armanbb's picture
layoutlmv3-finetuned-500
7740b00 verified
metadata
library_name: transformers
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-finetuned-500
    results: []

layoutlmv3-finetuned-500

This model is a fine-tuned version of microsoft/layoutlmv3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2173
  • Precision: 0.6567
  • Recall: 0.7311
  • F1: 0.6919
  • Accuracy: 0.9491

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • training_steps: 2500

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 2.5 250 0.6612 0.1340 0.1849 0.1554 0.8477
0.8157 5.0 500 0.4681 0.3127 0.3809 0.3435 0.8876
0.8157 7.5 750 0.3601 0.3973 0.5049 0.4447 0.9125
0.3587 10.0 1000 0.2979 0.5004 0.5945 0.5434 0.9268
0.3587 12.5 1250 0.2673 0.5958 0.6660 0.6289 0.9386
0.2313 15.0 1500 0.2444 0.6228 0.7041 0.6610 0.9437
0.2313 17.5 1750 0.2317 0.6353 0.7185 0.6744 0.9453
0.1717 20.0 2000 0.2224 0.6527 0.7227 0.6859 0.9485
0.1717 22.5 2250 0.2191 0.6580 0.7255 0.6901 0.9481
0.145 25.0 2500 0.2173 0.6567 0.7311 0.6919 0.9491

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0