Spaces:
Sleeping
Sleeping
File size: 17,314 Bytes
173e2fe 1ec0b16 d897c87 78b8ee2 d897c87 b410607 daf8adb b410607 daf8adb c6a3095 6fb32c9 17593c4 95c2887 17593c4 d32256a 27eeeac d897c87 bfa8c19 5e04570 bfa8c19 402b569 dd214f2 17593c4 f47bd7a daf8adb bfa8c19 b410607 bfa8c19 b410607 daf8adb b410607 bfa8c19 72bf9ac daf8adb bfa8c19 b410607 f5ce7ea b410607 bfa8c19 b410607 bfa8c19 b410607 1158682 b410607 bfa8c19 b410607 bfa8c19 b410607 c17aef3 b410607 c17aef3 b410607 c17aef3 b410607 c17aef3 b410607 bfa8c19 b410607 bfa8c19 e3e20c3 fa529e8 59b7150 d897c87 bfa8c19 d897c87 b410607 bfa8c19 d897c87 fa529e8 173e2fe f5ce7ea b410607 dd214f2 bfa8c19 0f110d5 b410607 173e2fe b410607 bfa8c19 b410607 bfa8c19 b410607 f5ce7ea bfa8c19 17593c4 b410607 f5ce7ea b410607 bfa8c19 b410607 bfa8c19 b410607 f5ce7ea b410607 bfa8c19 b410607 f5ce7ea b410607 4cfffc9 bfa8c19 b410607 173e2fe bfa8c19 b410607 3aa9f69 b410607 bfa8c19 b410607 17593c4 b410607 bfa8c19 b410607 daf8adb 123d04d daf8adb 123d04d daf8adb 1be352f daf8adb 123d04d d897c87 4dc0555 bfa8c19 1b0a98b a5bcf71 ba72bb1 a5bcf71 ba72bb1 a5bcf71 ba72bb1 a5bcf71 b410607 bfa8c19 1ec0b16 b1186d2 b410607 bfa8c19 dd214f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
from groq import Groq
import gradio as gr
from gtts import gTTS
import uuid
import base64
from io import BytesIO
import os
import logging
import spacy
from transformers import pipeline
import torch
from PIL import Image
from torchvision import transforms
import pathlib
import cv2 # Import OpenCV
import numpy as np
# Pathlib adjustment for Windows compatibility
# temp = pathlib.PosixPath
# pathlib.PosixPath = pathlib.WindowsPath
# Set up logger
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
console_handler = logging.StreamHandler()
file_handler = logging.FileHandler('chatbot_log.log')
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
console_handler.setFormatter(formatter)
file_handler.setFormatter(formatter)
logger.addHandler(console_handler)
logger.addHandler(file_handler)
# Initialize Groq Client
client = Groq(api_key=os.getenv("GROQ_API_KEY_1"))
logger.info("Groq client initialized.")
#client = Groq(api_key="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")
# Initialize spaCy NLP model for named entity recognition (NER)
spacy.cli.download("en_core_web_sm")
nlp = spacy.load("en_core_web_sm")
logger.info("spaCy NLP model loaded.")
# Initialize sentiment analysis model using Hugging Face
sentiment_analyzer = pipeline("sentiment-analysis")
logger.info("Sentiment analysis model loaded.")
# Load pre-trained YOLOv5 model
def load_yolov5_model():
logger.info("Loading YOLOv5 model...")
model = torch.hub.load(r"ultralytics/yolov5", 'custom', path=r'./models/best.pt')
model.eval()
logger.info("YOLOv5 model loaded and set to evaluation mode.")
return model
model = load_yolov5_model()
if model is None:
logger.error("Failed to load YOLOv5 model.")
raise RuntimeError("YOLOv5 model loading failed.")
