id
int64 0
4.52k
| code
stringlengths 142
31.2k
| answer
stringclasses 7
values | prompt
stringlengths 1.64k
32.6k
| test_prompt
stringlengths 1.7k
32.7k
| token_length
int64 373
7.8k
| __index_level_0__
int64 0
4.5k
|
---|---|---|---|---|---|---|
2,052 |
import java.io.*;
import java.util.*;
public class Main implements Runnable {
public void solution() throws IOException {
int n = in.nextInt();
int[] a = new int[n];
int min = Integer.MAX_VALUE;
for (int i = 0; i < n; ++i) {
a[i] = in.nextInt();
if (a[i] < min) {
min = a[i];
}
}
int res = Integer.MAX_VALUE;
for (int i = 0; i < n; ++i) {
if (a[i] != min && a[i] < res) {
res = a[i];
}
}
if (res == Integer.MAX_VALUE) {
out.println("NO");
} else {
out.println(res);
}
}
public void run() {
try {
solution();
in.reader.close();
out.close();
} catch (Throwable e) {
e.printStackTrace();
System.exit(1);
}
}
private class Scanner {
private BufferedReader reader;
private StringTokenizer tokenizer;
public Scanner(Reader reader) {
this.reader = new BufferedReader(reader);
this.tokenizer = new StringTokenizer("");
}
public boolean hasNext() throws IOException {
while (!tokenizer.hasMoreTokens()) {
String next = reader.readLine();
if (next == null) {
return false;
}
tokenizer = new StringTokenizer(next);
}
return true;
}
public String next() throws IOException {
hasNext();
return tokenizer.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public String nextLine() throws IOException {
tokenizer = new StringTokenizer("");
return reader.readLine();
}
}
public static void main(String[] args) throws IOException {
new Thread(null, new Main(), "", 1 << 28).start();
}
PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
Scanner in = new Scanner(new InputStreamReader(System.in));
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main implements Runnable {
public void solution() throws IOException {
int n = in.nextInt();
int[] a = new int[n];
int min = Integer.MAX_VALUE;
for (int i = 0; i < n; ++i) {
a[i] = in.nextInt();
if (a[i] < min) {
min = a[i];
}
}
int res = Integer.MAX_VALUE;
for (int i = 0; i < n; ++i) {
if (a[i] != min && a[i] < res) {
res = a[i];
}
}
if (res == Integer.MAX_VALUE) {
out.println("NO");
} else {
out.println(res);
}
}
public void run() {
try {
solution();
in.reader.close();
out.close();
} catch (Throwable e) {
e.printStackTrace();
System.exit(1);
}
}
private class Scanner {
private BufferedReader reader;
private StringTokenizer tokenizer;
public Scanner(Reader reader) {
this.reader = new BufferedReader(reader);
this.tokenizer = new StringTokenizer("");
}
public boolean hasNext() throws IOException {
while (!tokenizer.hasMoreTokens()) {
String next = reader.readLine();
if (next == null) {
return false;
}
tokenizer = new StringTokenizer(next);
}
return true;
}
public String next() throws IOException {
hasNext();
return tokenizer.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public String nextLine() throws IOException {
tokenizer = new StringTokenizer("");
return reader.readLine();
}
}
public static void main(String[] args) throws IOException {
new Thread(null, new Main(), "", 1 << 28).start();
}
PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
Scanner in = new Scanner(new InputStreamReader(System.in));
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main implements Runnable {
public void solution() throws IOException {
int n = in.nextInt();
int[] a = new int[n];
int min = Integer.MAX_VALUE;
for (int i = 0; i < n; ++i) {
a[i] = in.nextInt();
if (a[i] < min) {
min = a[i];
}
}
int res = Integer.MAX_VALUE;
for (int i = 0; i < n; ++i) {
if (a[i] != min && a[i] < res) {
res = a[i];
}
}
if (res == Integer.MAX_VALUE) {
out.println("NO");
} else {
out.println(res);
}
}
public void run() {
try {
solution();
in.reader.close();
out.close();
} catch (Throwable e) {
e.printStackTrace();
System.exit(1);
}
}
private class Scanner {
private BufferedReader reader;
private StringTokenizer tokenizer;
public Scanner(Reader reader) {
this.reader = new BufferedReader(reader);
this.tokenizer = new StringTokenizer("");
}
public boolean hasNext() throws IOException {
while (!tokenizer.hasMoreTokens()) {
String next = reader.readLine();
if (next == null) {
return false;
}
tokenizer = new StringTokenizer(next);
}
return true;
}
public String next() throws IOException {
hasNext();
return tokenizer.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public String nextLine() throws IOException {
tokenizer = new StringTokenizer("");
return reader.readLine();
}
}
public static void main(String[] args) throws IOException {
new Thread(null, new Main(), "", 1 << 28).start();
}
PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
Scanner in = new Scanner(new InputStreamReader(System.in));
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 770 | 2,048 |
3,775 |
import java.io.*;
import java.util.*;
public class CF1517D extends PrintWriter {
CF1517D() { super(System.out); }
Scanner sc = new Scanner(System.in);
public static void main(String[] $) {
CF1517D o = new CF1517D(); o.main(); o.flush();
}
static final int INF = 0x3f3f3f3f;
void main() {
int n = sc.nextInt();
int m = sc.nextInt();
int k = sc.nextInt();
if (k % 2 == 1) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++)
print("-1 ");
println();
}
return;
}
k /= 2;
int[][] hh = new int[n][m - 1];
for (int i = 0; i < n; i++)
for (int j = 0; j < m - 1; j++)
hh[i][j] = sc.nextInt();
int[][] vv = new int[n - 1][m];
for (int i = 0; i < n - 1; i++)
for (int j = 0; j < m; j++)
vv[i][j] = sc.nextInt();
int[][] dp = new int[n][m];
int[][] dq = new int[n][m];
while (k-- > 0) {
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) {
int x = INF;
if (i > 0)
x = Math.min(x, dp[i - 1][j] + vv[i - 1][j]);
if (j > 0)
x = Math.min(x, dp[i][j - 1] + hh[i][j - 1]);
if (i + 1 < n)
x = Math.min(x, dp[i + 1][j] + vv[i][j]);
if (j + 1 < m)
x = Math.min(x, dp[i][j + 1] + hh[i][j]);
dq[i][j] = x;
}
int[][] tmp = dp; dp = dq; dq = tmp;
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++)
print(dp[i][j] * 2 + " ");
println();
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class CF1517D extends PrintWriter {
CF1517D() { super(System.out); }
Scanner sc = new Scanner(System.in);
public static void main(String[] $) {
CF1517D o = new CF1517D(); o.main(); o.flush();
}
static final int INF = 0x3f3f3f3f;
void main() {
int n = sc.nextInt();
int m = sc.nextInt();
int k = sc.nextInt();
if (k % 2 == 1) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++)
print("-1 ");
println();
}
return;
}
k /= 2;
int[][] hh = new int[n][m - 1];
for (int i = 0; i < n; i++)
for (int j = 0; j < m - 1; j++)
hh[i][j] = sc.nextInt();
int[][] vv = new int[n - 1][m];
for (int i = 0; i < n - 1; i++)
for (int j = 0; j < m; j++)
vv[i][j] = sc.nextInt();
int[][] dp = new int[n][m];
int[][] dq = new int[n][m];
while (k-- > 0) {
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) {
int x = INF;
if (i > 0)
x = Math.min(x, dp[i - 1][j] + vv[i - 1][j]);
if (j > 0)
x = Math.min(x, dp[i][j - 1] + hh[i][j - 1]);
if (i + 1 < n)
x = Math.min(x, dp[i + 1][j] + vv[i][j]);
if (j + 1 < m)
x = Math.min(x, dp[i][j + 1] + hh[i][j]);
dq[i][j] = x;
}
int[][] tmp = dp; dp = dq; dq = tmp;
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++)
print(dp[i][j] * 2 + " ");
println();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class CF1517D extends PrintWriter {
CF1517D() { super(System.out); }
Scanner sc = new Scanner(System.in);
public static void main(String[] $) {
CF1517D o = new CF1517D(); o.main(); o.flush();
}
static final int INF = 0x3f3f3f3f;
void main() {
int n = sc.nextInt();
int m = sc.nextInt();
int k = sc.nextInt();
if (k % 2 == 1) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++)
print("-1 ");
println();
}
return;
}
k /= 2;
int[][] hh = new int[n][m - 1];
for (int i = 0; i < n; i++)
for (int j = 0; j < m - 1; j++)
hh[i][j] = sc.nextInt();
int[][] vv = new int[n - 1][m];
for (int i = 0; i < n - 1; i++)
for (int j = 0; j < m; j++)
vv[i][j] = sc.nextInt();
int[][] dp = new int[n][m];
int[][] dq = new int[n][m];
while (k-- > 0) {
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) {
int x = INF;
if (i > 0)
x = Math.min(x, dp[i - 1][j] + vv[i - 1][j]);
if (j > 0)
x = Math.min(x, dp[i][j - 1] + hh[i][j - 1]);
if (i + 1 < n)
x = Math.min(x, dp[i + 1][j] + vv[i][j]);
if (j + 1 < m)
x = Math.min(x, dp[i][j + 1] + hh[i][j]);
dq[i][j] = x;
}
int[][] tmp = dp; dp = dq; dq = tmp;
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++)
print(dp[i][j] * 2 + " ");
println();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 911 | 3,767 |
83 |
import java.io.IOException;
import java.io.InputStream;
import java.util.InputMismatchException;
import java.util.Stack;
public class D527A2 {
public static void main(String[] args) {
FastScanner in = new FastScanner(System.in);
int N = in.nextInt();
Stack<Integer> stack = new Stack<>();
for(int i = 0; i < N; i++) {
int num = in.nextInt() % 2;
if(stack.size() >= 1 && stack.lastElement() == num)
stack.pop();
else
stack.add(num);
}
System.out.println(stack.size() <= 1 ? "YES" : "NO");
}
/**
* Source: Matt Fontaine
*/
static class FastScanner {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int chars;
public FastScanner(InputStream stream) {
this.stream = stream;
}
int read() {
if (chars == -1)
throw new InputMismatchException();
if (curChar >= chars) {
curChar = 0;
try {
chars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (chars <= 0)
return -1;
}
return buf[curChar++];
}
boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
boolean isEndline(int c) {
return c == '\n' || c == '\r' || c == -1;
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String next() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public String nextLine() {
int c = read();
while (isEndline(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndline(c));
return res.toString();
}
}
}
/*
5
2 1 1 2 5
outputCopy
YES
inputCopy
3
4 5 3
outputCopy
YES
inputCopy
2
10 10
outputCopy
YES
inputCopy
3
1 2 3
outputCopy
NO
5
2 3 2 2 3
YES
*/
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.InputStream;
import java.util.InputMismatchException;
import java.util.Stack;
public class D527A2 {
public static void main(String[] args) {
FastScanner in = new FastScanner(System.in);
int N = in.nextInt();
Stack<Integer> stack = new Stack<>();
for(int i = 0; i < N; i++) {
int num = in.nextInt() % 2;
if(stack.size() >= 1 && stack.lastElement() == num)
stack.pop();
else
stack.add(num);
}
System.out.println(stack.size() <= 1 ? "YES" : "NO");
}
/**
* Source: Matt Fontaine
*/
static class FastScanner {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int chars;
public FastScanner(InputStream stream) {
this.stream = stream;
}
int read() {
if (chars == -1)
throw new InputMismatchException();
if (curChar >= chars) {
curChar = 0;
try {
chars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (chars <= 0)
return -1;
}
return buf[curChar++];
}
boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
boolean isEndline(int c) {
return c == '\n' || c == '\r' || c == -1;
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String next() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public String nextLine() {
int c = read();
while (isEndline(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndline(c));
return res.toString();
}
}
}
/*
5
2 1 1 2 5
outputCopy
YES
inputCopy
3
4 5 3
outputCopy
YES
inputCopy
2
10 10
outputCopy
YES
inputCopy
3
1 2 3
outputCopy
NO
5
2 3 2 2 3
YES
*/
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.InputStream;
import java.util.InputMismatchException;
import java.util.Stack;
public class D527A2 {
public static void main(String[] args) {
FastScanner in = new FastScanner(System.in);
int N = in.nextInt();
Stack<Integer> stack = new Stack<>();
for(int i = 0; i < N; i++) {
int num = in.nextInt() % 2;
if(stack.size() >= 1 && stack.lastElement() == num)
stack.pop();
else
stack.add(num);
}
System.out.println(stack.size() <= 1 ? "YES" : "NO");
}
/**
* Source: Matt Fontaine
*/
static class FastScanner {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int chars;
public FastScanner(InputStream stream) {
this.stream = stream;
}
int read() {
if (chars == -1)
throw new InputMismatchException();
if (curChar >= chars) {
curChar = 0;
try {
chars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (chars <= 0)
return -1;
}
return buf[curChar++];
}
boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
boolean isEndline(int c) {
return c == '\n' || c == '\r' || c == -1;
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String next() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public String nextLine() {
int c = read();
while (isEndline(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndline(c));
return res.toString();
}
}
}
/*
5
2 1 1 2 5
outputCopy
YES
inputCopy
3
4 5 3
outputCopy
YES
inputCopy
2
10 10
outputCopy
YES
inputCopy
3
1 2 3
outputCopy
NO
5
2 3 2 2 3
YES
*/
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 990 | 83 |
909 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
import java.util.HashMap;
import java.util.Map;
import java.util.Vector;
import java.util.logging.Level;
import java.util.logging.Logger;
/**
*
* @author Tibor
*/
public class test{
// static java.io.InputStreamReader converter = new java.io.InputStreamReader(System.in);
// static java.io.BufferedReader in = new java.io.BufferedReader(converter);
//
// public static String readLine() {
// String s = "";
// try {
//
// s = in.readLine();
// } catch (Exception e) {
// System.out.println("Error! Exception: " + e);
// }
// return s;
// }
static StreamTokenizer in = new StreamTokenizer(new BufferedReader(
new InputStreamReader(System.in)));
static PrintWriter out = new PrintWriter(System.out);
// static {
// in.ordinaryChars('-', '-');
// in.ordinaryChars('+', '+');
// in.wordChars('-', '-');
// in.wordChars('+', '+');
// }
static int nextInt() {
try {
in.nextToken();
} catch (IOException ex) {
Logger.getLogger(test.class.getName()).log(Level.SEVERE, null, ex);
}
return (int) in.nval;
}
static String nextString() {
try {
in.nextToken();
} catch (IOException ex) {
Logger.getLogger(test.class.getName()).log(Level.SEVERE, null, ex);
}
return in.sval;
}
public static void main(String args[]) throws Exception {
int n = nextInt();
long k = nextInt();
long a[] = new long[n + 1];
Map<Long, Long> drb = new HashMap<Long, Long>();
int elso = 1;
long sk = 0;
long sm = 0;
long minjo = Long.MAX_VALUE;
long minjoh = Long.MAX_VALUE;
Vector<long[]> ret = new Vector<long[]>();
for (int i = 1; i <= n; i++) {
a[i] = nextInt();
if (/*a[i - 1] <= a[i]*/true) {
sm += a[i];
if (drb.containsKey(a[i])) {
drb.put(a[i], drb.get(a[i]) + 1);
} else {
drb.put(a[i], (long) 1);
sk++;
}
while (sk > k || drb.get(a[elso]) > 1) {
long s = drb.get(a[elso]);
if (s == 1) {
drb.remove(a[elso]);
sk--;
} else {
drb.put(a[elso], s - 1);
}
sm -= a[elso];
elso++;
}
if (sk == k) {
if (minjo > sm) {
minjo = sm;
ret.clear();
minjoh = i - elso;
}
if (minjo == sm) {
if (minjoh > i - elso) {
ret.clear();
minjoh = i - elso;
}
ret.add(new long[]{elso, i});
}
}
} else {
elso = i;
drb.clear();
drb.put(a[i], (long) 1);
sk = 1;
sm = a[i];
if (k == 1) {
if (minjo > sm) {
minjo = sm;
ret.clear();
}
if (minjo == sm) {
ret.add(new long[]{elso, i});
}
}
}
}
for (long[] r : ret) {
System.out.print(r[0] + " ");
System.out.print(r[1] + " ");
break;
}
if (ret.size() == 0) {
System.out.print(-1 + " ");
System.out.print(-1 + " ");
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
import java.util.HashMap;
import java.util.Map;
import java.util.Vector;
import java.util.logging.Level;
import java.util.logging.Logger;
/**
*
* @author Tibor
*/
public class test{
// static java.io.InputStreamReader converter = new java.io.InputStreamReader(System.in);
// static java.io.BufferedReader in = new java.io.BufferedReader(converter);
//
// public static String readLine() {
// String s = "";
// try {
//
// s = in.readLine();
// } catch (Exception e) {
// System.out.println("Error! Exception: " + e);
// }
// return s;
// }
static StreamTokenizer in = new StreamTokenizer(new BufferedReader(
new InputStreamReader(System.in)));
static PrintWriter out = new PrintWriter(System.out);
// static {
// in.ordinaryChars('-', '-');
// in.ordinaryChars('+', '+');
// in.wordChars('-', '-');
// in.wordChars('+', '+');
// }
static int nextInt() {
try {
in.nextToken();
} catch (IOException ex) {
Logger.getLogger(test.class.getName()).log(Level.SEVERE, null, ex);
}
return (int) in.nval;
}
static String nextString() {
try {
in.nextToken();
} catch (IOException ex) {
Logger.getLogger(test.class.getName()).log(Level.SEVERE, null, ex);
}
return in.sval;
}
public static void main(String args[]) throws Exception {
int n = nextInt();
long k = nextInt();
long a[] = new long[n + 1];
Map<Long, Long> drb = new HashMap<Long, Long>();
int elso = 1;
long sk = 0;
long sm = 0;
long minjo = Long.MAX_VALUE;
long minjoh = Long.MAX_VALUE;
Vector<long[]> ret = new Vector<long[]>();
for (int i = 1; i <= n; i++) {
a[i] = nextInt();
if (/*a[i - 1] <= a[i]*/true) {
sm += a[i];
if (drb.containsKey(a[i])) {
drb.put(a[i], drb.get(a[i]) + 1);
} else {
drb.put(a[i], (long) 1);
sk++;
}
while (sk > k || drb.get(a[elso]) > 1) {
long s = drb.get(a[elso]);
if (s == 1) {
drb.remove(a[elso]);
sk--;
} else {
drb.put(a[elso], s - 1);
}
sm -= a[elso];
elso++;
}
if (sk == k) {
if (minjo > sm) {
minjo = sm;
ret.clear();
minjoh = i - elso;
}
if (minjo == sm) {
if (minjoh > i - elso) {
ret.clear();
minjoh = i - elso;
}
ret.add(new long[]{elso, i});
}
}
} else {
elso = i;
drb.clear();
drb.put(a[i], (long) 1);
sk = 1;
sm = a[i];
if (k == 1) {
if (minjo > sm) {
minjo = sm;
ret.clear();
}
if (minjo == sm) {
ret.add(new long[]{elso, i});
}
}
}
}
for (long[] r : ret) {
System.out.print(r[0] + " ");
System.out.print(r[1] + " ");
break;
}
if (ret.size() == 0) {
System.out.print(-1 + " ");
System.out.print(-1 + " ");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
import java.util.HashMap;
import java.util.Map;
import java.util.Vector;
import java.util.logging.Level;
import java.util.logging.Logger;
/**
*
* @author Tibor
*/
public class test{
// static java.io.InputStreamReader converter = new java.io.InputStreamReader(System.in);
// static java.io.BufferedReader in = new java.io.BufferedReader(converter);
//
// public static String readLine() {
// String s = "";
// try {
//
// s = in.readLine();
// } catch (Exception e) {
// System.out.println("Error! Exception: " + e);
// }
// return s;
// }
static StreamTokenizer in = new StreamTokenizer(new BufferedReader(
new InputStreamReader(System.in)));
static PrintWriter out = new PrintWriter(System.out);
// static {
// in.ordinaryChars('-', '-');
// in.ordinaryChars('+', '+');
// in.wordChars('-', '-');
// in.wordChars('+', '+');
// }
static int nextInt() {
try {
in.nextToken();
} catch (IOException ex) {
Logger.getLogger(test.class.getName()).log(Level.SEVERE, null, ex);
}
return (int) in.nval;
}
static String nextString() {
try {
in.nextToken();
} catch (IOException ex) {
Logger.getLogger(test.class.getName()).log(Level.SEVERE, null, ex);
}
return in.sval;
}
public static void main(String args[]) throws Exception {
int n = nextInt();
long k = nextInt();
long a[] = new long[n + 1];
Map<Long, Long> drb = new HashMap<Long, Long>();
int elso = 1;
long sk = 0;
long sm = 0;
long minjo = Long.MAX_VALUE;
long minjoh = Long.MAX_VALUE;
Vector<long[]> ret = new Vector<long[]>();
for (int i = 1; i <= n; i++) {
a[i] = nextInt();
if (/*a[i - 1] <= a[i]*/true) {
sm += a[i];
if (drb.containsKey(a[i])) {
drb.put(a[i], drb.get(a[i]) + 1);
} else {
drb.put(a[i], (long) 1);
sk++;
}
while (sk > k || drb.get(a[elso]) > 1) {
long s = drb.get(a[elso]);
if (s == 1) {
drb.remove(a[elso]);
sk--;
} else {
drb.put(a[elso], s - 1);
}
sm -= a[elso];
elso++;
}
if (sk == k) {
if (minjo > sm) {
minjo = sm;
ret.clear();
minjoh = i - elso;
}
if (minjo == sm) {
if (minjoh > i - elso) {
ret.clear();
minjoh = i - elso;
}
ret.add(new long[]{elso, i});
}
}
} else {
elso = i;
drb.clear();
drb.put(a[i], (long) 1);
sk = 1;
sm = a[i];
if (k == 1) {
if (minjo > sm) {
minjo = sm;
ret.clear();
}
if (minjo == sm) {
ret.add(new long[]{elso, i});
}
}
}
}
for (long[] r : ret) {
System.out.print(r[0] + " ");
System.out.print(r[1] + " ");
break;
}
if (ret.size() == 0) {
System.out.print(-1 + " ");
System.out.print(-1 + " ");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,207 | 908 |
159 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;
public class BOOL {
static char [][]ch;
static int n,m;
private static FastReader in =new FastReader();
public static void main(String[] args) {
int n=in.nextInt();
int a[]=new int[1000002];
int dp[]=new int[1000002],ans=0;
for(int i=0;i<n;i++){a[in.nextInt()]=in.nextInt();}
dp[0]=a[0]==0?0:1;
for(int i=1;i<1000002;i++){
if(a[i]==0){dp[i]=dp[i-1];}
else{
if(a[i]>=i){dp[i]=1;}
else{
dp[i]=dp[i-a[i]-1]+1;
}}
if(dp[i]>=ans)ans=dp[i];
}
System.out.println(n-ans);
}}
class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;
public class BOOL {
static char [][]ch;
static int n,m;
private static FastReader in =new FastReader();
public static void main(String[] args) {
