Spaces:
Sleeping
Sleeping
file added
Browse files
app.py
CHANGED
@@ -30,36 +30,41 @@ file_handler.setFormatter(formatter)
|
|
30 |
logger.addHandler(console_handler)
|
31 |
logger.addHandler(file_handler)
|
32 |
|
33 |
-
#Initialize Groq Client
|
34 |
client = Groq(api_key=os.getenv("GROQ_API_KEY_1"))
|
35 |
-
|
36 |
-
|
37 |
-
# # Initialize Groq Client
|
38 |
-
#client = Groq(api_key="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")
|
39 |
|
40 |
# Initialize spaCy NLP model for named entity recognition (NER)
|
41 |
spacy.cli.download("en_core_web_sm")
|
42 |
nlp = spacy.load("en_core_web_sm")
|
|
|
43 |
|
44 |
# Initialize sentiment analysis model using Hugging Face
|
45 |
sentiment_analyzer = pipeline("sentiment-analysis")
|
|
|
46 |
|
47 |
# Load pre-trained YOLOv5 model
|
48 |
def load_yolov5_model():
|
|
|
49 |
model = torch.hub.load(r"ultralytics/yolov5", 'custom', path=r'./models/best.pt')
|
50 |
model.eval()
|
|
|
51 |
return model
|
52 |
|
53 |
model = load_yolov5_model()
|
54 |
|
55 |
# Function to preprocess user input for better NLP understanding
|
56 |
def preprocess_input(user_input):
|
|
|
57 |
user_input = user_input.strip().lower()
|
|
|
58 |
return user_input
|
59 |
|
60 |
# Function for sentiment analysis (optional)
|
61 |
def analyze_sentiment(user_input):
|
|
|
62 |
result = sentiment_analyzer(user_input)
|
|
|
63 |
return result[0]['label']
|
64 |
|
65 |
# Function to extract medical entities from input using NER
|
@@ -90,79 +95,76 @@ diseases = [
|
|
90 |
]
|
91 |
|
92 |
def extract_medical_entities(user_input):
|
|
|
93 |
user_input = preprocess_input(user_input)
|
94 |
medical_entities = []
|
95 |
for word in user_input.split():
|
96 |
if word in symptoms or word in diseases:
|
97 |
medical_entities.append(word)
|
|
|
98 |
return medical_entities
|
99 |
|
100 |
# Function to encode the image
|
101 |
def encode_image(uploaded_image):
|
102 |
try:
|
103 |
-
logger.
|
104 |
buffered = BytesIO()
|
105 |
uploaded_image.save(buffered, format="PNG")
|
106 |
-
|
107 |
-
|
|
|
108 |
except Exception as e:
|
109 |
logger.error(f"Error encoding image: {e}")
|
110 |
raise
|
111 |
|
112 |
# Initialize messages
|
113 |
def initialize_messages():
|
114 |
-
|
|
|
|
|
|
|
115 |
|
116 |
messages = initialize_messages()
|
117 |
|
118 |
# Function for image prediction using YOLOv5
|
119 |
def predict_image(image):
|
120 |
try:
|
121 |
-
|
122 |
if image is None:
|
|
|
123 |
return "Error: No image uploaded.", "No description available."
|
124 |
|
125 |
-
|
126 |
-
image_np = np.array(image) # Convert PIL image to NumPy array
|
127 |
-
|
128 |
-
# Convert RGB to BGR (OpenCV uses BGR by default)
|
129 |
image_np = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
|
130 |
-
|
131 |
-
# Resize the image to match the model's expected input size
|
132 |
image_resized = cv2.resize(image_np, (224, 224))
|
133 |
|
134 |
-
# Transform the image for the model
|
135 |
transform = transforms.Compose([
|
136 |
-
transforms.ToTensor(),
|
137 |
-
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
138 |
])
|
139 |
-
im = transform(image_resized).unsqueeze(0)
|
140 |
|
141 |
-
# Get predictions
|
142 |
with torch.no_grad():
|
143 |
-
output = model(im)
|
144 |
|
145 |
-
# Apply softmax to get confidence scores
|
146 |
softmax = torch.nn.Softmax(dim=1)
|
147 |
probs = softmax(output)
|
148 |
|
149 |
-
# Get the predicted class and its confidence score
|
150 |
predicted_class_id = torch.argmax(probs, dim=1).item()
|
151 |
confidence_score = probs[0, predicted_class_id].item()
|
152 |
|
153 |
-
# Get predicted class name if available
|
154 |
if hasattr(model, 'names'):
|
155 |
class_name = model.names[predicted_class_id]
|
156 |
prediction_result = f"Predicted Class: {class_name}\nConfidence: {confidence_score:.4f}"
|
157 |
-
description = get_description(class_name)
|
158 |
else:
|
159 |
prediction_result = f"Predicted Class ID: {predicted_class_id}\nConfidence: {confidence_score:.4f}"
|
160 |
description = "No description available."