# Function to preprocess user input for better NLP understanding
def preprocess_input(user_input):
logger.info("Preprocessing user input...")
user_input = user_input.strip().lower()
logger.info(f"Preprocessed input: {user_input}")
return user_input
# Function for sentiment analysis
def analyze_sentiment(user_input):
logger.info("Analyzing sentiment...")
result = sentiment_analyzer(user_input)
logger.info(f"Sentiment analysis result: {result[0]['label']}")
return result[0]['label']
# Function to extract medical entities from input using NER
symptoms = [
"itching", "rash", "dry skin", "redness", "flaking", "cracking skin",
"swelling", "blisters", "bumps", "peeling skin", "skin discoloration",
"oozing", "burning sensation", "painful skin", "sensitivity to touch",
"scaling", "scarring", "ulcers", "bruising", "hives",
"skin thickening", "sunburn", "lesions", "warts", "pustules",
"hair loss", "skin darkening", "light patches", "acne", "itchy scalp",
"stretch marks", "skin irritation", "pigmentation", "eczema flares",
"seborrhea", "crusty patches", "bleeding skin", "nail discoloration",
"nail ridges", "skin infections", "skin fissures", "heat rash",
"papules", "petechiae", "skin tags"
]
diseases = [
"eczema", "psoriasis", "acne", "rosacea", "dermatitis", "melanoma",
"basal cell carcinoma", "squamous cell carcinoma", "skin cancer",
"seborrheic dermatitis", "contact dermatitis", "urticaria",
"vitiligo", "alopecia areata", "tinea", "ringworm", "onychomycosis",
"fungal infections", "hyperpigmentation", "hypopigmentation",
"lichen planus", "cellulitis", "abscess", "boils", "impetigo",
"keratosis pilaris", "actinic keratosis", "sunburn", "cold sores",
"herpes simplex", "shingles", "hives", "pityriasis rosea",
"molluscum contagiosum", "scabies", "lupus rash", "drug eruption",
"dermatomyositis", "cutaneous lupus", "hidradenitis suppurativa",
"sebaceous cysts", "keloids", "skin ulcers", "necrotizing fasciitis",
"warts", "skin infections", "skin abscess", "nail psoriasis"
]
def extract_medical_entities(user_input):
logger.info("Extracting medical entities...")
user_input = preprocess_input(user_input)
medical_entities = []
for word in user_input.split():
if word in symptoms or word in diseases:
medical_entities.append(word)
logger.info(f"Extracted medical entities: {medical_entities}")
# return medical_entities
# Function to encode the image
def encode_image(uploaded_image):
try:
logger.info("Encoding image...")
buffered = BytesIO()
uploaded_image.save(buffered, format="PNG")
encoded_image = base64.b64encode(buffered.getvalue()).decode("utf-8")
logger.info("Image encoding complete.")
return encoded_image
except Exception as e:
logger.error(f"Error encoding image: {e}")
raise
# Initialize messages
def initialize_messages():
return [{"role": "system",
"content": '''You are Dr. SkinCare, a highly experienced and professional virtual dermatologist chatbot with over 40 years of expertise in diagnosing and managing skin conditions. You provide accurate, empathetic, and actionable advice on skin-related concerns, including rashes, acne, infections, and chronic skin diseases. Your goal is to offer clear explanations, practical solutions, and guidance on when to seek in-person care from a dermatologist.
You only respond to skin-related inquiries and strive to provide the best possible guidance. Your responses should include:
1. A clear explanation of the possible condition(s) based on the symptoms described.
2. Practical, actionable steps for managing the issue at home (if applicable).
3. A recommendation to consult a dermatologist for persistent, severe, or unclear symptoms.
Maintain a friendly, professional, and empathetic tone in all interactions. Always emphasize that you are not a substitute for professional medical advice, diagnosis, or treatment.
**Prompt Template:**
- Input: Patient’s skin-related concerns, including symptoms, questions, or specific issues they mention.
- Response: Start with a polite acknowledgment of the patient’s concern. Provide a clear, concise explanation of the possible condition(s) and suggest practical, actionable steps. If needed, advise on when to consult a dermatologist.
**Examples:**
- User: "I have a red, itchy rash on my arm. What could it be?"
