pabloma09 commited on
Commit
c793c22
·
verified ·
1 Parent(s): fae3024

End of training

Browse files
README.md CHANGED
@@ -1,7 +1,7 @@
1
  ---
2
  library_name: transformers
3
  license: mit
4
- base_model: microsoft/layoutlm-base-uncased
5
  tags:
6
  - generated_from_trainer
7
  model-index:
@@ -14,16 +14,16 @@ should probably proofread and complete it, then remove this comment. -->
14
 
15
  # layoutlm-funsd
16
 
17
- This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the None dataset.
18
  It achieves the following results on the evaluation set:
19
- - Loss: 0.8302
20
- - Eader: {'precision': 0.4444444444444444, 'recall': 0.25, 'f1': 0.32, 'number': 32}
21
- - Nswer: {'precision': 0.45569620253164556, 'recall': 0.5142857142857142, 'f1': 0.4832214765100671, 'number': 70}
22
- - Uestion: {'precision': 0.4868421052631579, 'recall': 0.47435897435897434, 'f1': 0.48051948051948057, 'number': 78}
23
- - Overall Precision: 0.4682
24
  - Overall Recall: 0.45
25
- - Overall F1: 0.4589
26
- - Overall Accuracy: 0.7758
27
 
28
  ## Model description
29
 
@@ -53,23 +53,23 @@ The following hyperparameters were used during training:
53
 
54
  ### Training results
55
 
56
- | Training Loss | Epoch | Step | Validation Loss | Eader | Nswer | Uestion | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
57
- |:-------------:|:-----:|:----:|:---------------:|:----------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
58
- | 1.2754 | 1.0 | 13 | 1.0702 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 32} | {'precision': 0.046413502109704644, 'recall': 0.15714285714285714, 'f1': 0.07166123778501629, 'number': 70} | {'precision': 0.05063291139240506, 'recall': 0.15384615384615385, 'f1': 0.0761904761904762, 'number': 78} | 0.0485 | 0.1278 | 0.0703 | 0.5865 |
59
- | 0.8597 | 2.0 | 26 | 0.7226 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 32} | {'precision': 0.30097087378640774, 'recall': 0.44285714285714284, 'f1': 0.3583815028901734, 'number': 70} | {'precision': 0.2647058823529412, 'recall': 0.34615384615384615, 'f1': 0.29999999999999993, 'number': 78} | 0.2723 | 0.3222 | 0.2952 | 0.7685 |
60
- | 0.624 | 3.0 | 39 | 0.6206 | {'precision': 0.1875, 'recall': 0.09375, 'f1': 0.125, 'number': 32} | {'precision': 0.36470588235294116, 'recall': 0.44285714285714284, 'f1': 0.3999999999999999, 'number': 70} | {'precision': 0.4533333333333333, 'recall': 0.4358974358974359, 'f1': 0.44444444444444436, 'number': 78} | 0.3864 | 0.3778 | 0.3820 | 0.8065 |
61
- | 0.4821 | 4.0 | 52 | 0.6513 | {'precision': 0.3125, 'recall': 0.15625, 'f1': 0.20833333333333334, 'number': 32} | {'precision': 0.3707865168539326, 'recall': 0.4714285714285714, 'f1': 0.41509433962264153, 'number': 70} | {'precision': 0.4050632911392405, 'recall': 0.41025641025641024, 'f1': 0.4076433121019108, 'number': 78} | 0.3804 | 0.3889 | 0.3846 | 0.7637 |
62
- | 0.371 | 5.0 | 65 | 0.7466 | {'precision': 0.36363636363636365, 'recall': 0.25, 'f1': 0.2962962962962963, 'number': 32} | {'precision': 0.4069767441860465, 'recall': 0.5, 'f1': 0.4487179487179487, 'number': 70} | {'precision': 0.40476190476190477, 'recall': 0.4358974358974359, 'f1': 0.4197530864197531, 'number': 78} | 0.4010 | 0.4278 | 0.4140 | 0.7131 |
63
- | 0.3068 | 6.0 | 78 | 0.6943 | {'precision': 0.4444444444444444, 'recall': 0.25, 'f1': 0.32, 'number': 32} | {'precision': 0.42857142857142855, 'recall': 0.5142857142857142, 'f1': 0.4675324675324675, 'number': 70} | {'precision': 0.44871794871794873, 'recall': 0.44871794871794873, 'f1': 0.44871794871794873, 'number': 78} | 0.4389 | 0.4389 | 0.4389 | 0.7498 |