|
161 |
|
162 |
-
# Display the image with OpenCV (optional)
|
163 |
cv2.imshow("Processed Image", image_resized)
|
164 |
-
cv2.waitKey(1)
|
165 |
|
|
|
166 |
return prediction_result, description
|
167 |
|
168 |
except Exception as e:
|
@@ -171,13 +173,16 @@ def predict_image(image):
|
|
171 |
|
172 |
# Function to get description based on predicted class
|
173 |
def get_description(class_name):
|
|
|
174 |
descriptions = {
|
175 |
"bcc": "Basal cell carcinoma (BCC) is a type of skin cancer that begins in the basal cells. It often appears as a slightly transparent bump on the skin, though it can take other forms. BCC grows slowly and is unlikely to spread to other parts of the body, but early treatment is important to prevent damage to surrounding tissues.",
|
176 |
"atopic": "Atopic dermatitis is a chronic skin condition characterized by itchy, inflamed skin. It is common in individuals with a family history of allergies or asthma.",
|
177 |
"acne": "Acne is a skin condition that occurs when hair follicles become clogged with oil and dead skin cells. It often causes pimples, blackheads, and whiteheads, and is most common among teenagers.",
|
178 |
# Add more descriptions as needed
|
179 |
}
|
180 |
-
|
|
|
|
|
181 |
|
182 |
# Custom LLM Bot Function
|
183 |
def customLLMBot(user_input, uploaded_image, chat_history):
|
@@ -185,27 +190,19 @@ def customLLMBot(user_input, uploaded_image, chat_history):
|
|
185 |
global messages
|
186 |
logger.info("Processing input...")
|
187 |
|
188 |
-
# Preprocess the user input
|
189 |
user_input = preprocess_input(user_input)
|
190 |
-
|
191 |
-
# Analyze sentiment (Optional)
|
192 |
sentiment = analyze_sentiment(user_input)
|
193 |
logger.info(f"Sentiment detected: {sentiment}")
|
194 |
|
195 |
-
# Extract medical entities (Optional)
|
196 |
medical_entities = extract_medical_entities(user_input)
|
197 |
logger.info(f"Extracted medical entities: {medical_entities}")
|
198 |
|
199 |
-
# Append user input to the chat history
|
200 |
chat_history.append(("user", user_input))
|
201 |
|
202 |
if uploaded_image is not None:
|
203 |
-
# Encode the image to base64
|
204 |
base64_image = encode_image(uploaded_image)
|
205 |
-
|
206 |
logger.debug(f"Image received, size: {len(base64_image)} bytes")
|
207 |
|
208 |
-
# Create a message for the image prompt
|
209 |
messages_image = [
|
210 |
{
|
211 |
"role": "user",
|
@@ -223,7 +220,6 @@ def customLLMBot(user_input, uploaded_image, chat_history):
|
|
223 |
)
|
224 |
logger.info("Image processed successfully.")
|
225 |
else:
|
226 |
-
# Process text input
|
227 |
logger.info("Processing text input...")
|
228 |
messages.append({
|
229 |
"role": "user",
|
@@ -235,21 +231,17 @@ def customLLMBot(user_input, uploaded_image, chat_history):
|
|
235 |
)
|
236 |
logger.info("Text processed successfully.")
