Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@ import os
|
|
2 |
import chromadb
|
3 |
import requests
|
4 |
import streamlit as st
|
5 |
-
from langchain.chains import
|
6 |
from langchain.prompts import PromptTemplate
|
7 |
from langchain_groq import ChatGroq
|
8 |
from langchain.document_loaders import PDFPlumberLoader
|
@@ -11,7 +11,6 @@ from langchain_huggingface import HuggingFaceEmbeddings
|
|
11 |
from langchain_chroma import Chroma
|
12 |
from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth
|
13 |
|
14 |
-
|
15 |
# Set API Keys
|
16 |
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
|
17 |
|
@@ -25,13 +24,15 @@ rag_llm.verbose = True
|
|
25 |
# Clear ChromaDB cache to fix tenant issue
|
26 |
chromadb.api.client.SharedSystemClient.clear_system_cache()
|
27 |
|
28 |
-
st.title("
|
29 |
|
30 |
# Initialize session state variables
|
31 |
if "vector_store" not in st.session_state:
|
32 |
st.session_state.vector_store = None
|
33 |
if "documents" not in st.session_state:
|
34 |
st.session_state.documents = None
|
|
|
|
|
35 |
if "pdf_loaded" not in st.session_state:
|
36 |
st.session_state.pdf_loaded = False
|
37 |
if "chunked" not in st.session_state:
|
@@ -42,44 +43,43 @@ if "vector_created" not in st.session_state:
|
|
42 |
# Step 1: Choose PDF Source
|
43 |
pdf_source = st.radio("Upload or provide a link to a PDF:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
|
44 |
|
45 |
-
pdf_path = None
|
46 |
if pdf_source == "Upload a PDF file":
|
47 |
uploaded_file = st.file_uploader("Upload your PDF file", type="pdf")
|
48 |
if uploaded_file:
|
49 |
-
pdf_path = "temp.pdf"
|
50 |
-
with open(pdf_path, "wb") as f:
|
51 |
f.write(uploaded_file.getbuffer())
|
52 |
-
|
53 |
-
st.session_state.pdf_loaded = False
|
54 |
st.session_state.chunked = False
|
55 |
st.session_state.vector_created = False
|
|
|
56 |
|
57 |
elif pdf_source == "Enter a PDF URL":
|
58 |
pdf_url = st.text_input("Enter PDF URL:", value="https://arxiv.org/pdf/2406.06998")
|
59 |
-
if pdf_url:
|
60 |
with st.spinner("Downloading PDF..."):
|
61 |
try:
|
62 |
response = requests.get(pdf_url)
|
63 |
if response.status_code == 200:
|
64 |
-
pdf_path = "temp.pdf"
|
65 |
-
with open(pdf_path, "wb") as f:
|
66 |
f.write(response.content)
|
67 |
-
st.success("β
PDF Downloaded Successfully!")
|
68 |
st.session_state.pdf_loaded = False
|
69 |
st.session_state.chunked = False
|
70 |
st.session_state.vector_created = False
|
|
|
71 |
else:
|
72 |
st.error("β Failed to download PDF. Check the URL.")
|
73 |
-
except Exception as e:
|
74 |
st.error(f"Error downloading PDF: {e}")
|
75 |
|
76 |
# Step 2: Process PDF
|
77 |
-
if pdf_path and not st.session_state.pdf_loaded:
|
78 |
-
with st.spinner("Loading PDF..."):
|
79 |
-
loader = PDFPlumberLoader(pdf_path)
|
80 |
docs = loader.load()
|
81 |
st.session_state.documents = docs
|
82 |
-
st.session_state.pdf_loaded = True
|
83 |
st.success(f"β
**PDF Loaded!** Total Pages: {len(docs)}")
|
84 |
|
85 |
# Step 3: Chunking (Only if Not Already Done)
|
@@ -90,7 +90,7 @@ if st.session_state.pdf_loaded and not st.session_state.chunked:
|
|
90 |
text_splitter = SemanticChunker(embedding_model)
|
91 |
documents = text_splitter.split_documents(st.session_state.documents)
|
92 |
st.session_state.documents = documents
|
93 |
-
st.session_state.chunked = True
|
94 |
st.success(f"β
**Document Chunked!** Total Chunks: {len(documents)}")
|
95 |
|
96 |
# Step 4: Setup Vectorstore
|
@@ -103,8 +103,8 @@ if st.session_state.chunked and not st.session_state.vector_created:
|
|
103 |
)
|
104 |
vector_store.add_documents(st.session_state.documents)
|
105 |
num_documents = len(vector_store.get()["documents"])
|
106 |
-
st.session_state.vector_store = vector_store
|
107 |
-
st.session_state.vector_created = True
|
108 |
st.success(f"β
**Vector Store Created!** Total documents stored: {num_documents}")
|
109 |
|
110 |
# Step 5: Query Input
|
@@ -156,14 +156,5 @@ if st.session_state.vector_created:
|
|
156 |
st.subheader("π₯ RAG Final Response")
|
157 |
st.success(final_response['final_response'])
|
158 |
|
159 |
-
# Final + Intermediate Outputs
|
160 |
-
st.subheader("π **Full Workflow Breakdown:**")
|
161 |
-
st.json({
|
162 |
-
"Context Relevancy Evaluation": relevancy_response["relevancy_response"],
|
163 |
-
"Relevant Contexts": relevant_response["context_number"],
|
164 |
-
"Extracted Contexts": final_contexts["relevant_contexts"],
|
165 |
-
"Final Answer": final_response["final_response"]
|
166 |
-
})
|
167 |
-
|
168 |
else:
|
169 |
-
st.warning("π Please upload or provide a PDF URL first.")
