|
--- |
|
library_name: transformers |
|
license: cc-by-nc-sa-4.0 |
|
base_model: microsoft/layoutlmv3-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: layoutlmv3-finetuned-500 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlmv3-finetuned-500 |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2173 |
|
- Precision: 0.6567 |
|
- Recall: 0.7311 |
|
- F1: 0.6919 |
|
- Accuracy: 0.9491 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 5 |
|
- eval_batch_size: 5 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- training_steps: 2500 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 2.5 | 250 | 0.6612 | 0.1340 | 0.1849 | 0.1554 | 0.8477 | |
|
| 0.8157 | 5.0 | 500 | 0.4681 | 0.3127 | 0.3809 | 0.3435 | 0.8876 | |
|
| 0.8157 | 7.5 | 750 | 0.3601 | 0.3973 | 0.5049 | 0.4447 | 0.9125 | |
|
| 0.3587 | 10.0 | 1000 | 0.2979 | 0.5004 | 0.5945 | 0.5434 | 0.9268 | |
|
| 0.3587 | 12.5 | 1250 | 0.2673 | 0.5958 | 0.6660 | 0.6289 | 0.9386 | |
|
| 0.2313 | 15.0 | 1500 | 0.2444 | 0.6228 | 0.7041 | 0.6610 | 0.9437 | |
|
| 0.2313 | 17.5 | 1750 | 0.2317 | 0.6353 | 0.7185 | 0.6744 | 0.9453 | |
|
| 0.1717 | 20.0 | 2000 | 0.2224 | 0.6527 | 0.7227 | 0.6859 | 0.9485 | |
|
| 0.1717 | 22.5 | 2250 | 0.2191 | 0.6580 | 0.7255 | 0.6901 | 0.9481 | |
|
| 0.145 | 25.0 | 2500 | 0.2173 | 0.6567 | 0.7311 | 0.6919 | 0.9491 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.48.3 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.3.2 |
|
- Tokenizers 0.21.0 |
|
|