Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,4 @@
|
|
1 |
-
|
2 |
-
import chromadb
|
3 |
-
import requests
|
4 |
-
import streamlit as st
|
5 |
-
from langchain.chains import LLMChain
|
6 |
-
from langchain.prompts import PromptTemplate
|
7 |
-
from langchain_groq import ChatGroq
|
8 |
-
from langchain.document_loaders import PDFPlumberLoader
|
9 |
-
from langchain_experimental.text_splitter import SemanticChunker
|
10 |
-
from langchain_huggingface import HuggingFaceEmbeddings
|
11 |
-
from langchain_chroma import Chroma
|
12 |
-
from prompts import rag_prompt
|
13 |
|
14 |
# Set API Keys
|
15 |
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
|
@@ -26,21 +15,7 @@ chromadb.api.client.SharedSystemClient.clear_system_cache()
|
|
26 |
|
27 |
st.title("Blah - 1")
|
28 |
|
29 |
-
|
30 |
-
if "pdf_path" not in st.session_state:
|
31 |
-
st.session_state.pdf_path = None
|
32 |
-
if "pdf_loaded" not in st.session_state:
|
33 |
-
st.session_state.pdf_loaded = False
|
34 |
-
if "chunked" not in st.session_state:
|
35 |
-
st.session_state.chunked = False
|
36 |
-
if "vector_created" not in st.session_state:
|
37 |
-
st.session_state.vector_created = False
|
38 |
-
if "vector_store_path" not in st.session_state:
|
39 |
-
st.session_state.vector_store_path = "./chroma_langchain_db"
|
40 |
-
if "vector_store" not in st.session_state:
|
41 |
-
st.session_state.vector_store = None
|
42 |
-
if "documents" not in st.session_state:
|
43 |
-
st.session_state.documents = None
|
44 |
|
45 |
# Step 1: Choose PDF Source
|
46 |
pdf_source = st.radio("Upload or provide a link to a PDF:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
|
@@ -74,62 +49,3 @@ elif pdf_source == "Enter a PDF URL":
|
|
74 |
except Exception as e:
|
75 |
st.error(f"Error downloading PDF: {e}")
|
76 |
|
77 |
-
# Step 2: Process PDF
|
78 |
-
if st.session_state.pdf_path and not st.session_state.get("pdf_loaded", False):
|
79 |
-
with st.spinner("Loading and processing PDF..."):
|
80 |
-
loader = PDFPlumberLoader(st.session_state.pdf_path)
|
81 |
-
docs = loader.load()
|
82 |
-
st.session_state.documents = docs
|
83 |
-
st.session_state.pdf_loaded = True # β
Prevent re-loading
|
84 |
-
st.success(f"β
**PDF Loaded!** Total Pages: {len(docs)}")
|
85 |
-
|
86 |
-
# Step 3: Chunking
|
87 |
-
if st.session_state.get("pdf_loaded", False) and not st.session_state.get("chunked", False):
|
88 |
-
with st.spinner("Chunking the document..."):
|
89 |
-
model_name = "nomic-ai/modernbert-embed-base"
|
90 |
-
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': False})
|
91 |
-
text_splitter = SemanticChunker(embedding_model)
|
92 |
-
documents = text_splitter.split_documents(st.session_state.documents)
|
93 |
-
st.session_state.documents = documents # β
Store chunked docs
|
94 |
-
st.session_state.chunked = True # β
Prevent re-chunking
|
95 |
-
st.success(f"β
**Document Chunked!** Total Chunks: {len(documents)}")
|
96 |
-
|
97 |
-
# Step 4: Setup Vectorstore
|
98 |
-
if st.session_state.get("chunked", False) and not st.session_state.get("vector_created", False):
|
99 |
-
with st.spinner("Creating vector store..."):
|
100 |
-
embedding_model = HuggingFaceEmbeddings(model_name="nomic-ai/modernbert-embed-base", model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': False})
|
101 |
-
|
102 |
-
vector_store = Chroma(
|
103 |
-
collection_name="deepseek_collection",
|
104 |
-
collection_metadata={"hnsw:space": "cosine"},
|
105 |
-
embedding_function=embedding_model,
|
106 |
-
persist_directory=st.session_state.vector_store_path
|
107 |
-
)
|
108 |
-
vector_store.add_documents(st.session_state.documents)
|
109 |
-
num_documents = len(vector_store.get()["documents"])
|
110 |
-
st.session_state.vector_store = vector_store
|
111 |
-
st.session_state.vector_created = True # β
Prevent re-creating vector store
|
112 |
-
st.success(f"β
**Vector Store Created!** Total documents stored: {num_documents}")
|
113 |
-
|
114 |
-
# Step 5: Query Input
|
115 |
-
if st.session_state.get("vector_created", False) and st.session_state.get("vector_store", None):
|
116 |
-
query = st.text_input("π Enter a Query:")
|
117 |
-
|
118 |
-
if query and st.session_state.get("vector_created", False):
|
119 |
-
with st.spinner("Retrieving relevant contexts..."):
|
120 |
-
retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
|
121 |
-
contexts = retriever.invoke(query)
|
122 |
-
context_texts = [doc.page_content for doc in contexts]
|
123 |
-
|
124 |
-
st.success(f"β
**Retrieved {len(context_texts)} Contexts!**")
|
125 |
-
for i, text in enumerate(context_texts, 1):
|
126 |
-
st.write(f"**Context {i}:** {text[:500]}...")
|
127 |
-
|
128 |
-
# **Step 6: Generate Final Response**
|
129 |
-
with st.spinner("Generating the final answer..."):
|
130 |
-
final_prompt = PromptTemplate(input_variables=["query", "context"], template=rag_prompt)
|
131 |
-
response_chain = LLMChain(llm=rag_llm, prompt=final_prompt, output_key="final_response")
|
132 |
-
final_response = response_chain.invoke({"query": query, "context": context_texts})
|
133 |
-
|
134 |
-
st.subheader("π₯ RAG Final Response")
|
135 |
-
st.success(final_response['final_response'])
|
|
|
1 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
# Set API Keys
|
4 |
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
|
|
|
15 |
|
16 |
st.title("Blah - 1")
|
17 |
|
18 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
# Step 1: Choose PDF Source
|
21 |
pdf_source = st.radio("Upload or provide a link to a PDF:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
|
|
|
49 |
except Exception as e:
|
50 |
st.error(f"Error downloading PDF: {e}")
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|