int n=in.nextInt();
int a[]=new int[1000002];
int dp[]=new int[1000002],ans=0;
for(int i=0;i<n;i++){a[in.nextInt()]=in.nextInt();}
dp[0]=a[0]==0?0:1;
for(int i=1;i<1000002;i++){
if(a[i]==0){dp[i]=dp[i-1];}
else{
if(a[i]>=i){dp[i]=1;}
else{
dp[i]=dp[i-a[i]-1]+1;
}}
if(dp[i]>=ans)ans=dp[i];
}
System.out.println(n-ans);
}}
class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;
public class BOOL {
static char [][]ch;
static int n,m;
private static FastReader in =new FastReader();
public static void main(String[] args) {
int n=in.nextInt();
int a[]=new int[1000002];
int dp[]=new int[1000002],ans=0;
for(int i=0;i<n;i++){a[in.nextInt()]=in.nextInt();}
dp[0]=a[0]==0?0:1;
for(int i=1;i<1000002;i++){
if(a[i]==0){dp[i]=dp[i-1];}
else{
if(a[i]>=i){dp[i]=1;}
else{
dp[i]=dp[i-a[i]-1]+1;
}}
if(dp[i]>=ans)ans=dp[i];
}
System.out.println(n-ans);
}}
class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 738 | 159 |
1,677 |
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
int n = input.nextInt();
int a = input.nextInt();
int b = input.nextInt();
int x[] = new int[n];
for (int i=0; i<n; i++) x[i]=input.nextInt();
Arrays.sort(x);
int y[] = new int[n];
for (int i=0; i<n; i++) y[i]=x[n-i-1];
System.out.println(y[a-1]-y[a]);
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
int n = input.nextInt();
int a = input.nextInt();
int b = input.nextInt();
int x[] = new int[n];
for (int i=0; i<n; i++) x[i]=input.nextInt();
Arrays.sort(x);
int y[] = new int[n];
for (int i=0; i<n; i++) y[i]=x[n-i-1];
System.out.println(y[a-1]-y[a]);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
int n = input.nextInt();
int a = input.nextInt();
int b = input.nextInt();
int x[] = new int[n];
for (int i=0; i<n; i++) x[i]=input.nextInt();
Arrays.sort(x);
int y[] = new int[n];
for (int i=0; i<n; i++) y[i]=x[n-i-1];
System.out.println(y[a-1]-y[a]);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 456 | 1,674 |
2,125 |
import java.io.*;
import java.util.*;
public class Main {
public static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader() {
reader = new BufferedReader(new InputStreamReader(System.in), 32768);
tokenizer = null;
}
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(System.in), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public char nextChar() {
return next().charAt(0);
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
public static void main(String[] args) {
// InputStream inputStream = System.in; // Useful when taking input other than
// console eg file handling // check ctor of inputReader
InputReader scn = new InputReader();
int n = scn.nextInt(), r = scn.nextInt();
double[] y = new double[n];
int[] x = new int[n];
boolean[] mark = new boolean[n];
for(int i = 0; i < n; i++) {
x[i] = scn.nextInt();
}
for(int i = 0; i < n; i++) {
double yc = r;
for(int j = 0; j < n; j++) {
if(i == j || !mark[j]) {
continue;
}
if(x[i] + r < x[j] - r || x[i] - r > x[j] + r) {
continue;
}
yc = Math.max(yc, y[j] + Math.sqrt(Math.abs(Math.pow(x[i] - x[j], 2) - 4 * r * r)));
}
y[i] = yc;
mark[i] = true;
}
for(int i = 0; i < n; i++) {
System.out.print(y[i] + " ");
}
System.out.println();
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
public static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader() {
reader = new BufferedReader(new InputStreamReader(System.in), 32768);
tokenizer = null;
}
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(System.in), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public char nextChar() {
return next().charAt(0);
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
public static void main(String[] args) {
// InputStream inputStream = System.in; // Useful when taking input other than
// console eg file handling // check ctor of inputReader
InputReader scn = new InputReader();
int n = scn.nextInt(), r = scn.nextInt();
double[] y = new double[n];
int[] x = new int[n];
boolean[] mark = new boolean[n];
for(int i = 0; i < n; i++) {
x[i] = scn.nextInt();
}
for(int i = 0; i < n; i++) {
double yc = r;
for(int j = 0; j < n; j++) {
if(i == j || !mark[j]) {
continue;
}
if(x[i] + r < x[j] - r || x[i] - r > x[j] + r) {
continue;
}
yc = Math.max(yc, y[j] + Math.sqrt(Math.abs(Math.pow(x[i] - x[j], 2) - 4 * r * r)));
}
y[i] = yc;
mark[i] = true;
}
for(int i = 0; i < n; i++) {
System.out.print(y[i] + " ");
}
System.out.println();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
public static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader() {
reader = new BufferedReader(new InputStreamReader(System.in), 32768);
tokenizer = null;
}
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(System.in), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public char nextChar() {
return next().charAt(0);
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
public static void main(String[] args) {
// InputStream inputStream = System.in; // Useful when taking input other than
// console eg file handling // check ctor of inputReader
InputReader scn = new InputReader();
int n = scn.nextInt(), r = scn.nextInt();
double[] y = new double[n];
int[] x = new int[n];
boolean[] mark = new boolean[n];
for(int i = 0; i < n; i++) {
x[i] = scn.nextInt();
}
for(int i = 0; i < n; i++) {
double yc = r;
for(int j = 0; j < n; j++) {
if(i == j || !mark[j]) {
continue;
}
if(x[i] + r < x[j] - r || x[i] - r > x[j] + r) {
continue;
}
yc = Math.max(yc, y[j] + Math.sqrt(Math.abs(Math.pow(x[i] - x[j], 2) - 4 * r * r)));
}
y[i] = yc;
mark[i] = true;
}
for(int i = 0; i < n; i++) {
System.out.print(y[i] + " ");
}
System.out.println();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 851 | 2,121 |
2,545 |
import java.math.BigDecimal;
import java.math.MathContext;
import java.math.RoundingMode;
import java.nio.charset.Charset;
import java.util.*;
import static java.lang.System.gc;
import static java.lang.System.out;
public class Main {
Scanner scanner = new Scanner(System.in);
public static void main(String[] args) {
new Main().solve();
}
void solve() {
int n = scanner.nextInt();
scanner.nextLine();
String s1 = scanner.nextLine();
String s2 = scanner.nextLine();
int ans = 0;
boolean a[] = new boolean[30];
boolean b[] = new boolean[30];
for (int i = 0; i < n; i++) {
if (s1.charAt(i) != s2.charAt(i)) {
ans ++;
a[s1.charAt(i) - 'a'] = true;
b[s2.charAt(i) - 'a'] = true;
}
}
for (int i = 0; i < n; i++) {
if (s1.charAt(i) != s2.charAt(i) && a[s2.charAt(i) - 'a'] && b[s1.charAt(i) - 'a']) {
for (int j = i + 1; j < n; j ++) {
if (s1.charAt(i) == s2.charAt(j) && s1.charAt(j) == s2.charAt(i)) {
out.println(ans - 2);
out.println((i + 1) + " " + (j + 1));
return;
}
}
}
}
for (int i = 0; i < n; i++) {
if (s1.charAt(i) != s2.charAt(i) && (a[s2.charAt(i) - 'a'] || b[s1.charAt(i) - 'a'])) {
for (int j = i + 1; j < n; j ++) {
if (s1.charAt(j) != s2.charAt(j) && (s1.charAt(i) == s2.charAt(j) || s1.charAt(j) == s2.charAt(i))) {
out.println(ans - 1);
out.println((i + 1) + " " + (j + 1));
return;
}
}
}
}
out.println(ans);
out.println(-1 + " " + -1);
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.math.BigDecimal;
import java.math.MathContext;
import java.math.RoundingMode;
import java.nio.charset.Charset;
import java.util.*;
import static java.lang.System.gc;
import static java.lang.System.out;
public class Main {
Scanner scanner = new Scanner(System.in);
public static void main(String[] args) {
new Main().solve();
}
void solve() {
int n = scanner.nextInt();
scanner.nextLine();
String s1 = scanner.nextLine();
String s2 = scanner.nextLine();
int ans = 0;
boolean a[] = new boolean[30];
boolean b[] = new boolean[30];
for (int i = 0; i < n; i++) {
if (s1.charAt(i) != s2.charAt(i)) {
ans ++;
a[s1.charAt(i) - 'a'] = true;
b[s2.charAt(i) - 'a'] = true;
}
}
for (int i = 0; i < n; i++) {
if (s1.charAt(i) != s2.charAt(i) && a[s2.charAt(i) - 'a'] && b[s1.charAt(i) - 'a']) {
for (int j = i + 1; j < n; j ++) {
if (s1.charAt(i) == s2.charAt(j) && s1.charAt(j) == s2.charAt(i)) {
out.println(ans - 2);
out.println((i + 1) + " " + (j + 1));
return;
}
}
}
}
for (int i = 0; i < n; i++) {
if (s1.charAt(i) != s2.charAt(i) && (a[s2.charAt(i) - 'a'] || b[s1.charAt(i) - 'a'])) {
for (int j = i + 1; j < n; j ++) {
if (s1.charAt(j) != s2.charAt(j) && (s1.charAt(i) == s2.charAt(j) || s1.charAt(j) == s2.charAt(i))) {
out.println(ans - 1);
out.println((i + 1) + " " + (j + 1));
return;
}
}
}
}
out.println(ans);
out.println(-1 + " " + -1);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.math.BigDecimal;
import java.math.MathContext;
import java.math.RoundingMode;
import java.nio.charset.Charset;
import java.util.*;
import static java.lang.System.gc;
import static java.lang.System.out;
public class Main {
Scanner scanner = new Scanner(System.in);
public static void main(String[] args) {
new Main().solve();
}
void solve() {
int n = scanner.nextInt();
scanner.nextLine();
String s1 = scanner.nextLine();
String s2 = scanner.nextLine();
int ans = 0;
boolean a[] = new boolean[30];
boolean b[] = new boolean[30];
for (int i = 0; i < n; i++) {
if (s1.charAt(i) != s2.charAt(i)) {
ans ++;
a[s1.charAt(i) - 'a'] = true;
b[s2.charAt(i) - 'a'] = true;
}
}
for (int i = 0; i < n; i++) {
if (s1.charAt(i) != s2.charAt(i) && a[s2.charAt(i) - 'a'] && b[s1.charAt(i) - 'a']) {
for (int j = i + 1; j < n; j ++) {
if (s1.charAt(i) == s2.charAt(j) && s1.charAt(j) == s2.charAt(i)) {
out.println(ans - 2);
out.println((i + 1) + " " + (j + 1));
return;
}
}
}
}
for (int i = 0; i < n; i++) {
if (s1.charAt(i) != s2.charAt(i) && (a[s2.charAt(i) - 'a'] || b[s1.charAt(i) - 'a'])) {
for (int j = i + 1; j < n; j ++) {
if (s1.charAt(j) != s2.charAt(j) && (s1.charAt(i) == s2.charAt(j) || s1.charAt(j) == s2.charAt(i))) {
out.println(ans - 1);
out.println((i + 1) + " " + (j + 1));
return;
}
}
}
}
out.println(ans);
out.println(-1 + " " + -1);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 860 | 2,539 |
2,565 |
import java.util.*;
public class codea{
public static void main(String args[])
{
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int arr[] = new int[n];
for(int i =0;i<n;i++)
arr[i]= in.nextInt();
Arrays.sort(arr);
int max =0;
boolean check[]= new boolean [n];
int count=0;
for(int i =0;i<n;i++)
{
if(!check[i])
{
count++;
for(int j=i;j<n;j++)
{
if(arr[j]%arr[i]==0)
check[j]=true;
}
}
}
System.out.println(count);
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
public class codea{
public static void main(String args[])
{
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int arr[] = new int[n];
for(int i =0;i<n;i++)
arr[i]= in.nextInt();
Arrays.sort(arr);
int max =0;
boolean check[]= new boolean [n];
int count=0;
for(int i =0;i<n;i++)
{
if(!check[i])
{
count++;
for(int j=i;j<n;j++)
{
if(arr[j]%arr[i]==0)
check[j]=true;
}
}
}
System.out.println(count);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class codea{
public static void main(String args[])
{
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int arr[] = new int[n];
for(int i =0;i<n;i++)
arr[i]= in.nextInt();
Arrays.sort(arr);
int max =0;
boolean check[]= new boolean [n];
int count=0;
for(int i =0;i<n;i++)
{
if(!check[i])
{
count++;
for(int j=i;j<n;j++)
{
if(arr[j]%arr[i]==0)
check[j]=true;
}
}
}
System.out.println(count);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 486 | 2,559 |
453 |
import java.io.*;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.RoundingMode;
import java.util.*;
import java.util.Map.Entry;
public class Main {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
private PrintWriter pw;
private long mod = 1000000000 + 7;
private StringBuilder ans_sb;
private int size = 1000005;
private long[] fact;
private void soln() {
int n = nextInt();
HashMap<String, Integer>[] s1 = new HashMap[4];
for(int i=0;i<=3;i++) {
s1[i] = new HashMap<>();
}
int cnt = 0;
for(int i=0;i<n;i++) {
String s = nextLine();
if(s1[s.length()-1].containsKey(s)) {
s1[s.length()-1].put(s, s1[s.length()-1].get(s)+1);
}else
s1[s.length()-1].put(s, 1);
}
for(int i=0;i<n;i++) {
String s = nextLine();
if(s1[s.length()-1].containsKey(s)) {
s1[s.length()-1].put(s, s1[s.length()-1].get(s)-1);
if(s1[s.length()-1].get(s) == 0)
s1[s.length()-1].remove(s);
}else {
cnt++;
}
}
pw.println(cnt);
}
private class Pair implements Comparable<Pair>{
long x, y;
int i;
public Pair(long a,long b,int c) {
x = a;
y = b;
i = c;
}
@Override
public int compareTo(
Pair o)
{
return Long.compare(this.x, o.x);
}
public String toString() {
return ""+i;
}
}
private void debug(Object... o) {
System.out.println(Arrays.deepToString(o));
}
private long pow(long a, long b, long c) {
if (b == 0)
return 1;
long p = pow(a, b / 2, c);
p = (p * p) % c;
return (b % 2 == 0) ? p : (a * p) % c;
}
private long gcd(long n, long l) {
if (l == 0)
return n;
return gcd(l, n % l);
}
public static void main(String[] args) throws Exception {
new Thread(null, new Runnable() {
@Override
public void run() {
new Main().solve();
}
}, "1", 1 << 26).start();
//new Main().solve();
}
public StringBuilder solve() {
InputReader(System.in);
/*
* try { InputReader(new FileInputStream("C:\\Users\\hardik\\Desktop\\in.txt"));
* } catch(FileNotFoundException e) {}
*/
pw = new PrintWriter(System.out);
// ans_sb = new StringBuilder();
soln();
pw.close();
// System.out.println(ans_sb);
return ans_sb;
}
public void InputReader(InputStream stream1) {
stream = stream1;
}
private boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c) {
return c == '\n' || c == '\r' || c == -1;
}
private int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
private int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
private long nextLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
private String nextToken() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
private String nextLine() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndOfLine(c));
return res.toString();
}
private int[] nextIntArray(int n) {
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = nextInt();
}
return arr;
}
private long[] nextLongArray(int n) {
long[] arr = new long[n];
for (int i = 0; i < n; i++) {
arr[i] = nextLong();
}
return arr;
}
private void pArray(int[] arr) {
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
return;
}
private void pArray(long[] arr) {
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
return;
}
private boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return isWhitespace(c);
}
private char nextChar() {
int c = read();
while (isSpaceChar(c))
c = read();
char c1 = (char) c;
while (!isSpaceChar(c))
c = read();
return c1;
}
private interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.RoundingMode;
import java.util.*;
import java.util.Map.Entry;
public class Main {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
private PrintWriter pw;
private long mod = 1000000000 + 7;
private StringBuilder ans_sb;
private int size = 1000005;
private long[] fact;
private void soln() {
int n = nextInt();
HashMap<String, Integer>[] s1 = new HashMap[4];
for(int i=0;i<=3;i++) {
s1[i] = new HashMap<>();
}
int cnt = 0;
for(int i=0;i<n;i++) {
String s = nextLine();
if(s1[s.length()-1].containsKey(s)) {
s1[s.length()-1].put(s, s1[s.length()-1].get(s)+1);
}else
s1[s.length()-1].put(s, 1);
}
for(int i=0;i<n;i++) {
String s = nextLine();
if(s1[s.length()-1].containsKey(s)) {
s1[s.length()-1].put(s, s1[s.length()-1].get(s)-1);
if(s1[s.length()-1].get(s) == 0)
s1[s.length()-1].remove(s);
}else {
cnt++;
}
}
pw.println(cnt);
}
private class Pair implements Comparable<Pair>{
long x, y;
int i;
public Pair(long a,long b,int c) {
x = a;
y = b;
i = c;
}
@Override
public int compareTo(
Pair o)
{
return Long.compare(this.x, o.x);
}
public String toString() {
return ""+i;
}
}
private void debug(Object... o) {
System.out.println(Arrays.deepToString(o));
}
private long pow(long a, long b, long c) {
if (b == 0)
return 1;
long p = pow(a, b / 2, c);
p = (p * p) % c;
return (b % 2 == 0) ? p : (a * p) % c;
}
private long gcd(long n, long l) {
if (l == 0)
return n;
return gcd(l, n % l);
}
public static void main(String[] args) throws Exception {
new Thread(null, new Runnable() {
@Override
public void run() {
new Main().solve();
}
}, "1", 1 << 26).start();
//new Main().solve();
}
public StringBuilder solve() {
InputReader(System.in);
/*
* try { InputReader(new FileInputStream("C:\\Users\\hardik\\Desktop\\in.txt"));
* } catch(FileNotFoundException e) {}
*/
pw = new PrintWriter(System.out);
// ans_sb = new StringBuilder();
soln();
pw.close();
// System.out.println(ans_sb);
return ans_sb;
}
public void InputReader(InputStream stream1) {
stream = stream1;
}
private boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c) {
return c == '\n' || c == '\r' || c == -1;
}
private int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
private int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
private long nextLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
private String nextToken() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
private String nextLine() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndOfLine(c));
return res.toString();
}
private int[] nextIntArray(int n) {
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = nextInt();
}
return arr;
}
private long[] nextLongArray(int n) {
long[] arr = new long[n];
for (int i = 0; i < n; i++) {
arr[i] = nextLong();
}
return arr;
}
private void pArray(int[] arr) {
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
return;
}
private void pArray(long[] arr) {
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
return;
}
private boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return isWhitespace(c);
}
private char nextChar() {
int c = read();
while (isSpaceChar(c))
c = read();
char c1 = (char) c;
while (!isSpaceChar(c))
c = read();
return c1;
}
private interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.RoundingMode;
import java.util.*;
import java.util.Map.Entry;
public class Main {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
private PrintWriter pw;
private long mod = 1000000000 + 7;
private StringBuilder ans_sb;
private int size = 1000005;
private long[] fact;
private void soln() {
int n = nextInt();
HashMap<String, Integer>[] s1 = new HashMap[4];
for(int i=0;i<=3;i++) {
s1[i] = new HashMap<>();
}
int cnt = 0;
for(int i=0;i<n;i++) {
String s = nextLine();
if(s1[s.length()-1].containsKey(s)) {
s1[s.length()-1].put(s, s1[s.length()-1].get(s)+1);
}else
s1[s.length()-1].put(s, 1);
}
for(int i=0;i<n;i++) {
String s = nextLine();
if(s1[s.length()-1].containsKey(s)) {
s1[s.length()-1].put(s, s1[s.length()-1].get(s)-1);
if(s1[s.length()-1].get(s) == 0)
s1[s.length()-1].remove(s);
}else {
cnt++;
}
}
pw.println(cnt);
}
private class Pair implements Comparable<Pair>{
long x, y;
int i;
public Pair(long a,long b,int c) {
x = a;
y = b;
i = c;
}
@Override
public int compareTo(
Pair o)
{
return Long.compare(this.x, o.x);
}
public String toString() {
return ""+i;
}
}
private void debug(Object... o) {
System.out.println(Arrays.deepToString(o));
}
private long pow(long a, long b, long c) {
if (b == 0)
return 1;
long p = pow(a, b / 2, c);
p = (p * p) % c;
return (b % 2 == 0) ? p : (a * p) % c;
}
private long gcd(long n, long l) {
if (l == 0)
return n;
return gcd(l, n % l);
}
public static void main(String[] args) throws Exception {
new Thread(null, new Runnable() {
@Override
public void run() {
new Main().solve();
}
}, "1", 1 << 26).start();
//new Main().solve();
}
public StringBuilder solve() {
InputReader(System.in);
/*
* try { InputReader(new FileInputStream("C:\\Users\\hardik\\Desktop\\in.txt"));
* } catch(FileNotFoundException e) {}
*/
pw = new PrintWriter(System.out);
// ans_sb = new StringBuilder();
soln();
pw.close();
// System.out.println(ans_sb);
return ans_sb;
}
public void InputReader(InputStream stream1) {
stream = stream1;
}
private boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c) {
return c == '\n' || c == '\r' || c == -1;
}
private int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
private int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
private long nextLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
private String nextToken() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
private String nextLine() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndOfLine(c));
return res.toString();
}
private int[] nextIntArray(int n) {
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = nextInt();
}
return arr;
}
private long[] nextLongArray(int n) {
long[] arr = new long[n];
for (int i = 0; i < n; i++) {
arr[i] = nextLong();
}
return arr;
}
private void pArray(int[] arr) {
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
return;
}
private void pArray(long[] arr) {
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
return;
}
private boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return isWhitespace(c);
}
private char nextChar() {
int c = read();
while (isSpaceChar(c))
c = read();
char c1 = (char) c;
while (!isSpaceChar(c))
c = read();
return c1;
}
private interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,921 | 452 |
3,708 |
import java.io.*;
import java.util.*;
public class B {
static int n, t[], g[], MOD = (int) 1e9 + 7;
static int[][][] memo1, memo2[], memo3[];
