i=0;i<n;i++) { String t=sc.nextLine(); if(p.contains(t)) p.remove(t); else ne.add(t); } Collections.sort(p); Collections.sort(ne); int ans=0; for(int i=0;i<ne.size();i++) { ans+=sol(ne.get(i),p.get(i)); } System.out.println(ans); pw.close(); } static class Scanner { BufferedReader br; StringTokenizer st; Scanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() throws IOException { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(br.readLine()); } return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(next()); } long nextLong() throws IOException { return Long.parseLong(next()); } double nextDouble() throws IOException { return Double.parseDouble(next()); } String nextLine() throws IOException { return br.readLine(); } boolean hasnext() throws IOException{ return br.ready(); } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
738
490
389
import java.io.BufferedReader; import java.io.FileReader; import java.io.FileWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.math.BigInteger; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.HashMap; import java.util.HashSet; import java.util.LinkedList; import java.util.PriorityQueue; import java.util.Queue; import java.util.Scanner; import java.util.StringTokenizer; import java.util.TreeSet; import java.util.concurrent.LinkedBlockingDeque; import javax.swing.border.Border; public class a { public static long mod = (long) Math.pow(10, 9) + 7; public static int k = 0; private static class node implements Comparable<node> { int l; int r; int index; int index2; int buffer; node(int l, int r, int i, int b, int i2) { this.l = l; this.r = r; index = i; buffer = b; index2 = i2; } @Override public int compareTo(node o) { if (k == 0) { if (o.l < l) return 1; else if (o.l > l) return -1; else if (o.buffer != -1) { return 1; } else return -1; } else if (k == 1) { if (r != o.r) return r - o.r; return o.index - index; } else if (k == 2) { return r - o.r; } else { if (o.index < index) return 1; else return -1; } } } // private static class point implements Comparable<point> { // int l; // int r; // int index; // int buffer; // // point(int l, int r, int i, int b) { // this.l = l; // this.r = r; // index = i; // buffer = b; // // } // // @Override // public int compareTo(point o) { // if (o.l < l) // return 1; // else if (o.l > l) // return -1; // else if (o.r < r) // return 1; // else if (o.r > r) // return -1; // return 0; // } // // } public static class point implements Comparable<point> { long x; long y; point(long x, long y) { this.x = x; this.y = y; } @Override public int compareTo(point o) { return (int) (x - o.x); } } public static int ch(long y) { int r = Long.bitCount(y); return r; } public static int gcd(int x, int y) { if (y == 0) return x; return gcd(y, x % y); } public static int min[]; public static int max[]; public static void build(int s, int e, int p, int a[]) { if (s == e) { min[p] = a[s]; max[p] = a[s]; return; } int mid = (s + e) / 2; build(s, mid, p * 2, a); build(mid + 1, e, p * 2 + 1, a); min[p] = Math.min(min[p * 2], min[p * 2 + 1]); max[p] = Math.max(max[p * 2], max[p * 2 + 1]); } public static int getMin(int s, int e, int p, int from, int to) { if (s > to || e < from) return Integer.MAX_VALUE; if (s >= from && e <= to) return min[p]; int mid = (s + e) / 2; int a = getMin(s, mid, p * 2, from, to); int b = getMin(mid + 1, e, p * 2 + 1, from, to); return Math.min(a, b); } public static int getMax(int s, int e, int p, int from, int to) { if (s > to || e < from) return Integer.MIN_VALUE; if (s >= from && e <= to) return max[p]; int mid = (s + e) / 2; int a = getMax(s, mid, p * 2, from, to); int b = getMax(mid + 1, e, p * 2 + 1, from, to); return Math.max(a, b); } public static boolean ch[]; public static ArrayList<Integer> prime; public static Queue<Integer> pp; public static void sieve(int k) { ch[0] = ch[1] = true; for (int i = 2; i <= k; i++) { if (!ch[i]) { prime.add(i); pp.add(i); for (int j = i + i; j <= k; j += i) { ch[j] = true; } } } } public static void main(String[] args) throws IOException { BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); StringBuilder qq = new StringBuilder(); PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out)); String y[] = in.readLine().split(" "); int n = Integer.parseInt(y[0]); int a = Integer.parseInt(y[1]); int b = Integer.parseInt(y[2]); int arr[] = new int[n]; HashMap<Integer, Integer> mp = new HashMap(); y = in.readLine().split(" "); boolean flag = true; for (int i = 0; i < n; i++) { arr[i] = Integer.parseInt(y[i]); if (arr[i] >= a && arr[i] >= b) { flag = false; } mp.put(arr[i], i); } if (!flag) { System.out.println("NO"); return; } boolean ch[] = new boolean[n]; int ans[] = new int[n]; for (int i = 0; i < n; i++) { int k = i; while (true&&!ch[k]) { if (mp.containsKey(a - arr[k]) && !ch[mp.get(a - arr[k])] && mp.containsKey(b - arr[k]) && !ch[mp.get(b - arr[k])]) { break; } else if (mp.containsKey(a - arr[k]) && !ch[mp.get(a - arr[k])]) { //System.out.println(arr[k]); ch[k] = true; ans[k] = 0; ch[mp.get(a - arr[k])] = true; ans[mp.get(a - arr[k])] = 0; int s = b - (a - arr[k]); if (mp.containsKey(s)) { k = mp.get(s); } else break; } else if (mp.containsKey(b - arr[k]) && !ch[mp.get(b - arr[k])]) { ans[k] = 1; ans[mp.get(b - arr[k])] = 1; ch[k] = true; ch[mp.get(b - arr[k])] = true; int s = a - (b - arr[k]); if (mp.containsKey(s)) { k = mp.get(s); } else break; } else { // System.out.println(arr[i] + " " + i); System.out.println("NO"); return; } } } qq.append("YES\n"); for (int i = 0; i < ans.length; i++) { qq.append(ans[i] + " "); } System.out.println(qq); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.FileReader; import java.io.FileWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.math.BigInteger; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.HashMap; import java.util.HashSet; import java.util.LinkedList; import java.util.PriorityQueue; import java.util.Queue; import java.util.Scanner; import java.util.StringTokenizer; import java.util.TreeSet; import java.util.concurrent.LinkedBlockingDeque; import javax.swing.border.Border; public class a { public static long mod = (long) Math.pow(10, 9) + 7; public static int k = 0; private static class node implements Comparable<node> { int l; int r; int index; int index2; int buffer; node(int l, int r, int i, int b, int i2) { this.l = l; this.r = r; index = i; buffer = b; index2 = i2; } @Override public int compareTo(node o) { if (k == 0) { if (o.l < l) return 1; else if (o.l > l) return -1; else if (o.buffer != -1) { return 1; } else return -1; } else if (k == 1) { if (r != o.r) return r - o.r; return o.index - index; } else if (k == 2) { return r - o.r; } else { if (o.index < index) return 1; else return -1; } } } // private static class point implements Comparable<point> { // int l; // int r; // int index; // int buffer; // // point(int l, int r, int i, int b) { // this.l = l; // this.r = r; // index = i; // buffer = b; // // } // // @Override // public int compareTo(point o) { // if (o.l < l) // return 1; // else if (o.l > l) // return -1; // else if (o.r < r) // return 1; // else if (o.r > r) // return -1; // return 0; // } // // } public static class point implements Comparable<point> { long x; long y; point(long x, long y) { this.x = x; this.y = y; } @Override public int compareTo(point o) { return (int) (x - o.x); } } public static int ch(long y) { int r = Long.bitCount(y); return r; } public static int gcd(int x, int y) { if (y == 0) return x; return gcd(y, x % y); } public static int min[]; public static int max[]; public static void build(int s, int e, int p, int a[]) { if (s == e) { min[p] = a[s]; max[p] = a[s]; return; } int mid = (s + e) / 2; build(s, mid, p * 2, a); build(mid + 1, e, p * 2 + 1, a); min[p] = Math.min(min[p * 2], min[p * 2 + 1]); max[p] = Math.max(max[p * 2], max[p * 2 + 1]); } public static int getMin(int s, int e, int p, int from, int to) { if (s > to || e < from) return Integer.MAX_VALUE; if (s >= from && e <= to) return min[p]; int mid = (s + e) / 2; int a = getMin(s, mid, p * 2, from, to); int b = getMin(mid + 1, e, p * 2 + 1, from, to); return Math.min(a, b); } public static int getMax(int s, int e, int p, int from, int to) { if (s > to || e < from) return Integer.MIN_VALUE; if (s >= from && e <= to) return max[p]; int mid = (s + e) / 2; int a = getMax(s, mid, p * 2, from, to); int b = getMax(mid + 1, e, p * 2 + 1, from, to); return Math.max(a, b); } public static boolean ch[]; public static ArrayList<Integer> prime; public static Queue<Integer> pp; public static void sieve(int k) { ch[0] = ch[1] = true; for (int i = 2; i <= k; i++) { if (!ch[i]) { prime.add(i); pp.add(i); for (int j = i + i; j <= k; j += i) { ch[j] = true; } } } } public static void main(String[] args) throws IOException { BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); StringBuilder qq = new StringBuilder(); PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out)); String y[] = in.readLine().split(" "); int n = Integer.parseInt(y[0]); int a = Integer.parseInt(y[1]); int b = Integer.parseInt(y[2]); int arr[] = new int[n]; HashMap<Integer, Integer> mp = new HashMap(); y = in.readLine().split(" "); boolean flag = true; for (int i = 0; i < n; i++) { arr[i] = Integer.parseInt(y[i]); if (arr[i] >= a && arr[i] >= b) { flag = false; } mp.put(arr[i], i); } if (!flag) { System.out.println("NO"); return; } boolean ch[] = new boolean[n]; int ans[] = new int[n]; for (int i = 0; i < n; i++) { int k = i; while (true&&!ch[k]) { if (mp.containsKey(a - arr[k]) && !ch[mp.get(a - arr[k])] && mp.containsKey(b - arr[k]) && !ch[mp.get(b - arr[k])]) { break; } else if (mp.containsKey(a - arr[k]) && !ch[mp.get(a - arr[k])]) { //System.out.println(arr[k]); ch[k] = true; ans[k] = 0; ch[mp.get(a - arr[k])] = true; ans[mp.get(a - arr[k])] = 0; int s = b - (a - arr[k]); if (mp.containsKey(s)) { k = mp.get(s); } else break; } else if (mp.containsKey(b - arr[k]) && !ch[mp.get(b - arr[k])]) { ans[k] = 1; ans[mp.get(b - arr[k])] = 1; ch[k] = true; ch[mp.get(b - arr[k])] = true; int s = a - (b - arr[k]); if (mp.containsKey(s)) { k = mp.get(s); } else break; } else { // System.out.println(arr[i] + " " + i); System.out.println("NO"); return; } } } qq.append("YES\n"); for (int i = 0; i < ans.length; i++) { qq.append(ans[i] + " "); } System.out.println(qq); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.FileReader; import java.io.FileWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.math.BigInteger; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.HashMap; import java.util.HashSet; import java.util.LinkedList; import java.util.PriorityQueue; import java.util.Queue; import java.util.Scanner; import java.util.StringTokenizer; import java.util.TreeSet; import java.util.concurrent.LinkedBlockingDeque; import javax.swing.border.Border; public class a { public static long mod = (long) Math.pow(10, 9) + 7; public static int k = 0; private static class node implements Comparable<node> { int l; int r; int index; int index2; int buffer; node(int l, int r, int i, int b, int i2) { this.l = l; this.r = r; index = i; buffer = b; index2 = i2; } @Override public int compareTo(node o) { if (k == 0) { if (o.l < l) return 1; else if (o.l > l) return -1; else if (o.buffer != -1) { return 1; } else return -1; } else if (k == 1) { if (r != o.r) return r - o.r; return o.index - index; } else if (k == 2) { return r - o.r; } else { if (o.index < index) return 1; else return -1; } } } // private static class point implements Comparable<point> { // int l; // int r; // int index; // int buffer; // // point(int l, int r, int i, int b) { // this.l = l; // this.r = r; // index = i; // buffer = b; // // } // // @Override // public int compareTo(point o) { // if (o.l < l) // return 1; // else if (o.l > l) // return -1; // else if (o.r < r) // return 1; // else if (o.r > r) // return -1; // return 0; // } // // } public static class point implements Comparable<point> { long x; long y; point(long x, long y) { this.x = x; this.y = y; } @Override public int compareTo(point o) { return (int) (x - o.x); } } public static int ch(long y) { int r = Long.bitCount(y); return r; } public static int gcd(int x, int y) { if (y == 0) return x; return gcd(y, x % y); } public static int min[]; public static int max[]; public static void build(int s, int e, int p, int a[]) { if (s == e) { min[p] = a[s]; max[p] = a[s]; return; } int mid = (s + e) / 2; build(s, mid, p * 2, a); build(mid + 1, e, p * 2 + 1, a); min[p] = Math.min(min[p * 2], min[p * 2 + 1]); max[p] = Math.max(max[p * 2], max[p * 2 + 1]); } public static int getMin(int s, int e, int p, int from, int to) { if (s > to || e < from) return Integer.MAX_VALUE; if (s >= from && e <= to) return min[p]; int mid = (s + e) / 2; int a = getMin(s, mid, p * 2, from, to); int b = getMin(mid + 1, e, p * 2 + 1, from, to); return Math.min(a, b); } public static int getMax(int s, int e, int p, int from, int to) { if (s > to || e < from) return Integer.MIN_VALUE; if (s >= from && e <= to) return max[p]; int mid = (s + e) / 2; int a = getMax(s, mid, p * 2, from, to); int b = getMax(mid + 1, e, p * 2 + 1, from, to); return Math.max(a, b); } public static boolean ch[]; public static ArrayList<Integer> prime; public static Queue<Integer> pp; public static void sieve(int k) { ch[0] = ch[1] = true; for (int i = 2; i <= k; i++) { if (!ch[i]) { prime.add(i); pp.add(i); for (int j = i + i; j <= k; j += i) { ch[j] = true; } } } } public static void main(String[] args) throws IOException { BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); StringBuilder qq = new StringBuilder(); PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out)); String y[] = in.readLine().split(" "); int n = Integer.parseInt(y[0]); int a = Integer.parseInt(y[1]); int b = Integer.parseInt(y[2]); int arr[] = new int[n]; HashMap<Integer, Integer> mp = new HashMap(); y = in.readLine().split(" "); boolean flag = true; for (int i = 0; i < n; i++) { arr[i] = Integer.parseInt(y[i]); if (arr[i] >= a && arr[i] >= b) { flag = false; } mp.put(arr[i], i); } if (!flag) { System.out.println("NO"); return; } boolean ch[] = new boolean[n]; int ans[] = new int[n]; for (int i = 0; i < n; i++) { int k = i; while (true&&!ch[k]) { if (mp.containsKey(a - arr[k]) && !ch[mp.get(a - arr[k])] && mp.containsKey(b - arr[k]) && !ch[mp.get(b - arr[k])]) { break; } else if (mp.containsKey(a - arr[k]) && !ch[mp.get(a - arr[k])]) { //System.out.println(arr[k]); ch[k] = true; ans[k] = 0; ch[mp.get(a - arr[k])] = true; ans[mp.get(a - arr[k])] = 0; int s = b - (a - arr[k]); if (mp.containsKey(s)) { k = mp.get(s); } else break; } else if (mp.containsKey(b - arr[k]) && !ch[mp.get(b - arr[k])]) { ans[k] = 1; ans[mp.get(b - arr[k])] = 1; ch[k] = true; ch[mp.get(b - arr[k])] = true; int s = a - (b - arr[k]); if (mp.containsKey(s)) { k = mp.get(s); } else break; } else { // System.out.println(arr[i] + " " + i); System.out.println("NO"); return; } } } qq.append("YES\n"); for (int i = 0; i < ans.length; i++) { qq.append(ans[i] + " "); } System.out.println(qq); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
2,121
388
804
import java.io.*; import java.util.*; import static java.lang.Math.*; public class Main { BufferedReader in; PrintWriter out; StringTokenizer st; void solve() throws IOException { int n=ni(); int k=ni(); boolean[] t = new boolean[n+1]; for(int i=2;i<=n;i++){ t[i]=false; } int p=2; while(true){ int pointer=2; while(pointer*p<=n){ t[pointer*p]=true; pointer++; } boolean flag=false; for(int i=p+1;i<=n;i++){ if(!t[i]){p=i;flag=true;break;} } if(!flag)break; } List<Integer> lst=new ArrayList<Integer>(); int countN=0; for(int i=1;i<=n;i++){ if(!t[i]){lst.add(i);countN++; } } int count=0; String resulPO="NO"; for(int i=2;i<countN;i++){ boolean result=false; for(int j=0;j<i;j++){ if(lst.get(j)+lst.get(j+1)+1==lst.get(i)){ result=true; //out.println(lst.get(j)+"+"+lst.get(j+1)+"+"+1+"=="+lst.get(i)); break; } } if(result)count++; } if(count>=k)resulPO="YES"; else resulPO="NO"; out.print(resulPO); } public Main() throws IOException { Locale.setDefault(Locale.US); in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); in.close(); out.close(); } String ns() throws IOException { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } int ni() throws IOException { return Integer.valueOf(ns()); } long nl() throws IOException { return Long.valueOf(ns()); } double nd() throws IOException { return Double.valueOf(ns()); } public static void main(String[] args) throws IOException { new Main(); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; import static java.lang.Math.*; public class Main { BufferedReader in; PrintWriter out; StringTokenizer st; void solve() throws IOException { int n=ni(); int k=ni(); boolean[] t = new boolean[n+1]; for(int i=2;i<=n;i++){ t[i]=false; } int p=2; while(true){ int pointer=2; while(pointer*p<=n){ t[pointer*p]=true; pointer++; } boolean flag=false; for(int i=p+1;i<=n;i++){ if(!t[i]){p=i;flag=true;break;} } if(!flag)break; } List<Integer> lst=new ArrayList<Integer>(); int countN=0; for(int i=1;i<=n;i++){ if(!t[i]){lst.add(i);countN++; } } int count=0; String resulPO="NO"; for(int i=2;i<countN;i++){ boolean result=false; for(int j=0;j<i;j++){ if(lst.get(j)+lst.get(j+1)+1==lst.get(i)){ result=true; //out.println(lst.get(j)+"+"+lst.get(j+1)+"+"+1+"=="+lst.get(i)); break; } } if(result)count++; } if(count>=k)resulPO="YES"; else resulPO="NO"; out.print(resulPO); } public Main() throws IOException { Locale.setDefault(Locale.US); in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); in.close(); out.close(); } String ns() throws IOException { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } int ni() throws IOException { return Integer.valueOf(ns()); } long nl() throws IOException { return Long.valueOf(ns()); } double nd() throws IOException { return Double.valueOf(ns()); } public static void main(String[] args) throws IOException { new Main(); } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; import static java.lang.Math.*; public class Main { BufferedReader in; PrintWriter out; StringTokenizer st; void solve() throws IOException { int n=ni(); int k=ni(); boolean[] t = new boolean[n+1]; for(int i=2;i<=n;i++){ t[i]=false; } int p=2; while(true){ int pointer=2; while(pointer*p<=n){ t[pointer*p]=true; pointer++; } boolean flag=false; for(int i=p+1;i<=n;i++){ if(!t[i]){p=i;flag=true;break;} } if(!flag)break; } List<Integer> lst=new ArrayList<Integer>(); int countN=0; for(int i=1;i<=n;i++){ if(!t[i]){lst.add(i);countN++; } } int count=0; String resulPO="NO"; for(int i=2;i<countN;i++){ boolean result=false; for(int j=0;j<i;j++){ if(lst.get(j)+lst.get(j+1)+1==lst.get(i)){ result=true; //out.println(lst.get(j)+"+"+lst.get(j+1)+"+"+1+"=="+lst.get(i)); break; } } if(result)count++; } if(count>=k)resulPO="YES"; else resulPO="NO"; out.print(resulPO); } public Main() throws IOException { Locale.setDefault(Locale.US); in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); in.close(); out.close(); } String ns() throws IOException { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } int ni() throws IOException { return Integer.valueOf(ns()); } long nl() throws IOException { return Long.valueOf(ns()); } double nd() throws IOException { return Double.valueOf(ns()); } public static void main(String[] args) throws IOException { new Main(); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
838
803
384
import java.util.Map; import java.io.IOException; import java.io.InputStreamReader; import java.util.Arrays; import java.util.HashMap; import java.util.Set; import java.io.BufferedReader; import java.io.OutputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.util.HashSet; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskB solver = new TaskB(); solver.solve(1, in, out); out.close(); } } class TaskB { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int a = in.nextInt(); int b = in.nextInt(); int[] p = new int[n]; for (int i = 0; i < n; ++i) p[i] = in.nextInt(); Map<Integer, Integer> position = new HashMap<>(n); for (int i = 0; i < n; ++i) position.put(p[i], i); DisjointSet sets = new DisjointSet(n); for (int i = 0; i < n; ++i) { if (position.containsKey(a - p[i])) sets.joinSet(i, position.get(a - p[i])); if (position.containsKey(b - p[i])) sets.joinSet(i, position.get(b - p[i])); } Group[] groups = new Group[n]; for (int i = 0; i < n; ++i) if (sets.getSet(i) == i) groups[i] = new Group(); for (int i = 0; i < n; ++i) groups[sets.getSet(i)].value.add(p[i]); int[] answer = new int[n]; for (Group group : groups) if (group != null) { if (group.check(a)) { for (int key : group.value) answer[position.get(key)] = 0; } else if (group.check(b)) { for (int key : group.value) answer[position.get(key)] = 1; } else { out.println("NO"); return; } } out.println("YES"); for (int i = 0; i < n; ++i) { if (i > 0) out.print(' '); out.print(answer[i]); } out.println(); } class Group { Set<Integer> value = new HashSet<>(); boolean check(int sum) { for (int key : value) if (!value.contains(sum - key)) return false; return true; } } } class InputReader { private BufferedReader reader; private StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } class DisjointSet { private final int[] label; private int numSets; private Listener listener; public DisjointSet(int n, Listener listener) { label = new int[n]; Arrays.fill(label, -1); numSets = n; this.listener = listener; } public DisjointSet(int n) { this(n, null); } public int getSet(int at) { if (label[at] < 0) return at; return label[at] = getSet(label[at]); } public boolean sameSet(int u, int v) { return getSet(u) == getSet(v); } public boolean joinSet(int u, int v) { if (sameSet(u, v)) return false; u = getSet(u); v = getSet(v); if (label[u] < label[v]) { int tmp = u; u = v; v = tmp; } label[v] += label[u]; label[u] = v; --numSets; if (listener != null) listener.joined(u, v); return true; } public static interface Listener { public void joined(int joinedRoot, int root); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Map; import java.io.IOException; import java.io.InputStreamReader; import java.util.Arrays; import java.util.HashMap; import java.util.Set; import java.io.BufferedReader; import java.io.OutputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.util.HashSet; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskB solver = new TaskB(); solver.solve(1, in, out); out.close(); } } class TaskB { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int a = in.nextInt(); int b = in.nextInt(); int[] p = new int[n]; for (int i = 0; i < n; ++i) p[i] = in.nextInt(); Map<Integer, Integer> position = new HashMap<>(n); for (int i = 0; i < n; ++i) position.put(p[i], i); DisjointSet sets = new DisjointSet(n); for (int i = 0; i < n; ++i) { if (position.containsKey(a - p[i])) sets.joinSet(i, position.get(a - p[i])); if (position.containsKey(b - p[i])) sets.joinSet(i, position.get(b - p[i])); } Group[] groups = new Group[n]; for (int i = 0; i < n; ++i) if (sets.getSet(i) == i) groups[i] = new Group(); for (int i = 0; i < n; ++i) groups[sets.getSet(i)].value.add(p[i]); int[] answer = new int[n]; for (Group group : groups) if (group != null) { if (group.check(a)) { for (int key : group.value) answer[position.get(key)] = 0; } else if (group.check(b)) { for (int key : group.value) answer[position.get(key)] = 1; } else { out.println("NO"); return; } } out.println("YES"); for (int i = 0; i < n; ++i) { if (i > 0) out.print(' '); out.print(answer[i]); } out.println(); } class Group { Set<Integer> value = new HashSet<>(); boolean check(int sum) { for (int key : value) if (!value.contains(sum - key)) return false; return true; } } } class InputReader { private BufferedReader reader; private StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } class DisjointSet { private final int[] label; private int numSets; private Listener listener; public DisjointSet(int n, Listener listener) { label = new int[n]; Arrays.fill(label, -1); numSets = n; this.listener = listener; } public DisjointSet(int n) { this(n, null); } public int getSet(int at) { if (label[at] < 0) return at; return label[at] = getSet(label[at]); } public boolean sameSet(int u, int v) { return getSet(u) == getSet(v); } public boolean joinSet(int u, int v) { if (sameSet(u, v)) return false; u = getSet(u); v = getSet(v); if (label[u] < label[v]) { int tmp = u; u = v; v = tmp; } label[v] += label[u]; label[u] = v; --numSets; if (listener != null) listener.joined(u, v); return true; } public static interface Listener { public void joined(int joinedRoot, int root); } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Map; import java.io.IOException; import java.io.InputStreamReader; import java.util.Arrays; import java.util.HashMap; import java.util.Set; import java.io.BufferedReader; import java.io.OutputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.util.HashSet; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskB solver = new TaskB(); solver.solve(1, in, out); out.close(); } } class TaskB { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int a = in.nextInt(); int b = in.nextInt(); int[] p = new int[n]; for (int i = 0; i < n; ++i) p[i] = in.nextInt(); Map<Integer, Integer> position = new HashMap<>(n); for (int i = 0; i < n; ++i) position.put(p[i], i); DisjointSet sets = new DisjointSet(n); for (int i = 0; i < n; ++i) { if (position.containsKey(a - p[i])) sets.joinSet(i, position.get(a - p[i])); if (position.containsKey(b - p[i])) sets.joinSet(i, position.get(b - p[i])); } Group[] groups = new Group[n]; for (int i = 0; i < n; ++i) if (sets.getSet(i) == i) groups[i] = new Group(); for (int i = 0; i < n; ++i) groups[sets.getSet(i)].value.add(p[i]); int[] answer = new int[n]; for (Group group : groups) if (group != null) { if (group.check(a)) { for (int key : group.value) answer[position.get(key)] = 0; } else if (group.check(b)) { for (int key : group.value) answer[position.get(key)] = 1; } else { out.println("NO"); return; } } out.println("YES"); for (int i = 0; i < n; ++i) { if (i > 0) out.print(' '); out.print(answer[i]); } out.println(); } class Group { Set<Integer> value = new HashSet<>(); boolean check(int sum) { for (int key : value) if (!value.contains(sum - key)) return false; return true; } } } class InputReader { private BufferedReader reader; private StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } class DisjointSet { private final int[] label; private int numSets; private Listener listener; public DisjointSet(int n, Listener listener) { label = new int[n]; Arrays.fill(label, -1); numSets = n; this.listener = listener; } public DisjointSet(int n) { this(n, null); } public int getSet(int at) { if (label[at] < 0) return at; return label[at] = getSet(label[at]); } public boolean sameSet(int u, int v) { return getSet(u) == getSet(v); } public boolean joinSet(int u, int v) { if (sameSet(u, v)) return false; u = getSet(u); v = getSet(v); if (label[u] < label[v]) { int tmp = u; u = v; v = tmp; } label[v] += label[u]; label[u] = v; --numSets; if (listener != null) listener.joined(u, v); return true; } public static interface Listener { public void joined(int joinedRoot, int root); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,343
383
3,457
/** * Mx NINJA 04:06:52 ص 14/01/2014 */ import java.io.BufferedReader; import java.io.InputStreamReader; public class Main { public static void main(String[] args) throws Exception { BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); StringBuilder line = new StringBuilder(reader.readLine()); int length = 0; for (int head = 0; head < line.length(); head++) { for (int tail = line.length() - 1; tail > head; tail--) { String subString = line.substring(head, tail); if(line.indexOf(subString,head+1)>-1){ length = Math.max(subString.length(), length); } } } System.out.println(length); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> /** * Mx NINJA 04:06:52 ص 14/01/2014 */ import java.io.BufferedReader; import java.io.InputStreamReader; public class Main { public static void main(String[] args) throws Exception { BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); StringBuilder line = new StringBuilder(reader.readLine()); int length = 0; for (int head = 0; head < line.length(); head++) { for (int tail = line.length() - 1; tail > head; tail--) { String subString = line.substring(head, tail); if(line.indexOf(subString,head+1)>-1){ length = Math.max(subString.length(), length); } } } System.out.println(length); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> /** * Mx NINJA 04:06:52 ص 14/01/2014 */ import java.io.BufferedReader; import java.io.InputStreamReader; public class Main { public static void main(String[] args) throws Exception { BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); StringBuilder line = new StringBuilder(reader.readLine()); int length = 0; for (int head = 0; head < line.length(); head++) { for (int tail = line.length() - 1; tail > head; tail--) { String subString = line.substring(head, tail); if(line.indexOf(subString,head+1)>-1){ length = Math.max(subString.length(), length); } } } System.out.println(length); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
500
3,451
3,253
import java.io.*; import static java.lang.Math.*; import java.lang.reflect.Array; import java.util.*; import java.lang.*; public class Main { final static boolean debug = false; final static String fileName = ""; final static boolean useFiles = false; public static void main(String[] args) throws FileNotFoundException { PrintWriter writer = new PrintWriter(System.out); new Task(new InputReader(System.in), writer).solve(); writer.close(); } } class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public double nextDouble() { return Double.parseDouble(next()); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public byte nextByte() { return Byte.parseByte(next()); } } class Task { public void solve() { out.println(25); } private InputReader in; private PrintWriter out; Task(InputReader in, PrintWriter out) { this.in = in; this.out = out; } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import static java.lang.Math.*; import java.lang.reflect.Array; import java.util.*; import java.lang.*; public class Main { final static boolean debug = false; final static String fileName = ""; final static boolean useFiles = false; public static void main(String[] args) throws FileNotFoundException { PrintWriter writer = new PrintWriter(System.out); new Task(new InputReader(System.in), writer).solve(); writer.close(); } } class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public double nextDouble() { return Double.parseDouble(next()); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public byte nextByte() { return Byte.parseByte(next()); } } class Task { public void solve() { out.println(25); } private InputReader in; private PrintWriter out; Task(InputReader in, PrintWriter out) { this.in = in; this.out = out; } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import static java.lang.Math.*; import java.lang.reflect.Array; import java.util.*; import java.lang.*; public class Main { final static boolean debug = false; final static String fileName = ""; final static boolean useFiles = false; public static void main(String[] args) throws FileNotFoundException { PrintWriter writer = new PrintWriter(System.out); new Task(new InputReader(System.in), writer).solve(); writer.close(); } } class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public double nextDouble() { return Double.parseDouble(next()); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public byte nextByte() { return Byte.parseByte(next()); } } class Task { public void solve() { out.println(25); } private InputReader in; private PrintWriter out; Task(InputReader in, PrintWriter out) { this.in = in; this.out = out; } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
638
3,247
1,998
/* Keep solving problems. */ import java.util.*; import java.io.*; public class CFA { BufferedReader br; PrintWriter out; StringTokenizer st; boolean eof; private static long MOD = 1000L * 1000L * 1000L + 7; private static final int[] dx = {0, -1, 0, 1}; private static final int[] dy = {1, 0, -1, 0}; private static final String yes = "Yes"; private static final String no = "No"; int n; int m; char[][] mat; long base = 397; void solve() throws IOException { n = nextInt(); m = nextInt(); mat = new char[n][m]; for (int i = 0; i < n; i++) { mat[i] = nextString().toCharArray(); } int alpha = 26; long[] pow = new long[alpha]; pow[0] = 1; for (int i = 1; i < alpha; i++) { pow[i] = pow[i - 1] * base % MOD; } long res = 0; for (int l = 0; l < m; l++) { //[l, r] long[] hash = new long[n]; long[] mask = new long[n]; for (int r = l; r < m; r++) { for (int i = 0; i < n; i++) { hash[i] += pow[mat[i][r] - 'a']; hash[i] %= MOD; mask[i] = mask[i] ^ (1L << (mat[i][r] - 'a')); } int start = 0; while (start < n) { if ((mask[start] & (mask[start] - 1)) != 0) { start++; continue; } int end = start; List<Long> l1 = new ArrayList<>(); while (end < n && (mask[end] & (mask[end] - 1)) == 0) { l1.add(hash[end]); end++; } start = end; res += manacher(l1); } } } outln(res); } long manacher(List<Long> arr) { int len = arr.size(); long[] t = new long[len * 2 + 3]; t[0] = -1; t[len * 2 + 2] = -2; for (int i = 0; i < len; i++) { t[2 * i + 1] = -3; t[2 * i + 2] = arr.get(i); } t[len * 2 + 1] = -3; int[] p = new int[t.length]; int center = 0, right = 0; for (int i = 1; i < t.length - 1; i++) { int mirror = 2 * center - i; if (right > i) { p[i] = Math.min(right - i, p[mirror]); } // attempt to expand palindrome centered at i while (t[i + (1 + p[i])] == t[i - (1 + p[i])]) { p[i]++; } // if palindrome centered at i expands past right, // adjust center based on expanded palindrome. if (i + p[i] > right) { center = i; right = i + p[i]; } } long res = 0; for (int i = 0; i < 2 * len; i++) { int parLength = p[i + 2]; if (i % 2 == 0) { res += (parLength + 1) / 2; } else { res += parLength / 2; } } return res; } void shuffle(int[] a) { int n = a.length; for(int i = 0; i < n; i++) { int r = i + (int) (Math.random() * (n - i)); int tmp = a[i]; a[i] = a[r]; a[r] = tmp; } } long gcd(long a, long b) { while(a != 0 && b != 0) { long c = b; b = a % b; a = c; } return a + b; } private void outln(Object o) { out.println(o); } private void out(Object o) { out.print(o); } private void formatPrint(double val) { outln(String.format("%.9f%n", val)); } public CFA() throws IOException { br = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); out.close(); } public static void main(String[] args) throws IOException { new CFA(); } public long[] nextLongArr(int n) throws IOException{ long[] res = new long[n]; for(int i = 0; i < n; i++) res[i] = nextLong(); return res; } public int[] nextIntArr(int n) throws IOException { int[] res = new int[n]; for(int i = 0; i < n; i++) res[i] = nextInt(); return res; } public String nextToken() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception e) { eof = true; return null; } } return st.nextToken(); } public String nextString() { try { return br.readLine(); } catch (IOException e) { eof = true; return null; } } public int nextInt() throws IOException { return Integer.parseInt(nextToken()); } public long nextLong() throws IOException { return Long.parseLong(nextToken()); } public double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> /* Keep solving problems. */ import java.util.*; import java.io.*; public class CFA { BufferedReader br; PrintWriter out; StringTokenizer st; boolean eof; private static long MOD = 1000L * 1000L * 1000L + 7; private static final int[] dx = {0, -1, 0, 1}; private static final int[] dy = {1, 0, -1, 0}; private static final String yes = "Yes"; private static final String no = "No"; int n; int m; char[][] mat; long base = 397; void solve() throws IOException { n = nextInt(); m = nextInt(); mat = new char[n][m]; for (int i = 0; i < n; i++) { mat[i] = nextString().toCharArray(); } int alpha = 26; long[] pow = new long[alpha]; pow[0] = 1; for (int i = 1; i < alpha; i++) { pow[i] = pow[i - 1] * base % MOD; } long res = 0; for (int l = 0; l < m; l++) { //[l, r] long[] hash = new long[n]; long[] mask = new long[n]; for (int r = l; r < m; r++) { for (int i = 0; i < n; i++) { hash[i] += pow[mat[i][r] - 'a']; hash[i] %= MOD; mask[i] = mask[i] ^ (1L << (mat[i][r] - 'a')); } int start = 0; while (start < n) { if ((mask[start] & (mask[start] - 1)) != 0) { start++; continue; } int end = start; List<Long> l1 = new ArrayList<>(); while (end < n && (mask[end] & (mask[end] - 1)) == 0) { l1.add(hash[end]); end++; } start = end; res += manacher(l1); } } } outln(res); } long manacher(List<Long> arr) { int len = arr.size(); long[] t = new long[len * 2 + 3]; t[0] = -1; t[len * 2 + 2] = -2; for (int i = 0; i < len; i++) { t[2 * i + 1] = -3; t[2 * i + 2] = arr.get(i); } t[len * 2 + 1] = -3; int[] p = new int[t.length]; int center = 0, right = 0; for (int i = 1; i < t.length - 1; i++) { int mirror = 2 * center - i; if (right > i) { p[i] = Math.min(right - i, p[mirror]); } // attempt to expand palindrome centered at i while (t[i + (1 + p[i])] == t[i - (1 + p[i])]) { p[i]++; } // if palindrome centered at i expands past right, // adjust center based on expanded palindrome. if (i + p[i] > right) { center = i; right = i + p[i]; } } long res = 0; for (int i = 0; i < 2 * len; i++) { int parLength = p[i + 2]; if (i % 2 == 0) { res += (parLength + 1) / 2; } else { res += parLength / 2; } } return res; } void shuffle(int[] a) { int n = a.length; for(int i = 0; i < n; i++) { int r = i + (int) (Math.random() * (n - i)); int tmp = a[i]; a[i] = a[r]; a[r] = tmp; } } long gcd(long a, long b) { while(a != 0 && b != 0) { long c = b; b = a % b; a = c; } return a + b; } private void outln(Object o) { out.println(o); } private void out(Object o) { out.print(o); } private void formatPrint(double val) { outln(String.format("%.9f%n", val)); } public CFA() throws IOException { br = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); out.close(); } public static void main(String[] args) throws IOException { new CFA(); } public long[] nextLongArr(int n) throws IOException{ long[] res = new long[n]; for(int i = 0; i < n; i++) res[i] = nextLong(); return res; } public int[] nextIntArr(int n) throws IOException { int[] res = new int[n]; for(int i = 0; i < n; i++) res[i] = nextInt(); return res; } public String nextToken() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception e) { eof = true; return null; } } return st.nextToken(); } public String nextString() { try { return br.readLine(); } catch (IOException e) { eof = true; return null; } } public int nextInt() throws IOException { return Integer.parseInt(nextToken()); } public long nextLong() throws IOException { return Long.parseLong(nextToken()); } public double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> /* Keep solving problems. */ import java.util.*; import java.io.*; public class CFA { BufferedReader br; PrintWriter out; StringTokenizer st; boolean eof; private static long MOD = 1000L * 1000L * 1000L + 7; private static final int[] dx = {0, -1, 0, 1}; private static final int[] dy = {1, 0, -1, 0}; private static final String yes = "Yes"; private static final String no = "No"; int n; int m; char[][] mat; long base = 397; void solve() throws IOException { n = nextInt(); m = nextInt(); mat = new char[n][m]; for (int i = 0; i < n; i++) { mat[i] = nextString().toCharArray(); } int alpha = 26; long[] pow = new long[alpha]; pow[0] = 1; for (int i = 1; i < alpha; i++) { pow[i] = pow[i - 1] * base % MOD; } long res = 0; for (int l = 0; l < m; l++) { //[l, r] long[] hash = new long[n]; long[] mask = new long[n]; for (int r = l; r < m; r++) { for (int i = 0; i < n; i++) { hash[i] += pow[mat[i][r] - 'a']; hash[i] %= MOD; mask[i] = mask[i] ^ (1L << (mat[i][r] - 'a')); } int start = 0; while (start < n) { if ((mask[start] & (mask[start] - 1)) != 0) { start++; continue; } int end = start; List<Long> l1 = new ArrayList<>(); while (end < n && (mask[end] & (mask[end] - 1)) == 0) { l1.add(hash[end]); end++; } start = end; res += manacher(l1); } } } outln(res); } long manacher(List<Long> arr) { int len = arr.size(); long[] t = new long[len * 2 + 3]; t[0] = -1; t[len * 2 + 2] = -2; for (int i = 0; i < len; i++) { t[2 * i + 1] = -3; t[2 * i + 2] = arr.get(i); } t[len * 2 + 1] = -3; int[] p = new int[t.length]; int center = 0, right = 0; for (int i = 1; i < t.length - 1; i++) { int mirror = 2 * center - i; if (right > i) { p[i] = Math.min(right - i, p[mirror]); } // attempt to expand palindrome centered at i while (t[i + (1 + p[i])] == t[i - (1 + p[i])]) { p[i]++; } // if palindrome centered at i expands past right, // adjust center based on expanded palindrome. if (i + p[i] > right) { center = i; right = i + p[i]; } } long res = 0; for (int i = 0; i < 2 * len; i++) { int parLength = p[i + 2]; if (i % 2 == 0) { res += (parLength + 1) / 2; } else { res += parLength / 2; } } return res; } void shuffle(int[] a) { int n = a.length; for(int i = 0; i < n; i++) { int r = i + (int) (Math.random() * (n - i)); int tmp = a[i]; a[i] = a[r]; a[r] = tmp; } } long gcd(long a, long b) { while(a != 0 && b != 0) { long c = b; b = a % b; a = c; } return a + b; } private void outln(Object o) { out.println(o); } private void out(Object o) { out.print(o); } private void formatPrint(double val) { outln(String.format("%.9f%n", val)); } public CFA() throws IOException { br = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); out.close(); } public static void main(String[] args) throws IOException { new CFA(); } public long[] nextLongArr(int n) throws IOException{ long[] res = new long[n]; for(int i = 0; i < n; i++) res[i] = nextLong(); return res; } public int[] nextIntArr(int n) throws IOException { int[] res = new int[n]; for(int i = 0; i < n; i++) res[i] = nextInt(); return res; } public String nextToken() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception e) { eof = true; return null; } } return st.nextToken(); } public String nextString() { try { return br.readLine(); } catch (IOException e) { eof = true; return null; } } public int nextInt() throws IOException { return Integer.parseInt(nextToken()); } public long nextLong() throws IOException { return Long.parseLong(nextToken()); } public double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,699
1,994
3,050
import java.util.*; import java.math.*; import java.io.*; public class CF1068A { public CF1068A() { FS scan = new FS(); long n = scan.nextLong(), m = scan.nextLong(), k = scan.nextLong(), l = scan.nextLong(); long ceil = (k + l + m - 1) / m; if(k + l <= n && ceil * m <= n) System.out.println(ceil); else System.out.println(-1); } class FS { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); public String next() { while(!st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch(Exception e) { e.printStackTrace(); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } } public static void main(String[] args) { new CF1068A(); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.math.*; import java.io.*; public class CF1068A { public CF1068A() { FS scan = new FS(); long n = scan.nextLong(), m = scan.nextLong(), k = scan.nextLong(), l = scan.nextLong(); long ceil = (k + l + m - 1) / m; if(k + l <= n && ceil * m <= n) System.out.println(ceil); else System.out.println(-1); } class FS { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); public String next() { while(!st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch(Exception e) { e.printStackTrace(); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } } public static void main(String[] args) { new CF1068A(); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.math.*; import java.io.*; public class CF1068A { public CF1068A() { FS scan = new FS(); long n = scan.nextLong(), m = scan.nextLong(), k = scan.nextLong(), l = scan.nextLong(); long ceil = (k + l + m - 1) / m; if(k + l <= n && ceil * m <= n) System.out.println(ceil); else System.out.println(-1); } class FS { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); public String next() { while(!st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch(Exception e) { e.printStackTrace(); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } } public static void main(String[] args) { new CF1068A(); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
577
3,044
4,018
// Don't place your source in a package import javax.swing.*; import java.lang.reflect.Array; import java.text.DecimalFormat; import java.util.*; import java.lang.*; import java.io.*; import java.math.*; import java.util.stream.Stream; // Please name your class Main public class Main { static FastScanner fs=new FastScanner(); static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); public String next() { while (!st.hasMoreElements()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int Int() { return Integer.parseInt(next()); } long Long() { return Long.parseLong(next()); } String Str(){ return next(); } } public static void main (String[] args) throws java.lang.Exception { PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); int T=1; for(int t=0;t<T;t++){ int n=Int(); int k=Int(); int A[][]=new int[n][2]; int a=0,b=0,c=0; for(int i=0;i<A.length;i++){ A[i][0]=Int(); A[i][1]=Int()-1; if(A[i][1]==0)a++; else if(A[i][1]==1)b++; else c++; } Arrays.sort(A,(x,y)->{ return x[0]-y[0]; }); Solution sol=new Solution(out); sol.solution(A,k,a,b,c); } out.close(); } public static int Int(){ return fs.Int(); } public static long Long(){ return fs.Long(); } public static String Str(){ return fs.Str(); } } class Solution{ PrintWriter out; public Solution(PrintWriter out){ this.out=out; } int mod=1000000007; long dp3[][][][]; public void solution(int A[][],int T,int x,int y,int z){ long res=0; int n=A.length; long dp1[][]=new long[x+2][T+1];//a long dp2[][][]=new long[y+2][z+2][T+2];//bc dp3=new long[x+2][y+2][z+2][3]; //init long f[]=new long[n+10]; f[0]=f[1]=1; for(int i=2;i<f.length;i++){ f[i]=f[i-1]*i; f[i]%=mod; } for(int i=0;i<dp3.length;i++){ for(int j=0;j<dp3[0].length;j++){ for(int k=0;k<dp3[0][0].length;k++){ Arrays.fill(dp3[i][j][k],-1); } } } dp1[0][0]=1; for(int i=0;i<A.length;i++){//a int p=A[i][0],type=A[i][1]; if(type==0){ long newdp[][]=new long[dp1.length][dp1[0].length]; for(int cnt=1;cnt<=x;cnt++){ for(int j=1;j<dp1[0].length;j++){ if(j>=p){ newdp[cnt][j]+=dp1[cnt-1][j-p]; newdp[cnt][j]%=mod; } } } for(int cnt=0;cnt<=x;cnt++){ for(int j=0;j<dp1[0].length;j++){ newdp[cnt][j]+=dp1[cnt][j]; newdp[cnt][j]%=mod; } } dp1=newdp; } } dp2[0][0][0]=1; for(int i=0;i<A.length;i++){//b c int p=A[i][0],type=A[i][1]; if(type!=0){ long newdp[][][]=new long[dp2.length][dp2[0].length][dp2[0][0].length]; for(int a=0;a<dp2.length;a++){ for(int b=0;b<dp2[0].length;b++){ for(int j=0;j<dp2[0][0].length;j++){ if(j>=p){ if(type==1){ if(a-1>=0){ newdp[a][b][j]+=dp2[a-1][b][j-p]; } } else{ if(b-1>=0) { newdp[a][b][j]+=dp2[a][b-1][j-p]; } } } newdp[a][b][j]%=mod; } } } for(int a=0;a<dp2.length;a++){ for(int b=0;b<dp2[0].length;b++){ for(int j=0;j<dp2[0][0].length;j++){ newdp[a][b][j]+=dp2[a][b][j]; newdp[a][b][j]%=mod; } } } dp2=newdp; } } dp3[1][0][0][0]=1; dp3[0][1][0][1]=1; dp3[0][0][1][2]=1; for(int i=0;i<dp3.length;i++){ for(int j=0;j<dp3[0].length;j++){ for(int k=0;k<dp3[0][0].length;k++){ for(x=0;x<dp3[0][0][0].length;x++){ if(dp3[i][j][k][x]==-1){ dfs(i,j,k,x); } } } } } for(int i=0;i<dp3.length;i++){ for(int j=0;j<dp3[0].length;j++){ for(int k=0;k<dp3[0][0].length;k++){ for(int cur=0;cur<3;cur++){ for(int t=0;t<=T;t++){//price int aprice=t; int bcprice=T-t; long cnt1=dp1[i][aprice]; long cnt2=dp2[j][k][bcprice]; long combination=dp3[i][j][k][cur]; ///if(combination==-1)combination=0; long p1=(cnt1*f[i])%mod; long p2=(((f[j]*f[k])%mod)*cnt2)%mod; long p3=(p1*p2)%mod; res+=(p3*combination)%mod; res%=mod; } } } } } //System.out.println(dp2[1][0][2]+" "+dp3[1][1][0][0]); // for(long p[]:dp1){ // System.out.println(Arrays.toString(p)); //} out.println(res); } public long dfs(int a,int b,int c,int cur){ if(a<0||b<0||c<0){ return 0; } if(a==0&&b==0&&c==0){ return 0; } if(dp3[a][b][c][cur]!=-1)return dp3[a][b][c][cur]; long res=0; if(cur==0){ res+=dfs(a-1,b,c,1); res%=mod; res+=dfs(a-1,b,c,2); res%=mod; } else if(cur==1){ res+=dfs(a,b-1,c,0); res%=mod; res+=dfs(a,b-1,c,2); res%=mod; } else{ res+=dfs(a,b,c-1,0); res%=mod; res+=dfs(a,b,c-1,1); res%=mod; } res%=mod; dp3[a][b][c][cur]=res; return res; } } /* ;\ |' \ _ ; : ; / `-. /: : | | ,-.`-. ,': : | \ : `. `. ,'-. : | \ ; ; `-.__,' `-.| \ ; ; ::: ,::'`:. `. \ `-. : ` :. `. \ \ \ , ; ,: (\ \ :., :. ,'o)): ` `-. ,/,' ;' ,::"'`.`---' `. `-._ ,/ : ; '" `;' ,--`. ;/ :; ; ,:' ( ,:) ,.,:. ; ,:., ,-._ `. \""'/ '::' `:'` ,'( \`._____.-'"' ;, ; `. `. `._`-. \\ ;:. ;: `-._`-.\ \`. '`:. : |' `. `\ ) \ -hrr- ` ;: | `--\__,' '` ,' ,-' free bug dog */ /* 5 3 1 1 2 1 2 1 2 1 2 2 */
