pabloma09 commited on
Commit
4bbcb5d
·
verified ·
1 Parent(s): 3270da6

End of training

Browse files
README.md CHANGED
@@ -1,4 +1,5 @@
1
  ---
 
2
  license: mit
3
  base_model: microsoft/layoutlm-base-uncased
4
  tags:
@@ -17,14 +18,14 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 1.0784
21
- - Answer: {'precision': 0.39729990356798456, 'recall': 0.5092707045735476, 'f1': 0.44637053087757317, 'number': 809}
22
- - Header: {'precision': 0.2601626016260163, 'recall': 0.2689075630252101, 'f1': 0.2644628099173554, 'number': 119}
23
- - Question: {'precision': 0.5115384615384615, 'recall': 0.6244131455399061, 'f1': 0.5623678646934461, 'number': 1065}
24
- - Overall Precision: 0.4508
25
- - Overall Recall: 0.5564
26
- - Overall F1: 0.4981
27
- - Overall Accuracy: 0.6275
28
 
29
  ## Model description
30
 
@@ -47,35 +48,35 @@ The following hyperparameters were used during training:
47
  - train_batch_size: 16
48
  - eval_batch_size: 8
49
  - seed: 42
50
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
  - lr_scheduler_type: linear
52
  - num_epochs: 15
53
  - mixed_precision_training: Native AMP
54
 
