File size: 2,505 Bytes
7740b00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
library_name: transformers
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-500
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlmv3-finetuned-500

This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2173
- Precision: 0.6567
- Recall: 0.7311
- F1: 0.6919
- Accuracy: 0.9491

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- training_steps: 2500

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 2.5   | 250  | 0.6612          | 0.1340    | 0.1849 | 0.1554 | 0.8477   |
| 0.8157        | 5.0   | 500  | 0.4681          | 0.3127    | 0.3809 | 0.3435 | 0.8876   |
| 0.8157        | 7.5   | 750  | 0.3601          | 0.3973    | 0.5049 | 0.4447 | 0.9125   |
| 0.3587        | 10.0  | 1000 | 0.2979          | 0.5004    | 0.5945 | 0.5434 | 0.9268   |
| 0.3587        | 12.5  | 1250 | 0.2673          | 0.5958    | 0.6660 | 0.6289 | 0.9386   |
| 0.2313        | 15.0  | 1500 | 0.2444          | 0.6228    | 0.7041 | 0.6610 | 0.9437   |
| 0.2313        | 17.5  | 1750 | 0.2317          | 0.6353    | 0.7185 | 0.6744 | 0.9453   |
| 0.1717        | 20.0  | 2000 | 0.2224          | 0.6527    | 0.7227 | 0.6859 | 0.9485   |
| 0.1717        | 22.5  | 2250 | 0.2191          | 0.6580    | 0.7255 | 0.6901 | 0.9481   |
| 0.145         | 25.0  | 2500 | 0.2173          | 0.6567    | 0.7311 | 0.6919 | 0.9491   |


### Framework versions

- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0