Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -29,86 +29,86 @@ socket = SocketIO(app,async_mode="eventlet")
|
|
| 29 |
|
| 30 |
|
| 31 |
|
| 32 |
-
def base64_to_image(base64_string):
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
@socket.on("connect")
|
| 44 |
-
def test_connect():
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
@socket.on("image")
|
| 49 |
-
def receive_image(image):
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
|
| 54 |
-
|
| 55 |
-
|
| 56 |
|
| 57 |
-
|
| 58 |
-
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
|
| 64 |
-
|
| 65 |
-
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
| 72 |
|
| 73 |
-
|
| 74 |
-
|
| 75 |
|
| 76 |
-
|
| 77 |
|
| 78 |
-
|
| 79 |
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
|
| 111 |
-
|
| 112 |
|
| 113 |
|
| 114 |
|
|
|
|
| 29 |
|
| 30 |
|
| 31 |
|
| 32 |
+
# def base64_to_image(base64_string):
|
| 33 |
+
# # Extract the base64 encoded binary data from the input string
|
| 34 |
+
# base64_data = base64_string.split(",")[1]
|
| 35 |
+
# # Decode the base64 data to bytes
|
| 36 |
+
# image_bytes = base64.b64decode(base64_data)
|
| 37 |
+
# # Convert the bytes to numpy array
|
| 38 |
+
# image_array = np.frombuffer(image_bytes, dtype=np.uint8)
|
| 39 |
+
# # Decode the numpy array as an image using OpenCV
|
| 40 |
+
# image = cv2.imdecode(image_array, cv2.IMREAD_COLOR)
|
| 41 |
+
# return image
|
| 42 |
+
|
| 43 |
+
# @socket.on("connect")
|
| 44 |
+
# def test_connect():
|
| 45 |
+
# print("Connected")
|
| 46 |
+
# emit("my response", {"data": "Connected"})
|
| 47 |
+
|
| 48 |
+
# @socket.on("image")
|
| 49 |
+
# def receive_image(image):
|
| 50 |
+
# global cnt
|
| 51 |
+
# s = True
|
| 52 |
+
# while s :
|
| 53 |
|
| 54 |
+
# # Decode the base64-encoded image data
|
| 55 |
+
# image = base64_to_image(image)
|
| 56 |
|
| 57 |
+
# known_faces_names = ["Sarwan Sir", "Vikas","Lalit","Jasmeen","Anita Ma'am"]
|
| 58 |
+
# known_face_encodings = []
|
| 59 |
|
| 60 |
+
# # Load known face encodings
|
| 61 |
+
# sir_image = face_recognition.load_image_file("photos/sir.jpeg")
|
| 62 |
+
# sir_encoding = face_recognition.face_encodings(sir_image)[0]
|
| 63 |
|
| 64 |
+
# vikas_image = face_recognition.load_image_file("photos/vikas.jpg")
|
| 65 |
+
# vikas_encoding = face_recognition.face_encodings(vikas_image)[0]
|
| 66 |
|
| 67 |
+
# lalit_image = face_recognition.load_image_file("photos/lalit.jpg")
|
| 68 |
+
# lalit_encoding = face_recognition.face_encodings(lalit_image)[0]
|
| 69 |
|
| 70 |
+
# jasmine_image = face_recognition.load_image_file("photos/jasmine.jpg")
|
| 71 |
+
# jasmine_encoding = face_recognition.face_encodings(jasmine_image)[0]
|
| 72 |
|
| 73 |
+
# maam_image = face_recognition.load_image_file("photos/maam.png")
|
| 74 |
+
# maam_encoding = face_recognition.face_encodings(maam_image)[0]
|
| 75 |
|
| 76 |
+
# known_face_encodings = [sir_encoding, vikas_encoding,lalit_encoding,jasmine_encoding,maam_encoding]
|
| 77 |
|
| 78 |
+
# students = known_faces_names.copy()
|
| 79 |
|
| 80 |
+
# face_locations = []
|
| 81 |
+
# face_encodings = []
|
| 82 |
+
# face_names = []
|
| 83 |
|
| 84 |
+
# # now = datetime.now()
|
| 85 |
+
# # current_date = now.strftime("%Y-%m-%d")
|
| 86 |
+
# # csv_file = open(f"{current_date}.csv", "a+", newline="")
|
| 87 |
|
| 88 |
+
# # # csv_writer = csv.writer(csv_file)
|
| 89 |
+
# small_frame = cv2.resize(image, (0, 0), fx=0.25, fy=0.25)
|
| 90 |
+
# rgb_small_frame = small_frame[:, :, ::-1]
|
| 91 |
+
# # # emit("result",{"name":"level " +str(cnt),"score":str(len(face_encodings))})
|
| 92 |
|
| 93 |
+
# face_locations = face_recognition.face_locations(rgb_small_frame)
|
| 94 |
+
# face_encodings = face_recognition.face_encodings(small_frame, face_locations)
|
| 95 |
+
# face_names = []
|
| 96 |
+
# emit("result",{"name":"level2 " +str(cnt),"score":str(len(face_encodings))})
|
| 97 |
+
# cnt = cnt +1
|
| 98 |
+
# for face_encoding in face_encodings:
|
| 99 |
+
# # emit("result",{"name":"in for ","score":"34"})
|
| 100 |
+
# matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
|
| 101 |
+
# name = ""
|
| 102 |
+
# face_distance = face_recognition.face_distance(known_face_encodings, face_encoding)
|
| 103 |
+
# best_match_index = np.argmin(face_distance)
|
| 104 |
+
# if matches[best_match_index]:
|
| 105 |
+
# name = known_faces_names[best_match_index]
|
| 106 |
|
| 107 |
+
# face_names.append(name)
|
| 108 |
+
# s = False
|
| 109 |
+
# break
|
| 110 |
|
| 111 |
+
# emit("result",{"name":str(name),"score":"myScore"})
|
| 112 |
|
| 113 |
|
| 114 |
|