55
  ### Training results
56
 
57
- | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
58
- |:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
59
- | 1.7434 | 1.0 | 10 | 1.5471 | {'precision': 0.05161290322580645, 'recall': 0.03955500618046971, 'f1': 0.04478656403079076, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.27050359712230215, 'recall': 0.17652582159624414, 'f1': 0.21363636363636365, 'number': 1065} | 0.1673 | 0.1104 | 0.1330 | 0.3331 |
60
- | 1.4356 | 2.0 | 20 | 1.3534 | {'precision': 0.21909424724602203, 'recall': 0.44252163164400493, 'f1': 0.29308227589029884, 'number': 809} | {'precision': 0.04411764705882353, 'recall': 0.025210084033613446, 'f1': 0.0320855614973262, 'number': 119} | {'precision': 0.2876712328767123, 'recall': 0.39436619718309857, 'f1': 0.33267326732673264, 'number': 1065} | 0.2470 | 0.3919 | 0.3030 | 0.4281 |
61
- | 1.2677 | 3.0 | 30 | 1.2046 | {'precision': 0.24696645253390434, 'recall': 0.4276885043263288, 'f1': 0.31312217194570136, 'number': 809} | {'precision': 0.20652173913043478, 'recall': 0.15966386554621848, 'f1': 0.1800947867298578, 'number': 119} | {'precision': 0.3335304553518628, 'recall': 0.5295774647887324, 'f1': 0.40928882438316405, 'number': 1065} | 0.2918 | 0.4661 | 0.3589 | 0.4856 |
62
- | 1.1386 | 4.0 | 40 | 1.1240 | {'precision': 0.28816326530612246, 'recall': 0.4363411619283066, 'f1': 0.34709931170108166, 'number': 809} | {'precision': 0.1875, 'recall': 0.17647058823529413, 'f1': 0.1818181818181818, 'number': 119} | {'precision': 0.3801391524351676, 'recall': 0.564319248826291, 'f1': 0.45427059712774, 'number': 1065} | 0.3341 | 0.4892 | 0.3971 | 0.5567 |
63
- | 1.0425 | 5.0 | 50 | 1.0865 | {'precision': 0.31069609507640067, 'recall': 0.45241038318912236, 'f1': 0.3683945646703573, 'number': 809} | {'precision': 0.25609756097560976, 'recall': 0.17647058823529413, 'f1': 0.208955223880597, 'number': 119} | {'precision': 0.41022364217252394, 'recall': 0.6028169014084507, 'f1': 0.4882129277566539, 'number': 1065} | 0.3642 | 0.5163 | 0.4271 | 0.5740 |
64
- | 1.0051 | 6.0 | 60 | 1.0745 | {'precision': 0.3435185185185185, 'recall': 0.45859085290482077, 'f1': 0.39280042350449973, 'number': 809} | {'precision': 0.22448979591836735, 'recall': 0.18487394957983194, 'f1': 0.20276497695852533, 'number': 119} | {'precision': 0.48720066061106526, 'recall': 0.5539906103286385, 'f1': 0.5184534270650263, 'number': 1065} | 0.4115 | 0.4932 | 0.4487 | 0.5916 |
65
- | 0.9533 | 7.0 | 70 | 1.0560 | {'precision': 0.329126213592233, 'recall': 0.41903584672435107, 'f1': 0.36867862969004894, 'number': 809} | {'precision': 0.22950819672131148, 'recall': 0.23529411764705882, 'f1': 0.23236514522821577, 'number': 119} | {'precision': 0.41502463054187194, 'recall': 0.6328638497652582, 'f1': 0.5013015991074748, 'number': 1065} | 0.375 | 0.5223 | 0.4366 | 0.5919 |
66
- | 0.8838 | 8.0 | 80 | 1.0296 | {'precision': 0.3531047265987025, 'recall': 0.47095179233621753, 'f1': 0.4036016949152542, 'number': 809} | {'precision': 0.211864406779661, 'recall': 0.21008403361344538, 'f1': 0.2109704641350211, 'number': 119} | {'precision': 0.45523941707147814, 'recall': 0.615962441314554, 'f1': 0.5235434956105347, 'number': 1065} | 0.4026 | 0.5329 | 0.4586 | 0.6141 |
67
- | 0.8148 | 9.0 | 90 | 1.0582 | {'precision': 0.38949454905847375, 'recall': 0.4857849196538937, 'f1': 0.43234323432343236, 'number': 809} | {'precision': 0.2571428571428571, 'recall': 0.226890756302521, 'f1': 0.24107142857142855, 'number': 119} | {'precision': 0.5230125523012552, 'recall': 0.5868544600938967, 'f1': 0.5530973451327434, 'number': 1065} | 0.4526 | 0.5243 | 0.4858 | 0.6139 |
68
- | 0.8139 | 10.0 | 100 | 1.0429 | {'precision': 0.37296260786193675, 'recall': 0.48084054388133496, 'f1': 0.42008639308855295, 'number': 809} | {'precision': 0.24786324786324787, 'recall': 0.24369747899159663, 'f1': 0.24576271186440676, 'number': 119} | {'precision': 0.46943078004216443, 'recall': 0.6272300469483568, 'f1': 0.5369774919614148, 'number': 1065} | 0.4204 | 0.5449 | 0.4747 | 0.6247 |
69
- | 0.7228 | 11.0 | 110 | 1.0542 | {'precision': 0.38454106280193234, 'recall': 0.4919653893695921, 'f1': 0.4316702819956616, 'number': 809} | {'precision': 0.2702702702702703, 'recall': 0.25210084033613445, 'f1': 0.2608695652173913, 'number': 119} | {'precision': 0.5042536736272235, 'recall': 0.612206572769953, 'f1': 0.5530110262934691, 'number': 1065} | 0.4428 | 0.5419 | 0.4874 | 0.6257 |
70
- | 0.7193 | 12.0 | 120 | 1.0835 | {'precision': 0.3971563981042654, 'recall': 0.5179233621755254, 'f1': 0.4495708154506438, 'number': 809} | {'precision': 0.26126126126126126, 'recall': 0.24369747899159663, 'f1': 0.25217391304347825, 'number': 119} | {'precision': 0.5153664302600472, 'recall': 0.6140845070422535, 'f1': 0.5604113110539846, 'number': 1065} | 0.4526 | 0.5529 | 0.4977 | 0.6268 |
71
- | 0.687 | 13.0 | 130 | 1.0892 | {'precision': 0.4001823154056518, 'recall': 0.5426452410383189, 'f1': 0.4606505771248688, 'number': 809} | {'precision': 0.25742574257425743, 'recall': 0.2184873949579832, 'f1': 0.23636363636363636, 'number': 119} | {'precision': 0.5263157894736842, 'recall': 0.5915492957746479, 'f1': 0.5570291777188329, 'number': 1065} | 0.4572 | 0.5494 | 0.4991 | 0.6255 |
72
- | 0.6515 | 14.0 | 140 | 1.0795 | {'precision': 0.398635477582846, 'recall': 0.5055624227441285, 'f1': 0.4457765667574932, 'number': 809} | {'precision': 0.25862068965517243, 'recall': 0.25210084033613445, 'f1': 0.25531914893617025, 'number': 119} | {'precision': 0.5205047318611987, 'recall': 0.6197183098591549, 'f1': 0.5657951135876553, 'number': 1065} | 0.4560 | 0.5514 | 0.4992 | 0.6262 |
73
- | 0.6453 | 15.0 | 150 | 1.0784 | {'precision': 0.39729990356798456, 'recall': 0.5092707045735476, 'f1': 0.44637053087757317, 'number': 809} | {'precision': 0.2601626016260163, 'recall': 0.2689075630252101, 'f1': 0.2644628099173554, 'number': 119} | {'precision': 0.5115384615384615, 'recall': 0.6244131455399061, 'f1': 0.5623678646934461, 'number': 1065} | 0.4508 | 0.5564 | 0.4981 | 0.6275 |
74
 
