pabloma09 commited on
Commit
b9ec4e9
·
verified ·
1 Parent(s): b0155b8

End of training

Browse files
README.md CHANGED
@@ -4,8 +4,6 @@ license: mit
4
  base_model: microsoft/layoutlm-base-uncased
5
  tags:
6
  - generated_from_trainer
7
- datasets:
8
- - funsd
9
  model-index:
10
  - name: layoutlm-funsd
11
  results: []
@@ -16,16 +14,16 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  # layoutlm-funsd
18
 
19
- This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
20
  It achieves the following results on the evaluation set:
21
- - Loss: 0.7010
22
- - Eader: {'precision': 0.20833333333333334, 'recall': 0.10416666666666667, 'f1': 0.1388888888888889, 'number': 96}
23
- - Nswer: {'precision': 0.3401360544217687, 'recall': 0.5514705882352942, 'f1': 0.420757363253857, 'number': 272}
24
- - Uestion: {'precision': 0.3463414634146341, 'recall': 0.46557377049180326, 'f1': 0.39720279720279716, 'number': 305}
25
- - Overall Precision: 0.3359
26
- - Overall Recall: 0.4487
27
- - Overall F1: 0.3842
28
- - Overall Accuracy: 0.7593
29
 
30
  ## Model description
31
 
@@ -48,35 +46,35 @@ The following hyperparameters were used during training:
48
  - train_batch_size: 16
49
  - eval_batch_size: 8
50
  - seed: 42
51
- - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
52
  - lr_scheduler_type: linear
53
  - num_epochs: 15
54
  - mixed_precision_training: Native AMP
55
 
56
  ### Training results
57
 
58
- | Training Loss | Epoch | Step | Validation Loss | Eader | Nswer | Uestion | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
59
- |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
60
- | 1.3693 | 1.0 | 4 | 1.2778 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 96} | {'precision': 0.010467980295566502, 'recall': 0.0625, 'f1': 0.017932489451476793, 'number': 272} | {'precision': 0.010113780025284451, 'recall': 0.05245901639344262, 'f1': 0.01695813460519343, 'number': 305} | 0.0102 | 0.0490 | 0.0168 | 0.4230 |
61
- | 1.2081 | 2.0 | 8 | 1.1974 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 96} | {'precision': 0.047841306884480746, 'recall': 0.15073529411764705, 'f1': 0.07263064658990256, 'number': 272} | {'precision': 0.05380116959064327, 'recall': 0.15081967213114755, 'f1': 0.0793103448275862, 'number': 305} | 0.0508 | 0.1293 | 0.0730 | 0.4805 |
62
- | 1.0716 | 3.0 | 12 | 1.0999 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 96} | {'precision': 0.08643457382953182, 'recall': 0.2647058823529412, 'f1': 0.13031674208144797, 'number': 272} | {'precision': 0.10704960835509138, 'recall': 0.26885245901639343, 'f1': 0.1531279178338002, 'number': 305} | 0.0963 | 0.2288 | 0.1356 | 0.5225 |
63
- | 0.855 | 4.0 | 16 | 0.9899 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 96} | {'precision': 0.11137440758293839, 'recall': 0.34558823529411764, 'f1': 0.16845878136200718, 'number': 272} | {'precision': 0.13172043010752688, 'recall': 0.32131147540983607, 'f1': 0.18684461391801713, 'number': 305} | 0.1209 | 0.2853 | 0.1698 | 0.5886 |
64
- | 0.753 | 5.0 | 20 | 0.9095 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 96} | {'precision': 0.1562043795620438, 'recall': 0.39338235294117646, 'f1': 0.22361546499477536, 'number': 272} | {'precision': 0.15538461538461537, 'recall': 0.33114754098360655, 'f1': 0.21151832460732983, 'number': 305} | 0.1558 | 0.3091 | 0.2072 | 0.6306 |
65
- | 0.6212 | 6.0 | 24 | 0.8551 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 96} | {'precision': 0.19864176570458403, 'recall': 0.43014705882352944, 'f1': 0.27177700348432055, 'number': 272} | {'precision': 0.19141323792486584, 'recall': 0.35081967213114756, 'f1': 0.2476851851851852, 'number': 305} | 0.1951 | 0.3328 | 0.2460 | 0.6520 |
66
- | 0.637 | 7.0 | 28 | 0.7987 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 96} | {'precision': 0.2270363951473137, 'recall': 0.48161764705882354, 'f1': 0.30859835100117783, 'number': 272} | {'precision': 0.22201492537313433, 'recall': 0.3901639344262295, 'f1': 0.28299643281807374, 'number': 305} | 0.2244 | 0.3715 | 0.2798 | 0.6884 |
67
- | 0.5212 | 8.0 | 32 | 0.7621 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 96} | {'precision': 0.260707635009311, 'recall': 0.5147058823529411, 'f1': 0.34610630407911, 'number': 272} | {'precision': 0.23529411764705882, 'recall': 0.380327868852459, 'f1': 0.2907268170426065, 'number': 305} | 0.2471 | 0.3804 | 0.2996 | 0.7189 |
68
- | 0.4969 | 9.0 | 36 | 0.7494 | {'precision': 0.06666666666666667, 'recall': 0.010416666666666666, 'f1': 0.018018018018018014, 'number': 96} | {'precision': 0.283203125, 'recall': 0.5330882352941176, 'f1': 0.36989795918367346, 'number': 272} | {'precision': 0.2857142857142857, 'recall': 0.4131147540983607, 'f1': 0.3378016085790885, 'number': 305} | 0.2810 | 0.4042 | 0.3315 | 0.7331 |
69
- | 0.4764 | 10.0 | 40 | 0.7321 | {'precision': 0.21428571428571427, 'recall': 0.0625, 'f1': 0.09677419354838708, 'number': 96} | {'precision': 0.302713987473904, 'recall': 0.5330882352941176, 'f1': 0.38615179760319573, 'number': 272} | {'precision': 0.3036529680365297, 'recall': 0.4360655737704918, 'f1': 0.3580080753701211, 'number': 305} | 0.3005 | 0.4220 | 0.3511 | 0.7443 |
70
- | 0.3805 | 11.0 | 44 | 0.7123 | {'precision': 0.22857142857142856, 'recall': 0.08333333333333333, 'f1': 0.12213740458015265, 'number': 96} | {'precision': 0.3008474576271186, 'recall': 0.5220588235294118, 'f1': 0.3817204301075269, 'number': 272} | {'precision': 0.3120728929384966, 'recall': 0.4491803278688525, 'f1': 0.3682795698924731, 'number': 305} | 0.3034 | 0.4264 | 0.3545 | 0.7504 |
71
- | 0.3651 | 12.0 | 48 | 0.7054 | {'precision': 0.2, 'recall': 0.08333333333333333, 'f1': 0.11764705882352941, 'number': 96} | {'precision': 0.31947483588621445, 'recall': 0.5367647058823529, 'f1': 0.40054869684499317, 'number': 272} | {'precision': 0.3194444444444444, 'recall': 0.4524590163934426, 'f1': 0.37449118046132973, 'number': 305} | 0.3143 | 0.4339 | 0.3645 | 0.7532 |
72
- | 0.3562 | 13.0 | 52 | 0.7085 | {'precision': 0.22727272727272727, 'recall': 0.10416666666666667, 'f1': 0.14285714285714288, 'number': 96} | {'precision': 0.3400900900900901, 'recall': 0.5551470588235294, 'f1': 0.42178770949720673, 'number': 272} | {'precision': 0.33816425120772947, 'recall': 0.45901639344262296, 'f1': 0.3894297635605007, 'number': 305} | 0.3337 | 0.4473 | 0.3822 | 0.7555 |
73
- | 0.3191 | 14.0 | 56 | 0.7046 | {'precision': 0.1836734693877551, 'recall': 0.09375, 'f1': 0.12413793103448278, 'number': 96} | {'precision': 0.3393665158371041, 'recall': 0.5514705882352942, 'f1': 0.42016806722689076, 'number': 272} | {'precision': 0.34057971014492755, 'recall': 0.46229508196721314, 'f1': 0.39221140472879, 'number': 305} | 0.3315 | 0.4458 | 0.3802 | 0.7579 |
74
- | 0.3347 | 15.0 | 60 | 0.7010 | {'precision': 0.20833333333333334, 'recall': 0.10416666666666667, 'f1': 0.1388888888888889, 'number': 96} | {'precision': 0.3401360544217687, 'recall': 0.5514705882352942, 'f1': 0.420757363253857, 'number': 272} | {'precision': 0.3463414634146341, 'recall': 0.46557377049180326, 'f1': 0.39720279720279716, 'number': 305} | 0.3359 | 0.4487 | 0.3842 | 0.7593 |
75
 
76
 
77
  ### Framework versions
78
 
79
- - Transformers 4.48.3
80
- - Pytorch 2.5.1+cu124
81
  - Datasets 3.3.2
82
  - Tokenizers 0.21.0
 
4
  base_model: microsoft/layoutlm-base-uncased
5
  tags:
6
  - generated_from_trainer
 
 
7
  model-index:
8
  - name: layoutlm-funsd
9
  results: []
 
14
 
15
  # layoutlm-funsd
16
 
17
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the None dataset.
18
  It achieves the following results on the evaluation set:
19
+ - Loss: 0.1967
20
+ - Eader: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10}
21
+ - Nswer: {'precision': 0.8354430379746836, 'recall': 0.88, 'f1': 0.8571428571428572, 'number': 75}
22
+ - Uestion: {'precision': 0.8571428571428571, 'recall': 0.868421052631579, 'f1': 0.8627450980392157, 'number': 76}
23
+ - Overall Precision: 0.8554
24
+ - Overall Recall: 0.8820
25
+ - Overall F1: 0.8685
26
+ - Overall Accuracy: 0.9435
27
 
28
  ## Model description
29
 
 
46
  - train_batch_size: 16
47
  - eval_batch_size: 8
48
  - seed: 42
49
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
50
  - lr_scheduler_type: linear
51
  - num_epochs: 15
52
  - mixed_precision_training: Native AMP
53
 
54
  ### Training results
55
 
56
+ | Training Loss | Epoch | Step | Validation Loss | Eader | Nswer | Uestion | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
58
+ | 1.1495 | 1.0 | 4 | 1.0698 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.2, 'recall': 0.013333333333333334, 'f1': 0.025, 'number': 75} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 76} | 0.0909 | 0.0062 | 0.0116 | 0.4960 |
59
+ | 0.9448 | 2.0 | 8 | 0.9517 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.2, 'recall': 0.013333333333333334, 'f1': 0.025, 'number': 75} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 76} | 0.0909 | 0.0062 | 0.0116 | 0.5 |
60
+ | 0.8403 | 3.0 | 12 | 0.7857 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.4927536231884058, 'recall': 0.4533333333333333, 'f1': 0.4722222222222222, 'number': 75} | {'precision': 0.3684210526315789, 'recall': 0.3684210526315789, 'f1': 0.3684210526315789, 'number': 76} | 0.4189 | 0.3851 | 0.4013 | 0.6633 |
61
+ | 0.6355 | 4.0 | 16 | 0.6129 | {'precision': 0.2857142857142857, 'recall': 0.2, 'f1': 0.23529411764705882, 'number': 10} | {'precision': 0.5353535353535354, 'recall': 0.7066666666666667, 'f1': 0.6091954022988506, 'number': 75} | {'precision': 0.5865384615384616, 'recall': 0.8026315789473685, 'f1': 0.6777777777777778, 'number': 76} | 0.5524 | 0.7205 | 0.6253 | 0.7802 |
62
+ | 0.4708 | 5.0 | 20 | 0.4714 | {'precision': 0.5555555555555556, 'recall': 0.5, 'f1': 0.5263157894736842, 'number': 10} | {'precision': 0.6853932584269663, 'recall': 0.8133333333333334, 'f1': 0.7439024390243902, 'number': 75} | {'precision': 0.6956521739130435, 'recall': 0.8421052631578947, 'f1': 0.761904761904762, 'number': 76} | 0.6842 | 0.8075 | 0.7407 | 0.8387 |
63
+ | 0.3531 | 6.0 | 24 | 0.3538 | {'precision': 0.8, 'recall': 0.8, 'f1': 0.8000000000000002, 'number': 10} | {'precision': 0.7471264367816092, 'recall': 0.8666666666666667, 'f1': 0.8024691358024691, 'number': 75} | {'precision': 0.7764705882352941, 'recall': 0.868421052631579, 'f1': 0.8198757763975155, 'number': 76} | 0.7637 | 0.8634 | 0.8105 | 0.8831 |
64
+ | 0.2414 | 7.0 | 28 | 0.2841 | {'precision': 0.9, 'recall': 0.9, 'f1': 0.9, 'number': 10} | {'precision': 0.7804878048780488, 'recall': 0.8533333333333334, 'f1': 0.8152866242038218, 'number': 75} | {'precision': 0.7804878048780488, 'recall': 0.8421052631578947, 'f1': 0.810126582278481, 'number': 76} | 0.7874 | 0.8509 | 0.8179 | 0.9133 |
65
+ | 0.2138 | 8.0 | 32 | 0.2437 | {'precision': 0.9, 'recall': 0.9, 'f1': 0.9, 'number': 10} | {'precision': 0.7875, 'recall': 0.84, 'f1': 0.8129032258064516, 'number': 75} | {'precision': 0.7682926829268293, 'recall': 0.8289473684210527, 'f1': 0.7974683544303798, 'number': 76} | 0.7849 | 0.8385 | 0.8108 | 0.9294 |
66
+ | 0.2558 | 9.0 | 36 | 0.2162 | {'precision': 0.9, 'recall': 0.9, 'f1': 0.9, 'number': 10} | {'precision': 0.8, 'recall': 0.8533333333333334, 'f1': 0.8258064516129033, 'number': 75} | {'precision': 0.8441558441558441, 'recall': 0.8552631578947368, 'f1': 0.8496732026143792, 'number': 76} | 0.8263 | 0.8571 | 0.8415 | 0.9375 |
67
+ | 0.1247 | 10.0 | 40 | 0.2025 | {'precision': 0.9, 'recall': 0.9, 'f1': 0.9, 'number': 10} | {'precision': 0.8, 'recall': 0.8533333333333334, 'f1': 0.8258064516129033, 'number': 75} | {'precision': 0.8441558441558441, 'recall': 0.8552631578947368, 'f1': 0.8496732026143792, 'number': 76} | 0.8263 | 0.8571 | 0.8415 | 0.9375 |
68
+ | 0.1053 | 11.0 | 44 | 0.2047 | {'precision': 0.9, 'recall': 0.9, 'f1': 0.9, 'number': 10} | {'precision': 0.810126582278481, 'recall': 0.8533333333333334, 'f1': 0.8311688311688312, 'number': 75} | {'precision': 0.8421052631578947, 'recall': 0.8421052631578947, 'f1': 0.8421052631578947, 'number': 76} | 0.8303 | 0.8509 | 0.8405 | 0.9375 |
69
+ | 0.1101 | 12.0 | 48 | 0.2053 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.810126582278481, 'recall': 0.8533333333333334, 'f1': 0.8311688311688312, 'number': 75} | {'precision': 0.8421052631578947, 'recall': 0.8421052631578947, 'f1': 0.8421052631578947, 'number': 76} | 0.8364 | 0.8571 | 0.8466 | 0.9395 |
70
+ | 0.0894 | 13.0 | 52 | 0.2016 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.810126582278481, 'recall': 0.8533333333333334, 'f1': 0.8311688311688312, 'number': 75} | {'precision': 0.8421052631578947, 'recall': 0.8421052631578947, 'f1': 0.8421052631578947, 'number': 76} | 0.8364 | 0.8571 | 0.8466 | 0.9395 |
71
+ | 0.1657 | 14.0 | 56 | 0.1980 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.8354430379746836, 'recall': 0.88, 'f1': 0.8571428571428572, 'number': 75} | {'precision': 0.8571428571428571, 'recall': 0.868421052631579, 'f1': 0.8627450980392157, 'number': 76} | 0.8554 | 0.8820 | 0.8685 | 0.9435 |
72
+ | 0.0884 | 15.0 | 60 | 0.1967 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.8354430379746836, 'recall': 0.88, 'f1': 0.8571428571428572, 'number': 75} | {'precision': 0.8571428571428571, 'recall': 0.868421052631579, 'f1': 0.8627450980392157, 'number': 76} | 0.8554 | 0.8820 | 0.8685 | 0.9435 |
73
 
74
 
75
  ### Framework versions
76
 
77
+ - Transformers 4.49.0
78
+ - Pytorch 2.6.0+cu124
79
  - Datasets 3.3.2
80
  - Tokenizers 0.21.0
logs/events.out.tfevents.1740646307.DESKTOP-HA84SVN.2492567.1 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:292953d8dfa61cc9a512198036f80b22500467433233a2f6d8b78119625eaddd
3
- size 15036
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8cc63fe7328521f6db7903ed0dd58165ad2cfc5f9170f63cdd3411d4a04fe83
3
+ size 16086
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bcff362ba3cdcd1581f6eeab30f6381743938b4cdfe2534065d1f832dd0513e7
3
  size 450548984
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:167280f93ce3a2d5893161136fea858fd5713a3930cde58a2dfdeb34d6650475
3
  size 450548984
tokenizer.json CHANGED
@@ -1,7 +1,21 @@
1
  {
2
  "version": "1.0",
3
- "truncation": null,
4
- "padding": null,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  "added_tokens": [
6
  {
7
  "id": 0,
 
1
  {
2
  "version": "1.0",
3
+ "truncation": {
4
+ "direction": "Right",
5
+ "max_length": 512,
6
+ "strategy": "LongestFirst",
7
+ "stride": 0
8
+ },
9
+ "padding": {
10
+ "strategy": {
11
+ "Fixed": 512
12
+ },
13
+ "direction": "Right",
14
+ "pad_to_multiple_of": null,
15
+ "pad_id": 0,
16
+ "pad_type_id": 0,
17
+ "pad_token": "[PAD]"
18
+ },
19
  "added_tokens": [
20
  {
21
  "id": 0,
tokenizer_config.json CHANGED
@@ -43,7 +43,7 @@
43
  },
44
  "additional_special_tokens": [],
45
  "apply_ocr": false,
46
- "clean_up_tokenization_spaces": true,
47
  "cls_token": "[CLS]",
48
  "cls_token_box": [
49
  0,
@@ -55,11 +55,9 @@
55
  "do_lower_case": true,
56
  "extra_special_tokens": {},
57
  "mask_token": "[MASK]",
58
- "max_length": 512,
59
  "model_max_length": 512,
60
  "never_split": null,
61
  "only_label_first_subword": true,
62
- "pad_to_multiple_of": null,
63
  "pad_token": "[PAD]",
64
  "pad_token_box": [
65
  0,
@@ -68,8 +66,6 @@
68
  0
69
  ],
70
  "pad_token_label": -100,
71
- "pad_token_type_id": 0,
72
- "padding_side": "right",
73
  "processor_class": "LayoutLMv2Processor",
74
  "sep_token": "[SEP]",
75
  "sep_token_box": [
@@ -78,11 +74,8 @@
78
  1000,
79
  1000
80
  ],
81
- "stride": 0,
82
  "strip_accents": null,
83
  "tokenize_chinese_chars": true,
84
  "tokenizer_class": "LayoutLMv2Tokenizer",
85
- "truncation_side": "right",
86
- "truncation_strategy": "longest_first",
87
  "unk_token": "[UNK]"
88
  }
 
43
  },
44
  "additional_special_tokens": [],
45
  "apply_ocr": false,
46
+ "clean_up_tokenization_spaces": false,
47
  "cls_token": "[CLS]",
48
  "cls_token_box": [
49
  0,
 
55
  "do_lower_case": true,
56
  "extra_special_tokens": {},
57
  "mask_token": "[MASK]",
 
58
  "model_max_length": 512,
59
  "never_split": null,
60
  "only_label_first_subword": true,
 
61
  "pad_token": "[PAD]",
62
  "pad_token_box": [
63
  0,
 
66
  0
67
  ],
68
  "pad_token_label": -100,
 
 
69
  "processor_class": "LayoutLMv2Processor",
70
  "sep_token": "[SEP]",
71
  "sep_token_box": [
 
74
  1000,
75
  1000
76
  ],
 
77
  "strip_accents": null,
78
  "tokenize_chinese_chars": true,
79
  "tokenizer_class": "LayoutLMv2Tokenizer",
 
 
80
  "unk_token": "[UNK]"
81
  }