layoutlmv3-finetuned-500
This model is a fine-tuned version of microsoft/layoutlmv3-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2173
- Precision: 0.6567
- Recall: 0.7311
- F1: 0.6919
- Accuracy: 0.9491
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- training_steps: 2500
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 2.5 | 250 | 0.6612 | 0.1340 | 0.1849 | 0.1554 | 0.8477 |
0.8157 | 5.0 | 500 | 0.4681 | 0.3127 | 0.3809 | 0.3435 | 0.8876 |
0.8157 | 7.5 | 750 | 0.3601 | 0.3973 | 0.5049 | 0.4447 | 0.9125 |
0.3587 | 10.0 | 1000 | 0.2979 | 0.5004 | 0.5945 | 0.5434 | 0.9268 |
0.3587 | 12.5 | 1250 | 0.2673 | 0.5958 | 0.6660 | 0.6289 | 0.9386 |
0.2313 | 15.0 | 1500 | 0.2444 | 0.6228 | 0.7041 | 0.6610 | 0.9437 |
0.2313 | 17.5 | 1750 | 0.2317 | 0.6353 | 0.7185 | 0.6744 | 0.9453 |
0.1717 | 20.0 | 2000 | 0.2224 | 0.6527 | 0.7227 | 0.6859 | 0.9485 |
0.1717 | 22.5 | 2250 | 0.2191 | 0.6580 | 0.7255 | 0.6901 | 0.9481 |
0.145 | 25.0 | 2500 | 0.2173 | 0.6567 | 0.7311 | 0.6919 | 0.9491 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0
- Downloads last month
- 11
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for armanbb/layoutlmv3-finetuned-500
Base model
microsoft/layoutlmv3-base