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> // Don't place your source in a package import javax.swing.*; import java.lang.reflect.Array; import java.text.DecimalFormat; import java.util.*; import java.lang.*; import java.io.*; import java.math.*; import java.util.stream.Stream; // Please name your class Main public class Main { static FastScanner fs=new FastScanner(); static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); public String next() { while (!st.hasMoreElements()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int Int() { return Integer.parseInt(next()); } long Long() { return Long.parseLong(next()); } String Str(){ return next(); } } public static void main (String[] args) throws java.lang.Exception { PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); int T=1; for(int t=0;t<T;t++){ int n=Int(); int k=Int(); int A[][]=new int[n][2]; int a=0,b=0,c=0; for(int i=0;i<A.length;i++){ A[i][0]=Int(); A[i][1]=Int()-1; if(A[i][1]==0)a++; else if(A[i][1]==1)b++; else c++; } Arrays.sort(A,(x,y)->{ return x[0]-y[0]; }); Solution sol=new Solution(out); sol.solution(A,k,a,b,c); } out.close(); } public static int Int(){ return fs.Int(); } public static long Long(){ return fs.Long(); } public static String Str(){ return fs.Str(); } } class Solution{ PrintWriter out; public Solution(PrintWriter out){ this.out=out; } int mod=1000000007; long dp3[][][][]; public void solution(int A[][],int T,int x,int y,int z){ long res=0; int n=A.length; long dp1[][]=new long[x+2][T+1];//a long dp2[][][]=new long[y+2][z+2][T+2];//bc dp3=new long[x+2][y+2][z+2][3]; //init long f[]=new long[n+10]; f[0]=f[1]=1; for(int i=2;i<f.length;i++){ f[i]=f[i-1]*i; f[i]%=mod; } for(int i=0;i<dp3.length;i++){ for(int j=0;j<dp3[0].length;j++){ for(int k=0;k<dp3[0][0].length;k++){ Arrays.fill(dp3[i][j][k],-1); } } } dp1[0][0]=1; for(int i=0;i<A.length;i++){//a int p=A[i][0],type=A[i][1]; if(type==0){ long newdp[][]=new long[dp1.length][dp1[0].length]; for(int cnt=1;cnt<=x;cnt++){ for(int j=1;j<dp1[0].length;j++){ if(j>=p){ newdp[cnt][j]+=dp1[cnt-1][j-p]; newdp[cnt][j]%=mod; } } } for(int cnt=0;cnt<=x;cnt++){ for(int j=0;j<dp1[0].length;j++){ newdp[cnt][j]+=dp1[cnt][j]; newdp[cnt][j]%=mod; } } dp1=newdp; } } dp2[0][0][0]=1; for(int i=0;i<A.length;i++){//b c int p=A[i][0],type=A[i][1]; if(type!=0){ long newdp[][][]=new long[dp2.length][dp2[0].length][dp2[0][0].length]; for(int a=0;a<dp2.length;a++){ for(int b=0;b<dp2[0].length;b++){ for(int j=0;j<dp2[0][0].length;j++){ if(j>=p){ if(type==1){ if(a-1>=0){ newdp[a][b][j]+=dp2[a-1][b][j-p]; } } else{ if(b-1>=0) { newdp[a][b][j]+=dp2[a][b-1][j-p]; } } } newdp[a][b][j]%=mod; } } } for(int a=0;a<dp2.length;a++){ for(int b=0;b<dp2[0].length;b++){ for(int j=0;j<dp2[0][0].length;j++){ newdp[a][b][j]+=dp2[a][b][j]; newdp[a][b][j]%=mod; } } } dp2=newdp; } } dp3[1][0][0][0]=1; dp3[0][1][0][1]=1; dp3[0][0][1][2]=1; for(int i=0;i<dp3.length;i++){ for(int j=0;j<dp3[0].length;j++){ for(int k=0;k<dp3[0][0].length;k++){ for(x=0;x<dp3[0][0][0].length;x++){ if(dp3[i][j][k][x]==-1){ dfs(i,j,k,x); } } } } } for(int i=0;i<dp3.length;i++){ for(int j=0;j<dp3[0].length;j++){ for(int k=0;k<dp3[0][0].length;k++){ for(int cur=0;cur<3;cur++){ for(int t=0;t<=T;t++){//price int aprice=t; int bcprice=T-t; long cnt1=dp1[i][aprice]; long cnt2=dp2[j][k][bcprice]; long combination=dp3[i][j][k][cur]; ///if(combination==-1)combination=0; long p1=(cnt1*f[i])%mod; long p2=(((f[j]*f[k])%mod)*cnt2)%mod; long p3=(p1*p2)%mod; res+=(p3*combination)%mod; res%=mod; } } } } } //System.out.println(dp2[1][0][2]+" "+dp3[1][1][0][0]); // for(long p[]:dp1){ // System.out.println(Arrays.toString(p)); //} out.println(res); } public long dfs(int a,int b,int c,int cur){ if(a<0||b<0||c<0){ return 0; } if(a==0&&b==0&&c==0){ return 0; } if(dp3[a][b][c][cur]!=-1)return dp3[a][b][c][cur]; long res=0; if(cur==0){ res+=dfs(a-1,b,c,1); res%=mod; res+=dfs(a-1,b,c,2); res%=mod; } else if(cur==1){ res+=dfs(a,b-1,c,0); res%=mod; res+=dfs(a,b-1,c,2); res%=mod; } else{ res+=dfs(a,b,c-1,0); res%=mod; res+=dfs(a,b,c-1,1); res%=mod; } res%=mod; dp3[a][b][c][cur]=res; return res; } } /* ;\ |' \ _ ; : ; / `-. /: : | | ,-.`-. ,': : | \ : `. `. ,'-. : | \ ; ; `-.__,' `-.| \ ; ; ::: ,::'`:. `. \ `-. : ` :. `. \ \ \ , ; ,: (\ \ :., :. ,'o)): ` `-. ,/,' ;' ,::"'`.`---' `. `-._ ,/ : ; '" `;' ,--`. ;/ :; ; ,:' ( ,:) ,.,:. ; ,:., ,-._ `. \""'/ '::' `:'` ,'( \`._____.-'"' ;, ; `. `. `._`-. \\ ;:. ;: `-._`-.\ \`. '`:. : |' `. `\ ) \ -hrr- ` ;: | `--\__,' '` ,' ,-' free bug dog */ /* 5 3 1 1 2 1 2 1 2 1 2 2 */ </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> // Don't place your source in a package import javax.swing.*; import java.lang.reflect.Array; import java.text.DecimalFormat; import java.util.*; import java.lang.*; import java.io.*; import java.math.*; import java.util.stream.Stream; // Please name your class Main public class Main { static FastScanner fs=new FastScanner(); static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); public String next() { while (!st.hasMoreElements()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int Int() { return Integer.parseInt(next()); } long Long() { return Long.parseLong(next()); } String Str(){ return next(); } } public static void main (String[] args) throws java.lang.Exception { PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); int T=1; for(int t=0;t<T;t++){ int n=Int(); int k=Int(); int A[][]=new int[n][2]; int a=0,b=0,c=0; for(int i=0;i<A.length;i++){ A[i][0]=Int(); A[i][1]=Int()-1; if(A[i][1]==0)a++; else if(A[i][1]==1)b++; else c++; } Arrays.sort(A,(x,y)->{ return x[0]-y[0]; }); Solution sol=new Solution(out); sol.solution(A,k,a,b,c); } out.close(); } public static int Int(){ return fs.Int(); } public static long Long(){ return fs.Long(); } public static String Str(){ return fs.Str(); } } class Solution{ PrintWriter out; public Solution(PrintWriter out){ this.out=out; } int mod=1000000007; long dp3[][][][]; public void solution(int A[][],int T,int x,int y,int z){ long res=0; int n=A.length; long dp1[][]=new long[x+2][T+1];//a long dp2[][][]=new long[y+2][z+2][T+2];//bc dp3=new long[x+2][y+2][z+2][3]; //init long f[]=new long[n+10]; f[0]=f[1]=1; for(int i=2;i<f.length;i++){ f[i]=f[i-1]*i; f[i]%=mod; } for(int i=0;i<dp3.length;i++){ for(int j=0;j<dp3[0].length;j++){ for(int k=0;k<dp3[0][0].length;k++){ Arrays.fill(dp3[i][j][k],-1); } } } dp1[0][0]=1; for(int i=0;i<A.length;i++){//a int p=A[i][0],type=A[i][1]; if(type==0){ long newdp[][]=new long[dp1.length][dp1[0].length]; for(int cnt=1;cnt<=x;cnt++){ for(int j=1;j<dp1[0].length;j++){ if(j>=p){ newdp[cnt][j]+=dp1[cnt-1][j-p]; newdp[cnt][j]%=mod; } } } for(int cnt=0;cnt<=x;cnt++){ for(int j=0;j<dp1[0].length;j++){ newdp[cnt][j]+=dp1[cnt][j]; newdp[cnt][j]%=mod; } } dp1=newdp; } } dp2[0][0][0]=1; for(int i=0;i<A.length;i++){//b c int p=A[i][0],type=A[i][1]; if(type!=0){ long newdp[][][]=new long[dp2.length][dp2[0].length][dp2[0][0].length]; for(int a=0;a<dp2.length;a++){ for(int b=0;b<dp2[0].length;b++){ for(int j=0;j<dp2[0][0].length;j++){ if(j>=p){ if(type==1){ if(a-1>=0){ newdp[a][b][j]+=dp2[a-1][b][j-p]; } } else{ if(b-1>=0) { newdp[a][b][j]+=dp2[a][b-1][j-p]; } } } newdp[a][b][j]%=mod; } } } for(int a=0;a<dp2.length;a++){ for(int b=0;b<dp2[0].length;b++){ for(int j=0;j<dp2[0][0].length;j++){ newdp[a][b][j]+=dp2[a][b][j]; newdp[a][b][j]%=mod; } } } dp2=newdp; } } dp3[1][0][0][0]=1; dp3[0][1][0][1]=1; dp3[0][0][1][2]=1; for(int i=0;i<dp3.length;i++){ for(int j=0;j<dp3[0].length;j++){ for(int k=0;k<dp3[0][0].length;k++){ for(x=0;x<dp3[0][0][0].length;x++){ if(dp3[i][j][k][x]==-1){ dfs(i,j,k,x); } } } } } for(int i=0;i<dp3.length;i++){ for(int j=0;j<dp3[0].length;j++){ for(int k=0;k<dp3[0][0].length;k++){ for(int cur=0;cur<3;cur++){ for(int t=0;t<=T;t++){//price int aprice=t; int bcprice=T-t; long cnt1=dp1[i][aprice]; long cnt2=dp2[j][k][bcprice]; long combination=dp3[i][j][k][cur]; ///if(combination==-1)combination=0; long p1=(cnt1*f[i])%mod; long p2=(((f[j]*f[k])%mod)*cnt2)%mod; long p3=(p1*p2)%mod; res+=(p3*combination)%mod; res%=mod; } } } } } //System.out.println(dp2[1][0][2]+" "+dp3[1][1][0][0]); // for(long p[]:dp1){ // System.out.println(Arrays.toString(p)); //} out.println(res); } public long dfs(int a,int b,int c,int cur){ if(a<0||b<0||c<0){ return 0; } if(a==0&&b==0&&c==0){ return 0; } if(dp3[a][b][c][cur]!=-1)return dp3[a][b][c][cur]; long res=0; if(cur==0){ res+=dfs(a-1,b,c,1); res%=mod; res+=dfs(a-1,b,c,2); res%=mod; } else if(cur==1){ res+=dfs(a,b-1,c,0); res%=mod; res+=dfs(a,b-1,c,2); res%=mod; } else{ res+=dfs(a,b,c-1,0); res%=mod; res+=dfs(a,b,c-1,1); res%=mod; } res%=mod; dp3[a][b][c][cur]=res; return res; } } /* ;\ |' \ _ ; : ; / `-. /: : | | ,-.`-. ,': : | \ : `. `. ,'-. : | \ ; ; `-.__,' `-.| \ ; ; ::: ,::'`:. `. \ `-. : ` :. `. \ \ \ , ; ,: (\ \ :., :. ,'o)): ` `-. ,/,' ;' ,::"'`.`---' `. `-._ ,/ : ; '" `;' ,--`. ;/ :; ; ,:' ( ,:) ,.,:. ; ,:., ,-._ `. \""'/ '::' `:'` ,'( \`._____.-'"' ;, ; `. `. `._`-. \\ ;:. ;: `-._`-.\ \`. '`:. : |' `. `\ ) \ -hrr- ` ;: | `--\__,' '` ,' ,-' free bug dog */ /* 5 3 1 1 2 1 2 1 2 1 2 2 */ </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
2,435
4,007
3,251
import java.util.Scanner; /* * To change this license header, choose License Headers in Project Properties. * To change this template file, choose Tools | Templates * and open the template in the editor. */ /** * * @author Madi */ public class A630 { public static void main(String[] args) { Scanner sc = new Scanner(System.in); String s = sc.nextLine(); System.out.println("25"); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; /* * To change this license header, choose License Headers in Project Properties. * To change this template file, choose Tools | Templates * and open the template in the editor. */ /** * * @author Madi */ public class A630 { public static void main(String[] args) { Scanner sc = new Scanner(System.in); String s = sc.nextLine(); System.out.println("25"); } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Scanner; /* * To change this license header, choose License Headers in Project Properties. * To change this template file, choose Tools | Templates * and open the template in the editor. */ /** * * @author Madi */ public class A630 { public static void main(String[] args) { Scanner sc = new Scanner(System.in); String s = sc.nextLine(); System.out.println("25"); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
425
3,245
1,972
import java.util.List; import java.util.Scanner; import java.util.Comparator; import java.io.OutputStream; import java.io.IOException; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Collections; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author @zhendeaini6001 */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; Scanner in = new Scanner(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } } class TaskA { class Pair{ public int a; public int b; public Pair(int a, int b) { // TODO Auto-generated constructor stub this.a = a; this.b = b; } } public void solve(int testNumber, Scanner in, PrintWriter out) { int n = in.nextInt(); int k = in.nextInt(); --k; ArrayList<Pair> list = new ArrayList<Pair>(); for (int i = 1; i <= n; ++i){ int num = in.nextInt(); int pen = in.nextInt(); Pair t = new Pair(num, pen); list.add(t); } Collections.sort(list, new Comparator<Pair>(){ public int compare(Pair o1, Pair o2){ if (o1.a != o2.a){ return (o2.a - o1.a); } return (o1.b - o2.b); } }); int res = 1; Pair compare = list.get(k); int i = k - 1; while (i >= 0){ Pair t = list.get(i); if (t.a == compare.a && t.b == compare.b){ --i; ++res; continue; }else{ break; } } i = k + 1; while (i < list.size()){ Pair t = list.get(i); if (t.a == compare.a && t.b == compare.b){ ++res; ++i; continue; }else{ break; } } out.println(res); return; } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.List; import java.util.Scanner; import java.util.Comparator; import java.io.OutputStream; import java.io.IOException; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Collections; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author @zhendeaini6001 */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; Scanner in = new Scanner(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } } class TaskA { class Pair{ public int a; public int b; public Pair(int a, int b) { // TODO Auto-generated constructor stub this.a = a; this.b = b; } } public void solve(int testNumber, Scanner in, PrintWriter out) { int n = in.nextInt(); int k = in.nextInt(); --k; ArrayList<Pair> list = new ArrayList<Pair>(); for (int i = 1; i <= n; ++i){ int num = in.nextInt(); int pen = in.nextInt(); Pair t = new Pair(num, pen); list.add(t); } Collections.sort(list, new Comparator<Pair>(){ public int compare(Pair o1, Pair o2){ if (o1.a != o2.a){ return (o2.a - o1.a); } return (o1.b - o2.b); } }); int res = 1; Pair compare = list.get(k); int i = k - 1; while (i >= 0){ Pair t = list.get(i); if (t.a == compare.a && t.b == compare.b){ --i; ++res; continue; }else{ break; } } i = k + 1; while (i < list.size()){ Pair t = list.get(i); if (t.a == compare.a && t.b == compare.b){ ++res; ++i; continue; }else{ break; } } out.println(res); return; } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.List; import java.util.Scanner; import java.util.Comparator; import java.io.OutputStream; import java.io.IOException; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Collections; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author @zhendeaini6001 */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; Scanner in = new Scanner(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } } class TaskA { class Pair{ public int a; public int b; public Pair(int a, int b) { // TODO Auto-generated constructor stub this.a = a; this.b = b; } } public void solve(int testNumber, Scanner in, PrintWriter out) { int n = in.nextInt(); int k = in.nextInt(); --k; ArrayList<Pair> list = new ArrayList<Pair>(); for (int i = 1; i <= n; ++i){ int num = in.nextInt(); int pen = in.nextInt(); Pair t = new Pair(num, pen); list.add(t); } Collections.sort(list, new Comparator<Pair>(){ public int compare(Pair o1, Pair o2){ if (o1.a != o2.a){ return (o2.a - o1.a); } return (o1.b - o2.b); } }); int res = 1; Pair compare = list.get(k); int i = k - 1; while (i >= 0){ Pair t = list.get(i); if (t.a == compare.a && t.b == compare.b){ --i; ++res; continue; }else{ break; } } i = k + 1; while (i < list.size()){ Pair t = list.get(i); if (t.a == compare.a && t.b == compare.b){ ++res; ++i; continue; }else{ break; } } out.println(res); return; } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
836
1,968
1,367
import java.util.*; public class B { static long sum(long from, long to){ final long d = to - from; return (d*(d + 1))/2 + (d + 1)*from; } static long howMany(long n, long k){ if (n == 1){ return 0; } if (n > (k*(k - 1))/2 + 1){ return -1; } long hi = k - 1; long lo = 1; while (lo < hi){ final long mi = (lo + hi + 1) >> 1; final long sum = sum(mi, k - 1); if (n - 1 - sum < mi){ lo = mi; }else{ hi = mi - 1; } } long res = k - lo; final long sum = sum(lo, k - 1); if (n - 1 - sum > 0){ res++; } return res; } public static void main(String [] args){ try (Scanner s = new Scanner(System.in)){ final long n = s.nextLong(); final long k = s.nextLong(); System.out.println(howMany(n, k)); } } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; public class B { static long sum(long from, long to){ final long d = to - from; return (d*(d + 1))/2 + (d + 1)*from; } static long howMany(long n, long k){ if (n == 1){ return 0; } if (n > (k*(k - 1))/2 + 1){ return -1; } long hi = k - 1; long lo = 1; while (lo < hi){ final long mi = (lo + hi + 1) >> 1; final long sum = sum(mi, k - 1); if (n - 1 - sum < mi){ lo = mi; }else{ hi = mi - 1; } } long res = k - lo; final long sum = sum(lo, k - 1); if (n - 1 - sum > 0){ res++; } return res; } public static void main(String [] args){ try (Scanner s = new Scanner(System.in)){ final long n = s.nextLong(); final long k = s.nextLong(); System.out.println(howMany(n, k)); } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; public class B { static long sum(long from, long to){ final long d = to - from; return (d*(d + 1))/2 + (d + 1)*from; } static long howMany(long n, long k){ if (n == 1){ return 0; } if (n > (k*(k - 1))/2 + 1){ return -1; } long hi = k - 1; long lo = 1; while (lo < hi){ final long mi = (lo + hi + 1) >> 1; final long sum = sum(mi, k - 1); if (n - 1 - sum < mi){ lo = mi; }else{ hi = mi - 1; } } long res = k - lo; final long sum = sum(lo, k - 1); if (n - 1 - sum > 0){ res++; } return res; } public static void main(String [] args){ try (Scanner s = new Scanner(System.in)){ final long n = s.nextLong(); final long k = s.nextLong(); System.out.println(howMany(n, k)); } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
641
1,365
2,597
import java.io.*; import java.util.*; import java.math.BigInteger; import java.util.Map.Entry; import static java.lang.Math.*; public class A extends PrintWriter { void run() { int n = nextInt(); int m = 101; boolean[] c = new boolean[m]; for (int i = 0; i < n; i++) { int v = nextInt(); c[v] = true; } int ans = 0; for (int v = 1; v < m; v++) { if (c[v]) { ++ans; for (int u = v; u < m; u += v) { c[u] = false; } } } println(ans); } boolean skip() { while (hasNext()) { next(); } return true; } int[][] nextMatrix(int n, int m) { int[][] matrix = new int[n][m]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) matrix[i][j] = nextInt(); return matrix; } String next() { while (!tokenizer.hasMoreTokens()) tokenizer = new StringTokenizer(nextLine()); return tokenizer.nextToken(); } boolean hasNext() { while (!tokenizer.hasMoreTokens()) { String line = nextLine(); if (line == null) { return false; } tokenizer = new StringTokenizer(line); } return true; } int[] nextArray(int n) { int[] array = new int[n]; for (int i = 0; i < n; i++) { array[i] = nextInt(); } return array; } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { try { return reader.readLine(); } catch (IOException err) { return null; } } public A(OutputStream outputStream) { super(outputStream); } static BufferedReader reader; static StringTokenizer tokenizer = new StringTokenizer(""); static Random rnd = new Random(); static boolean OJ; public static void main(String[] args) throws IOException { OJ = System.getProperty("ONLINE_JUDGE") != null; A solution = new A(System.out); if (OJ) { reader = new BufferedReader(new InputStreamReader(System.in)); solution.run(); } else { reader = new BufferedReader(new FileReader(new File(A.class.getName() + ".txt"))); long timeout = System.currentTimeMillis(); while (solution.hasNext()) { solution.run(); solution.println(); solution.println("----------------------------------"); } solution.println("time: " + (System.currentTimeMillis() - timeout)); } solution.close(); reader.close(); } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; import java.math.BigInteger; import java.util.Map.Entry; import static java.lang.Math.*; public class A extends PrintWriter { void run() { int n = nextInt(); int m = 101; boolean[] c = new boolean[m]; for (int i = 0; i < n; i++) { int v = nextInt(); c[v] = true; } int ans = 0; for (int v = 1; v < m; v++) { if (c[v]) { ++ans; for (int u = v; u < m; u += v) { c[u] = false; } } } println(ans); } boolean skip() { while (hasNext()) { next(); } return true; } int[][] nextMatrix(int n, int m) { int[][] matrix = new int[n][m]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) matrix[i][j] = nextInt(); return matrix; } String next() { while (!tokenizer.hasMoreTokens()) tokenizer = new StringTokenizer(nextLine()); return tokenizer.nextToken(); } boolean hasNext() { while (!tokenizer.hasMoreTokens()) { String line = nextLine(); if (line == null) { return false; } tokenizer = new StringTokenizer(line); } return true; } int[] nextArray(int n) { int[] array = new int[n]; for (int i = 0; i < n; i++) { array[i] = nextInt(); } return array; } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { try { return reader.readLine(); } catch (IOException err) { return null; } } public A(OutputStream outputStream) { super(outputStream); } static BufferedReader reader; static StringTokenizer tokenizer = new StringTokenizer(""); static Random rnd = new Random(); static boolean OJ; public static void main(String[] args) throws IOException { OJ = System.getProperty("ONLINE_JUDGE") != null; A solution = new A(System.out); if (OJ) { reader = new BufferedReader(new InputStreamReader(System.in)); solution.run(); } else { reader = new BufferedReader(new FileReader(new File(A.class.getName() + ".txt"))); long timeout = System.currentTimeMillis(); while (solution.hasNext()) { solution.run(); solution.println(); solution.println("----------------------------------"); } solution.println("time: " + (System.currentTimeMillis() - timeout)); } solution.close(); reader.close(); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; import java.math.BigInteger; import java.util.Map.Entry; import static java.lang.Math.*; public class A extends PrintWriter { void run() { int n = nextInt(); int m = 101; boolean[] c = new boolean[m]; for (int i = 0; i < n; i++) { int v = nextInt(); c[v] = true; } int ans = 0; for (int v = 1; v < m; v++) { if (c[v]) { ++ans; for (int u = v; u < m; u += v) { c[u] = false; } } } println(ans); } boolean skip() { while (hasNext()) { next(); } return true; } int[][] nextMatrix(int n, int m) { int[][] matrix = new int[n][m]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) matrix[i][j] = nextInt(); return matrix; } String next() { while (!tokenizer.hasMoreTokens()) tokenizer = new StringTokenizer(nextLine()); return tokenizer.nextToken(); } boolean hasNext() { while (!tokenizer.hasMoreTokens()) { String line = nextLine(); if (line == null) { return false; } tokenizer = new StringTokenizer(line); } return true; } int[] nextArray(int n) { int[] array = new int[n]; for (int i = 0; i < n; i++) { array[i] = nextInt(); } return array; } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { try { return reader.readLine(); } catch (IOException err) { return null; } } public A(OutputStream outputStream) { super(outputStream); } static BufferedReader reader; static StringTokenizer tokenizer = new StringTokenizer(""); static Random rnd = new Random(); static boolean OJ; public static void main(String[] args) throws IOException { OJ = System.getProperty("ONLINE_JUDGE") != null; A solution = new A(System.out); if (OJ) { reader = new BufferedReader(new InputStreamReader(System.in)); solution.run(); } else { reader = new BufferedReader(new FileReader(new File(A.class.getName() + ".txt"))); long timeout = System.currentTimeMillis(); while (solution.hasNext()) { solution.run(); solution.println(); solution.println("----------------------------------"); } solution.println("time: " + (System.currentTimeMillis() - timeout)); } solution.close(); reader.close(); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
960
2,591
2,550
import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class D { private void solve() { br = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); int n = nextInt(), m = nextInt(); boolean[][] used = new boolean[n + 1][m + 1]; for (int j = 1; j <= (m + 1) / 2; j++) { int x1 = 1, x2 = n; for (int i = 1; i <= n; i++) { if (x1 <= n && !used[x1][j]) { out.println(x1 + " " + j); used[x1++][j] = true; } if (x2 > 0 && !used[x2][m - j + 1]) { out.println(x2 + " " + (m - j + 1)); used[x2--][m - j + 1] = true; } } } out.close(); } public static void main(String[] args) { new D().solve(); } private BufferedReader br; private StringTokenizer st; private PrintWriter out; private String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception e) { throw new RuntimeException(e); } } return st.nextToken(); } private int nextInt() { return Integer.parseInt(next()); } private long nextLong() { return Long.parseLong(next()); } private double nextDouble() { return Double.parseDouble(next()); } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class D { private void solve() { br = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); int n = nextInt(), m = nextInt(); boolean[][] used = new boolean[n + 1][m + 1]; for (int j = 1; j <= (m + 1) / 2; j++) { int x1 = 1, x2 = n; for (int i = 1; i <= n; i++) { if (x1 <= n && !used[x1][j]) { out.println(x1 + " " + j); used[x1++][j] = true; } if (x2 > 0 && !used[x2][m - j + 1]) { out.println(x2 + " " + (m - j + 1)); used[x2--][m - j + 1] = true; } } } out.close(); } public static void main(String[] args) { new D().solve(); } private BufferedReader br; private StringTokenizer st; private PrintWriter out; private String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception e) { throw new RuntimeException(e); } } return st.nextToken(); } private int nextInt() { return Integer.parseInt(next()); } private long nextLong() { return Long.parseLong(next()); } private double nextDouble() { return Double.parseDouble(next()); } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class D { private void solve() { br = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); int n = nextInt(), m = nextInt(); boolean[][] used = new boolean[n + 1][m + 1]; for (int j = 1; j <= (m + 1) / 2; j++) { int x1 = 1, x2 = n; for (int i = 1; i <= n; i++) { if (x1 <= n && !used[x1][j]) { out.println(x1 + " " + j); used[x1++][j] = true; } if (x2 > 0 && !used[x2][m - j + 1]) { out.println(x2 + " " + (m - j + 1)); used[x2--][m - j + 1] = true; } } } out.close(); } public static void main(String[] args) { new D().solve(); } private BufferedReader br; private StringTokenizer st; private PrintWriter out; private String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception e) { throw new RuntimeException(e); } } return st.nextToken(); } private int nextInt() { return Integer.parseInt(next()); } private long nextLong() { return Long.parseLong(next()); } private double nextDouble() { return Double.parseDouble(next()); } } </CODE> <EVALUATION_RUBRIC> - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
704
2,544
4,231
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.Scanner; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; Scanner in = new Scanner(inputStream); PrintWriter out = new PrintWriter(outputStream); E2VrashayaStolbciUslozhnennayaVersiya solver = new E2VrashayaStolbciUslozhnennayaVersiya(); solver.solve(1, in, out); out.close(); } static class E2VrashayaStolbciUslozhnennayaVersiya { public void solve(int testNumber, Scanner in, PrintWriter out) { int tn = in.nextInt(); for (int t = 0; t < tn; t++) { int n = in.nextInt(); int m = in.nextInt(); Col[] a = new Col[m]; for (int i = 0; i < m; i++) { a[i] = new Col(n); } for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { a[j].a[i] = in.nextInt(); if (a[j].a[i] > a[j].max) { a[j].max = a[j].a[i]; } } } Arrays.sort(a, (o1, o2) -> o2.max - o1.max); if (m > n) { m = n; } for (int i = 0; i < m; i++) { a[i].calcMask(); } int[][] dp = new int[m + 1][1 << n]; Arrays.fill(dp[0], -1); dp[0][0] = 0; for (int i = 0; i < m; i++) { for (int msk = 0; msk < (1 << n); msk++) { dp[i + 1][msk] = dp[i][msk]; for (int sub = msk; sub > 0; sub = (sub - 1) & msk) { int v = dp[i][msk ^ sub] + a[i].mask[sub]; if (v > dp[i + 1][msk]) { dp[i + 1][msk] = v; } } } } out.println(dp[m][(1 << n) - 1]); } } class Col { int n; int[] a; int[] mask; int max; public Col(int n) { this.n = n; a = new int[n]; } void calcMask() { mask = new int[1 << n]; for (int i = 0; i < (1 << n); i++) { for (int j = 0; j < n; j++) { int sum = 0; for (int k = 0; k < n; k++) { if (((1 << k) & i) != 0) { sum += a[(j + k) % n]; } } if (sum > mask[i]) { mask[i] = sum; } } } } } } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.Scanner; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; Scanner in = new Scanner(inputStream); PrintWriter out = new PrintWriter(outputStream); E2VrashayaStolbciUslozhnennayaVersiya solver = new E2VrashayaStolbciUslozhnennayaVersiya(); solver.solve(1, in, out); out.close(); } static class E2VrashayaStolbciUslozhnennayaVersiya { public void solve(int testNumber, Scanner in, PrintWriter out) { int tn = in.nextInt(); for (int t = 0; t < tn; t++) { int n = in.nextInt(); int m = in.nextInt(); Col[] a = new Col[m]; for (int i = 0; i < m; i++) { a[i] = new Col(n); } for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { a[j].a[i] = in.nextInt(); if (a[j].a[i] > a[j].max) { a[j].max = a[j].a[i]; } } } Arrays.sort(a, (o1, o2) -> o2.max - o1.max); if (m > n) { m = n; } for (int i = 0; i < m; i++) { a[i].calcMask(); } int[][] dp = new int[m + 1][1 << n]; Arrays.fill(dp[0], -1); dp[0][0] = 0; for (int i = 0; i < m; i++) { for (int msk = 0; msk < (1 << n); msk++) { dp[i + 1][msk] = dp[i][msk]; for (int sub = msk; sub > 0; sub = (sub - 1) & msk) { int v = dp[i][msk ^ sub] + a[i].mask[sub]; if (v > dp[i + 1][msk]) { dp[i + 1][msk] = v; } } } } out.println(dp[m][(1 << n) - 1]); } } class Col { int n; int[] a; int[] mask; int max; public Col(int n) { this.n = n; a = new int[n]; } void calcMask() { mask = new int[1 << n]; for (int i = 0; i < (1 << n); i++) { for (int j = 0; j < n; j++) { int sum = 0; for (int k = 0; k < n; k++) { if (((1 << k) & i) != 0) { sum += a[(j + k) % n]; } } if (sum > mask[i]) { mask[i] = sum; } } } } } } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.Scanner; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; Scanner in = new Scanner(inputStream); PrintWriter out = new PrintWriter(outputStream); E2VrashayaStolbciUslozhnennayaVersiya solver = new E2VrashayaStolbciUslozhnennayaVersiya(); solver.solve(1, in, out); out.close(); } static class E2VrashayaStolbciUslozhnennayaVersiya { public void solve(int testNumber, Scanner in, PrintWriter out) { int tn = in.nextInt(); for (int t = 0; t < tn; t++) { int n = in.nextInt(); int m = in.nextInt(); Col[] a = new Col[m]; for (int i = 0; i < m; i++) { a[i] = new Col(n); } for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { a[j].a[i] = in.nextInt(); if (a[j].a[i] > a[j].max) { a[j].max = a[j].a[i]; } } } Arrays.sort(a, (o1, o2) -> o2.max - o1.max); if (m > n) { m = n; } for (int i = 0; i < m; i++) { a[i].calcMask(); } int[][] dp = new int[m + 1][1 << n]; Arrays.fill(dp[0], -1); dp[0][0] = 0; for (int i = 0; i < m; i++) { for (int msk = 0; msk < (1 << n); msk++) { dp[i + 1][msk] = dp[i][msk]; for (int sub = msk; sub > 0; sub = (sub - 1) & msk) { int v = dp[i][msk ^ sub] + a[i].mask[sub]; if (v > dp[i + 1][msk]) { dp[i + 1][msk] = v; } } } } out.println(dp[m][(1 << n) - 1]); } } class Col { int n; int[] a; int[] mask; int max; public Col(int n) { this.n = n; a = new int[n]; } void calcMask() { mask = new int[1 << n]; for (int i = 0; i < (1 << n); i++) { for (int j = 0; j < n; j++) { int sum = 0; for (int k = 0; k < n; k++) { if (((1 << k) & i) != 0) { sum += a[(j + k) % n]; } } if (sum > mask[i]) { mask[i] = sum; } } } } } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,119
4,220
4,016
// https://codeforces.com/contest/1185/submission/55800229 (rainboy) import java.io.*; import java.util.*; public class CF1185G2 { static final int MD = 1000000007; static int[][] solve1(int[] aa, int t, int n) { int[][] da = new int[t + 1][n + 1]; da[0][0] = 1; for (int i = 0; i < n; i++) { int a = aa[i]; for (int s = t - 1; s >= 0; s--) for (int m = 0; m < n; m++) { int x = da[s][m]; if (x != 0) { int s_ = s + a; if (s_ <= t) da[s_][m + 1] = (da[s_][m + 1] + x) % MD; } } } return da; } static int[][][] solve2(int[] aa, int[] bb, int t, int na, int nb) { int[][] da = solve1(aa, t, na); int[][][] dab = new int[t + 1][na + 1][nb + 1]; for (int s = 0; s <= t; s++) for (int ma = 0; ma <= na; ma++) dab[s][ma][0] = da[s][ma]; for (int i = 0; i < nb; i++) { int b = bb[i]; for (int s = t - 1; s >= 0; s--) for (int ma = 0; ma <= na; ma++) for (int mb = 0; mb < nb; mb++) { int x = dab[s][ma][mb]; if (x != 0) { int s_ = s + b; if (s_ <= t) dab[s_][ma][mb + 1] = (dab[s_][ma][mb + 1] + x) % MD; } } } return dab; } static int[][][] init(int n, int na, int nb, int nc) { int[][][] dp = new int[na + 1][nb + 1][nc + 1]; int[][][][] dq = new int[na + 1][nb + 1][nc + 1][3]; for (int ma = 0; ma <= na; ma++) for (int mb = 0; mb <= nb; mb++) for (int mc = 0; mc <= nc; mc++) if (ma == 0 && mb == 0 && mc == 0) { dp[ma][mb][mc] = 1; dq[ma][mb][mc][0] = dq[ma][mb][mc][1] = dq[ma][mb][mc][2] = 1; } else { int x0 = ma > 0 ? (int) ((long) dq[ma - 1][mb][mc][0] * ma % MD) : 0; int x1 = mb > 0 ? (int) ((long) dq[ma][mb - 1][mc][1] * mb % MD) : 0; int x2 = mc > 0 ? (int) ((long) dq[ma][mb][mc - 1][2] * mc % MD) : 0; dp[ma][mb][mc] = (int) (((long) x0 + x1 + x2) % MD); dq[ma][mb][mc][0] = (x1 + x2) % MD; dq[ma][mb][mc][1] = (x2 + x0) % MD; dq[ma][mb][mc][2] = (x0 + x1) % MD; } return dp; } public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); int t = Integer.parseInt(st.nextToken()); int[] aa = new int[n]; int[] bb = new int[n]; int[] cc = new int[n]; int na = 0, nb = 0, nc = 0; for (int i = 0; i < n; i++) { st = new StringTokenizer(br.readLine()); int a = Integer.parseInt(st.nextToken()); int g = Integer.parseInt(st.nextToken()); if (g == 1) aa[na++] = a; else if (g == 2) bb[nb++] = a; else cc[nc++] = a; } int[][][] dp = init(n, na, nb, nc); int[][][] dab = solve2(aa, bb, t, na, nb); int[][] dc = solve1(cc, t, nc); int ans = 0; for (int tab = 0; tab <= t; tab++) { int tc = t - tab; for (int ma = 0; ma <= na; ma++) for (int mb = 0; mb <= nb; mb++) { int xab = dab[tab][ma][mb]; if (xab == 0) continue; for (int mc = 0; mc <= nc; mc++) { int xc = dc[tc][mc]; if (xc == 0) continue; ans = (int) ((ans + (long) xab * xc % MD * dp[ma][mb][mc]) % MD); } } } System.out.println(ans); } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> // https://codeforces.com/contest/1185/submission/55800229 (rainboy) import java.io.*; import java.util.*; public class CF1185G2 { static final int MD = 1000000007; static int[][] solve1(int[] aa, int t, int n) { int[][] da = new int[t + 1][n + 1]; da[0][0] = 1; for (int i = 0; i < n; i++) { int a = aa[i]; for (int s = t - 1; s >= 0; s--) for (int m = 0; m < n; m++) { int x = da[s][m]; if (x != 0) { int s_ = s + a; if (s_ <= t) da[s_][m + 1] = (da[s_][m + 1] + x) % MD; } } } return da; } static int[][][] solve2(int[] aa, int[] bb, int t, int na, int nb) { int[][] da = solve1(aa, t, na); int[][][] dab = new int[t + 1][na + 1][nb + 1]; for (int s = 0; s <= t; s++) for (int ma = 0; ma <= na; ma++) dab[s][ma][0] = da[s][ma]; for (int i = 0; i < nb; i++) { int b = bb[i]; for (int s = t - 1; s >= 0; s--) for (int ma = 0; ma <= na; ma++) for (int mb = 0; mb < nb; mb++) { int x = dab[s][ma][mb]; if (x != 0) { int s_ = s + b; if (s_ <= t) dab[s_][ma][mb + 1] = (dab[s_][ma][mb + 1] + x) % MD; } } } return dab; } static int[][][] init(int n, int na, int nb, int nc) { int[][][] dp = new int[na + 1][nb + 1][nc + 1]; int[][][][] dq = new int[na + 1][nb + 1][nc + 1][3]; for (int ma = 0; ma <= na; ma++) for (int mb = 0; mb <= nb; mb++) for (int mc = 0; mc <= nc; mc++) if (ma == 0 && mb == 0 && mc == 0) { dp[ma][mb][mc] = 1; dq[ma][mb][mc][0] = dq[ma][mb][mc][1] = dq[ma][mb][mc][2] = 1; } else { int x0 = ma > 0 ? (int) ((long) dq[ma - 1][mb][mc][0] * ma % MD) : 0; int x1 = mb > 0 ? (int) ((long) dq[ma][mb - 1][mc][1] * mb % MD) : 0; int x2 = mc > 0 ? (int) ((long) dq[ma][mb][mc - 1][2] * mc % MD) : 0; dp[ma][mb][mc] = (int) (((long) x0 + x1 + x2) % MD); dq[ma][mb][mc][0] = (x1 + x2) % MD; dq[ma][mb][mc][1] = (x2 + x0) % MD; dq[ma][mb][mc][2] = (x0 + x1) % MD; } return dp; } public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); int t = Integer.parseInt(st.nextToken()); int[] aa = new int[n]; int[] bb = new int[n]; int[] cc = new int[n]; int na = 0, nb = 0, nc = 0; for (int i = 0; i < n; i++) { st = new StringTokenizer(br.readLine()); int a = Integer.parseInt(st.nextToken()); int g = Integer.parseInt(st.nextToken()); if (g == 1) aa[na++] = a; else if (g == 2) bb[nb++] = a; else cc[nc++] = a; } int[][][] dp = init(n, na, nb, nc); int[][][] dab = solve2(aa, bb, t, na, nb); int[][] dc = solve1(cc, t, nc); int ans = 0; for (int tab = 0; tab <= t; tab++) { int tc = t - tab; for (int ma = 0; ma <= na; ma++) for (int mb = 0; mb <= nb; mb++) { int xab = dab[tab][ma][mb]; if (xab == 0) continue; for (int mc = 0; mc <= nc; mc++) { int xc = dc[tc][mc]; if (xc == 0) continue; ans = (int) ((ans + (long) xab * xc % MD * dp[ma][mb][mc]) % MD); } } } System.out.println(ans); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> // https://codeforces.com/contest/1185/submission/55800229 (rainboy) import java.io.*; import java.util.*; public class CF1185G2 { static final int MD = 1000000007; static int[][] solve1(int[] aa, int t, int n) { int[][] da = new int[t + 1][n + 1]; da[0][0] = 1; for (int i = 0; i < n; i++) { int a = aa[i]; for (int s = t - 1; s >= 0; s--) for (int m = 0; m < n; m++) { int x = da[s][m]; if (x != 0) { int s_ = s + a; if (s_ <= t) da[s_][m + 1] = (da[s_][m + 1] + x) % MD; } } } return da; } static int[][][] solve2(int[] aa, int[] bb, int t, int na, int nb) { int[][] da = solve1(aa, t, na); int[][][] dab = new int[t + 1][na + 1][nb + 1]; for (int s = 0; s <= t; s++) for (int ma = 0; ma <= na; ma++) dab[s][ma][0] = da[s][ma]; for (int i = 0; i < nb; i++) { int b = bb[i]; for (int s = t - 1; s >= 0; s--) for (int ma = 0; ma <= na; ma++) for (int mb = 0; mb < nb; mb++) { int x = dab[s][ma][mb]; if (x != 0) { int s_ = s + b; if (s_ <= t) dab[s_][ma][mb + 1] = (dab[s_][ma][mb + 1] + x) % MD; } } } return dab; } static int[][][] init(int n, int na, int nb, int nc) { int[][][] dp = new int[na + 1][nb + 1][nc + 1]; int[][][][] dq = new int[na + 1][nb + 1][nc + 1][3]; for (int ma = 0; ma <= na; ma++) for (int mb = 0; mb <= nb; mb++) for (int mc = 0; mc <= nc; mc++) if (ma == 0 && mb == 0 && mc == 0) { dp[ma][mb][mc] = 1; dq[ma][mb][mc][0] = dq[ma][mb][mc][1] = dq[ma][mb][mc][2] = 1; } else { int x0 = ma > 0 ? (int) ((long) dq[ma - 1][mb][mc][0] * ma % MD) : 0; int x1 = mb > 0 ? (int) ((long) dq[ma][mb - 1][mc][1] * mb % MD) : 0; int x2 = mc > 0 ? (int) ((long) dq[ma][mb][mc - 1][2] * mc % MD) : 0; dp[ma][mb][mc] = (int) (((long) x0 + x1 + x2) % MD); dq[ma][mb][mc][0] = (x1 + x2) % MD; dq[ma][mb][mc][1] = (x2 + x0) % MD; dq[ma][mb][mc][2] = (x0 + x1) % MD; } return dp; } public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); int t = Integer.parseInt(st.nextToken()); int[] aa = new int[n]; int[] bb = new int[n]; int[] cc = new int[n]; int na = 0, nb = 0, nc = 0; for (int i = 0; i < n; i++) { st = new StringTokenizer(br.readLine()); int a = Integer.parseInt(st.nextToken()); int g = Integer.parseInt(st.nextToken()); if (g == 1) aa[na++] = a; else if (g == 2) bb[nb++] = a; else cc[nc++] = a; } int[][][] dp = init(n, na, nb, nc); int[][][] dab = solve2(aa, bb, t, na, nb); int[][] dc = solve1(cc, t, nc); int ans = 0; for (int tab = 0; tab <= t; tab++) { int tc = t - tab; for (int ma = 0; ma <= na; ma++) for (int mb = 0; mb <= nb; mb++) { int xab = dab[tab][ma][mb]; if (xab == 0) continue; for (int mc = 0; mc <= nc; mc++) { int xc = dc[tc][mc]; if (xc == 0) continue; ans = (int) ((ans + (long) xab * xc % MD * dp[ma][mb][mc]) % MD); } } } System.out.println(ans); } } </CODE> <EVALUATION_RUBRIC> - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,644
4,005
365
import java.util.*; public class Test { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n= sc.nextInt(); int x= (int)Math.sqrt(n) ; int a[] = new int[n+5]; for(int i=1,o=n,j;i<=n;i+=x) for(j=(int)Math.min(i+x-1,n);j>=i;a[j--]=o--); for(int i=1;i<=n;i++)System.out.print(a[i]+" "); System.out.println(); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; public class Test { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n= sc.nextInt(); int x= (int)Math.sqrt(n) ; int a[] = new int[n+5]; for(int i=1,o=n,j;i<=n;i+=x) for(j=(int)Math.min(i+x-1,n);j>=i;a[j--]=o--); for(int i=1;i<=n;i++)System.out.print(a[i]+" "); System.out.println(); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; public class Test { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n= sc.nextInt(); int x= (int)Math.sqrt(n) ; int a[] = new int[n+5]; for(int i=1,o=n,j;i<=n;i+=x) for(j=(int)Math.min(i+x-1,n);j>=i;a[j--]=o--); for(int i=1;i<=n;i++)System.out.print(a[i]+" "); System.out.println(); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
444
364
513
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; /** * * @author Haya */ public class CommentaryBoxes { public static void main(String[] args) { FastReader in = new FastReader(); long n = in.nextLong(); long m = in.nextLong(); long a = in.nextLong(); long b = in.nextLong(); long total = 0; long val =(n%m); if (n%m != 0){ long x = (val)*b; long y = (m-val)*a; total = Math.min(x, y); } System.out.println(Math.abs(total)); } public static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String string = ""; try { string = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return string; } } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; /** * * @author Haya */ public class CommentaryBoxes { public static void main(String[] args) { FastReader in = new FastReader(); long n = in.nextLong(); long m = in.nextLong(); long a = in.nextLong(); long b = in.nextLong(); long total = 0; long val =(n%m); if (n%m != 0){ long x = (val)*b; long y = (m-val)*a; total = Math.min(x, y); } System.out.println(Math.abs(total)); } public static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String string = ""; try { string = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return string; } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; /** * * @author Haya */ public class CommentaryBoxes { public static void main(String[] args) { FastReader in = new FastReader(); long n = in.nextLong(); long m = in.nextLong(); long a = in.nextLong(); long b = in.nextLong(); long total = 0; long val =(n%m); if (n%m != 0){ long x = (val)*b; long y = (m-val)*a; total = Math.min(x, y); } System.out.println(Math.abs(total)); } public static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String string = ""; try { string = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return string; } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
654
512
3,184
import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Map; import java.util.StringTokenizer; import java.util.TreeMap; public class A { private static BufferedReader in; private static StringTokenizer st; private static PrintWriter out; public static void main(String[] args) throws NumberFormatException, IOException { in = new BufferedReader(new InputStreamReader(System.in)); st = new StringTokenizer(""); out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); int n = nextInt(); int max = n; max = Math.max(max, n / 10); max = Math.max(max, (n / 100) * 10 + n % 10); System.out.println(max); } static String next() throws IOException{ while(!st.hasMoreTokens()){ st = new StringTokenizer(in.readLine()); } return st.nextToken(); } static int nextInt() throws NumberFormatException, IOException{ return Integer.parseInt(next()); } static long nextLong() throws NumberFormatException, IOException{ return Long.parseLong(next()); } static double nextDouble() throws NumberFormatException, IOException{ return Double.parseDouble(next()); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Map; import java.util.StringTokenizer; import java.util.TreeMap; public class A { private static BufferedReader in; private static StringTokenizer st; private static PrintWriter out; public static void main(String[] args) throws NumberFormatException, IOException { in = new BufferedReader(new InputStreamReader(System.in)); st = new StringTokenizer(""); out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); int n = nextInt(); int max = n; max = Math.max(max, n / 10); max = Math.max(max, (n / 100) * 10 + n % 10); System.out.println(max); } static String next() throws IOException{ while(!st.hasMoreTokens()){ st = new StringTokenizer(in.readLine()); } return st.nextToken(); } static int nextInt() throws NumberFormatException, IOException{ return Integer.parseInt(next()); } static long nextLong() throws NumberFormatException, IOException{ return Long.parseLong(next()); } static double nextDouble() throws NumberFormatException, IOException{ return Double.parseDouble(next()); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Map; import java.util.StringTokenizer; import java.util.TreeMap; public class A { private static BufferedReader in; private static StringTokenizer st; private static PrintWriter out; public static void main(String[] args) throws NumberFormatException, IOException { in = new BufferedReader(new InputStreamReader(System.in)); st = new StringTokenizer(""); out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); int n = nextInt(); int max = n; max = Math.max(max, n / 10); max = Math.max(max, (n / 100) * 10 + n % 10); System.out.println(max); } static String next() throws IOException{ while(!st.hasMoreTokens()){ st = new StringTokenizer(in.readLine()); } return st.nextToken(); } static int nextInt() throws NumberFormatException, IOException{ return Integer.parseInt(next()); } static long nextLong() throws NumberFormatException, IOException{ return Long.parseLong(next()); } static double nextDouble() throws NumberFormatException, IOException{ return Double.parseDouble(next()); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
627
3,178
113
import java.util.*; public class helloWorld { public static void main(String[] args) { Scanner in = new Scanner(System.in); int a = in.nextInt(); int b = in.nextInt(); int c = in.nextInt(); int n = in.nextInt(); int ans = n - (a + b - c); if(ans < 1 || a >= n || b >= n || c > a || c > b) ans = -1; System.out.println(ans); in.close(); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; public class helloWorld { public static void main(String[] args) { Scanner in = new Scanner(System.in); int a = in.nextInt(); int b = in.nextInt(); int c = in.nextInt(); int n = in.nextInt(); int ans = n - (a + b - c); if(ans < 1 || a >= n || b >= n || c > a || c > b) ans = -1; System.out.println(ans); in.close(); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; public class helloWorld { public static void main(String[] args) { Scanner in = new Scanner(System.in); int a = in.nextInt(); int b = in.nextInt(); int c = in.nextInt(); int n = in.nextInt(); int ans = n - (a + b - c); if(ans < 1 || a >= n || b >= n || c > a || c > b) ans = -1; System.out.println(ans); in.close(); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
448
113
2,911
import java.io.BufferedReader; import java.io.OutputStream; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author Anirudh Rayabharam ([email protected]) */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } } class TaskA { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); if (n % 2 == 0) { out.println("4 " + (n - 4)); } else { out.println("9 " + (n - 9)); } } } class InputReader { public BufferedReader reader; private int tokenCount, nextTokenIndex; private String[] tokens; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream)); tokenCount = nextTokenIndex = 0; } public String next() { String nextLine; if (nextTokenIndex == tokenCount) { try { nextLine = reader.readLine(); nextTokenIndex = 0; tokens = nextLine.split("\\s"); tokenCount = tokens.length; } catch (IOException e) { throw new RuntimeException(e); } } return tokens[nextTokenIndex++]; } public int nextInt() { return Integer.parseInt(next()); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.OutputStream; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author Anirudh Rayabharam ([email protected]) */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } } class TaskA { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); if (n % 2 == 0) { out.println("4 " + (n - 4)); } else { out.println("9 " + (n - 9)); } } } class InputReader { public BufferedReader reader; private int tokenCount, nextTokenIndex; private String[] tokens; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream)); tokenCount = nextTokenIndex = 0; } public String next() { String nextLine; if (nextTokenIndex == tokenCount) { try { nextLine = reader.readLine(); nextTokenIndex = 0; tokens = nextLine.split("\\s"); tokenCount = tokens.length; } catch (IOException e) { throw new RuntimeException(e); } } return tokens[nextTokenIndex++]; } public int nextInt() { return Integer.parseInt(next()); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.OutputStream; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author Anirudh Rayabharam ([email protected]) */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } } class TaskA { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); if (n % 2 == 0) { out.println("4 " + (n - 4)); } else { out.println("9 " + (n - 9)); } } } class InputReader { public BufferedReader reader; private int tokenCount, nextTokenIndex; private String[] tokens; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream)); tokenCount = nextTokenIndex = 0; } public String next() { String nextLine; if (nextTokenIndex == tokenCount) { try { nextLine = reader.readLine(); nextTokenIndex = 0; tokens = nextLine.split("\\s"); tokenCount = tokens.length; } catch (IOException e) { throw new RuntimeException(e); } } return tokens[nextTokenIndex++]; } public int nextInt() { return Integer.parseInt(next()); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
723
2,905
3,792
// Author : RegalBeast import java.io.*; import java.util.*; public class Main { static final FastReader FR = new FastReader(); static final PrintWriter PW = new PrintWriter(new OutputStreamWriter(System.out)); public static void main(String[] args) { StringBuilder solution = new StringBuilder(); int rows = FR.nextInt(); int cols = FR.nextInt(); int moves = FR.nextInt(); List<List<Integer>> horizontalEdgeWeights = new ArrayList<List<Integer>>(rows); for (int r = 0; r < rows; r++) { horizontalEdgeWeights.add(new ArrayList<Integer>(cols-1)); for (int c = 0; c < cols - 1; c++) { horizontalEdgeWeights.get(r).add(FR.nextInt()); } } List<List<Integer>> verticalEdgeWeights = new ArrayList<List<Integer>>(rows-1); for (int r = 0; r < rows - 1; r++) { verticalEdgeWeights.add(new ArrayList<Integer>(cols)); for (int c = 0; c < cols; c++) { verticalEdgeWeights.get(r).add(FR.nextInt()); } } List<List<Integer>> result = getResult(rows, cols, moves, horizontalEdgeWeights, verticalEdgeWeights); for (int r = 0; r < rows; r++) { for (int c = 0; c < cols; c++) { int value = (result != null ? result.get(r).get(c) : -1); solution.append(value + " "); } solution.append("\n"); } PW.print(solution.toString()); PW.close(); } static List<List<Integer>> getResult(int rows, int cols, int moves, List<List<Integer>> horizontalEdgeWeights, List<List<Integer>> verticalEdgeWeights) { if ((moves & 1) == 1) { return null; } int mid = moves >> 1; List<List<List<Integer>>> minForDistance = new ArrayList<List<List<Integer>>>(rows); for (int r = 0; r < rows; r++) { minForDistance.add(new ArrayList<List<Integer>>(cols)); for (int c = 0; c < cols; c++) { minForDistance.get(r).add(new ArrayList<Integer>(Collections.nCopies(mid+1, Integer.MAX_VALUE))); minForDistance.get(r).get(c).set(0, 0); } } for (int m = 1; m <= mid; m++) { for (int r = 0; r < rows; r++) { for (int c = 0; c < cols; c++) { int minBoredom = minForDistance.get(r).get(c).get(m); if (r > 0) { if (minForDistance.get(r-1).get(c).get(m-1) < Integer.MAX_VALUE) { int candidateBoredom = minForDistance.get(r-1).get(c).get(m-1) + verticalEdgeWeights.get(r-1).get(c); minBoredom = Math.min(minBoredom, candidateBoredom); } } if (c > 0) { if (minForDistance.get(r).get(c-1).get(m-1) < Integer.MAX_VALUE) { int candidateBoredom = minForDistance.get(r).get(c-1).get(m-1) + horizontalEdgeWeights.get(r).get(c-1); minBoredom = Math.min(minBoredom, candidateBoredom); } } if (r + 1 < rows) { if (minForDistance.get(r+1).get(c).get(m-1) < Integer.MAX_VALUE) { int candidateBoredom = minForDistance.get(r+1).get(c).get(m-1) + verticalEdgeWeights.get(r).get(c); minBoredom = Math.min(minBoredom, candidateBoredom); } } if (c + 1 < cols) { if (minForDistance.get(r).get(c+1).get(m-1) < Integer.MAX_VALUE) { int candidateBoredom = minForDistance.get(r).get(c+1).get(m-1) + horizontalEdgeWeights.get(r).get(c); minBoredom = Math.min(minBoredom, candidateBoredom); } } minForDistance.get(r).get(c).set(m, minBoredom); } } } List<List<Integer>> result = new ArrayList<List<Integer>>(rows); for (int r = 0; r < rows; r++) { result.add(new ArrayList<Integer>(cols)); for (int c = 0; c < cols; c++) { result.get(r).add(minForDistance.get(r).get(c).get(mid) << 1); } } return result; } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> // Author : RegalBeast import java.io.*; import java.util.*; public class Main { static final FastReader FR = new FastReader(); static final PrintWriter PW = new PrintWriter(new OutputStreamWriter(System.out)); public static void main(String[] args) { StringBuilder solution = new StringBuilder(); int rows = FR.nextInt(); int cols = FR.nextInt(); int moves = FR.nextInt(); List<List<Integer>> horizontalEdgeWeights = new ArrayList<List<Integer>>(rows); for (int r = 0; r < rows; r++) { horizontalEdgeWeights.add(new ArrayList<Integer>(cols-1)); for (int c = 0; c < cols - 1; c++) { horizontalEdgeWeights.get(r).add(FR.nextInt()); } } List<List<Integer>> verticalEdgeWeights = new ArrayList<List<Integer>>(rows-1); for (int r = 0; r < rows - 1; r++) { verticalEdgeWeights.add(new ArrayList<Integer>(cols)); for (int c = 0; c < cols; c++) { verticalEdgeWeights.get(r).add(FR.nextInt()); } } List<List<Integer>> result = getResult(rows, cols, moves, horizontalEdgeWeights, verticalEdgeWeights); for (int r = 0; r < rows; r++) { for (int c = 0; c < cols; c++) { int value = (result != null ? result.get(r).get(c) : -1); solution.append(value + " "); } solution.append("\n"); } PW.print(solution.toString()); PW.close(); } static List<List<Integer>> getResult(int rows, int cols, int moves, List<List<Integer>> horizontalEdgeWeights, List<List<Integer>> verticalEdgeWeights) { if ((moves & 1) == 1) { return null; } int mid = moves >> 1; List<List<List<Integer>>> minForDistance = new ArrayList<List<List<Integer>>>(rows); for (int r = 0; r < rows; r++) { minForDistance.add(new ArrayList<List<Integer>>(cols)); for (int c = 0; c < cols; c++) { minForDistance.get(r).add(new ArrayList<Integer>(Collections.nCopies(mid+1, Integer.MAX_VALUE))); minForDistance.get(r).get(c).set(0, 0); } } for (int m = 1; m <= mid; m++) { for (int r = 0; r < rows; r++) { for (int c = 0; c < cols; c++) { int minBoredom = minForDistance.get(r).get(c).get(m); if (r > 0) { if (minForDistance.get(r-1).get(c).get(m-1) < Integer.MAX_VALUE) { int candidateBoredom = minForDistance.get(r-1).get(c).get(m-1) + verticalEdgeWeights.get(r-1).get(c); minBoredom = Math.min(minBoredom, candidateBoredom); } } if (c > 0) { if (minForDistance.get(r).get(c-1).get(m-1) < Integer.MAX_VALUE) { int candidateBoredom = minForDistance.get(r).get(c-1).get(m-1) + horizontalEdgeWeights.get(r).get(c-1); minBoredom = Math.min(minBoredom, candidateBoredom); } } if (r + 1 < rows) { if (minForDistance.get(r+1).get(c).get(m-1) < Integer.MAX_VALUE) { int candidateBoredom = minForDistance.get(r+1).get(c).get(m-1) + verticalEdgeWeights.get(r).get(c); minBoredom = Math.min(minBoredom, candidateBoredom); } } if (c + 1 < cols) { if (minForDistance.get(r).get(c+1).get(m-1) < Integer.MAX_VALUE) { int candidateBoredom = minForDistance.get(r).get(c+1).get(m-1) + horizontalEdgeWeights.get(r).get(c); minBoredom = Math.min(minBoredom, candidateBoredom); } } minForDistance.get(r).get(c).set(m, minBoredom); } } } List<List<Integer>> result = new ArrayList<List<Integer>>(rows); for (int r = 0; r < rows; r++) { result.add(new ArrayList<Integer>(cols)); for (int c = 0; c < cols; c++) { result.get(r).add(minForDistance.get(r).get(c).get(mid) << 1); } } return result; } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> // Author : RegalBeast import java.io.*; import java.util.*; public class Main { static final FastReader FR = new FastReader(); static final PrintWriter PW = new PrintWriter(new OutputStreamWriter(System.out)); public static void main(String[] args) { StringBuilder solution = new StringBuilder(); int rows = FR.nextInt(); int cols = FR.nextInt(); int moves = FR.nextInt(); List<List<Integer>> horizontalEdgeWeights = new ArrayList<List<Integer>>(rows); for (int r = 0; r < rows; r++) { horizontalEdgeWeights.add(new ArrayList<Integer>(cols-1)); for (int c = 0; c < cols - 1; c++) { horizontalEdgeWeights.get(r).add(FR.nextInt()); } } List<List<Integer>> verticalEdgeWeights = new ArrayList<List<Integer>>(rows-1); for (int r = 0; r < rows - 1; r++) { verticalEdgeWeights.add(new ArrayList<Integer>(cols)); for (int c = 0; c < cols; c++) { verticalEdgeWeights.get(r).add(FR.nextInt()); } } List<List<Integer>> result = getResult(rows, cols, moves, horizontalEdgeWeights, verticalEdgeWeights); for (int r = 0; r < rows; r++) { for (int c = 0; c < cols; c++) { int value = (result != null ? result.get(r).get(c) : -1); solution.append(value + " "); } solution.append("\n"); } PW.print(solution.toString()); PW.close(); } static List<List<Integer>> getResult(int rows, int cols, int moves, List<List<Integer>> horizontalEdgeWeights, List<List<Integer>> verticalEdgeWeights) { if ((moves & 1) == 1) { return null; } int mid = moves >> 1; List<List<List<Integer>>> minForDistance = new ArrayList<List<List<Integer>>>(rows); for (int r = 0; r < rows; r++) { minForDistance.add(new ArrayList<List<Integer>>(cols)); for (int c = 0; c < cols; c++) { minForDistance.get(r).add(new ArrayList<Integer>(Collections.nCopies(mid+1, Integer.MAX_VALUE))); minForDistance.get(r).get(c).set(0, 0); } } for (int m = 1; m <= mid; m++) { for (int r = 0; r < rows; r++) { for (int c = 0; c < cols; c++) { int minBoredom = minForDistance.get(r).get(c).get(m); if (r > 0) { if (minForDistance.get(r-1).get(c).get(m-1) < Integer.MAX_VALUE) { int candidateBoredom = minForDistance.get(r-1).get(c).get(m-1) + verticalEdgeWeights.get(r-1).get(c); minBoredom = Math.min(minBoredom, candidateBoredom); } } if (c > 0) { if (minForDistance.get(r).get(c-1).get(m-1) < Integer.MAX_VALUE) { int candidateBoredom = minForDistance.get(r).get(c-1).get(m-1) + horizontalEdgeWeights.get(r).get(c-1); minBoredom = Math.min(minBoredom, candidateBoredom); } } if (r + 1 < rows) { if (minForDistance.get(r+1).get(c).get(m-1) < Integer.MAX_VALUE) { int candidateBoredom = minForDistance.get(r+1).get(c).get(m-1) + verticalEdgeWeights.get(r).get(c); minBoredom = Math.min(minBoredom, candidateBoredom); } } if (c + 1 < cols) { if (minForDistance.get(r).get(c+1).get(m-1) < Integer.MAX_VALUE) { int candidateBoredom = minForDistance.get(r).get(c+1).get(m-1) + horizontalEdgeWeights.get(r).get(c); minBoredom = Math.min(minBoredom, candidateBoredom); } } minForDistance.get(r).get(c).set(m, minBoredom); } } } List<List<Integer>> result = new ArrayList<List<Integer>>(rows); for (int r = 0; r < rows; r++) { result.add(new ArrayList<Integer>(cols)); for (int c = 0; c < cols; c++) { result.get(r).add(minForDistance.get(r).get(c).get(mid) << 1); } } return result; } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,582
