Spaces:
Sleeping
Sleeping
project added
Browse files- app.py +95 -50
- requirements.txt +16 -17
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
# Import necessary libraries
|
2 |
from groq import Groq
|
3 |
import gradio as gr
|
4 |
from gtts import gTTS
|
@@ -10,11 +9,11 @@ import logging
|
|
10 |
import spacy
|
11 |
from transformers import pipeline
|
12 |
import torch
|
13 |
-
import
|
14 |
-
import numpy as np
|
15 |
from torchvision import transforms
|
16 |
import pathlib
|
17 |
-
|
|
|
18 |
|
19 |
# Pathlib adjustment for Windows compatibility
|
20 |
temp = pathlib.PosixPath
|
@@ -31,60 +30,29 @@ file_handler.setFormatter(formatter)
|
|
31 |
logger.addHandler(console_handler)
|
32 |
logger.addHandler(file_handler)
|
33 |
|
34 |
-
#
|
35 |
client = Groq(api_key=os.getenv("GROQ_API_KEY_2"))
|
36 |
|
37 |
-
# Initialize Groq Client
|
38 |
#client = Groq(api_key="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")
|
39 |
|
40 |
# Initialize spaCy NLP model for named entity recognition (NER)
|
41 |
-
|
42 |
-
|
43 |
-
# Download the model if it's not already installed
|
44 |
-
try:
|
45 |
-
nlp = spacy.load("en_core_web_sm")
|
46 |
-
except OSError:
|
47 |
-
print("Downloading 'en_core_web_sm' model...")
|
48 |
-
import os
|
49 |
-
os.system("python -m spacy download en_core_web_sm")
|
50 |
-
nlp = spacy.load("en_core_web_sm")
|
51 |
-
|
52 |
-
# Your code continues here
|
53 |
-
print("Model loaded successfully!")
|
54 |
|
55 |
# Initialize sentiment analysis model using Hugging Face
|
56 |
sentiment_analyzer = pipeline("sentiment-analysis")
|
57 |
|
58 |
-
|
59 |
-
import os
|
60 |
-
|
61 |
def load_yolov5_model():
|
62 |
-
# Load model from Hugging Face Hub or local path
|
63 |
model = torch.hub.load(
|
64 |
-
'
|
65 |
'custom',
|
66 |
-
path=
|
67 |
-
source=
|
68 |
)
|
|
|
69 |
return model
|
70 |
|
71 |
-
# Example usage
|
72 |
-
if __name__ == "__main__":
|
73 |
-
model = load_yolov5_model()
|
74 |
-
print("Model loaded successfully!")
|
75 |
-
|
76 |
-
|
77 |
-
# Load pre-trained YOLOv5 model
|
78 |
-
# def load_yolov5_model():
|
79 |
-
# model = torch.hub.load(
|
80 |
-
# r'C:\Users\RESHMA R B\OneDrive\Documents\Desktop\project_without_malayalam\chatbot2\yolov5',
|
81 |
-
# 'custom',
|
82 |
-
# path=r"C:\Users\RESHMA R B\OneDrive\Documents\Desktop\project_without_malayalam\chatbot2\models\best.pt",
|
83 |
-
# source="local"
|
84 |
-
# )
|
85 |
-
# model.eval()
|
86 |
-
# return model
|
87 |
-
|
88 |
model = load_yolov5_model()
|
89 |
|
90 |
# Function to preprocess user input for better NLP understanding
|
@@ -157,13 +125,9 @@ def predict_image(image):
|
|
157 |
if image is None:
|
158 |
return "Error: No image uploaded.", "No description available."
|
159 |
|
160 |
-
# Convert PIL image to NumPy array
|
161 |
image_np = np.array(image) # Convert PIL image to NumPy array
|
162 |
|
163 |
-
# Handle grayscale images
|
164 |
-
if len(image_np.shape) == 2: # Grayscale image
|
165 |
-
image_np = cv2.cvtColor(image_np, cv2.COLOR_GRAY2RGB)
|
166 |
-
|
167 |
# Convert RGB to BGR (OpenCV uses BGR by default)
|
168 |
image_np = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
|
169 |
|
@@ -172,8 +136,8 @@ def predict_image(image):
|
|
172 |
|
173 |
# Transform the image for the model
|
174 |
transform = transforms.Compose([
|
175 |
-
transforms.ToTensor(),
|
176 |
-
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
177 |
])
|
178 |
im = transform(image_resized).unsqueeze(0) # Add batch dimension (BCHW)
|
179 |
|
@@ -198,6 +162,10 @@ def predict_image(image):
|
|
198 |
prediction_result = f"Predicted Class ID: {predicted_class_id}\nConfidence: {confidence_score:.4f}"
|
199 |
description = "No description available."
