layoutlm-funsd

This model is a fine-tuned version of pabloma09/layoutlm-funsd on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5379
  • Eader: {'precision': 0.7209302325581395, 'recall': 0.543859649122807, 'f1': 0.6200000000000001, 'number': 57}
  • Nswer: {'precision': 0.7183098591549296, 'recall': 0.723404255319149, 'f1': 0.7208480565371025, 'number': 141}
  • Uestion: {'precision': 0.7290322580645161, 'recall': 0.7018633540372671, 'f1': 0.7151898734177216, 'number': 161}
  • Overall Precision: 0.7235
  • Overall Recall: 0.6852
  • Overall F1: 0.7039
  • Overall Accuracy: 0.9016

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Eader Nswer Uestion Overall Precision Overall Recall Overall F1 Overall Accuracy
0.0751 1.0 12 0.4989 {'precision': 0.5740740740740741, 'recall': 0.543859649122807, 'f1': 0.5585585585585585, 'number': 57} {'precision': 0.673202614379085, 'recall': 0.7304964539007093, 'f1': 0.7006802721088436, 'number': 141} {'precision': 0.6666666666666666, 'recall': 0.6708074534161491, 'f1': 0.6687306501547988, 'number': 161} 0.6558 0.6741 0.6648 0.8675
0.0681 2.0 24 0.4233 {'precision': 0.6739130434782609, 'recall': 0.543859649122807, 'f1': 0.6019417475728156, 'number': 57} {'precision': 0.7394366197183099, 'recall': 0.7446808510638298, 'f1': 0.7420494699646644, 'number': 141} {'precision': 0.7044025157232704, 'recall': 0.6956521739130435, 'f1': 0.7, 'number': 161} 0.7147 0.6908 0.7025 0.9004
0.0499 3.0 36 0.4571 {'precision': 0.775, 'recall': 0.543859649122807, 'f1': 0.6391752577319588, 'number': 57} {'precision': 0.7083333333333334, 'recall': 0.723404255319149, 'f1': 0.7157894736842105, 'number': 141} {'precision': 0.73125, 'recall': 0.7267080745341615, 'f1': 0.7289719626168223, 'number': 161} 0.7267 0.6964 0.7112 0.8998
0.037 4.0 48 0.4636 {'precision': 0.7045454545454546, 'recall': 0.543859649122807, 'f1': 0.613861386138614, 'number': 57} {'precision': 0.7142857142857143, 'recall': 0.7446808510638298, 'f1': 0.7291666666666666, 'number': 141} {'precision': 0.7222222222222222, 'recall': 0.7267080745341615, 'f1': 0.7244582043343654, 'number': 161} 0.7167 0.7047 0.7107 0.9016
0.0329 5.0 60 0.5128 {'precision': 0.6530612244897959, 'recall': 0.5614035087719298, 'f1': 0.6037735849056605, 'number': 57} {'precision': 0.697986577181208, 'recall': 0.7375886524822695, 'f1': 0.7172413793103447, 'number': 141} {'precision': 0.6706586826347305, 'recall': 0.6956521739130435, 'f1': 0.6829268292682926, 'number': 161} 0.6795 0.6908 0.6851 0.8880
0.0263 6.0 72 0.5192 {'precision': 0.6904761904761905, 'recall': 0.5087719298245614, 'f1': 0.5858585858585859, 'number': 57} {'precision': 0.7183098591549296, 'recall': 0.723404255319149, 'f1': 0.7208480565371025, 'number': 141} {'precision': 0.7484276729559748, 'recall': 0.7391304347826086, 'f1': 0.7437500000000001, 'number': 161} 0.7289 0.6964 0.7123 0.8995
0.023 7.0 84 0.5452 {'precision': 0.6976744186046512, 'recall': 0.5263157894736842, 'f1': 0.6, 'number': 57} {'precision': 0.7202797202797203, 'recall': 0.7304964539007093, 'f1': 0.7253521126760565, 'number': 141} {'precision': 0.7, 'recall': 0.6956521739130435, 'f1': 0.6978193146417445, 'number': 161} 0.7081 0.6825 0.6950 0.8956