75
 
76
  ### Framework versions
77
 
78
- - Transformers 4.38.2
79
- - Pytorch 2.2.1+cu121
80
- - Datasets 2.18.0
81
- - Tokenizers 0.15.2
 
1
  ---
2
+ library_name: transformers
3
  license: mit
4
  base_model: microsoft/layoutlm-base-uncased
5
  tags:
 
18
 
19
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
20
  It achieves the following results on the evaluation set:
21
+ - Loss: 0.7010
22
+ - Eader: {'precision': 0.20833333333333334, 'recall': 0.10416666666666667, 'f1': 0.1388888888888889, 'number': 96}
23
+ - Nswer: {'precision': 0.3401360544217687, 'recall': 0.5514705882352942, 'f1': 0.420757363253857, 'number': 272}
24
+ - Uestion: {'precision': 0.3463414634146341, 'recall': 0.46557377049180326, 'f1': 0.39720279720279716, 'number': 305}
25
+ - Overall Precision: 0.3359
26
+ - Overall Recall: 0.4487
27
+ - Overall F1: 0.3842
28
+ - Overall Accuracy: 0.7593
29
 
30
  ## Model description
31
 
 
48
  - train_batch_size: 16
49
  - eval_batch_size: 8
50
  - seed: 42
51
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
52
  - lr_scheduler_type: linear
53
  - num_epochs: 15
54
  - mixed_precision_training: Native AMP
55
 
