Spaces:
Sleeping
Sleeping
file added
Browse files
app.py
CHANGED
|
@@ -15,6 +15,7 @@ import pathlib
|
|
| 15 |
import cv2 # Import OpenCV
|
| 16 |
import numpy as np
|
| 17 |
|
|
|
|
| 18 |
# Pathlib adjustment for Windows compatibility
|
| 19 |
# temp = pathlib.PosixPath
|
| 20 |
# pathlib.PosixPath = pathlib.WindowsPath
|
|
|
|
| 15 |
import cv2 # Import OpenCV
|
| 16 |
import numpy as np
|
| 17 |
|
| 18 |
+
|
| 19 |
# Pathlib adjustment for Windows compatibility
|
| 20 |
# temp = pathlib.PosixPath
|
| 21 |
# pathlib.PosixPath = pathlib.WindowsPath
|
pred.py
CHANGED
|
@@ -21,10 +21,11 @@ transform = transforms.Compose([
|
|
| 21 |
])
|
| 22 |
im = transform(image).unsqueeze(0) # Add batch dimension (BCHW)
|
| 23 |
|
| 24 |
-
|
| 25 |
-
output = model(im)
|
| 26 |
-
print(output)
|
| 27 |
-
|
|
|
|
| 28 |
|
| 29 |
|
| 30 |
# Get predictions
|
|
@@ -48,3 +49,63 @@ if hasattr(model, 'names'):
|
|
| 48 |
class_name = model.names[predicted_class_id]
|
| 49 |
print(f"Predicted Class Name: {class_name}")
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
])
|
| 22 |
im = transform(image).unsqueeze(0) # Add batch dimension (BCHW)
|
| 23 |
|
| 24 |
+
try:
|
| 25 |
+
output = model(im)
|
| 26 |
+
print(output)
|
| 27 |
+
except Exception as e:
|
| 28 |
+
logger.error(f"Error in image prediction: {e}")
|
| 29 |
|
| 30 |
|
| 31 |
# Get predictions
|
|
|
|
| 49 |
class_name = model.names[predicted_class_id]
|
| 50 |
print(f"Predicted Class Name: {class_name}")
|
| 51 |
|
| 52 |
+
# import torch
|
| 53 |
+
# import cv2 # Import OpenCV
|
| 54 |
+
# from torchvision import transforms
|
| 55 |
+
# import pathlib
|
| 56 |
+
|
| 57 |
+
# # Pathlib adjustment for Windows compatibility
|
| 58 |
+
# temp = pathlib.PosixPath
|
| 59 |
+
# pathlib.PosixPath = pathlib.WindowsPath
|
| 60 |
+
|
| 61 |
+
# # Load pre-trained YOLOv5 model
|
| 62 |
+
# model = torch.hub.load(
|
| 63 |
+
# r'C:\Users\RESHMA R B\OneDrive\Documents\Desktop\project_without_malayalam\chatbot2\yolov5',
|
| 64 |
+
# 'custom',
|
| 65 |
+
# path=r"C:\Users\RESHMA R B\OneDrive\Documents\Desktop\project_without_malayalam\chatbot2\models\best.pt",
|
| 66 |
+
# source="local"
|
| 67 |
+
# )
|
| 68 |
+
|
| 69 |
+
# # Set model to evaluation mode
|
| 70 |
+
# model.eval()
|
| 71 |
+
|
| 72 |
+
# # Define image transformations (for PyTorch)
|
| 73 |
+
# transform = transforms.Compose([
|
| 74 |
+
# transforms.ToTensor(), # Convert image to tensor
|
| 75 |
+
# transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), # Normalize
|
| 76 |
+
# ])
|
| 77 |
+
|
| 78 |
+
# # Load and preprocess the image using OpenCV
|
| 79 |
+
# img_path = r"C:\Users\RESHMA R B\OneDrive\Documents\Desktop\project_without_malayalam\chatbot2\ACNE.jpg"
|
| 80 |
+
# image = cv2.imread(img_path) # Load image in BGR format
|
| 81 |
+
# image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Convert BGR to RGB
|
| 82 |
+
# image_resized = cv2.resize(image, (224, 224)) # Resize to match model's expected input size
|
| 83 |
+
|
| 84 |
+
# # Transform the image for the model
|
| 85 |
+
# im = transform(image_resized).unsqueeze(0) # Add batch dimension (BCHW)
|
| 86 |
+
|
| 87 |
+
# # Get predictions
|
| 88 |
+
# with torch.no_grad():
|
| 89 |
+
# output = model(im) # Raw model output (logits)
|
| 90 |
+
|
| 91 |
+
# # Apply softmax to get confidence scores
|
| 92 |
+
# softmax = torch.nn.Softmax(dim=1)
|
| 93 |
+
# probs = softmax(output)
|
| 94 |
+
|
| 95 |
+
# # Get the predicted class and its confidence score
|
| 96 |
+
# predicted_class_id = torch.argmax(probs, dim=1).item()
|
| 97 |
+
# confidence_score = probs[0, predicted_class_id].item()
|
| 98 |
+
|
| 99 |
+
# # Print predicted class and confidence score
|
| 100 |
+
# print(f"Predicted Class ID: {predicted_class_id}")
|
| 101 |
+
# print(f"Confidence Score: {confidence_score:.4f}")
|
| 102 |
+
|
| 103 |
+
# # Print predicted class name if available
|
| 104 |
+
# if hasattr(model, 'names'):
|
| 105 |
+
# class_name = model.names[predicted_class_id]
|
| 106 |
+
# print(f"Predicted Class Name: {class_name}")
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
# cv2.imshow("Input Image", image)
|
| 110 |
+
# cv2.waitKey(0)
|
| 111 |
+
# cv2.destroyAllWindows()
|