static int dp1(int idx, int remCnt, int remSum) {
if (idx == n)
return remSum == 0 && remCnt==0 ? 1 : 0;
if(remCnt<0 || remSum<0)
return 0;
if (memo1[idx][remCnt][remSum] != -1)
return memo1[idx][remCnt][remSum];
int ans = dp1(idx + 1, remCnt, remSum);
if (g[idx] == 0) {
ans += dp1(idx + 1, remCnt - 1, remSum - t[idx]);
if (ans >= MOD)
ans -= MOD;
}
return memo1[idx][remCnt][remSum] = ans;
}
static int dp2(int idx, int remCnt1, int remCnt2, int remSum) {
int all = remCnt1 + remCnt2;
if (all == 0)
return remSum == 0 ? 1 : 0;
if (idx == n || remSum == 0)
return 0;
if (memo2[idx][remCnt1][remCnt2][remSum] != -1)
return memo2[idx][remCnt1][remCnt2][remSum];
int ans = dp2(idx + 1, remCnt1, remCnt2, remSum);
if (t[idx] <= remSum) {
if (g[idx] == 1 && remCnt1 > 0)
ans += dp2(idx + 1, remCnt1 - 1, remCnt2, remSum - t[idx]);
else if (g[idx] == 2 && remCnt2 > 0)
ans += dp2(idx + 1, remCnt1, remCnt2 - 1, remSum - t[idx]);
}
return memo2[idx][remCnt1][remCnt2][remSum] = ans;
}
private static int dp3(int cnt0, int cnt1, int cnt2, int last) {
if (cnt0 + cnt1 + cnt2 == 0)
return 1;
if (memo3[last][cnt0][cnt1][cnt2] != -1)
return memo3[last][cnt0][cnt1][cnt2];
long ans = 0;
if (cnt0 > 0 && last != 0)
ans += dp3(cnt0 - 1, cnt1, cnt2, 0);
if (cnt1 > 0 && last != 1)
ans += dp3(cnt0, cnt1 - 1, cnt2, 1);
if (cnt2 > 0 && last != 2)
ans += dp3(cnt0, cnt1, cnt2 - 1, 2);
return memo3[last][cnt0][cnt1][cnt2] = (int) (ans % MOD);
}
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner();
PrintWriter out = new PrintWriter(System.out);
n = sc.nextInt();
int[] fac = new int[n + 1];
t = new int[n];
g = new int[n];
int[] cnt = new int[3];
fac[0] = 1;
for (int i = 1; i <= n; i++)
fac[i] = (int) (i * 1L * fac[i - 1] % MOD);
int T = sc.nextInt();
for (int i = 0; i < n; i++) {
t[i] = sc.nextInt();
g[i] = sc.nextInt() - 1;
cnt[g[i]]++;
}
memo1 = new int[n][cnt[0] + 1][T + 1];
memo2 = new int[n][cnt[1] + 1][cnt[2] + 1][T + 1];
memo3 = new int[4][cnt[0] + 1][cnt[1] + 1][cnt[2] + 1];
for (int i = 0; i < n; i++) {
for (int j = 0; j <= cnt[0]; j++)
Arrays.fill(memo1[i][j], -1);
for (int j = 0; j <= cnt[1]; j++)
for (int k = 0; k <= cnt[2]; k++)
Arrays.fill(memo2[i][j][k], -1);
}
for (int i = 0; i < 4; i++)
for (int j = 0; j <= cnt[0]; j++)
for (int k = 0; k <= cnt[1]; k++)
Arrays.fill(memo3[i][j][k], -1);
int ans = 0;
for (int cnt0 = 0; cnt0 <= cnt[0]; cnt0++)
for (int sum0 = 0; sum0 <= T; sum0++)
for (int cnt1 = 0; cnt1 <= cnt[1]; cnt1++)
for (int cnt2 = 0; cnt2 <= cnt[2]; cnt2++) {
long ways = dp1(0, cnt0, sum0) * 1L * dp2(0, cnt1, cnt2, T - sum0) % MOD;
ways = ways * dp3(cnt0, cnt1, cnt2, 3) % MOD;
ways *= fac[cnt0];
ways %= MOD;
ways *= fac[cnt1];
ways %= MOD;
ways *= fac[cnt2];
ways %= MOD;
ans += ways;
if (ans >= MOD)
ans -= MOD;
}
out.println(ans);
out.close();
}
static class Scanner {
BufferedReader br;
StringTokenizer st;
Scanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
Scanner(String fileName) throws FileNotFoundException {
br = new BufferedReader(new FileReader(fileName));
}
String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
String nextLine() throws IOException {
return br.readLine();
}
int nextInt() throws IOException {
return Integer.parseInt(next());
}
long nextLong() throws NumberFormatException, IOException {
return Long.parseLong(next());
}
double nextDouble() throws NumberFormatException, IOException {
return Double.parseDouble(next());
}
boolean ready() throws IOException {
return br.ready();
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class B {
static int n, t[], g[], MOD = (int) 1e9 + 7;
static int[][][] memo1, memo2[], memo3[];
static int dp1(int idx, int remCnt, int remSum) {
if (idx == n)
return remSum == 0 && remCnt==0 ? 1 : 0;
if(remCnt<0 || remSum<0)
return 0;
if (memo1[idx][remCnt][remSum] != -1)
return memo1[idx][remCnt][remSum];
int ans = dp1(idx + 1, remCnt, remSum);
if (g[idx] == 0) {
ans += dp1(idx + 1, remCnt - 1, remSum - t[idx]);
if (ans >= MOD)
ans -= MOD;
}
return memo1[idx][remCnt][remSum] = ans;
}
static int dp2(int idx, int remCnt1, int remCnt2, int remSum) {
int all = remCnt1 + remCnt2;
if (all == 0)
return remSum == 0 ? 1 : 0;
if (idx == n || remSum == 0)
return 0;
if (memo2[idx][remCnt1][remCnt2][remSum] != -1)
return memo2[idx][remCnt1][remCnt2][remSum];
int ans = dp2(idx + 1, remCnt1, remCnt2, remSum);
if (t[idx] <= remSum) {
if (g[idx] == 1 && remCnt1 > 0)
ans += dp2(idx + 1, remCnt1 - 1, remCnt2, remSum - t[idx]);
else if (g[idx] == 2 && remCnt2 > 0)
ans += dp2(idx + 1, remCnt1, remCnt2 - 1, remSum - t[idx]);
}
return memo2[idx][remCnt1][remCnt2][remSum] = ans;
}
private static int dp3(int cnt0, int cnt1, int cnt2, int last) {
if (cnt0 + cnt1 + cnt2 == 0)
return 1;
if (memo3[last][cnt0][cnt1][cnt2] != -1)
return memo3[last][cnt0][cnt1][cnt2];
long ans = 0;
if (cnt0 > 0 && last != 0)
ans += dp3(cnt0 - 1, cnt1, cnt2, 0);
if (cnt1 > 0 && last != 1)
ans += dp3(cnt0, cnt1 - 1, cnt2, 1);
if (cnt2 > 0 && last != 2)
ans += dp3(cnt0, cnt1, cnt2 - 1, 2);
return memo3[last][cnt0][cnt1][cnt2] = (int) (ans % MOD);
}
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner();
PrintWriter out = new PrintWriter(System.out);
n = sc.nextInt();
int[] fac = new int[n + 1];
t = new int[n];
g = new int[n];
int[] cnt = new int[3];
fac[0] = 1;
for (int i = 1; i <= n; i++)
fac[i] = (int) (i * 1L * fac[i - 1] % MOD);
int T = sc.nextInt();
for (int i = 0; i < n; i++) {
t[i] = sc.nextInt();
g[i] = sc.nextInt() - 1;
cnt[g[i]]++;
}
memo1 = new int[n][cnt[0] + 1][T + 1];
memo2 = new int[n][cnt[1] + 1][cnt[2] + 1][T + 1];
memo3 = new int[4][cnt[0] + 1][cnt[1] + 1][cnt[2] + 1];
for (int i = 0; i < n; i++) {
for (int j = 0; j <= cnt[0]; j++)
Arrays.fill(memo1[i][j], -1);
for (int j = 0; j <= cnt[1]; j++)
for (int k = 0; k <= cnt[2]; k++)
Arrays.fill(memo2[i][j][k], -1);
}
for (int i = 0; i < 4; i++)
for (int j = 0; j <= cnt[0]; j++)
for (int k = 0; k <= cnt[1]; k++)
Arrays.fill(memo3[i][j][k], -1);
int ans = 0;
for (int cnt0 = 0; cnt0 <= cnt[0]; cnt0++)
for (int sum0 = 0; sum0 <= T; sum0++)
for (int cnt1 = 0; cnt1 <= cnt[1]; cnt1++)
for (int cnt2 = 0; cnt2 <= cnt[2]; cnt2++) {
long ways = dp1(0, cnt0, sum0) * 1L * dp2(0, cnt1, cnt2, T - sum0) % MOD;
ways = ways * dp3(cnt0, cnt1, cnt2, 3) % MOD;
ways *= fac[cnt0];
ways %= MOD;
ways *= fac[cnt1];
ways %= MOD;
ways *= fac[cnt2];
ways %= MOD;
ans += ways;
if (ans >= MOD)
ans -= MOD;
}
out.println(ans);
out.close();
}
static class Scanner {
BufferedReader br;
StringTokenizer st;
Scanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
Scanner(String fileName) throws FileNotFoundException {
br = new BufferedReader(new FileReader(fileName));
}
String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
String nextLine() throws IOException {
return br.readLine();
}
int nextInt() throws IOException {
return Integer.parseInt(next());
}
long nextLong() throws NumberFormatException, IOException {
return Long.parseLong(next());
}
double nextDouble() throws NumberFormatException, IOException {
return Double.parseDouble(next());
}
boolean ready() throws IOException {
return br.ready();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class B {
static int n, t[], g[], MOD = (int) 1e9 + 7;
static int[][][] memo1, memo2[], memo3[];
static int dp1(int idx, int remCnt, int remSum) {
if (idx == n)
return remSum == 0 && remCnt==0 ? 1 : 0;
if(remCnt<0 || remSum<0)
return 0;
if (memo1[idx][remCnt][remSum] != -1)
return memo1[idx][remCnt][remSum];
int ans = dp1(idx + 1, remCnt, remSum);
if (g[idx] == 0) {
ans += dp1(idx + 1, remCnt - 1, remSum - t[idx]);
if (ans >= MOD)
ans -= MOD;
}
return memo1[idx][remCnt][remSum] = ans;
}
static int dp2(int idx, int remCnt1, int remCnt2, int remSum) {
int all = remCnt1 + remCnt2;
if (all == 0)
return remSum == 0 ? 1 : 0;
if (idx == n || remSum == 0)
return 0;
if (memo2[idx][remCnt1][remCnt2][remSum] != -1)
return memo2[idx][remCnt1][remCnt2][remSum];
int ans = dp2(idx + 1, remCnt1, remCnt2, remSum);
if (t[idx] <= remSum) {
if (g[idx] == 1 && remCnt1 > 0)
ans += dp2(idx + 1, remCnt1 - 1, remCnt2, remSum - t[idx]);
else if (g[idx] == 2 && remCnt2 > 0)
ans += dp2(idx + 1, remCnt1, remCnt2 - 1, remSum - t[idx]);
}
return memo2[idx][remCnt1][remCnt2][remSum] = ans;
}
private static int dp3(int cnt0, int cnt1, int cnt2, int last) {
if (cnt0 + cnt1 + cnt2 == 0)
return 1;
if (memo3[last][cnt0][cnt1][cnt2] != -1)
return memo3[last][cnt0][cnt1][cnt2];
long ans = 0;
if (cnt0 > 0 && last != 0)
ans += dp3(cnt0 - 1, cnt1, cnt2, 0);
if (cnt1 > 0 && last != 1)
ans += dp3(cnt0, cnt1 - 1, cnt2, 1);
if (cnt2 > 0 && last != 2)
ans += dp3(cnt0, cnt1, cnt2 - 1, 2);
return memo3[last][cnt0][cnt1][cnt2] = (int) (ans % MOD);
}
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner();
PrintWriter out = new PrintWriter(System.out);
n = sc.nextInt();
int[] fac = new int[n + 1];
t = new int[n];
g = new int[n];
int[] cnt = new int[3];
fac[0] = 1;
for (int i = 1; i <= n; i++)
fac[i] = (int) (i * 1L * fac[i - 1] % MOD);
int T = sc.nextInt();
for (int i = 0; i < n; i++) {
t[i] = sc.nextInt();
g[i] = sc.nextInt() - 1;
cnt[g[i]]++;
}
memo1 = new int[n][cnt[0] + 1][T + 1];
memo2 = new int[n][cnt[1] + 1][cnt[2] + 1][T + 1];
memo3 = new int[4][cnt[0] + 1][cnt[1] + 1][cnt[2] + 1];
for (int i = 0; i < n; i++) {
for (int j = 0; j <= cnt[0]; j++)
Arrays.fill(memo1[i][j], -1);
for (int j = 0; j <= cnt[1]; j++)
for (int k = 0; k <= cnt[2]; k++)
Arrays.fill(memo2[i][j][k], -1);
}
for (int i = 0; i < 4; i++)
for (int j = 0; j <= cnt[0]; j++)
for (int k = 0; k <= cnt[1]; k++)
Arrays.fill(memo3[i][j][k], -1);
int ans = 0;
for (int cnt0 = 0; cnt0 <= cnt[0]; cnt0++)
for (int sum0 = 0; sum0 <= T; sum0++)
for (int cnt1 = 0; cnt1 <= cnt[1]; cnt1++)
for (int cnt2 = 0; cnt2 <= cnt[2]; cnt2++) {
long ways = dp1(0, cnt0, sum0) * 1L * dp2(0, cnt1, cnt2, T - sum0) % MOD;
ways = ways * dp3(cnt0, cnt1, cnt2, 3) % MOD;
ways *= fac[cnt0];
ways %= MOD;
ways *= fac[cnt1];
ways %= MOD;
ways *= fac[cnt2];
ways %= MOD;
ans += ways;
if (ans >= MOD)
ans -= MOD;
}
out.println(ans);
out.close();
}
static class Scanner {
BufferedReader br;
StringTokenizer st;
Scanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
Scanner(String fileName) throws FileNotFoundException {
br = new BufferedReader(new FileReader(fileName));
}
String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
String nextLine() throws IOException {
return br.readLine();
}
int nextInt() throws IOException {
return Integer.parseInt(next());
}
long nextLong() throws NumberFormatException, IOException {
return Long.parseLong(next());
}
double nextDouble() throws NumberFormatException, IOException {
return Double.parseDouble(next());
}
boolean ready() throws IOException {
return br.ready();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,838 | 3,700 |
3,521 |
import java.util.*;
public class Compute {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
long M = sc.nextInt();
long fact[] = new long[n+1];
long inv[] = new long[n+1];
long ifact[] = new long[n+1];
long dp[][] = new long[n+1][n+1];
fact[1] = 1;
ifact[1] = 1;
ifact[0] = 1;
inv[1] = 1;
dp[1][1] = 1;
for(int i = 2; i <= n; i++) {
fact[i] = (i*fact[i-1]) % M;
inv[i] = (inv[(int)(M % i)]*(M - M/i)) % M;
dp[i][i] = (dp[i-1][i-1] * 2) % M;
ifact[i] = (ifact[i-1]*inv[i]) % M;
}
for(int i = 3; i <= n; i++) {
for(int j = i/2 + 1; j <= i-1; j++) {
for(int k = 2; k <= i-1 && j-k+1 > (i-k)/2; k++) {
dp[i][j] = (dp[i][j] + ((((dp[k-1][k-1]*dp[i-k][j-k+1] % M)*fact[j] % M)*ifact[k-1] % M)*ifact[j-k+1] % M)) % M;
}
}
}
long sum = 0;
for(int i = n/2 + 1; i <= n; i++)
sum = (sum + dp[n][i]) % M;
System.out.println(sum % M);
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
public class Compute {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
long M = sc.nextInt();
long fact[] = new long[n+1];
long inv[] = new long[n+1];
long ifact[] = new long[n+1];
long dp[][] = new long[n+1][n+1];
fact[1] = 1;
ifact[1] = 1;
ifact[0] = 1;
inv[1] = 1;
dp[1][1] = 1;
for(int i = 2; i <= n; i++) {
fact[i] = (i*fact[i-1]) % M;
inv[i] = (inv[(int)(M % i)]*(M - M/i)) % M;
dp[i][i] = (dp[i-1][i-1] * 2) % M;
ifact[i] = (ifact[i-1]*inv[i]) % M;
}
for(int i = 3; i <= n; i++) {
for(int j = i/2 + 1; j <= i-1; j++) {
for(int k = 2; k <= i-1 && j-k+1 > (i-k)/2; k++) {
dp[i][j] = (dp[i][j] + ((((dp[k-1][k-1]*dp[i-k][j-k+1] % M)*fact[j] % M)*ifact[k-1] % M)*ifact[j-k+1] % M)) % M;
}
}
}
long sum = 0;
for(int i = n/2 + 1; i <= n; i++)
sum = (sum + dp[n][i]) % M;
System.out.println(sum % M);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class Compute {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
long M = sc.nextInt();
long fact[] = new long[n+1];
long inv[] = new long[n+1];
long ifact[] = new long[n+1];
long dp[][] = new long[n+1][n+1];
fact[1] = 1;
ifact[1] = 1;
ifact[0] = 1;
inv[1] = 1;
dp[1][1] = 1;
for(int i = 2; i <= n; i++) {
fact[i] = (i*fact[i-1]) % M;
inv[i] = (inv[(int)(M % i)]*(M - M/i)) % M;
dp[i][i] = (dp[i-1][i-1] * 2) % M;
ifact[i] = (ifact[i-1]*inv[i]) % M;
}
for(int i = 3; i <= n; i++) {
for(int j = i/2 + 1; j <= i-1; j++) {
for(int k = 2; k <= i-1 && j-k+1 > (i-k)/2; k++) {
dp[i][j] = (dp[i][j] + ((((dp[k-1][k-1]*dp[i-k][j-k+1] % M)*fact[j] % M)*ifact[k-1] % M)*ifact[j-k+1] % M)) % M;
}
}
}
long sum = 0;
for(int i = n/2 + 1; i <= n; i++)
sum = (sum + dp[n][i]) % M;
System.out.println(sum % M);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 776 | 3,514 |
3,016 |
import java.io.PrintWriter;
import java.util.Scanner;
import java.util.TreeSet;
public class E {
static Scanner in; static int next() throws Exception {return in.nextInt();};
// static StreamTokenizer in; static int next() throws Exception {in.nextToken(); return (int) in.nval;}
// static BufferedReader in;
static PrintWriter out;
public static void main(String[] args) throws Exception {
in = new Scanner(System.in);
// in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
// in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
int n = next();
if (n%4 == 0||n%7 == 0||n%44 == 0||n%47 == 0||n%74 == 0||n%77 == 0||n%444 == 0||n%447 == 0||n%474 == 0||n%744 == 0||n%774 == 0||n%747 == 0||n%477 == 0||n%777==0) out.println("YES");
else out.println("NO");
out.println();
out.close();
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.PrintWriter;
import java.util.Scanner;
import java.util.TreeSet;
public class E {
static Scanner in; static int next() throws Exception {return in.nextInt();};
// static StreamTokenizer in; static int next() throws Exception {in.nextToken(); return (int) in.nval;}
// static BufferedReader in;
static PrintWriter out;
public static void main(String[] args) throws Exception {
in = new Scanner(System.in);
// in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
// in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
int n = next();
if (n%4 == 0||n%7 == 0||n%44 == 0||n%47 == 0||n%74 == 0||n%77 == 0||n%444 == 0||n%447 == 0||n%474 == 0||n%744 == 0||n%774 == 0||n%747 == 0||n%477 == 0||n%777==0) out.println("YES");
else out.println("NO");
out.println();
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.PrintWriter;
import java.util.Scanner;
import java.util.TreeSet;
public class E {
static Scanner in; static int next() throws Exception {return in.nextInt();};
// static StreamTokenizer in; static int next() throws Exception {in.nextToken(); return (int) in.nval;}
// static BufferedReader in;
static PrintWriter out;
public static void main(String[] args) throws Exception {
in = new Scanner(System.in);
// in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
// in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
int n = next();
if (n%4 == 0||n%7 == 0||n%44 == 0||n%47 == 0||n%74 == 0||n%77 == 0||n%444 == 0||n%447 == 0||n%474 == 0||n%744 == 0||n%774 == 0||n%747 == 0||n%477 == 0||n%777==0) out.println("YES");
else out.println("NO");
out.println();
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 624 | 3,010 |
1,156 |
import java.io.*;
public class Main {
private static Reader in;
private static PrintWriter out;
public static void main(String args[]) throws IOException {
in = new Reader();
out = new PrintWriter(System.out);
long n = in.nextLong();
long s = in.nextLong();
long low = 0, mid = 0, high = n;
while (low <= high) {
mid = (low + high) / 2;
if (func(mid, s)) {
high = mid - 1;
}
else {
low = mid + 1;
}
}
out.println(n - low + 1);
out.close();
}
private static boolean func(long num, long s) {
long sum = 0, temp = num;
while (temp > 0) {
sum += (temp) % 10;
temp /= 10;
}
return ((num - sum) >= s);
}
static class Reader
{
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Reader()
{
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Reader(String file_name) throws IOException
{
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String next() throws IOException {
byte[] buf = new byte[64]; // line length
int cnt = 0, c;
while ((c = read()) != -1)
{
if (c == ' ' || c == '\n')
break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public String nextLine() throws IOException
{
byte[] buf = new byte[64]; // line length
int cnt = 0, c;
while ((c = read()) != -1)
{
if (c == '\n')
break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException
{
int ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do
{
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long nextLong() throws IOException
{
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException
{
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (c == '.')
{
while ((c = read()) >= '0' && c <= '9')
{
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException
{
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException
{
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException
{
if (din == null)
return;
din.close();
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
public class Main {
private static Reader in;
private static PrintWriter out;
public static void main(String args[]) throws IOException {
in = new Reader();
out = new PrintWriter(System.out);
long n = in.nextLong();
long s = in.nextLong();
long low = 0, mid = 0, high = n;
while (low <= high) {
mid = (low + high) / 2;
if (func(mid, s)) {
high = mid - 1;
}
else {
low = mid + 1;
}
}
out.println(n - low + 1);
out.close();
}
private static boolean func(long num, long s) {
long sum = 0, temp = num;
while (temp > 0) {
sum += (temp) % 10;
temp /= 10;
}
return ((num - sum) >= s);
}
static class Reader
{
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Reader()
{
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Reader(String file_name) throws IOException
{
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String next() throws IOException {
byte[] buf = new byte[64]; // line length
int cnt = 0, c;
while ((c = read()) != -1)
{
if (c == ' ' || c == '\n')
break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public String nextLine() throws IOException
{
byte[] buf = new byte[64]; // line length
int cnt = 0, c;
while ((c = read()) != -1)
{
if (c == '\n')
break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException
{
int ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do
{
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long nextLong() throws IOException
{
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException
{
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (c == '.')
{
while ((c = read()) >= '0' && c <= '9')
{
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException
{
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException
{
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException
{
if (din == null)
return;
din.close();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
public class Main {
private static Reader in;
private static PrintWriter out;
public static void main(String args[]) throws IOException {
in = new Reader();
out = new PrintWriter(System.out);
long n = in.nextLong();
long s = in.nextLong();
long low = 0, mid = 0, high = n;
while (low <= high) {
mid = (low + high) / 2;
if (func(mid, s)) {
high = mid - 1;
}
else {
low = mid + 1;
}
}
out.println(n - low + 1);
out.close();
}
private static boolean func(long num, long s) {
long sum = 0, temp = num;
while (temp > 0) {
sum += (temp) % 10;
temp /= 10;
}
return ((num - sum) >= s);
}
static class Reader
{
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Reader()
{
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Reader(String file_name) throws IOException
{
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String next() throws IOException {
byte[] buf = new byte[64]; // line length
int cnt = 0, c;
while ((c = read()) != -1)
{
if (c == ' ' || c == '\n')
break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public String nextLine() throws IOException
{
byte[] buf = new byte[64]; // line length
int cnt = 0, c;
while ((c = read()) != -1)
{
if (c == '\n')
break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException
{
int ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do
{
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long nextLong() throws IOException
{
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException
{
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (c == '.')