3,784
3,053
import java.io.*; import java.util.*; import java.math.*; public class bhaa { InputStream is; PrintWriter o; /////////////////// CODED++ BY++ ++ ++ ++ BHAVYA++ ARORA++ ++ ++ ++ FROM++ JAYPEE++ INSTITUTE++ OF++ INFORMATION++ TECHNOLOGY++ //////////////// ///////////////////////// Make it work, make it right, make it fast. Make it work, make it right, make it fast. Make it work, make it right, make it fast. Make it work, make it right, make it fast. ///////////////// boolean chpr(int n) { if(n==1) { return true; }if(n==2) { return true; } if(n==3) { return true; } if(n%2==0) { return false; } if(n%3==0) { return false; } int w=2; int i=5; while(i*i<=n) { if(n%i==0) { return false; } i+=w; w=6-w; } return true; } void solve() { int n=ni(); int k=ni(); int rr=2*n; int gr=5*n; int br=8*n; o.println((long)(Math.ceil(rr*1.0/k)+Math.ceil(gr*1.0/k)+Math.ceil(br*1.0/k))); } //---------- I/O Template ---------- public static void main(String[] args) { new bhaa().run(); } void run() { is = System.in; o = new PrintWriter(System.out); solve(); o.flush(); } byte input[] = new byte[1024]; int len = 0, ptr = 0; int readByte() { if(ptr >= len) { ptr = 0; try { len = is.read(input); } catch(IOException e) { throw new InputMismatchException(); } if(len <= 0) { return -1; } } return input[ptr++]; } boolean isSpaceChar(int c) { return !( c >= 33 && c <= 126 ); } int skip() { int b = readByte(); while(b != -1 && isSpaceChar(b)) { b = readByte(); } return b; } char nc() { return (char)skip(); } String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while(!isSpaceChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } String nLine() { int b = skip(); StringBuilder sb = new StringBuilder(); while( !(isSpaceChar(b) && b != ' ') ) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } int ni() { int n = 0, b = readByte(); boolean minus = false; while(b != -1 && !( (b >= '0' && b <= '9') || b == '-')) { b = readByte(); } if(b == '-') { minus = true; b = readByte(); } if(b == -1) { return -1; } //no input while(b >= '0' && b <= '9') { n = n * 10 + (b - '0'); b = readByte(); } return minus ? -n : n; } long nl() { long n = 0L; int b = readByte(); boolean minus = false; while(b != -1 && !( (b >= '0' && b <= '9') || b == '-')) { b = readByte(); } if(b == '-') { minus = true; b = readByte(); } while(b >= '0' && b <= '9') { n = n * 10 + (b - '0'); b = readByte(); } return minus ? -n : n; } double nd() { return Double.parseDouble(ns()); } float nf() { return Float.parseFloat(ns()); } int[] nia(int n) { int a[] = new int[n]; for(int i = 0; i < n; i++) { a[i] = ni(); } return a; } long[] nla(int n) { long a[] = new long[n]; for(int i = 0; i < n; i++) { a[i] = nl(); } return a; } int [][] nim(int n) { int mat[][]=new int[n][n]; for(int i=0;i<n;i++) { for(int j=0;j<n;j++) { mat[i][j]=ni(); } } return mat; } long [][] nlm(int n) { long mat[][]=new long[n][n]; for(int i=0;i<n;i++) { for(int j=0;j<n;j++) { mat[i][j]=nl(); } } return mat; } char[] ns(int n) { char c[] = new char[n]; int i, b = skip(); for(i = 0; i < n; i++) { if(isSpaceChar(b)) { break; } c[i] = (char)b; b = readByte(); } return i == n ? c : Arrays.copyOf(c,i); } void piarr(int arr[]) { for(int i=0;i<arr.length;i++) { o.print(arr[i]+" "); } o.println(); } void plarr(long arr[]) { for(int i=0;i<arr.length;i++) { o.print(arr[i]+" "); } o.println(); } void pimat(int mat[][]) { for(int i=0;i<mat.length;i++) { for(int j=0;j<mat[0].length;j++) { o.print(mat[i][j]); } o.println(); } } void plmat(long mat[][]) { for(int i=0;i<mat.length;i++) { for(int j=0;j<mat[0].length;j++) { o.print(mat[i][j]); } o.println(); } } //////////////////////////////////// template finished ////////////////////////////////////// }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; import java.math.*; public class bhaa { InputStream is; PrintWriter o; /////////////////// CODED++ BY++ ++ ++ ++ BHAVYA++ ARORA++ ++ ++ ++ FROM++ JAYPEE++ INSTITUTE++ OF++ INFORMATION++ TECHNOLOGY++ //////////////// ///////////////////////// Make it work, make it right, make it fast. Make it work, make it right, make it fast. Make it work, make it right, make it fast. Make it work, make it right, make it fast. ///////////////// boolean chpr(int n) { if(n==1) { return true; }if(n==2) { return true; } if(n==3) { return true; } if(n%2==0) { return false; } if(n%3==0) { return false; } int w=2; int i=5; while(i*i<=n) { if(n%i==0) { return false; } i+=w; w=6-w; } return true; } void solve() { int n=ni(); int k=ni(); int rr=2*n; int gr=5*n; int br=8*n; o.println((long)(Math.ceil(rr*1.0/k)+Math.ceil(gr*1.0/k)+Math.ceil(br*1.0/k))); } //---------- I/O Template ---------- public static void main(String[] args) { new bhaa().run(); } void run() { is = System.in; o = new PrintWriter(System.out); solve(); o.flush(); } byte input[] = new byte[1024]; int len = 0, ptr = 0; int readByte() { if(ptr >= len) { ptr = 0; try { len = is.read(input); } catch(IOException e) { throw new InputMismatchException(); } if(len <= 0) { return -1; } } return input[ptr++]; } boolean isSpaceChar(int c) { return !( c >= 33 && c <= 126 ); } int skip() { int b = readByte(); while(b != -1 && isSpaceChar(b)) { b = readByte(); } return b; } char nc() { return (char)skip(); } String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while(!isSpaceChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } String nLine() { int b = skip(); StringBuilder sb = new StringBuilder(); while( !(isSpaceChar(b) && b != ' ') ) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } int ni() { int n = 0, b = readByte(); boolean minus = false; while(b != -1 && !( (b >= '0' && b <= '9') || b == '-')) { b = readByte(); } if(b == '-') { minus = true; b = readByte(); } if(b == -1) { return -1; } //no input while(b >= '0' && b <= '9') { n = n * 10 + (b - '0'); b = readByte(); } return minus ? -n : n; } long nl() { long n = 0L; int b = readByte(); boolean minus = false; while(b != -1 && !( (b >= '0' && b <= '9') || b == '-')) { b = readByte(); } if(b == '-') { minus = true; b = readByte(); } while(b >= '0' && b <= '9') { n = n * 10 + (b - '0'); b = readByte(); } return minus ? -n : n; } double nd() { return Double.parseDouble(ns()); } float nf() { return Float.parseFloat(ns()); } int[] nia(int n) { int a[] = new int[n]; for(int i = 0; i < n; i++) { a[i] = ni(); } return a; } long[] nla(int n) { long a[] = new long[n]; for(int i = 0; i < n; i++) { a[i] = nl(); } return a; } int [][] nim(int n) { int mat[][]=new int[n][n]; for(int i=0;i<n;i++) { for(int j=0;j<n;j++) { mat[i][j]=ni(); } } return mat; } long [][] nlm(int n) { long mat[][]=new long[n][n]; for(int i=0;i<n;i++) { for(int j=0;j<n;j++) { mat[i][j]=nl(); } } return mat; } char[] ns(int n) { char c[] = new char[n]; int i, b = skip(); for(i = 0; i < n; i++) { if(isSpaceChar(b)) { break; } c[i] = (char)b; b = readByte(); } return i == n ? c : Arrays.copyOf(c,i); } void piarr(int arr[]) { for(int i=0;i<arr.length;i++) { o.print(arr[i]+" "); } o.println(); } void plarr(long arr[]) { for(int i=0;i<arr.length;i++) { o.print(arr[i]+" "); } o.println(); } void pimat(int mat[][]) { for(int i=0;i<mat.length;i++) { for(int j=0;j<mat[0].length;j++) { o.print(mat[i][j]); } o.println(); } } void plmat(long mat[][]) { for(int i=0;i<mat.length;i++) { for(int j=0;j<mat[0].length;j++) { o.print(mat[i][j]); } o.println(); } } //////////////////////////////////// template finished ////////////////////////////////////// } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; import java.math.*; public class bhaa { InputStream is; PrintWriter o; /////////////////// CODED++ BY++ ++ ++ ++ BHAVYA++ ARORA++ ++ ++ ++ FROM++ JAYPEE++ INSTITUTE++ OF++ INFORMATION++ TECHNOLOGY++ //////////////// ///////////////////////// Make it work, make it right, make it fast. Make it work, make it right, make it fast. Make it work, make it right, make it fast. Make it work, make it right, make it fast. ///////////////// boolean chpr(int n) { if(n==1) { return true; }if(n==2) { return true; } if(n==3) { return true; } if(n%2==0) { return false; } if(n%3==0) { return false; } int w=2; int i=5; while(i*i<=n) { if(n%i==0) { return false; } i+=w; w=6-w; } return true; } void solve() { int n=ni(); int k=ni(); int rr=2*n; int gr=5*n; int br=8*n; o.println((long)(Math.ceil(rr*1.0/k)+Math.ceil(gr*1.0/k)+Math.ceil(br*1.0/k))); } //---------- I/O Template ---------- public static void main(String[] args) { new bhaa().run(); } void run() { is = System.in; o = new PrintWriter(System.out); solve(); o.flush(); } byte input[] = new byte[1024]; int len = 0, ptr = 0; int readByte() { if(ptr >= len) { ptr = 0; try { len = is.read(input); } catch(IOException e) { throw new InputMismatchException(); } if(len <= 0) { return -1; } } return input[ptr++]; } boolean isSpaceChar(int c) { return !( c >= 33 && c <= 126 ); } int skip() { int b = readByte(); while(b != -1 && isSpaceChar(b)) { b = readByte(); } return b; } char nc() { return (char)skip(); } String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while(!isSpaceChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } String nLine() { int b = skip(); StringBuilder sb = new StringBuilder(); while( !(isSpaceChar(b) && b != ' ') ) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } int ni() { int n = 0, b = readByte(); boolean minus = false; while(b != -1 && !( (b >= '0' && b <= '9') || b == '-')) { b = readByte(); } if(b == '-') { minus = true; b = readByte(); } if(b == -1) { return -1; } //no input while(b >= '0' && b <= '9') { n = n * 10 + (b - '0'); b = readByte(); } return minus ? -n : n; } long nl() { long n = 0L; int b = readByte(); boolean minus = false; while(b != -1 && !( (b >= '0' && b <= '9') || b == '-')) { b = readByte(); } if(b == '-') { minus = true; b = readByte(); } while(b >= '0' && b <= '9') { n = n * 10 + (b - '0'); b = readByte(); } return minus ? -n : n; } double nd() { return Double.parseDouble(ns()); } float nf() { return Float.parseFloat(ns()); } int[] nia(int n) { int a[] = new int[n]; for(int i = 0; i < n; i++) { a[i] = ni(); } return a; } long[] nla(int n) { long a[] = new long[n]; for(int i = 0; i < n; i++) { a[i] = nl(); } return a; } int [][] nim(int n) { int mat[][]=new int[n][n]; for(int i=0;i<n;i++) { for(int j=0;j<n;j++) { mat[i][j]=ni(); } } return mat; } long [][] nlm(int n) { long mat[][]=new long[n][n]; for(int i=0;i<n;i++) { for(int j=0;j<n;j++) { mat[i][j]=nl(); } } return mat; } char[] ns(int n) { char c[] = new char[n]; int i, b = skip(); for(i = 0; i < n; i++) { if(isSpaceChar(b)) { break; } c[i] = (char)b; b = readByte(); } return i == n ? c : Arrays.copyOf(c,i); } void piarr(int arr[]) { for(int i=0;i<arr.length;i++) { o.print(arr[i]+" "); } o.println(); } void plarr(long arr[]) { for(int i=0;i<arr.length;i++) { o.print(arr[i]+" "); } o.println(); } void pimat(int mat[][]) { for(int i=0;i<mat.length;i++) { for(int j=0;j<mat[0].length;j++) { o.print(mat[i][j]); } o.println(); } } void plmat(long mat[][]) { for(int i=0;i<mat.length;i++) { for(int j=0;j<mat[0].length;j++) { o.print(mat[i][j]); } o.println(); } } //////////////////////////////////// template finished ////////////////////////////////////// } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,826
3,047
1,684
import java.io.*; import java.util.*; import javax.lang.model.util.ElementScanner6; public class codef { public static void main(String ar[]) throws IOException { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer nk=new StringTokenizer(br.readLine()); int n=Integer.parseInt(nk.nextToken()); int k=Integer.parseInt(nk.nextToken()); String st[]=br.readLine().split(" "); int ans[]=new int[n]; int a[]=new int[n]; for(int i=0;i<n;i++) ans[i]=Integer.parseInt(st[i]); for(int i=1;i<n;i++) a[i]=ans[i]-ans[i-1]; a[0]=-1; Arrays.sort(a); int count=0,sum=0; for(int i=0;i<n;i++) if(a[i]<0) count++; else sum=sum+a[i]; k=k-count; int i=n-1; while(k>0 && i>=0) { if(a[i]>-1) { sum=sum-a[i]; k--; } i--; } System.out.println(sum); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; import javax.lang.model.util.ElementScanner6; public class codef { public static void main(String ar[]) throws IOException { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer nk=new StringTokenizer(br.readLine()); int n=Integer.parseInt(nk.nextToken()); int k=Integer.parseInt(nk.nextToken()); String st[]=br.readLine().split(" "); int ans[]=new int[n]; int a[]=new int[n]; for(int i=0;i<n;i++) ans[i]=Integer.parseInt(st[i]); for(int i=1;i<n;i++) a[i]=ans[i]-ans[i-1]; a[0]=-1; Arrays.sort(a); int count=0,sum=0; for(int i=0;i<n;i++) if(a[i]<0) count++; else sum=sum+a[i]; k=k-count; int i=n-1; while(k>0 && i>=0) { if(a[i]>-1) { sum=sum-a[i]; k--; } i--; } System.out.println(sum); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; import javax.lang.model.util.ElementScanner6; public class codef { public static void main(String ar[]) throws IOException { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer nk=new StringTokenizer(br.readLine()); int n=Integer.parseInt(nk.nextToken()); int k=Integer.parseInt(nk.nextToken()); String st[]=br.readLine().split(" "); int ans[]=new int[n]; int a[]=new int[n]; for(int i=0;i<n;i++) ans[i]=Integer.parseInt(st[i]); for(int i=1;i<n;i++) a[i]=ans[i]-ans[i-1]; a[0]=-1; Arrays.sort(a); int count=0,sum=0; for(int i=0;i<n;i++) if(a[i]<0) count++; else sum=sum+a[i]; k=k-count; int i=n-1; while(k>0 && i>=0) { if(a[i]>-1) { sum=sum-a[i]; k--; } i--; } System.out.println(sum); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
602
1,681
1,033
import java.util.Scanner; public class prob1177b { public static void main(String[] args){ Scanner sc=new Scanner(System.in); long k,c,n,d; c=1; d=9; n=1; k= sc.nextLong(); while(k>(c*d)) { k-=(c*d); n*=10; d*=10; c++; } n+=(k-1)/c; char[] num = String.valueOf(n).toCharArray(); System.out.println(num[(int)((k-1)%c)]); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; public class prob1177b { public static void main(String[] args){ Scanner sc=new Scanner(System.in); long k,c,n,d; c=1; d=9; n=1; k= sc.nextLong(); while(k>(c*d)) { k-=(c*d); n*=10; d*=10; c++; } n+=(k-1)/c; char[] num = String.valueOf(n).toCharArray(); System.out.println(num[(int)((k-1)%c)]); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Scanner; public class prob1177b { public static void main(String[] args){ Scanner sc=new Scanner(System.in); long k,c,n,d; c=1; d=9; n=1; k= sc.nextLong(); while(k>(c*d)) { k-=(c*d); n*=10; d*=10; c++; } n+=(k-1)/c; char[] num = String.valueOf(n).toCharArray(); System.out.println(num[(int)((k-1)%c)]); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
481
1,032
1,250
import java.io.*; import java.math.BigInteger; import java.util.*; /** * Created by aditya on 5/3/17. */ public class Main3 { static long x, k; static long MOD = (long)1e9 + 7; public static void main(String args[]) throws Exception{ FastInput fi = new FastInput(new InputStreamReader(System.in)); PrintWriter pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); x = fi.nextLong(); k = fi.nextLong(); if(x == 0) { System.out.println(0); return; } // System.out.println(pow(2, k+1)); long q1 = (pow(2, k+1) * (x%MOD)) % MOD; long q2 = pow(2, k); long q3 = 1; // System.out.println(q1); // System.out.println(q2); // System.out.println(q3); long exp = (q1-q2 + MOD + MOD)%MOD; exp = (exp + q3)%MOD; // exp = (exp*2)%MOD; pw.println(exp); pw.close(); } static long pow(long n, long k) { if(k == 0) return 1; if(k == 1) return n; long ret = pow(n, k/2)%MOD; ret = (ret*ret)%MOD; if(k%2 == 1) ret = (ret*n)%MOD; return ret; } static class FastInput { private Reader in; private BufferedReader br; private StringTokenizer st; public FastInput(Reader in) { this.in=in; br = new BufferedReader(in); } public String nextString() { while(st==null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { System.out.println(e.getStackTrace()); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(nextString()); } public long nextLong() { return Long.parseLong(nextString()); } public double nextDouble() { return Double.parseDouble(nextString()); } } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.math.BigInteger; import java.util.*; /** * Created by aditya on 5/3/17. */ public class Main3 { static long x, k; static long MOD = (long)1e9 + 7; public static void main(String args[]) throws Exception{ FastInput fi = new FastInput(new InputStreamReader(System.in)); PrintWriter pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); x = fi.nextLong(); k = fi.nextLong(); if(x == 0) { System.out.println(0); return; } // System.out.println(pow(2, k+1)); long q1 = (pow(2, k+1) * (x%MOD)) % MOD; long q2 = pow(2, k); long q3 = 1; // System.out.println(q1); // System.out.println(q2); // System.out.println(q3); long exp = (q1-q2 + MOD + MOD)%MOD; exp = (exp + q3)%MOD; // exp = (exp*2)%MOD; pw.println(exp); pw.close(); } static long pow(long n, long k) { if(k == 0) return 1; if(k == 1) return n; long ret = pow(n, k/2)%MOD; ret = (ret*ret)%MOD; if(k%2 == 1) ret = (ret*n)%MOD; return ret; } static class FastInput { private Reader in; private BufferedReader br; private StringTokenizer st; public FastInput(Reader in) { this.in=in; br = new BufferedReader(in); } public String nextString() { while(st==null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { System.out.println(e.getStackTrace()); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(nextString()); } public long nextLong() { return Long.parseLong(nextString()); } public double nextDouble() { return Double.parseDouble(nextString()); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.math.BigInteger; import java.util.*; /** * Created by aditya on 5/3/17. */ public class Main3 { static long x, k; static long MOD = (long)1e9 + 7; public static void main(String args[]) throws Exception{ FastInput fi = new FastInput(new InputStreamReader(System.in)); PrintWriter pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); x = fi.nextLong(); k = fi.nextLong(); if(x == 0) { System.out.println(0); return; } // System.out.println(pow(2, k+1)); long q1 = (pow(2, k+1) * (x%MOD)) % MOD; long q2 = pow(2, k); long q3 = 1; // System.out.println(q1); // System.out.println(q2); // System.out.println(q3); long exp = (q1-q2 + MOD + MOD)%MOD; exp = (exp + q3)%MOD; // exp = (exp*2)%MOD; pw.println(exp); pw.close(); } static long pow(long n, long k) { if(k == 0) return 1; if(k == 1) return n; long ret = pow(n, k/2)%MOD; ret = (ret*ret)%MOD; if(k%2 == 1) ret = (ret*n)%MOD; return ret; } static class FastInput { private Reader in; private BufferedReader br; private StringTokenizer st; public FastInput(Reader in) { this.in=in; br = new BufferedReader(in); } public String nextString() { while(st==null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { System.out.println(e.getStackTrace()); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(nextString()); } public long nextLong() { return Long.parseLong(nextString()); } public double nextDouble() { return Double.parseDouble(nextString()); } } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
842
1,249
2,961
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.OutputStream; import java.io.PrintWriter; import java.util.ArrayList; public class Task343A { public static void main(String... args) throws NumberFormatException, IOException { Solution.main(System.in, System.out); } static class Scanner { private final BufferedReader br; private String[] cache; private int cacheIndex; Scanner(InputStream is) { br = new BufferedReader(new InputStreamReader(is)); cache = new String[0]; cacheIndex = 0; } int nextInt() throws IOException { if (cacheIndex >= cache.length) { cache = br.readLine().split(" "); cacheIndex = 0; } return Integer.parseInt(cache[cacheIndex++]); } long nextLong() throws IOException { if (cacheIndex >= cache.length) { cache = br.readLine().split(" "); cacheIndex = 0; } return Long.parseLong(cache[cacheIndex++]); } String next() throws IOException { if (cacheIndex >= cache.length) { cache = br.readLine().split(" "); cacheIndex = 0; } return cache[cacheIndex++]; } void close() throws IOException { br.close(); } } static class Solution { private static long r(long a, long b) { if (a == 0 || b == 0) { return 0; } if (a > b) { return a / b + r(b, a % b); } return b / a + r(a, b % a); } public static void main(InputStream is, OutputStream os) throws NumberFormatException, IOException { PrintWriter pw = new PrintWriter(os); Scanner sc = new Scanner(is); long a = sc.nextLong(); long b = sc.nextLong(); pw.println(r(a, b)); pw.flush(); sc.close(); } } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.OutputStream; import java.io.PrintWriter; import java.util.ArrayList; public class Task343A { public static void main(String... args) throws NumberFormatException, IOException { Solution.main(System.in, System.out); } static class Scanner { private final BufferedReader br; private String[] cache; private int cacheIndex; Scanner(InputStream is) { br = new BufferedReader(new InputStreamReader(is)); cache = new String[0]; cacheIndex = 0; } int nextInt() throws IOException { if (cacheIndex >= cache.length) { cache = br.readLine().split(" "); cacheIndex = 0; } return Integer.parseInt(cache[cacheIndex++]); } long nextLong() throws IOException { if (cacheIndex >= cache.length) { cache = br.readLine().split(" "); cacheIndex = 0; } return Long.parseLong(cache[cacheIndex++]); } String next() throws IOException { if (cacheIndex >= cache.length) { cache = br.readLine().split(" "); cacheIndex = 0; } return cache[cacheIndex++]; } void close() throws IOException { br.close(); } } static class Solution { private static long r(long a, long b) { if (a == 0 || b == 0) { return 0; } if (a > b) { return a / b + r(b, a % b); } return b / a + r(a, b % a); } public static void main(InputStream is, OutputStream os) throws NumberFormatException, IOException { PrintWriter pw = new PrintWriter(os); Scanner sc = new Scanner(is); long a = sc.nextLong(); long b = sc.nextLong(); pw.println(r(a, b)); pw.flush(); sc.close(); } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.OutputStream; import java.io.PrintWriter; import java.util.ArrayList; public class Task343A { public static void main(String... args) throws NumberFormatException, IOException { Solution.main(System.in, System.out); } static class Scanner { private final BufferedReader br; private String[] cache; private int cacheIndex; Scanner(InputStream is) { br = new BufferedReader(new InputStreamReader(is)); cache = new String[0]; cacheIndex = 0; } int nextInt() throws IOException { if (cacheIndex >= cache.length) { cache = br.readLine().split(" "); cacheIndex = 0; } return Integer.parseInt(cache[cacheIndex++]); } long nextLong() throws IOException { if (cacheIndex >= cache.length) { cache = br.readLine().split(" "); cacheIndex = 0; } return Long.parseLong(cache[cacheIndex++]); } String next() throws IOException { if (cacheIndex >= cache.length) { cache = br.readLine().split(" "); cacheIndex = 0; } return cache[cacheIndex++]; } void close() throws IOException { br.close(); } } static class Solution { private static long r(long a, long b) { if (a == 0 || b == 0) { return 0; } if (a > b) { return a / b + r(b, a % b); } return b / a + r(a, b % a); } public static void main(InputStream is, OutputStream os) throws NumberFormatException, IOException { PrintWriter pw = new PrintWriter(os); Scanner sc = new Scanner(is); long a = sc.nextLong(); long b = sc.nextLong(); pw.println(r(a, b)); pw.flush(); sc.close(); } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
768
2,955
1,144
import java.io.*; import java.util.*; public class Main { public static void main (String[] args) throws java.lang.Exception { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(br.readLine()); long n = Long.parseLong(st.nextToken()), s = Long.parseLong(st.nextToken()); long m = s; while (m-f(m)<s && m<=n) m++; System.out.println(Math.max(n-m+1, 0)); } public static int f(long n) { int sum = 0; for (long i=0, j=1L ; i<(int)Math.log10(n)+1 ; i++, j*=10) { sum += (n/j)%10; } return sum; } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main { public static void main (String[] args) throws java.lang.Exception { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(br.readLine()); long n = Long.parseLong(st.nextToken()), s = Long.parseLong(st.nextToken()); long m = s; while (m-f(m)<s && m<=n) m++; System.out.println(Math.max(n-m+1, 0)); } public static int f(long n) { int sum = 0; for (long i=0, j=1L ; i<(int)Math.log10(n)+1 ; i++, j*=10) { sum += (n/j)%10; } return sum; } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main { public static void main (String[] args) throws java.lang.Exception { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(br.readLine()); long n = Long.parseLong(st.nextToken()), s = Long.parseLong(st.nextToken()); long m = s; while (m-f(m)<s && m<=n) m++; System.out.println(Math.max(n-m+1, 0)); } public static int f(long n) { int sum = 0; for (long i=0, j=1L ; i<(int)Math.log10(n)+1 ; i++, j*=10) { sum += (n/j)%10; } return sum; } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
502
1,143
1,239
//package round196; import java.io.ByteArrayInputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.InputMismatchException; public class A { InputStream is; PrintWriter out; String INPUT = ""; public static long pow(long a, long n, long mod) { // a %= mod; long ret = 1; int x = 63-Long.numberOfLeadingZeros(n); for(;x >= 0;x--){ ret = ret * ret % mod; if(n<<63-x<0)ret = ret * a % mod; } return ret; } void solve() { int n = ni(), m = ni(), K = ni(); if(m <= n/K*(K-1)+n%K){ out.println(m); }else{ int mod = 1000000009; int f = m - (n/K*(K-1)+n%K); out.println(((pow(2, f+1, mod) + mod - 2) * K + (m - f*K)) % mod); } } void run() throws Exception { is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes()); out = new PrintWriter(System.out); long s = System.currentTimeMillis(); solve(); out.flush(); tr(System.currentTimeMillis()-s+"ms"); } public static void main(String[] args) throws Exception { new A().run(); } private byte[] inbuf = new byte[1024]; private int lenbuf = 0, ptrbuf = 0; private int readByte() { if(lenbuf == -1)throw new InputMismatchException(); if(ptrbuf >= lenbuf){ ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if(lenbuf <= 0)return -1; } return inbuf[ptrbuf++]; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; } private double nd() { return Double.parseDouble(ns()); } private char nc() { return (char)skip(); } private String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } private char[] ns(int n) { char[] buf = new char[n]; int b = skip(), p = 0; while(p < n && !(isSpaceChar(b))){ buf[p++] = (char)b; b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p); } private char[][] nm(int n, int m) { char[][] map = new char[n][]; for(int i = 0;i < n;i++)map[i] = ns(m); return map; } private int[] na(int n) { int[] a = new int[n]; for(int i = 0;i < n;i++)a[i] = ni(); return a; } private int ni() { int num = 0, b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private long nl() { long num = 0; int b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private boolean oj = System.getProperty("ONLINE_JUDGE") != null; private void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> //package round196; import java.io.ByteArrayInputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.InputMismatchException; public class A { InputStream is; PrintWriter out; String INPUT = ""; public static long pow(long a, long n, long mod) { // a %= mod; long ret = 1; int x = 63-Long.numberOfLeadingZeros(n); for(;x >= 0;x--){ ret = ret * ret % mod; if(n<<63-x<0)ret = ret * a % mod; } return ret; } void solve() { int n = ni(), m = ni(), K = ni(); if(m <= n/K*(K-1)+n%K){ out.println(m); }else{ int mod = 1000000009; int f = m - (n/K*(K-1)+n%K); out.println(((pow(2, f+1, mod) + mod - 2) * K + (m - f*K)) % mod); } } void run() throws Exception { is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes()); out = new PrintWriter(System.out); long s = System.currentTimeMillis(); solve(); out.flush(); tr(System.currentTimeMillis()-s+"ms"); } public static void main(String[] args) throws Exception { new A().run(); } private byte[] inbuf = new byte[1024]; private int lenbuf = 0, ptrbuf = 0; private int readByte() { if(lenbuf == -1)throw new InputMismatchException(); if(ptrbuf >= lenbuf){ ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if(lenbuf <= 0)return -1; } return inbuf[ptrbuf++]; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; } private double nd() { return Double.parseDouble(ns()); } private char nc() { return (char)skip(); } private String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } private char[] ns(int n) { char[] buf = new char[n]; int b = skip(), p = 0; while(p < n && !(isSpaceChar(b))){ buf[p++] = (char)b; b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p); } private char[][] nm(int n, int m) { char[][] map = new char[n][]; for(int i = 0;i < n;i++)map[i] = ns(m); return map; } private int[] na(int n) { int[] a = new int[n]; for(int i = 0;i < n;i++)a[i] = ni(); return a; } private int ni() { int num = 0, b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private long nl() { long num = 0; int b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private boolean oj = System.getProperty("ONLINE_JUDGE") != null; private void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> //package round196; import java.io.ByteArrayInputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.InputMismatchException; public class A { InputStream is; PrintWriter out; String INPUT = ""; public static long pow(long a, long n, long mod) { // a %= mod; long ret = 1; int x = 63-Long.numberOfLeadingZeros(n); for(;x >= 0;x--){ ret = ret * ret % mod; if(n<<63-x<0)ret = ret * a % mod; } return ret; } void solve() { int n = ni(), m = ni(), K = ni(); if(m <= n/K*(K-1)+n%K){ out.println(m); }else{ int mod = 1000000009; int f = m - (n/K*(K-1)+n%K); out.println(((pow(2, f+1, mod) + mod - 2) * K + (m - f*K)) % mod); } } void run() throws Exception { is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes()); out = new PrintWriter(System.out); long s = System.currentTimeMillis(); solve(); out.flush(); tr(System.currentTimeMillis()-s+"ms"); } public static void main(String[] args) throws Exception { new A().run(); } private byte[] inbuf = new byte[1024]; private int lenbuf = 0, ptrbuf = 0; private int readByte() { if(lenbuf == -1)throw new InputMismatchException(); if(ptrbuf >= lenbuf){ ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if(lenbuf <= 0)return -1; } return inbuf[ptrbuf++]; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; } private double nd() { return Double.parseDouble(ns()); } private char nc() { return (char)skip(); } private String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } private char[] ns(int n) { char[] buf = new char[n]; int b = skip(), p = 0; while(p < n && !(isSpaceChar(b))){ buf[p++] = (char)b; b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p); } private char[][] nm(int n, int m) { char[][] map = new char[n][]; for(int i = 0;i < n;i++)map[i] = ns(m); return map; } private int[] na(int n) { int[] a = new int[n]; for(int i = 0;i < n;i++)a[i] = ni(); return a; } private int ni() { int num = 0, b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private long nl() { long num = 0; int b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private boolean oj = System.getProperty("ONLINE_JUDGE") != null; private void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,402
1,238
3,325
import java.util.ArrayList; import java.util.Scanner; public class Main { static ArrayList<Edge> graph; static ArrayList<ArrayList<Integer>> graphForKuhn; static int n, m, u = 0; static int mt[]; static int used[]; public static void main(String[] args) { formGraph(); System.out.println(getAnswer()); } static boolean kuhn(int start) { if (used[start] == u) return false; used[start] = u; for (int i=0; i< graphForKuhn.get(start).size(); i++) { int to = graphForKuhn.get(start).get(i); if (mt[to] == -1 || kuhn(mt[to])) { mt[to] = start; return true; } } return false; } private static int getAnswer() { int currentAnswer = Integer.MAX_VALUE; for (int cur= 0; cur<n; cur++) { int adj = 0, otheradj = 0, answer = 0; for (int j=0; j<n; j++) { graphForKuhn.get(j).clear(); mt[j] = -1; } for (int j=0; j<m; j++) { if (graph.get(j).from == cur || graph.get(j).to == cur) adj++; else { graphForKuhn.get(graph.get(j).from).add(graph.get(j).to); otheradj++; } } for (int j=0; j<n; j++) { u++; kuhn(j); } int tsz = 0; for (int j=0; j<n; j++) { if (mt[j] != -1) tsz++; } answer = 2*(n-1)+1-adj+otheradj-2*tsz+(n-1); currentAnswer = Math.min(answer, currentAnswer); } return currentAnswer; } private static void formGraph() { Scanner in = new Scanner(System.in); n = in.nextInt(); m = in.nextInt(); graph = new ArrayList<Edge>(m); for (int i=0; i<m; i++) { int x = in.nextInt(); int y = in.nextInt(); graph.add(new Edge(x-1, y-1)); } graphForKuhn = new ArrayList<ArrayList<Integer>>(n); for (int i=0; i<n; i++) graphForKuhn.add(new ArrayList<Integer>(n)); mt = new int[n]; used = new int[n]; in.close(); } } class Edge { int from; int to; public Edge(int from, int to) { this.from = from; this.to = to; } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.ArrayList; import java.util.Scanner; public class Main { static ArrayList<Edge> graph; static ArrayList<ArrayList<Integer>> graphForKuhn; static int n, m, u = 0; static int mt[]; static int used[]; public static void main(String[] args) { formGraph(); System.out.println(getAnswer()); } static boolean kuhn(int start) { if (used[start] == u) return false; used[start] = u; for (int i=0; i< graphForKuhn.get(start).size(); i++) { int to = graphForKuhn.get(start).get(i); if (mt[to] == -1 || kuhn(mt[to])) { mt[to] = start; return true; } } return false; } private static int getAnswer() { int currentAnswer = Integer.MAX_VALUE; for (int cur= 0; cur<n; cur++) { int adj = 0, otheradj = 0, answer = 0; for (int j=0; j<n; j++) { graphForKuhn.get(j).clear(); mt[j] = -1; } for (int j=0; j<m; j++) { if (graph.get(j).from == cur || graph.get(j).to == cur) adj++; else { graphForKuhn.get(graph.get(j).from).add(graph.get(j).to); otheradj++; } } for (int j=0; j<n; j++) { u++; kuhn(j); } int tsz = 0; for (int j=0; j<n; j++) { if (mt[j] != -1) tsz++; } answer = 2*(n-1)+1-adj+otheradj-2*tsz+(n-1); currentAnswer = Math.min(answer, currentAnswer); } return currentAnswer; } private static void formGraph() { Scanner in = new Scanner(System.in); n = in.nextInt(); m = in.nextInt(); graph = new ArrayList<Edge>(m); for (int i=0; i<m; i++) { int x = in.nextInt(); int y = in.nextInt(); graph.add(new Edge(x-1, y-1)); } graphForKuhn = new ArrayList<ArrayList<Integer>>(n); for (int i=0; i<n; i++) graphForKuhn.add(new ArrayList<Integer>(n)); mt = new int[n]; used = new int[n]; in.close(); } } class Edge { int from; int to; public Edge(int from, int to) { this.from = from; this.to = to; } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.ArrayList; import java.util.Scanner; public class Main { static ArrayList<Edge> graph; static ArrayList<ArrayList<Integer>> graphForKuhn; static int n, m, u = 0; static int mt[]; static int used[]; public static void main(String[] args) { formGraph(); System.out.println(getAnswer()); } static boolean kuhn(int start) { if (used[start] == u) return false; used[start] = u; for (int i=0; i< graphForKuhn.get(start).size(); i++) { int to = graphForKuhn.get(start).get(i); if (mt[to] == -1 || kuhn(mt[to])) { mt[to] = start; return true; } } return false; } private static int getAnswer() { int currentAnswer = Integer.MAX_VALUE; for (int cur= 0; cur<n; cur++) { int adj = 0, otheradj = 0, answer = 0; for (int j=0; j<n; j++) { graphForKuhn.get(j).clear(); mt[j] = -1; } for (int j=0; j<m; j++) { if (graph.get(j).from == cur || graph.get(j).to == cur) adj++; else { graphForKuhn.get(graph.get(j).from).add(graph.get(j).to); otheradj++; } } for (int j=0; j<n; j++) { u++; kuhn(j); } int tsz = 0; for (int j=0; j<n; j++) { if (mt[j] != -1) tsz++; } answer = 2*(n-1)+1-adj+otheradj-2*tsz+(n-1); currentAnswer = Math.min(answer, currentAnswer); } return currentAnswer; } private static void formGraph() { Scanner in = new Scanner(System.in); n = in.nextInt(); m = in.nextInt(); graph = new ArrayList<Edge>(m); for (int i=0; i<m; i++) { int x = in.nextInt(); int y = in.nextInt(); graph.add(new Edge(x-1, y-1)); } graphForKuhn = new ArrayList<ArrayList<Integer>>(n); for (int i=0; i<n; i++) graphForKuhn.add(new ArrayList<Integer>(n)); mt = new int[n]; used = new int[n]; in.close(); } } class Edge { int from; int to; public Edge(int from, int to) { this.from = from; this.to = to; } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
946
3,319
298
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; import static java.lang.Math.*; public class Main { private FastScanner scanner = new FastScanner(); public static void main(String[] args) { new Main().solve(); } private void solve() { int n = scanner.nextInt(); Map<Integer, Integer> cnt = new HashMap<>(); for (int i = 0; i < n; i++) { String s = scanner.nextLine(); LinkedList<Character> st = new LinkedList<>(); for (char c : s.toCharArray()) { if (c == ')' && !st.isEmpty() && st.getLast() == '(') { st.pollLast(); continue; } st.addLast(c); } int t = st.size(); Set<Character> set = new HashSet<>(st); if (set.size() > 1) { continue; } if (set.isEmpty()) { cnt.put(0, cnt.getOrDefault(0, 0) + 1); continue; } if (st.getLast() == '(') { cnt.put(t, cnt.getOrDefault(t, 0) + 1); } else { cnt.put(-t, cnt.getOrDefault(-t, 0) + 1); } } long ans = 0; for (int next : cnt.keySet()) { if (next == 0) { ans += (long) cnt.get(next) * (cnt.get(next) - 1) + cnt.get(next); } else if (next > 0) { int t = next * -1; if (cnt.containsKey(t)) { ans += (long) cnt.get(next) * cnt.get(t); } } } System.out.print(ans); } class FastScanner { BufferedReader reader; StringTokenizer tokenizer; FastScanner() { reader = new BufferedReader(new InputStreamReader(System.in), 32768); tokenizer = null; } String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } int nextInt() { return Integer.parseInt(next()); } Integer[] nextA(int n) { Integer a[] = new Integer[n]; for (int i = 0; i < n; i++) { a[i] = scanner.nextInt(); } return a; } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } public String nextLine() { try { return reader.readLine(); } catch (IOException e) { throw new RuntimeException(e); } } } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; import static java.lang.Math.*; public class Main { private FastScanner scanner = new FastScanner(); public static void main(String[] args) { new Main().solve(); } private void solve() { int n = scanner.nextInt(); Map<Integer, Integer> cnt = new HashMap<>(); for (int i = 0; i < n; i++) { String s = scanner.nextLine(); LinkedList<Character> st = new LinkedList<>(); for (char c : s.toCharArray()) { if (c == ')' && !st.isEmpty() && st.getLast() == '(') { st.pollLast(); continue; } st.addLast(c); } int t = st.size(); Set<Character> set = new HashSet<>(st); if (set.size() > 1) { continue; } if (set.isEmpty()) { cnt.put(0, cnt.getOrDefault(0, 0) + 1); continue; } if (st.getLast() == '(') { cnt.put(t, cnt.getOrDefault(t, 0) + 1); } else { cnt.put(-t, cnt.getOrDefault(-t, 0) + 1); } } long ans = 0; for (int next : cnt.keySet()) { if (next == 0) { ans += (long) cnt.get(next) * (cnt.get(next) - 1) + cnt.get(next); } else if (next > 0) { int t = next * -1; if (cnt.containsKey(t)) { ans += (long) cnt.get(next) * cnt.get(t); } } } System.out.print(ans); } class FastScanner { BufferedReader reader; StringTokenizer tokenizer; FastScanner() { reader = new BufferedReader(new InputStreamReader(System.in), 32768); tokenizer = null; } String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } int nextInt() { return Integer.parseInt(next()); } Integer[] nextA(int n) { Integer a[] = new Integer[n]; for (int i = 0; i < n; i++) { a[i] = scanner.nextInt(); } return a; } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } public String nextLine() { try { return reader.readLine(); } catch (IOException e) { throw new RuntimeException(e); } } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; import static java.lang.Math.*; public class Main { private FastScanner scanner = new FastScanner(); public static void main(String[] args) { new Main().solve(); } private void solve() { int n = scanner.nextInt(); Map<Integer, Integer> cnt = new HashMap<>(); for (int i = 0; i < n; i++) { String s = scanner.nextLine(); LinkedList<Character> st = new LinkedList<>(); for (char c : s.toCharArray()) { if (c == ')' && !st.isEmpty() && st.getLast() == '(') { st.pollLast(); continue; } st.addLast(c); } int t = st.size(); Set<Character> set = new HashSet<>(st); if (set.size() > 1) { continue; } if (set.isEmpty()) { cnt.put(0, cnt.getOrDefault(0, 0) + 1); continue; } if (st.getLast() == '(') { cnt.put(t, cnt.getOrDefault(t, 0) + 1); } else { cnt.put(-t, cnt.getOrDefault(-t, 0) + 1); } } long ans = 0; for (int next : cnt.keySet()) { if (next == 0) { ans += (long) cnt.get(next) * (cnt.get(next) - 1) + cnt.get(next); } else if (next > 0) { int t = next * -1; if (cnt.containsKey(t)) { ans += (long) cnt.get(next) * cnt.get(t); } } } System.out.print(ans); } class FastScanner { BufferedReader reader; StringTokenizer tokenizer; FastScanner() { reader = new BufferedReader(new InputStreamReader(System.in), 32768); tokenizer = null; } String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } int nextInt() { return Integer.parseInt(next()); } Integer[] nextA(int n) { Integer a[] = new Integer[n]; for (int i = 0; i < n; i++) { a[i] = scanner.nextInt(); } return a; } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } public String nextLine() { try { return reader.readLine(); } catch (IOException e) { throw new RuntimeException(e); } } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
964
298
3,112
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; /** * May 13, 2011  * @author parisel */ public class ToyArmy { int N; BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); String[] tok; String s; private String[] getTok() throws IOException {return br.readLine().split(" ");} private int getInt() throws IOException {return Integer.valueOf(br.readLine());} private int[] getInt(int N) throws IOException { int[] data= new int[N]; tok= br.readLine().split(" "); for (int i=0; i<N; i++) data[i]= Integer.valueOf(tok[i]); return data; } public void solve() throws IOException { int i=0, j=0; N= getInt(); long kill= (3*N)/2; System.out.printf("%d\n", kill); } public static void main(String[] args) throws IOException { new ToyArmy().solve(); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; /** * May 13, 2011  * @author parisel */ public class ToyArmy { int N; BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); String[] tok; String s; private String[] getTok() throws IOException {return br.readLine().split(" ");} private int getInt() throws IOException {return Integer.valueOf(br.readLine());} private int[] getInt(int N) throws IOException { int[] data= new int[N]; tok= br.readLine().split(" "); for (int i=0; i<N; i++) data[i]= Integer.valueOf(tok[i]); return data; } public void solve() throws IOException { int i=0, j=0; N= getInt(); long kill= (3*N)/2; System.out.printf("%d\n", kill); } public static void main(String[] args) throws IOException { new ToyArmy().solve(); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; /** * May 13, 2011  * @author parisel */ public class ToyArmy { int N; BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); String[] tok; String s; private String[] getTok() throws IOException {return br.readLine().split(" ");} private int getInt() throws IOException {return Integer.valueOf(br.readLine());} private int[] getInt(int N) throws IOException { int[] data= new int[N]; tok= br.readLine().split(" "); for (int i=0; i<N; i++) data[i]= Integer.valueOf(tok[i]); return data; } public void solve() throws IOException { int i=0, j=0; N= getInt(); long kill= (3*N)/2; System.out.printf("%d\n", kill); } public static void main(String[] args) throws IOException { new ToyArmy().solve(); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
548
3,106
2,573
import java.io.*; import java.util.*; public class A { FastScanner in; PrintWriter out; void solve() { int n = in.nextInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = in.nextInt(); } Arrays.sort(a); int res = 0; for (int i = 0; i < n; i++) { boolean ok = false; for (int j = 0; j < i; j++) { if (a[i] % a[j] == 0) { ok = true; } } if (!ok) { res++; } } out.println(res); } void run() { try { in = new FastScanner(new File("A.in")); out = new PrintWriter(new File("A.out")); solve(); out.close(); } catch (FileNotFoundException e) { e.printStackTrace(); } } void runIO() { in = new FastScanner(System.in); out = new PrintWriter(System.out); solve(); out.close(); } class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(File f) { try { br = new BufferedReader(new FileReader(f)); } catch (FileNotFoundException e) { e.printStackTrace(); } } public FastScanner(InputStream f) { br = new BufferedReader(new InputStreamReader(f)); } String next() { while (st == null || !st.hasMoreTokens()) { String s = null; try { s = br.readLine(); } catch (IOException e) { e.printStackTrace(); } if (s == null) return null; st = new StringTokenizer(s); } return st.nextToken(); } boolean hasMoreTokens() { while (st == null || !st.hasMoreTokens()) { String s = null; try { s = br.readLine(); } catch (IOException e) { e.printStackTrace(); } if (s == null) return false; st = new StringTokenizer(s); } return true; } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } } public static void main(String[] args) { new A().runIO(); } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class A { FastScanner in; PrintWriter out; void solve() { int n = in.nextInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = in.nextInt(); } Arrays.sort(a); int res = 0; for (int i = 0; i < n; i++) { boolean ok = false; for (int j = 0; j < i; j++) { if (a[i] % a[j] == 0) { ok = true; } } if (!ok) { res++; } } out.println(res); } void run() { try { in = new FastScanner(new File("A.in")); out = new PrintWriter(new File("A.out")); solve(); out.close(); } catch (FileNotFoundException e) { e.printStackTrace(); } } void runIO() { in = new FastScanner(System.in); out = new PrintWriter(System.out); solve(); out.close(); } class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(File f) { try { br = new BufferedReader(new FileReader(f)); } catch (FileNotFoundException e) { e.printStackTrace(); } } public FastScanner(InputStream f) { br = new BufferedReader(new InputStreamReader(f)); } String next() { while (st == null || !st.hasMoreTokens()) { String s = null; try { s = br.readLine(); } catch (IOException e) { e.printStackTrace(); } if (s == null) return null; st = new StringTokenizer(s); } return st.nextToken(); } boolean hasMoreTokens() { while (st == null || !st.hasMoreTokens()) { String s = null; try { s = br.readLine(); } catch (IOException e) { e.printStackTrace(); } if (s == null) return false; st = new StringTokenizer(s); } return true; } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } } public static void main(String[] args) { new A().runIO(); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class A { FastScanner in; PrintWriter out; void solve() { int n = in.nextInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = in.nextInt(); } Arrays.sort(a); int res = 0; for (int i = 0; i < n; i++) { boolean ok = false; for (int j = 0; j < i; j++) { if (a[i] % a[j] == 0) { ok = true; } } if (!ok) { res++; } } out.println(res); } void run() { try { in = new FastScanner(new File("A.in")); out = new PrintWriter(new File("A.out")); solve(); out.close(); } catch (FileNotFoundException e) { e.printStackTrace(); } } void runIO() { in = new FastScanner(System.in); out = new PrintWriter(System.out); solve(); out.close(); } class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(File f) { try { br = new BufferedReader(new FileReader(f)); } catch (FileNotFoundException e) { e.printStackTrace(); } } public FastScanner(InputStream f) { br = new BufferedReader(new InputStreamReader(f)); } String next() { while (st == null || !st.hasMoreTokens()) { String s = null; try { s = br.readLine(); } catch (IOException e) { e.printStackTrace(); } if (s == null) return null; st = new StringTokenizer(s); } return st.nextToken(); } boolean hasMoreTokens() { while (st == null || !st.hasMoreTokens()) { String s = null; try { s = br.readLine(); } catch (IOException e) { e.printStackTrace(); } if (s == null) return false; st = new StringTokenizer(s); } return true; } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } } public static void main(String[] args) { new A().runIO(); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
861
2,567
3,327
