File size: 2,505 Bytes
7740b00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
library_name: transformers
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-500
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layoutlmv3-finetuned-500
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2173
- Precision: 0.6567
- Recall: 0.7311
- F1: 0.6919
- Accuracy: 0.9491
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- training_steps: 2500
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 2.5 | 250 | 0.6612 | 0.1340 | 0.1849 | 0.1554 | 0.8477 |
| 0.8157 | 5.0 | 500 | 0.4681 | 0.3127 | 0.3809 | 0.3435 | 0.8876 |
| 0.8157 | 7.5 | 750 | 0.3601 | 0.3973 | 0.5049 | 0.4447 | 0.9125 |
| 0.3587 | 10.0 | 1000 | 0.2979 | 0.5004 | 0.5945 | 0.5434 | 0.9268 |
| 0.3587 | 12.5 | 1250 | 0.2673 | 0.5958 | 0.6660 | 0.6289 | 0.9386 |
| 0.2313 | 15.0 | 1500 | 0.2444 | 0.6228 | 0.7041 | 0.6610 | 0.9437 |
| 0.2313 | 17.5 | 1750 | 0.2317 | 0.6353 | 0.7185 | 0.6744 | 0.9453 |
| 0.1717 | 20.0 | 2000 | 0.2224 | 0.6527 | 0.7227 | 0.6859 | 0.9485 |
| 0.1717 | 22.5 | 2250 | 0.2191 | 0.6580 | 0.7255 | 0.6901 | 0.9481 |
| 0.145 | 25.0 | 2500 | 0.2173 | 0.6567 | 0.7311 | 0.6919 | 0.9491 |
### Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0
|