DrishtiSharma commited on
Commit
d244e18
Β·
verified Β·
1 Parent(s): a9e6c3b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +117 -17
app.py CHANGED
@@ -1,27 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
 
 
 
 
 
2
 
3
- # Set API Keys
4
- os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
5
-
6
- # Load LLM models
7
- llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b")
8
- rag_llm = ChatGroq(model="mixtral-8x7b-32768")
9
 
10
- llm_judge.verbose = True
11
- rag_llm.verbose = True
12
 
13
- # Clear ChromaDB cache to fix tenant issue
14
  chromadb.api.client.SharedSystemClient.clear_system_cache()
15
 
16
- st.title("Blah - 1")
17
-
 
 
 
 
 
 
 
 
 
18
 
 
 
 
19
 
20
- # Step 1: Choose PDF Source
21
- pdf_source = st.radio("Upload or provide a link to a PDF:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
 
22
 
23
  if pdf_source == "Upload a PDF file":
24
- uploaded_file = st.file_uploader("Upload your PDF file", type="pdf")
25
  if uploaded_file:
26
  st.session_state.pdf_path = "temp.pdf"
27
  with open(st.session_state.pdf_path, "wb") as f:
@@ -31,9 +55,9 @@ if pdf_source == "Upload a PDF file":
31
  st.session_state.vector_created = False
32
 
33
  elif pdf_source == "Enter a PDF URL":
34
- pdf_url = st.text_input("Enter PDF URL:")
35
- if pdf_url and not st.session_state.get("pdf_loaded", False):
36
- with st.spinner("Downloading PDF..."):
37
  try:
38
  response = requests.get(pdf_url)
39
  if response.status_code == 200:
@@ -49,3 +73,79 @@ elif pdf_source == "Enter a PDF URL":
49
  except Exception as e:
50
  st.error(f"Error downloading PDF: {e}")
51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import os
3
+ import requests
4
+ import tempfile
5
+ import chromadb
6
+ from langchain.document_loaders import PDFPlumberLoader
7
+ from langchain_huggingface import HuggingFaceEmbeddings
8
+ from langchain_experimental.text_splitter import SemanticChunker
9
+ from langchain_chroma import Chroma
10
+ from langchain.chains import LLMChain, SequentialChain
11
+ from langchain.prompts import PromptTemplate
12
+ from langchain_groq import ChatGroq
13
+ from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth
14
 
15
+ # ----------------- Streamlit UI Setup -----------------
16
+ st.set_page_config(page_title="Blah", layout="wide")
17
+ st.image("https://huggingface.co/front/assets/huggingface_logo-noborder.svg", width=150)
18
+ st.title("Blah-1")
19
 
 
 
 
 
 
 
20
 
21
+ # ----------------- API Keys -----------------
22
+ os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
23
 
24
+ # ----------------- Clear ChromaDB Cache -----------------
25
  chromadb.api.client.SharedSystemClient.clear_system_cache()
26
 
27
+ # ----------------- Initialize Session State -----------------
28
+ if "pdf_loaded" not in st.session_state:
29
+ st.session_state.pdf_loaded = False
30
+ if "chunked" not in st.session_state:
31
+ st.session_state.chunked = False
32
+ if "vector_created" not in st.session_state:
33
+ st.session_state.vector_created = False
34
+ if "processed_chunks" not in st.session_state:
35
+ st.session_state.processed_chunks = None
36
+ if "vector_store" not in st.session_state:
37
+ st.session_state.vector_store = None
38
 
39
+ # ----------------- Load Models -----------------
40
+ llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b")
41
+ rag_llm = ChatGroq(model="mixtral-8x7b-32768")
42
 
43
+ # ----------------- PDF Selection (Upload or URL) -----------------
44
+ st.sidebar.subheader("πŸ“‚ PDF Selection")
45
+ pdf_source = st.radio("Choose a PDF source:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
46
 
47
  if pdf_source == "Upload a PDF file":
48
+ uploaded_file = st.sidebar.file_uploader("Upload your PDF file", type=["pdf"])
49
  if uploaded_file:
50
  st.session_state.pdf_path = "temp.pdf"
51
  with open(st.session_state.pdf_path, "wb") as f:
 
55
  st.session_state.vector_created = False
56
 
57
  elif pdf_source == "Enter a PDF URL":
58
+ pdf_url = st.sidebar.text_input("Enter PDF URL:")
59
+ if pdf_url and not st.session_state.pdf_loaded:
60
+ with st.spinner("πŸ”„ Downloading PDF..."):
61
  try:
62
  response = requests.get(pdf_url)
63
  if response.status_code == 200:
 