{
while ((c = read()) >= '0' && c <= '9')
{
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException
{
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException
{
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException
{
if (din == null)
return;
din.close();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,336 | 1,155 |
2,596 |
import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.StringTokenizer;
public class A {
FastScanner in;
PrintWriter out;
boolean systemIO = true;
public class Fenvik {
int[] sum;
public Fenvik(int n) {
sum = new int[n];
}
public void add(int x) {
for (; x < sum.length; x = (x | (x + 1))) {
sum[x]++;
}
}
public int sum(int r) {
int ans = 0;
for (; r >= 0; r = (r & (r + 1)) - 1) {
ans += sum[r];
}
return ans;
}
}
public int gcd(int x, int y) {
if (y == 0) {
return x;
}
if (x == 0) {
return y;
}
return gcd(y, x % y);
}
public class Edge {
int to;
long s;
public Edge(int to, long s) {
this.to = to;
this.s = s;
}
}
public long dfs(int v, int prev, long sumth, long minsum, long s) {
tin[v] = timer;
timer++;
up[v][0] = new Edge(prev, s);
for (int i = 1; i <= l; i++) {
Edge e = up[v][i - 1];
up[v][i] = new Edge(up[e.to][i - 1].to, up[e.to][i - 1].s + e.s);
}
minsum = Math.min(minsum, sumth);
maxup[v] = sumth - minsum;
long mxdown = sumth;
for (Edge e : list[v]) {
if (e.to != prev) {
mxdown = Math.max(mxdown, dfs(e.to, v, sumth + e.s, minsum, e.s));
}
}
tout[v] = timer;
timer++;
maxdown[v] = mxdown - sumth;
return mxdown;
}
public boolean upper(int a1, int b1) {
return tin[a1] <= tin[b1] && tout[a1] >= tout[b1];
}
public Edge lca(int a, int b) {
if (a == b) {
return new Edge(a, 0);
}
int v = -1;
int a1 = a;
int b1 = b;
if (tin[a] <= tin[b] && tout[a] >= tout[b]) {
v = b;
long lenb = 0;
for (int i = l; i >= 0; i--) {
a1 = up[v][i].to;
b1 = a;
if (!(tin[a1] <= tin[b1] && tout[a1] >= tout[b1])) {
lenb += up[v][i].s;
v = up[v][i].to;
}
}
lenb += up[v][0].s;
v = up[v][0].to;
return new Edge(v, lenb);
}
if (upper(b, a)) {
v = a;
long lena = 0;
for (int i = l; i >= 0; i--) {
a1 = up[v][i].to;
b1 = b;
if (!(tin[a1] <= tin[b1] && tout[a1] >= tout[b1])) {
lena += up[v][i].s;
v = up[v][i].to;
}
}
lena += up[v][0].s;
v = up[v][0].to;
return new Edge(v, lena);
}
v = a;
long lena = 0;
for (int i = l; i >= 0; i--) {
a1 = up[v][i].to;
b1 = b;
if (!(tin[a1] <= tin[b1] && tout[a1] >= tout[b1])) {
lena += up[v][i].s;
v = up[v][i].to;
}
}
lena += up[v][0].s;
v = up[v][0].to;
v = b;
long lenb = 0;
for (int i = l; i >= 0; i--) {
a1 = up[v][i].to;
b1 = a;
if (!(tin[a1] <= tin[b1] && tout[a1] >= tout[b1])) {
lenb += up[v][i].s;
v = up[v][i].to;
}
}
lenb += up[v][0].s;
v = up[v][0].to;
return new Edge(v, lena + lenb);
}
int n;
int l;
int[] tin;
int[] tout;
int timer = 0;
long[] maxup;
long[] maxdown;
Edge[][] up;
ArrayList<Edge>[] list;
public void solve() {
int n = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < a.length; i++) {
a[i] = in.nextInt();
}
Arrays.sort(a);
int ans = 0;
boolean[] used = new boolean[n];
for (int i = 0; i < used.length; i++) {
if (!used[i]) {
ans++;
for (int j = i; j < used.length; j++) {
if (a[j] % a[i] == 0) {
used[j] = true;
}
}
}
}
out.print(ans);
}
public void run() {
try {
if (systemIO) {
in = new FastScanner(System.in);
out = new PrintWriter(System.out);
} else {
in = new FastScanner(new File("input.txt"));
out = new PrintWriter(new File("output.txt"));
}
solve();
out.close();
} catch (IOException e) {
e.printStackTrace();
}
}
class FastScanner {
BufferedReader br;
StringTokenizer st;
FastScanner(File f) {
try {
br = new BufferedReader(new FileReader(f));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
FastScanner(InputStream f) {
br = new BufferedReader(new InputStreamReader(f));
}
String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
return null;
}
}
String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
// AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
public static void main(String[] arg) {
new A().run();
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.StringTokenizer;
public class A {
FastScanner in;
PrintWriter out;
boolean systemIO = true;
public class Fenvik {
int[] sum;
public Fenvik(int n) {
sum = new int[n];
}
public void add(int x) {
for (; x < sum.length; x = (x | (x + 1))) {
sum[x]++;
}
}
public int sum(int r) {
int ans = 0;
for (; r >= 0; r = (r & (r + 1)) - 1) {
ans += sum[r];
}
return ans;
}
}
public int gcd(int x, int y) {
if (y == 0) {
return x;
}
if (x == 0) {
return y;
}
return gcd(y, x % y);
}
public class Edge {
int to;
long s;
public Edge(int to, long s) {
this.to = to;
this.s = s;
}
}
public long dfs(int v, int prev, long sumth, long minsum, long s) {
tin[v] = timer;
timer++;
up[v][0] = new Edge(prev, s);
for (int i = 1; i <= l; i++) {
Edge e = up[v][i - 1];
up[v][i] = new Edge(up[e.to][i - 1].to, up[e.to][i - 1].s + e.s);
}
minsum = Math.min(minsum, sumth);
maxup[v] = sumth - minsum;
long mxdown = sumth;
for (Edge e : list[v]) {
if (e.to != prev) {
mxdown = Math.max(mxdown, dfs(e.to, v, sumth + e.s, minsum, e.s));
}
}
tout[v] = timer;
timer++;
maxdown[v] = mxdown - sumth;
return mxdown;
}
public boolean upper(int a1, int b1) {
return tin[a1] <= tin[b1] && tout[a1] >= tout[b1];
}
public Edge lca(int a, int b) {
if (a == b) {
return new Edge(a, 0);
}
int v = -1;
int a1 = a;
int b1 = b;
if (tin[a] <= tin[b] && tout[a] >= tout[b]) {
v = b;
long lenb = 0;
for (int i = l; i >= 0; i--) {
a1 = up[v][i].to;
b1 = a;
if (!(tin[a1] <= tin[b1] && tout[a1] >= tout[b1])) {
lenb += up[v][i].s;
v = up[v][i].to;
}
}
lenb += up[v][0].s;
v = up[v][0].to;
return new Edge(v, lenb);
}
if (upper(b, a)) {
v = a;
long lena = 0;
for (int i = l; i >= 0; i--) {
a1 = up[v][i].to;
b1 = b;
if (!(tin[a1] <= tin[b1] && tout[a1] >= tout[b1])) {
lena += up[v][i].s;
v = up[v][i].to;
}
}
lena += up[v][0].s;
v = up[v][0].to;
return new Edge(v, lena);
}
v = a;
long lena = 0;
for (int i = l; i >= 0; i--) {
a1 = up[v][i].to;
b1 = b;
if (!(tin[a1] <= tin[b1] && tout[a1] >= tout[b1])) {
lena += up[v][i].s;
v = up[v][i].to;
}
}
lena += up[v][0].s;
v = up[v][0].to;
v = b;
long lenb = 0;
for (int i = l; i >= 0; i--) {
a1 = up[v][i].to;
b1 = a;
if (!(tin[a1] <= tin[b1] && tout[a1] >= tout[b1])) {
lenb += up[v][i].s;
v = up[v][i].to;
}
}
lenb += up[v][0].s;
v = up[v][0].to;
return new Edge(v, lena + lenb);
}
int n;
int l;
int[] tin;
int[] tout;
int timer = 0;
long[] maxup;
long[] maxdown;
Edge[][] up;
ArrayList<Edge>[] list;
public void solve() {
int n = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < a.length; i++) {
a[i] = in.nextInt();
}
Arrays.sort(a);
int ans = 0;
boolean[] used = new boolean[n];
for (int i = 0; i < used.length; i++) {
if (!used[i]) {
ans++;
for (int j = i; j < used.length; j++) {
if (a[j] % a[i] == 0) {
used[j] = true;
}
}
}
}
out.print(ans);
}
public void run() {
try {
if (systemIO) {
in = new FastScanner(System.in);
out = new PrintWriter(System.out);
} else {
in = new FastScanner(new File("input.txt"));
out = new PrintWriter(new File("output.txt"));
}
solve();
out.close();
} catch (IOException e) {
e.printStackTrace();
}
}
class FastScanner {
BufferedReader br;
StringTokenizer st;
FastScanner(File f) {
try {
br = new BufferedReader(new FileReader(f));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
FastScanner(InputStream f) {
br = new BufferedReader(new InputStreamReader(f));
}
String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
return null;
}
}
String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
// AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
public static void main(String[] arg) {
new A().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.StringTokenizer;
public class A {
FastScanner in;
PrintWriter out;
boolean systemIO = true;
public class Fenvik {
int[] sum;
public Fenvik(int n) {
sum = new int[n];
}
public void add(int x) {
for (; x < sum.length; x = (x | (x + 1))) {
sum[x]++;
}
}
public int sum(int r) {
int ans = 0;
for (; r >= 0; r = (r & (r + 1)) - 1) {
ans += sum[r];
}
return ans;
}
}
public int gcd(int x, int y) {
if (y == 0) {
return x;
}
if (x == 0) {
return y;
}
return gcd(y, x % y);
}
public class Edge {
int to;
long s;
public Edge(int to, long s) {
this.to = to;
this.s = s;
}
}
public long dfs(int v, int prev, long sumth, long minsum, long s) {
tin[v] = timer;
timer++;
up[v][0] = new Edge(prev, s);
for (int i = 1; i <= l; i++) {
Edge e = up[v][i - 1];
up[v][i] = new Edge(up[e.to][i - 1].to, up[e.to][i - 1].s + e.s);
}
minsum = Math.min(minsum, sumth);
maxup[v] = sumth - minsum;
long mxdown = sumth;
for (Edge e : list[v]) {
if (e.to != prev) {
mxdown = Math.max(mxdown, dfs(e.to, v, sumth + e.s, minsum, e.s));
}
}
tout[v] = timer;
timer++;
maxdown[v] = mxdown - sumth;
return mxdown;
}
public boolean upper(int a1, int b1) {
return tin[a1] <= tin[b1] && tout[a1] >= tout[b1];
}
public Edge lca(int a, int b) {
if (a == b) {
return new Edge(a, 0);
}
int v = -1;
int a1 = a;
int b1 = b;
if (tin[a] <= tin[b] && tout[a] >= tout[b]) {
v = b;
long lenb = 0;
for (int i = l; i >= 0; i--) {
a1 = up[v][i].to;
b1 = a;
if (!(tin[a1] <= tin[b1] && tout[a1] >= tout[b1])) {
lenb += up[v][i].s;
v = up[v][i].to;
}
}
lenb += up[v][0].s;
v = up[v][0].to;
return new Edge(v, lenb);
}
if (upper(b, a)) {
v = a;
long lena = 0;
for (int i = l; i >= 0; i--) {
a1 = up[v][i].to;
b1 = b;
if (!(tin[a1] <= tin[b1] && tout[a1] >= tout[b1])) {
lena += up[v][i].s;
v = up[v][i].to;
}
}
lena += up[v][0].s;
v = up[v][0].to;
return new Edge(v, lena);
}
v = a;
long lena = 0;
for (int i = l; i >= 0; i--) {
a1 = up[v][i].to;
b1 = b;
if (!(tin[a1] <= tin[b1] && tout[a1] >= tout[b1])) {
lena += up[v][i].s;
v = up[v][i].to;
}
}
lena += up[v][0].s;
v = up[v][0].to;
v = b;
long lenb = 0;
for (int i = l; i >= 0; i--) {
a1 = up[v][i].to;
b1 = a;
if (!(tin[a1] <= tin[b1] && tout[a1] >= tout[b1])) {
lenb += up[v][i].s;
v = up[v][i].to;
}
}
lenb += up[v][0].s;
v = up[v][0].to;
return new Edge(v, lena + lenb);
}
int n;
int l;
int[] tin;
int[] tout;
int timer = 0;
long[] maxup;
long[] maxdown;
Edge[][] up;
ArrayList<Edge>[] list;
public void solve() {
int n = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < a.length; i++) {
a[i] = in.nextInt();
}
Arrays.sort(a);
int ans = 0;
boolean[] used = new boolean[n];
for (int i = 0; i < used.length; i++) {
if (!used[i]) {
ans++;
for (int j = i; j < used.length; j++) {
if (a[j] % a[i] == 0) {
used[j] = true;
}
}
}
}
out.print(ans);
}
public void run() {
try {
if (systemIO) {
in = new FastScanner(System.in);
out = new PrintWriter(System.out);
} else {
in = new FastScanner(new File("input.txt"));
out = new PrintWriter(new File("output.txt"));
}
solve();
out.close();
} catch (IOException e) {
e.printStackTrace();
}
}
class FastScanner {
BufferedReader br;
StringTokenizer st;
FastScanner(File f) {
try {
br = new BufferedReader(new FileReader(f));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
FastScanner(InputStream f) {
br = new BufferedReader(new InputStreamReader(f));
}
String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
return null;
}
}
String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
// AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
public static void main(String[] arg) {
new A().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,137 | 2,590 |
4,279 |
import java.io.*;
import java.util.*;
public class B {
static double max;
static int n, A, b[], l[];
static int sw[];
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
n = sc.nextInt();
int k = sc.nextInt();
A = sc.nextInt();
b = new int[n];
l = new int[n];
sw = new int[n];
for(int i=0; i<n; i++) {
b[i] = sc.nextInt();
l[i] = sc.nextInt();
}
max = 0;
search(k, 0);
System.out.println(max);
}
static void search(int k, int m) {
if(max == 1) return;
if(m == n) {
if(k > 0) return;
double pr[] = new double[n];
for(int i=0; i<n; i++) {
pr[i] = Math.min(100, l[i] + 10*sw[i])*1./100;
}
double ex = 0;
for(int i=0; i<1<<n; i++) {
double p = 1;
int cnt = 0;
int lv = 0;
for(int j=0; j<n; j++) {
if((i&(1<<j))>0) {
p *= pr[j];
cnt++;
}
else {
p *= (1-pr[j]);
lv += b[j];
}
}
if(cnt > n/2) {
ex += p;
}
else {
ex += p*A/(A+lv);
}
}
max = Math.max(max, ex);
return;
}
for(int i=k; i>=0; i--) {
sw[m] = i;
search(k-i, m+1);
}
}
static class Scanner {
BufferedReader br;
StringTokenizer st;
Scanner(InputStream in) {
br = new BufferedReader(new InputStreamReader(in));
eat("");
}
void eat(String s) {
st = new StringTokenizer(s);
}
String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
throw new IOError(e);
}
}
boolean hasNext() {
while (!st.hasMoreTokens()) {
String s = nextLine();
if (s == null)
return false;
eat(s);
}
return true;
}
String next() {
hasNext();
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class B {
static double max;
static int n, A, b[], l[];
static int sw[];
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
n = sc.nextInt();
int k = sc.nextInt();
A = sc.nextInt();
b = new int[n];
l = new int[n];
sw = new int[n];
for(int i=0; i<n; i++) {
b[i] = sc.nextInt();
l[i] = sc.nextInt();
}
max = 0;
search(k, 0);
System.out.println(max);
}
static void search(int k, int m) {
if(max == 1) return;
if(m == n) {
if(k > 0) return;
double pr[] = new double[n];
for(int i=0; i<n; i++) {
pr[i] = Math.min(100, l[i] + 10*sw[i])*1./100;
}
double ex = 0;
for(int i=0; i<1<<n; i++) {
double p = 1;
int cnt = 0;
int lv = 0;
for(int j=0; j<n; j++) {
if((i&(1<<j))>0) {
p *= pr[j];
cnt++;
}
else {
p *= (1-pr[j]);
lv += b[j];
}
}
if(cnt > n/2) {
ex += p;
}
else {
ex += p*A/(A+lv);
}
}
max = Math.max(max, ex);
return;
}
for(int i=k; i>=0; i--) {
sw[m] = i;
search(k-i, m+1);
}
}
static class Scanner {
BufferedReader br;
StringTokenizer st;
Scanner(InputStream in) {
br = new BufferedReader(new InputStreamReader(in));
eat("");
}
void eat(String s) {
st = new StringTokenizer(s);
}
String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
throw new IOError(e);
}
}
boolean hasNext() {
while (!st.hasMoreTokens()) {
String s = nextLine();
if (s == null)
return false;
eat(s);
}
return true;
}
String next() {
hasNext();
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class B {
static double max;
static int n, A, b[], l[];
static int sw[];
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
n = sc.nextInt();
int k = sc.nextInt();
A = sc.nextInt();
b = new int[n];
l = new int[n];
sw = new int[n];
for(int i=0; i<n; i++) {
b[i] = sc.nextInt();
l[i] = sc.nextInt();
}
max = 0;
search(k, 0);
System.out.println(max);
}
static void search(int k, int m) {
if(max == 1) return;
if(m == n) {
if(k > 0) return;
double pr[] = new double[n];
for(int i=0; i<n; i++) {
pr[i] = Math.min(100, l[i] + 10*sw[i])*1./100;
}
double ex = 0;
for(int i=0; i<1<<n; i++) {
double p = 1;
int cnt = 0;
int lv = 0;
for(int j=0; j<n; j++) {
if((i&(1<<j))>0) {
p *= pr[j];
cnt++;
}
else {
p *= (1-pr[j]);
lv += b[j];
}
}
if(cnt > n/2) {
ex += p;
}
else {
ex += p*A/(A+lv);
}
}
max = Math.max(max, ex);
return;
}
for(int i=k; i>=0; i--) {
sw[m] = i;
search(k-i, m+1);
}
}
static class Scanner {
BufferedReader br;
StringTokenizer st;
Scanner(InputStream in) {
br = new BufferedReader(new InputStreamReader(in));
eat("");
}
void eat(String s) {
st = new StringTokenizer(s);
}
String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
throw new IOError(e);
}
}
boolean hasNext() {
while (!st.hasMoreTokens()) {
String s = nextLine();
if (s == null)
return false;
eat(s);
}
return true;
}
String next() {
hasNext();
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 951 | 4,268 |
3,037 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class A_122 {
public static void main(String[] args) throws NumberFormatException, IOException {
BufferedReader bf = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(bf.readLine());
System.out.println((n%4==0||n%7==0||n%47==0||n%74==0||n%447==0||n%474==0||n%477==0||n%744==0||n%747==0||n%774==0)?"YES":"NO");
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class A_122 {
public static void main(String[] args) throws NumberFormatException, IOException {
BufferedReader bf = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(bf.readLine());
System.out.println((n%4==0||n%7==0||n%47==0||n%74==0||n%447==0||n%474==0||n%477==0||n%744==0||n%747==0||n%774==0)?"YES":"NO");
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class A_122 {
public static void main(String[] args) throws NumberFormatException, IOException {
BufferedReader bf = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(bf.readLine());
System.out.println((n%4==0||n%7==0||n%47==0||n%74==0||n%447==0||n%474==0||n%477==0||n%744==0||n%747==0||n%774==0)?"YES":"NO");
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 493 | 3,031 |
1,072 |
import javafx.util.*;
import java.util.*;
import java.io.*;
import java.math.*;
public class Test4 {
PrintWriter pw = new PrintWriter(System.out); InputStream is = System.in;
Random rnd = new Random();
int a;
void run(){
a = ni();
for(int q=0; q<a; q++){
long nj = ni(), kj = nl();
BigInteger n = BigInteger.valueOf(nj), k = BigInteger.valueOf(kj);
if((nj<40 && (k.compareTo(BigInteger.valueOf(2).pow(2*(int)nj).divide(BigInteger.valueOf(3)))>0))){
System.out.println("NO");
continue;
}
if(nj>=40){
System.out.println("YES "+(nj-1));
continue;
}
long log=nj;
BigInteger maxop = BigInteger.valueOf(2).pow(2*(int)nj).divide(BigInteger.valueOf(3)), pth = BigInteger.ONE;
for(BigInteger c = BigInteger.ONE; log>0; log--, c=c.multiply(BigInteger.valueOf(2)).add(BigInteger.ONE)){
if(k.compareTo(c)<0) break;
pth = c.multiply(BigInteger.valueOf(2)).add(BigInteger.ONE);
k=k.subtract(c);
maxop=maxop.subtract(c);
}
maxop = maxop.subtract(pth.multiply(BigInteger.valueOf(2).pow(2*(int)log).divide(BigInteger.valueOf(3))));
if(k.compareTo(maxop)<=0) System.out.println("YES "+log);
else System.out.println("NO");
}
pw.flush();
}
static class PyraSort {
private static int heapSize;
public static void sort(int[] a) {
buildHeap(a);
while (heapSize > 1) {
swap(a, 0, heapSize - 1);
heapSize--;
heapify(a, 0);
}
}
private static void buildHeap(int[] a) {
heapSize = a.length;
for (int i = a.length / 2; i >= 0; i--) {
heapify(a, i);
}
}
private static void heapify(int[] a, int i) {
int l = 2 * i + 2;
int r = 2 * i + 1;
int largest = i;
if (l < heapSize && a[i] < a[l]) {
largest = l;
}
if (r < heapSize && a[largest] < a[r]) {
largest = r;
}
if (i != largest) {
swap(a, i, largest);
heapify(a, largest);
}
}
private static void swap(int[] a, int i, int j) {
a[i] ^= a[j] ^= a[i];
a[j] ^= a[i];
}
}
public static void main(String[] args) {
new Test4().run();
}
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni()
{
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import javafx.util.*;
import java.util.*;
import java.io.*;
import java.math.*;
public class Test4 {
PrintWriter pw = new PrintWriter(System.out); InputStream is = System.in;
Random rnd = new Random();
int a;
void run(){
a = ni();
for(int q=0; q<a; q++){
long nj = ni(), kj = nl();
BigInteger n = BigInteger.valueOf(nj), k = BigInteger.valueOf(kj);
if((nj<40 && (k.compareTo(BigInteger.valueOf(2).pow(2*(int)nj).divide(BigInteger.valueOf(3)))>0))){
System.out.println("NO");
continue;
}
if(nj>=40){
System.out.println("YES "+(nj-1));
continue;
}
long log=nj;
BigInteger maxop = BigInteger.valueOf(2).pow(2*(int)nj).divide(BigInteger.valueOf(3)), pth = BigInteger.ONE;
for(BigInteger c = BigInteger.ONE; log>0; log--, c=c.multiply(BigInteger.valueOf(2)).add(BigInteger.ONE)){
if(k.compareTo(c)<0) break;
pth = c.multiply(BigInteger.valueOf(2)).add(BigInteger.ONE);
k=k.subtract(c);
maxop=maxop.subtract(c);
}
maxop = maxop.subtract(pth.multiply(BigInteger.valueOf(2).pow(2*(int)log).divide(BigInteger.valueOf(3))));
if(k.compareTo(maxop)<=0) System.out.println("YES "+log);
else System.out.println("NO");
}
pw.flush();
}
static class PyraSort {
private static int heapSize;
public static void sort(int[] a) {
buildHeap(a);
while (heapSize > 1) {
swap(a, 0, heapSize - 1);
heapSize--;
heapify(a, 0);
}
}
private static void buildHeap(int[] a) {
heapSize = a.length;
for (int i = a.length / 2; i >= 0; i--) {
heapify(a, i);
}
}
private static void heapify(int[] a, int i) {
int l = 2 * i + 2;
int r = 2 * i + 1;
int largest = i;
if (l < heapSize && a[i] < a[l]) {
largest = l;
}
if (r < heapSize && a[largest] < a[r]) {
largest = r;
}
if (i != largest) {
swap(a, i, largest);
heapify(a, largest);
}
}
private static void swap(int[] a, int i, int j) {
a[i] ^= a[j] ^= a[i];
a[j] ^= a[i];
}
}
public static void main(String[] args) {
new Test4().run();
}
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni()
{
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import javafx.util.*;
import java.util.*;
import java.io.*;
import java.math.*;
public class Test4 {
PrintWriter pw = new PrintWriter(System.out); InputStream is = System.in;
Random rnd = new Random();
int a;
void run(){
a = ni();
for(int q=0; q<a; q++){
long nj = ni(), kj = nl();
BigInteger n = BigInteger.valueOf(nj), k = BigInteger.valueOf(kj);
if((nj<40 && (k.compareTo(BigInteger.valueOf(2).pow(2*(int)nj).divide(BigInteger.valueOf(3)))>0))){
System.out.println("NO");
continue;
}
if(nj>=40){
System.out.println("YES "+(nj-1));
continue;
}
long log=nj;
BigInteger maxop = BigInteger.valueOf(2).pow(2*(int)nj).divide(BigInteger.valueOf(3)), pth = BigInteger.ONE;
for(BigInteger c = BigInteger.ONE; log>0; log--, c=c.multiply(BigInteger.valueOf(2)).add(BigInteger.ONE)){
if(k.compareTo(c)<0) break;
pth = c.multiply(BigInteger.valueOf(2)).add(BigInteger.ONE);
k=k.subtract(c);
maxop=maxop.subtract(c);
}
maxop = maxop.subtract(pth.multiply(BigInteger.valueOf(2).pow(2*(int)log).divide(BigInteger.valueOf(3))));
if(k.compareTo(maxop)<=0) System.out.println("YES "+log);
else System.out.println("NO");
}
pw.flush();
}
static class PyraSort {
private static int heapSize;
public static void sort(int[] a) {
buildHeap(a);
while (heapSize > 1) {
swap(a, 0, heapSize - 1);
heapSize--;
heapify(a, 0);
}
}
private static void buildHeap(int[] a) {
heapSize = a.length;
for (int i = a.length / 2; i >= 0; i--) {
heapify(a, i);
}
}
private static void heapify(int[] a, int i) {
int l = 2 * i + 2;
int r = 2 * i + 1;
int largest = i;
if (l < heapSize && a[i] < a[l]) {
largest = l;
}
if (r < heapSize && a[largest] < a[r]) {
largest = r;
}
if (i != largest) {
swap(a, i, largest);
heapify(a, largest);
}
}
private static void swap(int[] a, int i, int j) {
a[i] ^= a[j] ^= a[i];
a[j] ^= a[i];
}
}
public static void main(String[] args) {
new Test4().run();
}
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni()
{
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,623 | 1,071 |
1,054 |
import java.io.BufferedReader;
import java.io.DataInputStream;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class DigitQueries {
public static void main(String[] args) throws IOException {
FastReader in = new FastReader();
int q = 1;
while (q-- > 0) {
long k;
k = in.nextLong();
Query(k);
}
}
static void Query(long k){
long x=0;
long sum=0;
while(sum<k){
sum+=9*Math.pow(10, x)*(x+1);
if(sum>k){
sum-=9*Math.pow(10, x)*(x+1);
break;
}
x++;
}
long y = (k-sum);
long last = 0;
last = (long)Math.pow(10,x)+ (long)y/(x+1)-1;
long z =y%(x+1);
if(z!=0){
last=(long)(last+1)/(long)Math.pow(10,x+1-z);
}
System.out.println(last%10);
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
static class Reader {
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Reader()
{
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Reader(String file_name) throws IOException
{
din = new DataInputStream(
new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException
{
byte[] buf = new byte[64]; // line length
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n') {
if (cnt != 0) {