64
- | 0.2523 | 7.0 | 91 | 0.7129 | {'precision': 0.4117647058823529, 'recall': 0.21875, 'f1': 0.2857142857142857, 'number': 32} | {'precision': 0.3950617283950617, 'recall': 0.45714285714285713, 'f1': 0.423841059602649, 'number': 70} | {'precision': 0.4788732394366197, 'recall': 0.4358974358974359, 'f1': 0.45637583892617445, 'number': 78} | 0.4320 | 0.4056 | 0.4183 | 0.7728 |
65
- | 0.2073 | 8.0 | 104 | 0.8039 | {'precision': 0.4, 'recall': 0.25, 'f1': 0.3076923076923077, 'number': 32} | {'precision': 0.546875, 'recall': 0.5, 'f1': 0.5223880597014925, 'number': 70} | {'precision': 0.4864864864864865, 'recall': 0.46153846153846156, 'f1': 0.47368421052631576, 'number': 78} | 0.5 | 0.4389 | 0.4675 | 0.7426 |
66
- | 0.1673 | 9.0 | 117 | 0.7874 | {'precision': 0.3157894736842105, 'recall': 0.1875, 'f1': 0.23529411764705882, 'number': 32} | {'precision': 0.4583333333333333, 'recall': 0.4714285714285714, 'f1': 0.46478873239436613, 'number': 70} | {'precision': 0.4722222222222222, 'recall': 0.4358974358974359, 'f1': 0.45333333333333337, 'number': 78} | 0.4479 | 0.4056 | 0.4257 | 0.7559 |
67
- | 0.1556 | 10.0 | 130 | 0.7440 | {'precision': 0.42105263157894735, 'recall': 0.25, 'f1': 0.3137254901960784, 'number': 32} | {'precision': 0.4931506849315068, 'recall': 0.5142857142857142, 'f1': 0.5034965034965034, 'number': 70} | {'precision': 0.4794520547945205, 'recall': 0.44871794871794873, 'f1': 0.4635761589403974, 'number': 78} | 0.4788 | 0.4389 | 0.4580 | 0.7860 |
68
- | 0.1304 | 11.0 | 143 | 0.8451 | {'precision': 0.42105263157894735, 'recall': 0.25, 'f1': 0.3137254901960784, 'number': 32} | {'precision': 0.45, 'recall': 0.5142857142857142, 'f1': 0.48, 'number': 70} | {'precision': 0.45, 'recall': 0.46153846153846156, 'f1': 0.45569620253164556, 'number': 78} | 0.4469 | 0.4444 | 0.4457 | 0.7655 |
69
- | 0.1231 | 12.0 | 156 | 0.9197 | {'precision': 0.375, 'recall': 0.28125, 'f1': 0.32142857142857145, 'number': 32} | {'precision': 0.49295774647887325, 'recall': 0.5, 'f1': 0.49645390070921985, 'number': 70} | {'precision': 0.44871794871794873, 'recall': 0.44871794871794873, 'f1': 0.44871794871794873, 'number': 78} | 0.4566 | 0.4389 | 0.4476 | 0.7432 |
70
- | 0.1062 | 13.0 | 169 | 0.8122 | {'precision': 0.47368421052631576, 'recall': 0.28125, 'f1': 0.35294117647058826, 'number': 32} | {'precision': 0.47368421052631576, 'recall': 0.5142857142857142, 'f1': 0.4931506849315068, 'number': 70} | {'precision': 0.5135135135135135, 'recall': 0.48717948717948717, 'f1': 0.5, 'number': 78} | 0.4911 | 0.4611 | 0.4756 | 0.7836 |
71
- | 0.1072 | 14.0 | 182 | 0.8369 | {'precision': 0.391304347826087, 'recall': 0.28125, 'f1': 0.3272727272727273, 'number': 32} | {'precision': 0.43037974683544306, 'recall': 0.4857142857142857, 'f1': 0.4563758389261745, 'number': 70} | {'precision': 0.46153846153846156, 'recall': 0.46153846153846156, 'f1': 0.46153846153846156, 'number': 78} | 0.4389 | 0.4389 | 0.4389 | 0.7746 |
72
- | 0.1028 | 15.0 | 195 | 0.8302 | {'precision': 0.4444444444444444, 'recall': 0.25, 'f1': 0.32, 'number': 32} | {'precision': 0.45569620253164556, 'recall': 0.5142857142857142, 'f1': 0.4832214765100671, 'number': 70} | {'precision': 0.4868421052631579, 'recall': 0.47435897435897434, 'f1': 0.48051948051948057, 'number': 78} | 0.4682 | 0.45 | 0.4589 | 0.7758 |
73
 
