File size: 9,190 Bytes
d16d42c
4bbcb5d
d16d42c
c793c22
d16d42c
 
 
 
 
 
 
 
 
 
 
 
c793c22
d16d42c
fa6b01d
 
 
 
 
 
 
 
d16d42c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9ec4e9
d16d42c
 
 
 
 
 
fa6b01d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d16d42c
 
 
 
b9ec4e9
 
4bbcb5d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
library_name: transformers
license: mit
base_model: pabloma09/layoutlm-funsd
tags:
- generated_from_trainer
model-index:
- name: layoutlm-funsd
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlm-funsd

This model is a fine-tuned version of [pabloma09/layoutlm-funsd](https://huggingface.co/pabloma09/layoutlm-funsd) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5379
- Eader: {'precision': 0.7209302325581395, 'recall': 0.543859649122807, 'f1': 0.6200000000000001, 'number': 57}
- Nswer: {'precision': 0.7183098591549296, 'recall': 0.723404255319149, 'f1': 0.7208480565371025, 'number': 141}
- Uestion: {'precision': 0.7290322580645161, 'recall': 0.7018633540372671, 'f1': 0.7151898734177216, 'number': 161}
- Overall Precision: 0.7235
- Overall Recall: 0.6852
- Overall F1: 0.7039
- Overall Accuracy: 0.9016

