layoutlmv3-finetuned-500
Browse files
README.md
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: cc-by-nc-sa-4.0
|
4 |
+
base_model: microsoft/layoutlmv3-base
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: layoutlmv3-finetuned-500
|
14 |
+
results: []
|
15 |
+
---
|
16 |
+
|
17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
+
should probably proofread and complete it, then remove this comment. -->
|
19 |
+
|
20 |
+
# layoutlmv3-finetuned-500
|
21 |
+
|
22 |
+
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset.
|
23 |
+
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.2173
|
25 |
+
- Precision: 0.6567
|
26 |
+
- Recall: 0.7311
|
27 |
+
- F1: 0.6919
|
28 |
+
- Accuracy: 0.9491
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 1e-05
|
48 |
+
- train_batch_size: 5
|
49 |
+
- eval_batch_size: 5
|
50 |
+
- seed: 42
|
51 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- training_steps: 2500
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
59 |
+
| No log | 2.5 | 250 | 0.6612 | 0.1340 | 0.1849 | 0.1554 | 0.8477 |
|
60 |
+
| 0.8157 | 5.0 | 500 | 0.4681 | 0.3127 | 0.3809 | 0.3435 | 0.8876 |
|
61 |
+
| 0.8157 | 7.5 | 750 | 0.3601 | 0.3973 | 0.5049 | 0.4447 | 0.9125 |
|
62 |
+
| 0.3587 | 10.0 | 1000 | 0.2979 | 0.5004 | 0.5945 | 0.5434 | 0.9268 |
|
63 |
+
| 0.3587 | 12.5 | 1250 | 0.2673 | 0.5958 | 0.6660 | 0.6289 | 0.9386 |
|
64 |
+
| 0.2313 | 15.0 | 1500 | 0.2444 | 0.6228 | 0.7041 | 0.6610 | 0.9437 |
|
65 |
+
| 0.2313 | 17.5 | 1750 | 0.2317 | 0.6353 | 0.7185 | 0.6744 | 0.9453 |
|
66 |
+
| 0.1717 | 20.0 | 2000 | 0.2224 | 0.6527 | 0.7227 | 0.6859 | 0.9485 |
|
67 |
+
| 0.1717 | 22.5 | 2250 | 0.2191 | 0.6580 | 0.7255 | 0.6901 | 0.9481 |
|
68 |
+
| 0.145 | 25.0 | 2500 | 0.2173 | 0.6567 | 0.7311 | 0.6919 | 0.9491 |
|
69 |
+
|
70 |
+
|
71 |
+
### Framework versions
|
72 |
+
|
73 |
+
- Transformers 4.48.3
|
74 |
+
- Pytorch 2.5.1+cu124
|
75 |
+
- Datasets 3.3.2
|
76 |
+
- Tokenizers 0.21.0
|