|
237 |
|
238 |
-
# Extract the reply
|
239 |
LLM_reply = response.choices[0].message.content
|
240 |
logger.debug(f"LLM reply: {LLM_reply}")
|
241 |
|
242 |
-
# Append the bot's response to the chat history
|
243 |
chat_history.append(("bot", LLM_reply))
|
244 |
messages.append({"role": "assistant", "content": LLM_reply})
|
245 |
|
246 |
-
# Generate audio for response
|
247 |
audio_file = f"response_{uuid.uuid4().hex}.mp3"
|
248 |
tts = gTTS(LLM_reply, lang='en')
|
249 |
tts.save(audio_file)
|
250 |
logger.info(f"Audio response saved as {audio_file}")
|
251 |
|
252 |
-
# Return chat history and audio file
|
253 |
return chat_history, audio_file
|
254 |
|
255 |
except Exception as e:
|
@@ -258,15 +250,14 @@ def customLLMBot(user_input, uploaded_image, chat_history):
|
|
258 |
|
259 |
# Gradio Interface
|
260 |
def chatbot_ui():
|
|
|
261 |
with gr.Blocks() as demo:
|
262 |
gr.Markdown("# Healthcare Chatbot Doctor")
|
263 |
|
264 |
-
# State for user chat history
|
265 |
chat_history = gr.State([])
|
266 |
|
267 |
-
# Layout for chatbot and input box alignment
|
268 |
with gr.Row():
|
269 |
-
with gr.Column(scale=3):
|
270 |
chatbot = gr.Chatbot(label="Responses", elem_id="chatbot")
|
271 |
user_input = gr.Textbox(
|
272 |
label="Ask a health-related question",
|
@@ -274,81 +265,69 @@ def chatbot_ui():
|
|
274 |
elem_id="user-input",
|
275 |
lines=1,
|
276 |
)
|
277 |
-
with gr.Column(scale=1):
|
278 |
uploaded_image = gr.Image(label="Upload an Image", type="pil")
|
279 |
submit_btn = gr.Button("Submit")
|
280 |
clear_btn = gr.Button("Clear")
|
281 |
audio_output = gr.Audio(label="Audio Response")
|
282 |
|
283 |
-
# New section for image prediction (left and right layout)
|
284 |
with gr.Row():
|
285 |
-
# Left side: Upload image
|
286 |
with gr.Column():
|
287 |
gr.Markdown("### Upload Image for Prediction")
|
288 |
prediction_image = gr.Image(label="Upload Image", type="pil")
|
289 |
predict_btn = gr.Button("Predict")
|
290 |
|
291 |
-
# Right side: Prediction result and description
|
292 |
with gr.Column():
|
293 |
gr.Markdown("### Prediction Result")
|
294 |
prediction_output = gr.Textbox(label="Result", interactive=False)
|
295 |
|
296 |
-
# Description column
|
297 |
gr.Markdown("### Description")
|
298 |
description_output = gr.Textbox(label="Description", interactive=False)
|
299 |
|
300 |
-
# Clear button for prediction result (below description box)
|
301 |
clear_prediction_btn = gr.Button("Clear Prediction")
|
302 |
|
303 |
-
# Define actions
|
304 |
def handle_submit(user_query, image, history):
|
305 |
logger.info("User submitted a query.")
|
306 |
response, audio = customLLMBot(user_query, image, history)
|
307 |
return response, audio, None, "", history
|
308 |
|
309 |
-
# Clear prediction result and image
|
310 |
def clear_prediction(prediction_image, prediction_output, description_output):
|
|
|
311 |
return None, "", ""
|
312 |
|
313 |
-
# Submit on pressing Enter key
|
314 |
user_input.submit(
|
315 |
handle_submit,
|
316 |
inputs=[user_input, uploaded_image, chat_history],
|
317 |
outputs=[chatbot, audio_output, uploaded_image, user_input, chat_history],
|
318 |
)
|
319 |
|
320 |
-
# Submit on button click
|
321 |
submit_btn.click(
|
322 |
handle_submit,
|
323 |
inputs=[user_input, uploaded_image, chat_history],
|
324 |
outputs=[chatbot, audio_output, uploaded_image, user_input, chat_history],
|
325 |
)
|
326 |
|
327 |
-
# Action for clearing all fields
|
328 |
clear_btn.click(
|
329 |
lambda: ([], "", None, []),
|
330 |
inputs=[],
|
331 |
outputs=[chatbot, user_input, uploaded_image, chat_history],
|
332 |
)
|
333 |
|
334 |
-
# Action for image prediction
|
335 |
predict_btn.click(
|
336 |
predict_image,
|
337 |
inputs=[prediction_image],
|
338 |
-
outputs=[prediction_output, description_output],
|
339 |
)
|
340 |
|
341 |
-
# Action for clearing prediction result and image
|
342 |
clear_prediction_btn.click(
|
343 |
clear_prediction,
|
344 |
inputs=[prediction_image, prediction_output, description_output],
|
345 |
outputs=[prediction_image, prediction_output, description_output],
|
346 |
)
|
347 |
|
|
|
348 |
return demo
|
349 |
|
350 |
# Launch the interface
|
351 |
-
|
352 |
-
|
353 |
-
# Launch the interface
|
354 |
-
chatbot_ui().launch(server_name="0.0.0.0", server_port=7860)
|
|
|
30 |
logger.addHandler(console_handler)
|
31 |
logger.addHandler(file_handler)
|
32 |
|
33 |
+
# Initialize Groq Client
|
34 |
client = Groq(api_key=os.getenv("GROQ_API_KEY_1"))
|
35 |
+
logger.info("Groq client initialized.")