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; public class D { BufferedReader reader; StringTokenizer tokenizer; PrintWriter out; public void solve() throws IOException { int N = nextInt(); int M = nextInt(); boolean[][] graph = new boolean[N][N]; for (int i = 0; i < M; i++) { graph[nextInt()-1][nextInt()-1] = true; } int best = Integer.MAX_VALUE; for (int c = 0; c < N; c++) { int withC = 0; for (int i = 0; i < N; i++) { if (i == c) { if (graph[c][i]) withC++; } else { if (graph[c][i]) withC++; if (graph[i][c]) withC++; } } int notC = M - withC; List<Integer>[] g = new List[N]; for (int i = 0; i < N; i++) { g[i] = new ArrayList<Integer>(); } for (int i = 0; i < N; i++) { if (i == c) continue; for (int j = 0; j < N; j++) { if (j == c) continue; if (!graph[i][j]) continue; g[i].add(j); } } int glen = maxMatching(g, N); // int src = 2*N; // int dst = 2*N+1; // int[][] cap = new int[2*N+2][2*N+2]; // int[][] cost = new int[2*N+2][2*N+2]; // for (int i = 0; i < N; i++) { // cap[src][i] = 1; // cost[src][i] = 1; // cap[N+i][dst] = 1; // cost[N+i][dst] = 1; // } // for (int i = 0; i < N; i++) { // if (i == c) continue; // for (int j = 0; j < N; j++) { // if (j == c) continue; // if (!graph[i][j]) continue; // cap[i][N+j] = 1; // cost[i][N+j] = 1; // } // } // MinCostMaxFlow flow = new MinCostMaxFlow(); // int result[] = flow.getMaxFlow(cap, cost, src, dst); // int glen = result[0]; int need = (2*N-1 - withC) + (notC - glen) + (N - 1 - glen); best = Math.min(best, need); } out.println(best); } static boolean findPath(List<Integer>[] g, int u1, int[] matching, boolean[] vis) { vis[u1] = true; for (int v : g[u1]) { int u2 = matching[v]; if (u2 == -1 || !vis[u2] && findPath(g, u2, matching, vis)) { matching[v] = u1; return true; } } return false; } public static int maxMatching(List<Integer>[] g, int n2) { int n1 = g.length; int[] matching = new int[n2]; Arrays.fill(matching, -1); int matches = 0; for (int u = 0; u < n1; u++) { if (findPath(g, u, matching, new boolean[n1])) ++matches; } return matches; } /** * @param args */ public static void main(String[] args) { new D().run(); } public void run() { try { reader = new BufferedReader(new InputStreamReader(System.in)); tokenizer = null; out = new PrintWriter(System.out); solve(); reader.close(); out.close(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } String nextToken() throws IOException { while (tokenizer == null || !tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(reader.readLine()); } return tokenizer.nextToken(); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; public class D { BufferedReader reader; StringTokenizer tokenizer; PrintWriter out; public void solve() throws IOException { int N = nextInt(); int M = nextInt(); boolean[][] graph = new boolean[N][N]; for (int i = 0; i < M; i++) { graph[nextInt()-1][nextInt()-1] = true; } int best = Integer.MAX_VALUE; for (int c = 0; c < N; c++) { int withC = 0; for (int i = 0; i < N; i++) { if (i == c) { if (graph[c][i]) withC++; } else { if (graph[c][i]) withC++; if (graph[i][c]) withC++; } } int notC = M - withC; List<Integer>[] g = new List[N]; for (int i = 0; i < N; i++) { g[i] = new ArrayList<Integer>(); } for (int i = 0; i < N; i++) { if (i == c) continue; for (int j = 0; j < N; j++) { if (j == c) continue; if (!graph[i][j]) continue; g[i].add(j); } } int glen = maxMatching(g, N); // int src = 2*N; // int dst = 2*N+1; // int[][] cap = new int[2*N+2][2*N+2]; // int[][] cost = new int[2*N+2][2*N+2]; // for (int i = 0; i < N; i++) { // cap[src][i] = 1; // cost[src][i] = 1; // cap[N+i][dst] = 1; // cost[N+i][dst] = 1; // } // for (int i = 0; i < N; i++) { // if (i == c) continue; // for (int j = 0; j < N; j++) { // if (j == c) continue; // if (!graph[i][j]) continue; // cap[i][N+j] = 1; // cost[i][N+j] = 1; // } // } // MinCostMaxFlow flow = new MinCostMaxFlow(); // int result[] = flow.getMaxFlow(cap, cost, src, dst); // int glen = result[0]; int need = (2*N-1 - withC) + (notC - glen) + (N - 1 - glen); best = Math.min(best, need); } out.println(best); } static boolean findPath(List<Integer>[] g, int u1, int[] matching, boolean[] vis) { vis[u1] = true; for (int v : g[u1]) { int u2 = matching[v]; if (u2 == -1 || !vis[u2] && findPath(g, u2, matching, vis)) { matching[v] = u1; return true; } } return false; } public static int maxMatching(List<Integer>[] g, int n2) { int n1 = g.length; int[] matching = new int[n2]; Arrays.fill(matching, -1); int matches = 0; for (int u = 0; u < n1; u++) { if (findPath(g, u, matching, new boolean[n1])) ++matches; } return matches; } /** * @param args */ public static void main(String[] args) { new D().run(); } public void run() { try { reader = new BufferedReader(new InputStreamReader(System.in)); tokenizer = null; out = new PrintWriter(System.out); solve(); reader.close(); out.close(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } String nextToken() throws IOException { while (tokenizer == null || !tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(reader.readLine()); } return tokenizer.nextToken(); } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; public class D { BufferedReader reader; StringTokenizer tokenizer; PrintWriter out; public void solve() throws IOException { int N = nextInt(); int M = nextInt(); boolean[][] graph = new boolean[N][N]; for (int i = 0; i < M; i++) { graph[nextInt()-1][nextInt()-1] = true; } int best = Integer.MAX_VALUE; for (int c = 0; c < N; c++) { int withC = 0; for (int i = 0; i < N; i++) { if (i == c) { if (graph[c][i]) withC++; } else { if (graph[c][i]) withC++; if (graph[i][c]) withC++; } } int notC = M - withC; List<Integer>[] g = new List[N]; for (int i = 0; i < N; i++) { g[i] = new ArrayList<Integer>(); } for (int i = 0; i < N; i++) { if (i == c) continue; for (int j = 0; j < N; j++) { if (j == c) continue; if (!graph[i][j]) continue; g[i].add(j); } } int glen = maxMatching(g, N); // int src = 2*N; // int dst = 2*N+1; // int[][] cap = new int[2*N+2][2*N+2]; // int[][] cost = new int[2*N+2][2*N+2]; // for (int i = 0; i < N; i++) { // cap[src][i] = 1; // cost[src][i] = 1; // cap[N+i][dst] = 1; // cost[N+i][dst] = 1; // } // for (int i = 0; i < N; i++) { // if (i == c) continue; // for (int j = 0; j < N; j++) { // if (j == c) continue; // if (!graph[i][j]) continue; // cap[i][N+j] = 1; // cost[i][N+j] = 1; // } // } // MinCostMaxFlow flow = new MinCostMaxFlow(); // int result[] = flow.getMaxFlow(cap, cost, src, dst); // int glen = result[0]; int need = (2*N-1 - withC) + (notC - glen) + (N - 1 - glen); best = Math.min(best, need); } out.println(best); } static boolean findPath(List<Integer>[] g, int u1, int[] matching, boolean[] vis) { vis[u1] = true; for (int v : g[u1]) { int u2 = matching[v]; if (u2 == -1 || !vis[u2] && findPath(g, u2, matching, vis)) { matching[v] = u1; return true; } } return false; } public static int maxMatching(List<Integer>[] g, int n2) { int n1 = g.length; int[] matching = new int[n2]; Arrays.fill(matching, -1); int matches = 0; for (int u = 0; u < n1; u++) { if (findPath(g, u, matching, new boolean[n1])) ++matches; } return matches; } /** * @param args */ public static void main(String[] args) { new D().run(); } public void run() { try { reader = new BufferedReader(new InputStreamReader(System.in)); tokenizer = null; out = new PrintWriter(System.out); solve(); reader.close(); out.close(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } String nextToken() throws IOException { while (tokenizer == null || !tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(reader.readLine()); } return tokenizer.nextToken(); } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,397
3,321
1,937
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.StringTokenizer; /** * @author Andrew Porokhin, [email protected] */ public class Problem111A implements Runnable { void solve() throws NumberFormatException, IOException { // TODO: Write your code here ... final int n = nextInt(); final int[] a = new int[n]; long sum = 0; for (int i = 0; i < n; i++) { final int nextInt = nextInt(); sum += nextInt; a[i] = nextInt; } Arrays.sort(a); int currSum = 0; int maxCoins = 0; for (int j = a.length - 1; j >= 0; j--) { currSum += a[j]; maxCoins++; if (sum - currSum < currSum) { break; } } System.out.println(maxCoins); } StringTokenizer st; BufferedReader in; PrintWriter out; public static void main(String[] args) { // Introduce thread in order to increase stack size new Problem111A().run(); } public void run() { try { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); } catch (Exception e) { System.exit(9000); } finally { out.flush(); out.close(); } } String nextToken() throws IOException { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } int nextInt() throws NumberFormatException, IOException { return Integer.parseInt(nextToken()); } long nextLong() throws NumberFormatException, IOException { return Long.parseLong(nextToken()); } double nextDouble() throws NumberFormatException, IOException { return Double.parseDouble(nextToken()); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.StringTokenizer; /** * @author Andrew Porokhin, [email protected] */ public class Problem111A implements Runnable { void solve() throws NumberFormatException, IOException { // TODO: Write your code here ... final int n = nextInt(); final int[] a = new int[n]; long sum = 0; for (int i = 0; i < n; i++) { final int nextInt = nextInt(); sum += nextInt; a[i] = nextInt; } Arrays.sort(a); int currSum = 0; int maxCoins = 0; for (int j = a.length - 1; j >= 0; j--) { currSum += a[j]; maxCoins++; if (sum - currSum < currSum) { break; } } System.out.println(maxCoins); } StringTokenizer st; BufferedReader in; PrintWriter out; public static void main(String[] args) { // Introduce thread in order to increase stack size new Problem111A().run(); } public void run() { try { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); } catch (Exception e) { System.exit(9000); } finally { out.flush(); out.close(); } } String nextToken() throws IOException { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } int nextInt() throws NumberFormatException, IOException { return Integer.parseInt(nextToken()); } long nextLong() throws NumberFormatException, IOException { return Long.parseLong(nextToken()); } double nextDouble() throws NumberFormatException, IOException { return Double.parseDouble(nextToken()); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.StringTokenizer; /** * @author Andrew Porokhin, [email protected] */ public class Problem111A implements Runnable { void solve() throws NumberFormatException, IOException { // TODO: Write your code here ... final int n = nextInt(); final int[] a = new int[n]; long sum = 0; for (int i = 0; i < n; i++) { final int nextInt = nextInt(); sum += nextInt; a[i] = nextInt; } Arrays.sort(a); int currSum = 0; int maxCoins = 0; for (int j = a.length - 1; j >= 0; j--) { currSum += a[j]; maxCoins++; if (sum - currSum < currSum) { break; } } System.out.println(maxCoins); } StringTokenizer st; BufferedReader in; PrintWriter out; public static void main(String[] args) { // Introduce thread in order to increase stack size new Problem111A().run(); } public void run() { try { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); } catch (Exception e) { System.exit(9000); } finally { out.flush(); out.close(); } } String nextToken() throws IOException { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } int nextInt() throws NumberFormatException, IOException { return Integer.parseInt(nextToken()); } long nextLong() throws NumberFormatException, IOException { return Long.parseLong(nextToken()); } double nextDouble() throws NumberFormatException, IOException { return Double.parseDouble(nextToken()); } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
766
1,933
438
import java.util.*; import java.io.*; import java.math.*; public class Solution{ public static void main(String[] args)throws IOException{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int t = Integer.parseInt(br.readLine()); StringTokenizer st; for(int z=0;z<t;z++){ st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); st = new StringTokenizer(br.readLine()); int min=1; int max=1; for(int i=0;i<n;i++){ int k = Integer.parseInt(st.nextToken()); if(max<k){ min = max; max = k; }else if(min<k){ min = k; } } int res = Math.min(n-2,min-1); System.out.println(res); } } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; import java.math.*; public class Solution{ public static void main(String[] args)throws IOException{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int t = Integer.parseInt(br.readLine()); StringTokenizer st; for(int z=0;z<t;z++){ st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); st = new StringTokenizer(br.readLine()); int min=1; int max=1; for(int i=0;i<n;i++){ int k = Integer.parseInt(st.nextToken()); if(max<k){ min = max; max = k; }else if(min<k){ min = k; } } int res = Math.min(n-2,min-1); System.out.println(res); } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; import java.math.*; public class Solution{ public static void main(String[] args)throws IOException{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int t = Integer.parseInt(br.readLine()); StringTokenizer st; for(int z=0;z<t;z++){ st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); st = new StringTokenizer(br.readLine()); int min=1; int max=1; for(int i=0;i<n;i++){ int k = Integer.parseInt(st.nextToken()); if(max<k){ min = max; max = k; }else if(min<k){ min = k; } } int res = Math.min(n-2,min-1); System.out.println(res); } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
504
437
898
import java.io.BufferedReader; import java.io.FileReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintStream; import java.util.*; public class B { BufferedReader in; PrintStream out; StringTokenizer tok; public B() throws NumberFormatException, IOException { in = new BufferedReader(new InputStreamReader(System.in)); //in = new BufferedReader(new FileReader("in.txt")); out = System.out; run(); } void run() throws NumberFormatException, IOException { int n = nextInt(); int k = nextInt(); int[] num = new int[n]; for(int i = 0; i < n; i++) num[i] = nextInt(); int[] cant = new int[100001]; int cnt = 0; int r = 0; for(; r < n; r++) { if(cant[num[r]]==0)cnt++; cant[num[r]]++; if(cnt==k) break; } if(cnt<k) { out.println("-1 -1"); return; } int l = 0; for(; l < r; l++) { cant[num[l]]--; if(cant[num[l]]==0)cnt--; if(cnt<k) break; } out.println((l+1)+" "+(r+1)); } public static void main(String[] args) throws NumberFormatException, IOException { new B(); } String nextToken() throws IOException { if(tok ==null || !tok.hasMoreTokens()) tok = new StringTokenizer(in.readLine()); return tok.nextToken(); } int nextInt() throws NumberFormatException, IOException { return Integer.parseInt(nextToken()); } long nextLong() throws NumberFormatException, IOException { return Long.parseLong(nextToken()); } double nextDouble() throws NumberFormatException, IOException { return Double.parseDouble(nextToken()); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.FileReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintStream; import java.util.*; public class B { BufferedReader in; PrintStream out; StringTokenizer tok; public B() throws NumberFormatException, IOException { in = new BufferedReader(new InputStreamReader(System.in)); //in = new BufferedReader(new FileReader("in.txt")); out = System.out; run(); } void run() throws NumberFormatException, IOException { int n = nextInt(); int k = nextInt(); int[] num = new int[n]; for(int i = 0; i < n; i++) num[i] = nextInt(); int[] cant = new int[100001]; int cnt = 0; int r = 0; for(; r < n; r++) { if(cant[num[r]]==0)cnt++; cant[num[r]]++; if(cnt==k) break; } if(cnt<k) { out.println("-1 -1"); return; } int l = 0; for(; l < r; l++) { cant[num[l]]--; if(cant[num[l]]==0)cnt--; if(cnt<k) break; } out.println((l+1)+" "+(r+1)); } public static void main(String[] args) throws NumberFormatException, IOException { new B(); } String nextToken() throws IOException { if(tok ==null || !tok.hasMoreTokens()) tok = new StringTokenizer(in.readLine()); return tok.nextToken(); } int nextInt() throws NumberFormatException, IOException { return Integer.parseInt(nextToken()); } long nextLong() throws NumberFormatException, IOException { return Long.parseLong(nextToken()); } double nextDouble() throws NumberFormatException, IOException { return Double.parseDouble(nextToken()); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.FileReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintStream; import java.util.*; public class B { BufferedReader in; PrintStream out; StringTokenizer tok; public B() throws NumberFormatException, IOException { in = new BufferedReader(new InputStreamReader(System.in)); //in = new BufferedReader(new FileReader("in.txt")); out = System.out; run(); } void run() throws NumberFormatException, IOException { int n = nextInt(); int k = nextInt(); int[] num = new int[n]; for(int i = 0; i < n; i++) num[i] = nextInt(); int[] cant = new int[100001]; int cnt = 0; int r = 0; for(; r < n; r++) { if(cant[num[r]]==0)cnt++; cant[num[r]]++; if(cnt==k) break; } if(cnt<k) { out.println("-1 -1"); return; } int l = 0; for(; l < r; l++) { cant[num[l]]--; if(cant[num[l]]==0)cnt--; if(cnt<k) break; } out.println((l+1)+" "+(r+1)); } public static void main(String[] args) throws NumberFormatException, IOException { new B(); } String nextToken() throws IOException { if(tok ==null || !tok.hasMoreTokens()) tok = new StringTokenizer(in.readLine()); return tok.nextToken(); } int nextInt() throws NumberFormatException, IOException { return Integer.parseInt(nextToken()); } long nextLong() throws NumberFormatException, IOException { return Long.parseLong(nextToken()); } double nextDouble() throws NumberFormatException, IOException { return Double.parseDouble(nextToken()); } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
754
897
4,097
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class Bag implements Runnable { private void solve() throws IOException { int xs = nextInt(); int ys = nextInt(); int n = nextInt(); int[] x = new int[n]; int[] y = new int[n]; for (int i = 0; i < n; ++i) { x[i] = nextInt(); y[i] = nextInt(); } final int[][] pair = new int[n][n]; for (int i = 0; i < n; ++i) for (int j = i + 1; j < n; ++j) pair[i][j] = (x[i] - xs) * (x[i] - xs) + (y[i] - ys) * (y[i] - ys) + (x[j] - xs) * (x[j] - xs) + (y[j] - ys) * (y[j] - ys) + (x[j] - x[i]) * (x[j] - x[i]) + (y[j] - y[i]) * (y[j] - y[i]); final int[] single = new int[n]; for (int i = 0; i < n; ++i) { single[i] = 2 * ((x[i] - xs) * (x[i] - xs) + (y[i] - ys) * (y[i] - ys)); } final int[] best = new int[1 << n]; final int[] prev = new int[1 << n]; for (int set = 1; set < (1 << n); ++set) { int i; for (i = 0; i < n; ++i) if ((set & (1 << i)) != 0) break; int bestC = best[set ^ (1 << i)] + single[i]; int prevC = 1 << i; int nextSet = set ^ (1 << i); int unoI = 1 << i; int msc = set >> (i + 1); for (int j = i + 1, unoJ = 1 << (i + 1); msc != 0 && j < n; ++j, unoJ <<= 1, msc >>= 1) if ((msc & 1) != 0) { int cur = best[nextSet ^ unoJ] + pair[i][j]; if (cur < bestC) { bestC = cur; prevC = unoI | unoJ; } } best[set] = bestC; prev[set] = prevC; } writer.println(best[(1 << n) - 1]); int now = (1 << n) - 1; writer.print("0"); while (now > 0) { int differents = prev[now]; for(int i = 0; i < n; i++) if((differents & (1 << i)) != 0) { writer.print(" "); writer.print(i + 1); now ^= 1 << i; } writer.print(" "); writer.print("0"); } writer.println(); } public static void main(String[] args) { new Bag().run(); } BufferedReader reader; StringTokenizer tokenizer; PrintWriter writer; public void run() { try { reader = new BufferedReader(new InputStreamReader(System.in)); tokenizer = null; writer = new PrintWriter(System.out); solve(); reader.close(); writer.close(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } String nextToken() throws IOException { while (tokenizer == null || !tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(reader.readLine()); } return tokenizer.nextToken(); } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class Bag implements Runnable { private void solve() throws IOException { int xs = nextInt(); int ys = nextInt(); int n = nextInt(); int[] x = new int[n]; int[] y = new int[n]; for (int i = 0; i < n; ++i) { x[i] = nextInt(); y[i] = nextInt(); } final int[][] pair = new int[n][n]; for (int i = 0; i < n; ++i) for (int j = i + 1; j < n; ++j) pair[i][j] = (x[i] - xs) * (x[i] - xs) + (y[i] - ys) * (y[i] - ys) + (x[j] - xs) * (x[j] - xs) + (y[j] - ys) * (y[j] - ys) + (x[j] - x[i]) * (x[j] - x[i]) + (y[j] - y[i]) * (y[j] - y[i]); final int[] single = new int[n]; for (int i = 0; i < n; ++i) { single[i] = 2 * ((x[i] - xs) * (x[i] - xs) + (y[i] - ys) * (y[i] - ys)); } final int[] best = new int[1 << n]; final int[] prev = new int[1 << n]; for (int set = 1; set < (1 << n); ++set) { int i; for (i = 0; i < n; ++i) if ((set & (1 << i)) != 0) break; int bestC = best[set ^ (1 << i)] + single[i]; int prevC = 1 << i; int nextSet = set ^ (1 << i); int unoI = 1 << i; int msc = set >> (i + 1); for (int j = i + 1, unoJ = 1 << (i + 1); msc != 0 && j < n; ++j, unoJ <<= 1, msc >>= 1) if ((msc & 1) != 0) { int cur = best[nextSet ^ unoJ] + pair[i][j]; if (cur < bestC) { bestC = cur; prevC = unoI | unoJ; } } best[set] = bestC; prev[set] = prevC; } writer.println(best[(1 << n) - 1]); int now = (1 << n) - 1; writer.print("0"); while (now > 0) { int differents = prev[now]; for(int i = 0; i < n; i++) if((differents & (1 << i)) != 0) { writer.print(" "); writer.print(i + 1); now ^= 1 << i; } writer.print(" "); writer.print("0"); } writer.println(); } public static void main(String[] args) { new Bag().run(); } BufferedReader reader; StringTokenizer tokenizer; PrintWriter writer; public void run() { try { reader = new BufferedReader(new InputStreamReader(System.in)); tokenizer = null; writer = new PrintWriter(System.out); solve(); reader.close(); writer.close(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } String nextToken() throws IOException { while (tokenizer == null || !tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(reader.readLine()); } return tokenizer.nextToken(); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class Bag implements Runnable { private void solve() throws IOException { int xs = nextInt(); int ys = nextInt(); int n = nextInt(); int[] x = new int[n]; int[] y = new int[n]; for (int i = 0; i < n; ++i) { x[i] = nextInt(); y[i] = nextInt(); } final int[][] pair = new int[n][n]; for (int i = 0; i < n; ++i) for (int j = i + 1; j < n; ++j) pair[i][j] = (x[i] - xs) * (x[i] - xs) + (y[i] - ys) * (y[i] - ys) + (x[j] - xs) * (x[j] - xs) + (y[j] - ys) * (y[j] - ys) + (x[j] - x[i]) * (x[j] - x[i]) + (y[j] - y[i]) * (y[j] - y[i]); final int[] single = new int[n]; for (int i = 0; i < n; ++i) { single[i] = 2 * ((x[i] - xs) * (x[i] - xs) + (y[i] - ys) * (y[i] - ys)); } final int[] best = new int[1 << n]; final int[] prev = new int[1 << n]; for (int set = 1; set < (1 << n); ++set) { int i; for (i = 0; i < n; ++i) if ((set & (1 << i)) != 0) break; int bestC = best[set ^ (1 << i)] + single[i]; int prevC = 1 << i; int nextSet = set ^ (1 << i); int unoI = 1 << i; int msc = set >> (i + 1); for (int j = i + 1, unoJ = 1 << (i + 1); msc != 0 && j < n; ++j, unoJ <<= 1, msc >>= 1) if ((msc & 1) != 0) { int cur = best[nextSet ^ unoJ] + pair[i][j]; if (cur < bestC) { bestC = cur; prevC = unoI | unoJ; } } best[set] = bestC; prev[set] = prevC; } writer.println(best[(1 << n) - 1]); int now = (1 << n) - 1; writer.print("0"); while (now > 0) { int differents = prev[now]; for(int i = 0; i < n; i++) if((differents & (1 << i)) != 0) { writer.print(" "); writer.print(i + 1); now ^= 1 << i; } writer.print(" "); writer.print("0"); } writer.println(); } public static void main(String[] args) { new Bag().run(); } BufferedReader reader; StringTokenizer tokenizer; PrintWriter writer; public void run() { try { reader = new BufferedReader(new InputStreamReader(System.in)); tokenizer = null; writer = new PrintWriter(System.out); solve(); reader.close(); writer.close(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } String nextToken() throws IOException { while (tokenizer == null || !tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(reader.readLine()); } return tokenizer.nextToken(); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,246
4,086
4,061
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.List; import java.util.StringTokenizer; /** Created by huhansan on 2017/10/9. */ public class CF_8C implements Runnable { int[] step = new int[1 << 24]; //每个状态所需要的步数 int[] steplast = new int[1 << 24]; //当前状态上一个 int n; int vs[] = new int[24]; int vd[][] = new int[24][24]; int x_bag, y_bag; int x[] = new int[24], y[] = new int[24]; /** */ private void solve() throws IOException { x_bag = nextInt(); y_bag = nextInt(); n = nextInt(); for (int i = 0; i < n; i++) { x[i] = nextInt(); y[i] = nextInt(); } //计算所有物品单取的全值和 任意两件物品一起取的权值 for (int i = 0; i < n; i++) { vs[i] = 2 * ((x[i] - x_bag) * (x[i] - x_bag) + (y[i] - y_bag) * (y[i] - y_bag)); } for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { vd[i][j] = (x[i] - x_bag) * (x[i] - x_bag) + (y[i] - y_bag) * (y[i] - y_bag) + (x[j] - x_bag) * (x[j] - x_bag) + (y[j] - y_bag) * (y[j] - y_bag) + (x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]); } } //记录达到每一个状态所需的最小步数和最后一次取得物品 for (int i = 1; i < 1 << n; i++) { int j, k = 0, l, m, lastState; for (j = 1; (i & j) == 0 && j < 1 << n; j <<= 1) { k++; } lastState = i & (~j); step[i] = step[lastState] + vs[k]; steplast[i] = lastState; m = k; for (l = j << 1; l < 1 << n; l <<= 1) { m++; if ((lastState & l) != 0) { if (step[i] > step[lastState & (~l)] + vd[k][m]) { step[i] = step[lastState & (~l)] + vd[k][m]; steplast[i] = lastState & (~l); } } } // System.out.println(steplast[i]+"---"+i+"---"+step[i]); } writer.println(step[(1 << n) - 1]); int i = (1 << n) - 1; writer.print("0 "); while (i != 0) { for (int j = 1, m = 1; j <= i; j <<= 1, m++) { if ((j & (i ^ steplast[i])) != 0) { writer.print(m + " "); } } writer.print("0 "); i = steplast[i]; } } public static void main(String[] args) { new CF_8C().run(); } BufferedReader reader; StringTokenizer tokenizer; PrintWriter writer; public void run() { try { reader = new BufferedReader(new InputStreamReader(System.in)); tokenizer = null; writer = new PrintWriter(System.out); solve(); reader.close(); writer.close(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } String nextToken() throws IOException { while (tokenizer == null || !tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(reader.readLine()); } return tokenizer.nextToken(); } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.List; import java.util.StringTokenizer; /** Created by huhansan on 2017/10/9. */ public class CF_8C implements Runnable { int[] step = new int[1 << 24]; //每个状态所需要的步数 int[] steplast = new int[1 << 24]; //当前状态上一个 int n; int vs[] = new int[24]; int vd[][] = new int[24][24]; int x_bag, y_bag; int x[] = new int[24], y[] = new int[24]; /** */ private void solve() throws IOException { x_bag = nextInt(); y_bag = nextInt(); n = nextInt(); for (int i = 0; i < n; i++) { x[i] = nextInt(); y[i] = nextInt(); } //计算所有物品单取的全值和 任意两件物品一起取的权值 for (int i = 0; i < n; i++) { vs[i] = 2 * ((x[i] - x_bag) * (x[i] - x_bag) + (y[i] - y_bag) * (y[i] - y_bag)); } for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { vd[i][j] = (x[i] - x_bag) * (x[i] - x_bag) + (y[i] - y_bag) * (y[i] - y_bag) + (x[j] - x_bag) * (x[j] - x_bag) + (y[j] - y_bag) * (y[j] - y_bag) + (x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]); } } //记录达到每一个状态所需的最小步数和最后一次取得物品 for (int i = 1; i < 1 << n; i++) { int j, k = 0, l, m, lastState; for (j = 1; (i & j) == 0 && j < 1 << n; j <<= 1) { k++; } lastState = i & (~j); step[i] = step[lastState] + vs[k]; steplast[i] = lastState; m = k; for (l = j << 1; l < 1 << n; l <<= 1) { m++; if ((lastState & l) != 0) { if (step[i] > step[lastState & (~l)] + vd[k][m]) { step[i] = step[lastState & (~l)] + vd[k][m]; steplast[i] = lastState & (~l); } } } // System.out.println(steplast[i]+"---"+i+"---"+step[i]); } writer.println(step[(1 << n) - 1]); int i = (1 << n) - 1; writer.print("0 "); while (i != 0) { for (int j = 1, m = 1; j <= i; j <<= 1, m++) { if ((j & (i ^ steplast[i])) != 0) { writer.print(m + " "); } } writer.print("0 "); i = steplast[i]; } } public static void main(String[] args) { new CF_8C().run(); } BufferedReader reader; StringTokenizer tokenizer; PrintWriter writer; public void run() { try { reader = new BufferedReader(new InputStreamReader(System.in)); tokenizer = null; writer = new PrintWriter(System.out); solve(); reader.close(); writer.close(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } String nextToken() throws IOException { while (tokenizer == null || !tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(reader.readLine()); } return tokenizer.nextToken(); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.List; import java.util.StringTokenizer; /** Created by huhansan on 2017/10/9. */ public class CF_8C implements Runnable { int[] step = new int[1 << 24]; //每个状态所需要的步数 int[] steplast = new int[1 << 24]; //当前状态上一个 int n; int vs[] = new int[24]; int vd[][] = new int[24][24]; int x_bag, y_bag; int x[] = new int[24], y[] = new int[24]; /** */ private void solve() throws IOException { x_bag = nextInt(); y_bag = nextInt(); n = nextInt(); for (int i = 0; i < n; i++) { x[i] = nextInt(); y[i] = nextInt(); } //计算所有物品单取的全值和 任意两件物品一起取的权值 for (int i = 0; i < n; i++) { vs[i] = 2 * ((x[i] - x_bag) * (x[i] - x_bag) + (y[i] - y_bag) * (y[i] - y_bag)); } for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { vd[i][j] = (x[i] - x_bag) * (x[i] - x_bag) + (y[i] - y_bag) * (y[i] - y_bag) + (x[j] - x_bag) * (x[j] - x_bag) + (y[j] - y_bag) * (y[j] - y_bag) + (x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]); } } //记录达到每一个状态所需的最小步数和最后一次取得物品 for (int i = 1; i < 1 << n; i++) { int j, k = 0, l, m, lastState; for (j = 1; (i & j) == 0 && j < 1 << n; j <<= 1) { k++; } lastState = i & (~j); step[i] = step[lastState] + vs[k]; steplast[i] = lastState; m = k; for (l = j << 1; l < 1 << n; l <<= 1) { m++; if ((lastState & l) != 0) { if (step[i] > step[lastState & (~l)] + vd[k][m]) { step[i] = step[lastState & (~l)] + vd[k][m]; steplast[i] = lastState & (~l); } } } // System.out.println(steplast[i]+"---"+i+"---"+step[i]); } writer.println(step[(1 << n) - 1]); int i = (1 << n) - 1; writer.print("0 "); while (i != 0) { for (int j = 1, m = 1; j <= i; j <<= 1, m++) { if ((j & (i ^ steplast[i])) != 0) { writer.print(m + " "); } } writer.print("0 "); i = steplast[i]; } } public static void main(String[] args) { new CF_8C().run(); } BufferedReader reader; StringTokenizer tokenizer; PrintWriter writer; public void run() { try { reader = new BufferedReader(new InputStreamReader(System.in)); tokenizer = null; writer = new PrintWriter(System.out); solve(); reader.close(); writer.close(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } String nextToken() throws IOException { while (tokenizer == null || !tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(reader.readLine()); } return tokenizer.nextToken(); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,365
4,050
397
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; public class ProblemB3 { Map<Integer, List<int[]>> dest; private ProblemB3() throws IOException { BufferedReader rd = new BufferedReader(new InputStreamReader(System.in)); String h = rd.readLine(); String[] q = h.split("\\s+"); int a = Integer.parseInt(q[1]); int b = Integer.parseInt(q[2]); h = rd.readLine(); q = h.split(" "); int n = q.length; int[] p = new int[n]; for(int i=0;i<n;i++) { p[i] = Integer.parseInt(q[i]); } Set<Integer> pset = new HashSet<>(); for(int x: p) { pset.add(x); } dest = new HashMap<>(); boolean res = true; for(int x: p) { boolean aOk = pset.contains(a-x); boolean bOk = pset.contains(b-x); if(!aOk && !bOk) { res = false; break; } else { if(aOk) { addEdgeAndBack(x,a-x,0); } if(bOk) { addEdgeAndBack(x,b-x,1); } } } Set<Integer> aSet = new HashSet<>(); if(res && a != b) { for(int x: p) { List<int[]> e = getEdges(x); if(e.size() == 1) { int[] edge = e.get(0); boolean odd = true; int curA = edge[1]; int prev = x; while(true) { int cur = edge[0]; if(curA == 0 && odd) { aSet.add(prev); aSet.add(cur); } e = getEdges(cur); if(e.size() == 1) { if(!odd && e.get(0)[0] != cur) { res = false; } break; } int other = e.get(0)[0] == prev?1:0; edge = e.get(other); if(edge[1] == curA) { res = false; break; } curA = 1-curA; prev = cur; odd = !odd; } if(!res) { break; } } } } out(res?"YES":"NO"); if(res) { StringBuilder buf = new StringBuilder(); for(int i=0;i<n;i++) { if(i>0) { buf.append(' '); } buf.append(aSet.contains(p[i])?'0':'1'); } out(buf); } } private void addEdgeAndBack(int from, int to, int u) { addEdge(from, to, u); addEdge(to, from, u); } private void addEdge(int from, int to, int u) { List<int[]> edges = getEdges(from); for(int[] edge: edges) { if(edge[0] == to) { return; } } edges.add(new int[]{to, u}); } private List<int[]> getEdges(int from) { List<int[]> ds = dest.get(from); if(ds == null) { ds = new ArrayList<>(); dest.put(from, ds); } return ds; } private static void out(Object x) { System.out.println(x); } public static void main(String[] args) throws IOException { new ProblemB3(); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; public class ProblemB3 { Map<Integer, List<int[]>> dest; private ProblemB3() throws IOException { BufferedReader rd = new BufferedReader(new InputStreamReader(System.in)); String h = rd.readLine(); String[] q = h.split("\\s+"); int a = Integer.parseInt(q[1]); int b = Integer.parseInt(q[2]); h = rd.readLine(); q = h.split(" "); int n = q.length; int[] p = new int[n]; for(int i=0;i<n;i++) { p[i] = Integer.parseInt(q[i]); } Set<Integer> pset = new HashSet<>(); for(int x: p) { pset.add(x); } dest = new HashMap<>(); boolean res = true; for(int x: p) { boolean aOk = pset.contains(a-x); boolean bOk = pset.contains(b-x); if(!aOk && !bOk) { res = false; break; } else { if(aOk) { addEdgeAndBack(x,a-x,0); } if(bOk) { addEdgeAndBack(x,b-x,1); } } } Set<Integer> aSet = new HashSet<>(); if(res && a != b) { for(int x: p) { List<int[]> e = getEdges(x); if(e.size() == 1) { int[] edge = e.get(0); boolean odd = true; int curA = edge[1]; int prev = x; while(true) { int cur = edge[0]; if(curA == 0 && odd) { aSet.add(prev); aSet.add(cur); } e = getEdges(cur); if(e.size() == 1) { if(!odd && e.get(0)[0] != cur) { res = false; } break; } int other = e.get(0)[0] == prev?1:0; edge = e.get(other); if(edge[1] == curA) { res = false; break; } curA = 1-curA; prev = cur; odd = !odd; } if(!res) { break; } } } } out(res?"YES":"NO"); if(res) { StringBuilder buf = new StringBuilder(); for(int i=0;i<n;i++) { if(i>0) { buf.append(' '); } buf.append(aSet.contains(p[i])?'0':'1'); } out(buf); } } private void addEdgeAndBack(int from, int to, int u) { addEdge(from, to, u); addEdge(to, from, u); } private void addEdge(int from, int to, int u) { List<int[]> edges = getEdges(from); for(int[] edge: edges) { if(edge[0] == to) { return; } } edges.add(new int[]{to, u}); } private List<int[]> getEdges(int from) { List<int[]> ds = dest.get(from); if(ds == null) { ds = new ArrayList<>(); dest.put(from, ds); } return ds; } private static void out(Object x) { System.out.println(x); } public static void main(String[] args) throws IOException { new ProblemB3(); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; public class ProblemB3 { Map<Integer, List<int[]>> dest; private ProblemB3() throws IOException { BufferedReader rd = new BufferedReader(new InputStreamReader(System.in)); String h = rd.readLine(); String[] q = h.split("\\s+"); int a = Integer.parseInt(q[1]); int b = Integer.parseInt(q[2]); h = rd.readLine(); q = h.split(" "); int n = q.length; int[] p = new int[n]; for(int i=0;i<n;i++) { p[i] = Integer.parseInt(q[i]); } Set<Integer> pset = new HashSet<>(); for(int x: p) { pset.add(x); } dest = new HashMap<>(); boolean res = true; for(int x: p) { boolean aOk = pset.contains(a-x); boolean bOk = pset.contains(b-x); if(!aOk && !bOk) { res = false; break; } else { if(aOk) { addEdgeAndBack(x,a-x,0); } if(bOk) { addEdgeAndBack(x,b-x,1); } } } Set<Integer> aSet = new HashSet<>(); if(res && a != b) { for(int x: p) { List<int[]> e = getEdges(x); if(e.size() == 1) { int[] edge = e.get(0); boolean odd = true; int curA = edge[1]; int prev = x; while(true) { int cur = edge[0]; if(curA == 0 && odd) { aSet.add(prev); aSet.add(cur); } e = getEdges(cur); if(e.size() == 1) { if(!odd && e.get(0)[0] != cur) { res = false; } break; } int other = e.get(0)[0] == prev?1:0; edge = e.get(other); if(edge[1] == curA) { res = false; break; } curA = 1-curA; prev = cur; odd = !odd; } if(!res) { break; } } } } out(res?"YES":"NO"); if(res) { StringBuilder buf = new StringBuilder(); for(int i=0;i<n;i++) { if(i>0) { buf.append(' '); } buf.append(aSet.contains(p[i])?'0':'1'); } out(buf); } } private void addEdgeAndBack(int from, int to, int u) { addEdge(from, to, u); addEdge(to, from, u); } private void addEdge(int from, int to, int u) { List<int[]> edges = getEdges(from); for(int[] edge: edges) { if(edge[0] == to) { return; } } edges.add(new int[]{to, u}); } private List<int[]> getEdges(int from) { List<int[]> ds = dest.get(from); if(ds == null) { ds = new ArrayList<>(); dest.put(from, ds); } return ds; } private static void out(Object x) { System.out.println(x); } public static void main(String[] args) throws IOException { new ProblemB3(); } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,130
396
3,801
import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.InputMismatchException; public class P1517D { // author: Nagabhushan S Baddi // PRIMARY VARIABLES private static int n, m, k; private static int[][] hor, ver, a, b; private static long ans; private static int[][] id; private static Integer[][][] dp; private static int idf; private static String s, t; private static HashMap<Integer, ArrayList<Integer>> g; // CONSTANTS private static final int MOD = (int) 1e9 + 7; public static void main(String[] args) { n = ini(); m = ini(); k = ini(); if (k%2!=0) { for(int i=0; i<n; i++) { for(int j=0; j<m; j++) { print(-1+" "); } println(); } out.flush(); return; } hor = new int[n][m-1]; ver = new int[n-1][m]; for(int i=0; i<n; i++) { for(int j=0; j<m-1; j++) { hor[i][j] = ini(); } } for(int i=0; i<n-1; i++) { for(int j=0; j<m; j++) { ver[i][j] = ini(); } } dp = new Integer[n][m][k+1]; for(int i=0; i<n; i++) { for(int j=0; j<m; j++) { print(2*solve(i, j, k/2)+" "); } println(); } out.flush(); out.close(); } private static int solve(int i, int j, int kLeft) { if (i<0 || i>=n || j<0 || j>=m) { return (int)1e9; } else if (kLeft==0) { return 0; } if (dp[i][j][kLeft]!=null) { return dp[i][j][kLeft]; } int ans = (int)1e9; final int[] dx = {-1, 1, 0, 0}; final int[] dy = {0, 0, -1, 1}; for(int type=0; type<4; type++) { int ni = i+dx[type]; int nj = j+dy[type]; if (ni<0 || ni>=n || nj<0 || nj>=m) continue; int inhibit = 0; if (type==0) { inhibit = ver[ni][nj]; } else if (type==1) { inhibit = ver[i][j]; } else if (type==2) { inhibit = hor[ni][nj]; } else { inhibit = hor[i][j]; } ans = Math.min(ans, inhibit+solve(ni, nj, kLeft-1)); } return dp[i][j][kLeft]=ans; } // INIT private static void initCase(int z) { idf = z; ans = 0; } // PRINT ANSWER private static void printAns(Object o) { out.println(o); } private static void printAns(Object o, int testCaseNo) { out.println("Case #" + testCaseNo + ": " + o); } private static void printArray(Object[] a) { for (int i = 0; i < a.length; i++) { out.print(a[i] + " "); } out.println(); } // SORT SHORTCUTS - QUICK SORT TO MERGE SORT private static void sort(int[] a) { int n = a.length; Integer[] b = new Integer[n]; for (int i = 0; i < n; i++) { b[i] = a[i]; } Arrays.sort(b); for (int i = 0; i < n; i++) { a[i] = b[i]; } } private static void sort(long[] a) { int n = a.length; Long[] b = new Long[n]; for (int i = 0; i < n; i++) { b[i] = a[i]; } Arrays.sort(b); for (int i = 0; i < n; i++) { a[i] = b[i]; } } // INPUT SHORTCUTS private static int[] ina(int n) { int[] temp = new int[n]; for (int i = 0; i < n; i++) { temp[i] = in.nextInt(); } return temp; } private static int[][] ina2d(int n, int m) { int[][] temp = new int[n][m]; for (int i = 0; i < n; i++) { temp[i] = ina(m); } return temp; } private static int ini() { return in.nextInt(); } private static long inl() { return in.nextLong(); } private static double ind() { return Double.parseDouble(ins()); } private static String ins() { return in.readString(); } // PRINT SHORTCUTS private static void println(Object... o) { for (Object x : o) { out.write(x + ""); } out.write("\n"); } private static void pd(Object... o) { for (Object x : o) { out.write(x + ""); } out.flush(); out.write("\n"); } private static void print(Object... o) { for (Object x : o) { out.write(x + ""); } } // GRAPH SHORTCUTS private static HashMap<Integer, ArrayList<Integer>> intree(int n) { HashMap<Integer, ArrayList<Integer>> g = new HashMap<>(); for (int i = 0; i < n; i++) { g.put(i, new ArrayList<>()); } for (int i = 0; i < n - 1; i++) { int u = ini() - 1; int v = ini() - 1; g.get(u).add(v); g.get(v).add(u); } return g; } private static HashMap<Integer, ArrayList<Integer>> ingraph(int n, int m) { HashMap<Integer, ArrayList<Integer>> g = new HashMap<>(); for (int i = 0; i < n; i++) { g.put(i, new ArrayList<>()); } for (int i = 0; i < m; i++) { int u = ini() - 1; int v = ini() - 1; g.get(u).add(v); g.get(v).add(u); } return g; } private static HashMap<Integer, ArrayList<Integer>> indirectedgraph(int n, int m) { HashMap<Integer, ArrayList<Integer>> g = new HashMap<>(); for (int i = 0; i < n; i++) { g.put(i, new ArrayList<>()); } for (int i = 0; i < m; i++) { int u = ini() - 1; int v = ini() - 1; g.get(u).add(v); } return g; } private static HashMap<Integer, ArrayList<Edge>> inweightedgraph(int n, int m) { HashMap<Integer, ArrayList<Edge>> g = new HashMap<>(); for (int i = 0; i < n; i++) { g.put(i, new ArrayList<>()); } for (int i = 0; i < m; i++) { int u = ini() - 1; int v = ini() - 1; int w = ini(); Edge edge = new Edge(u, v, w); g.get(u).add(edge); g.get(v).add(edge); } return g; } private static class Edge implements Comparable<Edge> { private int u, v; private long w; public Edge(int a, int b, long c) { u = a; v = b; w = c; } public int other(int x) { return (x == u ? v : u); } public int compareTo(Edge edge) { return Long.compare(w, edge.w); } } private static class Pair { private int u, v; public Pair(int a, int b) { u = a; v = b; } public int hashCode() { return u + v + u * v; } public boolean equals(Object object) { Pair pair = (Pair) object; return u == pair.u && v == pair.v; } } private static class Node implements Comparable<Node> { private int u; private long dist; public Node(int a, long b) { u = a; dist = b; } public int compareTo(Node node) { return Long.compare(dist, node.dist); } } // MATHS AND NUMBER THEORY SHORTCUTS private static int gcd(int a, int b) { // O(log(min(a,b))) if (b == 0) return a; return gcd(b, a % b); } private static long modExp(long a, long b) { if (b == 0) return 1; a %= MOD; long exp = modExp(a, b / 2); if (b % 2 == 0) { return (exp * exp) % MOD; } else { return (a * ((exp * exp) % MOD)) % MOD; } } private long mul(int a, int b) { return a * 1L * b; } // Segment Tree private static class SegmentTree<T extends Comparable<T>> { private int n, m; private T[] a; private T[] seg; private T NULLVALUE; public SegmentTree(int n, T NULLVALUE) { this.NULLVALUE = NULLVALUE; this.n = n; m = 4 * n; seg = (T[]) new Object[m]; } public SegmentTree(T[] a, int n, T NULLVALUE) { this.NULLVALUE = NULLVALUE; this.a = a; this.n = n; m = 4 * n; seg = (T[]) new Object[m]; construct(0, n - 1, 0); } private void update(int pos) { // Range Sum // seg[pos] = seg[2*pos+1]+seg[2*pos+2]; // Range Min if (seg[2 * pos + 1].compareTo(seg[2 * pos + 2]) <= 0) { seg[pos] = seg[2 * pos + 1]; } else { seg[pos] = seg[2 * pos + 2]; } } private T optimum(T leftValue, T rightValue) { // Range Sum // return leftValue+rightValue; // Range Min if (leftValue.compareTo(rightValue) <= 0) { return leftValue; } else { return rightValue; } } public void construct(int low, int high, int pos) { if (low == high) { seg[pos] = a[low]; return; } int mid = (low + high) / 2; construct(low, mid, 2 * pos + 1); construct(mid + 1, high, 2 * pos + 2); update(pos); } public void add(int index, T value) { add(index, value, 0, n - 1, 0); } private void add(int index, T value, int low, int high, int pos) { if (low == high) { seg[pos] = value; return; } int mid = (low + high) / 2; if (index <= mid) { add(index, value, low, mid, 2 * pos + 1); } else { add(index, value, mid + 1, high, 2 * pos + 2); } update(pos); } public T get(int qlow, int qhigh) { return get(qlow, qhigh, 0, n - 1, 0); } public T get(int qlow, int qhigh, int low, int high, int pos) { if (qlow > low || low > qhigh) { return NULLVALUE; } else if (qlow <= low || qhigh >= high) { return seg[pos]; } else { int mid = (low + high) / 2; T leftValue = get(qlow, qhigh, low, mid, 2 * pos + 1); T rightValue = get(qlow, qhigh, mid + 1, high, 2 * pos + 2); return optimum(leftValue, rightValue); } } } // DSU private static class DSU { private int[] id; private int[] size; private int n; public DSU(int n) { this.n = n; id = new int[n]; for (int i = 0; i < n; i++) { id[i] = i; } size = new int[n]; Arrays.fill(size, 1); } private int root(int u) { while (u != id[u]) { id[u] = id[id[u]]; u = id[u]; } return u; } public boolean connected(int u, int v) { return root(u) == root(v); } public void union(int u, int v) { int p = root(u); int q = root(v); if (size[p] >= size[q]) { id[q] = p; size[p] += size[q]; } else { id[p] = q; size[q] += size[p]; } } } // KMP private static int countSearch(String s, String p) { int n = s.length(); int m = p.length(); int[] b = backTable(p); int j = 0; int count = 0; for (int i = 0; i < n; i++) { if (j == m) { j = b[j - 1]; count++; } while (j != 0 && s.charAt(i) != p.charAt(j)) { j = b[j - 1]; } if (s.charAt(i) == p.charAt(j)) { j++; } } if (j == m) count++; return count; } private static int[] backTable(String p) { int m = p.length(); int j = 0; int[] b = new int[m]; for (int i = 1; i < m; i++) { while (j != 0 && p.charAt(i) != p.charAt(j)) { j = b[j - 1]; } if (p.charAt(i) == p.charAt(j)) { b[i] = ++j; } } return b; } private static class LCA { private HashMap<Integer, ArrayList<Integer>> g; private int[] level; private int[] a; private int[][] P; private int n, m; private int[] xor; public LCA(HashMap<Integer, ArrayList<Integer>> g, int[] a) { this.g = g; this.a = a; n = g.size(); m = (int) (Math.log(n) / Math.log(2)) + 5; P = new int[n][m]; xor = new int[n]; level = new int[n]; preprocess(); } private void preprocess() { dfs(0, -1); for (int j = 1; j < m; j++) { for (int i = 0; i < n; i++) { if (P[i][j - 1] != -1) { P[i][j] = P[P[i][j - 1]][j - 1]; } } } } private void dfs(int u, int p) { P[u][0] = p; xor[u] = a[u] ^ (p == -1 ? 0 : xor[p]); level[u] = (p == -1 ? 0 : level[p] + 1); for (int v : g.get(u)) { if (v == p) continue; dfs(v, u); } } public int lca(int u, int v) { if (level[v] > level[u]) { int temp = v; v = u; u = temp; } for (int j = m; j >= 0; j--) { if (level[u] - (1 << j) < level[v]) { continue; } else { u = P[u][j]; } } if (u == v) return u; for (int j = m - 1; j >= 0; j--) { if (P[u][j] == -1 || P[u][j] == P[v][j]) { continue; } else { u = P[u][j]; v = P[v][j]; } } return P[u][0]; } private int xor(int u, int v) { int l = lca(u, v); return xor[u] ^ xor[v] ^ a[l]; } } // FAST INPUT OUTPUT LIBRARY private static InputReader in = new InputReader(System.in); private static PrintWriter out = new PrintWriter(System.out); private static class InputReader { private final InputStream stream; private final byte[] buf = new byte[8192]; private int curChar, snumChars; public InputReader(InputStream st) { this.stream = st; } public int read() { if (snumChars == -1) throw new InputMismatchException(); if (curChar >= snumChars) { curChar = 0; try { snumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (snumChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) { c = read(); } StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public String nextLine() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndOfLine(c)); return res.toString(); } public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.InputMismatchException; public class P1517D { // author: Nagabhushan S Baddi // PRIMARY VARIABLES private static int n, m, k; private static int[][] hor, ver, a, b; private static long ans; private static int[][] id; private static Integer[][][] dp; private static int idf; private static String s, t; private static HashMap<Integer, ArrayList<Integer>> g; // CONSTANTS private static final int MOD = (int) 1e9 + 7; public static void main(String[] args) { n = ini(); m = ini(); k = ini(); if (k%2!=0) { for(int i=0; i<n; i++) { for(int j=0; j<m; j++) { print(-1+" "); } println(); } out.flush(); return; } hor = new int[n][m-1]; ver = new int[n-1][m]; for(int i=0; i<n; i++) { for(int j=0; j<m-1; j++) { hor[i][j] = ini(); } } for(int i=0; i<n-1; i++) { for(int j=0; j<m; j++) { ver[i][j] = ini(); } } dp = new Integer[n][m][k+1]; for(int i=0; i<n; i++) { for(int j=0; j<m; j++) { print(2*solve(i, j, k/2)+" "); } println(); } out.flush(); out.close(); } private static int solve(int i, int j, int kLeft) { if (i<0 || i>=n || j<0 || j>=m) { return (int)1e9; } else if (kLeft==0) { return 0; } if (dp[i][j][kLeft]!=null) { return dp[i][j][kLeft]; } int ans = (int)1e9; final int[] dx = {-1, 1, 0, 0}; final int[] dy = {0, 0, -1, 1}; for(int type=0; type<4; type++) { int ni = i+dx[type]; int nj = j+dy[type]; if (ni<0 || ni>=n || nj<0 || nj>=m) continue; int inhibit = 0; if (type==0) { inhibit = ver[ni][nj]; } else if (type==1) { inhibit = ver[i][j]; } else if (type==2) { inhibit = hor[ni][nj]; } else { inhibit = hor[i][j]; } ans = Math.min(ans, inhibit+solve(ni, nj, kLeft-1)); } return dp[i][j][kLeft]=ans; } // INIT private static void initCase(int z) { idf = z; ans = 0; } // PRINT ANSWER private static void printAns(Object o) { out.println(o); } private static void printAns(Object o, int testCaseNo) { out.println("Case #" + testCaseNo + ": " + o); } private static void printArray(Object[] a) { for (int i = 0; i < a.length; i++) { out.print(a[i] + " "); } out.println(); } // SORT SHORTCUTS - QUICK SORT TO MERGE SORT private static void sort(int[] a) { int n = a.length; Integer[] b = new Integer[n]; for (int i = 0; i < n; i++) { b[i] = a[i]; } Arrays.sort(b); for (int i = 0; i < n; i++) { a[i] = b[i]; } } private static void sort(long[] a) { int n = a.length; Long[] b = new Long[n]; for (int i = 0; i < n; i++) { b[i] = a[i]; } Arrays.sort(b); for (int i = 0; i < n; i++) { a[i] = b[i]; } } // INPUT SHORTCUTS private static int[] ina(int n) { int[] temp = new int[n]; for (int i = 0; i < n; i++) { temp[i] = in.nextInt(); } return temp; } private static int[][] ina2d(int n, int m) { int[][] temp = new int[n][m]; for (int i = 0; i < n; i++) { temp[i] = ina(m); } return temp; } private static int ini() { return in.nextInt(); } private static long inl() { return in.nextLong(); } private static double ind() { return Double.parseDouble(ins()); } private static String ins() { return in.readString(); } // PRINT SHORTCUTS private static void println(Object... o) { for (Object x : o) { out.write(x + ""); } out.write("\n"); } private static void pd(Object... o) { for (Object x : o) { out.write(x + ""); } out.flush(); out.write("\n"); } private static void print(Object... o) { for (Object x : o) { out.write(x + ""); } } // GRAPH SHORTCUTS private static HashMap<Integer, ArrayList<Integer>> intree(int n) { HashMap<Integer, ArrayList<Integer>> g = new HashMap<>(); for (int i = 0; i < n; i++) { g.put(i, new ArrayList<>()); } for (int i = 0; i < n - 1; i++) { int u = ini() - 1; int v = ini() - 1; g.get(u).add(v); g.get(v).add(u); } return g; } private static HashMap<Integer, ArrayList<Integer>> ingraph(int n, int m) { HashMap<Integer, ArrayList<Integer>> g = new HashMap<>(); for (int i = 0; i < n; i++) { g.put(i, new ArrayList<>()); } for (int i = 0; i < m; i++) { int u = ini() - 1; int v = ini() - 1; g.get(u).add(v); g.get(v).add(u); } return g; } private static HashMap<Integer, ArrayList<Integer>> indirectedgraph(int n, int m) { HashMap<Integer, ArrayList<Integer>> g = new HashMap<>(); for (int i = 0; i < n; i++) { g.put(i, new ArrayList<>()); } for (int i = 0; i < m; i++) { int u = ini() - 1; int v = ini() - 1; g.get(u).add(v); } return g; } private static HashMap<Integer, ArrayList<Edge>> inweightedgraph(int n, int m) { HashMap<Integer, ArrayList<Edge>> g = new HashMap<>(); for (int i = 0; i < n; i++) { g.put(i, new ArrayList<>()); } for (int i = 0; i < m; i++) { int u = ini() - 1; int v = ini() - 1; int w = ini(); Edge edge = new Edge(u, v, w); g.get(u).add(edge); g.get(v).add(edge); } return g; } private static class Edge implements Comparable<Edge> { private int u, v; private long w; public Edge(int a, int b, long c) { u = a; v = b; w = c; } public int other(int x) { return (x == u ? v : u); } public int compareTo(Edge edge) { return Long.compare(w, edge.w); } } private static class Pair { private int u, v; public Pair(int a, int b) { u = a; v = b; } public int hashCode() { return u + v + u * v; } public boolean equals(Object object) { Pair pair = (Pair) object; return u == pair.u && v == pair.v; } } private static class Node implements Comparable<Node> { private int u; private long dist; public Node(int a, long b) { u = a; dist = b; } public int compareTo(Node node) { return Long.compare(dist, node.dist); } } // MATHS AND NUMBER THEORY SHORTCUTS private static int gcd(int a, int b) { // O(log(min(a,b))) if (b == 0) return a; return gcd(b, a % b); } private static long modExp(long a, long b) { if (b == 0) return 1; a %= MOD; long exp = modExp(a, b / 2); if (b % 2 == 0) { return (exp * exp) % MOD; } else { return (a * ((exp * exp) % MOD)) % MOD; } } private long mul(int a, int b) { return a * 1L * b; } // Segment Tree private static class SegmentTree<T extends Comparable<T>> { private int n, m; private T[] a; private T[] seg; private T NULLVALUE; public SegmentTree(int n, T NULLVALUE) { this.NULLVALUE = NULLVALUE; this.n = n; m = 4 * n; seg = (T[]) new Object[m]; } public SegmentTree(T[] a, int n, T NULLVALUE) { this.NULLVALUE = NULLVALUE; this.a = a; this.n = n; m = 4 * n; seg = (T[]) new Object[m]; construct(0, n - 1, 0); } private void update(int pos) { // Range Sum // seg[pos] = seg[2*pos+1]+seg[2*pos+2]; // Range Min if (seg[2 * pos + 1].compareTo(seg[2 * pos + 2]) <= 0) { seg[pos] = seg[2 * pos + 1]; } else { seg[pos] = seg[2 * pos + 2]; } } private T optimum(T leftValue, T rightValue) { // Range Sum // return leftValue+rightValue; // Range Min if (leftValue.compareTo(rightValue) <= 0) { return leftValue; } else { return rightValue; } } public void construct(int low, int high, int pos) { if (low == high) { seg[pos] = a[low]; return; } int mid = (low + high) / 2; construct(low, mid, 2 * pos + 1); construct(mid + 1, high, 2 * pos + 2); update(pos); } public void add(int index, T value) { add(index, value, 0, n - 1, 0); } private void add(int index, T value, int low, int high, int pos) { if (low == high) { seg[pos] = value; return; } int mid = (low + high) / 2; if (index <= mid) { add(index, value, low, mid, 2 * pos + 1); } else { add(index, value, mid + 1, high, 2 * pos + 2); } update(pos); } public T get(int qlow, int qhigh) { return get(qlow, qhigh, 0, n - 1, 0); } public T get(int qlow, int qhigh, int low, int high, int pos) { if (qlow > low || low > qhigh) { return NULLVALUE; } else if (qlow <= low || qhigh >= high) { return seg[pos]; } else { int mid = (low + high) / 2; T leftValue = get(qlow, qhigh, low, mid, 2 * pos + 1); T rightValue = get(qlow, qhigh, mid + 1, high, 2 * pos + 2); return optimum(leftValue, rightValue); } } } // DSU private static class DSU { private int[] id; private int[] size; private int n; public DSU(int n) { this.n = n; id = new int[n]; for (int i = 0; i < n; i++) { id[i] = i; } size = new int[n]; Arrays.fill(size, 1); } private int root(int u) { while (u != id[u]) { id[u] = id[id[u]]; u = id[u]; } return u; } public boolean connected(int u, int v) { return root(u) == root(v); } public void union(int u, int v) { int p = root(u); int q = root(v); if (size[p] >= size[q]) { id[q] = p; size[p] += size[q]; } else { id[p] = q; size[q] += size[p]; } } } // KMP private static int countSearch(String s, String p) { int n = s.length(); int m = p.length(); int[] b = backTable(p); int j = 0; int count = 0; for (int i = 0; i < n; i++) { if (j == m) { j = b[j - 1]; count++; } while (j != 0 && s.charAt(i) != p.charAt(j)) { j = b[j - 1]; } if (s.charAt(i) == p.charAt(j)) { j++; } } if (j == m) count++; return count; } private static int[] backTable(String p) { int m = p.length(); int j = 0; int[] b = new int[m]; for (int i = 1; i < m; i++) { while (j != 0 && p.charAt(i) != p.charAt(j)) { j = b[j - 1]; } if (p.charAt(i) == p.charAt(j)) { b[i] = ++j; } } return b; } private static class LCA { private HashMap<Integer, ArrayList<Integer>> g; private int[] level; private int[] a; private int[][] P; private int n, m; private int[] xor; public LCA(HashMap<Integer, ArrayList<Integer>> g, int[] a) { this.g = g; this.a = a; n = g.size(); m = (int) (Math.log(n) / Math.log(2)) + 5; P = new int[n][m]; xor = new int[n]; level = new int[n]; preprocess(); } private void preprocess() { dfs(0, -1); for (int j = 1; j < m; j++) { for (int i = 0; i < n; i++) { if (P[i][j - 1] != -1) { P[i][j] = P[P[i][j - 1]][j - 1]; } } } } private void dfs(int u, int p) { P[u][0] = p; xor[u] = a[u] ^ (p == -1 ? 