Response: "Hello! A red, itchy rash on your arm could be caused by several conditions, such as eczema, contact dermatitis, or a fungal infection. Try keeping the area clean and moisturized, and avoid scratching. Over-the-counter hydrocortisone cream or antihistamines may help. If the rash persists or worsens, please consult a dermatologist for a proper diagnosis."
- User: "I have small, raised bumps on my face. What might this be?"
Response: "Hi there! Small, raised bumps on your face could be due to acne, closed comedones, or even a mild allergic reaction. Avoid using harsh skincare products and consider using a gentle cleanser and non-comedogenic moisturizer. If the bumps don’t improve or spread, it’s best to see a dermatologist for further evaluation."
- User: "I’ve noticed dark patches on my skin. What could cause this?"
Response: "Hello! Dark patches on the skin, known as hyperpigmentation, can be caused by sun exposure, hormonal changes, or conditions like melasma. Use a broad-spectrum sunscreen daily and consider skincare products with ingredients like vitamin C or niacinamide. For persistent or concerning patches, consult a dermatologist to rule out underlying conditions."
- User: "I have a mole that looks irregular. Should I be worried?"
Response: "Hi. Irregular moles can sometimes be a sign of skin changes that need attention. Keep an eye on the mole for changes in size, shape, or color, and avoid exposing it to excessive sunlight. It’s important to have it checked by a dermatologist to rule out any serious concerns, such as skin cancer."
Always maintain a compassionate tone, provide educational insights, and stress that you are not a substitute for professional medical advice. Encourage users to consult a dermatologist for any serious, persistent, or unclear skin concerns.'''
}]
logger.info("Messages initialized.")
return messages
messages = initialize_messages()
# Function for image prediction using YOLOv5
def predict_image(image):
try:
logger.info("Predicting image...")
if image is None:
logger.error("No image uploaded.")
return "Error: No image uploaded.", "No description available."
# Convert and preprocess image
image_np = np.array(image)
image_np = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
image_resized = cv2.resize(image_np, (224, 224))
# Transform image
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
im = transform(image_resized).unsqueeze(0)
# Make predictions
with torch.no_grad():
output = model(im)
# Post-process results
softmax = torch.nn.Softmax(dim=1)
probs = softmax(output)
predicted_class_id = torch.argmax(probs, dim=1).item()
confidence_score = probs[0, predicted_class_id].item()
if hasattr(model, 'names'):
class_name = model.names[predicted_class_id]
prediction_result = f"Predicted Class: {class_name}\nConfidence Score: {confidence_score:.4f}"
description = get_description(class_name)
else:
prediction_result = f"Predicted Class ID: {predicted_class_id}\nConfidence: {confidence_score:.4f}"
description = "No description available."
logger.info(f"Prediction result: {prediction_result}")
return prediction_result, description
except Exception as e:
logger.error(f"Error in image prediction: {e}")
return f"An error occurred during image prediction: {e}", "No description available."
# Function to get description based on predicted class
def get_description(class_name):
logger.info(f"Getting description for class: {class_name}")
descriptions = {
"bcc": "Basal cell carcinoma (BCC) is a type of skin cancer that begins in the basal cells. It often appears as a slightly transparent bump on the skin, though it can take other forms. BCC grows slowly and is unlikely to spread to other parts of the body, but early treatment is important to prevent damage to surrounding tissues.",
"atopic": "Atopic dermatitis is a chronic skin condition characterized by itchy, inflamed skin. It is common in individuals with a family history of allergies or asthma.",
"acne": "Acne is a skin condition that occurs when hair follicles become clogged with oil and dead skin cells. It often causes pimples, blackheads, and whiteheads, and is most common among teenagers.",
# Add more descriptions as needed
}
description = descriptions.get(class_name.lower(), "No description available.")
logger.info(f"Description: {description}")
return description
# Custom LLM Bot Function
def customLLMBot(user_input, uploaded_image, chat_history):
try:
global messages
logger.info("Processing input...")
