File size: 9,845 Bytes
d244e18 e6bb884 15ed0e7 d244e18 e6bb884 0bdd491 f2f7dda e6bb884 d244e18 9476a94 4d8d888 e6bb884 4d8d888 e6bb884 d244e18 a9e6c3b e6bb884 c90c2ec f172bb5 d38433c e6bb884 b604a12 e6bb884 bca3677 44e6288 bca3677 a620e89 b604a12 a28a9dc e6bb884 a28a9dc e6bb884 a28a9dc e6bb884 3f05b9b e6bb884 d244e18 412e4a3 d244e18 3f10389 d244e18 d6300d9 e2856eb d6300d9 40a5413 d49ec41 c046298 d244e18 c046298 d6300d9 c046298 d6300d9 c046298 d6300d9 c046298 d4cb8b0 335e50c d4cb8b0 e0a5d56 c046298 335e50c e0a5d56 335e50c b90007a e0a5d56 b90007a e0a5d56 d6300d9 072b5a9 3f05b9b e0a5d56 c046298 e0a5d56 d4cb8b0 c046298 e0a5d56 229a73d e0a5d56 229a73d e0a5d56 229a73d e0a5d56 e2856eb e0a5d56 e2856eb e0a5d56 e2856eb e0a5d56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import os
import requests
import streamlit as st
import pickle
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain_groq import ChatGroq
from langchain.document_loaders import PDFPlumberLoader
from langchain_experimental.text_splitter import SemanticChunker
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_chroma import Chroma
from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth
# Set API Keys
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
# Load LLM models
llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b")
rag_llm = ChatGroq(model="mixtral-8x7b-32768")
llm_judge.verbose = True
rag_llm.verbose = True
VECTOR_DB_PATH = "/tmp/chroma_db"
CHUNKS_FILE = "/tmp/chunks.pkl"
# Session State Initialization
if "vector_store" not in st.session_state:
st.session_state.vector_store = None
if "documents" not in st.session_state:
st.session_state.documents = None
if "pdf_path" not in st.session_state:
st.session_state.pdf_path = None
if "pdf_loaded" not in st.session_state:
st.session_state.pdf_loaded = False
if "chunked" not in st.session_state:
st.session_state.chunked = False
if "vector_created" not in st.session_state:
st.session_state.vector_created = False
st.title("Blah-2")
# Step 1: Choose PDF Source
pdf_source = st.radio("Upload or provide a link to a PDF:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
if pdf_source == "Upload a PDF file":
uploaded_file = st.file_uploader("Upload your PDF file", type="pdf")
if uploaded_file:
st.session_state.pdf_path = "temp.pdf"
with open(st.session_state.pdf_path, "wb") as f:
f.write(uploaded_file.getbuffer())
st.session_state.pdf_loaded = False
st.session_state.chunked = False
st.session_state.vector_created = False
elif pdf_source == "Enter a PDF URL":
pdf_url = st.text_input("Enter PDF URL:")
if pdf_url and not st.session_state.pdf_path:
with st.spinner("Downloading PDF..."):
try:
response = requests.get(pdf_url)
if response.status_code == 200:
st.session_state.pdf_path = "temp.pdf"
with open(st.session_state.pdf_path, "wb") as f:
f.write(response.content)
st.session_state.pdf_loaded = False
st.session_state.chunked = False
st.session_state.vector_created = False
st.success("β
PDF Downloaded Successfully!")
else:
st.error("β Failed to download PDF. Check the URL.")