0 : xor[p]); level[u] = (p == -1 ? 0 : level[p] + 1); for (int v : g.get(u)) { if (v == p) continue; dfs(v, u); } } public int lca(int u, int v) { if (level[v] > level[u]) { int temp = v; v = u; u = temp; } for (int j = m; j >= 0; j--) { if (level[u] - (1 << j) < level[v]) { continue; } else { u = P[u][j]; } } if (u == v) return u; for (int j = m - 1; j >= 0; j--) { if (P[u][j] == -1 || P[u][j] == P[v][j]) { continue; } else { u = P[u][j]; v = P[v][j]; } } return P[u][0]; } private int xor(int u, int v) { int l = lca(u, v); return xor[u] ^ xor[v] ^ a[l]; } } // FAST INPUT OUTPUT LIBRARY private static InputReader in = new InputReader(System.in); private static PrintWriter out = new PrintWriter(System.out); private static class InputReader { private final InputStream stream; private final byte[] buf = new byte[8192]; private int curChar, snumChars; public InputReader(InputStream st) { this.stream = st; } public int read() { if (snumChars == -1) throw new InputMismatchException(); if (curChar >= snumChars) { curChar = 0; try { snumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (snumChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) { c = read(); } StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public String nextLine() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndOfLine(c)); return res.toString(); } public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.InputMismatchException; public class P1517D { // author: Nagabhushan S Baddi // PRIMARY VARIABLES private static int n, m, k; private static int[][] hor, ver, a, b; private static long ans; private static int[][] id; private static Integer[][][] dp; private static int idf; private static String s, t; private static HashMap<Integer, ArrayList<Integer>> g; // CONSTANTS private static final int MOD = (int) 1e9 + 7; public static void main(String[] args) { n = ini(); m = ini(); k = ini(); if (k%2!=0) { for(int i=0; i<n; i++) { for(int j=0; j<m; j++) { print(-1+" "); } println(); } out.flush(); return; } hor = new int[n][m-1]; ver = new int[n-1][m]; for(int i=0; i<n; i++) { for(int j=0; j<m-1; j++) { hor[i][j] = ini(); } } for(int i=0; i<n-1; i++) { for(int j=0; j<m; j++) { ver[i][j] = ini(); } } dp = new Integer[n][m][k+1]; for(int i=0; i<n; i++) { for(int j=0; j<m; j++) { print(2*solve(i, j, k/2)+" "); } println(); } out.flush(); out.close(); } private static int solve(int i, int j, int kLeft) { if (i<0 || i>=n || j<0 || j>=m) { return (int)1e9; } else if (kLeft==0) { return 0; } if (dp[i][j][kLeft]!=null) { return dp[i][j][kLeft]; } int ans = (int)1e9; final int[] dx = {-1, 1, 0, 0}; final int[] dy = {0, 0, -1, 1}; for(int type=0; type<4; type++) { int ni = i+dx[type]; int nj = j+dy[type]; if (ni<0 || ni>=n || nj<0 || nj>=m) continue; int inhibit = 0; if (type==0) { inhibit = ver[ni][nj]; } else if (type==1) { inhibit = ver[i][j]; } else if (type==2) { inhibit = hor[ni][nj]; } else { inhibit = hor[i][j]; } ans = Math.min(ans, inhibit+solve(ni, nj, kLeft-1)); } return dp[i][j][kLeft]=ans; } // INIT private static void initCase(int z) { idf = z; ans = 0; } // PRINT ANSWER private static void printAns(Object o) { out.println(o); } private static void printAns(Object o, int testCaseNo) { out.println("Case #" + testCaseNo + ": " + o); } private static void printArray(Object[] a) { for (int i = 0; i < a.length; i++) { out.print(a[i] + " "); } out.println(); } // SORT SHORTCUTS - QUICK SORT TO MERGE SORT private static void sort(int[] a) { int n = a.length; Integer[] b = new Integer[n]; for (int i = 0; i < n; i++) { b[i] = a[i]; } Arrays.sort(b); for (int i = 0; i < n; i++) { a[i] = b[i]; } } private static void sort(long[] a) { int n = a.length; Long[] b = new Long[n]; for (int i = 0; i < n; i++) { b[i] = a[i]; } Arrays.sort(b); for (int i = 0; i < n; i++) { a[i] = b[i]; } } // INPUT SHORTCUTS private static int[] ina(int n) { int[] temp = new int[n]; for (int i = 0; i < n; i++) { temp[i] = in.nextInt(); } return temp; } private static int[][] ina2d(int n, int m) { int[][] temp = new int[n][m]; for (int i = 0; i < n; i++) { temp[i] = ina(m); } return temp; } private static int ini() { return in.nextInt(); } private static long inl() { return in.nextLong(); } private static double ind() { return Double.parseDouble(ins()); } private static String ins() { return in.readString(); } // PRINT SHORTCUTS private static void println(Object... o) { for (Object x : o) { out.write(x + ""); } out.write("\n"); } private static void pd(Object... o) { for (Object x : o) { out.write(x + ""); } out.flush(); out.write("\n"); } private static void print(Object... o) { for (Object x : o) { out.write(x + ""); } } // GRAPH SHORTCUTS private static HashMap<Integer, ArrayList<Integer>> intree(int n) { HashMap<Integer, ArrayList<Integer>> g = new HashMap<>(); for (int i = 0; i < n; i++) { g.put(i, new ArrayList<>()); } for (int i = 0; i < n - 1; i++) { int u = ini() - 1; int v = ini() - 1; g.get(u).add(v); g.get(v).add(u); } return g; } private static HashMap<Integer, ArrayList<Integer>> ingraph(int n, int m) { HashMap<Integer, ArrayList<Integer>> g = new HashMap<>(); for (int i = 0; i < n; i++) { g.put(i, new ArrayList<>()); } for (int i = 0; i < m; i++) { int u = ini() - 1; int v = ini() - 1; g.get(u).add(v); g.get(v).add(u); } return g; } private static HashMap<Integer, ArrayList<Integer>> indirectedgraph(int n, int m) { HashMap<Integer, ArrayList<Integer>> g = new HashMap<>(); for (int i = 0; i < n; i++) { g.put(i, new ArrayList<>()); } for (int i = 0; i < m; i++) { int u = ini() - 1; int v = ini() - 1; g.get(u).add(v); } return g; } private static HashMap<Integer, ArrayList<Edge>> inweightedgraph(int n, int m) { HashMap<Integer, ArrayList<Edge>> g = new HashMap<>(); for (int i = 0; i < n; i++) { g.put(i, new ArrayList<>()); } for (int i = 0; i < m; i++) { int u = ini() - 1; int v = ini() - 1; int w = ini(); Edge edge = new Edge(u, v, w); g.get(u).add(edge); g.get(v).add(edge); } return g; } private static class Edge implements Comparable<Edge> { private int u, v; private long w; public Edge(int a, int b, long c) { u = a; v = b; w = c; } public int other(int x) { return (x == u ? v : u); } public int compareTo(Edge edge) { return Long.compare(w, edge.w); } } private static class Pair { private int u, v; public Pair(int a, int b) { u = a; v = b; } public int hashCode() { return u + v + u * v; } public boolean equals(Object object) { Pair pair = (Pair) object; return u == pair.u && v == pair.v; } } private static class Node implements Comparable<Node> { private int u; private long dist; public Node(int a, long b) { u = a; dist = b; } public int compareTo(Node node) { return Long.compare(dist, node.dist); } } // MATHS AND NUMBER THEORY SHORTCUTS private static int gcd(int a, int b) { // O(log(min(a,b))) if (b == 0) return a; return gcd(b, a % b); } private static long modExp(long a, long b) { if (b == 0) return 1; a %= MOD; long exp = modExp(a, b / 2); if (b % 2 == 0) { return (exp * exp) % MOD; } else { return (a * ((exp * exp) % MOD)) % MOD; } } private long mul(int a, int b) { return a * 1L * b; } // Segment Tree private static class SegmentTree<T extends Comparable<T>> { private int n, m; private T[] a; private T[] seg; private T NULLVALUE; public SegmentTree(int n, T NULLVALUE) { this.NULLVALUE = NULLVALUE; this.n = n; m = 4 * n; seg = (T[]) new Object[m]; } public SegmentTree(T[] a, int n, T NULLVALUE) { this.NULLVALUE = NULLVALUE; this.a = a; this.n = n; m = 4 * n; seg = (T[]) new Object[m]; construct(0, n - 1, 0); } private void update(int pos) { // Range Sum // seg[pos] = seg[2*pos+1]+seg[2*pos+2]; // Range Min if (seg[2 * pos + 1].compareTo(seg[2 * pos + 2]) <= 0) { seg[pos] = seg[2 * pos + 1]; } else { seg[pos] = seg[2 * pos + 2]; } } private T optimum(T leftValue, T rightValue) { // Range Sum // return leftValue+rightValue; // Range Min if (leftValue.compareTo(rightValue) <= 0) { return leftValue; } else { return rightValue; } } public void construct(int low, int high, int pos) { if (low == high) { seg[pos] = a[low]; return; } int mid = (low + high) / 2; construct(low, mid, 2 * pos + 1); construct(mid + 1, high, 2 * pos + 2); update(pos); } public void add(int index, T value) { add(index, value, 0, n - 1, 0); } private void add(int index, T value, int low, int high, int pos) { if (low == high) { seg[pos] = value; return; } int mid = (low + high) / 2; if (index <= mid) { add(index, value, low, mid, 2 * pos + 1); } else { add(index, value, mid + 1, high, 2 * pos + 2); } update(pos); } public T get(int qlow, int qhigh) { return get(qlow, qhigh, 0, n - 1, 0); } public T get(int qlow, int qhigh, int low, int high, int pos) { if (qlow > low || low > qhigh) { return NULLVALUE; } else if (qlow <= low || qhigh >= high) { return seg[pos]; } else { int mid = (low + high) / 2; T leftValue = get(qlow, qhigh, low, mid, 2 * pos + 1); T rightValue = get(qlow, qhigh, mid + 1, high, 2 * pos + 2); return optimum(leftValue, rightValue); } } } // DSU private static class DSU { private int[] id; private int[] size; private int n; public DSU(int n) { this.n = n; id = new int[n]; for (int i = 0; i < n; i++) { id[i] = i; } size = new int[n]; Arrays.fill(size, 1); } private int root(int u) { while (u != id[u]) { id[u] = id[id[u]]; u = id[u]; } return u; } public boolean connected(int u, int v) { return root(u) == root(v); } public void union(int u, int v) { int p = root(u); int q = root(v); if (size[p] >= size[q]) { id[q] = p; size[p] += size[q]; } else { id[p] = q; size[q] += size[p]; } } } // KMP private static int countSearch(String s, String p) { int n = s.length(); int m = p.length(); int[] b = backTable(p); int j = 0; int count = 0; for (int i = 0; i < n; i++) { if (j == m) { j = b[j - 1]; count++; } while (j != 0 && s.charAt(i) != p.charAt(j)) { j = b[j - 1]; } if (s.charAt(i) == p.charAt(j)) { j++; } } if (j == m) count++; return count; } private static int[] backTable(String p) { int m = p.length(); int j = 0; int[] b = new int[m]; for (int i = 1; i < m; i++) { while (j != 0 && p.charAt(i) != p.charAt(j)) { j = b[j - 1]; } if (p.charAt(i) == p.charAt(j)) { b[i] = ++j; } } return b; } private static class LCA { private HashMap<Integer, ArrayList<Integer>> g; private int[] level; private int[] a; private int[][] P; private int n, m; private int[] xor; public LCA(HashMap<Integer, ArrayList<Integer>> g, int[] a) { this.g = g; this.a = a; n = g.size(); m = (int) (Math.log(n) / Math.log(2)) + 5; P = new int[n][m]; xor = new int[n]; level = new int[n]; preprocess(); } private void preprocess() { dfs(0, -1); for (int j = 1; j < m; j++) { for (int i = 0; i < n; i++) { if (P[i][j - 1] != -1) { P[i][j] = P[P[i][j - 1]][j - 1]; } } } } private void dfs(int u, int p) { P[u][0] = p; xor[u] = a[u] ^ (p == -1 ? 0 : xor[p]); level[u] = (p == -1 ? 0 : level[p] + 1); for (int v : g.get(u)) { if (v == p) continue; dfs(v, u); } } public int lca(int u, int v) { if (level[v] > level[u]) { int temp = v; v = u; u = temp; } for (int j = m; j >= 0; j--) { if (level[u] - (1 << j) < level[v]) { continue; } else { u = P[u][j]; } } if (u == v) return u; for (int j = m - 1; j >= 0; j--) { if (P[u][j] == -1 || P[u][j] == P[v][j]) { continue; } else { u = P[u][j]; v = P[v][j]; } } return P[u][0]; } private int xor(int u, int v) { int l = lca(u, v); return xor[u] ^ xor[v] ^ a[l]; } } // FAST INPUT OUTPUT LIBRARY private static InputReader in = new InputReader(System.in); private static PrintWriter out = new PrintWriter(System.out); private static class InputReader { private final InputStream stream; private final byte[] buf = new byte[8192]; private int curChar, snumChars; public InputReader(InputStream st) { this.stream = st; } public int read() { if (snumChars == -1) throw new InputMismatchException(); if (curChar >= snumChars) { curChar = 0; try { snumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (snumChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) { c = read(); } StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public String nextLine() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndOfLine(c)); return res.toString(); } public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
5,036
3,792
3,508
import java.io.*; import java.util.*; public class CF1515E extends PrintWriter { CF1515E() { super(System.out, true); } Scanner sc = new Scanner(System.in); public static void main(String[] $) { CF1515E o = new CF1515E(); o.main(); o.flush(); } void main() { int n = sc.nextInt(); int md = sc.nextInt(); int k = (n + 1) / 2; int[][] dp = new int[k + 1][n + 1]; dp[0][0] = 1; for (int h = 1; h <= k; h++) for (int l = h; l <= n - h + 1; l++) dp[h][l] = (int) ((dp[h][l - 1] * 2L + dp[h - 1][l - 1]) * h % md); int ans = 0; for (int h = 1; h <= k; h++) ans = (ans + dp[h][n - h + 1]) % md; println(ans); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class CF1515E extends PrintWriter { CF1515E() { super(System.out, true); } Scanner sc = new Scanner(System.in); public static void main(String[] $) { CF1515E o = new CF1515E(); o.main(); o.flush(); } void main() { int n = sc.nextInt(); int md = sc.nextInt(); int k = (n + 1) / 2; int[][] dp = new int[k + 1][n + 1]; dp[0][0] = 1; for (int h = 1; h <= k; h++) for (int l = h; l <= n - h + 1; l++) dp[h][l] = (int) ((dp[h][l - 1] * 2L + dp[h - 1][l - 1]) * h % md); int ans = 0; for (int h = 1; h <= k; h++) ans = (ans + dp[h][n - h + 1]) % md; println(ans); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class CF1515E extends PrintWriter { CF1515E() { super(System.out, true); } Scanner sc = new Scanner(System.in); public static void main(String[] $) { CF1515E o = new CF1515E(); o.main(); o.flush(); } void main() { int n = sc.nextInt(); int md = sc.nextInt(); int k = (n + 1) / 2; int[][] dp = new int[k + 1][n + 1]; dp[0][0] = 1; for (int h = 1; h <= k; h++) for (int l = h; l <= n - h + 1; l++) dp[h][l] = (int) ((dp[h][l - 1] * 2L + dp[h - 1][l - 1]) * h % md); int ans = 0; for (int h = 1; h <= k; h++) ans = (ans + dp[h][n - h + 1]) % md; println(ans); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
588
3,502
1,517
//Author: Patel Rag //Java version "1.8.0_211" import java.util.*; import java.io.*; public class Main { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader(){ br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong(){ return Long.parseLong(next()); } double nextDouble(){ return Double.parseDouble(next()); } float nextFloat() { return Float.parseFloat(next()); } boolean nextBoolean() { return Boolean.parseBoolean(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static long modExp(long x, long n, long mod) //binary Modular exponentiation { long result = 1; while(n > 0) { if(n % 2 == 1) result = (result%mod * x%mod)%mod; x = (x%mod * x%mod)%mod; n=n/2; } return result; } static long gcd(long a, long b) { if(a==0) return b; return gcd(b%a,a); } public static void main(String[] args) throws IOException { FastReader fr = new FastReader(); int n = fr.nextInt(); int q = fr.nextInt(); long[] a = new long[n]; long[] k = new long[q]; for(int i = 0; i < n; i++) a[i] = fr.nextLong(); for(int i = 0; i < q; i++) k[i] = fr.nextLong(); long[] pre = new long[n]; pre[0] = a[0]; for(int i = 1; i < n; i++) pre[i] = pre[i-1] + a[i]; long pd = 0; for(int i = 0; i < q; i++) { int l = 0; int r = n - 1; while(r > l) { int mid = (l + r) >> 1; if(pre[mid] - pd < k[i]) { l = mid + 1; } else if(pre[mid] - pd > k[i]) { r = mid - 1; } else { l = r = mid; } } int ans = 0; if(pre[l] - pd <= k[i]) { ans = n - l - 1; } else { ans = n - l; } if(ans == 0) ans = n; pd = pd + k[i]; if(pd >= pre[n-1]) pd = 0; System.out.println(ans); } } } class pair { public int first; public int second; public pair(int first,int second) { this.first = first; this.second = second; } public pair(pair p) { this.first = p.first; this.second = p.second; } public int first() { return first; } public int second() { return second; } public void setFirst(int first) { this.first = first; } public void setSecond(int second) { this.second = second; } } class myComp implements Comparator<pair> { public int compare(pair a,pair b) { if(a.first != b.first) return (a.first - b.first); return (b.second - a.second); } } class BIT //Binary Indexed Tree aka Fenwick Tree { public long[] m_array; public BIT(long[] dat) { m_array = new long[dat.length + 1]; Arrays.fill(m_array,0); for(int i = 0; i < dat.length; i++) { m_array[i + 1] = dat[i]; } for(int i = 1; i < m_array.length; i++) { int j = i + (i & -i); if(j < m_array.length) { m_array[j] = m_array[j] + m_array[i]; } } } public final long prefix_query(int i) { long result = 0; for(++i; i > 0; i = i - (i & -i)) { result = result + m_array[i]; } return result; } public final long range_query(int fro, int to) { if(fro == 0) { return prefix_query(to); } else { return (prefix_query(to) - prefix_query(fro - 1)); } } public void update(int i, long add) { for(++i; i < m_array.length; i = i + (i & -i)) { m_array[i] = m_array[i] + add; } } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> //Author: Patel Rag //Java version "1.8.0_211" import java.util.*; import java.io.*; public class Main { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader(){ br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong(){ return Long.parseLong(next()); } double nextDouble(){ return Double.parseDouble(next()); } float nextFloat() { return Float.parseFloat(next()); } boolean nextBoolean() { return Boolean.parseBoolean(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static long modExp(long x, long n, long mod) //binary Modular exponentiation { long result = 1; while(n > 0) { if(n % 2 == 1) result = (result%mod * x%mod)%mod; x = (x%mod * x%mod)%mod; n=n/2; } return result; } static long gcd(long a, long b) { if(a==0) return b; return gcd(b%a,a); } public static void main(String[] args) throws IOException { FastReader fr = new FastReader(); int n = fr.nextInt(); int q = fr.nextInt(); long[] a = new long[n]; long[] k = new long[q]; for(int i = 0; i < n; i++) a[i] = fr.nextLong(); for(int i = 0; i < q; i++) k[i] = fr.nextLong(); long[] pre = new long[n]; pre[0] = a[0]; for(int i = 1; i < n; i++) pre[i] = pre[i-1] + a[i]; long pd = 0; for(int i = 0; i < q; i++) { int l = 0; int r = n - 1; while(r > l) { int mid = (l + r) >> 1; if(pre[mid] - pd < k[i]) { l = mid + 1; } else if(pre[mid] - pd > k[i]) { r = mid - 1; } else { l = r = mid; } } int ans = 0; if(pre[l] - pd <= k[i]) { ans = n - l - 1; } else { ans = n - l; } if(ans == 0) ans = n; pd = pd + k[i]; if(pd >= pre[n-1]) pd = 0; System.out.println(ans); } } } class pair { public int first; public int second; public pair(int first,int second) { this.first = first; this.second = second; } public pair(pair p) { this.first = p.first; this.second = p.second; } public int first() { return first; } public int second() { return second; } public void setFirst(int first) { this.first = first; } public void setSecond(int second) { this.second = second; } } class myComp implements Comparator<pair> { public int compare(pair a,pair b) { if(a.first != b.first) return (a.first - b.first); return (b.second - a.second); } } class BIT //Binary Indexed Tree aka Fenwick Tree { public long[] m_array; public BIT(long[] dat) { m_array = new long[dat.length + 1]; Arrays.fill(m_array,0); for(int i = 0; i < dat.length; i++) { m_array[i + 1] = dat[i]; } for(int i = 1; i < m_array.length; i++) { int j = i + (i & -i); if(j < m_array.length) { m_array[j] = m_array[j] + m_array[i]; } } } public final long prefix_query(int i) { long result = 0; for(++i; i > 0; i = i - (i & -i)) { result = result + m_array[i]; } return result; } public final long range_query(int fro, int to) { if(fro == 0) { return prefix_query(to); } else { return (prefix_query(to) - prefix_query(fro - 1)); } } public void update(int i, long add) { for(++i; i < m_array.length; i = i + (i & -i)) { m_array[i] = m_array[i] + add; } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> //Author: Patel Rag //Java version "1.8.0_211" import java.util.*; import java.io.*; public class Main { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader(){ br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong(){ return Long.parseLong(next()); } double nextDouble(){ return Double.parseDouble(next()); } float nextFloat() { return Float.parseFloat(next()); } boolean nextBoolean() { return Boolean.parseBoolean(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static long modExp(long x, long n, long mod) //binary Modular exponentiation { long result = 1; while(n > 0) { if(n % 2 == 1) result = (result%mod * x%mod)%mod; x = (x%mod * x%mod)%mod; n=n/2; } return result; } static long gcd(long a, long b) { if(a==0) return b; return gcd(b%a,a); } public static void main(String[] args) throws IOException { FastReader fr = new FastReader(); int n = fr.nextInt(); int q = fr.nextInt(); long[] a = new long[n]; long[] k = new long[q]; for(int i = 0; i < n; i++) a[i] = fr.nextLong(); for(int i = 0; i < q; i++) k[i] = fr.nextLong(); long[] pre = new long[n]; pre[0] = a[0]; for(int i = 1; i < n; i++) pre[i] = pre[i-1] + a[i]; long pd = 0; for(int i = 0; i < q; i++) { int l = 0; int r = n - 1; while(r > l) { int mid = (l + r) >> 1; if(pre[mid] - pd < k[i]) { l = mid + 1; } else if(pre[mid] - pd > k[i]) { r = mid - 1; } else { l = r = mid; } } int ans = 0; if(pre[l] - pd <= k[i]) { ans = n - l - 1; } else { ans = n - l; } if(ans == 0) ans = n; pd = pd + k[i]; if(pd >= pre[n-1]) pd = 0; System.out.println(ans); } } } class pair { public int first; public int second; public pair(int first,int second) { this.first = first; this.second = second; } public pair(pair p) { this.first = p.first; this.second = p.second; } public int first() { return first; } public int second() { return second; } public void setFirst(int first) { this.first = first; } public void setSecond(int second) { this.second = second; } } class myComp implements Comparator<pair> { public int compare(pair a,pair b) { if(a.first != b.first) return (a.first - b.first); return (b.second - a.second); } } class BIT //Binary Indexed Tree aka Fenwick Tree { public long[] m_array; public BIT(long[] dat) { m_array = new long[dat.length + 1]; Arrays.fill(m_array,0); for(int i = 0; i < dat.length; i++) { m_array[i + 1] = dat[i]; } for(int i = 1; i < m_array.length; i++) { int j = i + (i & -i); if(j < m_array.length) { m_array[j] = m_array[j] + m_array[i]; } } } public final long prefix_query(int i) { long result = 0; for(++i; i > 0; i = i - (i & -i)) { result = result + m_array[i]; } return result; } public final long range_query(int fro, int to) { if(fro == 0) { return prefix_query(to); } else { return (prefix_query(to) - prefix_query(fro - 1)); } } public void update(int i, long add) { for(++i; i < m_array.length; i = i + (i & -i)) { m_array[i] = m_array[i] + add; } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,510
1,515
4,437
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Arrays; import java.util.StringTokenizer; /** * Author - * User: kansal * Date: 9/3/11 * Time: 5:28 PM */ public class CF85C { public static void main(String[] args) { reader = new BufferedReader(new InputStreamReader(System.in)); int height = nextInt(), width = nextInt(); if (width > height) { int t = width; width = height; height = t; } final int INF = height * width + 10; final int ALL_BITS = (1 << width) - 1; int[][][] dp = new int[height + 1][1 << width][1 << width]; for (int[][] ints : dp) { for (int[] anInt : ints) { Arrays.fill(anInt, INF); } } dp[0][0][0] = 0; for(int r = 0; r < height; ++r) { for(int uncovered = 0; uncovered < (1 << width); ++uncovered) { for(int mask = 0; mask < (1 << width); ++mask) { if (dp[r][uncovered][mask] == INF) { continue; } for(int curMask = uncovered; curMask < (1 << width); curMask = (curMask + 1) | uncovered) { int curCovered = (mask | curMask); curCovered |= (curMask >> 1); curCovered |= (ALL_BITS & (curMask << 1)); int curUncovered = ALL_BITS ^ curCovered; dp[r+1][curUncovered][curMask] = Math.min(dp[r+1][curUncovered][curMask], dp[r][uncovered][mask] + Integer.bitCount(curMask)); } } } } int res = INF; for(int x: dp[height][0]) res = Math.min(res, x); System.out.println(height * width - res); } private static boolean hasBit(int mask, int bit) { return (((mask >> bit) & 1) == 1); } public static BufferedReader reader; public static StringTokenizer tokenizer = null; static String nextToken() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } static public int nextInt() { return Integer.parseInt(nextToken()); } static public long nextLong() { return Long.parseLong(nextToken()); } static public String next() { return nextToken(); } static public String nextLine() { try { return reader.readLine(); } catch (IOException e) { e.printStackTrace(); } return null; } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Arrays; import java.util.StringTokenizer; /** * Author - * User: kansal * Date: 9/3/11 * Time: 5:28 PM */ public class CF85C { public static void main(String[] args) { reader = new BufferedReader(new InputStreamReader(System.in)); int height = nextInt(), width = nextInt(); if (width > height) { int t = width; width = height; height = t; } final int INF = height * width + 10; final int ALL_BITS = (1 << width) - 1; int[][][] dp = new int[height + 1][1 << width][1 << width]; for (int[][] ints : dp) { for (int[] anInt : ints) { Arrays.fill(anInt, INF); } } dp[0][0][0] = 0; for(int r = 0; r < height; ++r) { for(int uncovered = 0; uncovered < (1 << width); ++uncovered) { for(int mask = 0; mask < (1 << width); ++mask) { if (dp[r][uncovered][mask] == INF) { continue; } for(int curMask = uncovered; curMask < (1 << width); curMask = (curMask + 1) | uncovered) { int curCovered = (mask | curMask); curCovered |= (curMask >> 1); curCovered |= (ALL_BITS & (curMask << 1)); int curUncovered = ALL_BITS ^ curCovered; dp[r+1][curUncovered][curMask] = Math.min(dp[r+1][curUncovered][curMask], dp[r][uncovered][mask] + Integer.bitCount(curMask)); } } } } int res = INF; for(int x: dp[height][0]) res = Math.min(res, x); System.out.println(height * width - res); } private static boolean hasBit(int mask, int bit) { return (((mask >> bit) & 1) == 1); } public static BufferedReader reader; public static StringTokenizer tokenizer = null; static String nextToken() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } static public int nextInt() { return Integer.parseInt(nextToken()); } static public long nextLong() { return Long.parseLong(nextToken()); } static public String next() { return nextToken(); } static public String nextLine() { try { return reader.readLine(); } catch (IOException e) { e.printStackTrace(); } return null; } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Arrays; import java.util.StringTokenizer; /** * Author - * User: kansal * Date: 9/3/11 * Time: 5:28 PM */ public class CF85C { public static void main(String[] args) { reader = new BufferedReader(new InputStreamReader(System.in)); int height = nextInt(), width = nextInt(); if (width > height) { int t = width; width = height; height = t; } final int INF = height * width + 10; final int ALL_BITS = (1 << width) - 1; int[][][] dp = new int[height + 1][1 << width][1 << width]; for (int[][] ints : dp) { for (int[] anInt : ints) { Arrays.fill(anInt, INF); } } dp[0][0][0] = 0; for(int r = 0; r < height; ++r) { for(int uncovered = 0; uncovered < (1 << width); ++uncovered) { for(int mask = 0; mask < (1 << width); ++mask) { if (dp[r][uncovered][mask] == INF) { continue; } for(int curMask = uncovered; curMask < (1 << width); curMask = (curMask + 1) | uncovered) { int curCovered = (mask | curMask); curCovered |= (curMask >> 1); curCovered |= (ALL_BITS & (curMask << 1)); int curUncovered = ALL_BITS ^ curCovered; dp[r+1][curUncovered][curMask] = Math.min(dp[r+1][curUncovered][curMask], dp[r][uncovered][mask] + Integer.bitCount(curMask)); } } } } int res = INF; for(int x: dp[height][0]) res = Math.min(res, x); System.out.println(height * width - res); } private static boolean hasBit(int mask, int bit) { return (((mask >> bit) & 1) == 1); } public static BufferedReader reader; public static StringTokenizer tokenizer = null; static String nextToken() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } static public int nextInt() { return Integer.parseInt(nextToken()); } static public long nextLong() { return Long.parseLong(nextToken()); } static public String next() { return nextToken(); } static public String nextLine() { try { return reader.readLine(); } catch (IOException e) { e.printStackTrace(); } return null; } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
980
4,426
3,475
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class A { public static void main(String[] args) throws IOException { BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); String s = new String(in.readLine()); int len=s.length(); int ans=0; for (int i=0;i<len-1;i++) { for (int j=i+1;j<len;j++) { int score=0; boolean flag=true; for (int k=0;k+j<len && flag;k++) { if (s.charAt(i+k)==s.charAt(j+k)) { score++; } else { flag=false; } } if (score>ans) { ans=score; } } } System.out.println(ans); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class A { public static void main(String[] args) throws IOException { BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); String s = new String(in.readLine()); int len=s.length(); int ans=0; for (int i=0;i<len-1;i++) { for (int j=i+1;j<len;j++) { int score=0; boolean flag=true; for (int k=0;k+j<len && flag;k++) { if (s.charAt(i+k)==s.charAt(j+k)) { score++; } else { flag=false; } } if (score>ans) { ans=score; } } } System.out.println(ans); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class A { public static void main(String[] args) throws IOException { BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); String s = new String(in.readLine()); int len=s.length(); int ans=0; for (int i=0;i<len-1;i++) { for (int j=i+1;j<len;j++) { int score=0; boolean flag=true; for (int k=0;k+j<len && flag;k++) { if (s.charAt(i+k)==s.charAt(j+k)) { score++; } else { flag=false; } } if (score>ans) { ans=score; } } } System.out.println(ans); } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
510
3,469
1,447
import static java.lang.Math.*; import java.io.*; import java.util.*; public class A { BufferedReader in; PrintWriter out; StringTokenizer st; public String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(in.readLine()); } catch(Exception e) {} } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } boolean bit(int m, int i) { return (m & (1 << i)) > 0; } int n, x, y, c; long cnt(int m) { long ret=0; for (int i=max(1, y-m); i<=min(n, y+m); i++) { int x1 = max(1, x - (m - abs(i - y))); int x2 = min(n, x + (m - abs(i - y))); ret += x2 - x1 + 1; } return ret; } public void run() { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); n = nextInt(); x = nextInt(); y = nextInt(); c = nextInt(); int l = 0, r = 1000000; int ans=0; while (l <= r) { int m = (l+r) / 2; if (cnt(m) >= c) { ans = m; r = m-1; } else l=m+1; } out.println(ans); out.close(); } class Pair implements Comparable<Pair> { long x,y; public Pair(long x, long y) { this.x=x; this.y=y; } public int compareTo(Pair o) { if (x != o.x) return sign(o.x - x); return sign(y - o.y); } } int sign(long x) { if (x < 0) return -1; if (x > 0) return 1; return 0; } public static void main(String[] args) throws Exception { new A().run(); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import static java.lang.Math.*; import java.io.*; import java.util.*; public class A { BufferedReader in; PrintWriter out; StringTokenizer st; public String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(in.readLine()); } catch(Exception e) {} } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } boolean bit(int m, int i) { return (m & (1 << i)) > 0; } int n, x, y, c; long cnt(int m) { long ret=0; for (int i=max(1, y-m); i<=min(n, y+m); i++) { int x1 = max(1, x - (m - abs(i - y))); int x2 = min(n, x + (m - abs(i - y))); ret += x2 - x1 + 1; } return ret; } public void run() { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); n = nextInt(); x = nextInt(); y = nextInt(); c = nextInt(); int l = 0, r = 1000000; int ans=0; while (l <= r) { int m = (l+r) / 2; if (cnt(m) >= c) { ans = m; r = m-1; } else l=m+1; } out.println(ans); out.close(); } class Pair implements Comparable<Pair> { long x,y; public Pair(long x, long y) { this.x=x; this.y=y; } public int compareTo(Pair o) { if (x != o.x) return sign(o.x - x); return sign(y - o.y); } } int sign(long x) { if (x < 0) return -1; if (x > 0) return 1; return 0; } public static void main(String[] args) throws Exception { new A().run(); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import static java.lang.Math.*; import java.io.*; import java.util.*; public class A { BufferedReader in; PrintWriter out; StringTokenizer st; public String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(in.readLine()); } catch(Exception e) {} } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } boolean bit(int m, int i) { return (m & (1 << i)) > 0; } int n, x, y, c; long cnt(int m) { long ret=0; for (int i=max(1, y-m); i<=min(n, y+m); i++) { int x1 = max(1, x - (m - abs(i - y))); int x2 = min(n, x + (m - abs(i - y))); ret += x2 - x1 + 1; } return ret; } public void run() { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); n = nextInt(); x = nextInt(); y = nextInt(); c = nextInt(); int l = 0, r = 1000000; int ans=0; while (l <= r) { int m = (l+r) / 2; if (cnt(m) >= c) { ans = m; r = m-1; } else l=m+1; } out.println(ans); out.close(); } class Pair implements Comparable<Pair> { long x,y; public Pair(long x, long y) { this.x=x; this.y=y; } public int compareTo(Pair o) { if (x != o.x) return sign(o.x - x); return sign(y - o.y); } } int sign(long x) { if (x < 0) return -1; if (x > 0) return 1; return 0; } public static void main(String[] args) throws Exception { new A().run(); } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
880
1,445
1,958
import java.io.*; import java.util.*; public class AA { static class O implements Comparable<O> { int problems; int penalty; public O(int p, int pp) { problems = p; penalty = pp; } public int compareTo(O arg0) { if (problems == arg0.problems) { return penalty - arg0.penalty; } return -(problems - arg0.problems); } } public static void main(String[] args) throws IOException { BufferedReader r = new BufferedReader(new InputStreamReader(System.in)); String s = r.readLine(); String[] sp = s.split("[ ]+"); int n = new Integer(sp[0]), k = new Integer(sp[1]) - 1; O[] arr = new O[n]; for (int i = 0; i < arr.length; i++) { s = r.readLine(); sp = s.split("[ ]+"); arr[i] = new O(new Integer(sp[0]), new Integer(sp[1])); } Arrays.sort(arr); int res = 1; int i = k + 1; while (i < arr.length && arr[i].problems == arr[k].problems && arr[i].penalty == arr[k].penalty) { i++; res++; } i = k - 1; while (i >= 0 && arr[i].problems == arr[k].problems && arr[i].penalty == arr[k].penalty) { i--; res++; } System.out.println(res); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class AA { static class O implements Comparable<O> { int problems; int penalty; public O(int p, int pp) { problems = p; penalty = pp; } public int compareTo(O arg0) { if (problems == arg0.problems) { return penalty - arg0.penalty; } return -(problems - arg0.problems); } } public static void main(String[] args) throws IOException { BufferedReader r = new BufferedReader(new InputStreamReader(System.in)); String s = r.readLine(); String[] sp = s.split("[ ]+"); int n = new Integer(sp[0]), k = new Integer(sp[1]) - 1; O[] arr = new O[n]; for (int i = 0; i < arr.length; i++) { s = r.readLine(); sp = s.split("[ ]+"); arr[i] = new O(new Integer(sp[0]), new Integer(sp[1])); } Arrays.sort(arr); int res = 1; int i = k + 1; while (i < arr.length && arr[i].problems == arr[k].problems && arr[i].penalty == arr[k].penalty) { i++; res++; } i = k - 1; while (i >= 0 && arr[i].problems == arr[k].problems && arr[i].penalty == arr[k].penalty) { i--; res++; } System.out.println(res); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class AA { static class O implements Comparable<O> { int problems; int penalty; public O(int p, int pp) { problems = p; penalty = pp; } public int compareTo(O arg0) { if (problems == arg0.problems) { return penalty - arg0.penalty; } return -(problems - arg0.problems); } } public static void main(String[] args) throws IOException { BufferedReader r = new BufferedReader(new InputStreamReader(System.in)); String s = r.readLine(); String[] sp = s.split("[ ]+"); int n = new Integer(sp[0]), k = new Integer(sp[1]) - 1; O[] arr = new O[n]; for (int i = 0; i < arr.length; i++) { s = r.readLine(); sp = s.split("[ ]+"); arr[i] = new O(new Integer(sp[0]), new Integer(sp[1])); } Arrays.sort(arr); int res = 1; int i = k + 1; while (i < arr.length && arr[i].problems == arr[k].problems && arr[i].penalty == arr[k].penalty) { i++; res++; } i = k - 1; while (i >= 0 && arr[i].problems == arr[k].problems && arr[i].penalty == arr[k].penalty) { i--; res++; } System.out.println(res); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
700
1,954
3,124
import java.util.Scanner; /* * To change this template, choose Tools | Templates * and open the template in the editor. */ /** * * @author madis */ public class Rules { public static void main(String[] args) { Scanner in = new Scanner(System.in); double a = in.nextInt(); double v = in.nextInt(); double l = in.nextInt(); double d = in.nextInt(); double w = in.nextInt(); if (v <= w) { double t = v / a; if (0.5 * t * t * a > l) { t = Math.sqrt(2 * l / a); } else { t += (l - 0.5 * t * t * a) / v; } System.out.printf("%.5f", t); } else { double total = 0.0; double t = v / a; double t2 = (v - w) / a; double tempt = Math.sqrt(2.0 * d / a); if (tempt * a <= w) { total += tempt; w = tempt*a; } else if (0.5 * t * t * a +v*t2 - 0.5 * t2 * t2 * a > d) { double as = 2.0*a; double bs = 4.0*w; double cs = ((w * w) / (a) - 2.0 * d ); double delta = bs * bs - 4.0 * as * cs; double root = (-bs + Math.sqrt(delta)) / (2.0 * as); if (root < 0.0) { root = (-bs - Math.sqrt(delta)) / (2.0 * as); } total += (2.0 * root + w / a); } else { total += t + t2; double smd = (d - 0.5 * t * t * a - v*t2 + 0.5 * t2 * t2 * a) / v; total += smd; } double t3 = (v - w) / a; if (w * t3 + 0.5 * t3 * t3 * a > l - d) { double as = 0.5 * a; double bs = w; double cs = d - l; double delta = bs * bs - 4.0 * as * cs; double root = (-bs + Math.sqrt(delta)) / (2.0 * as); if (root < 0.0) { root = (-bs - Math.sqrt(delta)) / (2.0 * as); } total += root; } else { total += t3; double t4 = (l - (w * t3 + 0.5 * t3 * t3 * a) - d) / v; total += t4; } System.out.printf("%.5f", total); } } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Scanner; /* * To change this template, choose Tools | Templates * and open the template in the editor. */ /** * * @author madis */ public class Rules { public static void main(String[] args) { Scanner in = new Scanner(System.in); double a = in.nextInt(); double v = in.nextInt(); double l = in.nextInt(); double d = in.nextInt(); double w = in.nextInt(); if (v <= w) { double t = v / a; if (0.5 * t * t * a > l) { t = Math.sqrt(2 * l / a); } else { t += (l - 0.5 * t * t * a) / v; } System.out.printf("%.5f", t); } else { double total = 0.0; double t = v / a; double t2 = (v - w) / a; double tempt = Math.sqrt(2.0 * d / a); if (tempt * a <= w) { total += tempt; w = tempt*a; } else if (0.5 * t * t * a +v*t2 - 0.5 * t2 * t2 * a > d) { double as = 2.0*a; double bs = 4.0*w; double cs = ((w * w) / (a) - 2.0 * d ); double delta = bs * bs - 4.0 * as * cs; double root = (-bs + Math.sqrt(delta)) / (2.0 * as); if (root < 0.0) { root = (-bs - Math.sqrt(delta)) / (2.0 * as); } total += (2.0 * root + w / a); } else { total += t + t2; double smd = (d - 0.5 * t * t * a - v*t2 + 0.5 * t2 * t2 * a) / v; total += smd; } double t3 = (v - w) / a; if (w * t3 + 0.5 * t3 * t3 * a > l - d) { double as = 0.5 * a; double bs = w; double cs = d - l; double delta = bs * bs - 4.0 * as * cs; double root = (-bs + Math.sqrt(delta)) / (2.0 * as); if (root < 0.0) { root = (-bs - Math.sqrt(delta)) / (2.0 * as); } total += root; } else { total += t3; double t4 = (l - (w * t3 + 0.5 * t3 * t3 * a) - d) / v; total += t4; } System.out.printf("%.5f", total); } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; /* * To change this template, choose Tools | Templates * and open the template in the editor. */ /** * * @author madis */ public class Rules { public static void main(String[] args) { Scanner in = new Scanner(System.in); double a = in.nextInt(); double v = in.nextInt(); double l = in.nextInt(); double d = in.nextInt(); double w = in.nextInt(); if (v <= w) { double t = v / a; if (0.5 * t * t * a > l) { t = Math.sqrt(2 * l / a); } else { t += (l - 0.5 * t * t * a) / v; } System.out.printf("%.5f", t); } else { double total = 0.0; double t = v / a; double t2 = (v - w) / a; double tempt = Math.sqrt(2.0 * d / a); if (tempt * a <= w) { total += tempt; w = tempt*a; } else if (0.5 * t * t * a +v*t2 - 0.5 * t2 * t2 * a > d) { double as = 2.0*a; double bs = 4.0*w; double cs = ((w * w) / (a) - 2.0 * d ); double delta = bs * bs - 4.0 * as * cs; double root = (-bs + Math.sqrt(delta)) / (2.0 * as); if (root < 0.0) { root = (-bs - Math.sqrt(delta)) / (2.0 * as); } total += (2.0 * root + w / a); } else { total += t + t2; double smd = (d - 0.5 * t * t * a - v*t2 + 0.5 * t2 * t2 * a) / v; total += smd; } double t3 = (v - w) / a; if (w * t3 + 0.5 * t3 * t3 * a > l - d) { double as = 0.5 * a; double bs = w; double cs = d - l; double delta = bs * bs - 4.0 * as * cs; double root = (-bs + Math.sqrt(delta)) / (2.0 * as); if (root < 0.0) { root = (-bs - Math.sqrt(delta)) / (2.0 * as); } total += root; } else { total += t3; double t4 = (l - (w * t3 + 0.5 * t3 * t3 * a) - d) / v; total += t4; } System.out.printf("%.5f", total); } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
994
3,118
645
import java.util.Scanner; public class A { public static void main(String[] args){ Scanner in = new Scanner(System.in); int n = in.nextInt(); int a[] = new int[100]; for (int i = 0;i<n;i++) a[i] = in.nextInt()%2; if (a[0]==a[1] || a[0]==a[2]){ for (int i = 1;i<n;i++) if (a[i] != a[0]) { System.out.println(i+1); break; } } else{ System.out.println(1); } } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; public class A { public static void main(String[] args){ Scanner in = new Scanner(System.in); int n = in.nextInt(); int a[] = new int[100]; for (int i = 0;i<n;i++) a[i] = in.nextInt()%2; if (a[0]==a[1] || a[0]==a[2]){ for (int i = 1;i<n;i++) if (a[i] != a[0]) { System.out.println(i+1); break; } } else{ System.out.println(1); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; public class A { public static void main(String[] args){ Scanner in = new Scanner(System.in); int n = in.nextInt(); int a[] = new int[100]; for (int i = 0;i<n;i++) a[i] = in.nextInt()%2; if (a[0]==a[1] || a[0]==a[2]){ for (int i = 1;i<n;i++) if (a[i] != a[0]) { System.out.println(i+1); break; } } else{ System.out.println(1); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
469
644
2,605
import java.io.*; import java.util.Arrays; import java.util.StringTokenizer; public class Main { public static void main(String[] args) throws Exception { Scanner sc = new Scanner(System.in); PrintWriter out = new PrintWriter(System.out); int n = sc.nextInt(); Integer[] a = new Integer[n]; for (int i = 0; i < n; i++) a[i] = sc.nextInt(); int ans = 0; boolean[] taken = new boolean[n]; Arrays.sort(a); for (int i = 0; i < n; i++) { if (taken[i]) continue; ans++; for (int j = i; j < n; j++) if (a[j] % a[i] == 0) taken[j] = true; } out.println(ans); out.flush(); out.close(); } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream system) { br = new BufferedReader(new InputStreamReader(system)); } public Scanner(String file) throws Exception { br = new BufferedReader(new FileReader(file)); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public String nextLine() throws IOException { return br.readLine(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } public char nextChar() throws IOException { return next().charAt(0); } public Long nextLong() throws IOException { return Long.parseLong(next()); } public boolean ready() throws IOException { return br.ready(); } public void waitForInput() throws InterruptedException { Thread.sleep(3000); } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.Arrays; import java.util.StringTokenizer; public class Main { public static void main(String[] args) throws Exception { Scanner sc = new Scanner(System.in); PrintWriter out = new PrintWriter(System.out); int n = sc.nextInt(); Integer[] a = new Integer[n]; for (int i = 0; i < n; i++) a[i] = sc.nextInt(); int ans = 0; boolean[] taken = new boolean[n]; Arrays.sort(a); for (int i = 0; i < n; i++) { if (taken[i]) continue; ans++; for (int j = i; j < n; j++) if (a[j] % a[i] == 0) taken[j] = true; } out.println(ans); out.flush(); out.close(); } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream system) { br = new BufferedReader(new InputStreamReader(system)); } public Scanner(String file) throws Exception { br = new BufferedReader(new FileReader(file)); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public String nextLine() throws IOException { return br.readLine(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } public char nextChar() throws IOException { return next().charAt(0); } public Long nextLong() throws IOException { return Long.parseLong(next()); } public boolean ready() throws IOException { return br.ready(); } public void waitForInput() throws InterruptedException { Thread.sleep(3000); } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.Arrays; import java.util.StringTokenizer; public class Main { public static void main(String[] args) throws Exception { Scanner sc = new Scanner(System.in); PrintWriter out = new PrintWriter(System.out); int n = sc.nextInt(); Integer[] a = new Integer[n]; for (int i = 0; i < n; i++) a[i] = sc.nextInt(); int ans = 0; boolean[] taken = new boolean[n]; Arrays.sort(a); for (int i = 0; i < n; i++) { if (taken[i]) continue; ans++; for (int j = i; j < n; j++) if (a[j] % a[i] == 0) taken[j] = true; } out.println(ans); out.flush(); out.close(); } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream system) { br = new BufferedReader(new InputStreamReader(system)); } public Scanner(String file) throws Exception { br = new BufferedReader(new FileReader(file)); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public String nextLine() throws IOException { return br.readLine(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } public char nextChar() throws IOException { return next().charAt(0); } public Long nextLong() throws IOException { return Long.parseLong(next()); } public boolean ready() throws IOException { return br.ready(); } public void waitForInput() throws InterruptedException { Thread.sleep(3000); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
728
2,599
3,925
