DrishtiSharma commited on
Commit
3f05b9b
Β·
verified Β·
1 Parent(s): cdf4653

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -42
app.py CHANGED
@@ -19,10 +19,6 @@ st.title("Blah-1")
19
  # ----------------- API Keys -----------------
20
  os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
21
 
22
- # ----------------- Ensure Vector Store Directory Exists -----------------
23
- if not os.path.exists("./chroma_langchain_db"):
24
- os.makedirs("./chroma_langchain_db")
25
-
26
  # ----------------- Clear ChromaDB Cache -----------------
27
  chromadb.api.client.SharedSystemClient.clear_system_cache()
28
 
@@ -38,7 +34,7 @@ if "processed_chunks" not in st.session_state:
38
  if "vector_store" not in st.session_state:
39
  st.session_state.vector_store = None
40
 
41
- # ----------------- Load Models -------------------
42
  llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b")
43
  rag_llm = ChatGroq(model="mixtral-8x7b-32768")
44
 
@@ -46,7 +42,7 @@ rag_llm = ChatGroq(model="mixtral-8x7b-32768")
46
  llm_judge.verbose = True
47
  rag_llm.verbose = True
48
 
49
- # ----------------- PDF Selection (Upload or URL) -----------------
50
  st.sidebar.subheader("πŸ“‚ PDF Selection")
51
  pdf_source = st.radio("Choose a PDF source:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
52
 
@@ -89,26 +85,25 @@ if not st.session_state.pdf_loaded and "pdf_path" in st.session_state:
89
  model_name = "nomic-ai/modernbert-embed-base"
90
  embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={"device": "cpu"})
91
 
92
- # Split into Chunks
93
- text_splitter = SemanticChunker(embedding_model)
94
- document_chunks = text_splitter.split_documents(docs)
 
 
 
95
 
96
- # Store chunks in session state
97
- st.session_state.processed_chunks = document_chunks
98
  st.session_state.pdf_loaded = True
99
  st.success("βœ… Document processed and chunked successfully!")
100
 
101
- # ----------------- Setup Vector Store -----------------
102
  if not st.session_state.vector_created and st.session_state.processed_chunks:
103
  with st.spinner("πŸ”„ Initializing Vector Store..."):
104
- vector_store = Chroma(
105
  collection_name="deepseek_collection",
106
  collection_metadata={"hnsw:space": "cosine"},
107
- embedding_function=embedding_model,
108
- persist_directory="./chroma_langchain_db"
109
  )
110
- vector_store.add_documents(st.session_state.processed_chunks)
111
- st.session_state.vector_store = vector_store
112
  st.session_state.vector_created = True
113
  st.success("βœ… Vector store initialized successfully!")
114
 
@@ -124,34 +119,23 @@ if query:
124
 
125
  # ----------------- Full SequentialChain Execution -----------------
126
  with st.spinner("πŸ”„ Running full pipeline..."):
127
- context_relevancy_checker_prompt = PromptTemplate(input_variables=["retriever_query", "context"], template=relevancy_prompt)
128
- relevant_prompt = PromptTemplate(input_variables=["relevancy_response"], template=relevant_context_picker_prompt)
129
- context_prompt = PromptTemplate(input_variables=["context_number", "context"], template=response_synth)
130
- final_prompt = PromptTemplate(input_variables=["query", "context"], template=rag_prompt)
131
-
132
- context_relevancy_chain = LLMChain(llm=llm_judge, prompt=context_relevancy_checker_prompt, output_key="relevancy_response")
133
- relevant_context_chain = LLMChain(llm=llm_judge, prompt=relevant_prompt, output_key="context_number")
134
- relevant_contexts_chain = LLMChain(llm=llm_judge, prompt=context_prompt, output_key="relevant_contexts")
135
- response_chain = LLMChain(llm=rag_llm, prompt=final_prompt, output_key="final_response")
136
-
137
- context_management_chain = SequentialChain(
138
- chains=[context_relevancy_chain, relevant_context_chain, relevant_contexts_chain, response_chain],
139
  input_variables=["context", "retriever_query", "query"],
140
  output_variables=["relevancy_response", "context_number", "relevant_contexts", "final_response"]
141
- )
142
-
143
- final_output = context_management_chain.invoke({"context": context, "retriever_query": query, "query": query})
144
- st.success("βœ… Full pipeline executed successfully!")
145
 