|
|
|
|
|
|
|
36 |
|
37 |
# Initialize spaCy NLP model for named entity recognition (NER)
|
38 |
spacy.cli.download("en_core_web_sm")
|
39 |
nlp = spacy.load("en_core_web_sm")
|
40 |
+
logger.info("spaCy NLP model loaded.")
|
41 |
|
42 |
# Initialize sentiment analysis model using Hugging Face
|
43 |
sentiment_analyzer = pipeline("sentiment-analysis")
|
44 |
+
logger.info("Sentiment analysis model loaded.")
|
45 |
|
46 |
# Load pre-trained YOLOv5 model
|
47 |
def load_yolov5_model():
|
48 |
+
logger.info("Loading YOLOv5 model...")
|
49 |
model = torch.hub.load(r"ultralytics/yolov5", 'custom', path=r'./models/best.pt')
|
50 |
model.eval()
|
51 |
+
logger.info("YOLOv5 model loaded and set to evaluation mode.")
|
52 |
return model
|
53 |
|
54 |
model = load_yolov5_model()
|
55 |
|
56 |
# Function to preprocess user input for better NLP understanding
|
57 |
def preprocess_input(user_input):
|
58 |
+
logger.info("Preprocessing user input...")
|
59 |
user_input = user_input.strip().lower()
|
60 |
+
logger.info(f"Preprocessed input: {user_input}")
|
61 |
return user_input
|
62 |
|
63 |
# Function for sentiment analysis (optional)
|
64 |
def analyze_sentiment(user_input):
|
65 |
+
logger.info("Analyzing sentiment...")
|
66 |
result = sentiment_analyzer(user_input)
|
67 |
+
logger.info(f"Sentiment analysis result: {result[0]['label']}")
|
68 |
return result[0]['label']
|
69 |
|
70 |
# Function to extract medical entities from input using NER
|
|
|
95 |
]
|
96 |
|
97 |
def extract_medical_entities(user_input):
|
98 |
+
logger.info("Extracting medical entities...")
|
99 |
user_input = preprocess_input(user_input)
|
100 |
medical_entities = []
|
101 |
for word in user_input.split():
|
102 |
if word in symptoms or word in diseases:
|
103 |
medical_entities.append(word)
|
104 |
+
logger.info(f"Extracted medical entities: {medical_entities}")
|
105 |
return medical_entities
|
106 |
|
107 |
# Function to encode the image
|
108 |
def encode_image(uploaded_image):
|
109 |
try:
|
110 |
+
logger.info("Encoding image...")
|
111 |
buffered = BytesIO()
|
112 |
uploaded_image.save(buffered, format="PNG")
|
113 |
+
encoded_image = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
114 |
+
logger.info("Image encoding complete.")
|
115 |
+
return encoded_image
|
116 |
except Exception as e:
|
117 |
logger.error(f"Error encoding image: {e}")
|
118 |
raise
|
119 |
|
120 |
# Initialize messages
|
121 |
def initialize_messages():
|
122 |
+
logger.info("Initializing messages...")
|
123 |
+
messages = [{"role": "system", "content": '''You are Dr. HealthBuddy, a professional, empathetic, and knowledgeable virtual doctor chatbot.'''}]
|
124 |
+
logger.info("Messages initialized.")
|
125 |
+
return messages
|
126 |
|
127 |
messages = initialize_messages()
|
128 |
|
129 |
# Function for image prediction using YOLOv5
|
130 |
def predict_image(image):
|
131 |
try:
|
132 |
+
logger.info("Predicting image...")
|
133 |
if image is None:
|
134 |
+
logger.error("No image uploaded.")
|
135 |
return "Error: No image uploaded.", "No description available."