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.util.Arrays; import java.util.HashMap; import java.io.IOException; import java.util.LinkedHashMap; import java.io.UncheckedIOException; import java.util.Map; import java.io.Closeable; import java.util.Map.Entry; import java.io.Writer; import java.io.OutputStreamWriter; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) throws Exception { Thread thread = new Thread(null, new TaskAdapter(), "", 1 << 27); thread.start(); thread.join(); } static class TaskAdapter implements Runnable { @Override public void run() { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastInput in = new FastInput(inputStream); FastOutput out = new FastOutput(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } } static class TaskC { SubsetGenerator sg = new SubsetGenerator(); Node[] nodes; int n; Map<Long, Node> map; long notExist; long[] mask2Key; Map<Long, LongList> sequence; DigitUtils.BitOperator bo = new DigitUtils.BitOperator(); boolean[] dp; public void solve(int testNumber, FastInput in, FastOutput out) { n = in.readInt(); nodes = new Node[n]; for (int i = 0; i < n; i++) { nodes[i] = new Node(); nodes[i].id = i; } map = new LinkedHashMap<>(200000); for (int i = 0; i < n; i++) { int k = in.readInt(); for (int j = 0; j < k; j++) { long x = in.readInt(); map.put(x, nodes[i]); nodes[i].sum += x; } } long total = 0; for (Node node : nodes) { total += node.sum; } if (total % n != 0) { out.println("No"); return; } long avg = total / n; notExist = (long) 1e18; mask2Key = new long[1 << n]; Arrays.fill(mask2Key, notExist); sequence = new HashMap<>(200000); for (Map.Entry<Long, Node> kv : map.entrySet()) { for (Node node : nodes) { node.handled = false; } long key = kv.getKey(); Node node = kv.getValue(); node.handled = true; int mask = bo.setBit(0, node.id, true); LongList list = new LongList(15); list.add(key); long req = avg - (node.sum - key); boolean valid = true; while (true) { if (req == key) { break; } Node next = map.get(req); if (next == null || next.handled) { valid = false; break; } next.handled = true; list.add(req); req = avg - (next.sum - req); mask = bo.setBit(mask, next.id, true); } if (!valid) { continue; } mask2Key[mask] = key; sequence.put(key, list); } dp = new boolean[1 << n]; for (int i = 0; i < (1 << n); i++) { dp[i] = mask2Key[i] != notExist; sg.setSet(i); while (!dp[i] && sg.hasNext()) { int next = sg.next(); if (next == 0 || next == i) { continue; } dp[i] = dp[i] || (dp[next] && dp[i - next]); } } if (!dp[(1 << n) - 1]) { out.println("No"); return; } populate((1 << n) - 1); out.println("Yes"); for (Node node : nodes) { out.append(node.out).append(' ').append(node.to + 1).append('\n'); } } public void populate(int mask) { if (mask2Key[mask] != notExist) { LongList list = sequence.get(mask2Key[mask]); int m = list.size(); for (int i = 0; i < m; i++) { long v = list.get(i); long last = list.get(DigitUtils.mod(i - 1, m)); Node which = map.get(v); Node to = map.get(last); which.out = v; which.to = to.id; } return; } sg.setSet(mask); while (sg.hasNext()) { int next = sg.next(); if (next == 0 || next == mask) { continue; } if (dp[next] && dp[mask - next]) { populate(next); populate(mask - next); return; } } } } static class LongList { private int size; private int cap; private long[] data; private static final long[] EMPTY = new long[0]; public LongList(int cap) { this.cap = cap; if (cap == 0) { data = EMPTY; } else { data = new long[cap]; } } public LongList(LongList list) { this.size = list.size; this.cap = list.cap; this.data = Arrays.copyOf(list.data, size); } public LongList() { this(0); } private void ensureSpace(int need) { int req = size + need; if (req > cap) { while (cap < req) { cap = Math.max(cap + 10, 2 * cap); } data = Arrays.copyOf(data, cap); } } private void checkRange(int i) { if (i < 0 || i >= size) { throw new ArrayIndexOutOfBoundsException(); } } public long get(int i) { checkRange(i); return data[i]; } public void add(long x) { ensureSpace(1); data[size++] = x; } public int size() { return size; } public String toString() { return Arrays.toString(Arrays.copyOf(data, size)); } } static class SubsetGenerator { private int[] meanings = new int[33]; private int[] bits = new int[33]; private int remain; private int next; public void setSet(int set) { int bitCount = 0; while (set != 0) { meanings[bitCount] = set & -set; bits[bitCount] = 0; set -= meanings[bitCount]; bitCount++; } remain = 1 << bitCount; next = 0; } public boolean hasNext() { return remain > 0; } private void consume() { remain = remain - 1; int i; for (i = 0; bits[i] == 1; i++) { bits[i] = 0; next -= meanings[i]; } bits[i] = 1; next += meanings[i]; } public int next() { int returned = next; consume(); return returned; } } static class Node { int id; long sum; boolean handled; long out; long to; } static class FastInput { private final InputStream is; private byte[] buf = new byte[1 << 13]; private int bufLen; private int bufOffset; private int next; public FastInput(InputStream is) { this.is = is; } private int read() { while (bufLen == bufOffset) { bufOffset = 0; try { bufLen = is.read(buf); } catch (IOException e) { bufLen = -1; } if (bufLen == -1) { return -1; } } return buf[bufOffset++]; } public void skipBlank() { while (next >= 0 && next <= 32) { next = read(); } } public int readInt() { int sign = 1; skipBlank(); if (next == '+' || next == '-') { sign = next == '+' ? 1 : -1; next = read(); } int val = 0; if (sign == 1) { while (next >= '0' && next <= '9') { val = val * 10 + next - '0'; next = read(); } } else { while (next >= '0' && next <= '9') { val = val * 10 - next + '0'; next = read(); } } return val; } } static class FastOutput implements AutoCloseable, Closeable { private StringBuilder cache = new StringBuilder(10 << 20); private final Writer os; public FastOutput(Writer os) { this.os = os; } public FastOutput(OutputStream os) { this(new OutputStreamWriter(os)); } public FastOutput append(char c) { cache.append(c); return this; } public FastOutput append(long c) { cache.append(c); return this; } public FastOutput println(String c) { cache.append(c).append('\n'); return this; } public FastOutput flush() { try { os.append(cache); os.flush(); cache.setLength(0); } catch (IOException e) { throw new UncheckedIOException(e); } return this; } public void close() { flush(); try { os.close(); } catch (IOException e) { throw new UncheckedIOException(e); } } public String toString() { return cache.toString(); } } static class DigitUtils { private static final long[] DIGIT_VALUES = new long[19]; static { DIGIT_VALUES[0] = 1; for (int i = 1; i < 19; i++) { DIGIT_VALUES[i] = DIGIT_VALUES[i - 1] * 10; } } private DigitUtils() { } public static int mod(int x, int mod) { x %= mod; if (x < 0) { x += mod; } return x; } public static class BitOperator { public int setBit(int x, int i, boolean v) { if (v) { x |= 1 << i; } else { x &= ~(1 << i); } return x; } } } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.util.Arrays; import java.util.HashMap; import java.io.IOException; import java.util.LinkedHashMap; import java.io.UncheckedIOException; import java.util.Map; import java.io.Closeable; import java.util.Map.Entry; import java.io.Writer; import java.io.OutputStreamWriter; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) throws Exception { Thread thread = new Thread(null, new TaskAdapter(), "", 1 << 27); thread.start(); thread.join(); } static class TaskAdapter implements Runnable { @Override public void run() { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastInput in = new FastInput(inputStream); FastOutput out = new FastOutput(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } } static class TaskC { SubsetGenerator sg = new SubsetGenerator(); Node[] nodes; int n; Map<Long, Node> map; long notExist; long[] mask2Key; Map<Long, LongList> sequence; DigitUtils.BitOperator bo = new DigitUtils.BitOperator(); boolean[] dp; public void solve(int testNumber, FastInput in, FastOutput out) { n = in.readInt(); nodes = new Node[n]; for (int i = 0; i < n; i++) { nodes[i] = new Node(); nodes[i].id = i; } map = new LinkedHashMap<>(200000); for (int i = 0; i < n; i++) { int k = in.readInt(); for (int j = 0; j < k; j++) { long x = in.readInt(); map.put(x, nodes[i]); nodes[i].sum += x; } } long total = 0; for (Node node : nodes) { total += node.sum; } if (total % n != 0) { out.println("No"); return; } long avg = total / n; notExist = (long) 1e18; mask2Key = new long[1 << n]; Arrays.fill(mask2Key, notExist); sequence = new HashMap<>(200000); for (Map.Entry<Long, Node> kv : map.entrySet()) { for (Node node : nodes) { node.handled = false; } long key = kv.getKey(); Node node = kv.getValue(); node.handled = true; int mask = bo.setBit(0, node.id, true); LongList list = new LongList(15); list.add(key); long req = avg - (node.sum - key); boolean valid = true; while (true) { if (req == key) { break; } Node next = map.get(req); if (next == null || next.handled) { valid = false; break; } next.handled = true; list.add(req); req = avg - (next.sum - req); mask = bo.setBit(mask, next.id, true); } if (!valid) { continue; } mask2Key[mask] = key; sequence.put(key, list); } dp = new boolean[1 << n]; for (int i = 0; i < (1 << n); i++) { dp[i] = mask2Key[i] != notExist; sg.setSet(i); while (!dp[i] && sg.hasNext()) { int next = sg.next(); if (next == 0 || next == i) { continue; } dp[i] = dp[i] || (dp[next] && dp[i - next]); } } if (!dp[(1 << n) - 1]) { out.println("No"); return; } populate((1 << n) - 1); out.println("Yes"); for (Node node : nodes) { out.append(node.out).append(' ').append(node.to + 1).append('\n'); } } public void populate(int mask) { if (mask2Key[mask] != notExist) { LongList list = sequence.get(mask2Key[mask]); int m = list.size(); for (int i = 0; i < m; i++) { long v = list.get(i); long last = list.get(DigitUtils.mod(i - 1, m)); Node which = map.get(v); Node to = map.get(last); which.out = v; which.to = to.id; } return; } sg.setSet(mask); while (sg.hasNext()) { int next = sg.next(); if (next == 0 || next == mask) { continue; } if (dp[next] && dp[mask - next]) { populate(next); populate(mask - next); return; } } } } static class LongList { private int size; private int cap; private long[] data; private static final long[] EMPTY = new long[0]; public LongList(int cap) { this.cap = cap; if (cap == 0) { data = EMPTY; } else { data = new long[cap]; } } public LongList(LongList list) { this.size = list.size; this.cap = list.cap; this.data = Arrays.copyOf(list.data, size); } public LongList() { this(0); } private void ensureSpace(int need) { int req = size + need; if (req > cap) { while (cap < req) { cap = Math.max(cap + 10, 2 * cap); } data = Arrays.copyOf(data, cap); } } private void checkRange(int i) { if (i < 0 || i >= size) { throw new ArrayIndexOutOfBoundsException(); } } public long get(int i) { checkRange(i); return data[i]; } public void add(long x) { ensureSpace(1); data[size++] = x; } public int size() { return size; } public String toString() { return Arrays.toString(Arrays.copyOf(data, size)); } } static class SubsetGenerator { private int[] meanings = new int[33]; private int[] bits = new int[33]; private int remain; private int next; public void setSet(int set) { int bitCount = 0; while (set != 0) { meanings[bitCount] = set & -set; bits[bitCount] = 0; set -= meanings[bitCount]; bitCount++; } remain = 1 << bitCount; next = 0; } public boolean hasNext() { return remain > 0; } private void consume() { remain = remain - 1; int i; for (i = 0; bits[i] == 1; i++) { bits[i] = 0; next -= meanings[i]; } bits[i] = 1; next += meanings[i]; } public int next() { int returned = next; consume(); return returned; } } static class Node { int id; long sum; boolean handled; long out; long to; } static class FastInput { private final InputStream is; private byte[] buf = new byte[1 << 13]; private int bufLen; private int bufOffset; private int next; public FastInput(InputStream is) { this.is = is; } private int read() { while (bufLen == bufOffset) { bufOffset = 0; try { bufLen = is.read(buf); } catch (IOException e) { bufLen = -1; } if (bufLen == -1) { return -1; } } return buf[bufOffset++]; } public void skipBlank() { while (next >= 0 && next <= 32) { next = read(); } } public int readInt() { int sign = 1; skipBlank(); if (next == '+' || next == '-') { sign = next == '+' ? 1 : -1; next = read(); } int val = 0; if (sign == 1) { while (next >= '0' && next <= '9') { val = val * 10 + next - '0'; next = read(); } } else { while (next >= '0' && next <= '9') { val = val * 10 - next + '0'; next = read(); } } return val; } } static class FastOutput implements AutoCloseable, Closeable { private StringBuilder cache = new StringBuilder(10 << 20); private final Writer os; public FastOutput(Writer os) { this.os = os; } public FastOutput(OutputStream os) { this(new OutputStreamWriter(os)); } public FastOutput append(char c) { cache.append(c); return this; } public FastOutput append(long c) { cache.append(c); return this; } public FastOutput println(String c) { cache.append(c).append('\n'); return this; } public FastOutput flush() { try { os.append(cache); os.flush(); cache.setLength(0); } catch (IOException e) { throw new UncheckedIOException(e); } return this; } public void close() { flush(); try { os.close(); } catch (IOException e) { throw new UncheckedIOException(e); } } public String toString() { return cache.toString(); } } static class DigitUtils { private static final long[] DIGIT_VALUES = new long[19]; static { DIGIT_VALUES[0] = 1; for (int i = 1; i < 19; i++) { DIGIT_VALUES[i] = DIGIT_VALUES[i - 1] * 10; } } private DigitUtils() { } public static int mod(int x, int mod) { x %= mod; if (x < 0) { x += mod; } return x; } public static class BitOperator { public int setBit(int x, int i, boolean v) { if (v) { x |= 1 << i; } else { x &= ~(1 << i); } return x; } } } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.util.Arrays; import java.util.HashMap; import java.io.IOException; import java.util.LinkedHashMap; import java.io.UncheckedIOException; import java.util.Map; import java.io.Closeable; import java.util.Map.Entry; import java.io.Writer; import java.io.OutputStreamWriter; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) throws Exception { Thread thread = new Thread(null, new TaskAdapter(), "", 1 << 27); thread.start(); thread.join(); } static class TaskAdapter implements Runnable { @Override public void run() { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastInput in = new FastInput(inputStream); FastOutput out = new FastOutput(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } } static class TaskC { SubsetGenerator sg = new SubsetGenerator(); Node[] nodes; int n; Map<Long, Node> map; long notExist; long[] mask2Key; Map<Long, LongList> sequence; DigitUtils.BitOperator bo = new DigitUtils.BitOperator(); boolean[] dp; public void solve(int testNumber, FastInput in, FastOutput out) { n = in.readInt(); nodes = new Node[n]; for (int i = 0; i < n; i++) { nodes[i] = new Node(); nodes[i].id = i; } map = new LinkedHashMap<>(200000); for (int i = 0; i < n; i++) { int k = in.readInt(); for (int j = 0; j < k; j++) { long x = in.readInt(); map.put(x, nodes[i]); nodes[i].sum += x; } } long total = 0; for (Node node : nodes) { total += node.sum; } if (total % n != 0) { out.println("No"); return; } long avg = total / n; notExist = (long) 1e18; mask2Key = new long[1 << n]; Arrays.fill(mask2Key, notExist); sequence = new HashMap<>(200000); for (Map.Entry<Long, Node> kv : map.entrySet()) { for (Node node : nodes) { node.handled = false; } long key = kv.getKey(); Node node = kv.getValue(); node.handled = true; int mask = bo.setBit(0, node.id, true); LongList list = new LongList(15); list.add(key); long req = avg - (node.sum - key); boolean valid = true; while (true) { if (req == key) { break; } Node next = map.get(req); if (next == null || next.handled) { valid = false; break; } next.handled = true; list.add(req); req = avg - (next.sum - req); mask = bo.setBit(mask, next.id, true); } if (!valid) { continue; } mask2Key[mask] = key; sequence.put(key, list); } dp = new boolean[1 << n]; for (int i = 0; i < (1 << n); i++) { dp[i] = mask2Key[i] != notExist; sg.setSet(i); while (!dp[i] && sg.hasNext()) { int next = sg.next(); if (next == 0 || next == i) { continue; } dp[i] = dp[i] || (dp[next] && dp[i - next]); } } if (!dp[(1 << n) - 1]) { out.println("No"); return; } populate((1 << n) - 1); out.println("Yes"); for (Node node : nodes) { out.append(node.out).append(' ').append(node.to + 1).append('\n'); } } public void populate(int mask) { if (mask2Key[mask] != notExist) { LongList list = sequence.get(mask2Key[mask]); int m = list.size(); for (int i = 0; i < m; i++) { long v = list.get(i); long last = list.get(DigitUtils.mod(i - 1, m)); Node which = map.get(v); Node to = map.get(last); which.out = v; which.to = to.id; } return; } sg.setSet(mask); while (sg.hasNext()) { int next = sg.next(); if (next == 0 || next == mask) { continue; } if (dp[next] && dp[mask - next]) { populate(next); populate(mask - next); return; } } } } static class LongList { private int size; private int cap; private long[] data; private static final long[] EMPTY = new long[0]; public LongList(int cap) { this.cap = cap; if (cap == 0) { data = EMPTY; } else { data = new long[cap]; } } public LongList(LongList list) { this.size = list.size; this.cap = list.cap; this.data = Arrays.copyOf(list.data, size); } public LongList() { this(0); } private void ensureSpace(int need) { int req = size + need; if (req > cap) { while (cap < req) { cap = Math.max(cap + 10, 2 * cap); } data = Arrays.copyOf(data, cap); } } private void checkRange(int i) { if (i < 0 || i >= size) { throw new ArrayIndexOutOfBoundsException(); } } public long get(int i) { checkRange(i); return data[i]; } public void add(long x) { ensureSpace(1); data[size++] = x; } public int size() { return size; } public String toString() { return Arrays.toString(Arrays.copyOf(data, size)); } } static class SubsetGenerator { private int[] meanings = new int[33]; private int[] bits = new int[33]; private int remain; private int next; public void setSet(int set) { int bitCount = 0; while (set != 0) { meanings[bitCount] = set & -set; bits[bitCount] = 0; set -= meanings[bitCount]; bitCount++; } remain = 1 << bitCount; next = 0; } public boolean hasNext() { return remain > 0; } private void consume() { remain = remain - 1; int i; for (i = 0; bits[i] == 1; i++) { bits[i] = 0; next -= meanings[i]; } bits[i] = 1; next += meanings[i]; } public int next() { int returned = next; consume(); return returned; } } static class Node { int id; long sum; boolean handled; long out; long to; } static class FastInput { private final InputStream is; private byte[] buf = new byte[1 << 13]; private int bufLen; private int bufOffset; private int next; public FastInput(InputStream is) { this.is = is; } private int read() { while (bufLen == bufOffset) { bufOffset = 0; try { bufLen = is.read(buf); } catch (IOException e) { bufLen = -1; } if (bufLen == -1) { return -1; } } return buf[bufOffset++]; } public void skipBlank() { while (next >= 0 && next <= 32) { next = read(); } } public int readInt() { int sign = 1; skipBlank(); if (next == '+' || next == '-') { sign = next == '+' ? 1 : -1; next = read(); } int val = 0; if (sign == 1) { while (next >= '0' && next <= '9') { val = val * 10 + next - '0'; next = read(); } } else { while (next >= '0' && next <= '9') { val = val * 10 - next + '0'; next = read(); } } return val; } } static class FastOutput implements AutoCloseable, Closeable { private StringBuilder cache = new StringBuilder(10 << 20); private final Writer os; public FastOutput(Writer os) { this.os = os; } public FastOutput(OutputStream os) { this(new OutputStreamWriter(os)); } public FastOutput append(char c) { cache.append(c); return this; } public FastOutput append(long c) { cache.append(c); return this; } public FastOutput println(String c) { cache.append(c).append('\n'); return this; } public FastOutput flush() { try { os.append(cache); os.flush(); cache.setLength(0); } catch (IOException e) { throw new UncheckedIOException(e); } return this; } public void close() { flush(); try { os.close(); } catch (IOException e) { throw new UncheckedIOException(e); } } public String toString() { return cache.toString(); } } static class DigitUtils { private static final long[] DIGIT_VALUES = new long[19]; static { DIGIT_VALUES[0] = 1; for (int i = 1; i < 19; i++) { DIGIT_VALUES[i] = DIGIT_VALUES[i - 1] * 10; } } private DigitUtils() { } public static int mod(int x, int mod) { x %= mod; if (x < 0) { x += mod; } return x; } public static class BitOperator { public int setBit(int x, int i, boolean v) { if (v) { x |= 1 << i; } else { x &= ~(1 << i); } return x; } } } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
2,758
3,915
4,174
import java.util.Arrays; import java.util.Locale; import java.util.Scanner; public class Fish { public static void main(String[] args) { Scanner in = new Scanner(System.in); in.useLocale(Locale.US); int n = in.nextInt(); double[] dp = new double[1 << n]; Arrays.fill(dp, 0); dp[(1 << n) - 1] = 1;//? double[][] prob = new double[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { prob[i][j] = in.nextDouble(); } } for (int t = (1 << n) - 1; t >= 0; t--) { int k = Integer.bitCount(t); for (int i = 0; i < n; i++) { if ((t & (1 << i)) > 0) { for (int j = 0; j < n; j++) { if ((t & (1 << j)) > 0) { if (i != j) { dp[t - (1 << j)] += dp[t] * prob[i][j] / (k*(k-1)/2); } } } } } } for (int i = 0; i < n; i++) { System.out.print(dp[1 << i] + " "); } } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Arrays; import java.util.Locale; import java.util.Scanner; public class Fish { public static void main(String[] args) { Scanner in = new Scanner(System.in); in.useLocale(Locale.US); int n = in.nextInt(); double[] dp = new double[1 << n]; Arrays.fill(dp, 0); dp[(1 << n) - 1] = 1;//? double[][] prob = new double[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { prob[i][j] = in.nextDouble(); } } for (int t = (1 << n) - 1; t >= 0; t--) { int k = Integer.bitCount(t); for (int i = 0; i < n; i++) { if ((t & (1 << i)) > 0) { for (int j = 0; j < n; j++) { if ((t & (1 << j)) > 0) { if (i != j) { dp[t - (1 << j)] += dp[t] * prob[i][j] / (k*(k-1)/2); } } } } } } for (int i = 0; i < n; i++) { System.out.print(dp[1 << i] + " "); } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Arrays; import java.util.Locale; import java.util.Scanner; public class Fish { public static void main(String[] args) { Scanner in = new Scanner(System.in); in.useLocale(Locale.US); int n = in.nextInt(); double[] dp = new double[1 << n]; Arrays.fill(dp, 0); dp[(1 << n) - 1] = 1;//? double[][] prob = new double[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { prob[i][j] = in.nextDouble(); } } for (int t = (1 << n) - 1; t >= 0; t--) { int k = Integer.bitCount(t); for (int i = 0; i < n; i++) { if ((t & (1 << i)) > 0) { for (int j = 0; j < n; j++) { if ((t & (1 << j)) > 0) { if (i != j) { dp[t - (1 << j)] += dp[t] * prob[i][j] / (k*(k-1)/2); } } } } } } for (int i = 0; i < n; i++) { System.out.print(dp[1 << i] + " "); } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
655
4,163
3,784
import java.util.*; import java.io.*; public class D { static int mod = (int) (1e9+7); static InputReader in; static PrintWriter out; static void solve() { in = new InputReader(System.in); out = new PrintWriter(System.out); int t = 1; while(t-- > 0) { int n = in.nextInt(); int m = in.nextInt(); int K = in.nextInt(); long[][] x = new long[n][]; for(int i = 0; i < n; i++) { x[i] = in.nextLongArray(m - 1); } long[][] y = new long[n - 1][]; for(int i = 0; i < n - 1; i++) { y[i] = in.nextLongArray(m); } if(K % 2 != 0) { for(int i = 0; i < n; i++) { for(int j = 0; j < m; j++) { out.print("-1 "); } out.println(); } continue; } K /= 2; long[][][] dp = new long[K + 1][n][m]; for(int i = 0; i < n; i++) { for(int j = 0; j < m; j++) { for(int k = 1; k <= K; k++) { dp[k][i][j] = Integer.MAX_VALUE; } } } for(int k = 1; k <= K; k++) { for(int i = 0; i < n; i++) { for(int j = 0; j < m; j++) { if(i + 1 < n) { dp[k][i][j] = Math.min(dp[k][i][j], dp[k - 1][i + 1][j] + 2 * y[i][j]); } if(i - 1 >= 0) { dp[k][i][j] = Math.min(dp[k][i][j], dp[k - 1][i - 1][j] + 2 * y[i - 1][j]); } if(j + 1 < m) { dp[k][i][j] = Math.min(dp[k][i][j], dp[k - 1][i][j + 1] + 2 * x[i][j]); } if(j - 1 >= 0) { dp[k][i][j] = Math.min(dp[k][i][j], dp[k - 1][i][j - 1] + 2 * x[i][j - 1]); } } } } for(int i = 0; i < n; i++) { for(int j = 0; j < m; j++) { out.print(dp[K][i][j] + " "); } out.println(); } } out.close(); } public static void main(String[] args) { new Thread(null ,new Runnable(){ public void run() { try{ solve(); } catch(Exception e){ e.printStackTrace(); } } },"1",1<<26).start(); } static int[][] graph(int from[], int to[], int n) { int g[][] = new int[n][]; int cnt[] = new int[n]; for (int i = 0; i < from.length; i++) { cnt[from[i]]++; cnt[to[i]]++; } for (int i = 0; i < n; i++) { g[i] = new int[cnt[i]]; } Arrays.fill(cnt, 0); for (int i = 0; i < from.length; i++) { g[from[i]][cnt[from[i]]++] = to[i]; g[to[i]][cnt[to[i]]++] = from[i]; } return g; } static class Pair implements Comparable<Pair>{ int x,y,z; Pair (int x,int y,int z){ this.x=x; this.y=y; this.z=z; } public int compareTo(Pair o) { if (this.x == o.x) return Integer.compare(this.y,o.y); return Integer.compare(this.x,o.x); //return 0; } public boolean equals(Object o) { if (o instanceof Pair) { Pair p = (Pair)o; return p.x == x && p.y == y; } return false; } public int hashCode() { return new Integer(x).hashCode() * 31 + new Integer(y).hashCode(); } @Override public String toString() { return x + " " + y; } } static String rev(String s) { StringBuilder sb = new StringBuilder(s); sb.reverse(); return sb.toString(); } static long gcd(long x, long y) { if (y == 0) { return x; } else { return gcd(y, x % y); } } static int gcd(int x, int y) { if (y == 0) { return x; } else { return gcd(y, x % y); } } static int abs(int a, int b) { return (int) Math.abs(a - b); } static long abs(long a, long b) { return (long) Math.abs(a - b); } static int max(int a, int b) { if (a > b) { return a; } else { return b; } } static int min(int a, int b) { if (a > b) { return b; } else { return a; } } static long max(long a, long b) { if (a > b) { return a; } else { return b; } } static long min(long a, long b) { if (a > b) { return b; } else { return a; } } static long pow(long n, long p, long m) { long result = 1; if (p == 0) { return 1; } while (p != 0) { if (p % 2 == 1) { result *= n; } if (result >= m) { result %= m; } p >>= 1; n *= n; if (n >= m) { n %= m; } } return result; } static long pow(long n, long p) { long result = 1; if (p == 0) { return 1; } if (p == 1) { return n; } while (p != 0) { if (p % 2 == 1) { result *= n; } p >>= 1; n *= n; } return result; } static void debug(Object... o) { System.out.println(Arrays.deepToString(o)); } static class InputReader { private final InputStream stream; private final byte[] buf = new byte[8192]; private int curChar, snumChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int snext() { if (snumChars == -1) throw new InputMismatchException(); if (curChar >= snumChars) { curChar = 0; try { snumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (snumChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public int[] nextIntArray(int n) { int a[] = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } public long[] nextLongArray(int n) { long a[] = new long[n]; for (int i = 0; i < n; i++) { a[i] = nextLong(); } return a; } public String readString() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = snext(); } while (!isSpaceChar(c)); return res.toString(); } public String nextLine() { int c = snext(); while (isSpaceChar(c)) c = snext(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = snext(); } while (!isEndOfLine(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; public class D { static int mod = (int) (1e9+7); static InputReader in; static PrintWriter out; static void solve() { in = new InputReader(System.in); out = new PrintWriter(System.out); int t = 1; while(t-- > 0) { int n = in.nextInt(); int m = in.nextInt(); int K = in.nextInt(); long[][] x = new long[n][]; for(int i = 0; i < n; i++) { x[i] = in.nextLongArray(m - 1); } long[][] y = new long[n - 1][]; for(int i = 0; i < n - 1; i++) { y[i] = in.nextLongArray(m); } if(K % 2 != 0) { for(int i = 0; i < n; i++) { for(int j = 0; j < m; j++) { out.print("-1 "); } out.println(); } continue; } K /= 2; long[][][] dp = new long[K + 1][n][m]; for(int i = 0; i < n; i++) { for(int j = 0; j < m; j++) { for(int k = 1; k <= K; k++) { dp[k][i][j] = Integer.MAX_VALUE; } } } for(int k = 1; k <= K; k++) { for(int i = 0; i < n; i++) { for(int j = 0; j < m; j++) { if(i + 1 < n) { dp[k][i][j] = Math.min(dp[k][i][j], dp[k - 1][i + 1][j] + 2 * y[i][j]); } if(i - 1 >= 0) { dp[k][i][j] = Math.min(dp[k][i][j], dp[k - 1][i - 1][j] + 2 * y[i - 1][j]); } if(j + 1 < m) { dp[k][i][j] = Math.min(dp[k][i][j], dp[k - 1][i][j + 1] + 2 * x[i][j]); } if(j - 1 >= 0) { dp[k][i][j] = Math.min(dp[k][i][j], dp[k - 1][i][j - 1] + 2 * x[i][j - 1]); } } } } for(int i = 0; i < n; i++) { for(int j = 0; j < m; j++) { out.print(dp[K][i][j] + " "); } out.println(); } } out.close(); } public static void main(String[] args) { new Thread(null ,new Runnable(){ public void run() { try{ solve(); } catch(Exception e){ e.printStackTrace(); } } },"1",1<<26).start(); } static int[][] graph(int from[], int to[], int n) { int g[][] = new int[n][]; int cnt[] = new int[n]; for (int i = 0; i < from.length; i++) { cnt[from[i]]++; cnt[to[i]]++; } for (int i = 0; i < n; i++) { g[i] = new int[cnt[i]]; } Arrays.fill(cnt, 0); for (int i = 0; i < from.length; i++) { g[from[i]][cnt[from[i]]++] = to[i]; g[to[i]][cnt[to[i]]++] = from[i]; } return g; } static class Pair implements Comparable<Pair>{ int x,y,z; Pair (int x,int y,int z){ this.x=x; this.y=y; this.z=z; } public int compareTo(Pair o) { if (this.x == o.x) return Integer.compare(this.y,o.y); return Integer.compare(this.x,o.x); //return 0; } public boolean equals(Object o) { if (o instanceof Pair) { Pair p = (Pair)o; return p.x == x && p.y == y; } return false; } public int hashCode() { return new Integer(x).hashCode() * 31 + new Integer(y).hashCode(); } @Override public String toString() { return x + " " + y; } } static String rev(String s) { StringBuilder sb = new StringBuilder(s); sb.reverse(); return sb.toString(); } static long gcd(long x, long y) { if (y == 0) { return x; } else { return gcd(y, x % y); } } static int gcd(int x, int y) { if (y == 0) { return x; } else { return gcd(y, x % y); } } static int abs(int a, int b) { return (int) Math.abs(a - b); } static long abs(long a, long b) { return (long) Math.abs(a - b); } static int max(int a, int b) { if (a > b) { return a; } else { return b; } } static int min(int a, int b) { if (a > b) { return b; } else { return a; } } static long max(long a, long b) { if (a > b) { return a; } else { return b; } } static long min(long a, long b) { if (a > b) { return b; } else { return a; } } static long pow(long n, long p, long m) { long result = 1; if (p == 0) { return 1; } while (p != 0) { if (p % 2 == 1) { result *= n; } if (result >= m) { result %= m; } p >>= 1; n *= n; if (n >= m) { n %= m; } } return result; } static long pow(long n, long p) { long result = 1; if (p == 0) { return 1; } if (p == 1) { return n; } while (p != 0) { if (p % 2 == 1) { result *= n; } p >>= 1; n *= n; } return result; } static void debug(Object... o) { System.out.println(Arrays.deepToString(o)); } static class InputReader { private final InputStream stream; private final byte[] buf = new byte[8192]; private int curChar, snumChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int snext() { if (snumChars == -1) throw new InputMismatchException(); if (curChar >= snumChars) { curChar = 0; try { snumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (snumChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public int[] nextIntArray(int n) { int a[] = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } public long[] nextLongArray(int n) { long a[] = new long[n]; for (int i = 0; i < n; i++) { a[i] = nextLong(); } return a; } public String readString() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = snext(); } while (!isSpaceChar(c)); return res.toString(); } public String nextLine() { int c = snext(); while (isSpaceChar(c)) c = snext(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = snext(); } while (!isEndOfLine(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class D { static int mod = (int) (1e9+7); static InputReader in; static PrintWriter out; static void solve() { in = new InputReader(System.in); out = new PrintWriter(System.out); int t = 1; while(t-- > 0) { int n = in.nextInt(); int m = in.nextInt(); int K = in.nextInt(); long[][] x = new long[n][]; for(int i = 0; i < n; i++) { x[i] = in.nextLongArray(m - 1); } long[][] y = new long[n - 1][]; for(int i = 0; i < n - 1; i++) { y[i] = in.nextLongArray(m); } if(K % 2 != 0) { for(int i = 0; i < n; i++) { for(int j = 0; j < m; j++) { out.print("-1 "); } out.println(); } continue; } K /= 2; long[][][] dp = new long[K + 1][n][m]; for(int i = 0; i < n; i++) { for(int j = 0; j < m; j++) { for(int k = 1; k <= K; k++) { dp[k][i][j] = Integer.MAX_VALUE; } } } for(int k = 1; k <= K; k++) { for(int i = 0; i < n; i++) { for(int j = 0; j < m; j++) { if(i + 1 < n) { dp[k][i][j] = Math.min(dp[k][i][j], dp[k - 1][i + 1][j] + 2 * y[i][j]); } if(i - 1 >= 0) { dp[k][i][j] = Math.min(dp[k][i][j], dp[k - 1][i - 1][j] + 2 * y[i - 1][j]); } if(j + 1 < m) { dp[k][i][j] = Math.min(dp[k][i][j], dp[k - 1][i][j + 1] + 2 * x[i][j]); } if(j - 1 >= 0) { dp[k][i][j] = Math.min(dp[k][i][j], dp[k - 1][i][j - 1] + 2 * x[i][j - 1]); } } } } for(int i = 0; i < n; i++) { for(int j = 0; j < m; j++) { out.print(dp[K][i][j] + " "); } out.println(); } } out.close(); } public static void main(String[] args) { new Thread(null ,new Runnable(){ public void run() { try{ solve(); } catch(Exception e){ e.printStackTrace(); } } },"1",1<<26).start(); } static int[][] graph(int from[], int to[], int n) { int g[][] = new int[n][]; int cnt[] = new int[n]; for (int i = 0; i < from.length; i++) { cnt[from[i]]++; cnt[to[i]]++; } for (int i = 0; i < n; i++) { g[i] = new int[cnt[i]]; } Arrays.fill(cnt, 0); for (int i = 0; i < from.length; i++) { g[from[i]][cnt[from[i]]++] = to[i]; g[to[i]][cnt[to[i]]++] = from[i]; } return g; } static class Pair implements Comparable<Pair>{ int x,y,z; Pair (int x,int y,int z){ this.x=x; this.y=y; this.z=z; } public int compareTo(Pair o) { if (this.x == o.x) return Integer.compare(this.y,o.y); return Integer.compare(this.x,o.x); //return 0; } public boolean equals(Object o) { if (o instanceof Pair) { Pair p = (Pair)o; return p.x == x && p.y == y; } return false; } public int hashCode() { return new Integer(x).hashCode() * 31 + new Integer(y).hashCode(); } @Override public String toString() { return x + " " + y; } } static String rev(String s) { StringBuilder sb = new StringBuilder(s); sb.reverse(); return sb.toString(); } static long gcd(long x, long y) { if (y == 0) { return x; } else { return gcd(y, x % y); } } static int gcd(int x, int y) { if (y == 0) { return x; } else { return gcd(y, x % y); } } static int abs(int a, int b) { return (int) Math.abs(a - b); } static long abs(long a, long b) { return (long) Math.abs(a - b); } static int max(int a, int b) { if (a > b) { return a; } else { return b; } } static int min(int a, int b) { if (a > b) { return b; } else { return a; } } static long max(long a, long b) { if (a > b) { return a; } else { return b; } } static long min(long a, long b) { if (a > b) { return b; } else { return a; } } static long pow(long n, long p, long m) { long result = 1; if (p == 0) { return 1; } while (p != 0) { if (p % 2 == 1) { result *= n; } if (result >= m) { result %= m; } p >>= 1; n *= n; if (n >= m) { n %= m; } } return result; } static long pow(long n, long p) { long result = 1; if (p == 0) { return 1; } if (p == 1) { return n; } while (p != 0) { if (p % 2 == 1) { result *= n; } p >>= 1; n *= n; } return result; } static void debug(Object... o) { System.out.println(Arrays.deepToString(o)); } static class InputReader { private final InputStream stream; private final byte[] buf = new byte[8192]; private int curChar, snumChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int snext() { if (snumChars == -1) throw new InputMismatchException(); if (curChar >= snumChars) { curChar = 0; try { snumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (snumChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public int[] nextIntArray(int n) { int a[] = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } public long[] nextLongArray(int n) { long a[] = new long[n]; for (int i = 0; i < n; i++) { a[i] = nextLong(); } return a; } public String readString() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = snext(); } while (!isSpaceChar(c)); return res.toString(); } public String nextLine() { int c = snext(); while (isSpaceChar(c)) c = snext(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = snext(); } while (!isEndOfLine(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
2,793
3,776
2,905
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class ProblemA { public static void main(String [] args) throws NumberFormatException, IOException{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(br.readLine()); int num1,num2; if(n % 2 == 0){ num1 = n / 2; if(num1 % 2 == 0){ num2 = num1; } else{ num1--; num2 = num1 + 2; } } else{ num1 = 9; num2 = n - num1; } System.out.println(num1+" "+num2); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class ProblemA { public static void main(String [] args) throws NumberFormatException, IOException{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(br.readLine()); int num1,num2; if(n % 2 == 0){ num1 = n / 2; if(num1 % 2 == 0){ num2 = num1; } else{ num1--; num2 = num1 + 2; } } else{ num1 = 9; num2 = n - num1; } System.out.println(num1+" "+num2); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class ProblemA { public static void main(String [] args) throws NumberFormatException, IOException{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(br.readLine()); int num1,num2; if(n % 2 == 0){ num1 = n / 2; if(num1 % 2 == 0){ num2 = num1; } else{ num1--; num2 = num1 + 2; } } else{ num1 = 9; num2 = n - num1; } System.out.println(num1+" "+num2); } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
493
2,899
1,370
import java.io.*; import java.util.*; public class My { public static void main(String[] args) { new My().go(); } void go() { Scanner in = new Scanner(System.in); long n = in.nextLong(); int k = in.nextInt(); int mn = 0, mx = k + 1; while (mn < mx) { int mid = (mn + mx) / 2; if (works(n, k, mid)) { mx = mid; } else { mn = mid + 1; } } if (mn > k) { pl("-1"); } else { pl((mn - 1) + ""); } } boolean works(long n, int k, int use) { return 1 + T(k - 1) - T(k - use) >= n; } long T(int n) { return n * (long)(n + 1) / 2; } void p(String s) { System.out.print(s); } void pl(String s) { System.out.println(s); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class My { public static void main(String[] args) { new My().go(); } void go() { Scanner in = new Scanner(System.in); long n = in.nextLong(); int k = in.nextInt(); int mn = 0, mx = k + 1; while (mn < mx) { int mid = (mn + mx) / 2; if (works(n, k, mid)) { mx = mid; } else { mn = mid + 1; } } if (mn > k) { pl("-1"); } else { pl((mn - 1) + ""); } } boolean works(long n, int k, int use) { return 1 + T(k - 1) - T(k - use) >= n; } long T(int n) { return n * (long)(n + 1) / 2; } void p(String s) { System.out.print(s); } void pl(String s) { System.out.println(s); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class My { public static void main(String[] args) { new My().go(); } void go() { Scanner in = new Scanner(System.in); long n = in.nextLong(); int k = in.nextInt(); int mn = 0, mx = k + 1; while (mn < mx) { int mid = (mn + mx) / 2; if (works(n, k, mid)) { mx = mid; } else { mn = mid + 1; } } if (mn > k) { pl("-1"); } else { pl((mn - 1) + ""); } } boolean works(long n, int k, int use) { return 1 + T(k - 1) - T(k - use) >= n; } long T(int n) { return n * (long)(n + 1) / 2; } void p(String s) { System.out.print(s); } void pl(String s) { System.out.println(s); } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
603
1,368
1,919
import java.util.*; public class codeee { public static void main(String[] args) { Scanner sc=new Scanner(System.in); int n=sc.nextInt(); if(n==1){System.out.println(1); return;} int []mas=new int[n]; int sum=0; for (int i = 0; i < n; i++) { mas[i]=sc.nextInt(); sum+=mas[i]; } Arrays.sort(mas); int sum1=0; int ans=0; for(int i=0;i<n;i++){ sum1+=mas[n-i-1]; if(sum1>(sum-sum1)){ ans=i; break; } } System.out.println(ans+1); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; public class codeee { public static void main(String[] args) { Scanner sc=new Scanner(System.in); int n=sc.nextInt(); if(n==1){System.out.println(1); return;} int []mas=new int[n]; int sum=0; for (int i = 0; i < n; i++) { mas[i]=sc.nextInt(); sum+=mas[i]; } Arrays.sort(mas); int sum1=0; int ans=0; for(int i=0;i<n;i++){ sum1+=mas[n-i-1]; if(sum1>(sum-sum1)){ ans=i; break; } } System.out.println(ans+1); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; public class codeee { public static void main(String[] args) { Scanner sc=new Scanner(System.in); int n=sc.nextInt(); if(n==1){System.out.println(1); return;} int []mas=new int[n]; int sum=0; for (int i = 0; i < n; i++) { mas[i]=sc.nextInt(); sum+=mas[i]; } Arrays.sort(mas); int sum1=0; int ans=0; for(int i=0;i<n;i++){ sum1+=mas[n-i-1]; if(sum1>(sum-sum1)){ ans=i; break; } } System.out.println(ans+1); } } </CODE> <EVALUATION_RUBRIC> - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
494
1,915
1,964
import java.io.PrintWriter; import java.util.Arrays; import java.util.Comparator; import java.util.Scanner; public class Main { public static void main(String[] argv) { new Main().run(); } void run() { in = new Scanner(System.in); out = new PrintWriter(System.out); try { solve(); } finally { out.close(); } } PrintWriter out; Scanner in; class Pair { int x; int y; Pair(int x, int y) { this.x = x; this.y = y; } @Override public String toString() { return x + " " + y; } } int[] readArr(int size) { int[] a = new int[size]; for (int i = 0; i < size; i++) { a[i] = in.nextInt(); } return a; } void solve() { int n = in.nextInt(); int k = in.nextInt(); Pair[] a = new Pair[n]; for (int i = 0; i < n; i++) { a[i] = new Pair(in.nextInt(), in.nextInt()); } Arrays.sort(a, new Comparator<Pair>() { @Override public int compare(Pair p1, Pair p2) { if (p2.x != p1.x) { return p2.x - p1.x; } return p1.y - p2.y; } }); int cnt = 1; int ans = 0; int[] res = new int[n]; res[0] = 1; for (int i = 1; i < n; i++) { if (!(a[i].x == a[i - 1].x && a[i].y == a[i - 1].y)) { cnt++; } res[i] = cnt; //out.println(a[i] + " * " + cnt); } int el = res[k - 1]; for (int i = 0; i < n; i++) { if (res[i] == el) { ans++; } } out.println(ans); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.PrintWriter; import java.util.Arrays; import java.util.Comparator; import java.util.Scanner; public class Main { public static void main(String[] argv) { new Main().run(); } void run() { in = new Scanner(System.in); out = new PrintWriter(System.out); try { solve(); } finally { out.close(); } } PrintWriter out; Scanner in; class Pair { int x; int y; Pair(int x, int y) { this.x = x; this.y = y; } @Override public String toString() { return x + " " + y; } } int[] readArr(int size) { int[] a = new int[size]; for (int i = 0; i < size; i++) { a[i] = in.nextInt(); } return a; } void solve() { int n = in.nextInt(); int k = in.nextInt(); Pair[] a = new Pair[n]; for (int i = 0; i < n; i++) { a[i] = new Pair(in.nextInt(), in.nextInt()); } Arrays.sort(a, new Comparator<Pair>() { @Override public int compare(Pair p1, Pair p2) { if (p2.x != p1.x) { return p2.x - p1.x; } return p1.y - p2.y; } }); int cnt = 1; int ans = 0; int[] res = new int[n]; res[0] = 1; for (int i = 1; i < n; i++) { if (!(a[i].x == a[i - 1].x && a[i].y == a[i - 1].y)) { cnt++; } res[i] = cnt; //out.println(a[i] + " * " + cnt); } int el = res[k - 1]; for (int i = 0; i < n; i++) { if (res[i] == el) { ans++; } } out.println(ans); } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.PrintWriter; import java.util.Arrays; import java.util.Comparator; import java.util.Scanner; public class Main { public static void main(String[] argv) { new Main().run(); } void run() { in = new Scanner(System.in); out = new PrintWriter(System.out); try { solve(); } finally { out.close(); } } PrintWriter out; Scanner in; class Pair { int x; int y; Pair(int x, int y) { this.x = x; this.y = y; } @Override public String toString() { return x + " " + y; } } int[] readArr(int size) { int[] a = new int[size]; for (int i = 0; i < size; i++) { a[i] = in.nextInt(); } return a; } void solve() { int n = in.nextInt(); int k = in.nextInt(); Pair[] a = new Pair[n]; for (int i = 0; i < n; i++) { a[i] = new Pair(in.nextInt(), in.nextInt()); } Arrays.sort(a, new Comparator<Pair>() { @Override public int compare(Pair p1, Pair p2) { if (p2.x != p1.x) { return p2.x - p1.x; } return p1.y - p2.y; } }); int cnt = 1; int ans = 0; int[] res = new int[n]; res[0] = 1; for (int i = 1; i < n; i++) { if (!(a[i].x == a[i - 1].x && a[i].y == a[i - 1].y)) { cnt++; } res[i] = cnt; //out.println(a[i] + " * " + cnt); } int el = res[k - 1]; for (int i = 0; i < n; i++) { if (res[i] == el) { ans++; } } out.println(ans); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
820
1,960
3,686
import java.awt.Point; import java.io.*; import java.util.*; import static java.lang.Math.*; public class BetaRound35_C implements Runnable { final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null; BufferedReader in; PrintWriter out; StringTokenizer tok = new StringTokenizer(""); void init() throws IOException { in = new BufferedReader(new FileReader("input.txt")); out = new PrintWriter("output.txt"); } String readString() throws IOException { while (!tok.hasMoreTokens()) { tok = new StringTokenizer(in.readLine()); } return tok.nextToken(); } int readInt() throws IOException { return Integer.parseInt(readString()); } @Override public void run() { try { long t1 = System.currentTimeMillis(); init(); solve(); out.close(); long t2 = System.currentTimeMillis(); System.err.println("Time = " + (t2 - t1)); } catch (Exception e) { e.printStackTrace(System.err); System.exit(-1); } } public static void main(String[] args) { new Thread(new BetaRound35_C()).start(); } void solve() throws IOException { int n = readInt(); int m = readInt(); int k = readInt(); Queue<Point> q = new ArrayDeque<Point>(); boolean[][] visited = new boolean[n + 2][m + 2]; for (int j = 0; j < m + 2; j++) { visited[0][j] = true; visited[n + 1][j] = true; } for (int i = 0; i < n + 2; i++) { visited[i][0] = true; visited[i][m + 1] = true; } for (int i = 0; i < k; i++) { int x = readInt(); int y = readInt(); q.add(new Point(x, y)); visited[x][y] = true; } Point p = null; while (!q.isEmpty()) { p = q.poll(); int x = p.x, y = p.y; if (!visited[x + 1][y]) { q.add(new Point(x + 1, y)); visited[x + 1][y] = true; } if (!visited[x - 1][y]) { q.add(new Point(x - 1, y)); visited[x - 1][y] = true; } if (!visited[x][y + 1]) { q.add(new Point(x, y + 1)); visited[x][y + 1] = true; } if (!visited[x][y - 1]) { q.add(new Point(x, y - 1)); visited[x][y - 1] = true; } } out.print(p.x + " " + p.y); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.awt.Point; import java.io.*; import java.util.*; import static java.lang.Math.*; public class BetaRound35_C implements Runnable { final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null; BufferedReader in; PrintWriter out; StringTokenizer tok = new StringTokenizer(""); void init() throws IOException { in = new BufferedReader(new FileReader("input.txt")); out = new PrintWriter("output.txt"); } String readString() throws IOException { while (!tok.hasMoreTokens()) { tok = new StringTokenizer(in.readLine()); } return tok.nextToken(); } int readInt() throws IOException { return Integer.parseInt(readString()); } @Override public void run() { try { long t1 = System.currentTimeMillis(); init(); solve(); out.close(); long t2 = System.currentTimeMillis(); System.err.println("Time = " + (t2 - t1)); } catch (Exception e) { e.printStackTrace(System.err); System.exit(-1); } } public static void main(String[] args) { new Thread(new BetaRound35_C()).start(); } void solve() throws IOException { int n = readInt(); int m = readInt(); int k = readInt(); Queue<Point> q = new ArrayDeque<Point>(); boolean[][] visited = new boolean[n + 2][m + 2]; for (int j = 0; j < m + 2; j++) { visited[0][j] = true; visited[n + 1][j] = true; } for (int i = 0; i < n + 2; i++) { visited[i][0] = true; visited[i][m + 1] = true; } for (int i = 0; i < k; i++) { int x = readInt(); int y = readInt(); q.add(new Point(x, y)); visited[x][y] = true; } Point p = null; while (!q.isEmpty()) { p = q.poll(); int x = p.x, y = p.y; if (!visited[x + 1][y]) { q.add(new Point(x + 1, y)); visited[x + 1][y] = true; } if (!visited[x - 1][y]) { q.add(new Point(x - 1, y)); visited[x - 1][y] = true; } if (!visited[x][y + 1]) { q.add(new Point(x, y + 1)); visited[x][y + 1] = true; } if (!visited[x][y - 1]) { q.add(new Point(x, y - 1)); visited[x][y - 1] = true; } } out.print(p.x + " " + p.y); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.awt.Point; import java.io.*; import java.util.*; import static java.lang.Math.*; public class BetaRound35_C implements Runnable { final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null; BufferedReader in; PrintWriter out; StringTokenizer tok = new StringTokenizer(""); void init() throws IOException { in = new BufferedReader(new FileReader("input.txt")); out = new PrintWriter("output.txt"); } String readString() throws IOException { while (!tok.hasMoreTokens()) { tok = new StringTokenizer(in.readLine()); } return tok.nextToken(); } int readInt() throws IOException { return Integer.parseInt(readString()); } @Override public void run() { try { long t1 = System.currentTimeMillis(); init(); solve(); out.close(); long t2 = System.currentTimeMillis(); System.err.println("Time = " + (t2 - t1)); } catch (Exception e) { e.printStackTrace(System.err); System.exit(-1); } } public static void main(String[] args) { new Thread(new BetaRound35_C()).start(); } void solve() throws IOException { int n = readInt(); int m = readInt(); int k = readInt(); Queue<Point> q = new ArrayDeque<Point>(); boolean[][] visited = new boolean[n + 2][m + 2]; for (int j = 0; j < m + 2; j++) { visited[0][j] = true; visited[n + 1][j] = true; } for (int i = 0; i < n + 2; i++) { visited[i][0] = true; visited[i][m + 1] = true; } for (int i = 0; i < k; i++) { int x = readInt(); int y = readInt(); q.add(new Point(x, y)); visited[x][y] = true; } Point p = null; while (!q.isEmpty()) { p = q.poll(); int x = p.x, y = p.y; if (!visited[x + 1][y]) { q.add(new Point(x + 1, y)); visited[x + 1][y] = true; } if (!visited[x - 1][y]) { q.add(new Point(x - 1, y)); visited[x - 1][y] = true; } if (!visited[x][y + 1]) { q.add(new Point(x, y + 1)); visited[x][y + 1] = true; } if (!visited[x][y - 1]) { q.add(new Point(x, y - 1)); visited[x][y - 1] = true; } } out.print(p.x + " " + p.y); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,003
3,678
2,813
import java.util.Scanner; public class Main { /** * @param args */ public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); while (n-- > 0) { int a = in.nextInt(); int b = in.nextInt(); int k = 0; while (a != 0 && b != 0) { if (a > b) { int t = a / b; k += t; a = a - b * t; } else { int t = b / a; k += t; b = b - a * t; } } System.out.println(k); } } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; public class Main { /** * @param args */ public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); while (n-- > 0) { int a = in.nextInt(); int b = in.nextInt(); int k = 0; while (a != 0 && b != 0) { if (a > b) { int t = a / b; k += t; a = a - b * t; } else { int t = b / a; k += t; b = b - a * t; } } System.out.println(k); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Scanner; public class Main { /** * @param args */ public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); while (n-- > 0) { int a = in.nextInt(); int b = in.nextInt(); int k = 0; while (a != 0 && b != 0) { if (a > b) { int t = a / b; k += t; a = a - b * t; } else { int t = b / a; k += t; b = b - a * t; } } System.out.println(k); } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
493
2,807
2,531