56
  ### Training results
57
 
58
+ | Training Loss | Epoch | Step | Validation Loss | Eader | Nswer | Uestion | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
59
+ |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
60
+ | 1.3693 | 1.0 | 4 | 1.2778 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 96} | {'precision': 0.010467980295566502, 'recall': 0.0625, 'f1': 0.017932489451476793, 'number': 272} | {'precision': 0.010113780025284451, 'recall': 0.05245901639344262, 'f1': 0.01695813460519343, 'number': 305} | 0.0102 | 0.0490 | 0.0168 | 0.4230 |
61
+ | 1.2081 | 2.0 | 8 | 1.1974 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 96} | {'precision': 0.047841306884480746, 'recall': 0.15073529411764705, 'f1': 0.07263064658990256, 'number': 272} | {'precision': 0.05380116959064327, 'recall': 0.15081967213114755, 'f1': 0.0793103448275862, 'number': 305} | 0.0508 | 0.1293 | 0.0730 | 0.4805 |
62
+ | 1.0716 | 3.0 | 12 | 1.0999 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 96} | {'precision': 0.08643457382953182, 'recall': 0.2647058823529412, 'f1': 0.13031674208144797, 'number': 272} | {'precision': 0.10704960835509138, 'recall': 0.26885245901639343, 'f1': 0.1531279178338002, 'number': 305} | 0.0963 | 0.2288 | 0.1356 | 0.5225 |
63
+ | 0.855 | 4.0 | 16 | 0.9899 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 96} | {'precision': 0.11137440758293839, 'recall': 0.34558823529411764, 'f1': 0.16845878136200718, 'number': 272} | {'precision': 0.13172043010752688, 'recall': 0.32131147540983607, 'f1': 0.18684461391801713, 'number': 305} | 0.1209 | 0.2853 | 0.1698 | 0.5886 |
64
+ | 0.753 | 5.0 | 20 | 0.9095 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 96} | {'precision': 0.1562043795620438, 'recall': 0.39338235294117646, 'f1': 0.22361546499477536, 'number': 272} | {'precision': 0.15538461538461537, 'recall': 0.33114754098360655, 'f1': 0.21151832460732983, 'number': 305} | 0.1558 | 0.3091 | 0.2072 | 0.6306 |
65
+ | 0.6212 | 6.0 | 24 | 0.8551 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 96} | {'precision': 0.19864176570458403, 'recall': 0.43014705882352944, 'f1': 0.27177700348432055, 'number': 272} | {'precision': 0.19141323792486584, 'recall': 0.35081967213114756, 'f1': 0.2476851851851852, 'number': 305} | 0.1951 | 0.3328 | 0.2460 | 0.6520 |
66
+ | 0.637 | 7.0 | 28 | 0.7987 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 96} | {'precision': 0.2270363951473137, 'recall': 0.48161764705882354, 'f1': 0.30859835100117783, 'number': 272} | {'precision': 0.22201492537313433, 'recall': 0.3901639344262295, 'f1': 0.28299643281807374, 'number': 305} | 0.2244 | 0.3715 | 0.2798 | 0.6884 |
67
+ | 0.5212 | 8.0 | 32 | 0.7621 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 96} | {'precision': 0.260707635009311, 'recall': 0.5147058823529411, 'f1': 0.34610630407911, 'number': 272} | {'precision': 0.23529411764705882, 'recall': 0.380327868852459, 'f1': 0.2907268170426065, 'number': 305} | 0.2471 | 0.3804 | 0.2996 | 0.7189 |
68
+ | 0.4969 | 9.0 | 36 | 0.7494 | {'precision': 0.06666666666666667, 'recall': 0.010416666666666666, 'f1': 0.018018018018018014, 'number': 96} | {'precision': 0.283203125, 'recall': 0.5330882352941176, 'f1': 0.36989795918367346, 'number': 272} | {'precision': 0.2857142857142857, 'recall': 0.4131147540983607, 'f1': 0.3378016085790885, 'number': 305} | 0.2810 | 0.4042 | 0.3315 | 0.7331 |
69
+ | 0.4764 | 10.0 | 40 | 0.7321 | {'precision': 0.21428571428571427, 'recall': 0.0625, 'f1': 0.09677419354838708, 'number': 96} | {'precision': 0.302713987473904, 'recall': 0.5330882352941176, 'f1': 0.38615179760319573, 'number': 272} | {'precision': 0.3036529680365297, 'recall': 0.4360655737704918, 'f1': 0.3580080753701211, 'number': 305} | 0.3005 | 0.4220 | 0.3511 | 0.7443 |
70
+ | 0.3805 | 11.0 | 44 | 0.7123 | {'precision': 0.22857142857142856, 'recall': 0.08333333333333333, 'f1': 0.12213740458015265, 'number': 96} | {'precision': 0.3008474576271186, 'recall': 0.5220588235294118, 'f1': 0.3817204301075269, 'number': 272} | {'precision': 0.3120728929384966, 'recall': 0.4491803278688525, 'f1': 0.3682795698924731, 'number': 305} | 0.3034 | 0.4264 | 0.3545 | 0.7504 |
71
+ | 0.3651 | 12.0 | 48 | 0.7054 | {'precision': 0.2, 'recall': 0.08333333333333333, 'f1': 0.11764705882352941, 'number': 96} | {'precision': 0.31947483588621445, 'recall': 0.5367647058823529, 'f1': 0.40054869684499317, 'number': 272} | {'precision': 0.3194444444444444, 'recall': 0.4524590163934426, 'f1': 0.37449118046132973, 'number': 305} | 0.3143 | 0.4339 | 0.3645 | 0.7532 |
72
+ | 0.3562 | 13.0 | 52 | 0.7085 | {'precision': 0.22727272727272727, 'recall': 0.10416666666666667, 'f1': 0.14285714285714288, 'number': 96} | {'precision': 0.3400900900900901, 'recall': 0.5551470588235294, 'f1': 0.42178770949720673, 'number': 272} | {'precision': 0.33816425120772947, 'recall': 0.45901639344262296, 'f1': 0.3894297635605007, 'number': 305} | 0.3337 | 0.4473 | 0.3822 | 0.7555 |
73
+ | 0.3191 | 14.0 | 56 | 0.7046 | {'precision': 0.1836734693877551, 'recall': 0.09375, 'f1': 0.12413793103448278, 'number': 96} | {'precision': 0.3393665158371041, 'recall': 0.5514705882352942, 'f1': 0.42016806722689076, 'number': 272} | {'precision': 0.34057971014492755, 'recall': 0.46229508196721314, 'f1': 0.39221140472879, 'number': 305} | 0.3315 | 0.4458 | 0.3802 | 0.7579 |
74
+ | 0.3347 | 15.0 | 60 | 0.7010 | {'precision': 0.20833333333333334, 'recall': 0.10416666666666667, 'f1': 0.1388888888888889, 'number': 96} | {'precision': 0.3401360544217687, 'recall': 0.5514705882352942, 'f1': 0.420757363253857, 'number': 272} | {'precision': 0.3463414634146341, 'recall': 0.46557377049180326, 'f1': 0.39720279720279716, 'number': 305} | 0.3359 | 0.4487 | 0.3842 | 0.7593 |
75
 