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Eader                                                                                                   | Nswer                                                                                                    | Uestion                                                                                                  | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.0751        | 1.0   | 12   | 0.4989          | {'precision': 0.5740740740740741, 'recall': 0.543859649122807, 'f1': 0.5585585585585585, 'number': 57}  | {'precision': 0.673202614379085, 'recall': 0.7304964539007093, 'f1': 0.7006802721088436, 'number': 141}  | {'precision': 0.6666666666666666, 'recall': 0.6708074534161491, 'f1': 0.6687306501547988, 'number': 161} | 0.6558            | 0.6741         | 0.6648     | 0.8675           |
| 0.0681        | 2.0   | 24   | 0.4233          | {'precision': 0.6739130434782609, 'recall': 0.543859649122807, 'f1': 0.6019417475728156, 'number': 57}  | {'precision': 0.7394366197183099, 'recall': 0.7446808510638298, 'f1': 0.7420494699646644, 'number': 141} | {'precision': 0.7044025157232704, 'recall': 0.6956521739130435, 'f1': 0.7, 'number': 161}                | 0.7147            | 0.6908         | 0.7025     | 0.9004           |
| 0.0499        | 3.0   | 36   | 0.4571          | {'precision': 0.775, 'recall': 0.543859649122807, 'f1': 0.6391752577319588, 'number': 57}               | {'precision': 0.7083333333333334, 'recall': 0.723404255319149, 'f1': 0.7157894736842105, 'number': 141}  | {'precision': 0.73125, 'recall': 0.7267080745341615, 'f1': 0.7289719626168223, 'number': 161}            | 0.7267            | 0.6964         | 0.7112     | 0.8998           |
| 0.037         | 4.0   | 48   | 0.4636          | {'precision': 0.7045454545454546, 'recall': 0.543859649122807, 'f1': 0.613861386138614, 'number': 57}   | {'precision': 0.7142857142857143, 'recall': 0.7446808510638298, 'f1': 0.7291666666666666, 'number': 141} | {'precision': 0.7222222222222222, 'recall': 0.7267080745341615, 'f1': 0.7244582043343654, 'number': 161} | 0.7167            | 0.7047         | 0.7107     | 0.9016           |
| 0.0329        | 5.0   | 60   | 0.5128          | {'precision': 0.6530612244897959, 'recall': 0.5614035087719298, 'f1': 0.6037735849056605, 'number': 57} | {'precision': 0.697986577181208, 'recall': 0.7375886524822695, 'f1': 0.7172413793103447, 'number': 141}  | {'precision': 0.6706586826347305, 'recall': 0.6956521739130435, 'f1': 0.6829268292682926, 'number': 161} | 0.6795            | 0.6908         | 0.6851     | 0.8880           |
| 0.0263        | 6.0   | 72   | 0.5192          | {'precision': 0.6904761904761905, 'recall': 0.5087719298245614, 'f1': 0.5858585858585859, 'number': 57} | {'precision': 0.7183098591549296, 'recall': 0.723404255319149, 'f1': 0.7208480565371025, 'number': 141}  | {'precision': 0.7484276729559748, 'recall': 0.7391304347826086, 'f1': 0.7437500000000001, 'number': 161} | 0.7289            | 0.6964         | 0.7123     | 0.8995           |
| 0.023         | 7.0   | 84   | 0.5452          | {'precision': 0.6976744186046512, 'recall': 0.5263157894736842, 'f1': 0.6, 'number': 57}                | {'precision': 0.7202797202797203, 'recall': 0.7304964539007093, 'f1': 0.7253521126760565, 'number': 141} | {'precision': 0.7, 'recall': 0.6956521739130435, 'f1': 0.6978193146417445, 'number': 161}                | 0.7081            | 0.6825         | 0.6950     | 0.8956           |
| 0.0205        | 8.0   | 96   | 0.5398          | {'precision': 0.6666666666666666, 'recall': 0.5614035087719298, 'f1': 0.6095238095238096, 'number': 57} | {'precision': 0.7083333333333334, 'recall': 0.723404255319149, 'f1': 0.7157894736842105, 'number': 141}  | {'precision': 0.7151898734177216, 'recall': 0.7018633540372671, 'f1': 0.7084639498432601, 'number': 161} | 0.7057            | 0.6880         | 0.6968     | 0.8971           |
| 0.0182        | 9.0   | 108  | 0.5025          | {'precision': 0.62, 'recall': 0.543859649122807, 'f1': 0.5794392523364487, 'number': 57}                | {'precision': 0.7482014388489209, 'recall': 0.7375886524822695, 'f1': 0.7428571428571428, 'number': 141} | {'precision': 0.7088607594936709, 'recall': 0.6956521739130435, 'f1': 0.7021943573667712, 'number': 161} | 0.7118            | 0.6880         | 0.6997     | 0.9046           |
| 0.0175        | 10.0  | 120  | 0.5017          | {'precision': 0.6888888888888889, 'recall': 0.543859649122807, 'f1': 0.6078431372549019, 'number': 57}  | {'precision': 0.7183098591549296, 'recall': 0.723404255319149, 'f1': 0.7208480565371025, 'number': 141}  | {'precision': 0.7133757961783439, 'recall': 0.6956521739130435, 'f1': 0.7044025157232704, 'number': 161} | 0.7122            | 0.6825         | 0.6970     | 0.9031           |
| 0.0157        | 11.0  | 132  | 0.5034          | {'precision': 0.7272727272727273, 'recall': 0.5614035087719298, 'f1': 0.6336633663366337, 'number': 57} | {'precision': 0.7357142857142858, 'recall': 0.7304964539007093, 'f1': 0.7330960854092528, 'number': 141} | {'precision': 0.7243589743589743, 'recall': 0.7018633540372671, 'f1': 0.7129337539432177, 'number': 161} | 0.7294            | 0.6908         | 0.7096     | 0.9037           |
| 0.0151        | 12.0  | 144  | 0.5181          | {'precision': 0.7209302325581395, 'recall': 0.543859649122807, 'f1': 0.6200000000000001, 'number': 57}  | {'precision': 0.7183098591549296, 'recall': 0.723404255319149, 'f1': 0.7208480565371025, 'number': 141}  | {'precision': 0.7290322580645161, 'recall': 0.7018633540372671, 'f1': 0.7151898734177216, 'number': 161} | 0.7235            | 0.6852         | 0.7039     | 0.9040           |
| 0.0122        | 13.0  | 156  | 0.5368          | {'precision': 0.7209302325581395, 'recall': 0.543859649122807, 'f1': 0.6200000000000001, 'number': 57}  | {'precision': 0.7394366197183099, 'recall': 0.7446808510638298, 'f1': 0.7420494699646644, 'number': 141} | {'precision': 0.7261146496815286, 'recall': 0.7080745341614907, 'f1': 0.7169811320754716, 'number': 161} | 0.7310            | 0.6964         | 0.7133     | 0.9019           |
| 0.0114        | 14.0  | 168  | 0.5372          | {'precision': 0.7272727272727273, 'recall': 0.5614035087719298, 'f1': 0.6336633663366337, 'number': 57} | {'precision': 0.7272727272727273, 'recall': 0.7375886524822695, 'f1': 0.7323943661971831, 'number': 141} | {'precision': 0.7197452229299363, 'recall': 0.7018633540372671, 'f1': 0.7106918238993711, 'number': 161} | 0.7238            | 0.6936         | 0.7084     | 0.9022           |
| 0.0126        | 15.0  | 180  | 0.5379          | {'precision': 0.7209302325581395, 'recall': 0.543859649122807, 'f1': 0.6200000000000001, 'number': 57}  | {'precision': 0.7183098591549296, 'recall': 0.723404255319149, 'f1': 0.7208480565371025, 'number': 141}  | {'precision': 0.7290322580645161, 'recall': 0.7018633540372671, 'f1': 0.7151898734177216, 'number': 161} | 0.7235            | 0.6852         | 0.7039     | 0.9016           |


### Framework versions

- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0