Update app.py
Browse files
app.py
CHANGED
@@ -19,10 +19,6 @@ st.title("Blah-1")
|
|
19 |
# ----------------- API Keys -----------------
|
20 |
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
|
21 |
|
22 |
-
# ----------------- Ensure Vector Store Directory Exists -----------------
|
23 |
-
if not os.path.exists("./chroma_langchain_db"):
|
24 |
-
os.makedirs("./chroma_langchain_db")
|
25 |
-
|
26 |
# ----------------- Clear ChromaDB Cache -----------------
|
27 |
chromadb.api.client.SharedSystemClient.clear_system_cache()
|
28 |
|
@@ -38,7 +34,7 @@ if "processed_chunks" not in st.session_state:
|
|
38 |
if "vector_store" not in st.session_state:
|
39 |
st.session_state.vector_store = None
|
40 |
|
41 |
-
# ----------------- Load Models
|
42 |
llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b")
|
43 |
rag_llm = ChatGroq(model="mixtral-8x7b-32768")
|
44 |
|
@@ -46,7 +42,7 @@ rag_llm = ChatGroq(model="mixtral-8x7b-32768")
|
|
46 |
llm_judge.verbose = True
|
47 |
rag_llm.verbose = True
|
48 |
|
49 |
-
# ----------------- PDF Selection
|
50 |
st.sidebar.subheader("π PDF Selection")
|
51 |
pdf_source = st.radio("Choose a PDF source:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
|
52 |
|
@@ -89,26 +85,25 @@ if not st.session_state.pdf_loaded and "pdf_path" in st.session_state:
|
|
89 |
model_name = "nomic-ai/modernbert-embed-base"
|
90 |
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={"device": "cpu"})
|
91 |
|
92 |
-
#
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
95 |
|
96 |
-
# Store chunks in session state
|
97 |
-
st.session_state.processed_chunks = document_chunks
|
98 |
st.session_state.pdf_loaded = True
|
99 |
st.success("β
Document processed and chunked successfully!")
|
100 |
|
101 |
-
# ----------------- Setup Vector Store
|
102 |
if not st.session_state.vector_created and st.session_state.processed_chunks:
|
103 |
with st.spinner("π Initializing Vector Store..."):
|
104 |
-
vector_store = Chroma(
|
105 |
collection_name="deepseek_collection",
|
106 |
collection_metadata={"hnsw:space": "cosine"},
|
107 |
-
embedding_function=embedding_model
|
108 |
-
persist_directory="./chroma_langchain_db"
|
109 |
)
|
110 |
-
vector_store.add_documents(st.session_state.processed_chunks)
|
111 |
-
st.session_state.vector_store = vector_store
|
112 |
st.session_state.vector_created = True
|
113 |
st.success("β
Vector store initialized successfully!")
|
114 |
|
@@ -124,34 +119,23 @@ if query:
|
|
124 |
|
125 |
# ----------------- Full SequentialChain Execution -----------------
|
126 |
with st.spinner("π Running full pipeline..."):
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
relevant_contexts_chain = LLMChain(llm=llm_judge, prompt=context_prompt, output_key="relevant_contexts")
|
135 |
-
response_chain = LLMChain(llm=rag_llm, prompt=final_prompt, output_key="final_response")
|
136 |
-
|
137 |
-
context_management_chain = SequentialChain(
|
138 |
-
chains=[context_relevancy_chain, relevant_context_chain, relevant_contexts_chain, response_chain],
|
139 |
input_variables=["context", "retriever_query", "query"],
|
140 |
output_variables=["relevancy_response", "context_number", "relevant_contexts", "final_response"]
|
141 |
-
)
|
142 |
-
|
143 |
-
final_output = context_management_chain.invoke({"context": context, "retriever_query": query, "query": query})
|
144 |
-
st.success("β
Full pipeline executed successfully!")
|
145 |
|
146 |
-
# ----------------- Display All Outputs
|
147 |
-
st.
|
148 |
st.json(final_output["relevancy_response"])
|
149 |
-
|
150 |
-
st.markdown("### π¦ Picked Relevant Contexts")
|
151 |
st.json(final_output["context_number"])
|
152 |
-
|
153 |
-
st.markdown("### π₯ Extracted Relevant Contexts")
|
154 |
st.json(final_output["relevant_contexts"])
|
155 |
-
|
156 |
-
st.