break;
}
else {
continue;
}
}
buf[cnt++] = (byte)c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException
{
int ret = 0;
byte c = read();
while (c <= ' ') {
c = read();
}
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long nextLong() throws IOException
{
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException
{
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (c == '.') {
while ((c = read()) >= '0' && c <= '9') {
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException
{
bytesRead = din.read(buffer, bufferPointer = 0,
BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException
{
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException
{
if (din == null)
return;
din.close();
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.DataInputStream;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class DigitQueries {
public static void main(String[] args) throws IOException {
FastReader in = new FastReader();
int q = 1;
while (q-- > 0) {
long k;
k = in.nextLong();
Query(k);
}
}
static void Query(long k){
long x=0;
long sum=0;
while(sum<k){
sum+=9*Math.pow(10, x)*(x+1);
if(sum>k){
sum-=9*Math.pow(10, x)*(x+1);
break;
}
x++;
}
long y = (k-sum);
long last = 0;
last = (long)Math.pow(10,x)+ (long)y/(x+1)-1;
long z =y%(x+1);
if(z!=0){
last=(long)(last+1)/(long)Math.pow(10,x+1-z);
}
System.out.println(last%10);
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
static class Reader {
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Reader()
{
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Reader(String file_name) throws IOException
{
din = new DataInputStream(
new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException
{
byte[] buf = new byte[64]; // line length
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n') {
if (cnt != 0) {
break;
}
else {
continue;
}
}
buf[cnt++] = (byte)c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException
{
int ret = 0;
byte c = read();
while (c <= ' ') {
c = read();
}
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long nextLong() throws IOException
{
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException
{
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (c == '.') {
while ((c = read()) >= '0' && c <= '9') {
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException
{
bytesRead = din.read(buffer, bufferPointer = 0,
BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException
{
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException
{
if (din == null)
return;
din.close();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.DataInputStream;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class DigitQueries {
public static void main(String[] args) throws IOException {
FastReader in = new FastReader();
int q = 1;
while (q-- > 0) {
long k;
k = in.nextLong();
Query(k);
}
}
static void Query(long k){
long x=0;
long sum=0;
while(sum<k){
sum+=9*Math.pow(10, x)*(x+1);
if(sum>k){
sum-=9*Math.pow(10, x)*(x+1);
break;
}
x++;
}
long y = (k-sum);
long last = 0;
last = (long)Math.pow(10,x)+ (long)y/(x+1)-1;
long z =y%(x+1);
if(z!=0){
last=(long)(last+1)/(long)Math.pow(10,x+1-z);
}
System.out.println(last%10);
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
static class Reader {
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Reader()
{
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Reader(String file_name) throws IOException
{
din = new DataInputStream(
new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException
{
byte[] buf = new byte[64]; // line length
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n') {
if (cnt != 0) {
break;
}
else {
continue;
}
}
buf[cnt++] = (byte)c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException
{
int ret = 0;
byte c = read();
while (c <= ' ') {
c = read();
}
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long nextLong() throws IOException
{
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException
{
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (c == '.') {
while ((c = read()) >= '0' && c <= '9') {
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException
{
bytesRead = din.read(buffer, bufferPointer = 0,
BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException
{
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException
{
if (din == null)
return;
din.close();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,489 | 1,053 |
3,981 |
import java.util.Arrays;
import java.util.Scanner;
public class E {
static int n;
static int m;
static int[][][] DP;
static int[] dx = { 0, 0, 1, -1 };
static int[] dy = { 1, -1, 0, 0 };
static int inf = 1000000;
public static int get(int x, int current, int last) {
if (x == n) {
if (last == 0)
return 0;
else
return -inf;
}
if (DP[x][current][last] != -1)
return DP[x][current][last];
int max = 0;
for (int mask = 0; mask < (1 << m); mask++) {
int tempLast = last;
int tempCurrent = current;
int tempNext = (1 << m) - 1;
for (int i = 0; i < m; i++)
if ((mask & (1 << i)) != 0) {
if (i > 0)
tempCurrent &= ~(1 << (i - 1));
if (i < m - 1)
tempCurrent &= ~(1 << (i + 1));
tempNext &= ~(1 << (i));
tempLast &= ~(1 << (i));
}
if (tempLast != 0)
continue;
max = Math.max(
max,
m - Integer.bitCount(mask)
+ get(x + 1, tempNext, tempCurrent & ~mask));
}
return DP[x][current][last] = max;
}
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int x = in.nextInt();
int y = in.nextInt();
n = Math.max(x, y);
m = Math.min(x, y);
DP = new int[n][1 << m][1 << m];
for (int i = 0; i < n; i++)
for (int j = 0; j < (1 << m); j++)
Arrays.fill(DP[i][j], -1);
System.out.println(get(0, (1 << m) - 1, 0));
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
public class E {
static int n;
static int m;
static int[][][] DP;
static int[] dx = { 0, 0, 1, -1 };
static int[] dy = { 1, -1, 0, 0 };
static int inf = 1000000;
public static int get(int x, int current, int last) {
if (x == n) {
if (last == 0)
return 0;
else
return -inf;
}
if (DP[x][current][last] != -1)
return DP[x][current][last];
int max = 0;
for (int mask = 0; mask < (1 << m); mask++) {
int tempLast = last;
int tempCurrent = current;
int tempNext = (1 << m) - 1;
for (int i = 0; i < m; i++)
if ((mask & (1 << i)) != 0) {
if (i > 0)
tempCurrent &= ~(1 << (i - 1));
if (i < m - 1)
tempCurrent &= ~(1 << (i + 1));
tempNext &= ~(1 << (i));
tempLast &= ~(1 << (i));
}
if (tempLast != 0)
continue;
max = Math.max(
max,
m - Integer.bitCount(mask)
+ get(x + 1, tempNext, tempCurrent & ~mask));
}
return DP[x][current][last] = max;
}
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int x = in.nextInt();
int y = in.nextInt();
n = Math.max(x, y);
m = Math.min(x, y);
DP = new int[n][1 << m][1 << m];
for (int i = 0; i < n; i++)
for (int j = 0; j < (1 << m); j++)
Arrays.fill(DP[i][j], -1);
System.out.println(get(0, (1 << m) - 1, 0));
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
public class E {
static int n;
static int m;
static int[][][] DP;
static int[] dx = { 0, 0, 1, -1 };
static int[] dy = { 1, -1, 0, 0 };
static int inf = 1000000;
public static int get(int x, int current, int last) {
if (x == n) {
if (last == 0)
return 0;
else
return -inf;
}
if (DP[x][current][last] != -1)
return DP[x][current][last];
int max = 0;
for (int mask = 0; mask < (1 << m); mask++) {
int tempLast = last;
int tempCurrent = current;
int tempNext = (1 << m) - 1;
for (int i = 0; i < m; i++)
if ((mask & (1 << i)) != 0) {
if (i > 0)
tempCurrent &= ~(1 << (i - 1));
if (i < m - 1)
tempCurrent &= ~(1 << (i + 1));
tempNext &= ~(1 << (i));
tempLast &= ~(1 << (i));
}
if (tempLast != 0)
continue;
max = Math.max(
max,
m - Integer.bitCount(mask)
+ get(x + 1, tempNext, tempCurrent & ~mask));
}
return DP[x][current][last] = max;
}
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int x = in.nextInt();
int y = in.nextInt();
n = Math.max(x, y);
m = Math.min(x, y);
DP = new int[n][1 << m][1 << m];
for (int i = 0; i < n; i++)
for (int j = 0; j < (1 << m); j++)
Arrays.fill(DP[i][j], -1);
System.out.println(get(0, (1 << m) - 1, 0));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 830 | 3,970 |
210 |
import java.util.*;
import java.io.*;
import java.math.*;
public class Solution{
public static void main(String[] args)throws IOException{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int t = Integer.parseInt(br.readLine());
StringTokenizer st;
for(int z=0;z<t;z++){
st = new StringTokenizer(br.readLine());
int n = Integer.parseInt(st.nextToken());
st = new StringTokenizer(br.readLine());
int min=1;
int max=1;
for(int i=0;i<n;i++){
int k = Integer.parseInt(st.nextToken());
if(max<k){
min = max;
max = k;
}else if(min<k){
min = k;
}
}
int res = Math.min(n-2,min-1);
System.out.println(res);
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.math.*;
public class Solution{
public static void main(String[] args)throws IOException{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int t = Integer.parseInt(br.readLine());
StringTokenizer st;
for(int z=0;z<t;z++){
st = new StringTokenizer(br.readLine());
int n = Integer.parseInt(st.nextToken());
st = new StringTokenizer(br.readLine());
int min=1;
int max=1;
for(int i=0;i<n;i++){
int k = Integer.parseInt(st.nextToken());
if(max<k){
min = max;
max = k;
}else if(min<k){
min = k;
}
}
int res = Math.min(n-2,min-1);
System.out.println(res);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.math.*;
public class Solution{
public static void main(String[] args)throws IOException{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int t = Integer.parseInt(br.readLine());
StringTokenizer st;
for(int z=0;z<t;z++){
st = new StringTokenizer(br.readLine());
int n = Integer.parseInt(st.nextToken());
st = new StringTokenizer(br.readLine());
int min=1;
int max=1;
for(int i=0;i<n;i++){
int k = Integer.parseInt(st.nextToken());
if(max<k){
min = max;
max = k;
}else if(min<k){
min = k;
}
}
int res = Math.min(n-2,min-1);
System.out.println(res);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 501 | 210 |
4,455 |
import java.util.*;
import java.io.*;
public class Main {
public static void main(String args[]) {new Main().run();}
FastReader in = new FastReader();
PrintWriter out = new PrintWriter(System.out);
void run(){
int t=in.nextInt();
for(int i=0;i<t;i++) {
out.println(work());
}
out.flush();
}
long mod=1000000007;
long gcd(long a,long b) {
return b==0?a:gcd(b,a%b);
}
int work() {
int n=in.nextInt();
int m=in.nextInt();
int[][] A=new int[n][m];
int[][] B=new int[n][m];
int[][] R=new int[m][2];
for(int i=0;i<m;i++)R[i][1]=i;
for(int i=0;i<n;i++) {
for(int j=0;j<m;j++) {
A[i][j]=in.nextInt();
R[j][0]=Math.max(R[j][0], A[i][j]);
}
}
Arrays.sort(R,new Comparator<int[]>() {
public int compare(int[] arr1,int[] arr2) {
return arr2[0]-arr1[0];
}
});
for(int j=0;j<m;j++) {
int index=R[j][1];
for(int i=0;i<n;i++) {
B[i][j]=A[i][index];
}
}
m=Math.min(n, m);
int[][] dp=new int[m][1<<n];
int[][] rec=new int[m][1<<n];
for(int j=0;j<m;j++) {
for(int s=0;s<n;s++) {//转
for(int i=1;i<1<<n;i++) {
int sum=0;
for(int b=0;b<n;b++) {
if(((1<<b)&i)>0) {
sum+=B[(b+s)%n][j];
}
}
rec[j][i]=Math.max(sum, rec[j][i]);
}
}
}
for(int j=0;j<m;j++) {
for(int i=0;i<1<<n;i++) {
if(j==0) {
dp[j][i]=rec[j][i];
}else {
for(int p=i;p<1<<n;p++) {
p=p|i;
dp[j][p]=Math.max(dp[j][p], rec[j][i]+dp[j-1][p^i]);
}
}
}
}
return dp[m-1][(1<<n)-1];
}
}
class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br=new BufferedReader(new InputStreamReader(System.in));
}
public String next()
{
if(st==null || !st.hasMoreElements())
{
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
public int nextInt()
{
return Integer.parseInt(next());
}
public long nextLong()
{
return Long.parseLong(next());
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Main {
public static void main(String args[]) {new Main().run();}
FastReader in = new FastReader();
PrintWriter out = new PrintWriter(System.out);
void run(){
int t=in.nextInt();
for(int i=0;i<t;i++) {
out.println(work());
}
out.flush();
}
long mod=1000000007;
long gcd(long a,long b) {
return b==0?a:gcd(b,a%b);
}
int work() {
int n=in.nextInt();
int m=in.nextInt();
int[][] A=new int[n][m];
int[][] B=new int[n][m];
int[][] R=new int[m][2];
for(int i=0;i<m;i++)R[i][1]=i;
for(int i=0;i<n;i++) {
for(int j=0;j<m;j++) {
A[i][j]=in.nextInt();
R[j][0]=Math.max(R[j][0], A[i][j]);
}
}
Arrays.sort(R,new Comparator<int[]>() {
public int compare(int[] arr1,int[] arr2) {
return arr2[0]-arr1[0];
}
});
for(int j=0;j<m;j++) {
int index=R[j][1];
for(int i=0;i<n;i++) {
B[i][j]=A[i][index];
}
}
m=Math.min(n, m);
int[][] dp=new int[m][1<<n];
int[][] rec=new int[m][1<<n];
for(int j=0;j<m;j++) {
for(int s=0;s<n;s++) {//转
for(int i=1;i<1<<n;i++) {
int sum=0;
for(int b=0;b<n;b++) {
if(((1<<b)&i)>0) {
sum+=B[(b+s)%n][j];
}
}
rec[j][i]=Math.max(sum, rec[j][i]);
}
}
}
for(int j=0;j<m;j++) {
for(int i=0;i<1<<n;i++) {
if(j==0) {
dp[j][i]=rec[j][i];
}else {
for(int p=i;p<1<<n;p++) {
p=p|i;
dp[j][p]=Math.max(dp[j][p], rec[j][i]+dp[j-1][p^i]);
}
}
}
}
return dp[m-1][(1<<n)-1];
}
}
class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br=new BufferedReader(new InputStreamReader(System.in));
}
public String next()
{
if(st==null || !st.hasMoreElements())
{
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
public int nextInt()
{
return Integer.parseInt(next());
}
public long nextLong()
{
return Long.parseLong(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Main {
public static void main(String args[]) {new Main().run();}
FastReader in = new FastReader();
PrintWriter out = new PrintWriter(System.out);
void run(){
int t=in.nextInt();
for(int i=0;i<t;i++) {
out.println(work());
}
out.flush();
}
long mod=1000000007;
long gcd(long a,long b) {
return b==0?a:gcd(b,a%b);
}
int work() {
int n=in.nextInt();
int m=in.nextInt();
int[][] A=new int[n][m];
int[][] B=new int[n][m];
int[][] R=new int[m][2];
for(int i=0;i<m;i++)R[i][1]=i;
for(int i=0;i<n;i++) {
for(int j=0;j<m;j++) {
A[i][j]=in.nextInt();
R[j][0]=Math.max(R[j][0], A[i][j]);
}
}
Arrays.sort(R,new Comparator<int[]>() {
public int compare(int[] arr1,int[] arr2) {
return arr2[0]-arr1[0];
}
});
for(int j=0;j<m;j++) {
int index=R[j][1];
for(int i=0;i<n;i++) {
B[i][j]=A[i][index];
}
}
m=Math.min(n, m);
int[][] dp=new int[m][1<<n];
int[][] rec=new int[m][1<<n];
for(int j=0;j<m;j++) {
for(int s=0;s<n;s++) {//转
for(int i=1;i<1<<n;i++) {
int sum=0;
for(int b=0;b<n;b++) {
if(((1<<b)&i)>0) {
sum+=B[(b+s)%n][j];
}
}
rec[j][i]=Math.max(sum, rec[j][i]);
}
}
}
for(int j=0;j<m;j++) {
for(int i=0;i<1<<n;i++) {
if(j==0) {
dp[j][i]=rec[j][i];
}else {
for(int p=i;p<1<<n;p++) {
p=p|i;
dp[j][p]=Math.max(dp[j][p], rec[j][i]+dp[j-1][p^i]);
}
}
}
}
return dp[m-1][(1<<n)-1];
}
}
class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br=new BufferedReader(new InputStreamReader(System.in));
}
public String next()
{
if(st==null || !st.hasMoreElements())
{
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
public int nextInt()
{
return Integer.parseInt(next());
}
public long nextLong()
{
return Long.parseLong(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,055 | 4,444 |
775 |
import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.HashMap;
import java.util.HashSet;
import java.util.StringTokenizer;
public class C {
public static void main(String[] args) throws IOException {
File inputFile = new File("entradaC");
if (inputFile.exists())
System.setIn(new FileInputStream(inputFile));
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
StringBuilder out = new StringBuilder();
String line = "";
while ((line = in.readLine()) != null) {
int n = Integer.parseInt(line);
char[] p = in.readLine().toCharArray();
HashMap<Character, Integer> dif = new HashMap<>();
for (int i = 0; i < p.length; i++)
dif.put(p[i], 0);
int ndif = dif.size();
int head = 0, tail = 0, cnt = 0, ans = Integer.MAX_VALUE, cur;
while (head < n) {
cur = dif.get(p[head]);
if (cur == 0)
cnt++;
dif.put(p[head], cur + 1);
head++;
if (cnt == ndif)
ans = Math.min(ans, head - tail);
while (tail < head && cnt == ndif) {
cur = dif.get(p[tail]);
if (cur == 1)
cnt--;
dif.put(p[tail], cur - 1);
tail++;
if (cnt == ndif)
ans = Math.min(ans, head - tail);
}
}
if (ndif == 1)
ans = 1;
out.append(ans + "\n");
}
System.out.print(out);
}
static int[] readInts(String line) {
StringTokenizer st = new StringTokenizer(line.trim());
int a[] = new int[st.countTokens()], index = 0;
while (st.hasMoreTokens())
a[index++] = Integer.parseInt(st.nextToken());
return a;
}
static long[] readLongs(String line) {
StringTokenizer st = new StringTokenizer(line.trim());
long a[] = new long[st.countTokens()];
int index = 0;
while (st.hasMoreTokens())
a[index++] = Long.parseLong(st.nextToken());
return a;
}
static double[] readDoubles(String line) {
StringTokenizer st = new StringTokenizer(line.trim());
double a[] = new double[st.countTokens()];
int index = 0;
while (st.hasMoreTokens())
a[index++] = Double.parseDouble(st.nextToken());
return a;
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.HashMap;
import java.util.HashSet;
import java.util.StringTokenizer;
public class C {
public static void main(String[] args) throws IOException {
File inputFile = new File("entradaC");
if (inputFile.exists())
System.setIn(new FileInputStream(inputFile));
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
StringBuilder out = new StringBuilder();
String line = "";
while ((line = in.readLine()) != null) {
int n = Integer.parseInt(line);
char[] p = in.readLine().toCharArray();
HashMap<Character, Integer> dif = new HashMap<>();
for (int i = 0; i < p.length; i++)
dif.put(p[i], 0);
int ndif = dif.size();
int head = 0, tail = 0, cnt = 0, ans = Integer.MAX_VALUE, cur;
while (head < n) {
cur = dif.get(p[head]);
if (cur == 0)
cnt++;
dif.put(p[head], cur + 1);
head++;
if (cnt == ndif)
ans = Math.min(ans, head - tail);
while (tail < head && cnt == ndif) {
cur = dif.get(p[tail]);
if (cur == 1)
cnt--;
dif.put(p[tail], cur - 1);
tail++;
if (cnt == ndif)
ans = Math.min(ans, head - tail);
}
}
if (ndif == 1)
ans = 1;
out.append(ans + "\n");
}
System.out.print(out);
}
static int[] readInts(String line) {
StringTokenizer st = new StringTokenizer(line.trim());
int a[] = new int[st.countTokens()], index = 0;
while (st.hasMoreTokens())
a[index++] = Integer.parseInt(st.nextToken());
return a;
}
static long[] readLongs(String line) {
StringTokenizer st = new StringTokenizer(line.trim());
long a[] = new long[st.countTokens()];
int index = 0;
while (st.hasMoreTokens())
a[index++] = Long.parseLong(st.nextToken());
return a;
}
static double[] readDoubles(String line) {
StringTokenizer st = new StringTokenizer(line.trim());
double a[] = new double[st.countTokens()];
int index = 0;
while (st.hasMoreTokens())
a[index++] = Double.parseDouble(st.nextToken());
return a;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.HashMap;
import java.util.HashSet;
import java.util.StringTokenizer;
public class C {
public static void main(String[] args) throws IOException {
File inputFile = new File("entradaC");
if (inputFile.exists())
System.setIn(new FileInputStream(inputFile));
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
StringBuilder out = new StringBuilder();
String line = "";
while ((line = in.readLine()) != null) {
int n = Integer.parseInt(line);
char[] p = in.readLine().toCharArray();
HashMap<Character, Integer> dif = new HashMap<>();
for (int i = 0; i < p.length; i++)
dif.put(p[i], 0);
int ndif = dif.size();
int head = 0, tail = 0, cnt = 0, ans = Integer.MAX_VALUE, cur;
while (head < n) {
cur = dif.get(p[head]);
if (cur == 0)
cnt++;
dif.put(p[head], cur + 1);
head++;
if (cnt == ndif)
ans = Math.min(ans, head - tail);
while (tail < head && cnt == ndif) {
cur = dif.get(p[tail]);
if (cur == 1)
cnt--;
dif.put(p[tail], cur - 1);
tail++;
if (cnt == ndif)
ans = Math.min(ans, head - tail);
}
}
if (ndif == 1)
ans = 1;
out.append(ans + "\n");
}
System.out.print(out);
}
static int[] readInts(String line) {
StringTokenizer st = new StringTokenizer(line.trim());
int a[] = new int[st.countTokens()], index = 0;
while (st.hasMoreTokens())
a[index++] = Integer.parseInt(st.nextToken());
return a;
}
static long[] readLongs(String line) {
StringTokenizer st = new StringTokenizer(line.trim());
long a[] = new long[st.countTokens()];
int index = 0;
while (st.hasMoreTokens())
a[index++] = Long.parseLong(st.nextToken());
return a;
}
static double[] readDoubles(String line) {
StringTokenizer st = new StringTokenizer(line.trim());
double a[] = new double[st.countTokens()];
int index = 0;
while (st.hasMoreTokens())
a[index++] = Double.parseDouble(st.nextToken());
return a;
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 892 | 774 |
3,072 |
import java.io.*;
import java.lang.reflect.Array;
import java.util.*;
public class Main {
private BufferedReader input;
private PrintWriter output;
private StringTokenizer stoken;
String fin = "input";
String fout = "output";
private void solve() {
long a = nextInt();
long res = (a / 2) * 3;
output.print(res);
}
Main() throws IOException {
//input = new BufferedReader(new FileReader(fin + ".txt"));
//output = new PrintWriter(new FileWriter(fout + ".txt"));
input = new BufferedReader(new InputStreamReader(System.in));
output = new PrintWriter(System.out);
solve();
input.close();
output.flush();
output.close();
}
int nextInt() {
return Integer.parseInt(nextToken());
}
long nextLong() {
return Long.parseLong(nextToken());
}
double nextFloat() {
return Float.parseFloat(nextToken());
}
double nextDouble() {
return Double.parseDouble(nextToken());
}
String nextToken() {
while ((stoken == null) || (!stoken.hasMoreTokens())) {
try {
String line = input.readLine();
stoken = new StringTokenizer(line);
} catch (IOException e) {
e.printStackTrace();
}
}
return stoken.nextToken();
}
public static void main(String[] args) throws IOException {
new Main();
}
}
class Tarif {
public int abPlata;
public int tMin;
public int price;
public long res;
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.lang.reflect.Array;
import java.util.*;
public class Main {
private BufferedReader input;
private PrintWriter output;
private StringTokenizer stoken;
String fin = "input";
String fout = "output";
private void solve() {
long a = nextInt();
long res = (a / 2) * 3;
output.print(res);
}
Main() throws IOException {
//input = new BufferedReader(new FileReader(fin + ".txt"));
//output = new PrintWriter(new FileWriter(fout + ".txt"));
input = new BufferedReader(new InputStreamReader(System.in));
output = new PrintWriter(System.out);
solve();
input.close();
output.flush();
output.close();
}
int nextInt() {
return Integer.parseInt(nextToken());
}
long nextLong() {
return Long.parseLong(nextToken());
}
double nextFloat() {
return Float.parseFloat(nextToken());
}
double nextDouble() {
return Double.parseDouble(nextToken());
}
String nextToken() {
while ((stoken == null) || (!stoken.hasMoreTokens())) {
try {
String line = input.readLine();
stoken = new StringTokenizer(line);
} catch (IOException e) {
e.printStackTrace();
}
}
return stoken.nextToken();
}
public static void main(String[] args) throws IOException {
new Main();
}
}
class Tarif {
public int abPlata;
public int tMin;
public int price;
public long res;
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.lang.reflect.Array;
import java.util.*;
public class Main {
private BufferedReader input;
private PrintWriter output;
private StringTokenizer stoken;
String fin = "input";
String fout = "output";
private void solve() {
long a = nextInt();
long res = (a / 2) * 3;
output.print(res);
}
Main() throws IOException {
//input = new BufferedReader(new FileReader(fin + ".txt"));
//output = new PrintWriter(new FileWriter(fout + ".txt"));