|
200 |
|
|
|
|
|
|
|
|
|
201 |
return prediction_result, description
|
202 |
|
203 |
except Exception as e:
|
@@ -214,6 +182,83 @@ def get_description(class_name):
|
|
214 |
}
|
215 |
return descriptions.get(class_name.lower(), "No description available.")
|
216 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
# Gradio Interface
|
218 |
def chatbot_ui():
|
219 |
with gr.Blocks() as demo:
|
|
|
|
|
1 |
from groq import Groq
|
2 |
import gradio as gr
|
3 |
from gtts import gTTS
|
|
|
9 |
import spacy
|
10 |
from transformers import pipeline
|
11 |
import torch
|
12 |
+
from PIL import Image
|
|
|
13 |
from torchvision import transforms
|
14 |
import pathlib
|
15 |
+
import cv2 # Import OpenCV
|
16 |
+
import numpy as np
|
17 |
|
18 |
# Pathlib adjustment for Windows compatibility
|
19 |
temp = pathlib.PosixPath
|
|
|
30 |
logger.addHandler(console_handler)
|
31 |
logger.addHandler(file_handler)
|
32 |
|
33 |
+
#Initialize Groq Client
|
34 |
client = Groq(api_key=os.getenv("GROQ_API_KEY_2"))
|
35 |
|
36 |
+
# # Initialize Groq Client
|
37 |
#client = Groq(api_key="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")
|
38 |
|
39 |
# Initialize spaCy NLP model for named entity recognition (NER)
|
40 |
+
nlp = spacy.load("en_core_web_sm")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
# Initialize sentiment analysis model using Hugging Face
|
43 |
sentiment_analyzer = pipeline("sentiment-analysis")
|
44 |
|
45 |
+
# Load pre-trained YOLOv5 model
|
|
|
|
|
46 |
def load_yolov5_model():
|
|
|
47 |
model = torch.hub.load(
|
48 |
+
r'C:\Users\RESHMA R B\OneDrive\Documents\Desktop\project_without_malayalam\chatbot2\yolov5',
|
49 |
'custom',
|
50 |
+
path=r"C:\Users\RESHMA R B\OneDrive\Documents\Desktop\project_without_malayalam\chatbot2\models\best.pt",
|
51 |
+
source="local"
|
52 |
)
|
53 |
+
model.eval()
|
54 |
return model
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
model = load_yolov5_model()
|
57 |
|
58 |
# Function to preprocess user input for better NLP understanding
|
|
|
125 |
if image is None:
|
126 |
return "Error: No image uploaded.", "No description available."
|
127 |
|
128 |
+
# Convert PIL image to NumPy array (OpenCV format)
|
129 |
image_np = np.array(image) # Convert PIL image to NumPy array
|
130 |
|
|
|
|
|
|
|
|
|
131 |
# Convert RGB to BGR (OpenCV uses BGR by default)
|
132 |
image_np = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
|
133 |
|
|
|
136 |
|
137 |
# Transform the image for the model
|
138 |
transform = transforms.Compose([
|
139 |
+
transforms.ToTensor(), # Convert image to tensor
|
140 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), # Normalize
|
141 |
])
|
142 |
im = transform(image_resized).unsqueeze(0) # Add batch dimension (BCHW)
|
143 |
|
|
|
162 |
prediction_result = f"Predicted Class ID: {predicted_class_id}\nConfidence: {confidence_score:.4f}"
|
163 |
description = "No description available."
|
164 |
|
165 |
+
# Display the image with OpenCV (optional)
|
166 |
+
cv2.imshow("Processed Image", image_resized)
|
167 |
+
cv2.waitKey(1) # Wait for 1 ms to display the image
|
168 |
+
|
169 |
return prediction_result, description
|
170 |
|
171 |
except Exception as e:
|
|
|
182 |
}
|
183 |
return descriptions.get(class_name.lower(), "No description available.")
|
184 |
|
185 |
+
# Custom LLM Bot Function
|
186 |
+
def customLLMBot(user_input, uploaded_image, chat_history):
|
187 |
+
try:
|
188 |
+
global messages
|
189 |
+
logger.info("Processing input...")