|
|
|
2 |
import chromadb
|
3 |
import requests
|
4 |
import streamlit as st
|
5 |
+
from langchain.chains import LLMChain
|
6 |
from langchain.prompts import PromptTemplate
|
7 |
from langchain_groq import ChatGroq
|
8 |
from langchain.document_loaders import PDFPlumberLoader
|
|
|
11 |
from langchain_chroma import Chroma
|
12 |
from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth
|
13 |
|
|
|
14 |
# Set API Keys
|
15 |
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
|
16 |
|
|
|
24 |
# Clear ChromaDB cache to fix tenant issue
|
25 |
chromadb.api.client.SharedSystemClient.clear_system_cache()
|
26 |
|
27 |
+
st.title("π PDF-based RAG System")
|
28 |
|
29 |
# Initialize session state variables
|
30 |
if "vector_store" not in st.session_state:
|
31 |
st.session_state.vector_store = None
|
32 |
if "documents" not in st.session_state:
|
33 |
st.session_state.documents = None
|
34 |
+
if "pdf_path" not in st.session_state:
|
35 |
+
st.session_state.pdf_path = None
|
36 |
if "pdf_loaded" not in st.session_state:
|
37 |
st.session_state.pdf_loaded = False
|
38 |
if "chunked" not in st.session_state:
|
|
|
43 |
# Step 1: Choose PDF Source
|
44 |
pdf_source = st.radio("Upload or provide a link to a PDF:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
|
45 |
|
|
|
46 |
if pdf_source == "Upload a PDF file":
|
47 |
uploaded_file = st.file_uploader("Upload your PDF file", type="pdf")
|
48 |
if uploaded_file:
|
49 |
+
st.session_state.pdf_path = "temp.pdf"
|
50 |
+
with open(st.session_state.pdf_path, "wb") as f:
|
51 |
f.write(uploaded_file.getbuffer())
|
52 |
+
st.session_state.pdf_loaded = False
|
|
|
53 |
st.session_state.chunked = False
|
54 |
st.session_state.vector_created = False
|
55 |
+
st.success("β
PDF Uploaded Successfully!")
|
56 |
|
57 |
elif pdf_source == "Enter a PDF URL":
|
58 |
pdf_url = st.text_input("Enter PDF URL:", value="https://arxiv.org/pdf/2406.06998")
|
59 |
+
if pdf_url and st.session_state.pdf_path is None:
|
60 |
with st.spinner("Downloading PDF..."):
|
61 |
try:
|
62 |
response = requests.get(pdf_url)
|
63 |
if response.status_code == 200:
|
64 |
+
st.session_state.pdf_path = "temp.pdf"
|
65 |
+
with open(st.session_state.pdf_path, "wb") as f:
|
66 |
f.write(response.content)
|
|
|
67 |
st.session_state.pdf_loaded = False
|
68 |
st.session_state.chunked = False
|
69 |
st.session_state.vector_created = False
|
70 |
+
st.success("β
PDF Downloaded Successfully!")
|
71 |
else:
|
72 |
st.error("β Failed to download PDF. Check the URL.")
|
73 |
+
except Exception as e:
|
74 |
st.error(f"Error downloading PDF: {e}")
|
75 |
|
76 |
# Step 2: Process PDF
|
77 |
+
if st.session_state.pdf_path and not st.session_state.pdf_loaded:
|
78 |
+
with st.spinner("Loading and processing PDF..."):
|
79 |
+
loader = PDFPlumberLoader(st.session_state.pdf_path)
|
80 |
docs = loader.load()
|
81 |
st.session_state.documents = docs
|
82 |
+
st.session_state.pdf_loaded = True
|
83 |
st.success(f"β
**PDF Loaded!** Total Pages: {len(docs)}")
|
84 |
|
85 |
# Step 3: Chunking (Only if Not Already Done)
|
|
|
90 |
text_splitter = SemanticChunker(embedding_model)
|
91 |
documents = text_splitter.split_documents(st.session_state.documents)
|
92 |
st.session_state.documents = documents
|
93 |
+
st.session_state.chunked = True
|
94 |
st.success(f"β
**Document Chunked!** Total Chunks: {len(documents)}")
|
95 |
|
96 |
# Step 4: Setup Vectorstore
|
|
|
103 |
)
|
104 |
vector_store.add_documents(st.session_state.documents)
|
105 |
num_documents = len(vector_store.get()["documents"])
|
106 |
+
st.session_state.vector_store = vector_store
|
107 |
+
st.session_state.vector_created = True
|
108 |
st.success(f"β
**Vector Store Created!** Total documents stored: {num_documents}")
|
109 |
|
110 |
# Step 5: Query Input
|
|
|
156 |
st.subheader("π₯ RAG Final Response")
|
157 |
st.success(final_response['final_response'])
|
158 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
else:
|
160 |
+
st.warning("π Please upload or provide a PDF URL first.")
|