input = new BufferedReader(new InputStreamReader(System.in));
output = new PrintWriter(System.out);
solve();
input.close();
output.flush();
output.close();
}
int nextInt() {
return Integer.parseInt(nextToken());
}
long nextLong() {
return Long.parseLong(nextToken());
}
double nextFloat() {
return Float.parseFloat(nextToken());
}
double nextDouble() {
return Double.parseDouble(nextToken());
}
String nextToken() {
while ((stoken == null) || (!stoken.hasMoreTokens())) {
try {
String line = input.readLine();
stoken = new StringTokenizer(line);
} catch (IOException e) {
e.printStackTrace();
}
}
return stoken.nextToken();
}
public static void main(String[] args) throws IOException {
new Main();
}
}
class Tarif {
public int abPlata;
public int tMin;
public int price;
public long res;
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 656 | 3,066 |
487 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.BufferedWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Rishabhdeep Singh
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
static class TaskA {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.nextInt();
int[] cnt = new int[10];
Arrays.fill(cnt, 0);
List<String> a = new ArrayList<>();
for (int i = 0; i < n; i++) {
a.add(in.readLine());
}
List<String> b = new ArrayList<>();
for (int i = 0; i < n; i++) {
String temp = in.readLine();
if (a.contains(temp)) {
a.remove(temp);
} else
b.add(temp);
}
int[] cnta = new int[10];
for (int i = 0; i < a.size(); i++) {
cnta[a.get(i).length()]++;
}
int[] cntb = new int[10];
Arrays.fill(cnta, 0);
Arrays.fill(cntb, 0);
for (int i = 0; i < b.size(); i++) {
cntb[a.get(i).length()]++;
}
int ans = 0;
for (int i = 0; i < 10; i++) {
ans += Math.abs(cnta[i] - cntb[i]);
}
out.println(ans);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private String readLine0() {
StringBuilder buf = new StringBuilder();
int c = read();
while (c != '\n' && c != -1) {
if (c != '\r') {
buf.appendCodePoint(c);
}
c = read();
}
return buf.toString();
}
public String readLine() {
String s = readLine0();
while (s.trim().length() == 0) {
s = readLine0();
}
return s;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void println(int i) {
writer.println(i);
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.BufferedWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Rishabhdeep Singh
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
static class TaskA {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.nextInt();
int[] cnt = new int[10];
Arrays.fill(cnt, 0);
List<String> a = new ArrayList<>();
for (int i = 0; i < n; i++) {
a.add(in.readLine());
}
List<String> b = new ArrayList<>();
for (int i = 0; i < n; i++) {
String temp = in.readLine();
if (a.contains(temp)) {
a.remove(temp);
} else
b.add(temp);
}
int[] cnta = new int[10];
for (int i = 0; i < a.size(); i++) {
cnta[a.get(i).length()]++;
}
int[] cntb = new int[10];
Arrays.fill(cnta, 0);
Arrays.fill(cntb, 0);
for (int i = 0; i < b.size(); i++) {
cntb[a.get(i).length()]++;
}
int ans = 0;
for (int i = 0; i < 10; i++) {
ans += Math.abs(cnta[i] - cntb[i]);
}
out.println(ans);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private String readLine0() {
StringBuilder buf = new StringBuilder();
int c = read();
while (c != '\n' && c != -1) {
if (c != '\r') {
buf.appendCodePoint(c);
}
c = read();
}
return buf.toString();
}
public String readLine() {
String s = readLine0();
while (s.trim().length() == 0) {
s = readLine0();
}
return s;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void println(int i) {
writer.println(i);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.BufferedWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Rishabhdeep Singh
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
static class TaskA {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.nextInt();
int[] cnt = new int[10];
Arrays.fill(cnt, 0);
List<String> a = new ArrayList<>();
for (int i = 0; i < n; i++) {
a.add(in.readLine());
}
List<String> b = new ArrayList<>();
for (int i = 0; i < n; i++) {
String temp = in.readLine();
if (a.contains(temp)) {
a.remove(temp);
} else
b.add(temp);
}
int[] cnta = new int[10];
for (int i = 0; i < a.size(); i++) {
cnta[a.get(i).length()]++;
}
int[] cntb = new int[10];
Arrays.fill(cnta, 0);
Arrays.fill(cntb, 0);
for (int i = 0; i < b.size(); i++) {
cntb[a.get(i).length()]++;
}
int ans = 0;
for (int i = 0; i < 10; i++) {
ans += Math.abs(cnta[i] - cntb[i]);
}
out.println(ans);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private String readLine0() {
StringBuilder buf = new StringBuilder();
int c = read();
while (c != '\n' && c != -1) {
if (c != '\r') {
buf.appendCodePoint(c);
}
c = read();
}
return buf.toString();
}
public String readLine() {
String s = readLine0();
while (s.trim().length() == 0) {
s = readLine0();
}
return s;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void println(int i) {
writer.println(i);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,379 | 486 |
1,625 |
import java.io.*;
import java.util.StringTokenizer;
public class Main {
public static void main(String[] args) {
FastScanner sc = new FastScanner(System.in);
PrintWriter out = new PrintWriter(System.out);
int N = sc.nextInt();
long dest = sc.nextLong();
long max = (long)N * ((long)N + 1L) / 2L;
if (dest < 2 * N - 1 || dest > max) {
out.println("No");
out.close();
return;
}
int[] d = new int[N + 1];
int[] f = new int[N + 1];
int K = 1;
for (; K <= N; K++) {
long dep = 1L, cnt = 1L, c = 1L;
long t = 1L;
while (cnt < N) {
c = c * K;
dep++;
t += (dep * Math.min(c, N - cnt));
cnt += c;
}
if (t <= dest) break;
}
out.println("Yes");
int dep = 1; long cnt = 1L, c = 1L;
long t = 1L;
d[1] = 1;
while (cnt < N) {
dep++; c = c * K;
long x = (long)N - cnt;
int min;
if (c >= x) min = (int)x;
else min = (int)c;
d[dep] = min;
t += (dep * Math.min(c, (long)N - cnt)); cnt += c;
}
dest -= t;
int curDep = dep; int nextDep = dep + 1;
while (dest > 0) {
if (d[curDep] <= 1) curDep--;
d[curDep]--;
long next = Math.min(nextDep++, dest + curDep);
dest -= ((int)next - curDep);
d[(int)next]++;
}
int first = 1;
for (int i = 2; i < nextDep; i++) {
int p = 0, fn = first - d[i - 1] + 1;
for (int j = first + 1; j <= first + d[i]; j++) {
if (p == K) {
fn++; p = 0;
}
p++; f[j] = fn;
}
first += d[i];
}
for (int i = 2; i <= N; i++)
out.format("%d ", f[i]);
out.close();
}
static class FastScanner {
private BufferedReader reader = null;
private StringTokenizer tokenizer = null;
public FastScanner(InputStream in) {
reader = new BufferedReader(new InputStreamReader(in));
tokenizer = null;
}
public String next() {
if (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public String nextLine() {
if (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
return reader.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken("\n");
}
public long nextLong() {
return Long.parseLong(next());
}
public int nextInt() {
return Integer.parseInt(next());
}
/* public double nextDouble() {
return Double.parseDouble(next());
}
public int[] nextIntArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; ++i) {
a[i] = nextInt();
}
return a;
}
public long[] nextLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++) {
a[i] = nextLong();
}
return a;
}*/
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.StringTokenizer;
public class Main {
public static void main(String[] args) {
FastScanner sc = new FastScanner(System.in);
PrintWriter out = new PrintWriter(System.out);
int N = sc.nextInt();
long dest = sc.nextLong();
long max = (long)N * ((long)N + 1L) / 2L;
if (dest < 2 * N - 1 || dest > max) {
out.println("No");
out.close();
return;
}
int[] d = new int[N + 1];
int[] f = new int[N + 1];
int K = 1;
for (; K <= N; K++) {
long dep = 1L, cnt = 1L, c = 1L;
long t = 1L;
while (cnt < N) {
c = c * K;
dep++;
t += (dep * Math.min(c, N - cnt));
cnt += c;
}
if (t <= dest) break;
}
out.println("Yes");
int dep = 1; long cnt = 1L, c = 1L;
long t = 1L;
d[1] = 1;
while (cnt < N) {
dep++; c = c * K;
long x = (long)N - cnt;
int min;
if (c >= x) min = (int)x;
else min = (int)c;
d[dep] = min;
t += (dep * Math.min(c, (long)N - cnt)); cnt += c;
}
dest -= t;
int curDep = dep; int nextDep = dep + 1;
while (dest > 0) {
if (d[curDep] <= 1) curDep--;
d[curDep]--;
long next = Math.min(nextDep++, dest + curDep);
dest -= ((int)next - curDep);
d[(int)next]++;
}
int first = 1;
for (int i = 2; i < nextDep; i++) {
int p = 0, fn = first - d[i - 1] + 1;
for (int j = first + 1; j <= first + d[i]; j++) {
if (p == K) {
fn++; p = 0;
}
p++; f[j] = fn;
}
first += d[i];
}
for (int i = 2; i <= N; i++)
out.format("%d ", f[i]);
out.close();
}
static class FastScanner {
private BufferedReader reader = null;
private StringTokenizer tokenizer = null;
public FastScanner(InputStream in) {
reader = new BufferedReader(new InputStreamReader(in));
tokenizer = null;
}
public String next() {
if (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public String nextLine() {
if (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
return reader.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken("\n");
}
public long nextLong() {
return Long.parseLong(next());
}
public int nextInt() {
return Integer.parseInt(next());
}
/* public double nextDouble() {
return Double.parseDouble(next());
}
public int[] nextIntArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; ++i) {
a[i] = nextInt();
}
return a;
}
public long[] nextLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++) {
a[i] = nextLong();
}
return a;
}*/
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.StringTokenizer;
public class Main {
public static void main(String[] args) {
FastScanner sc = new FastScanner(System.in);
PrintWriter out = new PrintWriter(System.out);
int N = sc.nextInt();
long dest = sc.nextLong();
long max = (long)N * ((long)N + 1L) / 2L;
if (dest < 2 * N - 1 || dest > max) {
out.println("No");
out.close();
return;
}
int[] d = new int[N + 1];
int[] f = new int[N + 1];
int K = 1;
for (; K <= N; K++) {
long dep = 1L, cnt = 1L, c = 1L;
long t = 1L;
while (cnt < N) {
c = c * K;
dep++;
t += (dep * Math.min(c, N - cnt));
cnt += c;
}
if (t <= dest) break;
}
out.println("Yes");
int dep = 1; long cnt = 1L, c = 1L;
long t = 1L;
d[1] = 1;
while (cnt < N) {
dep++; c = c * K;
long x = (long)N - cnt;
int min;
if (c >= x) min = (int)x;
else min = (int)c;
d[dep] = min;
t += (dep * Math.min(c, (long)N - cnt)); cnt += c;
}
dest -= t;
int curDep = dep; int nextDep = dep + 1;
while (dest > 0) {
if (d[curDep] <= 1) curDep--;
d[curDep]--;
long next = Math.min(nextDep++, dest + curDep);
dest -= ((int)next - curDep);
d[(int)next]++;
}
int first = 1;
for (int i = 2; i < nextDep; i++) {
int p = 0, fn = first - d[i - 1] + 1;
for (int j = first + 1; j <= first + d[i]; j++) {
if (p == K) {
fn++; p = 0;
}
p++; f[j] = fn;
}
first += d[i];
}
for (int i = 2; i <= N; i++)
out.format("%d ", f[i]);
out.close();
}
static class FastScanner {
private BufferedReader reader = null;
private StringTokenizer tokenizer = null;
public FastScanner(InputStream in) {
reader = new BufferedReader(new InputStreamReader(in));
tokenizer = null;
}
public String next() {
if (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public String nextLine() {
if (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
return reader.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken("\n");
}
public long nextLong() {
return Long.parseLong(next());
}
public int nextInt() {
return Integer.parseInt(next());
}
/* public double nextDouble() {
return Double.parseDouble(next());
}
public int[] nextIntArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; ++i) {
a[i] = nextInt();
}
return a;
}
public long[] nextLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++) {
a[i] = nextLong();
}
return a;
}*/
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,228 | 1,622 |
21 |
import java.io.*;
import java.util.*;
public class Solution{
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
public static void main(String args[] ) {
FastReader sc = new FastReader();
int n = sc.nextInt();
int m = sc.nextInt();
int[] arr = new int[105];
for(int i=0;i<m;i++){
int a = sc.nextInt();
arr[a]++;
}
for(int i=1;i<=1000;i++){
int sum=0;
for(int a:arr){
if(a!=0){
sum+=(a/i);
}
}
if(sum<n){
System.out.println(i-1);
return;
}
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Solution{
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
public static void main(String args[] ) {
FastReader sc = new FastReader();
int n = sc.nextInt();
int m = sc.nextInt();
int[] arr = new int[105];
for(int i=0;i<m;i++){
int a = sc.nextInt();
arr[a]++;
}
for(int i=1;i<=1000;i++){
int sum=0;
for(int a:arr){
if(a!=0){
sum+=(a/i);
}
}
if(sum<n){
System.out.println(i-1);
return;
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Solution{
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
public static void main(String args[] ) {
FastReader sc = new FastReader();
int n = sc.nextInt();
int m = sc.nextInt();
int[] arr = new int[105];
for(int i=0;i<m;i++){
int a = sc.nextInt();
arr[a]++;
}
for(int i=1;i<=1000;i++){
int sum=0;
for(int a:arr){
if(a!=0){
sum+=(a/i);
}
}
if(sum<n){
System.out.println(i-1);
return;
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 671 | 21 |
227 |
import java.io.*;
import java.util.*;
public class Codeforces913F {
public static void main(String[] args) throws IOException {
Scanner input = new Scanner(System.in);
int n = input.nextInt();
int a = input.nextInt();
int b = input.nextInt();
input.close();
final int mod = 998244353;
int frac = multiply(a, inverse(b, mod), mod);
int reverse = (mod+1-frac)%mod;
int[] fracpower = new int[n+1];
int[] reversepower = new int[n+1];
fracpower[0] = 1;
reversepower[0] = 1;
for (int i = 1; i <= n; i++) {
fracpower[i] = multiply(fracpower[i-1], frac, mod);
reversepower[i] = multiply(reversepower[i-1], reverse, mod);
}
int[][] dp1 = new int[n+1][n+1];
dp1[2][1] = 1;
for (int i = 3; i <= n; i++) {
for (int j = 1; j < i; j++) {
if (j == 1) {
dp1[i][j] = fracpower[i-1];
}
else {
dp1[i][j] = multiply(dp1[i-1][j-1], fracpower[i-j], mod);
}
if (j == i-1) {
dp1[i][j] += reversepower[i-1];
dp1[i][j] %= mod;
}
else {
dp1[i][j] += multiply(dp1[i-1][j], reversepower[j], mod);
dp1[i][j] %= mod;
}
}
}
int[][] dp2 = new int[n+1][n+1];
dp2[1][1] = 1;
dp2[2][1] = 1;
dp2[2][2] = 0;
for (int i = 3; i <= n; i++) {
int val = 0;
for (int j = 1; j < i; j++) {
dp2[i][j] = multiply(dp2[j][j], dp1[i][j], mod);
val += dp2[i][j];
val %= mod;
}
dp2[i][i] = (mod+1-val)%mod;
}
/*for (int i = 2; i <= n; i++) {
for (int j = 1; j <= i; j++) {
System.out.print(dp2[i][j] + " ");
}
System.out.println();
}*/
int[] EV = new int[n+1];
EV[1] = 0;
EV[2] = 1;
for (int i = 3; i <= n; i++) {
int val = 0;
for (int j = 1; j < i; j++) {
int r = j*(i-j) + (j*(j-1))/2 + EV[i-j] + EV[j];
r %= mod;
val += multiply(dp2[i][j], r, mod);
val %= mod;
}
val += multiply((i*(i-1))/2, dp2[i][i], mod);
val %= mod;
int s = (mod+1-dp2[i][i])%mod;
EV[i] = multiply(val, inverse(s, mod), mod);
}
System.out.println(EV[n]);
}
public static int multiply(int a, int b, int mod) {
long x = (long)a*(long)b;
return (int) (x%mod);
}
public static int inverse (int a, int n) {
int m = n;
int r1 = 1;
int r2 = 0;
int r3 = 0;
int r4 = 1;
while ((a > 0) && (n > 0)) {
if (n >= a) {
r3 -= r1*(n/a);
r4 -= r2*(n/a);
n = n%a;
}
else {
int tmp = a;
a = n;
n = tmp;
tmp = r1;
r1 = r3;
r3 = tmp;
tmp = r2;
r2 = r4;
r4 = tmp;
}
}
if (a == 0) {
if (r3 >= 0)
return (r3%m);
else
return (m+(r3%m));
}
else {
if (r1 >= 0)
return (r1%m);
else
return (m+(r1%m));
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Codeforces913F {
public static void main(String[] args) throws IOException {
Scanner input = new Scanner(System.in);
int n = input.nextInt();
int a = input.nextInt();
int b = input.nextInt();
input.close();
final int mod = 998244353;
int frac = multiply(a, inverse(b, mod), mod);
int reverse = (mod+1-frac)%mod;
int[] fracpower = new int[n+1];
int[] reversepower = new int[n+1];
fracpower[0] = 1;
reversepower[0] = 1;
for (int i = 1; i <= n; i++) {
fracpower[i] = multiply(fracpower[i-1], frac, mod);
reversepower[i] = multiply(reversepower[i-1], reverse, mod);
}
int[][] dp1 = new int[n+1][n+1];
dp1[2][1] = 1;
for (int i = 3; i <= n; i++) {
for (int j = 1; j < i; j++) {
if (j == 1) {
dp1[i][j] = fracpower[i-1];
}
else {
dp1[i][j] = multiply(dp1[i-1][j-1], fracpower[i-j], mod);
}
if (j == i-1) {
dp1[i][j] += reversepower[i-1];
dp1[i][j] %= mod;
}
else {
dp1[i][j] += multiply(dp1[i-1][j], reversepower[j], mod);
dp1[i][j] %= mod;
}
}
}
int[][] dp2 = new int[n+1][n+1];
dp2[1][1] = 1;
dp2[2][1] = 1;
dp2[2][2] = 0;
for (int i = 3; i <= n; i++) {
int val = 0;
for (int j = 1; j < i; j++) {
dp2[i][j] = multiply(dp2[j][j], dp1[i][j], mod);
val += dp2[i][j];
val %= mod;
}
dp2[i][i] = (mod+1-val)%mod;
}
/*for (int i = 2; i <= n; i++) {
for (int j = 1; j <= i; j++) {
System.out.print(dp2[i][j] + " ");
}
System.out.println();
}*/
int[] EV = new int[n+1];
EV[1] = 0;
EV[2] = 1;
for (int i = 3; i <= n; i++) {
int val = 0;
for (int j = 1; j < i; j++) {
int r = j*(i-j) + (j*(j-1))/2 + EV[i-j] + EV[j];
r %= mod;
val += multiply(dp2[i][j], r, mod);
val %= mod;
}
val += multiply((i*(i-1))/2, dp2[i][i], mod);
val %= mod;
int s = (mod+1-dp2[i][i])%mod;
EV[i] = multiply(val, inverse(s, mod), mod);
}
System.out.println(EV[n]);
}
public static int multiply(int a, int b, int mod) {
long x = (long)a*(long)b;
return (int) (x%mod);
}
public static int inverse (int a, int n) {
int m = n;
int r1 = 1;
int r2 = 0;
int r3 = 0;
int r4 = 1;
while ((a > 0) && (n > 0)) {
if (n >= a) {
r3 -= r1*(n/a);
r4 -= r2*(n/a);
n = n%a;
}
else {
int tmp = a;
a = n;
n = tmp;
tmp = r1;
r1 = r3;
r3 = tmp;
tmp = r2;
r2 = r4;
r4 = tmp;
}
}
if (a == 0) {
if (r3 >= 0)
return (r3%m);
else
return (m+(r3%m));
}
else {
if (r1 >= 0)
return (r1%m);
else
return (m+(r1%m));
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Codeforces913F {
public static void main(String[] args) throws IOException {
Scanner input = new Scanner(System.in);
int n = input.nextInt();
int a = input.nextInt();
int b = input.nextInt();
input.close();
final int mod = 998244353;
int frac = multiply(a, inverse(b, mod), mod);
int reverse = (mod+1-frac)%mod;
int[] fracpower = new int[n+1];
int[] reversepower = new int[n+1];
fracpower[0] = 1;
reversepower[0] = 1;
for (int i = 1; i <= n; i++) {
fracpower[i] = multiply(fracpower[i-1], frac, mod);
reversepower[i] = multiply(reversepower[i-1], reverse, mod);
}
int[][] dp1 = new int[n+1][n+1];
dp1[2][1] = 1;
for (int i = 3; i <= n; i++) {
for (int j = 1; j < i; j++) {
if (j == 1) {
dp1[i][j] = fracpower[i-1];
}
else {
dp1[i][j] = multiply(dp1[i-1][j-1], fracpower[i-j], mod);
}
if (j == i-1) {
dp1[i][j] += reversepower[i-1];
dp1[i][j] %= mod;
}
else {
dp1[i][j] += multiply(dp1[i-1][j], reversepower[j], mod);
dp1[i][j] %= mod;
}
}
}
int[][] dp2 = new int[n+1][n+1];
dp2[1][1] = 1;
dp2[2][1] = 1;
dp2[2][2] = 0;
for (int i = 3; i <= n; i++) {
int val = 0;
for (int j = 1; j < i; j++) {
dp2[i][j] = multiply(dp2[j][j], dp1[i][j], mod);
val += dp2[i][j];
val %= mod;
}
dp2[i][i] = (mod+1-val)%mod;
}
/*for (int i = 2; i <= n; i++) {
for (int j = 1; j <= i; j++) {
System.out.print(dp2[i][j] + " ");
}
System.out.println();
}*/
int[] EV = new int[n+1];
EV[1] = 0;
EV[2] = 1;
for (int i = 3; i <= n; i++) {
int val = 0;
for (int j = 1; j < i; j++) {
int r = j*(i-j) + (j*(j-1))/2 + EV[i-j] + EV[j];
r %= mod;
val += multiply(dp2[i][j], r, mod);
val %= mod;
}
val += multiply((i*(i-1))/2, dp2[i][i], mod);
val %= mod;
int s = (mod+1-dp2[i][i])%mod;
EV[i] = multiply(val, inverse(s, mod), mod);
}
System.out.println(EV[n]);
}
public static int multiply(int a, int b, int mod) {
long x = (long)a*(long)b;
return (int) (x%mod);
}
public static int inverse (int a, int n) {
int m = n;
int r1 = 1;
int r2 = 0;
int r3 = 0;
int r4 = 1;
while ((a > 0) && (n > 0)) {
if (n >= a) {
r3 -= r1*(n/a);
r4 -= r2*(n/a);
n = n%a;
}
else {
int tmp = a;
a = n;
n = tmp;
tmp = r1;
r1 = r3;
r3 = tmp;
tmp = r2;
r2 = r4;
r4 = tmp;
}
}
if (a == 0) {
if (r3 >= 0)
return (r3%m);
else
return (m+(r3%m));
}
else {
if (r1 >= 0)
return (r1%m);
else
return (m+(r1%m));
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,454 | 227 |
1,343 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class Main {
public static void main(String[] args) throws Exception {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
Task task = new Task();
task.solve(in, out);
out.close();
}
static class Rectangle {
int x1, y1;
int x2, y2;
}
static class Task {
/**
* BEFORE SUBMITTING!!!
* MAKE SURE IT IS RIGHT!!!!!
* LONG!!
* Check if m,n aren't misused
* Make sure the output format is right (YES/NO vs Yes/No, newlines vs spaces)
* Run with n = 1 or n = 0
* Make sure two ints aren't multiplied to get a long
*
*/
public void solve(InputReader in, PrintWriter out) {
int n = in.nextInt();
//ideas: procurar linha que os divide e procurar dentro desses sub-retangulos
// procurar até ser 1
//corner cases: se procurar até ser 1 e não verificar se tem 1 do outro lado posso chegar a 1,2...not good
// tenho que procurar 1,1
int l = 1;
int r = n;
int ans = 0;
while(r >= l) {
int mid = (r + l) / 2;
if(ask(in,out,1,1,mid, n) == 0) {
l = mid + 1;
} else {
ans = mid;
r = mid - 1;
}
}
//par 1,1
//FDS ISTO
if(ans < n && ask(in,out,ans + 1, 1,n,n) == 1) {
Rectangle r1 = find(in,out,1,1,ans,n,n);
Rectangle r2 = find(in,out,ans + 1,1,n,n,n);
System.out.printf("! %d %d %d %d %d %d %d %d\n", r1.x1, r1.y1, r1.x2, r1.y2, r2.x1, r2.y1, r2.x2, r2.y2);
} else {
l = 1;
r = n;
ans = 0;
while(r >= l) {
int mid = (r + l) / 2;
if(ask(in,out,1,1,n, mid) == 0) {
l = mid + 1;
} else {
ans = mid;
r = mid - 1;
}
}
Rectangle r1 = find(in,out,1,1,n,ans,n);
Rectangle r2 = find(in,out,1,ans + 1,n,n,n);
System.out.printf("! %d %d %d %d %d %d %d %d\n", r1.x1, r1.y1, r1.x2, r1.y2, r2.x1, r2.y1, r2.x2, r2.y2);
}
}
//HASDFDSJGHDFJKSGDFJSGJDFSGJDSFGJF
//FKING WORK
public Rectangle find(InputReader in, PrintWriter out,int x1, int y1, int x2, int y2, int n) {
Rectangle rec = new Rectangle();
int ansx1 = x1;
int ansx2 = x2;
int ansy1 = y1;
int ansy2 = y2;
int l = x1;
int r = x2;
// quero o minimo v >= x2
while(r >= l) {
int mid = (r + l) / 2;
if(ask(in,out,x1,y1,mid,y2) == 1) {
ansx2 = mid;
r = mid - 1;
} else {
l = mid + 1;
}
}
//out.printf("x2 = %d", ansx2);
r = x2;
l = x1;
// quero o maximo v <= x1
while(r >= l) {
int mid = (r + l) / 2;
if(ask(in,out,mid,y1,x2,y2) == 1) {
ansx1 = mid;
l = mid + 1;
} else {
r = mid - 1;
}
}
//out.printf("x1 = %d", ansx1);
l = y1;
r = y2;
// quero o minimo v >= y2
while(r >= l) {
int mid = (r + l) / 2;
if(ask(in,out,x1,y1,x2,mid) == 1) {
ansy2 = mid;
r = mid - 1;
} else {
l = mid + 1;
}
}
//out.printf("y2 = %d", ansy2);
r = y2;
l = y1;
// quero o maximo v <= y1
while(r >= l) {
int mid = (r + l) / 2;
if(ask(in,out,x1,mid,x2,y2) == 1) {
ansy1 = mid;
l = mid + 1;
} else {
r = mid - 1;
}
}
//out.printf("y1 = %d", ansy1);
rec.x1 = ansx1;
rec.x2 = ansx2;
rec.y1 = ansy1;
rec.y2 = ansy2;
return rec;
}
public int ask(InputReader in, PrintWriter out, int x1, int y1, int x2, int y2) {
System.out.printf("? %d %d %d %d\n",x1,y1,x2,y2);
System.out.flush();
return in.nextInt();
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
try {
return reader.readLine();
} catch (IOException e) {
}
return null;
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class Main {
public static void main(String[] args) throws Exception {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
Task task = new Task();
task.solve(in, out);
out.close();
}
static class Rectangle {
int x1, y1;
int x2, y2;
}
static class Task {
/**
* BEFORE SUBMITTING!!!
* MAKE SURE IT IS RIGHT!!!!!
* LONG!!
