File size: 9,845 Bytes
d244e18
 
e6bb884
 
15ed0e7
d244e18
 
e6bb884
 
 
 
0bdd491
f2f7dda
e6bb884
d244e18
9476a94
4d8d888
 
 
 
 
 
 
e6bb884
 
4d8d888
e6bb884
 
 
 
 
 
 
d244e18
 
 
 
 
 
a9e6c3b
e6bb884
 
 
c90c2ec
f172bb5
d38433c
e6bb884
b604a12
e6bb884
bca3677
44e6288
bca3677
a620e89
 
b604a12
a28a9dc
 
e6bb884
 
a28a9dc
 
 
e6bb884
a28a9dc
 
 
 
 
 
 
 
 
e6bb884
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f05b9b
e6bb884
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d244e18
412e4a3
d244e18
3f10389
d244e18
 
 
d6300d9
 
e2856eb
d6300d9
 
40a5413
d49ec41
c046298
d244e18
c046298
d6300d9
c046298
d6300d9
c046298
d6300d9
c046298
 
d4cb8b0
 
 
 
 
 
 
 
 
 
335e50c
 
d4cb8b0
 
 
e0a5d56
c046298
335e50c
e0a5d56
 
335e50c
 
 
 
 
 
 
b90007a
 
 
 
 
 
 
 
 
 
 
 
 
 
e0a5d56
b90007a
 
e0a5d56
d6300d9
072b5a9
3f05b9b
e0a5d56
 
c046298
e0a5d56
 
d4cb8b0
 
c046298
e0a5d56
 
229a73d
e0a5d56
 
229a73d
e0a5d56
 
229a73d
e0a5d56
 
e2856eb
e0a5d56
 
e2856eb
e0a5d56
 
e2856eb
e0a5d56
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import os
import requests
import streamlit as st
import pickle
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain_groq import ChatGroq
from langchain.document_loaders import PDFPlumberLoader
from langchain_experimental.text_splitter import SemanticChunker
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_chroma import Chroma
from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth

# Set API Keys
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")

# Load LLM models
llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b")
rag_llm = ChatGroq(model="mixtral-8x7b-32768")

llm_judge.verbose = True
rag_llm.verbose = True

VECTOR_DB_PATH = "/tmp/chroma_db"  
CHUNKS_FILE = "/tmp/chunks.pkl"  

# Session State Initialization
if "vector_store" not in st.session_state:
    st.session_state.vector_store = None
if "documents" not in st.session_state:
    st.session_state.documents = None
if "pdf_path" not in st.session_state:
    st.session_state.pdf_path = None  
if "pdf_loaded" not in st.session_state:
    st.session_state.pdf_loaded = False
if "chunked" not in st.session_state:
    st.session_state.chunked = False
if "vector_created" not in st.session_state:
    st.session_state.vector_created = False

st.title("Blah-2")

# Step 1: Choose PDF Source
pdf_source = st.radio("Upload or provide a link to a PDF:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)

if pdf_source == "Upload a PDF file":
    uploaded_file = st.file_uploader("Upload your PDF file", type="pdf")
    if uploaded_file:
        st.session_state.pdf_path = "temp.pdf"
        with open(st.session_state.pdf_path, "wb") as f:
            f.write(uploaded_file.getbuffer())
        st.session_state.pdf_loaded = False
        st.session_state.chunked = False
        st.session_state.vector_created = False

elif pdf_source == "Enter a PDF URL":
    pdf_url = st.text_input("Enter PDF URL:")
    if pdf_url and not st.session_state.pdf_path:
        with st.spinner("Downloading PDF..."):
            try:
                response = requests.get(pdf_url)
                if response.status_code == 200:
                    st.session_state.pdf_path = "temp.pdf"
                    with open(st.session_state.pdf_path, "wb") as f:
                        f.write(response.content)
                    st.session_state.pdf_loaded = False
                    st.session_state.chunked = False
                    st.session_state.vector_created = False
                    st.success("βœ… PDF Downloaded Successfully!")
                else:
                    st.error("❌ Failed to download PDF. Check the URL.")
            except Exception as e:
                st.error(f"❌ Error downloading PDF: {e}")

# Step 2: Load & Process PDF (Only Once)
if st.session_state.pdf_path and not st.session_state.pdf_loaded:
    with st.spinner("Loading PDF..."):
        try:
            loader = PDFPlumberLoader(st.session_state.pdf_path)
            docs = loader.load()
            st.session_state.documents = docs
            st.session_state.pdf_loaded = True
            st.success(f"βœ… **PDF Loaded!** Total Pages: {len(docs)}")
        except Exception as e:
            st.error(f"❌ Error processing PDF: {e}")

# Load Cached Chunks if Available
def load_chunks():
    if os.path.exists(CHUNKS_FILE):
        with open(CHUNKS_FILE, "rb") as f:
            return pickle.load(f)
    return None

if not st.session_state.chunked:  # Ensure chunking only happens once
    cached_chunks = load_chunks()
    if cached_chunks:
        st.session_state.documents = cached_chunks
        st.session_state.chunked = True

# Step 3: Chunking (Only Happens Once)
if st.session_state.pdf_loaded and not st.session_state.chunked:
    with st.spinner("Chunking the document..."):
        try:
            model_name = "nomic-ai/modernbert-embed-base"
            embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={'device': 'cpu'})
            text_splitter = SemanticChunker(embedding_model)
            
            if st.session_state.documents:
                documents = text_splitter.split_documents(st.session_state.documents)
                st.session_state.documents = documents
                st.session_state.chunked = True