73
  except Exception as e:
74
  st.error(f"Error downloading PDF: {e}")
75
 
76
+ # ----------------- Process PDF -----------------
77
+ if not st.session_state.pdf_loaded and "pdf_path" in st.session_state:
78
+ with st.spinner("πŸ”„ Processing document... Please wait."):
79
+ loader = PDFPlumberLoader(st.session_state.pdf_path)
80
+ docs = loader.load()
81
+
82
+ # Embedding Model
83
+ model_name = "nomic-ai/modernbert-embed-base"
84
+ embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={"device": "cpu"})
85
+
86
+ # Split into Chunks
87
+ text_splitter = SemanticChunker(embedding_model)
88
+ document_chunks = text_splitter.split_documents(docs)
89
+
90
+ # Store chunks in session state
91
+ st.session_state.processed_chunks = document_chunks
92
+ st.session_state.pdf_loaded = True
93
+ st.success("βœ… Document processed and chunked successfully!")
94
+
95
+ # ----------------- Setup Vector Store -----------------
96
+ if not st.session_state.vector_created and st.session_state.processed_chunks:
97
+ with st.spinner("πŸ”„ Initializing Vector Store..."):
98
+ vector_store = Chroma(
99
+ collection_name="deepseek_collection",
100
+ collection_metadata={"hnsw:space": "cosine"},
101
+ embedding_function=embedding_model,
102
+ persist_directory="./chroma_langchain_db"
103
+ )
104
+ vector_store.add_documents(st.session_state.processed_chunks)
105
+ st.session_state.vector_store = vector_store
106
+ st.session_state.vector_created = True
107
+ st.success("βœ… Vector store initialized successfully!")
108
+
109
+ # ----------------- Query Input -----------------
110
+ query = st.text_input("πŸ” Ask a question about the document:")
111
+
112
+ if query:
113
+ with st.spinner("πŸ”„ Retrieving relevant context..."):
114
+ retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
115
+ retrieved_docs = retriever.invoke(query)
116
+ context = [d.page_content for d in retrieved_docs]
117
+ st.success("βœ… Context retrieved successfully!")
118
+
119
+ # ----------------- Full SequentialChain Execution -----------------
120
+ with st.spinner("πŸ”„ Running full pipeline..."):
121
+ context_relevancy_checker_prompt = PromptTemplate(input_variables=["retriever_query", "context"], template=relevancy_prompt)
122
+ relevant_prompt = PromptTemplate(input_variables=["relevancy_response"], template=relevant_context_picker_prompt)
123
+ context_prompt = PromptTemplate(input_variables=["context_number", "context"], template=response_synth)
124
+ final_prompt = PromptTemplate(input_variables=["query", "context"], template=rag_prompt)
125
+
126
+ context_relevancy_chain = LLMChain(llm=llm_judge, prompt=context_relevancy_checker_prompt, output_key="relevancy_response")
127
+ relevant_context_chain = LLMChain(llm=llm_judge, prompt=relevant_prompt, output_key="context_number")
128
+ relevant_contexts_chain = LLMChain(llm=llm_judge, prompt=context_prompt, output_key="relevant_contexts")
129
+ response_chain = LLMChain(llm=rag_llm, prompt=final_prompt, output_key="final_response")
130
+
131
+ context_management_chain = SequentialChain(
132
+ chains=[context_relevancy_chain, relevant_context_chain, relevant_contexts_chain, response_chain],
133
+ input_variables=["context", "retriever_query", "query"],
134
+ output_variables=["relevancy_response", "context_number", "relevant_contexts", "final_response"]
135
+ )
136
+
137
+ final_output = context_management_chain.invoke({"context": context, "retriever_query": query, "query": query})
138
+ st.success("βœ… Full pipeline executed successfully!")
139
+
140
+ # ----------------- Display All Outputs -----------------
141
+ st.subheader("πŸŸ₯ Context Relevancy Evaluation")
142
+ st.json(final_output["relevancy_response"])
143
+
144
+ st.subheader("🟦 Picked Relevant Contexts")
145
+ st.json(final_output["context_number"])
146
+
147
+ st.subheader("πŸŸ₯ Extracted Relevant Contexts")
148
+ st.json(final_output["relevant_contexts"])
149
+
150
+ st.subheader("πŸŸ₯ RAG Final Response")
151
+ st.write(final_output["final_response"])