Reshmarb commited on
Commit
4cfffc9
·
1 Parent(s): 1be352f

file added

Browse files
Files changed (2) hide show
  1. app.py +1 -1
  2. pred.py +0 -60
app.py CHANGED
@@ -198,7 +198,7 @@ def predict_image(image):
198
 
199
  if hasattr(model, 'names'):
200
  class_name = model.names[predicted_class_id]
201
- prediction_result = f"Predicted Class: {class_name}\nConfidence: {confidence_score:.4f}"
202
  description = get_description(class_name)
203
  else:
204
  prediction_result = f"Predicted Class ID: {predicted_class_id}\nConfidence: {confidence_score:.4f}"
 
198
 
199
  if hasattr(model, 'names'):
200
  class_name = model.names[predicted_class_id]
201
+ prediction_result = f"Predicted Class: {class_name}\nConfidence Score: {confidence_score:.4f}"
202
  description = get_description(class_name)
203
  else:
204
  prediction_result = f"Predicted Class ID: {predicted_class_id}\nConfidence: {confidence_score:.4f}"
pred.py CHANGED
@@ -48,63 +48,3 @@ if hasattr(model, 'names'):
48
  class_name = model.names[predicted_class_id]
49
  print(f"Predicted Class Name: {class_name}")
50
 
51
- # import torch
52
- # import cv2 # Import OpenCV
53
- # from torchvision import transforms
54
- # import pathlib
55
-
56
- # # Pathlib adjustment for Windows compatibility
57
- # temp = pathlib.PosixPath
58
- # pathlib.PosixPath = pathlib.WindowsPath
59
-
60
- # # Load pre-trained YOLOv5 model
61
- # model = torch.hub.load(
62
- # r'C:\Users\RESHMA R B\OneDrive\Documents\Desktop\project_without_malayalam\chatbot2\yolov5',
63
- # 'custom',
64
- # path=r"C:\Users\RESHMA R B\OneDrive\Documents\Desktop\project_without_malayalam\chatbot2\models\best.pt",
65
- # source="local"
66
- # )
67
-
68
- # # Set model to evaluation mode
69
- # model.eval()
70
-
71
- # # Define image transformations (for PyTorch)
72
- # transform = transforms.Compose([
73
- # transforms.ToTensor(), # Convert image to tensor
74
- # transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), # Normalize
75
- # ])
76
-
77
- # # Load and preprocess the image using OpenCV
78
- # img_path = r"C:\Users\RESHMA R B\OneDrive\Documents\Desktop\project_without_malayalam\chatbot2\ACNE.jpg"
79
- # image = cv2.imread(img_path) # Load image in BGR format
80
- # image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Convert BGR to RGB
81
- # image_resized = cv2.resize(image, (224, 224)) # Resize to match model's expected input size
82
-
83
- # # Transform the image for the model
84
- # im = transform(image_resized).unsqueeze(0) # Add batch dimension (BCHW)
85
-
86
- # # Get predictions
87
- # with torch.no_grad():
88
- # output = model(im) # Raw model output (logits)
89
-
90
- # # Apply softmax to get confidence scores
91
- # softmax = torch.nn.Softmax(dim=1)
92
- # probs = softmax(output)
93
-
94
- # # Get the predicted class and its confidence score
95
- # predicted_class_id = torch.argmax(probs, dim=1).item()
96
- # confidence_score = probs[0, predicted_class_id].item()
97
-
98
- # # Print predicted class and confidence score
99
- # print(f"Predicted Class ID: {predicted_class_id}")
100
- # print(f"Confidence Score: {confidence_score:.4f}")
101
-
102
- # # Print predicted class name if available
103
- # if hasattr(model, 'names'):
104
- # class_name = model.names[predicted_class_id]
105
- # print(f"Predicted Class Name: {class_name}")
106
-
107
-
108
- # cv2.imshow("Input Image", image)
109
- # cv2.waitKey(0)
110
- # cv2.destroyAllWindows()
 
48
  class_name = model.names[predicted_class_id]
49
  print(f"Predicted Class Name: {class_name}")
50