* Check if m,n aren't misused
* Make sure the output format is right (YES/NO vs Yes/No, newlines vs spaces)
* Run with n = 1 or n = 0
* Make sure two ints aren't multiplied to get a long
*
*/
public void solve(InputReader in, PrintWriter out) {
int n = in.nextInt();
//ideas: procurar linha que os divide e procurar dentro desses sub-retangulos
// procurar até ser 1
//corner cases: se procurar até ser 1 e não verificar se tem 1 do outro lado posso chegar a 1,2...not good
// tenho que procurar 1,1
int l = 1;
int r = n;
int ans = 0;
while(r >= l) {
int mid = (r + l) / 2;
if(ask(in,out,1,1,mid, n) == 0) {
l = mid + 1;
} else {
ans = mid;
r = mid - 1;
}
}
//par 1,1
//FDS ISTO
if(ans < n && ask(in,out,ans + 1, 1,n,n) == 1) {
Rectangle r1 = find(in,out,1,1,ans,n,n);
Rectangle r2 = find(in,out,ans + 1,1,n,n,n);
System.out.printf("! %d %d %d %d %d %d %d %d\n", r1.x1, r1.y1, r1.x2, r1.y2, r2.x1, r2.y1, r2.x2, r2.y2);
} else {
l = 1;
r = n;
ans = 0;
while(r >= l) {
int mid = (r + l) / 2;
if(ask(in,out,1,1,n, mid) == 0) {
l = mid + 1;
} else {
ans = mid;
r = mid - 1;
}
}
Rectangle r1 = find(in,out,1,1,n,ans,n);
Rectangle r2 = find(in,out,1,ans + 1,n,n,n);
System.out.printf("! %d %d %d %d %d %d %d %d\n", r1.x1, r1.y1, r1.x2, r1.y2, r2.x1, r2.y1, r2.x2, r2.y2);
}
}
//HASDFDSJGHDFJKSGDFJSGJDFSGJDSFGJF
//FKING WORK
public Rectangle find(InputReader in, PrintWriter out,int x1, int y1, int x2, int y2, int n) {
Rectangle rec = new Rectangle();
int ansx1 = x1;
int ansx2 = x2;
int ansy1 = y1;
int ansy2 = y2;
int l = x1;
int r = x2;
// quero o minimo v >= x2
while(r >= l) {
int mid = (r + l) / 2;
if(ask(in,out,x1,y1,mid,y2) == 1) {
ansx2 = mid;
r = mid - 1;
} else {
l = mid + 1;
}
}
//out.printf("x2 = %d", ansx2);
r = x2;
l = x1;
// quero o maximo v <= x1
while(r >= l) {
int mid = (r + l) / 2;
if(ask(in,out,mid,y1,x2,y2) == 1) {
ansx1 = mid;
l = mid + 1;
} else {
r = mid - 1;
}
}
//out.printf("x1 = %d", ansx1);
l = y1;
r = y2;
// quero o minimo v >= y2
while(r >= l) {
int mid = (r + l) / 2;
if(ask(in,out,x1,y1,x2,mid) == 1) {
ansy2 = mid;
r = mid - 1;
} else {
l = mid + 1;
}
}
//out.printf("y2 = %d", ansy2);
r = y2;
l = y1;
// quero o maximo v <= y1
while(r >= l) {
int mid = (r + l) / 2;
if(ask(in,out,x1,mid,x2,y2) == 1) {
ansy1 = mid;
l = mid + 1;
} else {
r = mid - 1;
}
}
//out.printf("y1 = %d", ansy1);
rec.x1 = ansx1;
rec.x2 = ansx2;
rec.y1 = ansy1;
rec.y2 = ansy2;
return rec;
}
public int ask(InputReader in, PrintWriter out, int x1, int y1, int x2, int y2) {
System.out.printf("? %d %d %d %d\n",x1,y1,x2,y2);
System.out.flush();
return in.nextInt();
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
try {
return reader.readLine();
} catch (IOException e) {
}
return null;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class Main {
public static void main(String[] args) throws Exception {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
Task task = new Task();
task.solve(in, out);
out.close();
}
static class Rectangle {
int x1, y1;
int x2, y2;
}
static class Task {
/**
* BEFORE SUBMITTING!!!
* MAKE SURE IT IS RIGHT!!!!!
* LONG!!
* Check if m,n aren't misused
* Make sure the output format is right (YES/NO vs Yes/No, newlines vs spaces)
* Run with n = 1 or n = 0
* Make sure two ints aren't multiplied to get a long
*
*/
public void solve(InputReader in, PrintWriter out) {
int n = in.nextInt();
//ideas: procurar linha que os divide e procurar dentro desses sub-retangulos
// procurar até ser 1
//corner cases: se procurar até ser 1 e não verificar se tem 1 do outro lado posso chegar a 1,2...not good
// tenho que procurar 1,1
int l = 1;
int r = n;
int ans = 0;
while(r >= l) {
int mid = (r + l) / 2;
if(ask(in,out,1,1,mid, n) == 0) {
l = mid + 1;
} else {
ans = mid;
r = mid - 1;
}
}
//par 1,1
//FDS ISTO
if(ans < n && ask(in,out,ans + 1, 1,n,n) == 1) {
Rectangle r1 = find(in,out,1,1,ans,n,n);
Rectangle r2 = find(in,out,ans + 1,1,n,n,n);
System.out.printf("! %d %d %d %d %d %d %d %d\n", r1.x1, r1.y1, r1.x2, r1.y2, r2.x1, r2.y1, r2.x2, r2.y2);
} else {
l = 1;
r = n;
ans = 0;
while(r >= l) {
int mid = (r + l) / 2;
if(ask(in,out,1,1,n, mid) == 0) {
l = mid + 1;
} else {
ans = mid;
r = mid - 1;
}
}
Rectangle r1 = find(in,out,1,1,n,ans,n);
Rectangle r2 = find(in,out,1,ans + 1,n,n,n);
System.out.printf("! %d %d %d %d %d %d %d %d\n", r1.x1, r1.y1, r1.x2, r1.y2, r2.x1, r2.y1, r2.x2, r2.y2);
}
}
//HASDFDSJGHDFJKSGDFJSGJDFSGJDSFGJF
//FKING WORK
public Rectangle find(InputReader in, PrintWriter out,int x1, int y1, int x2, int y2, int n) {
Rectangle rec = new Rectangle();
int ansx1 = x1;
int ansx2 = x2;
int ansy1 = y1;
int ansy2 = y2;
int l = x1;
int r = x2;
// quero o minimo v >= x2
while(r >= l) {
int mid = (r + l) / 2;
if(ask(in,out,x1,y1,mid,y2) == 1) {
ansx2 = mid;
r = mid - 1;
} else {
l = mid + 1;
}
}
//out.printf("x2 = %d", ansx2);
r = x2;
l = x1;
// quero o maximo v <= x1
while(r >= l) {
int mid = (r + l) / 2;
if(ask(in,out,mid,y1,x2,y2) == 1) {
ansx1 = mid;
l = mid + 1;
} else {
r = mid - 1;
}
}
//out.printf("x1 = %d", ansx1);
l = y1;
r = y2;
// quero o minimo v >= y2
while(r >= l) {
int mid = (r + l) / 2;
if(ask(in,out,x1,y1,x2,mid) == 1) {
ansy2 = mid;
r = mid - 1;
} else {
l = mid + 1;
}
}
//out.printf("y2 = %d", ansy2);
r = y2;
l = y1;
// quero o maximo v <= y1
while(r >= l) {
int mid = (r + l) / 2;
if(ask(in,out,x1,mid,x2,y2) == 1) {
ansy1 = mid;
l = mid + 1;
} else {
r = mid - 1;
}
}
//out.printf("y1 = %d", ansy1);
rec.x1 = ansx1;
rec.x2 = ansx2;
rec.y1 = ansy1;
rec.y2 = ansy2;
return rec;
}
public int ask(InputReader in, PrintWriter out, int x1, int y1, int x2, int y2) {
System.out.printf("? %d %d %d %d\n",x1,y1,x2,y2);
System.out.flush();
return in.nextInt();
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
try {
return reader.readLine();
} catch (IOException e) {
}
return null;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,003 | 1,341 |
4,398 |
import java.io.*;
import java.util.*;
public class D11 {
static HashMap<State, Integer> map;
static long[][] ans;
static boolean[][] connect;
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(br.readLine());
int n = Integer.parseInt(st.nextToken());
map = new HashMap<State, Integer>();
connect = new boolean[n][n];
ans = new long[n][1<<n];
for(int i = 0; i < n; i++)
Arrays.fill(ans[i], -1);
int m = Integer.parseInt(st.nextToken());
while(m-- > 0) {
st = new StringTokenizer(br.readLine());
int a = Integer.parseInt(st.nextToken());
int b = Integer.parseInt(st.nextToken());
a--;
b--;
connect[a][b] = connect[b][a] = true;
}
long ret = 0;
int mask = 1 << n;
mask--;
for(int i = 0; i < n; i++) {
for(int out = i+1; out < n; out++) {
if(connect[i][out]) {
ret += solve(mask - (1<<out), out, true);
}
}
mask -= (1<<i);
}
System.out.println(ret/2);
}
public static long solve(int mask, int start, boolean a) {
if(ans[start][mask] != -1)
return ans[start][mask];
int end = 0;
while((mask & (1<<end)) == 0)
end++;
long ret = 0;
for(int out = 0; out < connect.length; out++) {
if(connect[start][out] && (mask & (1 << out)) != 0) {
if(out == end) {
if(!a)
ret++;
}
else
ret += solve(mask - (1<<out), out, false);
}
}
ans[start][mask] = ret;
return ret;
}
static class State {
public byte start, go;
public int mask;
public State(byte a, byte b, int c) {
start = a;
go = b;
mask = c;
}
public int hashCode() {
return 10007*mask + 43 * start + go;
}
public boolean equals(Object o) {
State s = (State)o;
return start == s.start && go == s.go && mask == s.mask;
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class D11 {
static HashMap<State, Integer> map;
static long[][] ans;
static boolean[][] connect;
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(br.readLine());
int n = Integer.parseInt(st.nextToken());
map = new HashMap<State, Integer>();
connect = new boolean[n][n];
ans = new long[n][1<<n];
for(int i = 0; i < n; i++)
Arrays.fill(ans[i], -1);
int m = Integer.parseInt(st.nextToken());
while(m-- > 0) {
st = new StringTokenizer(br.readLine());
int a = Integer.parseInt(st.nextToken());
int b = Integer.parseInt(st.nextToken());
a--;
b--;
connect[a][b] = connect[b][a] = true;
}
long ret = 0;
int mask = 1 << n;
mask--;
for(int i = 0; i < n; i++) {
for(int out = i+1; out < n; out++) {
if(connect[i][out]) {
ret += solve(mask - (1<<out), out, true);
}
}
mask -= (1<<i);
}
System.out.println(ret/2);
}
public static long solve(int mask, int start, boolean a) {
if(ans[start][mask] != -1)
return ans[start][mask];
int end = 0;
while((mask & (1<<end)) == 0)
end++;
long ret = 0;
for(int out = 0; out < connect.length; out++) {
if(connect[start][out] && (mask & (1 << out)) != 0) {
if(out == end) {
if(!a)
ret++;
}
else
ret += solve(mask - (1<<out), out, false);
}
}
ans[start][mask] = ret;
return ret;
}
static class State {
public byte start, go;
public int mask;
public State(byte a, byte b, int c) {
start = a;
go = b;
mask = c;
}
public int hashCode() {
return 10007*mask + 43 * start + go;
}
public boolean equals(Object o) {
State s = (State)o;
return start == s.start && go == s.go && mask == s.mask;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class D11 {
static HashMap<State, Integer> map;
static long[][] ans;
static boolean[][] connect;
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(br.readLine());
int n = Integer.parseInt(st.nextToken());
map = new HashMap<State, Integer>();
connect = new boolean[n][n];
ans = new long[n][1<<n];
for(int i = 0; i < n; i++)
Arrays.fill(ans[i], -1);
int m = Integer.parseInt(st.nextToken());
while(m-- > 0) {
st = new StringTokenizer(br.readLine());
int a = Integer.parseInt(st.nextToken());
int b = Integer.parseInt(st.nextToken());
a--;
b--;
connect[a][b] = connect[b][a] = true;
}
long ret = 0;
int mask = 1 << n;
mask--;
for(int i = 0; i < n; i++) {
for(int out = i+1; out < n; out++) {
if(connect[i][out]) {
ret += solve(mask - (1<<out), out, true);
}
}
mask -= (1<<i);
}
System.out.println(ret/2);
}
public static long solve(int mask, int start, boolean a) {
if(ans[start][mask] != -1)
return ans[start][mask];
int end = 0;
while((mask & (1<<end)) == 0)
end++;
long ret = 0;
for(int out = 0; out < connect.length; out++) {
if(connect[start][out] && (mask & (1 << out)) != 0) {
if(out == end) {
if(!a)
ret++;
}
else
ret += solve(mask - (1<<out), out, false);
}
}
ans[start][mask] = ret;
return ret;
}
static class State {
public byte start, go;
public int mask;
public State(byte a, byte b, int c) {
start = a;
go = b;
mask = c;
}
public int hashCode() {
return 10007*mask + 43 * start + go;
}
public boolean equals(Object o) {
State s = (State)o;
return start == s.start && go == s.go && mask == s.mask;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 928 | 4,387 |
3,856 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayDeque;
import java.util.Arrays;
import java.util.Deque;
import java.util.Random;
import java.util.StringTokenizer;
public final class C {
static class Node {
int val;
String path;
Node node;
Node(String p, int t) {
path = p;
val = t;
}
}
public static void main(String[] args) {
final FastScanner fs = new FastScanner();
final int t = fs.nextInt();
final StringBuilder sb = new StringBuilder();
for (int test = 0; test < t; test++) {
final int n = fs.nextInt();
final Deque<Node> dq = new ArrayDeque<>();
dq.offerLast(new Node("", 0));
for (int i = 0; i < n; i++) {
final int next = fs.nextInt();
if (dq.getFirst().val + 1 != next) {
if (next == 1) {
final Node peek = dq.getFirst();
final String p = peek.path.isEmpty() ? String.valueOf(peek.val)
: (peek.path + '.' + peek.val);
dq.addFirst(new Node(p, 1));
} else {
while (dq.getFirst().val + 1 != next) {
dq.removeFirst();
}
dq.getFirst().val++;
}
} else {
dq.getFirst().val++;
}
add(sb, dq.getFirst(), dq.getFirst().val);
}
}
System.out.println(sb);
}
private static void add(StringBuilder sb, Node node, int val) {
final String p = node.path.isEmpty() ? String.valueOf(val)
: (node.path + '.' + val);
sb.append(p);
sb.append('\n');
}
static final class Utils {
private static class Shuffler {
private static void shuffle(int[] x) {
final Random r = new Random();
for (int i = 0; i <= x.length - 2; i++) {
final int j = i + r.nextInt(x.length - i);
swap(x, i, j);
}
}
private static void shuffle(long[] x) {
final Random r = new Random();
for (int i = 0; i <= x.length - 2; i++) {
final int j = i + r.nextInt(x.length - i);
swap(x, i, j);
}
}
private static void swap(int[] x, int i, int j) {
final int t = x[i];
x[i] = x[j];
x[j] = t;
}
private static void swap(long[] x, int i, int j) {
final long t = x[i];
x[i] = x[j];
x[j] = t;
}
}
public static void shuffleSort(int[] arr) {
Shuffler.shuffle(arr);
Arrays.sort(arr);
}
public static void shuffleSort(long[] arr) {
Shuffler.shuffle(arr);
Arrays.sort(arr);
}
private Utils() {}
}
static class FastScanner {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
private String next() {
while (!st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
//noinspection CallToPrintStackTrace
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
int[] nextIntArray(int n) {
final int[] a = new int[n];
for (int i = 0; i < n; i++) { a[i] = nextInt(); }
return a;
}
long[] nextLongArray(int n) {
final long[] a = new long[n];
for (int i = 0; i < n; i++) { a[i] = nextLong(); }
return a;
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayDeque;
import java.util.Arrays;
import java.util.Deque;
import java.util.Random;
import java.util.StringTokenizer;
public final class C {
static class Node {
int val;
String path;
Node node;
Node(String p, int t) {
path = p;
val = t;
}
}
public static void main(String[] args) {
final FastScanner fs = new FastScanner();
final int t = fs.nextInt();
final StringBuilder sb = new StringBuilder();
for (int test = 0; test < t; test++) {
final int n = fs.nextInt();
final Deque<Node> dq = new ArrayDeque<>();
dq.offerLast(new Node("", 0));
for (int i = 0; i < n; i++) {
final int next = fs.nextInt();
if (dq.getFirst().val + 1 != next) {
if (next == 1) {
final Node peek = dq.getFirst();
final String p = peek.path.isEmpty() ? String.valueOf(peek.val)
: (peek.path + '.' + peek.val);
dq.addFirst(new Node(p, 1));
} else {
while (dq.getFirst().val + 1 != next) {
dq.removeFirst();
}
dq.getFirst().val++;
}
} else {
dq.getFirst().val++;
}
add(sb, dq.getFirst(), dq.getFirst().val);
}
}
System.out.println(sb);
}
private static void add(StringBuilder sb, Node node, int val) {
final String p = node.path.isEmpty() ? String.valueOf(val)
: (node.path + '.' + val);
sb.append(p);
sb.append('\n');
}
static final class Utils {
private static class Shuffler {
private static void shuffle(int[] x) {
final Random r = new Random();
for (int i = 0; i <= x.length - 2; i++) {
final int j = i + r.nextInt(x.length - i);
swap(x, i, j);
}
}
private static void shuffle(long[] x) {
final Random r = new Random();
for (int i = 0; i <= x.length - 2; i++) {
final int j = i + r.nextInt(x.length - i);
swap(x, i, j);
}
}
private static void swap(int[] x, int i, int j) {
final int t = x[i];
x[i] = x[j];
x[j] = t;
}
private static void swap(long[] x, int i, int j) {
final long t = x[i];
x[i] = x[j];
x[j] = t;
}
}
public static void shuffleSort(int[] arr) {
Shuffler.shuffle(arr);
Arrays.sort(arr);
}
public static void shuffleSort(long[] arr) {
Shuffler.shuffle(arr);
Arrays.sort(arr);
}
private Utils() {}
}
static class FastScanner {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
private String next() {
while (!st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
//noinspection CallToPrintStackTrace
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
int[] nextIntArray(int n) {
final int[] a = new int[n];
for (int i = 0; i < n; i++) { a[i] = nextInt(); }
return a;
}
long[] nextLongArray(int n) {
final long[] a = new long[n];
for (int i = 0; i < n; i++) { a[i] = nextLong(); }
return a;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayDeque;
import java.util.Arrays;
import java.util.Deque;
import java.util.Random;
import java.util.StringTokenizer;
public final class C {
static class Node {
int val;
String path;
Node node;
Node(String p, int t) {
path = p;
val = t;
}
}
public static void main(String[] args) {
final FastScanner fs = new FastScanner();
final int t = fs.nextInt();
final StringBuilder sb = new StringBuilder();
for (int test = 0; test < t; test++) {
final int n = fs.nextInt();
final Deque<Node> dq = new ArrayDeque<>();
dq.offerLast(new Node("", 0));
for (int i = 0; i < n; i++) {
final int next = fs.nextInt();
if (dq.getFirst().val + 1 != next) {
if (next == 1) {
final Node peek = dq.getFirst();
final String p = peek.path.isEmpty() ? String.valueOf(peek.val)
: (peek.path + '.' + peek.val);
dq.addFirst(new Node(p, 1));
} else {
while (dq.getFirst().val + 1 != next) {
dq.removeFirst();
}
dq.getFirst().val++;
}
} else {
dq.getFirst().val++;
}
add(sb, dq.getFirst(), dq.getFirst().val);
}
}
System.out.println(sb);
}
private static void add(StringBuilder sb, Node node, int val) {
final String p = node.path.isEmpty() ? String.valueOf(val)
: (node.path + '.' + val);
sb.append(p);
sb.append('\n');
}
static final class Utils {
private static class Shuffler {
private static void shuffle(int[] x) {
final Random r = new Random();
for (int i = 0; i <= x.length - 2; i++) {
final int j = i + r.nextInt(x.length - i);
swap(x, i, j);
}
}
private static void shuffle(long[] x) {
final Random r = new Random();
for (int i = 0; i <= x.length - 2; i++) {
final int j = i + r.nextInt(x.length - i);
swap(x, i, j);
}
}
private static void swap(int[] x, int i, int j) {
final int t = x[i];
x[i] = x[j];
x[j] = t;
}
private static void swap(long[] x, int i, int j) {
final long t = x[i];
x[i] = x[j];
x[j] = t;
}
}
public static void shuffleSort(int[] arr) {
Shuffler.shuffle(arr);
Arrays.sort(arr);
}
public static void shuffleSort(long[] arr) {
Shuffler.shuffle(arr);
Arrays.sort(arr);
}
private Utils() {}
}
static class FastScanner {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
private String next() {
while (!st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
//noinspection CallToPrintStackTrace
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
int[] nextIntArray(int n) {
final int[] a = new int[n];
for (int i = 0; i < n; i++) { a[i] = nextInt(); }
return a;
}
long[] nextLongArray(int n) {
final long[] a = new long[n];
for (int i = 0; i < n; i++) { a[i] = nextLong(); }
return a;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,229 | 3,846 |
1,791 |
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
public class A {
static StringTokenizer st;
static BufferedReader in;
public static void main(String[] args) throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
PrintWriter pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
int n = nextInt();
int m = nextInt();
int k = nextInt();
int[]a = new int[n+1];
for (int i = 1; i <= n; i++) {
a[i] = nextInt();
}
if (k >= m) {
System.out.println(0);
return;
}
Arrays.sort(a, 1, n+1);
int ans = 0;
for (int i = n; i >= 1; i--) {
ans++;
k--;
k += a[i];
if (k >= m) {
System.out.println(ans);
return;
}
}
System.out.println(-1);
pw.close();
}
private static int nextInt() throws IOException{
return Integer.parseInt(next());
}
private static long nextLong() throws IOException{
return Long.parseLong(next());
}
private static double nextDouble() throws IOException{
return Double.parseDouble(next());
}
private static String next() throws IOException {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
public class A {
static StringTokenizer st;
static BufferedReader in;
public static void main(String[] args) throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
PrintWriter pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
int n = nextInt();
int m = nextInt();
int k = nextInt();
int[]a = new int[n+1];
for (int i = 1; i <= n; i++) {
a[i] = nextInt();
}
if (k >= m) {
System.out.println(0);
return;
}
Arrays.sort(a, 1, n+1);
int ans = 0;
for (int i = n; i >= 1; i--) {
ans++;
k--;
k += a[i];
if (k >= m) {
System.out.println(ans);
return;
}
}
System.out.println(-1);
pw.close();
}
private static int nextInt() throws IOException{
return Integer.parseInt(next());
}
private static long nextLong() throws IOException{
return Long.parseLong(next());
}
private static double nextDouble() throws IOException{
return Double.parseDouble(next());
}
private static String next() throws IOException {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
public class A {
static StringTokenizer st;
static BufferedReader in;
public static void main(String[] args) throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
PrintWriter pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
int n = nextInt();
int m = nextInt();
int k = nextInt();
int[]a = new int[n+1];
for (int i = 1; i <= n; i++) {
a[i] = nextInt();
}
if (k >= m) {
System.out.println(0);
return;
}
Arrays.sort(a, 1, n+1);
int ans = 0;
for (int i = n; i >= 1; i--) {
ans++;
k--;
k += a[i];
if (k >= m) {
System.out.println(ans);
return;
}
}
System.out.println(-1);
pw.close();
}
private static int nextInt() throws IOException{
return Integer.parseInt(next());
}
private static long nextLong() throws IOException{
return Long.parseLong(next());
}
private static double nextDouble() throws IOException{
return Double.parseDouble(next());
}
private static String next() throws IOException {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 679 | 1,787 |
770 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.Comparator;
import java.util.StringTokenizer;
import java.util.TreeSet;
public class TheyAreEverywhere {
static StringTokenizer st;
static BufferedReader bf = new BufferedReader(new InputStreamReader(System.in), 325678);
static int[] id = new int[100000];
public static void main(String[] args) throws IOException {
int n = in();
String s = next();
int total = 0;
int[] seq = new int[n];
boolean[] c = new boolean[100000];
for (int i = 0; i < n; i++) {
seq[i] = s.charAt(i);
if (!c[seq[i]]) {
total++;
c[seq[i]] = true;
}
}
Arrays.fill(id, -1);
int best = Integer.MAX_VALUE;
TreeSet<Integer> q = new TreeSet<Integer>(new Comparator<Integer>() {
@Override
public int compare(Integer o1, Integer o2) {
return id[o1] - id[o2];
}
});
for (int i = 0; i < n; i++) {
q.remove(seq[i]);
id[seq[i]] = i;
q.add(seq[i]);
if (q.size() == total) {
//System.out.println("best: i=" + i + " id=" + id[q.first()]);
best = Math.min(best, i - id[q.first()] + 1);
}
//System.out.println("i="+i+" " +q.toString());
}
System.out.println(best);
}
public static int in() throws IOException {
return Integer.parseInt(next());
}
public static long inl() throws IOException {
return Long.parseLong(next());
}
public static String next() throws IOException {
