Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,72 +1,130 @@
|
|
|
|
|
|
1 |
import face_recognition
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
import csv
|
5 |
from datetime import datetime
|
6 |
|
7 |
-
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
|
|
|
11 |
|
12 |
-
|
13 |
-
vikas_encoding = face_recognition.face_encodings(vikas_image)[0]
|
14 |
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
17 |
|
18 |
-
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
lnwriter = csv.writer(f)
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
face_encodings = []
|
30 |
-
face_names = []
|
31 |
-
s = True
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
38 |
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
if matches[best_match_index]:
|
53 |
-
name = known_faces_names[best_match_index]
|
54 |
-
|
55 |
-
face_names.append(name)
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
-
|
70 |
-
video_capture.release()
|
71 |
-
cv2.destroyAllWindows()
|
72 |
-
f.close()
|
|
|
1 |
+
from PIL import Image
|
2 |
+
from flask import *
|
3 |
import face_recognition
|
4 |
import cv2
|
5 |
import numpy as np
|
6 |
import csv
|
7 |
from datetime import datetime
|
8 |
|
9 |
+
from matplotlib import pyplot as plt # this lets you draw inline pictures in the notebooks
|
10 |
+
import pylab # this allows you to control figure size
|
11 |
+
pylab.rcParams['figure.figsize'] = (10.0, 8.0) # this controls figure size in the notebook
|
12 |
|
13 |
+
import io
|
14 |
+
import streamlit as st
|
15 |
+
bytes_data=None
|
16 |
|
17 |
+
app = Flask(__name__)
|
|
|
18 |
|
19 |
+
@app.route('/at')
|
20 |
+
def attend():
|
21 |
+
# Face recognition variables
|
22 |
+
known_faces_names = ["Sarwan Sir", "Vikas","Lalit","Jasmeen","Anita Ma'am"]
|
23 |
+
known_face_encodings = []
|
24 |
|
25 |
+
# Load known face encodings
|
26 |
+
sir_image = face_recognition.load_image_file("photos/sir.jpeg")
|
27 |
+
sir_encoding = face_recognition.face_encodings(sir_image)[0]
|
28 |
|
29 |
+
vikas_image = face_recognition.load_image_file("photos/vikas.jpg")
|
30 |
+
vikas_encoding = face_recognition.face_encodings(vikas_image)[0]
|
31 |
|
32 |
+
lalit_image = face_recognition.load_image_file("photos/lalit.jpg")
|
33 |
+
lalit_encoding = face_recognition.face_encodings(lalit_image)[0]
|
|
|
34 |
|
35 |
+
jasmine_image = face_recognition.load_image_file("photos/jasmine.jpg")
|
36 |
+
jasmine_encoding = face_recognition.face_encodings(jasmine_image)[0]
|
|
|
|
|
|
|
37 |
|
38 |
+
maam_image = face_recognition.load_image_file("photos/maam.png")
|
39 |
+
maam_encoding = face_recognition.face_encodings(maam_image)[0]
|
40 |
+
|
41 |
+
known_face_encodings = [sir_encoding, vikas_encoding,lalit_encoding,jasmine_encoding,maam_encoding]
|
42 |
+
|
43 |
+
students = known_faces_names.copy()
|
44 |
|
45 |
+
face_locations = []
|
46 |
+
face_encodings = []
|
47 |
+
face_names = []
|
48 |
+
|
49 |
+
now = datetime.now()
|
50 |
+
current_date = now.strftime("%Y-%m-%d")
|
51 |
+
csv_file = open(f"{current_date}.csv", "a+", newline="")
|
52 |
|
53 |
+
csv_writer = csv.writer(csv_file)
|
54 |
+
def run_face_recognition():
|
55 |
+
video_capture = cv2.VideoCapture(0)
|
56 |
+
s = True
|
57 |
+
|
58 |
+
existing_names = set(row[0] for row in csv.reader(csv_file)) # Collect existing names from the CSV file
|
59 |
|
60 |
+
|
61 |
+
while s:
|
62 |
+
_, frame = video_capture.read()
|
63 |
+
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
|
64 |
+
rgb_small_frame = small_frame[:, :, ::-1]
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
face_locations = face_recognition.face_locations(rgb_small_frame)
|
67 |
+
face_encodings = face_recognition.face_encodings(small_frame, face_locations)
|
68 |
+
face_names = []
|
69 |
+
|
70 |
+
for face_encoding in face_encodings:
|
71 |
+
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
|
72 |
+
name = ""
|
73 |
+
face_distance = face_recognition.face_distance(known_face_encodings, face_encoding)
|
74 |
+
best_match_index = np.argmin(face_distance)
|
75 |
+
if matches[best_match_index]:
|
76 |
+
name = known_faces_names[best_match_index]
|
77 |
+
|
78 |
+
face_names.append(name)
|
79 |
+
|
80 |
+
|
81 |
+
for name in face_names:
|
82 |
+
if name in known_faces_names and name in students and name not in existing_names:
|
83 |
+
students.remove(name)
|
84 |
+
print(students)
|
85 |
+
print(f"Attendance recorded for {name}")
|
86 |
+
current_time = now.strftime("%H-%M-%S")
|
87 |
+
csv_writer.writerow([name, current_time, "Present"])
|
88 |
+
existing_names.add(name) # Add the name to the set of existing names
|
89 |
+
|
90 |
+
s = False # Set s to False to exit the loop after recording attendance
|
91 |
+
break # Break the loop once attendance has been recorded for a name
|
92 |
+
|
93 |
+
cv2.imshow("Attendance System", frame)
|
94 |
+
if cv2.waitKey(1) & 0xFF == ord('q'):
|
95 |
+
break
|
96 |
+
|
97 |
+
video_capture.release()
|
98 |
+
cv2.destroyAllWindows()
|
99 |
+
csv_file.close()
|
100 |
+
|
101 |
+
# Call the function to run face recognition
|
102 |
+
run_face_recognition()
|
103 |
+
|
104 |
+
return redirect(url_for('show_table'))
|
105 |
+
|
106 |
+
@app.route('/table')
|
107 |
+
def show_table():
|
108 |
+
# Get the current date
|
109 |
+
current_date = datetime.now().strftime("%Y-%m-%d")
|
110 |
+
# Read the CSV file to get attendance data
|
111 |
+
attendance=[]
|
112 |
+
try:
|
113 |
+
with open(f"{current_date}.csv", newline="") as csv_file:
|
114 |
+
csv_reader = csv.reader(csv_file)
|
115 |
+
attendance = list(csv_reader)
|
116 |
+
except FileNotFoundError:
|
117 |
+
pass
|
118 |
+
# Render the table.html template and pass the attendance data
|
119 |
+
return render_template('attendance.html', attendance=attendance)
|
120 |
+
|
121 |
+
@app.route('/')
|
122 |
+
def index():
|
123 |
+
return render_template('index.html')
|
124 |
+
|
125 |
+
|
126 |
+
if __name__ == '__main__':
|
127 |
+
# Start Flask application
|
128 |
+
app.run(debug=True)
|
129 |
|
130 |
+
|
|
|
|
|
|