|
190 |
+
|
191 |
+
# Preprocess the user input
|
192 |
+
user_input = preprocess_input(user_input)
|
193 |
+
|
194 |
+
# Analyze sentiment (Optional)
|
195 |
+
sentiment = analyze_sentiment(user_input)
|
196 |
+
logger.info(f"Sentiment detected: {sentiment}")
|
197 |
+
|
198 |
+
# Extract medical entities (Optional)
|
199 |
+
medical_entities = extract_medical_entities(user_input)
|
200 |
+
logger.info(f"Extracted medical entities: {medical_entities}")
|
201 |
+
|
202 |
+
# Append user input to the chat history
|
203 |
+
chat_history.append(("user", user_input))
|
204 |
+
|
205 |
+
if uploaded_image is not None:
|
206 |
+
# Encode the image to base64
|
207 |
+
base64_image = encode_image(uploaded_image)
|
208 |
+
|
209 |
+
logger.debug(f"Image received, size: {len(base64_image)} bytes")
|
210 |
+
|
211 |
+
# Create a message for the image prompt
|
212 |
+
messages_image = [
|
213 |
+
{
|
214 |
+
"role": "user",
|
215 |
+
"content": [
|
216 |
+
{"type": "text", "text": "What's in this image?"},
|
217 |
+
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{base64_image}"}}
|
218 |
+
]
|
219 |
+
}
|
220 |
+
]
|
221 |
+
|
222 |
+
logger.info("Sending image to Groq API for processing...")
|
223 |
+
response = client.chat.completions.create(
|
224 |
+
model="llama-3.2-11b-vision-preview",
|
225 |
+
messages=messages_image,
|
226 |
+
)
|
227 |
+
logger.info("Image processed successfully.")
|
228 |
+
else:
|
229 |
+
# Process text input
|
230 |
+
logger.info("Processing text input...")
|
231 |
+
messages.append({
|
232 |
+
"role": "user",
|
233 |
+
"content": user_input
|
234 |
+
})
|
235 |
+
response = client.chat.completions.create(
|
236 |
+
model="llama-3.2-11b-vision-preview",
|
237 |
+
messages=messages,
|
238 |
+
)
|
239 |
+
logger.info("Text processed successfully.")
|
240 |
+
|
241 |
+
# Extract the reply
|
242 |
+
LLM_reply = response.choices[0].message.content
|
243 |
+
logger.debug(f"LLM reply: {LLM_reply}")
|
244 |
+
|
245 |
+
# Append the bot's response to the chat history
|
246 |
+
chat_history.append(("bot", LLM_reply))
|
247 |
+
messages.append({"role": "assistant", "content": LLM_reply})
|
248 |
+
|
249 |
+
# Generate audio for response
|
250 |
+
audio_file = f"response_{uuid.uuid4().hex}.mp3"
|
251 |
+
tts = gTTS(LLM_reply, lang='en')
|
252 |
+
tts.save(audio_file)
|
253 |
+
logger.info(f"Audio response saved as {audio_file}")
|
254 |
+
|
255 |
+
# Return chat history and audio file
|
256 |
+
return chat_history, audio_file
|
257 |
+
|
258 |
+
except Exception as e:
|
259 |
+
logger.error(f"Error in customLLMBot function: {e}")
|
260 |
+
return [("user", user_input or "Image uploaded"), ("bot", f"An error occurred: {e}")], None
|
261 |
+
|
262 |
# Gradio Interface
|
263 |
def chatbot_ui():
|
264 |
with gr.Blocks() as demo:
|
requirements.txt
CHANGED
@@ -1,30 +1,29 @@
|
|
1 |
# Core Libraries
|
2 |
-
numpy
|
3 |
-
pandas
|
4 |
-
scipy
|
5 |
|
6 |
# Machine Learning & Deep Learning
|
7 |
-
torch
|
8 |
-
torchvision
|
9 |
-
transformers
|
10 |
-
scikit-learn
|
11 |
-
ultralytics
|
12 |
|
13 |
# Image Processing
|
14 |
-
pillow
|
15 |
-
opencv-python
|
16 |
|
17 |
# NLP
|
18 |
-
spacy
|
19 |
-
https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.7.0/en_core_web_sm-3.7.0-py3-none-any.whl
|
20 |
|
21 |
# Visualization
|
22 |
-
matplotlib
|
23 |
|
24 |
# Gradio & Audio
|
25 |
-
gradio
|
26 |
-
gtts
|
27 |
|
28 |
# API Integration
|
29 |
-
groq
|
30 |
-
requests
|
|
|
1 |
# Core Libraries
|
2 |
+
numpy
|
3 |
+
pandas
|
4 |
+
scipy
|
5 |
|
6 |
# Machine Learning & Deep Learning
|
7 |
+
torch
|
8 |
+
torchvision
|
9 |
+
transformers
|
10 |
+
scikit-learn
|
11 |
+
ultralytics
|
12 |
|
13 |
# Image Processing
|
14 |
+
pillow
|
15 |
+
opencv-python
|
16 |
|
17 |
# NLP
|
18 |
+
spacy
|
|
|
19 |
|
20 |
# Visualization
|
21 |
+
matplotlib
|
22 |
|
23 |
# Gradio & Audio
|
24 |
+
gradio
|
25 |
+
gtts
|
26 |
|
27 |
# API Integration
|
28 |
+
groq
|
29 |
+
requests
|