146
- # ----------------- Display All Outputs (Formatted) -----------------
147
- st.markdown("### πŸŸ₯ Context Relevancy Evaluation")
148
  st.json(final_output["relevancy_response"])
149
-
150
- st.markdown("### 🟦 Picked Relevant Contexts")
151
  st.json(final_output["context_number"])
152
-
153
- st.markdown("### πŸŸ₯ Extracted Relevant Contexts")
154
  st.json(final_output["relevant_contexts"])
155
-
156
- st.markdown("## πŸŸ₯ RAG Final Response")
157
- st.write(final_output["final_response"])
 
19
  # ----------------- API Keys -----------------
20
  os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
21
 
 
 
 
 
22
  # ----------------- Clear ChromaDB Cache -----------------
23
  chromadb.api.client.SharedSystemClient.clear_system_cache()
24
 
 
34
  if "vector_store" not in st.session_state:
35
  st.session_state.vector_store = None
36
 
37
+ # ----------------- Load Models -----------------
38
  llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b")
39
  rag_llm = ChatGroq(model="mixtral-8x7b-32768")
40
 
 
42
  llm_judge.verbose = True
43
  rag_llm.verbose = True
44
 
45
+ # ----------------- PDF Selection -----------------
46
  st.sidebar.subheader("πŸ“‚ PDF Selection")
47
  pdf_source = st.radio("Choose a PDF source:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
48
 
 
85
  model_name = "nomic-ai/modernbert-embed-base"
86
  embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={"device": "cpu"})
87
 
88
+ # Prevent unnecessary re-chunking
89
+ if not st.session_state.chunked:
90
+ text_splitter = SemanticChunker(embedding_model)
91
+ document_chunks = text_splitter.split_documents(docs)
92
+ st.session_state.processed_chunks = document_chunks
93
+ st.session_state.chunked = True
94
 
 
 
95
  st.session_state.pdf_loaded = True
96
  st.success("βœ… Document processed and chunked successfully!")
97
 
98
+ # ----------------- Setup Vector Store -----------------
99
  if not st.session_state.vector_created and st.session_state.processed_chunks:
100
  with st.spinner("πŸ”„ Initializing Vector Store..."):
101
+ st.session_state.vector_store = Chroma(
102
  collection_name="deepseek_collection",
103
  collection_metadata={"hnsw:space": "cosine"},
104
+ embedding_function=embedding_model
 
105
  )
106
+ st.session_state.vector_store.add_documents(st.session_state.processed_chunks)
 
107
  st.session_state.vector_created = True
108
  st.success("βœ… Vector store initialized successfully!")
109
 
 
119
 
120
  # ----------------- Full SequentialChain Execution -----------------
121
  with st.spinner("πŸ”„ Running full pipeline..."):
122
+ final_output = SequentialChain(
123
+ chains=[
124
+ LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["retriever_query", "context"], template=relevancy_prompt), output_key="relevancy_response"),
125
+ LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["relevancy_response"], template=relevant_context_picker_prompt), output_key="context_number"),
126
+ LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["context_number", "context"], template=response_synth), output_key="relevant_contexts"),
127
+ LLMChain(llm=rag_llm, prompt=PromptTemplate(input_variables=["query", "context"], template=rag_prompt), output_key="final_response")
128
+ ],
 
 
 
 
 
129
  input_variables=["context", "retriever_query", "query"],
130
  output_variables=["relevancy_response", "context_number", "relevant_contexts", "final_response"]
131
+ ).invoke({"context": context, "retriever_query": query, "query": query})
 
 
 
132
 
133
+ # ----------------- Display All Outputs -----------------
134
+ st.subheader("πŸŸ₯ Context Relevancy Evaluation")
135
  st.json(final_output["relevancy_response"])
136
+ st.subheader("🟦 Picked Relevant Contexts")
 
137
  st.json(final_output["context_number"])
138
+ st.subheader("πŸŸ₯ Extracted Relevant Contexts")
 
139
  st.json(final_output["relevant_contexts"])
140
+ st.subheader("πŸŸ₯ RAG Final Response")
141
+ st.write(final_output["final_response"])