Reshmarb commited on
Commit
6fb32c9
·
1 Parent(s): 4cfffc9

file added

Browse files
Files changed (2) hide show
  1. app.py +1 -0
  2. pred.py +65 -4
app.py CHANGED
@@ -15,6 +15,7 @@ import pathlib
15
  import cv2 # Import OpenCV
16
  import numpy as np
17
 
 
18
  # Pathlib adjustment for Windows compatibility
19
  # temp = pathlib.PosixPath
20
  # pathlib.PosixPath = pathlib.WindowsPath
 
15
  import cv2 # Import OpenCV
16
  import numpy as np
17
 
18
+
19
  # Pathlib adjustment for Windows compatibility
20
  # temp = pathlib.PosixPath
21
  # pathlib.PosixPath = pathlib.WindowsPath
pred.py CHANGED
@@ -21,10 +21,11 @@ transform = transforms.Compose([
21
  ])
22
  im = transform(image).unsqueeze(0) # Add batch dimension (BCHW)
23
 
24
-
25
- output = model(im)
26
- print(output)
27
-
 
28
 
29
 
30
  # Get predictions
@@ -48,3 +49,63 @@ if hasattr(model, 'names'):
48
  class_name = model.names[predicted_class_id]
49
  print(f"Predicted Class Name: {class_name}")
50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  ])
22
  im = transform(image).unsqueeze(0) # Add batch dimension (BCHW)
23
 
24
+ try:
25
+ output = model(im)
26
+ print(output)
27
+ except Exception as e:
28
+ logger.error(f"Error in image prediction: {e}")
29
 
30
 
31
  # Get predictions
 
49
  class_name = model.names[predicted_class_id]
50
  print(f"Predicted Class Name: {class_name}")
51
 
52
+ # import torch
53
+ # import cv2 # Import OpenCV
54
+ # from torchvision import transforms
55
+ # import pathlib
56
+
57
+ # # Pathlib adjustment for Windows compatibility
58
+ # temp = pathlib.PosixPath
59
+ # pathlib.PosixPath = pathlib.WindowsPath
60
+
61
+ # # Load pre-trained YOLOv5 model
62
+ # model = torch.hub.load(
63
+ # r'C:\Users\RESHMA R B\OneDrive\Documents\Desktop\project_without_malayalam\chatbot2\yolov5',
64
+ # 'custom',
65
+ # path=r"C:\Users\RESHMA R B\OneDrive\Documents\Desktop\project_without_malayalam\chatbot2\models\best.pt",
66
+ # source="local"
67
+ # )
68
+
69
+ # # Set model to evaluation mode
70
+ # model.eval()
71
+
72
+ # # Define image transformations (for PyTorch)
73
+ # transform = transforms.Compose([
74
+ # transforms.ToTensor(), # Convert image to tensor
75
+ # transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), # Normalize
76
+ # ])
77
+
78
+ # # Load and preprocess the image using OpenCV
79
+ # img_path = r"C:\Users\RESHMA R B\OneDrive\Documents\Desktop\project_without_malayalam\chatbot2\ACNE.jpg"
80
+ # image = cv2.imread(img_path) # Load image in BGR format
81
+ # image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Convert BGR to RGB
82
+ # image_resized = cv2.resize(image, (224, 224)) # Resize to match model's expected input size
83
+
84
+ # # Transform the image for the model
85
+ # im = transform(image_resized).unsqueeze(0) # Add batch dimension (BCHW)
86
+
87
+ # # Get predictions
88
+ # with torch.no_grad():
89
+ # output = model(im) # Raw model output (logits)
90
+
91
+ # # Apply softmax to get confidence scores
92
+ # softmax = torch.nn.Softmax(dim=1)
93
+ # probs = softmax(output)
94
+
95
+ # # Get the predicted class and its confidence score
96
+ # predicted_class_id = torch.argmax(probs, dim=1).item()
97
+ # confidence_score = probs[0, predicted_class_id].item()
98
+
99
+ # # Print predicted class and confidence score
100
+ # print(f"Predicted Class ID: {predicted_class_id}")
101
+ # print(f"Confidence Score: {confidence_score:.4f}")
102
+
103
+ # # Print predicted class name if available
104
+ # if hasattr(model, 'names'):
105
+ # class_name = model.names[predicted_class_id]
106
+ # print(f"Predicted Class Name: {class_name}")
107
+
108
+
109
+ # cv2.imshow("Input Image", image)
110
+ # cv2.waitKey(0)
111
+ # cv2.destroyAllWindows()