76
 
77
  ### Framework versions
78
 
79
+ - Transformers 4.48.3
80
+ - Pytorch 2.5.1+cu124
81
+ - Datasets 3.3.2
82
+ - Tokenizers 0.21.0
config.json CHANGED
@@ -9,23 +9,17 @@
9
  "hidden_size": 768,
10
  "id2label": {
11
  "0": "O",
12
- "1": "B-HEADER",
13
- "2": "I-HEADER",
14
- "3": "B-QUESTION",
15
- "4": "I-QUESTION",
16
- "5": "B-ANSWER",
17
- "6": "I-ANSWER"
18
  },
19
  "initializer_range": 0.02,
20
  "intermediate_size": 3072,
21
  "label2id": {
22
- "B-ANSWER": 5,
23
- "B-HEADER": 1,
24
- "B-QUESTION": 3,
25
- "I-ANSWER": 6,
26
- "I-HEADER": 2,
27
- "I-QUESTION": 4,
28
- "O": 0
29
  },
30
  "layer_norm_eps": 1e-12,
31
  "max_2d_position_embeddings": 1024,
@@ -37,7 +31,7 @@
37
  "pad_token_id": 0,
38
  "position_embedding_type": "absolute",
39
  "torch_dtype": "float32",
40
- "transformers_version": "4.38.2",
41
  "type_vocab_size": 2,
42
  "use_cache": true,
43
  "vocab_size": 30522
 
9
  "hidden_size": 768,
10
  "id2label": {
11
  "0": "O",
12
+ "1": "Header",
13
+ "2": "Question",
14
+ "3": "Answer"
 
 
 
15
  },
16
  "initializer_range": 0.02,
17
  "intermediate_size": 3072,
18
  "label2id": {
19
+ "Answer": 3,
20
+ "Header": 1,
21
+ "O": 0,
22
+ "Question": 2
 
 
 