/* Author: Anthony Ngene Created: 05/10/2020 - 14:12 */ import java.io.*; import java.util.*; public class F { // checks: 1. edge cases 2. overflow 3. possible errors (e.g 1/0, arr[out]) 4. time/space complexity void solver() throws IOException { int n = in.intNext(); int[] arr = in.nextIntArray(n); HashMap<Integer, Deque<Tuple>> subSum = new HashMap<>(); Integer best = null; for (int i = 0; i < n; i++) { int total = 0; for (int j = i; j < n; j++) { total += arr[j]; if (!subSum.containsKey(total)) subSum.put(total, new ArrayDeque<>()); Deque<Tuple> rs = subSum.get(total); if (rs.size() > 0 && rs.peekLast().b > j) rs.pollLast(); if (rs.size() == 0 || rs.peekLast().b < i) rs.add(new Tuple(i, j)); if (best == null || rs.size() > subSum.get(best).size()) best = total; } } Deque<Tuple> bestList = subSum.get(best); out.println(bestList.size()); for (Tuple aa: bestList) out.pp(aa.a + 1, aa.b + 1); } // Generated Code Below: private static final FastWriter out = new FastWriter(); private static FastScanner in; static ArrayList<Integer>[] adj; private static long e97 = (long)1e9 + 7; public static void main(String[] args) throws IOException { in = new FastScanner(); new F().solver(); out.close(); } static class FastWriter { private static final int IO_BUFFERS = 128 * 1024; private final StringBuilder out; public FastWriter() { out = new StringBuilder(IO_BUFFERS); } public FastWriter p(Object object) { out.append(object); return this; } public FastWriter p(String format, Object... args) { out.append(String.format(format, args)); return this; } public FastWriter pp(Object... args) { for (Object ob : args) { out.append(ob).append(" "); } out.append("\n"); return this; } public FastWriter pp(int[] args) { for (int ob : args) { out.append(ob).append(" "); } out.append("\n"); return this; } public FastWriter pp(long[] args) { for (long ob : args) { out.append(ob).append(" "); } out.append("\n"); return this; } public FastWriter pp(char[] args) { for (char ob : args) { out.append(ob).append(" "); } out.append("\n"); return this; } public void println(long[] arr) { for(long e: arr) out.append(e).append(" "); out.append("\n"); } public void println(int[] arr) { for(int e: arr) out.append(e).append(" "); out.append("\n"); } public void println(char[] arr) { for(char e: arr) out.append(e).append(" "); out.append("\n"); } public void println(double[] arr) { for(double e: arr) out.append(e).append(" "); out.append("\n"); } public void println(boolean[] arr) { for(boolean e: arr) out.append(e).append(" "); out.append("\n"); } public <T>void println(T[] arr) { for(T e: arr) out.append(e).append(" "); out.append("\n"); } public void println(long[][] arr) { for (long[] row: arr) out.append(Arrays.toString(row)).append("\n"); } public void println(int[][] arr) { for (int[] row: arr) out.append(Arrays.toString(row)).append("\n"); } public void println(char[][] arr) { for (char[] row: arr) out.append(Arrays.toString(row)).append("\n"); } public void println(double[][] arr) { for (double[] row: arr) out.append(Arrays.toString(row)).append("\n"); } public <T>void println(T[][] arr) { for (T[] row: arr) out.append(Arrays.toString(row)).append("\n"); } public FastWriter println(Object object) { out.append(object).append("\n"); return this; } public void toFile(String fileName) throws IOException { BufferedWriter writer = new BufferedWriter(new FileWriter(fileName)); writer.write(out.toString()); writer.close(); } public void close() throws IOException { System.out.print(out); } } static class FastScanner { private InputStream sin = System.in; private final byte[] buffer = new byte[1024]; private int ptr = 0; private int buflen = 0; public FastScanner(){} public FastScanner(String filename) throws FileNotFoundException { File file = new File(filename); sin = new FileInputStream(file); } private boolean hasNextByte() { if (ptr < buflen) { return true; }else{ ptr = 0; try { buflen = sin.read(buffer); } catch (IOException e) { e.printStackTrace(); } if (buflen <= 0) { return false; } } return true; } private int readByte() { if (hasNextByte()) return buffer[ptr++]; else return -1;} private static boolean isPrintableChar(int c) { return 33 <= c && c <= 126;} public boolean hasNext() { while(hasNextByte() && !isPrintableChar(buffer[ptr])) ptr++; return hasNextByte();} public String next() { if (!hasNext()) throw new NoSuchElementException(); StringBuilder sb = new StringBuilder(); int b = readByte(); while(isPrintableChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } public long longNext() { if (!hasNext()) throw new NoSuchElementException(); long n = 0; boolean minus = false; int b = readByte(); if (b == '-') { minus = true; b = readByte(); } if (b < '0' || '9' < b) { throw new NumberFormatException(); } while(true){ if ('0' <= b && b <= '9') { n *= 10; n += b - '0'; }else if(b == -1 || !isPrintableChar(b) || b == ':'){ return minus ? -n : n; }else{ throw new NumberFormatException(); } b = readByte(); } } public int intNext() { long nl = longNext(); if (nl < Integer.MIN_VALUE || nl > Integer.MAX_VALUE) throw new NumberFormatException(); return (int) nl; } public double doubleNext() { return Double.parseDouble(next());} public long[] nextLongArray(final int n){ final long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = longNext(); return a; } public int[] nextIntArray(final int n){ final int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = intNext(); return a; } public double[] nextDoubleArray(final int n){ final double[] a = new double[n]; for (int i = 0; i < n; i++) a[i] = doubleNext(); return a; } public ArrayList<Integer>[] getAdj(int n) { ArrayList<Integer>[] adj = new ArrayList[n + 1]; for (int i = 1; i <= n; i++) adj[i] = new ArrayList<>(); return adj; } public ArrayList<Integer>[] adjacencyList(int nodes, int edges) throws IOException { return adjacencyList(nodes, edges, false); } public ArrayList<Integer>[] adjacencyList(int nodes, int edges, boolean isDirected) throws IOException { adj = getAdj(nodes); for (int i = 0; i < edges; i++) { int a = intNext(), b = intNext(); adj[a].add(b); if (!isDirected) adj[b].add(a); } return adj; } } static class u { public static int upperBound(long[] array, long obj) { int l = 0, r = array.length - 1; while (r - l >= 0) { int c = (l + r) / 2; if (obj < array[c]) { r = c - 1; } else { l = c + 1; } } return l; } public static int upperBound(ArrayList<Long> array, long obj) { int l = 0, r = array.size() - 1; while (r - l >= 0) { int c = (l + r) / 2; if (obj < array.get(c)) { r = c - 1; } else { l = c + 1; } } return l; } public static int lowerBound(long[] array, long obj) { int l = 0, r = array.length - 1; while (r - l >= 0) { int c = (l + r) / 2; if (obj <= array[c]) { r = c - 1; } else { l = c + 1; } } return l; } public static int lowerBound(ArrayList<Long> array, long obj) { int l = 0, r = array.size() - 1; while (r - l >= 0) { int c = (l + r) / 2; if (obj <= array.get(c)) { r = c - 1; } else { l = c + 1; } } return l; } static <T> T[][] deepCopy(T[][] matrix) { return Arrays.stream(matrix).map(el -> el.clone()).toArray($ -> matrix.clone()); } static int[][] deepCopy(int[][] matrix) { return Arrays.stream(matrix).map(int[]::clone).toArray($ -> matrix.clone()); } static long[][] deepCopy(long[][] matrix) { return Arrays.stream(matrix).map(long[]::clone).toArray($ -> matrix.clone()); } private static void sort(int[][] arr){ Arrays.sort(arr, Comparator.comparingDouble(o -> o[0])); } private static void sort(long[][] arr){ Arrays.sort(arr, Comparator.comparingDouble(o -> o[0])); } private static <T>void rSort(T[] arr) { Arrays.sort(arr, Collections.reverseOrder()); } private static void customSort(int[][] arr) { Arrays.sort(arr, new Comparator<int[]>() { public int compare(int[] a, int[] b) { if (a[0] == b[0]) return Integer.compare(a[1], b[1]); return Integer.compare(a[0], b[0]); } }); } public static int[] swap(int[] arr, int left, int right) { int temp = arr[left]; arr[left] = arr[right]; arr[right] = temp; return arr; } public static char[] swap(char[] arr, int left, int right) { char temp = arr[left]; arr[left] = arr[right]; arr[right] = temp; return arr; } public static int[] reverse(int[] arr, int left, int right) { while (left < right) { int temp = arr[left]; arr[left++] = arr[right]; arr[right--] = temp; } return arr; } public static boolean findNextPermutation(int[] data) { if (data.length <= 1) return false; int last = data.length - 2; while (last >= 0) { if (data[last] < data[last + 1]) break; last--; } if (last < 0) return false; int nextGreater = data.length - 1; for (int i = data.length - 1; i > last; i--) { if (data[i] > data[last]) { nextGreater = i; break; } } data = swap(data, nextGreater, last); data = reverse(data, last + 1, data.length - 1); return true; } public static int biSearch(int[] dt, int target){ int left=0, right=dt.length-1; int mid=-1; while(left<=right){ mid = (right+left)/2; if(dt[mid] == target) return mid; if(dt[mid] < target) left=mid+1; else right=mid-1; } return -1; } public static int biSearchMax(long[] dt, long target){ int left=-1, right=dt.length; int mid=-1; while((right-left)>1){ mid = left + (right-left)/2; if(dt[mid] <= target) left=mid; else right=mid; } return left; } public static int biSearchMaxAL(ArrayList<Integer> dt, long target){ int left=-1, right=dt.size(); int mid=-1; while((right-left)>1){ mid = left + (right-left)/2; if(dt.get(mid) <= target) left=mid; else right=mid; } return left; } private static <T>void fill(T[][] ob, T res){for(int i=0;i<ob.length; i++){ for(int j=0; j<ob[0].length; j++){ ob[i][j] = res; }}} private static void fill(boolean[][] ob,boolean res){for(int i=0;i<ob.length; i++){ for(int j=0; j<ob[0].length; j++){ ob[i][j] = res; }}} private static void fill(int[][] ob, int res){ for(int i=0; i<ob.length; i++){ for(int j=0; j<ob[0].length; j++){ ob[i][j] = res; }}} private static void fill(long[][] ob, long res){ for(int i=0; i<ob.length; i++){ for(int j=0; j<ob[0].length; j++){ ob[i][j] = res; }}} private static void fill(char[][] ob, char res){ for(int i=0; i<ob.length; i++){ for(int j=0; j<ob[0].length; j++){ ob[i][j] = res; }}} private static void fill(double[][] ob, double res){for(int i=0; i<ob.length; i++){ for(int j=0; j<ob[0].length; j++){ ob[i][j] = res; }}} private static void fill(int[][][] ob,int res){for(int i=0;i<ob.length;i++){for(int j=0;j<ob[0].length;j++){for(int k=0;k<ob[0][0].length;k++){ob[i][j][k]=res;}}}} private static void fill(long[][][] ob,long res){for(int i=0;i<ob.length;i++){for(int j=0;j<ob[0].length;j++){for(int k=0;k<ob[0][0].length;k++){ob[i][j][k]=res;}}}} private static <T>void fill(T[][][] ob,T res){for(int i=0;i<ob.length;i++){for(int j=0;j<ob[0].length;j++){for(int k=0;k<ob[0][0].length;k++){ob[i][j][k]=res;}}}} private static void fill_parent(int[] ob){ for(int i=0; i<ob.length; i++) ob[i]=i; } private static boolean same3(long a, long b, long c){ if(a!=b) return false; if(b!=c) return false; if(c!=a) return false; return true; } private static boolean dif3(long a, long b, long c){ if(a==b) return false; if(b==c) return false; if(c==a) return false; return true; } private static double hypotenuse(double a, double b){ return Math.sqrt(a*a+b*b); } private static long factorial(int n) { long ans=1; for(long i=n; i>0; i--){ ans*=i; } return ans; } private static long facMod(int n, long mod) { long ans=1; for(long i=n; i>0; i--) ans = (ans * i) % mod; return ans; } private static long lcm(long m, long n){ long ans = m/gcd(m,n); ans *= n; return ans; } private static long gcd(long m, long n) { if(m < n) return gcd(n, m); if(n == 0) return m; return gcd(n, m % n); } private static boolean isPrime(long a){ if(a==1) return false; for(int i=2; i<=Math.sqrt(a); i++){ if(a%i == 0) return false; } return true; } static long modInverse(long a, long mod) { /* Fermat's little theorem: a^(MOD-1) => 1 Therefore (divide both sides by a): a^(MOD-2) => a^(-1) */ return binpowMod(a, mod - 2, mod); } static long binpowMod(long a, long b, long mod) { long res = 1; while (b > 0) { if (b % 2 == 1) res = (res * a) % mod; a = (a * a) % mod; b /= 2; } return res; } private static int getDigit2(long num){ long cf = 1; int d=0; while(num >= cf){ d++; cf = 1<<d; } return d; } private static int getDigit10(long num){ long cf = 1; int d=0; while(num >= cf){ d++; cf*=10; } return d; } private static boolean isInArea(int y, int x, int h, int w){ if(y<0) return false; if(x<0) return false; if(y>=h) return false; if(x>=w) return false; return true; } private static ArrayList<Integer> generatePrimes(int n) { int[] lp = new int[n + 1]; ArrayList<Integer> pr = new ArrayList<>(); for (int i = 2; i <= n; ++i) { if (lp[i] == 0) { lp[i] = i; pr.add(i); } for (int j = 0; j < pr.size() && pr.get(j) <= lp[i] && i * pr.get(j) <= n; ++j) { lp[i * pr.get(j)] = pr.get(j); } } return pr; } static long nPrMod(int n, int r, long MOD) { long res = 1; for (int i = (n - r + 1); i <= n; i++) { res = (res * i) % MOD; } return res; } static long nCr(int n, int r) { if (r > (n - r)) r = n - r; long ans = 1; for (int i = 1; i <= r; i++) { ans *= n; ans /= i; n--; } return ans; } static long nCrMod(int n, int r, long MOD) { long rFactorial = nPrMod(r, r, MOD); long first = nPrMod(n, r, MOD); long second = binpowMod(rFactorial, MOD-2, MOD); return (first * second) % MOD; } static void printBitRepr(int n) { StringBuilder res = new StringBuilder(); for (int i = 0; i < 32; i++) { int mask = (1 << i); res.append((mask & n) == 0 ? "0" : "1"); } out.println(res); } static String bitString(int n) {return Integer.toBinaryString(n);} static int setKthBitToOne(int n, int k) { return (n | (1 << k)); } // zero indexed static int setKthBitToZero(int n, int k) { return (n & ~(1 << k)); } static int invertKthBit(int n, int k) { return (n ^ (1 << k)); } static boolean isPowerOfTwo(int n) { return (n & (n - 1)) == 0; } static HashMap<Character, Integer> counts(String word) { HashMap<Character, Integer> counts = new HashMap<>(); for (int i = 0; i < word.length(); i++) counts.merge(word.charAt(i), 1, Integer::sum); return counts; } static HashMap<Integer, Integer> counts(int[] arr) { HashMap<Integer, Integer> counts = new HashMap<>(); for (int value : arr) counts.merge(value, 1, Integer::sum); return counts; } static HashMap<Long, Integer> counts(long[] arr) { HashMap<Long, Integer> counts = new HashMap<>(); for (long l : arr) counts.merge(l, 1, Integer::sum); return counts; } static HashMap<Character, Integer> counts(char[] arr) { HashMap<Character, Integer> counts = new HashMap<>(); for (char c : arr) counts.merge(c, 1, Integer::sum); return counts; } static long hash(int x, int y) { return x* 1_000_000_000L +y; } static final Random random = new Random(); static void sort(int[] a) { int n = a.length;// shuffle, then sort for (int i = 0; i < n; i++) { int oi = random.nextInt(n), temp = a[oi]; a[oi] = a[i]; a[i] = temp; } Arrays.sort(a); } static void sort(long[] arr) { shuffleArray(arr); Arrays.sort(arr); } static void shuffleArray(long[] arr) { int n = arr.length; for(int i=0; i<n; ++i){ long tmp = arr[i]; int randomPos = i + random.nextInt(n-i); arr[i] = arr[randomPos]; arr[randomPos] = tmp; } } } static class Tuple implements Comparable<Tuple> { int a; int b; int c; public Tuple(int a, int b) { this.a = a; this.b = b; this.c = 0; } public Tuple(int a, int b, int c) { this.a = a; this.b = b; this.c = c; } public int getA() { return a; } public int getB() { return b; } public int getC() { return c; } public int compareTo(Tuple other) { if (this.a == other.a) { if (this.b == other.b) return Long.compare(this.c, other.c); return Long.compare(this.b, other.b); } return Long.compare(this.a, other.a); } @Override public int hashCode() { return Arrays.deepHashCode(new Integer[]{a, b, c}); } @Override public boolean equals(Object o) { if (!(o instanceof Tuple)) return false; Tuple pairo = (Tuple) o; return (this.a == pairo.a && this.b == pairo.b && this.c == pairo.c); } @Override public String toString() { return String.format("(%d %d %d) ", this.a, this.b, this.c); } } private static int abs(int a){ return (a>=0) ? a: -a; } private static int min(int... ins){ int min = ins[0]; for(int i=1; i<ins.length; i++){ if(ins[i] < min) min = ins[i]; } return min; } private static int max(int... ins){ int max = ins[0]; for(int i=1; i<ins.length; i++){ if(ins[i] > max) max = ins[i]; } return max; } private static int sum(int... ins){ int total = 0; for (int v : ins) { total += v; } return total; } private static long abs(long a){ return (a>=0) ? a: -a; } private static long min(long... ins){ long min = ins[0]; for(int i=1; i<ins.length; i++){ if(ins[i] < min) min = ins[i]; } return min; } private static long max(long... ins){ long max = ins[0]; for(int i=1; i<ins.length; i++){ if(ins[i] > max) max = ins[i]; } return max; } private static long sum(long... ins){ long total = 0; for (long v : ins) { total += v; } return total; } private static double abs(double a){ return (a>=0) ? a: -a; } private static double min(double... ins){ double min = ins[0]; for(int i=1; i<ins.length; i++){ if(ins[i] < min) min = ins[i]; } return min; } private static double max(double... ins){ double max = ins[0]; for(int i=1; i<ins.length; i++){ if(ins[i] > max) max = ins[i]; } return max; } private static double sum(double... ins){ double total = 0; for (double v : ins) { total += v; } return total; } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> /* Author: Anthony Ngene Created: 05/10/2020 - 14:12 */ import java.io.*; import java.util.*; public class F { // checks: 1. edge cases 2. overflow 3. possible errors (e.g 1/0, arr[out]) 4. time/space complexity void solver() throws IOException { int n = in.intNext(); int[] arr = in.nextIntArray(n); HashMap<Integer, Deque<Tuple>> subSum = new HashMap<>(); Integer best = null; for (int i = 0; i < n; i++) { int total = 0; for (int j = i; j < n; j++) { total += arr[j]; if (!subSum.containsKey(total)) subSum.put(total, new ArrayDeque<>()); Deque<Tuple> rs = subSum.get(total); if (rs.size() > 0 && rs.peekLast().b > j) rs.pollLast(); if (rs.size() == 0 || rs.peekLast().b < i) rs.add(new Tuple(i, j)); if (best == null || rs.size() > subSum.get(best).size()) best = total; } } Deque<Tuple> bestList = subSum.get(best); out.println(bestList.size()); for (Tuple aa: bestList) out.pp(aa.a + 1, aa.b + 1); } // Generated Code Below: private static final FastWriter out = new FastWriter(); private static FastScanner in; static ArrayList<Integer>[] adj; private static long e97 = (long)1e9 + 7; public static void main(String[] args) throws IOException { in = new FastScanner(); new F().solver(); out.close(); } static class FastWriter { private static final int IO_BUFFERS = 128 * 1024; private final StringBuilder out; public FastWriter() { out = new StringBuilder(IO_BUFFERS); } public FastWriter p(Object object) { out.append(object); return this; } public FastWriter p(String format, Object... args) { out.append(String.format(format, args)); return this; } public FastWriter pp(Object... args) { for (Object ob : args) { out.append(ob).append(" "); } out.append("\n"); return this; } public FastWriter pp(int[] args) { for (int ob : args) { out.append(ob).append(" "); } out.append("\n"); return this; } public FastWriter pp(long[] args) { for (long ob : args) { out.append(ob).append(" "); } out.append("\n"); return this; } public FastWriter pp(char[] args) { for (char ob : args) { out.append(ob).append(" "); } out.append("\n"); return this; } public void println(long[] arr) { for(long e: arr) out.append(e).append(" "); out.append("\n"); } public void println(int[] arr) { for(int e: arr) out.append(e).append(" "); out.append("\n"); } public void println(char[] arr) { for(char e: arr) out.append(e).append(" "); out.append("\n"); } public void println(double[] arr) { for(double e: arr) out.append(e).append(" "); out.append("\n"); } public void println(boolean[] arr) { for(boolean e: arr) out.append(e).append(" "); out.append("\n"); } public <T>void println(T[] arr) { for(T e: arr) out.append(e).append(" "); out.append("\n"); } public void println(long[][] arr) { for (long[] row: arr) out.append(Arrays.toString(row)).append("\n"); } public void println(int[][] arr) { for (int[] row: arr) out.append(Arrays.toString(row)).append("\n"); } public void println(char[][] arr) { for (char[] row: arr) out.append(Arrays.toString(row)).append("\n"); } public void println(double[][] arr) { for (double[] row: arr) out.append(Arrays.toString(row)).append("\n"); } public <T>void println(T[][] arr) { for (T[] row: arr) out.append(Arrays.toString(row)).append("\n"); } public FastWriter println(Object object) { out.append(object).append("\n"); return this; } public void toFile(String fileName) throws IOException { BufferedWriter writer = new BufferedWriter(new FileWriter(fileName)); writer.write(out.toString()); writer.close(); } public void close() throws IOException { System.out.print(out); } } static class FastScanner { private InputStream sin = System.in; private final byte[] buffer = new byte[1024]; private int ptr = 0; private int buflen = 0; public FastScanner(){} public FastScanner(String filename) throws FileNotFoundException { File file = new File(filename); sin = new FileInputStream(file); } private boolean hasNextByte() { if (ptr < buflen) { return true; }else{ ptr = 0; try { buflen = sin.read(buffer); } catch (IOException e) { e.printStackTrace(); } if (buflen <= 0) { return false; } } return true; } private int readByte() { if (hasNextByte()) return buffer[ptr++]; else return -1;} private static boolean isPrintableChar(int c) { return 33 <= c && c <= 126;} public boolean hasNext() { while(hasNextByte() && !isPrintableChar(buffer[ptr])) ptr++; return hasNextByte();} public String next() { if (!hasNext()) throw new NoSuchElementException(); StringBuilder sb = new StringBuilder(); int b = readByte(); while(isPrintableChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } public long longNext() { if (!hasNext()) throw new NoSuchElementException(); long n = 0; boolean minus = false; int b = readByte(); if (b == '-') { minus = true; b = readByte(); } if (b < '0' || '9' < b) { throw new NumberFormatException(); } while(true){ if ('0' <= b && b <= '9') { n *= 10; n += b - '0'; }else if(b == -1 || !isPrintableChar(b) || b == ':'){ return minus ? -n : n; }else{ throw new NumberFormatException(); } b = readByte(); } } public int intNext() { long nl = longNext(); if (nl < Integer.MIN_VALUE || nl > Integer.MAX_VALUE) throw new NumberFormatException(); return (int) nl; } public double doubleNext() { return Double.parseDouble(next());} public long[] nextLongArray(final int n){ final long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = longNext(); return a; } public int[] nextIntArray(final int n){ final int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = intNext(); return a; } public double[] nextDoubleArray(final int n){ final double[] a = new double[n]; for (int i = 0; i < n; i++) a[i] = doubleNext(); return a; } public ArrayList<Integer>[] getAdj(int n) { ArrayList<Integer>[] adj = new ArrayList[n + 1]; for (int i = 1; i <= n; i++) adj[i] = new ArrayList<>(); return adj; } public ArrayList<Integer>[] adjacencyList(int nodes, int edges) throws IOException { return adjacencyList(nodes, edges, false); } public ArrayList<Integer>[] adjacencyList(int nodes, int edges, boolean isDirected) throws IOException { adj = getAdj(nodes); for (int i = 0; i < edges; i++) { int a = intNext(), b = intNext(); adj[a].add(b); if (!isDirected) adj[b].add(a); } return adj; } } static class u { public static int upperBound(long[] array, long obj) { int l = 0, r = array.length - 1; while (r - l >= 0) { int c = (l + r) / 2; if (obj < array[c]) { r = c - 1; } else { l = c + 1; } } return l; } public static int upperBound(ArrayList<Long> array, long obj) { int l = 0, r = array.size() - 1; while (r - l >= 0) { int c = (l + r) / 2; if (obj < array.get(c)) { r = c - 1; } else { l = c + 1; } } return l; } public static int lowerBound(long[] array, long obj) { int l = 0, r = array.length - 1; while (r - l >= 0) { int c = (l + r) / 2; if (obj <= array[c]) { r = c - 1; } else { l = c + 1; } } return l; } public static int lowerBound(ArrayList<Long> array, long obj) { int l = 0, r = array.size() - 1; while (r - l >= 0) { int c = (l + r) / 2; if (obj <= array.get(c)) { r = c - 1; } else { l = c + 1; } } return l; } static <T> T[][] deepCopy(T[][] matrix) { return Arrays.stream(matrix).map(el -> el.clone()).toArray($ -> matrix.clone()); } static int[][] deepCopy(int[][] matrix) { return Arrays.stream(matrix).map(int[]::clone).toArray($ -> matrix.clone()); } static long[][] deepCopy(long[][] matrix) { return Arrays.stream(matrix).map(long[]::clone).toArray($ -> matrix.clone()); } private static void sort(int[][] arr){ Arrays.sort(arr, Comparator.comparingDouble(o -> o[0])); } private static void sort(long[][] arr){ Arrays.sort(arr, Comparator.comparingDouble(o -> o[0])); } private static <T>void rSort(T[] arr) { Arrays.sort(arr, Collections.reverseOrder()); } private static void customSort(int[][] arr) { Arrays.sort(arr, new Comparator<int[]>() { public int compare(int[] a, int[] b) { if (a[0] == b[0]) return Integer.compare(a[1], b[1]); return Integer.compare(a[0], b[0]); } }); } public static int[] swap(int[] arr, int left, int right) { int temp = arr[left]; arr[left] = arr[right]; arr[right] = temp; return arr; } public static char[] swap(char[] arr, int left, int right) { char temp = arr[left]; arr[left] = arr[right]; arr[right] = temp; return arr; } public static int[] reverse(int[] arr, int left, int right) { while (left < right) { int temp = arr[left]; arr[left++] = arr[right]; arr[right--] = temp; } return arr; } public static boolean findNextPermutation(int[] data) { if (data.length <= 1) return false; int last = data.length - 2; while (last >= 0) { if (data[last] < data[last + 1]) break; last--; } if (last < 0) return false; int nextGreater = data.length - 1; for (int i = data.length - 1; i > last; i--) { if (data[i] > data[last]) { nextGreater = i; break; } } data = swap(data, nextGreater, last); data = reverse(data, last + 1, data.length - 1); return true; } public static int biSearch(int[] dt, int target){ int left=0, right=dt.length-1; int mid=-1; while(left<=right){ mid = (right+left)/2; if(dt[mid] == target) return mid; if(dt[mid] < target) left=mid+1; else right=mid-1; } return -1; } public static int biSearchMax(long[] dt, long target){ int left=-1, right=dt.length; int mid=-1; while((right-left)>1){ mid = left + (right-left)/2; if(dt[mid] <= target) left=mid; else right=mid; } return left; } public static int biSearchMaxAL(ArrayList<Integer> dt, long target){ int left=-1, right=dt.size(); int mid=-1; while((right-left)>1){ mid = left + (right-left)/2; if(dt.get(mid) <= target) left=mid; else right=mid; } return left; } private static <T>void fill(T[][] ob, T res){for(int i=0;i<ob.length; i++){ for(int j=0; j<ob[0].length; j++){ ob[i][j] = res; }}} private static void fill(boolean[][] ob,boolean res){for(int i=0;i<ob.length; i++){ for(int j=0; j<ob[0].length; j++){ ob[i][j] = res; }}} private static void fill(int[][] ob, int res){ for(int i=0; i<ob.length; i++){ for(int j=0; j<ob[0].length; j++){ ob[i][j] = res; }}} private static void fill(long[][] ob, long res){ for(int i=0; i<ob.length; i++){ for(int j=0; j<ob[0].length; j++){ ob[i][j] = res; }}} private static void fill(char[][] ob, char res){ for(int i=0; i<ob.length; i++){ for(int j=0; j<ob[0].length; j++){ ob[i][j] = res; }}} private static void fill(double[][] ob, double res){for(int i=0; i<ob.length; i++){ for(int j=0; j<ob[0].length; j++){ ob[i][j] = res; }}} private static void fill(int[][][] ob,int res){for(int i=0;i<ob.length;i++){for(int j=0;j<ob[0].length;j++){for(int k=0;k<ob[0][0].length;k++){ob[i][j][k]=res;}}}} private static void fill(long[][][] ob,long res){for(int i=0;i<ob.length;i++){for(int j=0;j<ob[0].length;j++){for(int k=0;k<ob[0][0].length;k++){ob[i][j][k]=res;}}}} private static <T>void fill(T[][][] ob,T res){for(int i=0;i<ob.length;i++){for(int j=0;j<ob[0].length;j++){for(int k=0;k<ob[0][0].length;k++){ob[i][j][k]=res;}}}} private static void fill_parent(int[] ob){ for(int i=0; i<ob.length; i++) ob[i]=i; } private static boolean same3(long a, long b, long c){ if(a!=b) return false; if(b!=c) return false; if(c!=a) return false; return true; } private static boolean dif3(long a, long b, long c){ if(a==b) return false; if(b==c) return false; if(c==a) return false; return true; } private static double hypotenuse(double a, double b){ return Math.sqrt(a*a+b*b); } private static long factorial(int n) { long ans=1; for(long i=n; i>0; i--){ ans*=i; } return ans; } private static long facMod(int n, long mod) { long ans=1; for(long i=n; i>0; i--) ans = (ans * i) % mod; return ans; } private static long lcm(long m, long n){ long ans = m/gcd(m,n); ans *= n; return ans; } private static long gcd(long m, long n) { if(m < n) return gcd(n, m); if(n == 0) return m; return gcd(n, m % n); } private static boolean isPrime(long a){ if(a==1) return false; for(int i=2; i<=Math.sqrt(a); i++){ if(a%i == 0) return false; } return true; } static long modInverse(long a, long mod) { /* Fermat's little theorem: a^(MOD-1) => 1 Therefore (divide both sides by a): a^(MOD-2) => a^(-1) */ return binpowMod(a, mod - 2, mod); } static long binpowMod(long a, long b, long mod) { long res = 1; while (b > 0) { if (b % 2 == 1) res = (res * a) % mod; a = (a * a) % mod; b /= 2; } return res; } private static int getDigit2(long num){ long cf = 1; int d=0; while(num >= cf){ d++; cf = 1<<d; } return d; } private static int getDigit10(long num){ long cf = 1; int d=0; while(num >= cf){ d++; cf*=10; } return d; } private static boolean isInArea(int y, int x, int h, int w){ if(y<0) return false; if(x<0) return false; if(y>=h) return false; if(x>=w) return false; return true; } private static ArrayList<Integer> generatePrimes(int n) { int[] lp = new int[n + 1]; ArrayList<Integer> pr = new ArrayList<>(); for (int i = 2; i <= n; ++i) { if (lp[i] == 0) { lp[i] = i; pr.add(i); } for (int j = 0; j < pr.size() && pr.get(j) <= lp[i] && i * pr.get(j) <= n; ++j) { lp[i * pr.get(j)] = pr.get(j); } } return pr; } static long nPrMod(int n, int r, long MOD) { long res = 1; for (int i = (n - r + 1); i <= n; i++) { res = (res * i) % MOD; } return res; } static long nCr(int n, int r) { if (r > (n - r)) r = n - r; long ans = 1; for (int i = 1; i <= r; i++) { ans *= n; ans /= i; n--; } return ans; } static long nCrMod(int n, int r, long MOD) { long rFactorial = nPrMod(r, r, MOD); long first = nPrMod(n, r, MOD); long second = binpowMod(rFactorial, MOD-2, MOD); return (first * second) % MOD; } static void printBitRepr(int n) { StringBuilder res = new StringBuilder(); for (int i = 0; i < 32; i++) { int mask = (1 << i); res.append((mask & n) == 0 ? "0" : "1"); } out.println(res); } static String bitString(int n) {return Integer.toBinaryString(n);} static int setKthBitToOne(int n, int k) { return (n | (1 << k)); } // zero indexed static int setKthBitToZero(int n, int k) { return (n & ~(1 << k)); } static int invertKthBit(int n, int k) { return (n ^ (1 << k)); } static boolean isPowerOfTwo(int n) { return (n & (n - 1)) == 0; } static HashMap<Character, Integer> counts(String word) { HashMap<Character, Integer> counts = new HashMap<>(); for (int i = 0; i < word.length(); i++) counts.merge(word.charAt(i), 1, Integer::sum); return counts; } static HashMap<Integer, Integer> counts(int[] arr) { HashMap<Integer, Integer> counts = new HashMap<>(); for (int value : arr) counts.merge(value, 1, Integer::sum); return counts; } static HashMap<Long, Integer> counts(long[] arr) { HashMap<Long, Integer> counts = new HashMap<>(); for (long l : arr) counts.merge(l, 1, Integer::sum); return counts; } static HashMap<Character, Integer> counts(char[] arr) { HashMap<Character, Integer> counts = new HashMap<>(); for (char c : arr) counts.merge(c, 1, Integer::sum); return counts; } static long hash(int x, int y) { return x* 1_000_000_000L +y; } static final Random random = new Random(); static void sort(int[] a) { int n = a.length;// shuffle, then sort for (int i = 0; i < n; i++) { int oi = random.nextInt(n), temp = a[oi]; a[oi] = a[i]; a[i] = temp; } Arrays.sort(a); } static void sort(long[] arr) { shuffleArray(arr); Arrays.sort(arr); } static void shuffleArray(long[] arr) { int n = arr.length; for(int i=0; i<n; ++i){ long tmp = arr[i]; int randomPos = i + random.nextInt(n-i); arr[i] = arr[randomPos]; arr[randomPos] = tmp; } } } static class Tuple implements Comparable<Tuple> { int a; int b; int c; public Tuple(int a, int b) { this.a = a; this.b = b; this.c = 0; } public Tuple(int a, int b, int c) { this.a = a; this.b = b; this.c = c; } public int getA() { return a; } public int getB() { return b; } public int getC() { return c; } public int compareTo(Tuple other) { if (this.a == other.a) { if (this.b == other.b) return Long.compare(this.c, other.c); return Long.compare(this.b, other.b); } return Long.compare(this.a, other.a); } @Override public int hashCode() { return Arrays.deepHashCode(new Integer[]{a, b, c}); } @Override public boolean equals(Object o) { if (!(o instanceof Tuple)) return false; Tuple pairo = (Tuple) o; return (this.a == pairo.a && this.b == pairo.b && this.c == pairo.c); } @Override public String toString() { return String.format("(%d %d %d) ", this.a, this.b, this.c); } } private static int abs(int a){ return (a>=0) ? a: -a; } private static int min(int... ins){ int min = ins[0]; for(int i=1; i<ins.length; i++){ if(ins[i] < min) min = ins[i]; } return min; } private static int max(int... ins){ int max = ins[0]; for(int i=1; i<ins.length; i++){ if(ins[i] > max) max = ins[i]; } return max; } private static int sum(int... ins){ int total = 0; for (int v : ins) { total += v; } return total; } private static long abs(long a){ return (a>=0) ? a: -a; } private static long min(long... ins){ long min = ins[0]; for(int i=1; i<ins.length; i++){ if(ins[i] < min) min = ins[i]; } return min; } private static long max(long... ins){ long max = ins[0]; for(int i=1; i<ins.length; i++){ if(ins[i] > max) max = ins[i]; } return max; } private static long sum(long... ins){ long total = 0; for (long v : ins) { total += v; } return total; } private static double abs(double a){ return (a>=0) ? a: -a; } private static double min(double... ins){ double min = ins[0]; for(int i=1; i<ins.length; i++){ if(ins[i] < min) min = ins[i]; } return min; } private static double max(double... ins){ double max = ins[0]; for(int i=1; i<ins.length; i++){ if(ins[i] > max) max = ins[i]; } return max; } private static double sum(double... ins){ double total = 0; for (double v : ins) { total += v; } return total; } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> /* Author: Anthony Ngene Created: 05/10/2020 - 14:12 */ import java.io.*; import java.util.*; public class F { // checks: 1. edge cases 2. overflow 3. possible errors (e.g 1/0, arr[out]) 4. time/space complexity void solver() throws IOException { int n = in.intNext(); int[] arr = in.nextIntArray(n); HashMap<Integer, Deque<Tuple>> subSum = new HashMap<>(); Integer best = null; for (int i = 0; i < n; i++) { int total = 0; for (int j = i; j < n; j++) { total += arr[j]; if (!subSum.containsKey(total)) subSum.put(total, new ArrayDeque<>()); Deque<Tuple> rs = subSum.get(total); if (rs.size() > 0 && rs.peekLast().b > j) rs.pollLast(); if (rs.size() == 0 || rs.peekLast().b < i) rs.add(new Tuple(i, j)); if (best == null || rs.size() > subSum.get(best).size()) best = total; } } Deque<Tuple> bestList = subSum.get(best); out.println(bestList.size()); for (Tuple aa: bestList) out.pp(aa.a + 1, aa.b + 1); } // Generated Code Below: private static final FastWriter out = new FastWriter(); private static FastScanner in; static ArrayList<Integer>[] adj; private static long e97 = (long)1e9 + 7; public static void main(String[] args) throws IOException { in = new FastScanner(); new F().solver(); out.close(); } static class FastWriter { private static final int IO_BUFFERS = 128 * 1024; private final StringBuilder out; public FastWriter() { out = new StringBuilder(IO_BUFFERS); } public FastWriter p(Object object) { out.append(object); return this; } public FastWriter p(String format, Object... args) { out.append(String.format(format, args)); return this; } public FastWriter pp(Object... args) { for (Object ob : args) { out.append(ob).append(" "); } out.append("\n"); return this; } public FastWriter pp(int[] args) { for (int ob : args) { out.append(ob).append(" "); } out.append("\n"); return this; } public FastWriter pp(long[] args) { for (long ob : args) { out.append(ob).append(" "); } out.append("\n"); return this; } public FastWriter pp(char[] args) { for (char ob : args) { out.append(ob).append(" "); } out.append("\n"); return this; } public void println(long[] arr) { for(long e: arr) out.append(e).append(" "); out.append("\n"); } public void println(int[] arr) { for(int e: arr) out.append(e).append(" "); out.append("\n"); } public void println(char[] arr) { for(char e: arr) out.append(e).append(" "); out.append("\n"); } public void println(double[] arr) { for(double e: arr) out.append(e).append(" "); out.append("\n"); } public void println(boolean[] arr) { for(boolean e: arr) out.append(e).append(" "); out.append("\n"); } public <T>void println(T[] arr) { for(T e: arr) out.append(e).append(" "); out.append("\n"); } public void println(long[][] arr) { for (long[] row: arr) out.append(Arrays.toString(row)).append("\n"); } public void println(int[][] arr) { for (int[] row: arr) out.append(Arrays.toString(row)).append("\n"); } public void println(char[][] arr) { for (char[] row: arr) out.append(Arrays.toString(row)).append("\n"); } public void println(double[][] arr) { for (double[] row: arr) out.append(Arrays.toString(row)).append("\n"); } public <T>void println(T[][] arr) { for (T[] row: arr) out.append(Arrays.toString(row)).append("\n"); } public FastWriter println(Object object) { out.append(object).append("\n"); return this; } public void toFile(String fileName) throws IOException { BufferedWriter writer = new BufferedWriter(new FileWriter(fileName)); writer.write(out.toString()); writer.close(); } public void close() throws IOException { System.out.print(out); } } static class FastScanner { private InputStream sin = System.in; private final byte[] buffer = new byte[1024]; private int ptr = 0; private int buflen = 0; public FastScanner(){} public FastScanner(String filename) throws FileNotFoundException { File file = new File(filename); sin = new FileInputStream(file); } private boolean hasNextByte() { if (ptr < buflen) { return true; }else{ ptr = 0; try { buflen = sin.read(buffer); } catch (IOException e) { e.printStackTrace(); } if (buflen <= 0) { return false; } } return true; } private int readByte() { if (hasNextByte()) return buffer[ptr++]; else return -1;} private static boolean isPrintableChar(int c) { return 33 <= c && c <= 126;} public boolean hasNext() { while(hasNextByte() && !isPrintableChar(buffer[ptr])) ptr++; return hasNextByte();} public String next() { if (!hasNext()) throw new NoSuchElementException(); StringBuilder sb = new StringBuilder(); int b = readByte(); while(isPrintableChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } public long longNext() { if (!hasNext()) throw new NoSuchElementException(); long n = 0; boolean minus = false; int b = readByte(); if (b == '-') { minus = true; b = readByte(); } if (b < '0' || '9' < b) { throw new NumberFormatException(); } while(true){ if ('0' <= b && b <= '9') { n *= 10; n += b - '0'; }else if(b == -1 || !isPrintableChar(b) || b == ':'){ return minus ? -n : n; }else{ throw new NumberFormatException(); } b = readByte(); } } public int intNext() { long nl = longNext(); if (nl < Integer.MIN_VALUE || nl > Integer.MAX_VALUE) throw new NumberFormatException(); return (int) nl; } public double doubleNext() { return Double.parseDouble(next());} public long[] nextLongArray(final int n){ final long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = longNext(); return a; } public int[] nextIntArray(final int n){ final int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = intNext(); return a; } public double[] nextDoubleArray(final int n){ final double[] a = new double[n]; for (int i = 0; i < n; i++) a[i] = doubleNext(); return a; } public ArrayList<Integer>[] getAdj(int n) { ArrayList<Integer>[] adj = new ArrayList[n + 1]; for (int i = 1; i <= n; i++) adj[i] = new ArrayList<>(); return adj; } public ArrayList<Integer>[] adjacencyList(int nodes, int edges) throws IOException { return adjacencyList(nodes, edges, false); } public ArrayList<Integer>[] adjacencyList(int nodes, int edges, boolean isDirected) throws IOException { adj = getAdj(nodes); for (int i = 0; i < edges; i++) { int a = intNext(), b = intNext(); adj[a].add(b); if (!isDirected) adj[b].add(a); } return adj; } } static class u { public static int upperBound(long[] array, long obj) { int l = 0, r = array.length - 1; while (r - l >= 0) { int c = (l + r) / 2; if (obj < array[c]) { r = c - 1; } else { l = c + 1; } } return l; } public static int upperBound(ArrayList<Long> array, long obj) { int l = 0, r = array.size() - 1; while (r - l >= 0) { int c = (l + r) / 2; if (obj < array.get(c)) { r = c - 1; } else { l = c + 1; } } return l; } public static int lowerBound(long[] array, long obj) { int l = 0, r = array.length - 1; while (r - l >= 0) { int c = (l + r) / 2; if (obj <= array[c]) { r = c - 1; } else { l = c + 1; } } return l; } public static int lowerBound(ArrayList<Long> array, long obj) { int l = 0, r = array.size() - 1; while (r - l >= 0) { int c = (l + r) / 2; if (obj <= array.get(c)) { r = c - 1; } else { l = c + 1; } } return l; } static <T> T[][] deepCopy(T[][] matrix) { return Arrays.stream(matrix).map(el -> el.clone()).toArray($ -> matrix.clone()); } static int[][] deepCopy(int[][] matrix) { return Arrays.stream(matrix).map(int[]::clone).toArray($ -> matrix.clone()); } static long[][] deepCopy(long[][] matrix) { return Arrays.stream(matrix).map(long[]::clone).toArray($ -> matrix.clone()); } private static void sort(int[][] arr){ Arrays.sort(arr, Comparator.comparingDouble(o -> o[0])); } private static void sort(long[][] arr){ Arrays.sort(arr, Comparator.comparingDouble(o -> o[0])); } private static <T>void rSort(T[] arr) { Arrays.sort(arr, Collections.reverseOrder()); } private static void customSort(int[][] arr) { Arrays.sort(arr, new Comparator<int[]>() { public int compare(int[] a, int[] b) { if (a[0] == b[0]) return Integer.compare(a[1], b[1]); return Integer.compare(a[0], b[0]); } }); } public static int[] swap(int[] arr, int left, int right) { int temp = arr[left]; arr[left] = arr[right]; arr[right] = temp; return arr; } public static char[] swap(char[] arr, int left, int right) { char temp = arr[left]; arr[left] = arr[right]; arr[right] = temp; return arr; } public static int[] reverse(int[] arr, int left, int right) { while (left < right) { int temp = arr[left]; arr[left++] = arr[right]; arr[right--] = temp; } return arr; } public static boolean findNextPermutation(int[] data) { if (data.length <= 1) return false; int last = data.length - 2; while (last >= 0) { if (data[last] < data[last + 1]) break; last--; } if (last < 0) return false; int nextGreater = data.length - 1; for (int i = data.length - 1; i > last; i--) { if (data[i] > data[last]) { nextGreater = i; break; } } data = swap(data, nextGreater, last); data = reverse(data, last + 1, data.length - 1); return true; } public static int biSearch(int[] dt, int target){ int left=0, right=dt.length-1; int mid=-1; while(left<=right){ mid = (right+left)/2; if(dt[mid] == target) return mid; if(dt[mid] < target) left=mid+1; else right=mid-1; } return -1; } public static int biSearchMax(long[] dt, long target){ int left=-1, right=dt.length; int mid=-1; while((right-left)>1){ mid = left + (right-left)/2; if(dt[mid] <= target) left=mid; else right=mid; } return left; } public static int biSearchMaxAL(ArrayList<Integer> dt, long target){ int left=-1, right=dt.size(); int mid=-1; while((right-left)>1){ mid = left + (right-left)/2; if(dt.get(mid) <= target) left=mid; else right=mid; } return left; } private static <T>void fill(T[][] ob, T res){for(int i=0;i<ob.length; i++){ for(int j=0; j<ob[0].length; j++){ ob[i][j] = res; }}} private static void fill(boolean[][] ob,boolean res){for(int i=0;i<ob.length; i++){ for(int j=0; j<ob[0].length; j++){ ob[i][j] = res; }}} private static void fill(int[][] ob, int res){ for(int i=0; i<ob.length; i++){ for(int j=0; j<ob[0].length; j++){ ob[i][j] = res; }}} private static void fill(long[][] ob, long res){ for(int i=0; i<ob.length; i++){ for(int j=0; j<ob[0].length; j++){ ob[i][j] = res; }}} private static void fill(char[][] ob, char res){ for(int i=0; i<ob.length; i++){ for(int j=0; j<ob[0].length; j++){ ob[i][j] = res; }}} private static void fill(double[][] ob, double res){for(int i=0; i<ob.length; i++){ for(int j=0; j<ob[0].length; j++){ ob[i][j] = res; }}} private static void fill(int[][][] ob,int res){for(int i=0;i<ob.length;i++){for(int j=0;j<ob[0].length;j++){for(int k=0;k<ob[0][0].length;k++){ob[i][j][k]=res;}}}} private static void fill(long[][][] ob,long res){for(int i=0;i<ob.length;i++){for(int j=0;j<ob[0].length;j++){for(int k=0;k<ob[0][0].length;k++){ob[i][j][k]=res;}}}} private static <T>void fill(T[][][] ob,T res){for(int i=0;i<ob.length;i++){for(int j=0;j<ob[0].length;j++){for(int k=0;k<ob[0][0].length;k++){ob[i][j][k]=res;}}}} private static void fill_parent(int[] ob){ for(int i=0; i<ob.length; i++) ob[i]=i; } private static boolean same3(long a, long b, long c){ if(a!=b) return false; if(b!=c) return false; if(c!=a) return false; return true; } private static boolean dif3(long a, long b, long c){ if(a==b) return false; if(b==c) return false; if(c==a) return false; return true; } private static double hypotenuse(double a, double b){ return Math.sqrt(a*a+b*b); } private static long factorial(int n) { long ans=1; for(long i=n; i>0; i--){ ans*=i; } return ans; } private static long facMod(int n, long mod) { long ans=1; for(long i=n; i>0; i--) ans = (ans * i) % mod; return ans; } private static long lcm(long m, long n){ long ans = m/gcd(m,n); ans *= n; return ans; } private static long gcd(long m, long n) { if(m < n) return gcd(n, m); if(n == 0) return m; return gcd(n, m % n); } private static boolean isPrime(long a){ if(a==1) return false; for(int i=2; i<=Math.sqrt(a); i++){ if(a%i == 0) return false; } return true; } static long modInverse(long a, long mod) { /* Fermat's little theorem: a^(MOD-1) => 1 Therefore (divide both sides by a): a^(MOD-2) => a^(-1) */ return binpowMod(a, mod - 2, mod); } static long binpowMod(long a, long b, long mod) { long res = 1; while (b > 0) { if (b % 2 == 1) res = (res * a) % mod; a = (a * a) % mod; b /= 2; } return res; } private static int getDigit2(long num){ long cf = 1; int d=0; while(num >= cf){ d++; cf = 1<<d; } return d; } private static int getDigit10(long num){ long cf = 1; int d=0; while(num >= cf){ d++; cf*=10; } return d; } private static boolean isInArea(int y, int x, int h, int w){ if(y<0) return false; if(x<0) return false; if(y>=h) return false; if(x>=w) return false; return true; } private static ArrayList<Integer> generatePrimes(int n) { int[] lp = new int[n + 1]; ArrayList<Integer> pr = new ArrayList<>(); for (int i = 2; i <= n; ++i) { if (lp[i] == 0) { lp[i] = i; pr.add(i); } for (int j = 0; j < pr.size() && pr.get(j) <= lp[i] && i * pr.get(j) <= n; ++j) { lp[i * pr.get(j)] = pr.get(j); } } return pr; } static long nPrMod(int n, int r, long MOD) { long res = 1; for (int i = (n - r + 1); i <= n; i++) { res = (res * i) % MOD; } return res; } static long nCr(int n, int r) { if (r > (n - r)) r = n - r; long ans = 1; for (int i = 1; i <= r; i++) { ans *= n; ans /= i; n--; } return ans; } static long nCrMod(int n, int r, long MOD) { long rFactorial = nPrMod(r, r, MOD); long first = nPrMod(n, r, MOD); long second = binpowMod(rFactorial, MOD-2, MOD); return (first * second) % MOD; } static void printBitRepr(int n) { StringBuilder res = new StringBuilder(); for (int i = 0; i < 32; i++) { int mask = (1 << i); res.append((mask & n) == 0 ? "0" : "1"); } out.println(res); } static String bitString(int n) {return Integer.toBinaryString(n);} static int setKthBitToOne(int n, int k) { return (n | (1 << k)); } // zero indexed static int setKthBitToZero(int n, int k) { return (n & ~(1 << k)); } static int invertKthBit(int n, int k) { return (n ^ (1 << k)); } static boolean isPowerOfTwo(int n) { return (n & (n - 1)) == 0; } static HashMap<Character, Integer> counts(String word) { HashMap<Character, Integer> counts = new HashMap<>(); for (int i = 0; i < word.length(); i++) counts.merge(word.charAt(i), 1, Integer::sum); return counts; } static HashMap<Integer, Integer> counts(int[] arr) { HashMap<Integer, Integer> counts = new HashMap<>(); for (int value : arr) counts.merge(value, 1, Integer::sum); return counts; } static HashMap<Long, Integer> counts(long[] arr) { HashMap<Long, Integer> counts = new HashMap<>(); for (long l : arr) counts.merge(l, 1, Integer::sum); return counts; } static HashMap<Character, Integer> counts(char[] arr) { HashMap<Character, Integer> counts = new HashMap<>(); for (char c : arr) counts.merge(c, 1, Integer::sum); return counts; } static long hash(int x, int y) { return x* 1_000_000_000L +y; } static final Random random = new Random(); static void sort(int[] a) { int n = a.length;// shuffle, then sort for (int i = 0; i < n; i++) { int oi = random.nextInt(n), temp = a[oi]; a[oi] = a[i]; a[i] = temp; } Arrays.sort(a); } static void sort(long[] arr) { shuffleArray(arr); Arrays.sort(arr); } static void shuffleArray(long[] arr) { int n = arr.length; for(int i=0; i<n; ++i){ long tmp = arr[i]; int randomPos = i + random.nextInt(n-i); arr[i] = arr[randomPos]; arr[randomPos] = tmp; } } } static class Tuple implements Comparable<Tuple> { int a; int b; int c; public Tuple(int a, int b) { this.a = a; this.b = b; this.c = 0; } public Tuple(int a, int b, int c) { this.a = a; this.b = b; this.c = c; } public int getA() { return a; } public int getB() { return b; } public int getC() { return c; } public int compareTo(Tuple other) { if (this.a == other.a) { if (this.b == other.b) return Long.compare(this.c, other.c); return Long.compare(this.b, other.b); } return Long.compare(this.a, other.a); } @Override public int hashCode() { return Arrays.deepHashCode(new Integer[]{a, b, c}); } @Override public boolean equals(Object o) { if (!(o instanceof Tuple)) return false; Tuple pairo = (Tuple) o; return (this.a == pairo.a && this.b == pairo.b && this.c == pairo.c); } @Override public String toString() { return String.format("(%d %d %d) ", this.a, this.b, this.c); } } private static int abs(int a){ return (a>=0) ? a: -a; } private static int min(int... ins){ int min = ins[0]; for(int i=1; i<ins.length; i++){ if(ins[i] < min) min = ins[i]; } return min; } private static int max(int... ins){ int max = ins[0]; for(int i=1; i<ins.length; i++){ if(ins[i] > max) max = ins[i]; } return max; } private static int sum(int... ins){ int total = 0; for (int v : ins) { total += v; } return total; } private static long abs(long a){ return (a>=0) ? a: -a; } private static long min(long... ins){ long min = ins[0]; for(int i=1; i<ins.length; i++){ if(ins[i] < min) min = ins[i]; } return min; } private static long max(long... ins){ long max = ins[0]; for(int i=1; i<ins.length; i++){ if(ins[i] > max) max = ins[i]; } return max; } private static long sum(long... ins){ long total = 0; for (long v : ins) { total += v; } return total; } private static double abs(double a){ return (a>=0) ? a: -a; } private static double min(double... ins){ double min = ins[0]; for(int i=1; i<ins.length; i++){ if(ins[i] < min) min = ins[i]; } return min; } private static double max(double... ins){ double max = ins[0]; for(int i=1; i<ins.length; i++){ if(ins[i] > max) max = ins[i]; } return max; } private static double sum(double... ins){ double total = 0; for (double v : ins) { total += v; } return total; } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
6,217
2,525
1,196