                # Save chunks for persistence
                with open(CHUNKS_FILE, "wb") as f:
                    pickle.dump(documents, f)

                st.success(f"βœ… **Document Chunked!** Total Chunks: {len(documents)}")
        except Exception as e:
            st.error(f"❌ Error chunking document: {e}")

# Step 4: Setup Vectorstore 
def load_vector_store():
    return Chroma(persist_directory=VECTOR_DB_PATH, collection_name="deepseek_collection", embedding_function=HuggingFaceEmbeddings(model_name="nomic-ai/modernbert-embed-base"))

if st.session_state.chunked and not st.session_state.vector_created:
    with st.spinner("Creating vector store..."):
        try:
            if st.session_state.vector_store is None:  # Prevent unnecessary reloading
                st.session_state.vector_store = load_vector_store()

            if len(st.session_state.vector_store.get()["documents"]) == 0:  # Prevent duplicate insertions
                st.session_state.vector_store.add_documents(st.session_state.documents)

            num_documents = len(st.session_state.vector_store.get()["documents"])
            st.session_state.vector_created = True
            st.success(f"βœ… **Vector Store Created!** Total documents stored: {num_documents}")
        except Exception as e:
            st.error(f"❌ Error creating vector store: {e}")

# Debugging Logs
st.write("πŸ“„ **PDF Loaded:**", st.session_state.pdf_loaded)
st.write("πŸ”Ή **Chunked:**", st.session_state.chunked)
st.write("πŸ“‚ **Vector Store Created:**", st.session_state.vector_created)


# ----------------- Query Input -----------------
query = st.text_input("πŸ” Ask a question about the document:")
if query:
    with st.spinner("πŸ”„ Retrieving relevant context..."):
        retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
        contexts = retriever.invoke(query)
        context = [d.page_content for d in contexts]
        st.success("βœ… Context retrieved successfully!")
        st.write(contexts, len(contexts))
        st.write(context, len(context))
    # ----------------- Run Individual Chains Explicitly -----------------

    context_relevancy_checker_prompt = PromptTemplate(input_variables=["retriever_query","context"],template=relevancy_prompt)

    context_relevancy_evaluation_chain = LLMChain(llm=llm_judge, prompt=context_relevancy_checker_prompt, output_key="relevancy_response")

    response_crisis = context_relevancy_evaluation_chain.invoke({"context":context,"retriever_query":query})

    pick_relevant_context_chain = LLMChain(llm=llm_judge, prompt=relevant_prompt, output_key="context_number")

    relevant_response = pick_relevant_context_chain.invoke({"relevancy_response":response_crisis['relevancy_response']})

    relevant_contexts_chain = LLMChain(llm=llm_judge, prompt=context_prompt, output_key="relevant_contexts")

    contexts = relevant_contexts_chain.invoke({"context_number":relevant_response['context_number'],"context":context})

    #temp
    st.subheader("Relevant Contexts")
    st.json(contexts['relevant_contexts']) 

    response_chain = LLMChain(llm=rag_llm,prompt=final_prompt,output_key="final_response")


    #temp
    st.subheader("Response Chain")
    st.json(response_chain)

    #response = chain.invoke({"query":query,"context":contexts['relevant_contexts']})

    #temp
    #st.subheader("blah response")
    #st.json(response.content)

    # Orchestrate using SequentialChain
    context_management_chain = SequentialChain(
        chains=[context_relevancy_evaluation_chain ,pick_relevant_context_chain, relevant_contexts_chain,response_chain],
        input_variables=["context","retriever_query","query"],
        output_variables=["relevancy_response", "context_number","relevant_contexts","final_response"]
    )
    final_output = context_management_chain({"context":context,"retriever_query":query,"query":query})
    st.subheader("Final Output from Context Management chain")
    st.json(final_output)
    
    st.subheader("Context of Final Output from Context Management chain")
    st.json(final_output['context'])
    
    st.header("Relevancy Response")
    st.json(final_output['relevancy_response'])
    
    st.subheader("Relevant Context")
    st.json(final_output['relevant_contexts'])
    
    response = chain.invoke({"query":query,"context":final_output['relevant_contexts']})
    
    st.subheader("Final Response")
    st.json(response.content)



    # ----------------- Display All Outputs -----------------
    #st.subheader("response_crisis")
    #st.json((response_crisis))

    #st.subheader("response_crisis['relevancy_response']")
    #st.json((response_crisis['relevancy_response']))


    
    #st.markdown("### Context Relevancy Evaluation")
    #st.json(response_crisis["relevancy_response"])

    #st.markdown("### Picked Relevant Contexts")
    #st.json(relevant_response["context_number"])

    #st.markdown("### Extracted Relevant Contexts")
    #st.json(contexts["relevant_contexts"])

    #st.subheader("context_relevancy_evaluation_chain Statement")
    #st.json(final_response["relevancy_response"])

    #st.subheader("pick_relevant_context_chain Statement")
    #st.json(final_response["context_number"])

    #st.subheader("relevant_contexts_chain Statement")
    #st.json(final_response["relevant_contexts"])

    #st.subheader("RAG Response Statement")
    #st.json(final_response["final_response"])