74
 
75
  ### Framework versions
 
1
  ---
2
  library_name: transformers
3
  license: mit
4
+ base_model: pabloma09/layoutlm-funsd
5
  tags:
6
  - generated_from_trainer
7
  model-index:
 
14
 
15
  # layoutlm-funsd
16
 
17
+ This model is a fine-tuned version of [pabloma09/layoutlm-funsd](https://huggingface.co/pabloma09/layoutlm-funsd) on the None dataset.
18
  It achieves the following results on the evaluation set:
19
+ - Loss: 0.9937
20
+ - Eader: {'precision': 0.35, 'recall': 0.21875, 'f1': 0.2692307692307692, 'number': 32}
21
+ - Nswer: {'precision': 0.5135135135135135, 'recall': 0.5428571428571428, 'f1': 0.5277777777777778, 'number': 70}
22
+ - Uestion: {'precision': 0.4931506849315068, 'recall': 0.46153846153846156, 'f1': 0.4768211920529801, 'number': 78}
23
+ - Overall Precision: 0.4850
24
  - Overall Recall: 0.45
25
+ - Overall F1: 0.4669
26
+ - Overall Accuracy: 0.8029
27
 
28
  ## Model description
29
 
 
53
 
54
  ### Training results
55
 
56
+ | Training Loss | Epoch | Step | Validation Loss | Eader | Nswer | Uestion | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:---------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
58
+ | 0.1124 | 1.0 | 13 | 0.8542 | {'precision': 0.32, 'recall': 0.25, 'f1': 0.2807017543859649, 'number': 32} | {'precision': 0.4647887323943662, 'recall': 0.4714285714285714, 'f1': 0.46808510638297873, 'number': 70} | {'precision': 0.4861111111111111, 'recall': 0.44871794871794873, 'f1': 0.4666666666666667, 'number': 78} | 0.4524 | 0.4222 | 0.4368 | 0.7848 |
59
+ | 0.1002 | 2.0 | 26 | 0.8579 | {'precision': 0.3181818181818182, 'recall': 0.21875, 'f1': 0.25925925925925924, 'number': 32} | {'precision': 0.4146341463414634, 'recall': 0.4857142857142857, 'f1': 0.4473684210526316, 'number': 70} | {'precision': 0.4125, 'recall': 0.4230769230769231, 'f1': 0.4177215189873418, 'number': 78} | 0.4022 | 0.4111 | 0.4066 | 0.7559 |
60
+ | 0.0905 | 3.0 | 39 | 0.7874 | {'precision': 0.34782608695652173, 'recall': 0.25, 'f1': 0.2909090909090909, 'number': 32} | {'precision': 0.45, 'recall': 0.5142857142857142, 'f1': 0.48, 'number': 70} | {'precision': 0.5, 'recall': 0.48717948717948717, 'f1': 0.49350649350649345, 'number': 78} | 0.4581 | 0.4556 | 0.4568 | 0.7987 |
61
+ | 0.0743 | 4.0 | 52 | 0.9167 | {'precision': 0.4, 'recall': 0.1875, 'f1': 0.25531914893617025, 'number': 32} | {'precision': 0.48, 'recall': 0.5142857142857142, 'f1': 0.496551724137931, 'number': 70} | {'precision': 0.5333333333333333, 'recall': 0.5128205128205128, 'f1': 0.5228758169934641, 'number': 78} | 0.4970 | 0.4556 | 0.4754 | 0.7926 |
62
+ | 0.0534 | 5.0 | 65 | 0.9266 | {'precision': 0.45, 'recall': 0.28125, 'f1': 0.34615384615384615, 'number': 32} | {'precision': 0.43373493975903615, 'recall': 0.5142857142857142, 'f1': 0.47058823529411764, 'number': 70} | {'precision': 0.4805194805194805, 'recall': 0.47435897435897434, 'f1': 0.47741935483870973, 'number': 78} | 0.4556 | 0.4556 | 0.4556 | 0.7800 |
63
+ | 0.0465 | 6.0 | 78 | 1.0600 | {'precision': 0.3, 'recall': 0.1875, 'f1': 0.23076923076923075, 'number': 32} | {'precision': 0.4864864864864865, 'recall': 0.5142857142857142, 'f1': 0.5, 'number': 70} | {'precision': 0.4666666666666667, 'recall': 0.44871794871794873, 'f1': 0.45751633986928103, 'number': 78} | 0.4556 | 0.4278 | 0.4413 | 0.7197 |