import java.io.FileInputStream; import java.io.IOException; import java.io.InputStream; import java.util.Scanner; public class C { private static final String REGEX = " "; private static final Boolean DEBUG = false; private static final String FILE_NAME = "input.txt"; public static void main(String[] args) throws IOException { if (DEBUG) { generate(); } Solver solver = new Solver(); solver.readData(); solver.solveAndPrint(); } private static void generate() throws IOException { // FileWriter writer = new FileWriter("input.txt"); // writer.close(); } private static class Solver { long n, s; void readData() throws IOException { InputStream in = DEBUG ? new FileInputStream(FILE_NAME) : System.in; Scanner scanner = new Scanner(in); n = scanner.nextLong(); s = scanner.nextLong(); scanner.close(); } void solveAndPrint() { long cur = s + 1; long sum = getSum(cur); long res = 0; while (cur <= n) { if (cur - sum >= s) { System.out.println(n - cur + 1); return; } cur++; if (cur % 10 != 0) { sum++; } else { sum = getSum(cur); } } System.out.println(0); } long getSum(long cur) { long res = 0; while (cur > 0) { res += cur % 10; cur /= 10; } return res; } @SuppressWarnings("SameParameterValue") int[] splitInteger(String string, int n) { final String[] split = string.split(REGEX, n); int[] result = new int[split.length]; for (int i = 0; i < n; ++i) { result[i] = Integer.parseInt(split[i]); } return result; } public int[] splitInteger(String string) { return splitInteger(string, 0); } @SuppressWarnings("SameParameterValue") long[] splitLong(String string, int n) { final String[] split = string.split(REGEX, n); long[] result = new long[split.length]; for (int i = 0; i < n; ++i) { result[i] = Long.parseLong(split[i]); } return result; } public long[] splitLong(String string) { return splitLong(string, 0); } @SuppressWarnings("SameParameterValue") double[] splitDouble(String string, int n) { final String[] split = string.split(REGEX, n); double[] result = new double[split.length]; for (int i = 0; i < n; ++i) { result[i] = Double.parseDouble(split[i]); } return result; } public double[] splitDouble(String string) { return splitDouble(string, 0); } @SuppressWarnings("SameParameterValue") String[] splitString(String string, int n) { return string.split(REGEX, n); } public String[] splitString(String string) { return splitString(string, 0); } public int max(int a, int b) { return Math.max(a, b); } public long max(long a, long b) { return Math.max(a, b); } public int min(int a, int b) { return Math.min(a, b); } public long min(long a, long b) { return Math.min(a, b); } public double max(double a, double b) { return Math.max(a, b); } public double min(double a, double b) { return Math.min(a, b); } private final static int MOD = 1000000009; int multMod(int a, int b) { return ((a % MOD) * (b % MOD)) % MOD; } int sumMod(int a, int b) { return ((a % MOD) + (b % MOD)) % MOD; } long multMod(long a, long b) { return ((a % MOD) * (b % MOD)) % MOD; } long sumMod(long a, long b) { return ((a % MOD) + (b % MOD)) % MOD; } } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.FileInputStream; import java.io.IOException; import java.io.InputStream; import java.util.Scanner; public class C { private static final String REGEX = " "; private static final Boolean DEBUG = false; private static final String FILE_NAME = "input.txt"; public static void main(String[] args) throws IOException { if (DEBUG) { generate(); } Solver solver = new Solver(); solver.readData(); solver.solveAndPrint(); } private static void generate() throws IOException { // FileWriter writer = new FileWriter("input.txt"); // writer.close(); } private static class Solver { long n, s; void readData() throws IOException { InputStream in = DEBUG ? new FileInputStream(FILE_NAME) : System.in; Scanner scanner = new Scanner(in); n = scanner.nextLong(); s = scanner.nextLong(); scanner.close(); } void solveAndPrint() { long cur = s + 1; long sum = getSum(cur); long res = 0; while (cur <= n) { if (cur - sum >= s) { System.out.println(n - cur + 1); return; } cur++; if (cur % 10 != 0) { sum++; } else { sum = getSum(cur); } } System.out.println(0); } long getSum(long cur) { long res = 0; while (cur > 0) { res += cur % 10; cur /= 10; } return res; } @SuppressWarnings("SameParameterValue") int[] splitInteger(String string, int n) { final String[] split = string.split(REGEX, n); int[] result = new int[split.length]; for (int i = 0; i < n; ++i) { result[i] = Integer.parseInt(split[i]); } return result; } public int[] splitInteger(String string) { return splitInteger(string, 0); } @SuppressWarnings("SameParameterValue") long[] splitLong(String string, int n) { final String[] split = string.split(REGEX, n); long[] result = new long[split.length]; for (int i = 0; i < n; ++i) { result[i] = Long.parseLong(split[i]); } return result; } public long[] splitLong(String string) { return splitLong(string, 0); } @SuppressWarnings("SameParameterValue") double[] splitDouble(String string, int n) { final String[] split = string.split(REGEX, n); double[] result = new double[split.length]; for (int i = 0; i < n; ++i) { result[i] = Double.parseDouble(split[i]); } return result; } public double[] splitDouble(String string) { return splitDouble(string, 0); } @SuppressWarnings("SameParameterValue") String[] splitString(String string, int n) { return string.split(REGEX, n); } public String[] splitString(String string) { return splitString(string, 0); } public int max(int a, int b) { return Math.max(a, b); } public long max(long a, long b) { return Math.max(a, b); } public int min(int a, int b) { return Math.min(a, b); } public long min(long a, long b) { return Math.min(a, b); } public double max(double a, double b) { return Math.max(a, b); } public double min(double a, double b) { return Math.min(a, b); } private final static int MOD = 1000000009; int multMod(int a, int b) { return ((a % MOD) * (b % MOD)) % MOD; } int sumMod(int a, int b) { return ((a % MOD) + (b % MOD)) % MOD; } long multMod(long a, long b) { return ((a % MOD) * (b % MOD)) % MOD; } long sumMod(long a, long b) { return ((a % MOD) + (b % MOD)) % MOD; } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.FileInputStream; import java.io.IOException; import java.io.InputStream; import java.util.Scanner; public class C { private static final String REGEX = " "; private static final Boolean DEBUG = false; private static final String FILE_NAME = "input.txt"; public static void main(String[] args) throws IOException { if (DEBUG) { generate(); } Solver solver = new Solver(); solver.readData(); solver.solveAndPrint(); } private static void generate() throws IOException { // FileWriter writer = new FileWriter("input.txt"); // writer.close(); } private static class Solver { long n, s; void readData() throws IOException { InputStream in = DEBUG ? new FileInputStream(FILE_NAME) : System.in; Scanner scanner = new Scanner(in); n = scanner.nextLong(); s = scanner.nextLong(); scanner.close(); } void solveAndPrint() { long cur = s + 1; long sum = getSum(cur); long res = 0; while (cur <= n) { if (cur - sum >= s) { System.out.println(n - cur + 1); return; } cur++; if (cur % 10 != 0) { sum++; } else { sum = getSum(cur); } } System.out.println(0); } long getSum(long cur) { long res = 0; while (cur > 0) { res += cur % 10; cur /= 10; } return res; } @SuppressWarnings("SameParameterValue") int[] splitInteger(String string, int n) { final String[] split = string.split(REGEX, n); int[] result = new int[split.length]; for (int i = 0; i < n; ++i) { result[i] = Integer.parseInt(split[i]); } return result; } public int[] splitInteger(String string) { return splitInteger(string, 0); } @SuppressWarnings("SameParameterValue") long[] splitLong(String string, int n) { final String[] split = string.split(REGEX, n); long[] result = new long[split.length]; for (int i = 0; i < n; ++i) { result[i] = Long.parseLong(split[i]); } return result; } public long[] splitLong(String string) { return splitLong(string, 0); } @SuppressWarnings("SameParameterValue") double[] splitDouble(String string, int n) { final String[] split = string.split(REGEX, n); double[] result = new double[split.length]; for (int i = 0; i < n; ++i) { result[i] = Double.parseDouble(split[i]); } return result; } public double[] splitDouble(String string) { return splitDouble(string, 0); } @SuppressWarnings("SameParameterValue") String[] splitString(String string, int n) { return string.split(REGEX, n); } public String[] splitString(String string) { return splitString(string, 0); } public int max(int a, int b) { return Math.max(a, b); } public long max(long a, long b) { return Math.max(a, b); } public int min(int a, int b) { return Math.min(a, b); } public long min(long a, long b) { return Math.min(a, b); } public double max(double a, double b) { return Math.max(a, b); } public double min(double a, double b) { return Math.min(a, b); } private final static int MOD = 1000000009; int multMod(int a, int b) { return ((a % MOD) * (b % MOD)) % MOD; } int sumMod(int a, int b) { return ((a % MOD) + (b % MOD)) % MOD; } long multMod(long a, long b) { return ((a % MOD) * (b % MOD)) % MOD; } long sumMod(long a, long b) { return ((a % MOD) + (b % MOD)) % MOD; } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,307
1,195
327
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.HashMap; import java.util.HashSet; import java.util.List; import java.util.Set; import java.util.Stack; import java.util.StringTokenizer; public class Main { InputStreamReader inp = new InputStreamReader(System.in); BufferedReader in = new BufferedReader(inp); boolean test = false; String[] inData = { "9", "HTHTHTHHT", }; static int id = -1; public String readLine() throws IOException { id++; if(test) return inData[id]; else return in.readLine(); } public Main() throws Throwable { int animalNr = Integer.valueOf(readLine()); String animals = readLine(); boolean[] state = new boolean[animalNr]; int tigerCount = 0; for (int i = 0; i < animals.length(); i++) { if('T' == animals.charAt(i)){ state[i] = true; tigerCount++; } } int best = Integer.MAX_VALUE; for (int i = 0; i < state.length; i++) { int swaps = 0; for (int j = i; j < i+tigerCount; j++) { if(state[j %animalNr] == false){ swaps ++; } } if(swaps < best){ best = swaps; } } System.out.println(best); } public static void main(String[] args) throws Throwable { new Main(); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.HashMap; import java.util.HashSet; import java.util.List; import java.util.Set; import java.util.Stack; import java.util.StringTokenizer; public class Main { InputStreamReader inp = new InputStreamReader(System.in); BufferedReader in = new BufferedReader(inp); boolean test = false; String[] inData = { "9", "HTHTHTHHT", }; static int id = -1; public String readLine() throws IOException { id++; if(test) return inData[id]; else return in.readLine(); } public Main() throws Throwable { int animalNr = Integer.valueOf(readLine()); String animals = readLine(); boolean[] state = new boolean[animalNr]; int tigerCount = 0; for (int i = 0; i < animals.length(); i++) { if('T' == animals.charAt(i)){ state[i] = true; tigerCount++; } } int best = Integer.MAX_VALUE; for (int i = 0; i < state.length; i++) { int swaps = 0; for (int j = i; j < i+tigerCount; j++) { if(state[j %animalNr] == false){ swaps ++; } } if(swaps < best){ best = swaps; } } System.out.println(best); } public static void main(String[] args) throws Throwable { new Main(); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.HashMap; import java.util.HashSet; import java.util.List; import java.util.Set; import java.util.Stack; import java.util.StringTokenizer; public class Main { InputStreamReader inp = new InputStreamReader(System.in); BufferedReader in = new BufferedReader(inp); boolean test = false; String[] inData = { "9", "HTHTHTHHT", }; static int id = -1; public String readLine() throws IOException { id++; if(test) return inData[id]; else return in.readLine(); } public Main() throws Throwable { int animalNr = Integer.valueOf(readLine()); String animals = readLine(); boolean[] state = new boolean[animalNr]; int tigerCount = 0; for (int i = 0; i < animals.length(); i++) { if('T' == animals.charAt(i)){ state[i] = true; tigerCount++; } } int best = Integer.MAX_VALUE; for (int i = 0; i < state.length; i++) { int swaps = 0; for (int j = i; j < i+tigerCount; j++) { if(state[j %animalNr] == false){ swaps ++; } } if(swaps < best){ best = swaps; } } System.out.println(best); } public static void main(String[] args) throws Throwable { new Main(); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
675
327
3,757
// Author : RegalBeast import java.io.*; import java.util.*; public class Main { static final FastReader FR = new FastReader(); static final PrintWriter PW = new PrintWriter(new OutputStreamWriter(System.out)); public static void main(String[] args) { StringBuilder solution = new StringBuilder(); int rows = FR.nextInt(); int cols = FR.nextInt(); int moves = FR.nextInt(); Map<Integer, Integer> horizontalEdgeWeights = new HashMap<Integer, Integer>(); for (int r = 0; r < rows; r++) { for (int c = 0; c < cols - 1; c++) { int hash = getHash(r, c); horizontalEdgeWeights.put(hash, FR.nextInt()); } } Map<Integer, Integer> verticalEdgeWeights = new HashMap<Integer, Integer>(); for (int r = 0; r < rows - 1; r++) { for (int c = 0; c < cols; c++) { int hash = getHash(r, c); verticalEdgeWeights.put(hash, FR.nextInt()); } } List<List<Integer>> result = getResult(rows, cols, moves, horizontalEdgeWeights, verticalEdgeWeights); for (int r = 0; r < rows; r++) { for (int c = 0; c < cols; c++) { int value = (result != null ? result.get(r).get(c) : -1); solution.append(value + " "); } solution.append("\n"); } PW.print(solution.toString()); PW.close(); } static List<List<Integer>> getResult(int rows, int cols, int moves, Map<Integer, Integer> horizontalEdgeWeights, Map<Integer, Integer> verticalEdgeWeights) { if ((moves & 1) == 1) { return null; } int mid = moves >> 1; List<List<List<Integer>>> minForDistance = new ArrayList<List<List<Integer>>>(rows); for (int r = 0; r < rows; r++) { minForDistance.add(new ArrayList<List<Integer>>(cols)); for (int c = 0; c < cols; c++) { minForDistance.get(r).add(new ArrayList<Integer>(Collections.nCopies(mid+1, Integer.MAX_VALUE))); minForDistance.get(r).get(c).set(0, 0); } } for (int m = 1; m <= mid; m++) { for (int r = 0; r < rows; r++) { for (int c = 0; c < cols; c++) { int minBoredom = minForDistance.get(r).get(c).get(m); int hash = getHash(r, c); if (r > 0) { if (minForDistance.get(r-1).get(c).get(m-1) < Integer.MAX_VALUE) { int candidateBoredom = minForDistance.get(r-1).get(c).get(m-1) + verticalEdgeWeights.get(getHash(r-1, c)); minBoredom = Math.min(minBoredom, candidateBoredom); } } if (c > 0) { if (minForDistance.get(r).get(c-1).get(m-1) < Integer.MAX_VALUE) { int candidateBoredom = minForDistance.get(r).get(c-1).get(m-1) + horizontalEdgeWeights.get(getHash(r, c-1)); minBoredom = Math.min(minBoredom, candidateBoredom); } } if (r + 1 < rows) { if (minForDistance.get(r+1).get(c).get(m-1) < Integer.MAX_VALUE) { int candidateBoredom = minForDistance.get(r+1).get(c).get(m-1) + verticalEdgeWeights.get(hash); minBoredom = Math.min(minBoredom, candidateBoredom); } } if (c + 1 < cols) { if (minForDistance.get(r).get(c+1).get(m-1) < Integer.MAX_VALUE) { int candidateBoredom = minForDistance.get(r).get(c+1).get(m-1) + horizontalEdgeWeights.get(hash); minBoredom = Math.min(minBoredom, candidateBoredom); } } minForDistance.get(r).get(c).set(m, minBoredom); } } } List<List<Integer>> result = new ArrayList<List<Integer>>(rows); for (int r = 0; r < rows; r++) { result.add(new ArrayList<Integer>(cols)); for (int c = 0; c < cols; c++) { result.get(r).add(minForDistance.get(r).get(c).get(mid) << 1); } } return result; } static int getHash(int row, int col) { return (row * 1000 + col); } static int getRow(int hash) { return hash / 1000; } static int getCol(int hash) { return hash % 1000; } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> // Author : RegalBeast import java.io.*; import java.util.*; public class Main { static final FastReader FR = new FastReader(); static final PrintWriter PW = new PrintWriter(new OutputStreamWriter(System.out)); public static void main(String[] args) { StringBuilder solution = new StringBuilder(); int rows = FR.nextInt(); int cols = FR.nextInt(); int moves = FR.nextInt(); Map<Integer, Integer> horizontalEdgeWeights = new HashMap<Integer, Integer>(); for (int r = 0; r < rows; r++) { for (int c = 0; c < cols - 1; c++) { int hash = getHash(r, c); horizontalEdgeWeights.put(hash, FR.nextInt()); } } Map<Integer, Integer> verticalEdgeWeights = new HashMap<Integer, Integer>(); for (int r = 0; r < rows - 1; r++) { for (int c = 0; c < cols; c++) { int hash = getHash(r, c); verticalEdgeWeights.put(hash, FR.nextInt()); } } List<List<Integer>> result = getResult(rows, cols, moves, horizontalEdgeWeights, verticalEdgeWeights); for (int r = 0; r < rows; r++) { for (int c = 0; c < cols; c++) { int value = (result != null ? result.get(r).get(c) : -1); solution.append(value + " "); } solution.append("\n"); } PW.print(solution.toString()); PW.close(); } static List<List<Integer>> getResult(int rows, int cols, int moves, Map<Integer, Integer> horizontalEdgeWeights, Map<Integer, Integer> verticalEdgeWeights) { if ((moves & 1) == 1) { return null; } int mid = moves >> 1; List<List<List<Integer>>> minForDistance = new ArrayList<List<List<Integer>>>(rows); for (int r = 0; r < rows; r++) { minForDistance.add(new ArrayList<List<Integer>>(cols)); for (int c = 0; c < cols; c++) { minForDistance.get(r).add(new ArrayList<Integer>(Collections.nCopies(mid+1, Integer.MAX_VALUE))); minForDistance.get(r).get(c).set(0, 0); } } for (int m = 1; m <= mid; m++) { for (int r = 0; r < rows; r++) { for (int c = 0; c < cols; c++) { int minBoredom = minForDistance.get(r).get(c).get(m); int hash = getHash(r, c); if (r > 0) { if (minForDistance.get(r-1).get(c).get(m-1) < Integer.MAX_VALUE) { int candidateBoredom = minForDistance.get(r-1).get(c).get(m-1) + verticalEdgeWeights.get(getHash(r-1, c)); minBoredom = Math.min(minBoredom, candidateBoredom); } } if (c > 0) { if (minForDistance.get(r).get(c-1).get(m-1) < Integer.MAX_VALUE) { int candidateBoredom = minForDistance.get(r).get(c-1).get(m-1) + horizontalEdgeWeights.get(getHash(r, c-1)); minBoredom = Math.min(minBoredom, candidateBoredom); } } if (r + 1 < rows) { if (minForDistance.get(r+1).get(c).get(m-1) < Integer.MAX_VALUE) { int candidateBoredom = minForDistance.get(r+1).get(c).get(m-1) + verticalEdgeWeights.get(hash); minBoredom = Math.min(minBoredom, candidateBoredom); } } if (c + 1 < cols) { if (minForDistance.get(r).get(c+1).get(m-1) < Integer.MAX_VALUE) { int candidateBoredom = minForDistance.get(r).get(c+1).get(m-1) + horizontalEdgeWeights.get(hash); minBoredom = Math.min(minBoredom, candidateBoredom); } } minForDistance.get(r).get(c).set(m, minBoredom); } } } List<List<Integer>> result = new ArrayList<List<Integer>>(rows); for (int r = 0; r < rows; r++) { result.add(new ArrayList<Integer>(cols)); for (int c = 0; c < cols; c++) { result.get(r).add(minForDistance.get(r).get(c).get(mid) << 1); } } return result; } static int getHash(int row, int col) { return (row * 1000 + col); } static int getRow(int hash) { return hash / 1000; } static int getCol(int hash) { return hash % 1000; } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> // Author : RegalBeast import java.io.*; import java.util.*; public class Main { static final FastReader FR = new FastReader(); static final PrintWriter PW = new PrintWriter(new OutputStreamWriter(System.out)); public static void main(String[] args) { StringBuilder solution = new StringBuilder(); int rows = FR.nextInt(); int cols = FR.nextInt(); int moves = FR.nextInt(); Map<Integer, Integer> horizontalEdgeWeights = new HashMap<Integer, Integer>(); for (int r = 0; r < rows; r++) { for (int c = 0; c < cols - 1; c++) { int hash = getHash(r, c); horizontalEdgeWeights.put(hash, FR.nextInt()); } } Map<Integer, Integer> verticalEdgeWeights = new HashMap<Integer, Integer>(); for (int r = 0; r < rows - 1; r++) { for (int c = 0; c < cols; c++) { int hash = getHash(r, c); verticalEdgeWeights.put(hash, FR.nextInt()); } } List<List<Integer>> result = getResult(rows, cols, moves, horizontalEdgeWeights, verticalEdgeWeights); for (int r = 0; r < rows; r++) { for (int c = 0; c < cols; c++) { int value = (result != null ? result.get(r).get(c) : -1); solution.append(value + " "); } solution.append("\n"); } PW.print(solution.toString()); PW.close(); } static List<List<Integer>> getResult(int rows, int cols, int moves, Map<Integer, Integer> horizontalEdgeWeights, Map<Integer, Integer> verticalEdgeWeights) { if ((moves & 1) == 1) { return null; } int mid = moves >> 1; List<List<List<Integer>>> minForDistance = new ArrayList<List<List<Integer>>>(rows); for (int r = 0; r < rows; r++) { minForDistance.add(new ArrayList<List<Integer>>(cols)); for (int c = 0; c < cols; c++) { minForDistance.get(r).add(new ArrayList<Integer>(Collections.nCopies(mid+1, Integer.MAX_VALUE))); minForDistance.get(r).get(c).set(0, 0); } } for (int m = 1; m <= mid; m++) { for (int r = 0; r < rows; r++) { for (int c = 0; c < cols; c++) { int minBoredom = minForDistance.get(r).get(c).get(m); int hash = getHash(r, c); if (r > 0) { if (minForDistance.get(r-1).get(c).get(m-1) < Integer.MAX_VALUE) { int candidateBoredom = minForDistance.get(r-1).get(c).get(m-1) + verticalEdgeWeights.get(getHash(r-1, c)); minBoredom = Math.min(minBoredom, candidateBoredom); } } if (c > 0) { if (minForDistance.get(r).get(c-1).get(m-1) < Integer.MAX_VALUE) { int candidateBoredom = minForDistance.get(r).get(c-1).get(m-1) + horizontalEdgeWeights.get(getHash(r, c-1)); minBoredom = Math.min(minBoredom, candidateBoredom); } } if (r + 1 < rows) { if (minForDistance.get(r+1).get(c).get(m-1) < Integer.MAX_VALUE) { int candidateBoredom = minForDistance.get(r+1).get(c).get(m-1) + verticalEdgeWeights.get(hash); minBoredom = Math.min(minBoredom, candidateBoredom); } } if (c + 1 < cols) { if (minForDistance.get(r).get(c+1).get(m-1) < Integer.MAX_VALUE) { int candidateBoredom = minForDistance.get(r).get(c+1).get(m-1) + horizontalEdgeWeights.get(hash); minBoredom = Math.min(minBoredom, candidateBoredom); } } minForDistance.get(r).get(c).set(m, minBoredom); } } } List<List<Integer>> result = new ArrayList<List<Integer>>(rows); for (int r = 0; r < rows; r++) { result.add(new ArrayList<Integer>(cols)); for (int c = 0; c < cols; c++) { result.get(r).add(minForDistance.get(r).get(c).get(mid) << 1); } } return result; } static int getHash(int row, int col) { return (row * 1000 + col); } static int getRow(int hash) { return hash / 1000; } static int getCol(int hash) { return hash % 1000; } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,627
3,749
609
import java.io.*; import java.util.*; public class A implements Runnable{ public static void main (String[] args) {new Thread(null, new A(), "_cf", 1 << 28).start();} public void run() { FastScanner fs = new FastScanner(); PrintWriter out = new PrintWriter(System.out); System.err.println("Go!"); int n = fs.nextInt(); int d = fs.nextInt(); int[] a = fs.nextIntArray(n); sort(a); long res = 0; if(n == 1) { System.out.println(2); return; } HashSet<Integer> set = new HashSet<>(); for(int i = 0; i < n; i++) { int one = a[i] - d; int min = Integer.MAX_VALUE; for(int j = 0; j < n; j++) { int dist = Math.abs(a[j] - one); min = Math.min(min, dist); } if(min == d) set.add(one); one = a[i] + d; min = Integer.MAX_VALUE; for(int j = 0; j < n; j++) { int dist = Math.abs(a[j] - one); min = Math.min(min, dist); } if(min == d) set.add(one); } System.out.println(set.size()); out.close(); } void sort (int[] a) { int n = a.length; for(int i = 0; i < 50; i++) { Random r = new Random(); int x = r.nextInt(n), y = r.nextInt(n); int temp = a[x]; a[x] = a[y]; a[y] = temp; } Arrays.sort(a); } class FastScanner { public int BS = 1<<16; public char NC = (char)0; byte[] buf = new byte[BS]; int bId = 0, size = 0; char c = NC; double num = 1; BufferedInputStream in; public FastScanner() { in = new BufferedInputStream(System.in, BS); } public FastScanner(String s) throws FileNotFoundException { in = new BufferedInputStream(new FileInputStream(new File(s)), BS); } public char nextChar(){ while(bId==size) { try { size = in.read(buf); }catch(Exception e) { return NC; } if(size==-1)return NC; bId=0; } return (char)buf[bId++]; } public int nextInt() { return (int)nextLong(); } public long nextLong() { num=1; boolean neg = false; if(c==NC)c=nextChar(); for(;(c<'0' || c>'9'); c = nextChar()) { if(c=='-')neg=true; } long res = 0; for(; c>='0' && c <='9'; c=nextChar()) { res = (res<<3)+(res<<1)+c-'0'; num*=10; } return neg?-res:res; } public double nextDouble() { double cur = nextLong(); return c!='.' ? cur:cur+nextLong()/num; } public String next() { StringBuilder res = new StringBuilder(); while(c<=32)c=nextChar(); while(c>32) { res.append(c); c=nextChar(); } return res.toString(); } public String nextLine() { StringBuilder res = new StringBuilder(); while(c<=32)c=nextChar(); while(c!='\n') { res.append(c); c=nextChar(); } return res.toString(); } public boolean hasNext() { if(c>32)return true; while(true) { c=nextChar(); if(c==NC)return false; else if(c>32)return true; } } public int[] nextIntArray(int n) { int[] res = new int[n]; for(int i = 0; i < n; i++) res[i] = nextInt(); return res; } } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class A implements Runnable{ public static void main (String[] args) {new Thread(null, new A(), "_cf", 1 << 28).start();} public void run() { FastScanner fs = new FastScanner(); PrintWriter out = new PrintWriter(System.out); System.err.println("Go!"); int n = fs.nextInt(); int d = fs.nextInt(); int[] a = fs.nextIntArray(n); sort(a); long res = 0; if(n == 1) { System.out.println(2); return; } HashSet<Integer> set = new HashSet<>(); for(int i = 0; i < n; i++) { int one = a[i] - d; int min = Integer.MAX_VALUE; for(int j = 0; j < n; j++) { int dist = Math.abs(a[j] - one); min = Math.min(min, dist); } if(min == d) set.add(one); one = a[i] + d; min = Integer.MAX_VALUE; for(int j = 0; j < n; j++) { int dist = Math.abs(a[j] - one); min = Math.min(min, dist); } if(min == d) set.add(one); } System.out.println(set.size()); out.close(); } void sort (int[] a) { int n = a.length; for(int i = 0; i < 50; i++) { Random r = new Random(); int x = r.nextInt(n), y = r.nextInt(n); int temp = a[x]; a[x] = a[y]; a[y] = temp; } Arrays.sort(a); } class FastScanner { public int BS = 1<<16; public char NC = (char)0; byte[] buf = new byte[BS]; int bId = 0, size = 0; char c = NC; double num = 1; BufferedInputStream in; public FastScanner() { in = new BufferedInputStream(System.in, BS); } public FastScanner(String s) throws FileNotFoundException { in = new BufferedInputStream(new FileInputStream(new File(s)), BS); } public char nextChar(){ while(bId==size) { try { size = in.read(buf); }catch(Exception e) { return NC; } if(size==-1)return NC; bId=0; } return (char)buf[bId++]; } public int nextInt() { return (int)nextLong(); } public long nextLong() { num=1; boolean neg = false; if(c==NC)c=nextChar(); for(;(c<'0' || c>'9'); c = nextChar()) { if(c=='-')neg=true; } long res = 0; for(; c>='0' && c <='9'; c=nextChar()) { res = (res<<3)+(res<<1)+c-'0'; num*=10; } return neg?-res:res; } public double nextDouble() { double cur = nextLong(); return c!='.' ? cur:cur+nextLong()/num; } public String next() { StringBuilder res = new StringBuilder(); while(c<=32)c=nextChar(); while(c>32) { res.append(c); c=nextChar(); } return res.toString(); } public String nextLine() { StringBuilder res = new StringBuilder(); while(c<=32)c=nextChar(); while(c!='\n') { res.append(c); c=nextChar(); } return res.toString(); } public boolean hasNext() { if(c>32)return true; while(true) { c=nextChar(); if(c==NC)return false; else if(c>32)return true; } } public int[] nextIntArray(int n) { int[] res = new int[n]; for(int i = 0; i < n; i++) res[i] = nextInt(); return res; } } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class A implements Runnable{ public static void main (String[] args) {new Thread(null, new A(), "_cf", 1 << 28).start();} public void run() { FastScanner fs = new FastScanner(); PrintWriter out = new PrintWriter(System.out); System.err.println("Go!"); int n = fs.nextInt(); int d = fs.nextInt(); int[] a = fs.nextIntArray(n); sort(a); long res = 0; if(n == 1) { System.out.println(2); return; } HashSet<Integer> set = new HashSet<>(); for(int i = 0; i < n; i++) { int one = a[i] - d; int min = Integer.MAX_VALUE; for(int j = 0; j < n; j++) { int dist = Math.abs(a[j] - one); min = Math.min(min, dist); } if(min == d) set.add(one); one = a[i] + d; min = Integer.MAX_VALUE; for(int j = 0; j < n; j++) { int dist = Math.abs(a[j] - one); min = Math.min(min, dist); } if(min == d) set.add(one); } System.out.println(set.size()); out.close(); } void sort (int[] a) { int n = a.length; for(int i = 0; i < 50; i++) { Random r = new Random(); int x = r.nextInt(n), y = r.nextInt(n); int temp = a[x]; a[x] = a[y]; a[y] = temp; } Arrays.sort(a); } class FastScanner { public int BS = 1<<16; public char NC = (char)0; byte[] buf = new byte[BS]; int bId = 0, size = 0; char c = NC; double num = 1; BufferedInputStream in; public FastScanner() { in = new BufferedInputStream(System.in, BS); } public FastScanner(String s) throws FileNotFoundException { in = new BufferedInputStream(new FileInputStream(new File(s)), BS); } public char nextChar(){ while(bId==size) { try { size = in.read(buf); }catch(Exception e) { return NC; } if(size==-1)return NC; bId=0; } return (char)buf[bId++]; } public int nextInt() { return (int)nextLong(); } public long nextLong() { num=1; boolean neg = false; if(c==NC)c=nextChar(); for(;(c<'0' || c>'9'); c = nextChar()) { if(c=='-')neg=true; } long res = 0; for(; c>='0' && c <='9'; c=nextChar()) { res = (res<<3)+(res<<1)+c-'0'; num*=10; } return neg?-res:res; } public double nextDouble() { double cur = nextLong(); return c!='.' ? cur:cur+nextLong()/num; } public String next() { StringBuilder res = new StringBuilder(); while(c<=32)c=nextChar(); while(c>32) { res.append(c); c=nextChar(); } return res.toString(); } public String nextLine() { StringBuilder res = new StringBuilder(); while(c<=32)c=nextChar(); while(c!='\n') { res.append(c); c=nextChar(); } return res.toString(); } public boolean hasNext() { if(c>32)return true; while(true) { c=nextChar(); if(c==NC)return false; else if(c>32)return true; } } public int[] nextIntArray(int n) { int[] res = new int[n]; for(int i = 0; i < n; i++) res[i] = nextInt(); return res; } } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,286
608
2,139
import java.io.BufferedReader; import java.io.FileNotFoundException; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.util.StringTokenizer; /* public class _908C { } */ public class _908C { public void solve() throws FileNotFoundException { InputStream inputStream = System.in; InputHelper in = new InputHelper(inputStream); // actual solution int n = in.readInteger(); double r = in.readInteger(); double[] x = new double[n]; for (int i = 0; i < n; i++) { x[i] = in.readInteger(); } double[] ans = new double[n]; ans[0] = r; for (int i = 1; i < n; i++) { double cans = r; for (int j = 0; j < i; j++) { double dis = Math.abs(x[j] - x[i]); if (dis <= 2 * r) { if (dis == 2 * r) { cans = Math.max(cans, ans[j]); continue; } else if (x[i] == x[j]) { cans = Math.max(cans, ans[j] + 2 * r); continue; } cans = Math.max(cans, ans[j] + Math.sqrt((4 * (r * r)) - dis * dis)); } } ans[i] = cans; } for (int i = 0; i < n; i++) { System.out.print(ans[i] + " "); } // end here } public static void main(String[] args) throws FileNotFoundException { (new _908C()).solve(); } class InputHelper { StringTokenizer tokenizer = null; private BufferedReader bufferedReader; public InputHelper(InputStream inputStream) { InputStreamReader inputStreamReader = new InputStreamReader(inputStream); bufferedReader = new BufferedReader(inputStreamReader, 16384); } public String read() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { String line = bufferedReader.readLine(); if (line == null) { return null; } tokenizer = new StringTokenizer(line); } catch (IOException e) { e.printStackTrace(); } } return tokenizer.nextToken(); } public Integer readInteger() { return Integer.parseInt(read()); } public Long readLong() { return Long.parseLong(read()); } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.FileNotFoundException; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.util.StringTokenizer; /* public class _908C { } */ public class _908C { public void solve() throws FileNotFoundException { InputStream inputStream = System.in; InputHelper in = new InputHelper(inputStream); // actual solution int n = in.readInteger(); double r = in.readInteger(); double[] x = new double[n]; for (int i = 0; i < n; i++) { x[i] = in.readInteger(); } double[] ans = new double[n]; ans[0] = r; for (int i = 1; i < n; i++) { double cans = r; for (int j = 0; j < i; j++) { double dis = Math.abs(x[j] - x[i]); if (dis <= 2 * r) { if (dis == 2 * r) { cans = Math.max(cans, ans[j]); continue; } else if (x[i] == x[j]) { cans = Math.max(cans, ans[j] + 2 * r); continue; } cans = Math.max(cans, ans[j] + Math.sqrt((4 * (r * r)) - dis * dis)); } } ans[i] = cans; } for (int i = 0; i < n; i++) { System.out.print(ans[i] + " "); } // end here } public static void main(String[] args) throws FileNotFoundException { (new _908C()).solve(); } class InputHelper { StringTokenizer tokenizer = null; private BufferedReader bufferedReader; public InputHelper(InputStream inputStream) { InputStreamReader inputStreamReader = new InputStreamReader(inputStream); bufferedReader = new BufferedReader(inputStreamReader, 16384); } public String read() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { String line = bufferedReader.readLine(); if (line == null) { return null; } tokenizer = new StringTokenizer(line); } catch (IOException e) { e.printStackTrace(); } } return tokenizer.nextToken(); } public Integer readInteger() { return Integer.parseInt(read()); } public Long readLong() { return Long.parseLong(read()); } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.FileNotFoundException; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.util.StringTokenizer; /* public class _908C { } */ public class _908C { public void solve() throws FileNotFoundException { InputStream inputStream = System.in; InputHelper in = new InputHelper(inputStream); // actual solution int n = in.readInteger(); double r = in.readInteger(); double[] x = new double[n]; for (int i = 0; i < n; i++) { x[i] = in.readInteger(); } double[] ans = new double[n]; ans[0] = r; for (int i = 1; i < n; i++) { double cans = r; for (int j = 0; j < i; j++) { double dis = Math.abs(x[j] - x[i]); if (dis <= 2 * r) { if (dis == 2 * r) { cans = Math.max(cans, ans[j]); continue; } else if (x[i] == x[j]) { cans = Math.max(cans, ans[j] + 2 * r); continue; } cans = Math.max(cans, ans[j] + Math.sqrt((4 * (r * r)) - dis * dis)); } } ans[i] = cans; } for (int i = 0; i < n; i++) { System.out.print(ans[i] + " "); } // end here } public static void main(String[] args) throws FileNotFoundException { (new _908C()).solve(); } class InputHelper { StringTokenizer tokenizer = null; private BufferedReader bufferedReader; public InputHelper(InputStream inputStream) { InputStreamReader inputStreamReader = new InputStreamReader(inputStream); bufferedReader = new BufferedReader(inputStreamReader, 16384); } public String read() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { String line = bufferedReader.readLine(); if (line == null) { return null; } tokenizer = new StringTokenizer(line); } catch (IOException e) { e.printStackTrace(); } } return tokenizer.nextToken(); } public Integer readInteger() { return Integer.parseInt(read()); } public Long readLong() { return Long.parseLong(read()); } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
859
2,135
2,274
import java.io.*; import java.util.*; public class Codeforces455Div2C { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); String[] sp = br.readLine().split(" "); int n = Integer.parseInt(sp[0]); char[] list = new char[n]; for (int i = 0; i < n; i++) { sp = br.readLine().split(" "); list[i] = sp[0].charAt(0); } int[] list2 = new int[n]; int counter = 0; for (int i = 0; i < n; i++) { if (list[i] == 's') { counter++; } else { list2[counter]++; } } int[][] dp = new int[counter][n-counter+1]; int[][] dpsum = new int[counter][n-counter+1]; int[] count = new int[counter]; count[0] = list2[0]; for (int i = 1; i < counter; i++) { count[i] = count[i-1] + list2[i]; } for (int i = 0; i <= count[0]; i++) { dp[0][i] = 1; dpsum[0][i] = i+1; } for (int i = 1; i < counter; i++) { for (int j = 0; j <= count[i]; j++) { dp[i][j] = dpsum[i-1][Math.min(j, count[i-1])]; } dpsum[i][0] = dp[i][0]; for (int j = 1; j <= count[i]; j++) { dpsum[i][j] = (dpsum[i][j-1]+dp[i][j])%1000000007; } } System.out.println(dp[counter-1][n-counter]); } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Codeforces455Div2C { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); String[] sp = br.readLine().split(" "); int n = Integer.parseInt(sp[0]); char[] list = new char[n]; for (int i = 0; i < n; i++) { sp = br.readLine().split(" "); list[i] = sp[0].charAt(0); } int[] list2 = new int[n]; int counter = 0; for (int i = 0; i < n; i++) { if (list[i] == 's') { counter++; } else { list2[counter]++; } } int[][] dp = new int[counter][n-counter+1]; int[][] dpsum = new int[counter][n-counter+1]; int[] count = new int[counter]; count[0] = list2[0]; for (int i = 1; i < counter; i++) { count[i] = count[i-1] + list2[i]; } for (int i = 0; i <= count[0]; i++) { dp[0][i] = 1; dpsum[0][i] = i+1; } for (int i = 1; i < counter; i++) { for (int j = 0; j <= count[i]; j++) { dp[i][j] = dpsum[i-1][Math.min(j, count[i-1])]; } dpsum[i][0] = dp[i][0]; for (int j = 1; j <= count[i]; j++) { dpsum[i][j] = (dpsum[i][j-1]+dp[i][j])%1000000007; } } System.out.println(dp[counter-1][n-counter]); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Codeforces455Div2C { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); String[] sp = br.readLine().split(" "); int n = Integer.parseInt(sp[0]); char[] list = new char[n]; for (int i = 0; i < n; i++) { sp = br.readLine().split(" "); list[i] = sp[0].charAt(0); } int[] list2 = new int[n]; int counter = 0; for (int i = 0; i < n; i++) { if (list[i] == 's') { counter++; } else { list2[counter]++; } } int[][] dp = new int[counter][n-counter+1]; int[][] dpsum = new int[counter][n-counter+1]; int[] count = new int[counter]; count[0] = list2[0]; for (int i = 1; i < counter; i++) { count[i] = count[i-1] + list2[i]; } for (int i = 0; i <= count[0]; i++) { dp[0][i] = 1; dpsum[0][i] = i+1; } for (int i = 1; i < counter; i++) { for (int j = 0; j <= count[i]; j++) { dp[i][j] = dpsum[i-1][Math.min(j, count[i-1])]; } dpsum[i][0] = dp[i][0]; for (int j = 1; j <= count[i]; j++) { dpsum[i][j] = (dpsum[i][j-1]+dp[i][j])%1000000007; } } System.out.println(dp[counter-1][n-counter]); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
781
2,269
3,961
import java.io.BufferedReader; import java.io.File; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.StringTokenizer; public class ELR { public static void main(String[] args) {new Thread(null, new Runnable() { public void run() {try { sol(); } catch (Throwable e) { e.printStackTrace(); }}}, "2",1<<26).start();} static int n,k; static boolean adj[][]; static int dp1[],dp2[]; static int myMask[]; static int next1[]; static int m1,m2; public static int solve1(int msk) { if (dp1[msk] != -1) { return dp1[msk]; } int ret = 0; int tmp = msk; for (int i = 0 ; i < m1 ; ++i) { if ( ((msk & (1 << i)) > 0)) { tmp &= (myMask[i]); } } if (tmp == msk) { ret = Integer.bitCount(msk); } for (int i = 0 ; i < m1 ; ++i) { if ( (msk & (1 << i)) > 0) { ret = Math.max(ret, solve1(msk & ~(1 << i))); } } return dp1[msk] = ret; } public static int solve2(int msk) { if (dp2[msk] != -1) { return dp2[msk]; } int ret = 0; int tmp = msk; for (int i = 0 ; i < m2 ; ++i) { if ( ((msk & (1 << i)) > 0)) { tmp &= (myMask[i + m1]); } } if (tmp == msk) { ret = Integer.bitCount(msk); } for (int i = 0 ; i < m2 ; ++i) { if ( (msk & (1 << i)) > 0) { ret = Math.max(ret, solve2(msk & ~(1 << i))); } } return dp2[msk] = ret; } public static void sol() throws Throwable { Scanner sc = new Scanner(System.in); n = sc.nextInt(); k = sc.nextInt(); adj = new boolean[n][n]; for (int i = 0 ; i < n ; ++i) { for (int j = 0 ; j < n ; ++j) { adj[i][j] = sc.nextInt() == 1; } } m1= (n + 1) / 2; m2 = n - m1; dp1 = new int[1 << m1]; dp2 = new int[1 << m2]; next1 = new int[1 << m2]; Arrays.fill(dp1, -1); Arrays.fill(dp2, -1); myMask = new int[n]; for (int i = 0 ; i < n ; ++i) { if (i >= m1) { for (int j = m1 ; j < n ; ++j) { if (adj[i][j] || i == j) { myMask[i] |= (1 << (j - m1)); } } } else { for (int j = m1 ; j < n ; ++j) { if (adj[i][j]) { next1[i] |= (1 << (j - m1)); } } for (int j = 0 ; j < m1 ; ++j) { if (adj[i][j] || i == j) { myMask[i] |= (1 << j); } } } } for (int i = 0 ; i < (1 << m1) ; ++i) { solve1(i); } for (int i = 0 ; i < (1 << m2) ; ++i) { solve2(i); } int ans = 0; for (int msk = 0 ; msk < (1 << m1) ; ++msk) { int next = (1 << (m2)) - 1; if (dp1[msk] != Integer.bitCount(msk)) { continue; } for (int i = 0 ; i < m1 ; ++i) { if ( (msk & (1 << i)) > 0) { next &= next1[i]; } } ans = Math.max(ans, dp1[msk] + dp2[next]); } double cont = (k / (ans*1.0)); double edges = (ans) * (ans - 1) / 2.0; double res = cont * cont * edges; System.out.println(res); } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(String s) throws FileNotFoundException { br = new BufferedReader(new FileReader(new File(s))); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } public boolean ready() throws IOException { return br.ready(); } } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.File; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.StringTokenizer; public class ELR { public static void main(String[] args) {new Thread(null, new Runnable() { public void run() {try { sol(); } catch (Throwable e) { e.printStackTrace(); }}}, "2",1<<26).start();} static int n,k; static boolean adj[][]; static int dp1[],dp2[]; static int myMask[]; static int next1[]; static int m1,m2; public static int solve1(int msk) { if (dp1[msk] != -1) { return dp1[msk]; } int ret = 0; int tmp = msk; for (int i = 0 ; i < m1 ; ++i) { if ( ((msk & (1 << i)) > 0)) { tmp &= (myMask[i]); } } if (tmp == msk) { ret = Integer.bitCount(msk); } for (int i = 0 ; i < m1 ; ++i) { if ( (msk & (1 << i)) > 0) { ret = Math.max(ret, solve1(msk & ~(1 << i))); } } return dp1[msk] = ret; } public static int solve2(int msk) { if (dp2[msk] != -1) { return dp2[msk]; } int ret = 0; int tmp = msk; for (int i = 0 ; i < m2 ; ++i) { if ( ((msk & (1 << i)) > 0)) { tmp &= (myMask[i + m1]); } } if (tmp == msk) { ret = Integer.bitCount(msk); } for (int i = 0 ; i < m2 ; ++i) { if ( (msk & (1 << i)) > 0) { ret = Math.max(ret, solve2(msk & ~(1 << i))); } } return dp2[msk] = ret; } public static void sol() throws Throwable { Scanner sc = new Scanner(System.in); n = sc.nextInt(); k = sc.nextInt(); adj = new boolean[n][n]; for (int i = 0 ; i < n ; ++i) { for (int j = 0 ; j < n ; ++j) { adj[i][j] = sc.nextInt() == 1; } } m1= (n + 1) / 2; m2 = n - m1; dp1 = new int[1 << m1]; dp2 = new int[1 << m2]; next1 = new int[1 << m2]; Arrays.fill(dp1, -1); Arrays.fill(dp2, -1); myMask = new int[n]; for (int i = 0 ; i < n ; ++i) { if (i >= m1) { for (int j = m1 ; j < n ; ++j) { if (adj[i][j] || i == j) { myMask[i] |= (1 << (j - m1)); } } } else { for (int j = m1 ; j < n ; ++j) { if (adj[i][j]) { next1[i] |= (1 << (j - m1)); } } for (int j = 0 ; j < m1 ; ++j) { if (adj[i][j] || i == j) { myMask[i] |= (1 << j); } } } } for (int i = 0 ; i < (1 << m1) ; ++i) { solve1(i); } for (int i = 0 ; i < (1 << m2) ; ++i) { solve2(i); } int ans = 0; for (int msk = 0 ; msk < (1 << m1) ; ++msk) { int next = (1 << (m2)) - 1; if (dp1[msk] != Integer.bitCount(msk)) { continue; } for (int i = 0 ; i < m1 ; ++i) { if ( (msk & (1 << i)) > 0) { next &= next1[i]; } } ans = Math.max(ans, dp1[msk] + dp2[next]); } double cont = (k / (ans*1.0)); double edges = (ans) * (ans - 1) / 2.0; double res = cont * cont * edges; System.out.println(res); } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(String s) throws FileNotFoundException { br = new BufferedReader(new FileReader(new File(s))); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } public boolean ready() throws IOException { return br.ready(); } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.File; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.StringTokenizer; public class ELR { public static void main(String[] args) {new Thread(null, new Runnable() { public void run() {try { sol(); } catch (Throwable e) { e.printStackTrace(); }}}, "2",1<<26).start();} static int n,k; static boolean adj[][]; static int dp1[],dp2[]; static int myMask[]; static int next1[]; static int m1,m2; public static int solve1(int msk) { if (dp1[msk] != -1) { return dp1[msk]; } int ret = 0; int tmp = msk; for (int i = 0 ; i < m1 ; ++i) { if ( ((msk & (1 << i)) > 0)) { tmp &= (myMask[i]); } } if (tmp == msk) { ret = Integer.bitCount(msk); } for (int i = 0 ; i < m1 ; ++i) { if ( (msk & (1 << i)) > 0) { ret = Math.max(ret, solve1(msk & ~(1 << i))); } } return dp1[msk] = ret; } public static int solve2(int msk) { if (dp2[msk] != -1) { return dp2[msk]; } int ret = 0; int tmp = msk; for (int i = 0 ; i < m2 ; ++i) { if ( ((msk & (1 << i)) > 0)) { tmp &= (myMask[i + m1]); } } if (tmp == msk) { ret = Integer.bitCount(msk); } for (int i = 0 ; i < m2 ; ++i) { if ( (msk & (1 << i)) > 0) { ret = Math.max(ret, solve2(msk & ~(1 << i))); } } return dp2[msk] = ret; } public static void sol() throws Throwable { Scanner sc = new Scanner(System.in); n = sc.nextInt(); k = sc.nextInt(); adj = new boolean[n][n]; for (int i = 0 ; i < n ; ++i) { for (int j = 0 ; j < n ; ++j) { adj[i][j] = sc.nextInt() == 1; } } m1= (n + 1) / 2; m2 = n - m1; dp1 = new int[1 << m1]; dp2 = new int[1 << m2]; next1 = new int[1 << m2]; Arrays.fill(dp1, -1); Arrays.fill(dp2, -1); myMask = new int[n]; for (int i = 0 ; i < n ; ++i) { if (i >= m1) { for (int j = m1 ; j < n ; ++j) { if (adj[i][j] || i == j) { myMask[i] |= (1 << (j - m1)); } } } else { for (int j = m1 ; j < n ; ++j) { if (adj[i][j]) { next1[i] |= (1 << (j - m1)); } } for (int j = 0 ; j < m1 ; ++j) { if (adj[i][j] || i == j) { myMask[i] |= (1 << j); } } } } for (int i = 0 ; i < (1 << m1) ; ++i) { solve1(i); } for (int i = 0 ; i < (1 << m2) ; ++i) { solve2(i); } int ans = 0; for (int msk = 0 ; msk < (1 << m1) ; ++msk) { int next = (1 << (m2)) - 1; if (dp1[msk] != Integer.bitCount(msk)) { continue; } for (int i = 0 ; i < m1 ; ++i) { if ( (msk & (1 << i)) > 0) { next &= next1[i]; } } ans = Math.max(ans, dp1[msk] + dp2[next]); } double cont = (k / (ans*1.0)); double edges = (ans) * (ans - 1) / 2.0; double res = cont * cont * edges; System.out.println(res); } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(String s) throws FileNotFoundException { br = new BufferedReader(new FileReader(new File(s))); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } public boolean ready() throws IOException { return br.ready(); } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,689
3,950
4,453
/*input 3 2 3 2 5 7 4 2 4 3 6 4 1 5 2 10 4 8 6 6 4 9 10 5 4 9 5 8 7 3 3 9 9 9 1 1 1 1 1 1 */ import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.io.PrintStream; import java.util.StringTokenizer; import java.util.Random; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; import java.util.*; public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); int T = in.nextInt(); for (int cT = 1; cT <= T; cT++) { Task solver = new Task(); solver.solve(cT, in, out); } out.close(); } static class data { int val, col; data(int _val, int _col) { val = _val; col = _col; } @Override public String toString() { return String.format("(%d,%d)", val, col); } } static class Task { int[][] a; int[][] b; int[][] dp; int[][] mb; ArrayList<data> all = new ArrayList<>(); Set<Integer> st = new HashSet<>(); int n, m; int cal(int col, int mask) { if (col == m) { if (Integer.bitCount(mask) == n) return 0; return (int)(-1e9); } int ret = dp[col][mask]; if (ret != -1) return ret; int rmask = mask ^ ((1 << n) - 1); // ret is not a reference for (int mask2 = rmask; mask2 > 0; mask2 = rmask & (mask2 - 1)) { int now = cal(col + 1, mask | mask2) + mb[col][mask2]; ret = Math.max(ret, now); } ret = Math.max(ret, cal(col + 1, mask)); dp[col][mask] = ret; return ret; } public static int fsb(int n) { return (int)((Math.log10(n & -n)) / Math.log10(2)) + 1; } void prepMb() { // col, cyclic, mask for (int col = 0; col < m; col++) { for (int mask = 1; mask < (1 << n); mask++) { int nmask = mask; while ((nmask & 1) == 0) nmask >>= 1; if (nmask == mask) { for (int shift = 0; shift < n; shift++) { int sum = 0; int tmask = mask; while (tmask > 0) { int i = Integer.numberOfTrailingZeros(tmask); sum += b[(i + shift) % n][col]; tmask ^= (1 << i); } mb[col][mask] = Math.max(mb[col][mask], sum); } } else { mb[col][mask] = mb[col][nmask]; } } } } void solve(int testNumber, InputReader in, PrintWriter out) { n = in.nextInt(); m = in.nextInt(); a = new int[n][m]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { a[i][j] = in.nextInt(); all.add(new data(a[i][j], j)); } } Collections.sort(all, new Comparator<data>() { @Override public int compare(final data o1, final data o2) { return -(o1.val - o2.val); } }); for (data it : all) { if (st.size() == n) break; st.add(it.col); } b = new int[n][st.size()]; int rcol = 0; for (int col : st) { for (int row = 0; row < n; row++) b[row][rcol] = a[row][col]; rcol++; } m = st.size(); dp = new int[n][(1 << n)]; mb = new int[m][(1 << n)]; prepMb(); for (int i = 0; i < n; i++) Arrays.fill(dp[i], -1); System.out.println(cal(0, 0)); } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> /*input 3 2 3 2 5 7 4 2 4 3 6 4 1 5 2 10 4 8 6 6 4 9 10 5 4 9 5 8 7 3 3 9 9 9 1 1 1 1 1 1 */ import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.io.PrintStream; import java.util.StringTokenizer; import java.util.Random; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; import java.util.*; public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); int T = in.nextInt(); for (int cT = 1; cT <= T; cT++) { Task solver = new Task(); solver.solve(cT, in, out); } out.close(); } static class data { int val, col; data(int _val, int _col) { val = _val; col = _col; } @Override public String toString() { return String.format("(%d,%d)", val, col); } } static class Task { int[][] a; int[][] b; int[][] dp; int[][] mb; ArrayList<data> all = new ArrayList<>(); Set<Integer> st = new HashSet<>(); int n, m; int cal(int col, int mask) { if (col == m) { if (Integer.bitCount(mask) == n) return 0; return (int)(-1e9); } int ret = dp[col][mask]; if (ret != -1) return ret; int rmask = mask ^ ((1 << n) - 1); // ret is not a reference for (int mask2 = rmask; mask2 > 0; mask2 = rmask & (mask2 - 1)) { int now = cal(col + 1, mask | mask2) + mb[col][mask2]; ret = Math.max(ret, now); } ret = Math.max(ret, cal(col + 1, mask)); dp[col][mask] = ret; return ret; } public static int fsb(int n) { return (int)((Math.log10(n & -n)) / Math.log10(2)) + 1; } void prepMb() { // col, cyclic, mask for (int col = 0; col < m; col++) { for (int mask = 1; mask < (1 << n); mask++) { int nmask = mask; while ((nmask & 1) == 0) nmask >>= 1; if (nmask == mask) { for (int shift = 0; shift < n; shift++) { int sum = 0; int tmask = mask; while (tmask > 0) { int i = Integer.numberOfTrailingZeros(tmask); sum += b[(i + shift) % n][col]; tmask ^= (1 << i); } mb[col][mask] = Math.max(mb[col][mask], sum); } } else { mb[col][mask] = mb[col][nmask]; } } } } void solve(int testNumber, InputReader in, PrintWriter out) { n = in.nextInt(); m = in.nextInt(); a = new int[n][m]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { a[i][j] = in.nextInt(); all.add(new data(a[i][j], j)); } } Collections.sort(all, new Comparator<data>() { @Override public int compare(final data o1, final data o2) { return -(o1.val - o2.val); } }); for (data it : all) { if (st.size() == n) break; st.add(it.col); } b = new int[n][st.size()]; int rcol = 0; for (int col : st) { for (int row = 0; row < n; row++) b[row][rcol] = a[row][col]; rcol++; } m = st.size(); dp = new int[n][(1 << n)]; mb = new int[m][(1 << n)]; prepMb(); for (int i = 0; i < n; i++) Arrays.fill(dp[i], -1); System.out.println(cal(0, 0)); } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> /*input 3 2 3 2 5 7 4 2 4 3 6 4 1 5 2 10 4 8 6 6 4 9 10 5 4 9 5 8 7 3 3 9 9 9 1 1 1 1 1 1 */ import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.io.PrintStream; import java.util.StringTokenizer; import java.util.Random; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; import java.util.*; public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); int T = in.nextInt(); for (int cT = 1; cT <= T; cT++) { Task solver = new Task(); solver.solve(cT, in, out); } out.close(); } static class data { int val, col; data(int _val, int _col) { val = _val; col = _col; } @Override public String toString() { return String.format("(%d,%d)", val, col); } } static class Task { int[][] a; int[][] b; int[][] dp; int[][] mb; ArrayList<data> all = new ArrayList<>(); Set<Integer> st = new HashSet<>(); int n, m; int cal(int col, int mask) { if (col == m) { if (Integer.bitCount(mask) == n) return 0; return (int)(-1e9); } int ret = dp[col][mask]; if (ret != -1) return ret; int rmask = mask ^ ((1 << n) - 1); // ret is not a reference for (int mask2 = rmask; mask2 > 0; mask2 = rmask & (mask2 - 1)) { int now = cal(col + 1, mask | mask2) + mb[col][mask2]; ret = Math.max(ret, now); } ret = Math.max(ret, cal(col + 1, mask)); dp[col][mask] = ret; return ret; } public static int fsb(int n) { return (int)((Math.log10(n & -n)) / Math.log10(2)) + 1; } void prepMb() { // col, cyclic, mask for (int col = 0; col < m; col++) { for (int mask = 1; mask < (1 << n); mask++) { int nmask = mask; while ((nmask & 1) == 0) nmask >>= 1; if (nmask == mask) { for (int shift = 0; shift < n; shift++) { int sum = 0; int tmask = mask; while (tmask > 0) { int i = Integer.numberOfTrailingZeros(tmask); sum += b[(i + shift) % n][col]; tmask ^= (1 << i); } mb[col][mask] = Math.max(mb[col][mask], sum); } } else { mb[col][mask] = mb[col][nmask]; } } } } void solve(int testNumber, InputReader in, PrintWriter out) { n = in.nextInt(); m = in.nextInt(); a = new int[n][m]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { a[i][j] = in.nextInt(); all.add(new data(a[i][j], j)); } } Collections.sort(all, new Comparator<data>() { @Override public int compare(final data o1, final data o2) { return -(o1.val - o2.val); } }); for (data it : all) { if (st.size() == n) break; st.add(it.col); } b = new int[n][st.size()]; int rcol = 0; for (int col : st) { for (int row = 0; row < n; row++) b[row][rcol] = a[row][col]; rcol++; } m = st.size(); dp = new int[n][(1 << n)]; mb = new int[m][(1 << n)]; prepMb(); for (int i = 0; i < n; i++) Arrays.fill(dp[i], -1); System.out.println(cal(0, 0)); } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,562
4,442
452
import java.util.*; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; public class temp { void solve() { FastReader sc =new FastReader(); int n = sc.nextInt(); ArrayList<String> a[] = new ArrayList[5]; for(int i=0;i<=4;i++) a[i] = new ArrayList<>(); for(int i=0;i<n;i++) { String s = sc.next(); a[s.length()].add(s); } int ans = 0; for(int i=0;i<n;i++) { String s = sc.next(); if(a[s.length()].contains(s)) a[s.length()].remove(new String(s)); } for(int i=1;i<=4;i++) ans+=a[i].size(); System.out.println(ans); } public static void main(String[] args) { new temp().solve(); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; public class temp { void solve() { FastReader sc =new FastReader(); int n = sc.nextInt(); ArrayList<String> a[] = new ArrayList[5]; for(int i=0;i<=4;i++) a[i] = new ArrayList<>(); for(int i=0;i<n;i++) { String s = sc.next(); a[s.length()].add(s); } int ans = 0; for(int i=0;i<n;i++) { String s = sc.next(); if(a[s.length()].contains(s)) a[s.length()].remove(new String(s)); } for(int i=1;i<=4;i++) ans+=a[i].size(); System.out.println(ans); } public static void main(String[] args) { new temp().solve(); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; public class temp { void solve() { FastReader sc =new FastReader(); int n = sc.nextInt(); ArrayList<String> a[] = new ArrayList[5]; for(int i=0;i<=4;i++) a[i] = new ArrayList<>(); for(int i=0;i<n;i++) { String s = sc.next(); a[s.length()].add(s); } int ans = 0; for(int i=0;i<n;i++) { String s = sc.next(); if(a[s.length()].contains(s)) a[s.length()].remove(new String(s)); } for(int i=1;i<=4;i++) ans+=a[i].size(); System.out.println(ans); } public static void main(String[] args) { new temp().solve(); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
744
451