except Exception as e:
st.error(f"β Error downloading PDF: {e}")
# Step 2: Load & Process PDF (Only Once)
if st.session_state.pdf_path and not st.session_state.pdf_loaded:
with st.spinner("Loading PDF..."):
try:
loader = PDFPlumberLoader(st.session_state.pdf_path)
docs = loader.load()
st.session_state.documents = docs
st.session_state.pdf_loaded = True
st.success(f"β
**PDF Loaded!** Total Pages: {len(docs)}")
except Exception as e:
st.error(f"β Error processing PDF: {e}")
# Load Cached Chunks if Available
def load_chunks():
if os.path.exists(CHUNKS_FILE):
with open(CHUNKS_FILE, "rb") as f:
return pickle.load(f)
return None
if not st.session_state.chunked: # Ensure chunking only happens once
cached_chunks = load_chunks()
if cached_chunks:
st.session_state.documents = cached_chunks
st.session_state.chunked = True
# Step 3: Chunking (Only Happens Once)
if st.session_state.pdf_loaded and not st.session_state.chunked:
with st.spinner("Chunking the document..."):
try:
model_name = "nomic-ai/modernbert-embed-base"
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={'device': 'cpu'})
text_splitter = SemanticChunker(embedding_model)
if st.session_state.documents:
documents = text_splitter.split_documents(st.session_state.documents)
st.session_state.documents = documents
st.session_state.chunked = True
# Save chunks for persistence
with open(CHUNKS_FILE, "wb") as f:
pickle.dump(documents, f)
st.success(f"β
**Document Chunked!** Total Chunks: {len(documents)}")
except Exception as e:
st.error(f"β Error chunking document: {e}")
# Step 4: Setup Vectorstore
def load_vector_store():
return Chroma(persist_directory=VECTOR_DB_PATH, collection_name="deepseek_collection", embedding_function=HuggingFaceEmbeddings(model_name="nomic-ai/modernbert-embed-base"))
if st.session_state.chunked and not st.session_state.vector_created:
with st.spinner("Creating vector store..."):
try:
if st.session_state.vector_store is None: # Prevent unnecessary reloading
st.session_state.vector_store = load_vector_store()
if len(st.session_state.vector_store.get()["documents"]) == 0: # Prevent duplicate insertions
st.session_state.vector_store.add_documents(st.session_state.documents)
num_documents = len(st.session_state.vector_store.get()["documents"])
st.session_state.vector_created = True
st.success(f"β
**Vector Store Created!** Total documents stored: {num_documents}")
except Exception as e:
st.error(f"β Error creating vector store: {e}")
# Debugging Logs
st.write("π **PDF Loaded:**", st.session_state.pdf_loaded)
st.write("πΉ **Chunked:**", st.session_state.chunked)
st.write("π **Vector Store Created:**", st.session_state.vector_created)
# ----------------- Query Input -----------------
query = st.text_input("π Ask a question about the document:")
if query:
with st.spinner("π Retrieving relevant context..."):
retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
contexts = retriever.invoke(query)
context = [d.page_content for d in contexts]
st.success("β
Context retrieved successfully!")
st.write(contexts, len(contexts))
st.write(context, len(context))
# ----------------- Run Individual Chains Explicitly -----------------
context_relevancy_checker_prompt = PromptTemplate(input_variables=["retriever_query","context"],template=relevancy_prompt)
context_relevancy_evaluation_chain = LLMChain(llm=llm_judge, prompt=context_relevancy_checker_prompt, output_key="relevancy_response")
response_crisis = context_relevancy_evaluation_chain.invoke({"context":context,"retriever_query":query})
pick_relevant_context_chain = LLMChain(llm=llm_judge, prompt=relevant_prompt, output_key="context_number")
relevant_response = pick_relevant_context_chain.invoke({"relevancy_response":response_crisis['relevancy_response']})
relevant_contexts_chain = LLMChain(llm=llm_judge, prompt=context_prompt, output_key="relevant_contexts")
contexts = relevant_contexts_chain.invoke({"context_number":relevant_response['context_number'],"context":context})
#temp
st.subheader("Relevant Contexts")
st.json(contexts['relevant_contexts'])
response_chain = LLMChain(llm=rag_llm,prompt=final_prompt,output_key="final_response")
#temp
st.subheader("Response Chain")
st.json(response_chain)
#response = chain.invoke({"query":query,"context":contexts['relevant_contexts']})
#temp
#st.subheader("blah response")
#st.json(response.content)
# Orchestrate using SequentialChain
context_management_chain = SequentialChain(
chains=[context_relevancy_evaluation_chain ,pick_relevant_context_chain, relevant_contexts_chain,response_chain],
input_variables=["context","retriever_query","query"],
output_variables=["relevancy_response", "context_number","relevant_contexts","final_response"]
)
final_output = context_management_chain({"context":context,"retriever_query":query,"query":query})
st.subheader("Final Output from Context Management chain")
st.json(final_output)
st.subheader("Context of Final Output from Context Management chain")
st.json(final_output['context'])
st.header("Relevancy Response")
st.json(final_output['relevancy_response'])
st.subheader("Relevant Context")
st.json(final_output['relevant_contexts'])
response = chain.invoke({"query":query,"context":final_output['relevant_contexts']})
st.subheader("Final Response")
st.json(response.content)
# ----------------- Display All Outputs -----------------
#st.subheader("response_crisis")
#st.json((response_crisis))
#st.subheader("response_crisis['relevancy_response']")
#st.json((response_crisis['relevancy_response']))
#st.markdown("### Context Relevancy Evaluation")
#st.json(response_crisis["relevancy_response"])
#st.markdown("### Picked Relevant Contexts")
#st.json(relevant_response["context_number"])
#st.markdown("### Extracted Relevant Contexts")
#st.json(contexts["relevant_contexts"])
#st.subheader("context_relevancy_evaluation_chain Statement")
#st.json(final_response["relevancy_response"])
#st.subheader("pick_relevant_context_chain Statement")
#st.json(final_response["context_number"])
#st.subheader("relevant_contexts_chain Statement")
#st.json(final_response["relevant_contexts"])
#st.subheader("RAG Response Statement")
#st.json(final_response["final_response"])
|