user_input = preprocess_input(user_input)
sentiment = analyze_sentiment(user_input)
logger.info(f"Sentiment detected: {sentiment}")
medical_entities = extract_medical_entities(user_input)
logger.info(f"Extracted medical entities: {medical_entities}")
chat_history.append(("user", user_input))
if uploaded_image is not None:
base64_image = encode_image(uploaded_image)
logger.debug(f"Image received, size: {len(base64_image)} bytes")
messages_image = [
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{base64_image}"}}
]
}
]
logger.info("Sending image to Groq API for processing...")
response = client.chat.completions.create(
model="llama-3.2-11b-vision-preview",
messages=messages_image,
)
logger.info("Image processed successfully.")
else:
logger.info("Processing text input...")
messages.append({
"role": "user",
"content": user_input
})
response = client.chat.completions.create(
model="llama-3.2-11b-vision-preview",
messages=messages,
)
logger.info("Text processed successfully.")
LLM_reply = response.choices[0].message.content
logger.debug(f"LLM reply: {LLM_reply}")
chat_history.append(("bot", LLM_reply))
messages.append({"role": "assistant", "content": LLM_reply})
audio_file = f"response_{uuid.uuid4().hex}.mp3"
tts = gTTS(LLM_reply, lang='en')
tts.save(audio_file)
logger.info(f"Audio response saved as {audio_file}")
return chat_history, audio_file
except Exception as e:
logger.error(f"Error in customLLMBot function: {e}")
return [("user", user_input or "Image uploaded"), ("bot", f"An error occurred: {e}")], None
# Gradio Interface
def chatbot_ui():
logger.info("Setting up Gradio interface...")
with gr.Blocks() as demo:
gr.Markdown("## Dr. SkinCare - Virtual Dermatologist")
with gr.Tabs():
# Chatbot Tab
with gr.Tab("Chatbot"):
chat_history = gr.State([])
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(label="Responses", elem_id="chatbot")
user_input = gr.Textbox(
label="Ask a health-related question",
placeholder="Describe your symptoms...",
elem_id="user-input",
lines=1,
)
with gr.Column(scale=1):
uploaded_image = gr.Image(label="Upload an Image", type="pil")
submit_btn = gr.Button("Submit")
clear_btn = gr.Button("Clear")
audio_output = gr.Audio(label="Audio Response")
def handle_submit(user_query, image, history):
logger.info("User submitted a query.")
response, audio = customLLMBot(user_query, image, history)
return response, audio, None, "", history
user_input.submit(
handle_submit,
inputs=[user_input, uploaded_image, chat_history],
outputs=[chatbot, audio_output, uploaded_image, user_input, chat_history],
)
submit_btn.click(
handle_submit,
inputs=[user_input, uploaded_image, chat_history],
outputs=[chatbot, audio_output, uploaded_image, user_input, chat_history],
)
clear_btn.click(
lambda: ([], "", None, []),
inputs=[],
outputs=[chatbot, user_input, uploaded_image, chat_history],
)
# Predictive Modeling Tab
with gr.Tab("Predictive Modeling"):
gr.Markdown("### Upload Image for Prediction")
with gr.Row():
with gr.Column():
prediction_image = gr.Image(label="Upload Image", type="pil")
predict_btn = gr.Button("Predict")
with gr.Column():
gr.Markdown("### Prediction Result")
prediction_output = gr.Textbox(label="Result", interactive=False)
gr.Markdown("### Description")
description_output = gr.Textbox(label="Description", interactive=False)
clear_prediction_btn = gr.Button("Clear Prediction")
def clear_prediction(prediction_image, prediction_output, description_output):
logger.info("Clearing prediction results.")
return None, "", ""
predict_btn.click(
predict_image,
inputs=[prediction_image],
outputs=[prediction_output, description_output],
)
clear_prediction_btn.click(
clear_prediction,
inputs=[prediction_image, prediction_output, description_output],
outputs=[prediction_image, prediction_output, description_output],
)
logger.info("Gradio interface setup complete.")
return demo
# Launch the interface
logger.info("Launching chatbot interface...")
chatbot_ui().launch(server_name="0.0.0.0", server_port=7860)
#chatbot_ui().launch(server_name="localhost", server_port=7860) |