0.0205 8.0 96 0.5398 {'precision': 0.6666666666666666, 'recall': 0.5614035087719298, 'f1': 0.6095238095238096, 'number': 57} {'precision': 0.7083333333333334, 'recall': 0.723404255319149, 'f1': 0.7157894736842105, 'number': 141} {'precision': 0.7151898734177216, 'recall': 0.7018633540372671, 'f1': 0.7084639498432601, 'number': 161} 0.7057 0.6880 0.6968 0.8971
0.0182 9.0 108 0.5025 {'precision': 0.62, 'recall': 0.543859649122807, 'f1': 0.5794392523364487, 'number': 57} {'precision': 0.7482014388489209, 'recall': 0.7375886524822695, 'f1': 0.7428571428571428, 'number': 141} {'precision': 0.7088607594936709, 'recall': 0.6956521739130435, 'f1': 0.7021943573667712, 'number': 161} 0.7118 0.6880 0.6997 0.9046
0.0175 10.0 120 0.5017 {'precision': 0.6888888888888889, 'recall': 0.543859649122807, 'f1': 0.6078431372549019, 'number': 57} {'precision': 0.7183098591549296, 'recall': 0.723404255319149, 'f1': 0.7208480565371025, 'number': 141} {'precision': 0.7133757961783439, 'recall': 0.6956521739130435, 'f1': 0.7044025157232704, 'number': 161} 0.7122 0.6825 0.6970 0.9031
0.0157 11.0 132 0.5034 {'precision': 0.7272727272727273, 'recall': 0.5614035087719298, 'f1': 0.6336633663366337, 'number': 57} {'precision': 0.7357142857142858, 'recall': 0.7304964539007093, 'f1': 0.7330960854092528, 'number': 141} {'precision': 0.7243589743589743, 'recall': 0.7018633540372671, 'f1': 0.7129337539432177, 'number': 161} 0.7294 0.6908 0.7096 0.9037
0.0151 12.0 144 0.5181 {'precision': 0.7209302325581395, 'recall': 0.543859649122807, 'f1': 0.6200000000000001, 'number': 57} {'precision': 0.7183098591549296, 'recall': 0.723404255319149, 'f1': 0.7208480565371025, 'number': 141} {'precision': 0.7290322580645161, 'recall': 0.7018633540372671, 'f1': 0.7151898734177216, 'number': 161} 0.7235 0.6852 0.7039 0.9040
0.0122 13.0 156 0.5368 {'precision': 0.7209302325581395, 'recall': 0.543859649122807, 'f1': 0.6200000000000001, 'number': 57} {'precision': 0.7394366197183099, 'recall': 0.7446808510638298, 'f1': 0.7420494699646644, 'number': 141} {'precision': 0.7261146496815286, 'recall': 0.7080745341614907, 'f1': 0.7169811320754716, 'number': 161} 0.7310 0.6964 0.7133 0.9019
0.0114 14.0 168 0.5372 {'precision': 0.7272727272727273, 'recall': 0.5614035087719298, 'f1': 0.6336633663366337, 'number': 57} {'precision': 0.7272727272727273, 'recall': 0.7375886524822695, 'f1': 0.7323943661971831, 'number': 141} {'precision': 0.7197452229299363, 'recall': 0.7018633540372671, 'f1': 0.7106918238993711, 'number': 161} 0.7238 0.6936 0.7084 0.9022
0.0126 15.0 180 0.5379 {'precision': 0.7209302325581395, 'recall': 0.543859649122807, 'f1': 0.6200000000000001, 'number': 57} {'precision': 0.7183098591549296, 'recall': 0.723404255319149, 'f1': 0.7208480565371025, 'number': 141} {'precision': 0.7290322580645161, 'recall': 0.7018633540372671, 'f1': 0.7151898734177216, 'number': 161} 0.7235 0.6852 0.7039 0.9016

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
203
Safetensors
Model size
113M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for pabloma09/layoutlm-funsd

Unable to build the model tree, the base model loops to the model itself. Learn more.