|
136 |
|
137 |
+
image_np = np.array(image)
|
|
|
|
|
|
|
138 |
image_np = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
|
|
|
|
|
139 |
image_resized = cv2.resize(image_np, (224, 224))
|
140 |
|
|
|
141 |
transform = transforms.Compose([
|
142 |
+
transforms.ToTensor(),
|
143 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
144 |
])
|
145 |
+
im = transform(image_resized).unsqueeze(0)
|
146 |
|
|
|
147 |
with torch.no_grad():
|
148 |
+
output = model(im)
|
149 |
|
|
|
150 |
softmax = torch.nn.Softmax(dim=1)
|
151 |
probs = softmax(output)
|
152 |
|
|
|
153 |
predicted_class_id = torch.argmax(probs, dim=1).item()
|
154 |
confidence_score = probs[0, predicted_class_id].item()
|
155 |
|
|
|
156 |
if hasattr(model, 'names'):
|
157 |
class_name = model.names[predicted_class_id]
|
158 |
prediction_result = f"Predicted Class: {class_name}\nConfidence: {confidence_score:.4f}"
|
159 |
+
description = get_description(class_name)
|
160 |
else:
|
161 |
prediction_result = f"Predicted Class ID: {predicted_class_id}\nConfidence: {confidence_score:.4f}"
|
162 |
description = "No description available."
|
163 |
|
|
|
164 |
cv2.imshow("Processed Image", image_resized)
|
165 |
+
cv2.waitKey(1)
|
166 |
|
167 |
+
logger.info(f"Prediction result: {prediction_result}")
|
168 |
return prediction_result, description
|
169 |
|
170 |
except Exception as e:
|
|
|
173 |
|
174 |
# Function to get description based on predicted class
|
175 |
def get_description(class_name):
|
176 |
+
logger.info(f"Getting description for class: {class_name}")
|
177 |
descriptions = {
|
178 |
"bcc": "Basal cell carcinoma (BCC) is a type of skin cancer that begins in the basal cells. It often appears as a slightly transparent bump on the skin, though it can take other forms. BCC grows slowly and is unlikely to spread to other parts of the body, but early treatment is important to prevent damage to surrounding tissues.",
|
179 |
"atopic": "Atopic dermatitis is a chronic skin condition characterized by itchy, inflamed skin. It is common in individuals with a family history of allergies or asthma.",
|
180 |
"acne": "Acne is a skin condition that occurs when hair follicles become clogged with oil and dead skin cells. It often causes pimples, blackheads, and whiteheads, and is most common among teenagers.",
|
181 |
# Add more descriptions as needed
|
182 |
}
|
183 |
+
description = descriptions.get(class_name.lower(), "No description available.")
|
184 |
+
logger.info(f"Description: {description}")
|
185 |
+
return description
|
186 |
|
187 |
# Custom LLM Bot Function
|
188 |
def customLLMBot(user_input, uploaded_image, chat_history):
|
|
|
190 |
global messages
|
191 |
logger.info("Processing input...")
|
192 |
|
|
|
193 |
user_input = preprocess_input(user_input)
|
|
|
|
|
194 |
sentiment = analyze_sentiment(user_input)
|
195 |
logger.info(f"Sentiment detected: {sentiment}")
|
196 |
|
|
|
197 |
medical_entities = extract_medical_entities(user_input)
|
198 |
logger.info(f"Extracted medical entities: {medical_entities}")
|
199 |
|
|
|
200 |
chat_history.append(("user", user_input))
|
201 |
|
202 |
if uploaded_image is not None:
|
|
|
203 |
base64_image = encode_image(uploaded_image)
|
|
|
204 |
logger.debug(f"Image received, size: {len(base64_image)} bytes")
|
205 |
|
|
|
206 |
messages_image = [
|
207 |
{
|
208 |
"role": "user",
|
|
|
220 |
)
|
221 |
logger.info("Image processed successfully.")
|
222 |
else:
|
|
|
223 |
logger.info("Processing text input...")
|
224 |
messages.append({
|
225 |
"role": "user",
|
|
|
231 |
)
|
232 |
logger.info("Text processed successfully.")