23
  },
24
  "layer_norm_eps": 1e-12,
25
  "max_2d_position_embeddings": 1024,
 
31
  "pad_token_id": 0,
32
  "position_embedding_type": "absolute",
33
  "torch_dtype": "float32",
34
+ "transformers_version": "4.48.3",
35
  "type_vocab_size": 2,
36
  "use_cache": true,
37
  "vocab_size": 30522
logs/events.out.tfevents.1740560490.f94f8b22d15e.422.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:266d45e8ce9470c059ed5ec368ed1cd4a013509b2234ff50a3d993c7623ca6fb
3
+ size 16038
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1ee163a2d0c3b03473702e54816ce63715412bc5d8b1b45949f88d973c05cf57
3
- size 450558212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19dbbf8295e45af239466e469b1835fd45914dcd4fdb7941c40c3143350b8585
3
+ size 450548984
tokenizer.json CHANGED
@@ -1,21 +1,7 @@
1
  {
2
  "version": "1.0",
3
- "truncation": {
4
- "direction": "Right",
5
- "max_length": 512,
6
- "strategy": "LongestFirst",
7
- "stride": 0
8
- },
9
- "padding": {
10
- "strategy": {
11
- "Fixed": 512
12
- },
13
- "direction": "Right",
14
- "pad_to_multiple_of": null,
15
- "pad_id": 0,
16
- "pad_type_id": 0,
17
- "pad_token": "[PAD]"
18
- },
19
  "added_tokens": [
20
  {
21
  "id": 0,
 
1
  {
2
  "version": "1.0",
3
+ "truncation": null,
4
+ "padding": null,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  "added_tokens": [
6
  {
7
  "id": 0,
tokenizer_config.json CHANGED
@@ -53,10 +53,13 @@
53
  ],
54
  "do_basic_tokenize": true,
55
  "do_lower_case": true,
 
56
  "mask_token": "[MASK]",
 
57
  "model_max_length": 512,
58
  "never_split": null,
59
  "only_label_first_subword": true,
 
60
  "pad_token": "[PAD]",
61
  "pad_token_box": [
62
  0,
@@ -65,6 +68,8 @@
65
  0
66
  ],
67
  "pad_token_label": -100,
 
 
68
  "processor_class": "LayoutLMv2Processor",
69
  "sep_token": "[SEP]",
70
  "sep_token_box": [
@@ -73,8 +78,11 @@
73
  1000,
74
  1000
75
  ],
 
76
  "strip_accents": null,
77
  "tokenize_chinese_chars": true,
78
  "tokenizer_class": "LayoutLMv2Tokenizer",
 
 
79
  "unk_token": "[UNK]"
80
  }
 
53
  ],
54
  "do_basic_tokenize": true,
55
  "do_lower_case": true,
56
+ "extra_special_tokens": {},
57
  "mask_token": "[MASK]",
58
+ "max_length": 512,
59
  "model_max_length": 512,
60
  "never_split": null,
61
  "only_label_first_subword": true,
62
+ "pad_to_multiple_of": null,
63
  "pad_token": "[PAD]",
64
  "pad_token_box": [
65
  0,
 
68
  0
69
  ],
70
  "pad_token_label": -100,
71
+ "pad_token_type_id": 0,
72
+ "padding_side": "right",
73
  "processor_class": "LayoutLMv2Processor",
74
  "sep_token": "[SEP]",
75
  "sep_token_box": [
 
78
  1000,
79
  1000
80
  ],
81
+ "stride": 0,
82
  "strip_accents": null,
83
  "tokenize_chinese_chars": true,
84
  "tokenizer_class": "LayoutLMv2Tokenizer",
85
+ "truncation_side": "right",
86
+ "truncation_strategy": "longest_first",
87
  "unk_token": "[UNK]"
88
  }
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:106c0849d4af54f1f2e29787f3707d8e2e3bce9f6b0494827dbff27c41b4de34
3
- size 4920
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c00c0f5902e932f68ed59f4344946ae084f5f48fc7ee5691be99a6515b4cbc9
3
+ size 5304