File size: 5,738 Bytes
7199111
 
8ecf185
7199111
 
 
 
 
8ecf185
 
4108613
f58a881
 
d977393
ba89bc9
4108613
fbdc20b
088b445
 
4108613
088b445
4108613
f58a881
 
4108613
 
 
 
 
ba89bc9
f58a881
3e7017f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1864cbd
3e7017f
 
1864cbd
3e7017f
 
553b504
3e7017f
 
 
1864cbd
3e7017f
 
1864cbd
3e7017f
 
1864cbd
3e7017f
 
1864cbd
3e7017f
 
1864cbd
3e7017f
08e821c
3e7017f
1864cbd
3e7017f
 
 
7ab6c84
3e7017f
 
 
1864cbd
3e7017f
 
 
 
bfd9d6b
3e7017f
 
 
 
 
 
 
 
 
 
 
 
 
bfc3611
3e7017f
 
 
bfc3611
3e7017f
bfc3611
 
29531dc
553b504
7270c05
 
 
 
 
 
 
 
9eb9696
4108613
 
 
 
ba89bc9
553b504
 
 
 
 
 
 
 
 
 
 
 
 
 
088b445
4108613
 
 
 
088b445
 
4108613
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02fac3c
8ecf185
9d9428d
bbcce29
 
4108613
 
9eb9696
bbcce29
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
from flask import *
from PIL import Image

import face_recognition
import cv2
import numpy as np
import csv
from datetime import datetime


#################
from flask_socketio import SocketIO,emit
import base64


##################
cnt =1


app = Flask (__name__ )

#################
app.config['SECRET_KEY'] = 'secret!'
socket = SocketIO(app,async_mode="eventlet")
#######################


######################



# def base64_to_image(base64_string):
#     # Extract the base64 encoded binary data from the input string
#     base64_data = base64_string.split(",")[1]
#     # Decode the base64 data to bytes
#     image_bytes = base64.b64decode(base64_data)
#     # Convert the bytes to numpy array
#     image_array = np.frombuffer(image_bytes, dtype=np.uint8)
#     # Decode the numpy array as an image using OpenCV
#     image = cv2.imdecode(image_array, cv2.IMREAD_COLOR)
#     return image

# @socket.on("connect")
# def test_connect():
#     print("Connected")
#     emit("my response", {"data": "Connected"})

# @socket.on("image")
# def receive_image(image):
#     global cnt
#     s = True
#     while s :
        
#         # Decode the base64-encoded image data
#         image = base64_to_image(image)
     
#         known_faces_names = ["Sarwan Sir", "Vikas","Lalit","Jasmeen","Anita Ma'am"]
#         known_face_encodings = []
    
#         # Load known face encodings
#         sir_image = face_recognition.load_image_file("photos/sir.jpeg")
#         sir_encoding = face_recognition.face_encodings(sir_image)[0]
    
#         vikas_image = face_recognition.load_image_file("photos/vikas.jpg")
#         vikas_encoding = face_recognition.face_encodings(vikas_image)[0]
    
#         lalit_image = face_recognition.load_image_file("photos/lalit.jpg")
#         lalit_encoding = face_recognition.face_encodings(lalit_image)[0]
    
#         jasmine_image = face_recognition.load_image_file("photos/jasmine.jpg")
#         jasmine_encoding = face_recognition.face_encodings(jasmine_image)[0]
    
#         maam_image = face_recognition.load_image_file("photos/maam.png")
#         maam_encoding = face_recognition.face_encodings(maam_image)[0]
    
#         known_face_encodings = [sir_encoding, vikas_encoding,lalit_encoding,jasmine_encoding,maam_encoding]
       
#         students = known_faces_names.copy()
    
#         face_locations = []
#         face_encodings = []
#         face_names = []
        
#         # now = datetime.now()
#         # current_date = now.strftime("%Y-%m-%d")
#         # csv_file = open(f"{current_date}.csv", "a+", newline="")
        
#         # # csv_writer = csv.writer(csv_file)
#         small_frame = cv2.resize(image, (0, 0), fx=0.25, fy=0.25)
#         rgb_small_frame = small_frame[:, :, ::-1]
#         # # emit("result",{"name":"level " +str(cnt),"score":str(len(face_encodings))})
        
#         face_locations = face_recognition.face_locations(rgb_small_frame)
#         face_encodings = face_recognition.face_encodings(small_frame, face_locations)
#         face_names = []
#         emit("result",{"name":"level2 " +str(cnt),"score":str(len(face_encodings))})
#         cnt = cnt +1
#         for face_encoding in face_encodings:
#             # emit("result",{"name":"in for ","score":"34"})
#             matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
#             name = ""
#             face_distance = face_recognition.face_distance(known_face_encodings, face_encoding)
#             best_match_index = np.argmin(face_distance)
#             if matches[best_match_index]:
#                 name = known_faces_names[best_match_index]
    
#             face_names.append(name)
#             s = False
#             break
        
#         emit("result",{"name":str(name),"score":"myScore"})
        
  
    
       
#         # for name in face_names:
#         #     if name in known_faces_names and name in students and name not in existing_names:
#         #         students.remove(name)
#         #         print(students)
#         #         print(f"Attendance recorded for {name}")
#         #         current_time = now.strftime("%H-%M-%S")
#         #         csv_writer.writerow([name, current_time, "Present"])
#         #         existing_names.add(name)  # Add the name to the set of existing names
    
@app.route ("/")
def home():
  return render_template("index.html")


@app.route('/table')
def show_table():
    # Get the current date
    current_date = datetime.now().strftime("%Y-%m-%d")
    # Read the CSV file to get attendance data
    attendance=[]
    try:
        with open(f"{current_date}.csv", newline="") as csv_file:
            csv_reader = csv.reader(csv_file)
            attendance = list(csv_reader)
    except FileNotFoundError:
        pass
    # Render the table.html template and pass the attendance data
    return render_template('attendance.html', attendance=attendance)



if __name__ == '__main__': 
  socket.run(app,host="0.0.0.0", port=7860)
    
###########################################################################
# @app.route('/table')
# def show_table():
#     # Get the current date
#     current_date = datetime.now().strftime("%Y-%m-%d")
#     # Read the CSV file to get attendance data
#     attendance=[]
#     try:
#         with open(f"{current_date}.csv", newline="") as csv_file:
#             csv_reader = csv.reader(csv_file)
#             attendance = list(csv_reader)
#     except FileNotFoundError:
#         pass
#     # Render the table.html template and pass the attendance data
#     return render_template('attendance.html', attendance=attendance)



   


# if __name__ == "__main__":
#     socket.run(app,host="0.0.0.0", port=7860)