Vikas01 commited on
Commit
1864cbd
·
1 Parent(s): 29531dc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +57 -71
app.py CHANGED
@@ -50,80 +50,66 @@ def test_connect():
50
 
51
  @socket.on("image")
52
  def receive_image(image):
53
- # Decode the base64-encoded image data
54
- image = base64_to_image(image)
55
- # image = cv2.resize(image, (224, 224), interpolation=cv2.INTER_AREA)
 
 
 
 
 
56
 
57
- # # emit("processed_image", image)
58
- # # Make the image a numpy array and reshape it to the models input shape.
59
- # image = np.asarray(image, dtype=np.float32).reshape(1, 224, 224, 3)
60
- # image = (image / 127.5) - 1
61
- # # Predicts the model
62
- # prediction = model.predict(image)
63
- # index = np.argmax(prediction)
64
- # class_name = class_names[index]
65
- # confidence_score = prediction[0][index]
66
- # emit("result",{"name":"mrmr","score":"34"})
67
- # #######################
68
-
69
-
70
-
71
-
72
- # # @app.route('/at')
73
- # # def attend():
74
- # # # Face recognition variables
75
- known_faces_names = ["Sarwan Sir", "Vikas","Lalit","Jasmeen","Anita Ma'am"]
76
- known_face_encodings = []
77
-
78
- # Load known face encodings
79
- sir_image = face_recognition.load_image_file("photos/sir.jpeg")
80
- sir_encoding = face_recognition.face_encodings(sir_image)[0]
81
-
82
- vikas_image = face_recognition.load_image_file("photos/vikas.jpg")
83
- vikas_encoding = face_recognition.face_encodings(vikas_image)[0]
84
-
85
- lalit_image = face_recognition.load_image_file("photos/lalit.jpg")
86
- lalit_encoding = face_recognition.face_encodings(lalit_image)[0]
87
-
88
- jasmine_image = face_recognition.load_image_file("photos/jasmine.jpg")
89
- jasmine_encoding = face_recognition.face_encodings(jasmine_image)[0]
90
-
91
- maam_image = face_recognition.load_image_file("photos/maam.png")
92
- maam_encoding = face_recognition.face_encodings(maam_image)[0]
93
-
94
- known_face_encodings = [sir_encoding, vikas_encoding,lalit_encoding,jasmine_encoding,maam_encoding]
95
- emit("result",{"name":"level1","score":"34"})
96
- students = known_faces_names.copy()
97
-
98
- face_locations = []
99
- face_encodings = []
100
- face_names = []
101
-
102
- # now = datetime.now()
103
- # current_date = now.strftime("%Y-%m-%d")
104
- # csv_file = open(f"{current_date}.csv", "a+", newline="")
105
 
106
- # csv_writer = csv.writer(csv_file)
107
- small_frame = cv2.resize(image, (0, 0), fx=0.25, fy=0.25)
108
- rgb_small_frame = small_frame[:, :, ::-1]
109
- emit("result",{"name":"level222","score":"34"})
110
- face_locations = face_recognition.face_locations(rgb_small_frame)
111
- face_encodings = face_recognition.face_encodings(small_frame, face_locations)
112
- face_names = []
113
- emit("result",{"name":"level 33","score":str(len(face_encodings))})
114
- for face_encoding in face_encodings:
115
- emit("result",{"name":"in for ","score":"34"})
116
- matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
117
- name = ""
118
- face_distance = face_recognition.face_distance(known_face_encodings, face_encoding)
119
- best_match_index = np.argmin(face_distance)
120
- if matches[best_match_index]:
121
- name = known_faces_names[best_match_index]
122
-
123
- face_names.append(name)
 
 
124
 
125
- emit("result",{"name":str(name),"score":"myScore"})
126
- break
 
 
 
 
127
 
128
 
129
  # # for name in face_names:
 
50
 
51
  @socket.on("image")
52
  def receive_image(image):
53
+ s = True
54
+ while s :
55
+
56
+ # Decode the base64-encoded image data
57
+ image = base64_to_image(image)
58
+
59
+ known_faces_names = ["Sarwan Sir", "Vikas","Lalit","Jasmeen","Anita Ma'am"]
60
+ known_face_encodings = []
61
 
62
+ # Load known face encodings
63
+ sir_image = face_recognition.load_image_file("photos/sir.jpeg")
64
+ sir_encoding = face_recognition.face_encodings(sir_image)[0]
65
+
66
+ vikas_image = face_recognition.load_image_file("photos/vikas.jpg")
67
+ vikas_encoding = face_recognition.face_encodings(vikas_image)[0]
68
+
69
+ lalit_image = face_recognition.load_image_file("photos/lalit.jpg")
70
+ lalit_encoding = face_recognition.face_encodings(lalit_image)[0]
71
+
72
+ jasmine_image = face_recognition.load_image_file("photos/jasmine.jpg")
73
+ jasmine_encoding = face_recognition.face_encodings(jasmine_image)[0]
74
+
75
+ maam_image = face_recognition.load_image_file("photos/maam.png")
76
+ maam_encoding = face_recognition.face_encodings(maam_image)[0]
77
+
78
+ known_face_encodings = [sir_encoding, vikas_encoding,lalit_encoding,jasmine_encoding,maam_encoding]
79
+ emit("result",{"name":"level1","score":"34"})
80
+ students = known_faces_names.copy()
81
+
82
+ face_locations = []
83
+ face_encodings = []
84
+ face_names = []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85
 
86
+ # now = datetime.now()
87
+ # current_date = now.strftime("%Y-%m-%d")
88
+ # csv_file = open(f"{current_date}.csv", "a+", newline="")
89
+
90
+ # csv_writer = csv.writer(csv_file)
91
+ small_frame = cv2.resize(image, (0, 0), fx=0.25, fy=0.25)
92
+ rgb_small_frame = small_frame[:, :, ::-1]
93
+ emit("result",{"name":"level222","score":"34"})
94
+ face_locations = face_recognition.face_locations(rgb_small_frame)
95
+ face_encodings = face_recognition.face_encodings(small_frame, face_locations)
96
+ face_names = []
97
+ emit("result",{"name":"level 33","score":str(len(face_encodings))})
98
+ for face_encoding in face_encodings:
99
+ emit("result",{"name":"in for ","score":"34"})
100
+ matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
101
+ name = ""
102
+ face_distance = face_recognition.face_distance(known_face_encodings, face_encoding)
103
+ best_match_index = np.argmin(face_distance)
104
+ if matches[best_match_index]:
105
+ name = known_faces_names[best_match_index]
106
 
107
+ face_names.append(name)
108
+ s = False
109
+ break
110
+
111
+ emit("result",{"name":str(name)+"------------","score":"myScore"})
112
+
113
 
114
 
115
  # # for name in face_names: