End of training
Browse files- README.md +29 -31
- logs/events.out.tfevents.1740646307.DESKTOP-HA84SVN.2492567.1 +2 -2
- model.safetensors +1 -1
- tokenizer.json +16 -2
- tokenizer_config.json +1 -8
README.md
CHANGED
@@ -4,8 +4,6 @@ license: mit
|
|
4 |
base_model: microsoft/layoutlm-base-uncased
|
5 |
tags:
|
6 |
- generated_from_trainer
|
7 |
-
datasets:
|
8 |
-
- funsd
|
9 |
model-index:
|
10 |
- name: layoutlm-funsd
|
11 |
results: []
|
@@ -16,16 +14,16 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
|
17 |
# layoutlm-funsd
|
18 |
|
19 |
-
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the
|
20 |
It achieves the following results on the evaluation set:
|
21 |
-
- Loss: 0.
|
22 |
-
- Eader: {'precision': 0
|
23 |
-
- Nswer: {'precision': 0.
|
24 |
-
- Uestion: {'precision': 0.
|
25 |
-
- Overall Precision: 0.
|
26 |
-
- Overall Recall: 0.
|
27 |
-
- Overall F1: 0.
|
28 |
-
- Overall Accuracy: 0.
|
29 |
|
30 |
## Model description
|
31 |
|
@@ -48,35 +46,35 @@ The following hyperparameters were used during training:
|
|
48 |
- train_batch_size: 16
|
49 |
- eval_batch_size: 8
|
50 |
- seed: 42
|
51 |
-
- optimizer: Use
|
52 |
- lr_scheduler_type: linear
|
53 |
- num_epochs: 15
|
54 |
- mixed_precision_training: Native AMP
|
55 |
|
56 |
### Training results
|
57 |
|
58 |
-
| Training Loss | Epoch | Step | Validation Loss | Eader
|
59 |
-
|
60 |
-
| 1.
|
61 |
-
|
|
62 |
-
|
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
|
76 |
|
77 |
### Framework versions
|
78 |
|
79 |
-
- Transformers 4.
|
80 |
-
- Pytorch 2.
|
81 |
- Datasets 3.3.2
|
82 |
- Tokenizers 0.21.0
|
|
|
4 |
base_model: microsoft/layoutlm-base-uncased
|
5 |
tags:
|
6 |
- generated_from_trainer
|
|
|
|
|
7 |
model-index:
|
8 |
- name: layoutlm-funsd
|
9 |
results: []
|
|
|
14 |
|
15 |
# layoutlm-funsd
|
16 |
|
17 |
+
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the None dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.1967
|
20 |
+
- Eader: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10}
|
21 |
+
- Nswer: {'precision': 0.8354430379746836, 'recall': 0.88, 'f1': 0.8571428571428572, 'number': 75}
|
22 |
+
- Uestion: {'precision': 0.8571428571428571, 'recall': 0.868421052631579, 'f1': 0.8627450980392157, 'number': 76}
|
23 |
+
- Overall Precision: 0.8554
|
24 |
+
- Overall Recall: 0.8820
|
25 |
+
- Overall F1: 0.8685
|
26 |
+
- Overall Accuracy: 0.9435
|
27 |
|
28 |
## Model description
|
29 |
|
|
|
46 |
- train_batch_size: 16
|
47 |
- eval_batch_size: 8
|
48 |
- seed: 42
|
49 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
50 |
- lr_scheduler_type: linear
|
51 |
- num_epochs: 15
|
52 |
- mixed_precision_training: Native AMP
|
53 |
|
54 |
### Training results
|
55 |
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Eader | Nswer | Uestion | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
58 |
+
| 1.1495 | 1.0 | 4 | 1.0698 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.2, 'recall': 0.013333333333333334, 'f1': 0.025, 'number': 75} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 76} | 0.0909 | 0.0062 | 0.0116 | 0.4960 |
|
59 |
+
| 0.9448 | 2.0 | 8 | 0.9517 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.2, 'recall': 0.013333333333333334, 'f1': 0.025, 'number': 75} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 76} | 0.0909 | 0.0062 | 0.0116 | 0.5 |
|
60 |
+
| 0.8403 | 3.0 | 12 | 0.7857 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.4927536231884058, 'recall': 0.4533333333333333, 'f1': 0.4722222222222222, 'number': 75} | {'precision': 0.3684210526315789, 'recall': 0.3684210526315789, 'f1': 0.3684210526315789, 'number': 76} | 0.4189 | 0.3851 | 0.4013 | 0.6633 |
|
61 |
+
| 0.6355 | 4.0 | 16 | 0.6129 | {'precision': 0.2857142857142857, 'recall': 0.2, 'f1': 0.23529411764705882, 'number': 10} | {'precision': 0.5353535353535354, 'recall': 0.7066666666666667, 'f1': 0.6091954022988506, 'number': 75} | {'precision': 0.5865384615384616, 'recall': 0.8026315789473685, 'f1': 0.6777777777777778, 'number': 76} | 0.5524 | 0.7205 | 0.6253 | 0.7802 |
|
62 |
+
| 0.4708 | 5.0 | 20 | 0.4714 | {'precision': 0.5555555555555556, 'recall': 0.5, 'f1': 0.5263157894736842, 'number': 10} | {'precision': 0.6853932584269663, 'recall': 0.8133333333333334, 'f1': 0.7439024390243902, 'number': 75} | {'precision': 0.6956521739130435, 'recall': 0.8421052631578947, 'f1': 0.761904761904762, 'number': 76} | 0.6842 | 0.8075 | 0.7407 | 0.8387 |
|
63 |
+
| 0.3531 | 6.0 | 24 | 0.3538 | {'precision': 0.8, 'recall': 0.8, 'f1': 0.8000000000000002, 'number': 10} | {'precision': 0.7471264367816092, 'recall': 0.8666666666666667, 'f1': 0.8024691358024691, 'number': 75} | {'precision': 0.7764705882352941, 'recall': 0.868421052631579, 'f1': 0.8198757763975155, 'number': 76} | 0.7637 | 0.8634 | 0.8105 | 0.8831 |
|
64 |
+
| 0.2414 | 7.0 | 28 | 0.2841 | {'precision': 0.9, 'recall': 0.9, 'f1': 0.9, 'number': 10} | {'precision': 0.7804878048780488, 'recall': 0.8533333333333334, 'f1': 0.8152866242038218, 'number': 75} | {'precision': 0.7804878048780488, 'recall': 0.8421052631578947, 'f1': 0.810126582278481, 'number': 76} | 0.7874 | 0.8509 | 0.8179 | 0.9133 |
|
65 |
+
| 0.2138 | 8.0 | 32 | 0.2437 | {'precision': 0.9, 'recall': 0.9, 'f1': 0.9, 'number': 10} | {'precision': 0.7875, 'recall': 0.84, 'f1': 0.8129032258064516, 'number': 75} | {'precision': 0.7682926829268293, 'recall': 0.8289473684210527, 'f1': 0.7974683544303798, 'number': 76} | 0.7849 | 0.8385 | 0.8108 | 0.9294 |
|
66 |
+
| 0.2558 | 9.0 | 36 | 0.2162 | {'precision': 0.9, 'recall': 0.9, 'f1': 0.9, 'number': 10} | {'precision': 0.8, 'recall': 0.8533333333333334, 'f1': 0.8258064516129033, 'number': 75} | {'precision': 0.8441558441558441, 'recall': 0.8552631578947368, 'f1': 0.8496732026143792, 'number': 76} | 0.8263 | 0.8571 | 0.8415 | 0.9375 |
|
67 |
+
| 0.1247 | 10.0 | 40 | 0.2025 | {'precision': 0.9, 'recall': 0.9, 'f1': 0.9, 'number': 10} | {'precision': 0.8, 'recall': 0.8533333333333334, 'f1': 0.8258064516129033, 'number': 75} | {'precision': 0.8441558441558441, 'recall': 0.8552631578947368, 'f1': 0.8496732026143792, 'number': 76} | 0.8263 | 0.8571 | 0.8415 | 0.9375 |
|
68 |
+
| 0.1053 | 11.0 | 44 | 0.2047 | {'precision': 0.9, 'recall': 0.9, 'f1': 0.9, 'number': 10} | {'precision': 0.810126582278481, 'recall': 0.8533333333333334, 'f1': 0.8311688311688312, 'number': 75} | {'precision': 0.8421052631578947, 'recall': 0.8421052631578947, 'f1': 0.8421052631578947, 'number': 76} | 0.8303 | 0.8509 | 0.8405 | 0.9375 |
|
69 |
+
| 0.1101 | 12.0 | 48 | 0.2053 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.810126582278481, 'recall': 0.8533333333333334, 'f1': 0.8311688311688312, 'number': 75} | {'precision': 0.8421052631578947, 'recall': 0.8421052631578947, 'f1': 0.8421052631578947, 'number': 76} | 0.8364 | 0.8571 | 0.8466 | 0.9395 |
|
70 |
+
| 0.0894 | 13.0 | 52 | 0.2016 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.810126582278481, 'recall': 0.8533333333333334, 'f1': 0.8311688311688312, 'number': 75} | {'precision': 0.8421052631578947, 'recall': 0.8421052631578947, 'f1': 0.8421052631578947, 'number': 76} | 0.8364 | 0.8571 | 0.8466 | 0.9395 |
|
71 |
+
| 0.1657 | 14.0 | 56 | 0.1980 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.8354430379746836, 'recall': 0.88, 'f1': 0.8571428571428572, 'number': 75} | {'precision': 0.8571428571428571, 'recall': 0.868421052631579, 'f1': 0.8627450980392157, 'number': 76} | 0.8554 | 0.8820 | 0.8685 | 0.9435 |
|
72 |
+
| 0.0884 | 15.0 | 60 | 0.1967 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.8354430379746836, 'recall': 0.88, 'f1': 0.8571428571428572, 'number': 75} | {'precision': 0.8571428571428571, 'recall': 0.868421052631579, 'f1': 0.8627450980392157, 'number': 76} | 0.8554 | 0.8820 | 0.8685 | 0.9435 |
|
73 |
|
74 |
|
75 |
### Framework versions
|
76 |
|
77 |
+
- Transformers 4.49.0
|
78 |
+
- Pytorch 2.6.0+cu124
|
79 |
- Datasets 3.3.2
|
80 |
- Tokenizers 0.21.0
|
logs/events.out.tfevents.1740646307.DESKTOP-HA84SVN.2492567.1
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a8cc63fe7328521f6db7903ed0dd58165ad2cfc5f9170f63cdd3411d4a04fe83
|
3 |
+
size 16086
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 450548984
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:167280f93ce3a2d5893161136fea858fd5713a3930cde58a2dfdeb34d6650475
|
3 |
size 450548984
|
tokenizer.json
CHANGED
@@ -1,7 +1,21 @@
|
|
1 |
{
|
2 |
"version": "1.0",
|
3 |
-
"truncation":
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
"added_tokens": [
|
6 |
{
|
7 |
"id": 0,
|
|
|
1 |
{
|
2 |
"version": "1.0",
|
3 |
+
"truncation": {
|
4 |
+
"direction": "Right",
|
5 |
+
"max_length": 512,
|
6 |
+
"strategy": "LongestFirst",
|
7 |
+
"stride": 0
|
8 |
+
},
|
9 |
+
"padding": {
|
10 |
+
"strategy": {
|
11 |
+
"Fixed": 512
|
12 |
+
},
|
13 |
+
"direction": "Right",
|
14 |
+
"pad_to_multiple_of": null,
|
15 |
+
"pad_id": 0,
|
16 |
+
"pad_type_id": 0,
|
17 |
+
"pad_token": "[PAD]"
|
18 |
+
},
|
19 |
"added_tokens": [
|
20 |
{
|
21 |
"id": 0,
|
tokenizer_config.json
CHANGED
@@ -43,7 +43,7 @@
|
|
43 |
},
|
44 |
"additional_special_tokens": [],
|
45 |
"apply_ocr": false,
|
46 |
-
"clean_up_tokenization_spaces":
|
47 |
"cls_token": "[CLS]",
|
48 |
"cls_token_box": [
|
49 |
0,
|
@@ -55,11 +55,9 @@
|
|
55 |
"do_lower_case": true,
|
56 |
"extra_special_tokens": {},
|
57 |
"mask_token": "[MASK]",
|
58 |
-
"max_length": 512,
|
59 |
"model_max_length": 512,
|
60 |
"never_split": null,
|
61 |
"only_label_first_subword": true,
|
62 |
-
"pad_to_multiple_of": null,
|
63 |
"pad_token": "[PAD]",
|
64 |
"pad_token_box": [
|
65 |
0,
|
@@ -68,8 +66,6 @@
|
|
68 |
0
|
69 |
],
|
70 |
"pad_token_label": -100,
|
71 |
-
"pad_token_type_id": 0,
|
72 |
-
"padding_side": "right",
|
73 |
"processor_class": "LayoutLMv2Processor",
|
74 |
"sep_token": "[SEP]",
|
75 |
"sep_token_box": [
|
@@ -78,11 +74,8 @@
|
|
78 |
1000,
|
79 |
1000
|
80 |
],
|
81 |
-
"stride": 0,
|
82 |
"strip_accents": null,
|
83 |
"tokenize_chinese_chars": true,
|
84 |
"tokenizer_class": "LayoutLMv2Tokenizer",
|
85 |
-
"truncation_side": "right",
|
86 |
-
"truncation_strategy": "longest_first",
|
87 |
"unk_token": "[UNK]"
|
88 |
}
|
|
|
43 |
},
|
44 |
"additional_special_tokens": [],
|
45 |
"apply_ocr": false,
|
46 |
+
"clean_up_tokenization_spaces": false,
|
47 |
"cls_token": "[CLS]",
|
48 |
"cls_token_box": [
|
49 |
0,
|
|
|
55 |
"do_lower_case": true,
|
56 |
"extra_special_tokens": {},
|
57 |
"mask_token": "[MASK]",
|
|
|
58 |
"model_max_length": 512,
|
59 |
"never_split": null,
|
60 |
"only_label_first_subword": true,
|
|
|
61 |
"pad_token": "[PAD]",
|
62 |
"pad_token_box": [
|
63 |
0,
|
|
|
66 |
0
|
67 |
],
|
68 |
"pad_token_label": -100,
|
|
|
|
|
69 |
"processor_class": "LayoutLMv2Processor",
|
70 |
"sep_token": "[SEP]",
|
71 |
"sep_token_box": [
|
|
|
74 |
1000,
|
75 |
1000
|
76 |
],
|
|
|
77 |
"strip_accents": null,
|
78 |
"tokenize_chinese_chars": true,
|
79 |
"tokenizer_class": "LayoutLMv2Tokenizer",
|
|
|
|
|
80 |
"unk_token": "[UNK]"
|
81 |
}
|