Vikas01 commited on
Commit
f58a881
·
1 Parent(s): fadd8dd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +58 -24
app.py CHANGED
@@ -8,38 +8,72 @@ import csv
8
  from datetime import datetime
9
 
10
  ############################################
11
- import matplotlib.pyplot as plt
12
- import pylab # this allows you to control figure size
13
- pylab.rcParams['figure.figsize'] = (10.0, 8.0) # this controls figure size in the notebook
14
-
15
- import io
16
- import streamlit as st
17
- bytes_data=None
18
-
 
19
  ##################################################3
20
 
21
- import gradio as gr
22
 
23
 
24
 
25
 
26
  app = Flask(__name__)
27
-
28
- flag1 = True
29
-
30
- @app.route('/at')
31
- def testme():
32
- global flag1
33
- # return "i am in testme"
34
- while flag1 is True:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
- img_file_buffer=st.camera_input("Take a picture")
37
- if img_file_buffer is not None:
38
- test_image = Image.open(img_file_buffer)
39
- st.image(test_image, use_column_width=True)
40
- if bytes_data is None:
41
- flag1 = False
42
- st.stop()
43
 
44
  # def attend():
45
  # # Face recognition variables
 
8
  from datetime import datetime
9
 
10
  ############################################
11
+ # import matplotlib.pyplot as plt
12
+ # import pylab # this allows you to control figure size
13
+ # pylab.rcParams['figure.figsize'] = (10.0, 8.0) # this controls figure size in the notebook
14
+
15
+ # import io
16
+ # import streamlit as st
17
+ # bytes_data=None
18
+ from flask_socketio import SocketIO,emit
19
+ import base64
20
  ##################################################3
21
 
22
+ # import gradio as gr
23
 
24
 
25
 
26
 
27
  app = Flask(__name__)
28
+ app.config['SECRET_KEY'] = 'secret!'
29
+ socket = SocketIO(app,async_mode="eventlet")
30
+
31
+ def base64_to_image(base64_string):
32
+ # Extract the base64 encoded binary data from the input string
33
+ base64_data = base64_string.split(",")[1]
34
+ # Decode the base64 data to bytes
35
+ image_bytes = base64.b64decode(base64_data)
36
+ # Convert the bytes to numpy array
37
+ image_array = np.frombuffer(image_bytes, dtype=np.uint8)
38
+ # Decode the numpy array as an image using OpenCV
39
+ image = cv2.imdecode(image_array, cv2.IMREAD_COLOR)
40
+ return image
41
+
42
+ @socket.on("connect")
43
+ def test_connect():
44
+ print("Connected")
45
+ emit("my response", {"data": "Connected"})
46
+
47
+ @socket.on("image")
48
+ def receive_image(image):
49
+ # Decode the base64-encoded image data
50
+ image = base64_to_image(image)
51
+ image = cv2.resize(image, (224, 224), interpolation=cv2.INTER_AREA)
52
+ # emit("processed_image", image)
53
+ # Make the image a numpy array and reshape it to the models input shape.
54
+ image = np.asarray(image, dtype=np.float32).reshape(1, 224, 224, 3)
55
+ image = (image / 127.5) - 1
56
+ # Predicts the model
57
+ prediction = model.predict(image)
58
+ index = np.argmax(prediction)
59
+ class_name = class_names[index]
60
+ confidence_score = prediction[0][index]
61
+ emit("result",{"name":str(class_name),"score":str(confidence_score)})
62
+ # flag1 = True
63
+
64
+ # @app.route('/at')
65
+ # def testme():
66
+ # global flag1
67
+ # # return "i am in testme"
68
+ # while flag1 is True:
69
 
70
+ # img_file_buffer=st.camera_input("Take a picture")
71
+ # if img_file_buffer is not None:
72
+ # test_image = Image.open(img_file_buffer)
73
+ # st.image(test_image, use_column_width=True)
74
+ # if bytes_data is None:
75
+ # flag1 = False
76
+ # st.stop()
77
 
78
  # def attend():
79
  # # Face recognition variables