|
233 |
|
|
|
234 |
LLM_reply = response.choices[0].message.content
|
235 |
logger.debug(f"LLM reply: {LLM_reply}")
|
236 |
|
|
|
237 |
chat_history.append(("bot", LLM_reply))
|
238 |
messages.append({"role": "assistant", "content": LLM_reply})
|
239 |
|
|
|
240 |
audio_file = f"response_{uuid.uuid4().hex}.mp3"
|
241 |
tts = gTTS(LLM_reply, lang='en')
|
242 |
tts.save(audio_file)
|
243 |
logger.info(f"Audio response saved as {audio_file}")
|
244 |
|
|
|
245 |
return chat_history, audio_file
|
246 |
|
247 |
except Exception as e:
|
|
|
250 |
|
251 |
# Gradio Interface
|
252 |
def chatbot_ui():
|
253 |
+
logger.info("Setting up Gradio interface...")
|
254 |
with gr.Blocks() as demo:
|
255 |
gr.Markdown("# Healthcare Chatbot Doctor")
|
256 |
|
|
|
257 |
chat_history = gr.State([])
|
258 |
|
|
|
259 |
with gr.Row():
|
260 |
+
with gr.Column(scale=3):
|
261 |
chatbot = gr.Chatbot(label="Responses", elem_id="chatbot")
|
262 |
user_input = gr.Textbox(
|
263 |
label="Ask a health-related question",
|
|
|
265 |
elem_id="user-input",
|
266 |
lines=1,
|
267 |
)
|
268 |
+
with gr.Column(scale=1):
|
269 |
uploaded_image = gr.Image(label="Upload an Image", type="pil")
|
270 |
submit_btn = gr.Button("Submit")
|
271 |
clear_btn = gr.Button("Clear")
|
272 |
audio_output = gr.Audio(label="Audio Response")
|
273 |
|
|
|
274 |
with gr.Row():
|
|
|
275 |
with gr.Column():
|
276 |
gr.Markdown("### Upload Image for Prediction")
|
277 |
prediction_image = gr.Image(label="Upload Image", type="pil")
|
278 |
predict_btn = gr.Button("Predict")
|
279 |
|
|
|
280 |
with gr.Column():
|
281 |
gr.Markdown("### Prediction Result")
|
282 |
prediction_output = gr.Textbox(label="Result", interactive=False)
|
283 |
|
|
|
284 |
gr.Markdown("### Description")
|
285 |
description_output = gr.Textbox(label="Description", interactive=False)
|
286 |
|
|
|
287 |
clear_prediction_btn = gr.Button("Clear Prediction")
|
288 |
|
|
|
289 |
def handle_submit(user_query, image, history):
|
290 |
logger.info("User submitted a query.")
|
291 |
response, audio = customLLMBot(user_query, image, history)
|
292 |
return response, audio, None, "", history
|
293 |
|
|
|
294 |
def clear_prediction(prediction_image, prediction_output, description_output):
|
295 |
+
logger.info("Clearing prediction results.")
|
296 |
return None, "", ""
|
297 |
|
|
|
298 |
user_input.submit(
|
299 |
handle_submit,
|
300 |
inputs=[user_input, uploaded_image, chat_history],
|
301 |
outputs=[chatbot, audio_output, uploaded_image, user_input, chat_history],
|
302 |
)
|
303 |
|
|
|
304 |
submit_btn.click(
|
305 |
handle_submit,
|
306 |
inputs=[user_input, uploaded_image, chat_history],
|
307 |
outputs=[chatbot, audio_output, uploaded_image, user_input, chat_history],
|
308 |
)
|
309 |
|
|
|
310 |
clear_btn.click(
|
311 |
lambda: ([], "", None, []),
|
312 |
inputs=[],
|
313 |
outputs=[chatbot, user_input, uploaded_image, chat_history],
|
314 |
)
|
315 |
|
|
|
316 |
predict_btn.click(
|
317 |
predict_image,
|
318 |
inputs=[prediction_image],
|
319 |
+
outputs=[prediction_output, description_output],
|
320 |
)
|
321 |
|
|
|
322 |
clear_prediction_btn.click(
|
323 |
clear_prediction,
|
324 |
inputs=[prediction_image, prediction_output, description_output],
|
325 |
outputs=[prediction_image, prediction_output, description_output],
|
326 |
)
|
327 |
|
328 |
+
logger.info("Gradio interface setup complete.")
|
329 |
return demo
|
330 |
|
331 |
# Launch the interface
|
332 |
+
logger.info("Launching chatbot interface...")
|
333 |
+
chatbot_ui().launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|