|
157 |
-
st.write(final_output["final_response"])
|
|
|
19 |
# ----------------- API Keys -----------------
|
20 |
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
|
21 |
|
|
|
|
|
|
|
|
|
22 |
# ----------------- Clear ChromaDB Cache -----------------
|
23 |
chromadb.api.client.SharedSystemClient.clear_system_cache()
|
24 |
|
|
|
34 |
if "vector_store" not in st.session_state:
|
35 |
st.session_state.vector_store = None
|
36 |
|
37 |
+
# ----------------- Load Models -----------------
|
38 |
llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b")
|
39 |
rag_llm = ChatGroq(model="mixtral-8x7b-32768")
|
40 |
|
|
|
42 |
llm_judge.verbose = True
|
43 |
rag_llm.verbose = True
|
44 |
|
45 |
+
# ----------------- PDF Selection -----------------
|
46 |
st.sidebar.subheader("π PDF Selection")
|
47 |
pdf_source = st.radio("Choose a PDF source:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
|
48 |
|
|
|
85 |
model_name = "nomic-ai/modernbert-embed-base"
|
86 |
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={"device": "cpu"})
|
87 |
|
88 |
+
# Prevent unnecessary re-chunking
|
89 |
+
if not st.session_state.chunked:
|
90 |
+
text_splitter = SemanticChunker(embedding_model)
|
91 |
+
document_chunks = text_splitter.split_documents(docs)
|
92 |
+
st.session_state.processed_chunks = document_chunks
|
93 |
+
st.session_state.chunked = True
|
94 |
|
|
|
|
|
95 |
st.session_state.pdf_loaded = True
|
96 |
st.success("β
Document processed and chunked successfully!")
|
97 |
|
98 |
+
# ----------------- Setup Vector Store -----------------
|
99 |
if not st.session_state.vector_created and st.session_state.processed_chunks:
|
100 |
with st.spinner("π Initializing Vector Store..."):
|
101 |
+
st.session_state.vector_store = Chroma(
|
102 |
collection_name="deepseek_collection",
|
103 |
collection_metadata={"hnsw:space": "cosine"},
|
104 |
+
embedding_function=embedding_model
|
|
|
105 |
)
|
106 |
+
st.session_state.vector_store.add_documents(st.session_state.processed_chunks)
|
|
|
107 |
st.session_state.vector_created = True
|
108 |
st.success("β
Vector store initialized successfully!")
|
109 |
|
|
|
119 |
|
120 |
# ----------------- Full SequentialChain Execution -----------------
|
121 |
with st.spinner("π Running full pipeline..."):
|
122 |
+
final_output = SequentialChain(
|
123 |
+
chains=[
|
124 |
+
LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["retriever_query", "context"], template=relevancy_prompt), output_key="relevancy_response"),
|
125 |
+
LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["relevancy_response"], template=relevant_context_picker_prompt), output_key="context_number"),
|
126 |
+
LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["context_number", "context"], template=response_synth), output_key="relevant_contexts"),
|
127 |
+
LLMChain(llm=rag_llm, prompt=PromptTemplate(input_variables=["query", "context"], template=rag_prompt), output_key="final_response")
|
128 |
+
],
|
|
|
|
|
|
|
|
|
|
|
129 |
input_variables=["context", "retriever_query", "query"],
|
130 |
output_variables=["relevancy_response", "context_number", "relevant_contexts", "final_response"]
|
131 |
+
).invoke({"context": context, "retriever_query": query, "query": query})
|
|
|
|
|
|
|
132 |
|
133 |
+
# ----------------- Display All Outputs -----------------
|
134 |
+
st.subheader("π₯ Context Relevancy Evaluation")
|
135 |
st.json(final_output["relevancy_response"])
|
136 |
+
st.subheader("π¦ Picked Relevant Contexts")
|
|
|
137 |
st.json(final_output["context_number"])
|
138 |
+
st.subheader("π₯ Extracted Relevant Contexts")
|
|
|
139 |
st.json(final_output["relevant_contexts"])
|
140 |
+
st.subheader("π₯ RAG Final Response")
|
141 |
+
st.write(final_output["final_response"])
|
|