64
+ | 0.0388 | 7.0 | 91 | 0.9172 | {'precision': 0.4444444444444444, 'recall': 0.25, 'f1': 0.32, 'number': 32} | {'precision': 0.5, 'recall': 0.5571428571428572, 'f1': 0.5270270270270271, 'number': 70} | {'precision': 0.4625, 'recall': 0.47435897435897434, 'f1': 0.46835443037974683, 'number': 78} | 0.4773 | 0.4667 | 0.4719 | 0.7740 |
65
+ | 0.0333 | 8.0 | 104 | 0.9758 | {'precision': 0.3684210526315789, 'recall': 0.21875, 'f1': 0.2745098039215686, 'number': 32} | {'precision': 0.4157303370786517, 'recall': 0.5285714285714286, 'f1': 0.46540880503144655, 'number': 70} | {'precision': 0.4186046511627907, 'recall': 0.46153846153846156, 'f1': 0.4390243902439025, 'number': 78} | 0.4124 | 0.4444 | 0.4278 | 0.7770 |
66
+ | 0.0269 | 9.0 | 117 | 0.9879 | {'precision': 0.2916666666666667, 'recall': 0.21875, 'f1': 0.25, 'number': 32} | {'precision': 0.4, 'recall': 0.5142857142857142, 'f1': 0.45, 'number': 70} | {'precision': 0.3888888888888889, 'recall': 0.44871794871794873, 'f1': 0.41666666666666663, 'number': 78} | 0.3824 | 0.4333 | 0.4062 | 0.7794 |
67
+ | 0.0255 | 10.0 | 130 | 0.9909 | {'precision': 0.3, 'recall': 0.1875, 'f1': 0.23076923076923075, 'number': 32} | {'precision': 0.43902439024390244, 'recall': 0.5142857142857142, 'f1': 0.4736842105263158, 'number': 70} | {'precision': 0.4358974358974359, 'recall': 0.4358974358974359, 'f1': 0.4358974358974359, 'number': 78} | 0.4222 | 0.4222 | 0.4222 | 0.7914 |
68
+ | 0.0217 | 11.0 | 143 | 0.9914 | {'precision': 0.35, 'recall': 0.21875, 'f1': 0.2692307692307692, 'number': 32} | {'precision': 0.5066666666666667, 'recall': 0.5428571428571428, 'f1': 0.5241379310344827, 'number': 70} | {'precision': 0.45121951219512196, 'recall': 0.47435897435897434, 'f1': 0.46249999999999997, 'number': 78} | 0.4633 | 0.4556 | 0.4594 | 0.7951 |
69
+ | 0.024 | 12.0 | 156 | 0.9999 | {'precision': 0.3684210526315789, 'recall': 0.21875, 'f1': 0.2745098039215686, 'number': 32} | {'precision': 0.5064935064935064, 'recall': 0.5571428571428572, 'f1': 0.5306122448979592, 'number': 70} | {'precision': 0.475, 'recall': 0.48717948717948717, 'f1': 0.4810126582278481, 'number': 78} | 0.4773 | 0.4667 | 0.4719 | 0.7896 |
70
+ | 0.0197 | 13.0 | 169 | 0.9820 | {'precision': 0.3333333333333333, 'recall': 0.21875, 'f1': 0.2641509433962264, 'number': 32} | {'precision': 0.49333333333333335, 'recall': 0.5285714285714286, 'f1': 0.5103448275862069, 'number': 70} | {'precision': 0.5205479452054794, 'recall': 0.48717948717948717, 'f1': 0.5033112582781456, 'number': 78} | 0.4852 | 0.4556 | 0.4699 | 0.8053 |
71
+ | 0.022 | 14.0 | 182 | 0.9912 | {'precision': 0.35, 'recall': 0.21875, 'f1': 0.2692307692307692, 'number': 32} | {'precision': 0.5, 'recall': 0.5428571428571428, 'f1': 0.5205479452054795, 'number': 70} | {'precision': 0.4864864864864865, 'recall': 0.46153846153846156, 'f1': 0.47368421052631576, 'number': 78} | 0.4765 | 0.45 | 0.4629 | 0.8023 |
72
+ | 0.0215 | 15.0 | 195 | 0.9937 | {'precision': 0.35, 'recall': 0.21875, 'f1': 0.2692307692307692, 'number': 32} | {'precision': 0.5135135135135135, 'recall': 0.5428571428571428, 'f1': 0.5277777777777778, 'number': 70} | {'precision': 0.4931506849315068, 'recall': 0.46153846153846156, 'f1': 0.4768211920529801, 'number': 78} | 0.4850 | 0.45 | 0.4669 | 0.8029 |
73
 
74
 
75
  ### Framework versions
logs/events.out.tfevents.1741096961.DESKTOP-HA84SVN.3577307.1 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5a90cab19ffd73fd2a530aca3be29dff53c19694bf253f949480be65e727bd8d
3
- size 15134
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0db03db479a12996a6d6e5ce6bd0d80d4072b29879acca018b07ca91bd2f55f
3
+ size 16203
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5d16e80a23aad2db3a90e34ba14cb56bf75566a422fbb69c69a89f0e9250eabe
3
  size 450548984
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7ef94d4ffdda985b490413d5c9360b9f5c2aaa1a3150b167cd21c54d7f5860e
3
  size 450548984
tokenizer.json CHANGED
@@ -1,21 +1,7 @@
1
  {
2
  "version": "1.0",
3
- "truncation": {
4
- "direction": "Right",
5
- "max_length": 512,
6
- "strategy": "LongestFirst",
7
- "stride": 0
8
- },
9
- "padding": {
10
- "strategy": {
11
- "Fixed": 512
12
- },
13
- "direction": "Right",
14
- "pad_to_multiple_of": null,
15
- "pad_id": 0,
16
- "pad_type_id": 0,
17
- "pad_token": "[PAD]"
18
- },
19
  "added_tokens": [
20
  {
21
  "id": 0,
 
1
  {
2
  "version": "1.0",
3
+ "truncation": null,
4
+ "padding": null,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  "added_tokens": [
6
  {
7
  "id": 0,
tokenizer_config.json CHANGED
@@ -55,9 +55,11 @@
55
  "do_lower_case": true,
56
  "extra_special_tokens": {},
57
  "mask_token": "[MASK]",
 
58
  "model_max_length": 512,
59
  "never_split": null,
60
  "only_label_first_subword": true,
 
61
  "pad_token": "[PAD]",
62
  "pad_token_box": [
63
  0,
@@ -66,6 +68,8 @@
66
  0
67
  ],
68
  "pad_token_label": -100,
 
 
69
  "processor_class": "LayoutLMv2Processor",
70
  "sep_token": "[SEP]",
71
  "sep_token_box": [
@@ -74,8 +78,11 @@
74
  1000,
75
  1000
76
  ],
 
77
  "strip_accents": null,
78
  "tokenize_chinese_chars": true,
79
  "tokenizer_class": "LayoutLMv2Tokenizer",
 
 
80
  "unk_token": "[UNK]"
81
  }
 
55
  "do_lower_case": true,
56
  "extra_special_tokens": {},
57
  "mask_token": "[MASK]",
58
+ "max_length": 512,
59
  "model_max_length": 512,
60
  "never_split": null,
61
  "only_label_first_subword": true,
62
+ "pad_to_multiple_of": null,
63
  "pad_token": "[PAD]",
64
  "pad_token_box": [
65
  0,
 
68
  0
69
  ],
70
  "pad_token_label": -100,
71
+ "pad_token_type_id": 0,
72
+ "padding_side": "right",
73
  "processor_class": "LayoutLMv2Processor",
74
  "sep_token": "[SEP]",
75
  "sep_token_box": [
 
78
  1000,
79
  1000
80
  ],
81
+ "stride": 0,
82
  "strip_accents": null,
83
  "tokenize_chinese_chars": true,
84
  "tokenizer_class": "LayoutLMv2Tokenizer",
85
+ "truncation_side": "right",
86
+ "truncation_strategy": "longest_first",
87
  "unk_token": "[UNK]"
88
  }