if (st == null || !st.hasMoreTokens())
st = new StringTokenizer(bf.readLine());
return st.nextToken();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.Comparator;
import java.util.StringTokenizer;
import java.util.TreeSet;
public class TheyAreEverywhere {
static StringTokenizer st;
static BufferedReader bf = new BufferedReader(new InputStreamReader(System.in), 325678);
static int[] id = new int[100000];
public static void main(String[] args) throws IOException {
int n = in();
String s = next();
int total = 0;
int[] seq = new int[n];
boolean[] c = new boolean[100000];
for (int i = 0; i < n; i++) {
seq[i] = s.charAt(i);
if (!c[seq[i]]) {
total++;
c[seq[i]] = true;
}
}
Arrays.fill(id, -1);
int best = Integer.MAX_VALUE;
TreeSet<Integer> q = new TreeSet<Integer>(new Comparator<Integer>() {
@Override
public int compare(Integer o1, Integer o2) {
return id[o1] - id[o2];
}
});
for (int i = 0; i < n; i++) {
q.remove(seq[i]);
id[seq[i]] = i;
q.add(seq[i]);
if (q.size() == total) {
//System.out.println("best: i=" + i + " id=" + id[q.first()]);
best = Math.min(best, i - id[q.first()] + 1);
}
//System.out.println("i="+i+" " +q.toString());
}
System.out.println(best);
}
public static int in() throws IOException {
return Integer.parseInt(next());
}
public static long inl() throws IOException {
return Long.parseLong(next());
}
public static String next() throws IOException {
if (st == null || !st.hasMoreTokens())
st = new StringTokenizer(bf.readLine());
return st.nextToken();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.Comparator;
import java.util.StringTokenizer;
import java.util.TreeSet;
public class TheyAreEverywhere {
static StringTokenizer st;
static BufferedReader bf = new BufferedReader(new InputStreamReader(System.in), 325678);
static int[] id = new int[100000];
public static void main(String[] args) throws IOException {
int n = in();
String s = next();
int total = 0;
int[] seq = new int[n];
boolean[] c = new boolean[100000];
for (int i = 0; i < n; i++) {
seq[i] = s.charAt(i);
if (!c[seq[i]]) {
total++;
c[seq[i]] = true;
}
}
Arrays.fill(id, -1);
int best = Integer.MAX_VALUE;
TreeSet<Integer> q = new TreeSet<Integer>(new Comparator<Integer>() {
@Override
public int compare(Integer o1, Integer o2) {
return id[o1] - id[o2];
}
});
for (int i = 0; i < n; i++) {
q.remove(seq[i]);
id[seq[i]] = i;
q.add(seq[i]);
if (q.size() == total) {
//System.out.println("best: i=" + i + " id=" + id[q.first()]);
best = Math.min(best, i - id[q.first()] + 1);
}
//System.out.println("i="+i+" " +q.toString());
}
System.out.println(best);
}
public static int in() throws IOException {
return Integer.parseInt(next());
}
public static long inl() throws IOException {
return Long.parseLong(next());
}
public static String next() throws IOException {
if (st == null || !st.hasMoreTokens())
st = new StringTokenizer(bf.readLine());
return st.nextToken();
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 770 | 769 |
3,670 |
import java.io.File;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Scanner;
public class C {
Scanner in;
PrintWriter out;
// String INPUT = "3 3 1 1 1";
String INPUT = "";
void solve()
{
int n = ni();
int m = ni();
int k = ni();
int[][] f=new int[k][2];
for(int i=0;i<k;i++) {
f[i][0]=ni()-1;
f[i][1]=ni()-1;
}
int mx=-1;
int resx=0;
int resy=0;
for(int i=0;i<n;i++) {
for(int j=0;j<m;j++) {
int min=Integer.MAX_VALUE;
for(int l=0;l<k;l++) {
min=Math.min(min, Math.abs(f[l][0]-i)+Math.abs(f[l][1]-j));
}
if(min>mx) {
mx=min;
resx=i;
resy=j;
}
}
}
out.println((resx+1)+" "+(resy+1));
}
void run() throws Exception
{
in = INPUT.isEmpty() ? new Scanner(new File("input.txt")) : new Scanner(INPUT);
out = INPUT.isEmpty() ? new PrintWriter("output.txt") : new PrintWriter(System.out);
solve();
out.flush();
}
public static void main(String[] args) throws Exception
{
new C().run();
}
int ni() { return Integer.parseInt(in.next()); }
void tr(Object... o) { if(INPUT.length() != 0)System.out.println(o.length > 1 || o[0].getClass().isArray() ? Arrays.deepToString(o) : o[0]); }
static String join(int[] a, int d){StringBuilder sb = new StringBuilder();for(int v : a){sb.append(v + d + " ");}return sb.toString();}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.File;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Scanner;
public class C {
Scanner in;
PrintWriter out;
// String INPUT = "3 3 1 1 1";
String INPUT = "";
void solve()
{
int n = ni();
int m = ni();
int k = ni();
int[][] f=new int[k][2];
for(int i=0;i<k;i++) {
f[i][0]=ni()-1;
f[i][1]=ni()-1;
}
int mx=-1;
int resx=0;
int resy=0;
for(int i=0;i<n;i++) {
for(int j=0;j<m;j++) {
int min=Integer.MAX_VALUE;
for(int l=0;l<k;l++) {
min=Math.min(min, Math.abs(f[l][0]-i)+Math.abs(f[l][1]-j));
}
if(min>mx) {
mx=min;
resx=i;
resy=j;
}
}
}
out.println((resx+1)+" "+(resy+1));
}
void run() throws Exception
{
in = INPUT.isEmpty() ? new Scanner(new File("input.txt")) : new Scanner(INPUT);
out = INPUT.isEmpty() ? new PrintWriter("output.txt") : new PrintWriter(System.out);
solve();
out.flush();
}
public static void main(String[] args) throws Exception
{
new C().run();
}
int ni() { return Integer.parseInt(in.next()); }
void tr(Object... o) { if(INPUT.length() != 0)System.out.println(o.length > 1 || o[0].getClass().isArray() ? Arrays.deepToString(o) : o[0]); }
static String join(int[] a, int d){StringBuilder sb = new StringBuilder();for(int v : a){sb.append(v + d + " ");}return sb.toString();}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.File;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Scanner;
public class C {
Scanner in;
PrintWriter out;
// String INPUT = "3 3 1 1 1";
String INPUT = "";
void solve()
{
int n = ni();
int m = ni();
int k = ni();
int[][] f=new int[k][2];
for(int i=0;i<k;i++) {
f[i][0]=ni()-1;
f[i][1]=ni()-1;
}
int mx=-1;
int resx=0;
int resy=0;
for(int i=0;i<n;i++) {
for(int j=0;j<m;j++) {
int min=Integer.MAX_VALUE;
for(int l=0;l<k;l++) {
min=Math.min(min, Math.abs(f[l][0]-i)+Math.abs(f[l][1]-j));
}
if(min>mx) {
mx=min;
resx=i;
resy=j;
}
}
}
out.println((resx+1)+" "+(resy+1));
}
void run() throws Exception
{
in = INPUT.isEmpty() ? new Scanner(new File("input.txt")) : new Scanner(INPUT);
out = INPUT.isEmpty() ? new PrintWriter("output.txt") : new PrintWriter(System.out);
solve();
out.flush();
}
public static void main(String[] args) throws Exception
{
new C().run();
}
int ni() { return Integer.parseInt(in.next()); }
void tr(Object... o) { if(INPUT.length() != 0)System.out.println(o.length > 1 || o[0].getClass().isArray() ? Arrays.deepToString(o) : o[0]); }
static String join(int[] a, int d){StringBuilder sb = new StringBuilder();for(int v : a){sb.append(v + d + " ");}return sb.toString();}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 769 | 3,662 |
2,588 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author gaidash
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
ARaskrashivanieChisel solver = new ARaskrashivanieChisel();
solver.solve(1, in, out);
out.close();
}
static class ARaskrashivanieChisel {
public void solve(int testNumber, InputReader in, OutputWriter out) {
final int MAX = 100;
int n = in.nextInt();
int[] a = in.nextSortedIntArray(n);
int ret = 0;
boolean[] used = new boolean[MAX + 1];
for (int i = 0; i < n; i++) {
if (!used[a[i]]) {
used[a[i]] = true;
ret++;
for (int j = i + 1; j < n; j++) {
if (a[j] % a[i] == 0 && !used[a[j]]) {
used[a[j]] = true;
}
}
}
}
out.println(ret);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void println(int i) {
writer.println(i);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public int[] nextIntArray(int n) {
int[] array = new int[n];
for (int i = 0; i < n; ++i) array[i] = nextInt();
return array;
}
public int[] nextSortedIntArray(int n) {
int array[] = nextIntArray(n);
Arrays.sort(array);
return array;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author gaidash
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
ARaskrashivanieChisel solver = new ARaskrashivanieChisel();
solver.solve(1, in, out);
out.close();
}
static class ARaskrashivanieChisel {
public void solve(int testNumber, InputReader in, OutputWriter out) {
final int MAX = 100;
int n = in.nextInt();
int[] a = in.nextSortedIntArray(n);
int ret = 0;
boolean[] used = new boolean[MAX + 1];
for (int i = 0; i < n; i++) {
if (!used[a[i]]) {
used[a[i]] = true;
ret++;
for (int j = i + 1; j < n; j++) {
if (a[j] % a[i] == 0 && !used[a[j]]) {
used[a[j]] = true;
}
}
}
}
out.println(ret);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void println(int i) {
writer.println(i);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public int[] nextIntArray(int n) {
int[] array = new int[n];
for (int i = 0; i < n; ++i) array[i] = nextInt();
return array;
}
public int[] nextSortedIntArray(int n) {
int array[] = nextIntArray(n);
Arrays.sort(array);
return array;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author gaidash
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
ARaskrashivanieChisel solver = new ARaskrashivanieChisel();
solver.solve(1, in, out);
out.close();
}
static class ARaskrashivanieChisel {
public void solve(int testNumber, InputReader in, OutputWriter out) {
final int MAX = 100;
int n = in.nextInt();
int[] a = in.nextSortedIntArray(n);
int ret = 0;
boolean[] used = new boolean[MAX + 1];
for (int i = 0; i < n; i++) {
if (!used[a[i]]) {
used[a[i]] = true;
ret++;
for (int j = i + 1; j < n; j++) {
if (a[j] % a[i] == 0 && !used[a[j]]) {
used[a[j]] = true;
}
}
}
}
out.println(ret);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void println(int i) {
writer.println(i);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public int[] nextIntArray(int n) {
int[] array = new int[n];
for (int i = 0; i < n; ++i) array[i] = nextInt();
return array;
}
public int[] nextSortedIntArray(int n) {
int array[] = nextIntArray(n);
Arrays.sort(array);
return array;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,252 | 2,582 |
587 |
import java.io.*;
import java.util.*;
public class A {
String fileName = "<name>";
public TreeSet<Integer> set = new TreeSet<>();
public int getLowerDist(int x) {
Integer higher = set.higher(x);
Integer lower = set.lower(x);
if (higher == null)
return lower;
if (lower == null)
return higher;
if (Math.abs(x - higher) < Math.abs(x - lower)) {
return higher;
} else {
return lower;
}
}
public void solve() throws IOException {
int n = nextInt();
int d = nextInt();
int[] a = new int[n];
Set<Integer> ans = new HashSet<>((int) 1e6, 1f);
for (int i = 0; i < n; i++) {
a[i] = nextInt();
set.add(a[i]);
}
for (int i = 0; i < n; i++) {
int pos1 = a[i] + d;
int pos2 = a[i] - d;
if (!set.contains(pos1) && Math.abs(pos1 - getLowerDist(pos1)) == d) {
ans.add(pos1);
}
if (!set.contains(pos2) && Math.abs(pos2 - getLowerDist(pos2)) == d) {
ans.add(pos2);
}
}
out.print(ans.size());
}
public void run() {
try {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.close();
} catch (IOException e) {
e.printStackTrace();
System.exit(1);
}
}
BufferedReader br;
StringTokenizer in;
PrintWriter out;
public String nextToken() throws IOException {
while (in == null || !in.hasMoreTokens()) {
in = new StringTokenizer(br.readLine());
}
return in.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
public double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
public long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
public static void main(String[] args) throws IOException {
Locale.setDefault(Locale.US);
new A().run();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class A {
String fileName = "<name>";
public TreeSet<Integer> set = new TreeSet<>();
public int getLowerDist(int x) {
Integer higher = set.higher(x);
Integer lower = set.lower(x);
if (higher == null)
return lower;
if (lower == null)
return higher;
if (Math.abs(x - higher) < Math.abs(x - lower)) {
return higher;
} else {
return lower;
}
}
public void solve() throws IOException {
int n = nextInt();
int d = nextInt();
int[] a = new int[n];
Set<Integer> ans = new HashSet<>((int) 1e6, 1f);
for (int i = 0; i < n; i++) {
a[i] = nextInt();
set.add(a[i]);
}
for (int i = 0; i < n; i++) {
int pos1 = a[i] + d;
int pos2 = a[i] - d;
if (!set.contains(pos1) && Math.abs(pos1 - getLowerDist(pos1)) == d) {
ans.add(pos1);
}
if (!set.contains(pos2) && Math.abs(pos2 - getLowerDist(pos2)) == d) {
ans.add(pos2);
}
}
out.print(ans.size());
}
public void run() {
try {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.close();
} catch (IOException e) {
e.printStackTrace();
System.exit(1);
}
}
BufferedReader br;
StringTokenizer in;
PrintWriter out;
public String nextToken() throws IOException {
while (in == null || !in.hasMoreTokens()) {
in = new StringTokenizer(br.readLine());
}
return in.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
public double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
public long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
public static void main(String[] args) throws IOException {
Locale.setDefault(Locale.US);
new A().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class A {
String fileName = "<name>";
public TreeSet<Integer> set = new TreeSet<>();
public int getLowerDist(int x) {
Integer higher = set.higher(x);
Integer lower = set.lower(x);
if (higher == null)
return lower;
if (lower == null)
return higher;
if (Math.abs(x - higher) < Math.abs(x - lower)) {
return higher;
} else {
return lower;
}
}
public void solve() throws IOException {
int n = nextInt();
int d = nextInt();
int[] a = new int[n];
Set<Integer> ans = new HashSet<>((int) 1e6, 1f);
for (int i = 0; i < n; i++) {
a[i] = nextInt();
set.add(a[i]);
}
for (int i = 0; i < n; i++) {
int pos1 = a[i] + d;
int pos2 = a[i] - d;
if (!set.contains(pos1) && Math.abs(pos1 - getLowerDist(pos1)) == d) {
ans.add(pos1);
}
if (!set.contains(pos2) && Math.abs(pos2 - getLowerDist(pos2)) == d) {
ans.add(pos2);
}
}
out.print(ans.size());
}
public void run() {
try {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.close();
} catch (IOException e) {
e.printStackTrace();
System.exit(1);
}
}
BufferedReader br;
StringTokenizer in;
PrintWriter out;
public String nextToken() throws IOException {
while (in == null || !in.hasMoreTokens()) {
in = new StringTokenizer(br.readLine());
}
return in.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
public double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
public long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
public static void main(String[] args) throws IOException {
Locale.setDefault(Locale.US);
new A().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 846 | 586 |
3,715 |
// https://codeforces.com/contest/1185/submission/55800229 (rainboy)
import java.io.*;
import java.util.*;
public class CF1185G2 {
static final int MD = 1000000007;
static int[][] solve1(int[] aa, int t, int n) {
int[][] da = new int[t + 1][n + 1];
da[0][0] = 1;
for (int i = 0; i < n; i++) {
int a = aa[i];
for (int s = t - 1; s >= 0; s--)
for (int m = 0; m < n; m++) {
int x = da[s][m];
if (x != 0) {
int s_ = s + a;
if (s_ <= t)
da[s_][m + 1] = (da[s_][m + 1] + x) % MD;
}
}
}
return da;
}
static int[][][] solve2(int[] aa, int[] bb, int t, int na, int nb) {
int[][] da = solve1(aa, t, na);
int[][][] dab = new int[t + 1][na + 1][nb + 1];
for (int s = 0; s <= t; s++)
for (int ma = 0; ma <= na; ma++)
dab[s][ma][0] = da[s][ma];
for (int i = 0; i < nb; i++) {
int b = bb[i];
for (int s = t - 1; s >= 0; s--)
for (int ma = 0; ma <= na; ma++)
for (int mb = 0; mb < nb; mb++) {
int x = dab[s][ma][mb];
if (x != 0) {
int s_ = s + b;
if (s_ <= t)
dab[s_][ma][mb + 1] = (dab[s_][ma][mb + 1] + x) % MD;
}
}
}
return dab;
}
static int[][][] init(int n, int na, int nb, int nc) {
int[][][] dp = new int[na + 1][nb + 1][nc + 1];
int[][][][] dq = new int[na + 1][nb + 1][nc + 1][3];
for (int ma = 0; ma <= na; ma++)
for (int mb = 0; mb <= nb; mb++)
for (int mc = 0; mc <= nc; mc++)
if (ma == 0 && mb == 0 && mc == 0) {
dp[ma][mb][mc] = 1;
dq[ma][mb][mc][0] = dq[ma][mb][mc][1] = dq[ma][mb][mc][2] = 1;
} else {
int x0 = ma > 0 ? (int) ((long) dq[ma - 1][mb][mc][0] * ma % MD) : 0;
int x1 = mb > 0 ? (int) ((long) dq[ma][mb - 1][mc][1] * mb % MD) : 0;
int x2 = mc > 0 ? (int) ((long) dq[ma][mb][mc - 1][2] * mc % MD) : 0;
dp[ma][mb][mc] = (int) (((long) x0 + x1 + x2) % MD);
dq[ma][mb][mc][0] = (x1 + x2) % MD;
dq[ma][mb][mc][1] = (x2 + x0) % MD;
dq[ma][mb][mc][2] = (x0 + x1) % MD;
}
return dp;
}
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(br.readLine());
int n = Integer.parseInt(st.nextToken());
int t = Integer.parseInt(st.nextToken());
int[] aa = new int[n];
int[] bb = new int[n];
int[] cc = new int[n];
int na = 0, nb = 0, nc = 0;
for (int i = 0; i < n; i++) {
st = new StringTokenizer(br.readLine());
int a = Integer.parseInt(st.nextToken());
int g = Integer.parseInt(st.nextToken());
if (g == 1)
aa[na++] = a;
else if (g == 2)
bb[nb++] = a;
else
cc[nc++] = a;
}
int[][][] dp = init(n, na, nb, nc);
int[][][] dab = solve2(aa, bb, t, na, nb);
int[][] dc = solve1(cc, t, nc);
int ans = 0;
for (int tab = 0; tab <= t; tab++) {
int tc = t - tab;
for (int ma = 0; ma <= na; ma++)
for (int mb = 0; mb <= nb; mb++) {
int xab = dab[tab][ma][mb];
if (xab == 0)
continue;
for (int mc = 0; mc <= nc; mc++) {
int xc = dc[tc][mc];
if (xc == 0)
continue;
ans = (int) ((ans + (long) xab * xc % MD * dp[ma][mb][mc]) % MD);
}
}
}
System.out.println(ans);
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
// https://codeforces.com/contest/1185/submission/55800229 (rainboy)
import java.io.*;
import java.util.*;
public class CF1185G2 {
static final int MD = 1000000007;
static int[][] solve1(int[] aa, int t, int n) {
int[][] da = new int[t + 1][n + 1];
da[0][0] = 1;
for (int i = 0; i < n; i++) {
int a = aa[i];
for (int s = t - 1; s >= 0; s--)
for (int m = 0; m < n; m++) {
int x = da[s][m];
if (x != 0) {
int s_ = s + a;
if (s_ <= t)
da[s_][m + 1] = (da[s_][m + 1] + x) % MD;
}
}
}
return da;
}
static int[][][] solve2(int[] aa, int[] bb, int t, int na, int nb) {
int[][] da = solve1(aa, t, na);
int[][][] dab = new int[t + 1][na + 1][nb + 1];
for (int s = 0; s <= t; s++)
for (int ma = 0; ma <= na; ma++)
dab[s][ma][0] = da[s][ma];
for (int i = 0; i < nb; i++) {
int b = bb[i];
for (int s = t - 1; s >= 0; s--)
for (int ma = 0; ma <= na; ma++)
for (int mb = 0; mb < nb; mb++) {
int x = dab[s][ma][mb];
if (x != 0) {
int s_ = s + b;
if (s_ <= t)
dab[s_][ma][mb + 1] = (dab[s_][ma][mb + 1] + x) % MD;
}
}
}
return dab;
}
static int[][][] init(int n, int na, int nb, int nc) {
int[][][] dp = new int[na + 1][nb + 1][nc + 1];
int[][][][] dq = new int[na + 1][nb + 1][nc + 1][3];
for (int ma = 0; ma <= na; ma++)
for (int mb = 0; mb <= nb; mb++)
for (int mc = 0; mc <= nc; mc++)
if (ma == 0 && mb == 0 && mc == 0) {
dp[ma][mb][mc] = 1;
dq[ma][mb][mc][0] = dq[ma][mb][mc][1] = dq[ma][mb][mc][2] = 1;
} else {
int x0 = ma > 0 ? (int) ((long) dq[ma - 1][mb][mc][0] * ma % MD) : 0;
int x1 = mb > 0 ? (int) ((long) dq[ma][mb - 1][mc][1] * mb % MD) : 0;
int x2 = mc > 0 ? (int) ((long) dq[ma][mb][mc - 1][2] * mc % MD) : 0;
dp[ma][mb][mc] = (int) (((long) x0 + x1 + x2) % MD);
dq[ma][mb][mc][0] = (x1 + x2) % MD;
dq[ma][mb][mc][1] = (x2 + x0) % MD;
dq[ma][mb][mc][2] = (x0 + x1) % MD;
}
return dp;
}
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(br.readLine());
int n = Integer.parseInt(st.nextToken());
int t = Integer.parseInt(st.nextToken());
int[] aa = new int[n];
int[] bb = new int[n];
int[] cc = new int[n];
int na = 0, nb = 0, nc = 0;
for (int i = 0; i < n; i++) {
st = new StringTokenizer(br.readLine());
int a = Integer.parseInt(st.nextToken());
int g = Integer.parseInt(st.nextToken());
if (g == 1)
aa[na++] = a;
else if (g == 2)
bb[nb++] = a;
else
cc[nc++] = a;
}
int[][][] dp = init(n, na, nb, nc);
int[][][] dab = solve2(aa, bb, t, na, nb);
int[][] dc = solve1(cc, t, nc);
int ans = 0;
for (int tab = 0; tab <= t; tab++) {
int tc = t - tab;
for (int ma = 0; ma <= na; ma++)
for (int mb = 0; mb <= nb; mb++) {
int xab = dab[tab][ma][mb];
if (xab == 0)
continue;
for (int mc = 0; mc <= nc; mc++) {
int xc = dc[tc][mc];
if (xc == 0)
continue;
ans = (int) ((ans + (long) xab * xc % MD * dp[ma][mb][mc]) % MD);
}
}
}
System.out.println(ans);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
// https://codeforces.com/contest/1185/submission/55800229 (rainboy)
import java.io.*;
import java.util.*;
public class CF1185G2 {
static final int MD = 1000000007;
static int[][] solve1(int[] aa, int t, int n) {
int[][] da = new int[t + 1][n + 1];
da[0][0] = 1;
for (int i = 0; i < n; i++) {
int a = aa[i];
for (int s = t - 1; s >= 0; s--)
for (int m = 0; m < n; m++) {
int x = da[s][m];
if (x != 0) {
int s_ = s + a;
if (s_ <= t)
da[s_][m + 1] = (da[s_][m + 1] + x) % MD;
}
}
}
return da;
}
static int[][][] solve2(int[] aa, int[] bb, int t, int na, int nb) {
int[][] da = solve1(aa, t, na);
int[][][] dab = new int[t + 1][na + 1][nb + 1];
for (int s = 0; s <= t; s++)
for (int ma = 0; ma <= na; ma++)
dab[s][ma][0] = da[s][ma];
for (int i = 0; i < nb; i++) {
int b = bb[i];
for (int s = t - 1; s >= 0; s--)
for (int ma = 0; ma <= na; ma++)
for (int mb = 0; mb < nb; mb++) {
int x = dab[s][ma][mb];
if (x != 0) {
int s_ = s + b;
if (s_ <= t)
dab[s_][ma][mb + 1] = (dab[s_][ma][mb + 1] + x) % MD;
}
}
}
return dab;
}
static int[][][] init(int n, int na, int nb, int nc) {
int[][][] dp = new int[na + 1][nb + 1][nc + 1];
int[][][][] dq = new int[na + 1][nb + 1][nc + 1][3];
for (int ma = 0; ma <= na; ma++)
for (int mb = 0; mb <= nb; mb++)
for (int mc = 0; mc <= nc; mc++)
if (ma == 0 && mb == 0 && mc == 0) {
dp[ma][mb][mc] = 1;
dq[ma][mb][mc][0] = dq[ma][mb][mc][1] = dq[ma][mb][mc][2] = 1;
} else {
int x0 = ma > 0 ? (int) ((long) dq[ma - 1][mb][mc][0] * ma % MD) : 0;
int x1 = mb > 0 ? (int) ((long) dq[ma][mb - 1][mc][1] * mb % MD) : 0;
int x2 = mc > 0 ? (int) ((long) dq[ma][mb][mc - 1][2] * mc % MD) : 0;
dp[ma][mb][mc] = (int) (((long) x0 + x1 + x2) % MD);
dq[ma][mb][mc][0] = (x1 + x2) % MD;
dq[ma][mb][mc][1] = (x2 + x0) % MD;
dq[ma][mb][mc][2] = (x0 + x1) % MD;
}
return dp;
}
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(br.readLine());
int n = Integer.parseInt(st.nextToken());
int t = Integer.parseInt(st.nextToken());
int[] aa = new int[n];
int[] bb = new int[n];
int[] cc = new int[n];
int na = 0, nb = 0, nc = 0;
for (int i = 0; i < n; i++) {
st = new StringTokenizer(br.readLine());
int a = Integer.parseInt(st.nextToken());
int g = Integer.parseInt(st.nextToken());
if (g == 1)
aa[na++] = a;
else if (g == 2)
bb[nb++] = a;
else
cc[nc++] = a;
}
int[][][] dp = init(n, na, nb, nc);
int[][][] dab = solve2(aa, bb, t, na, nb);
int[][] dc = solve1(cc, t, nc);
int ans = 0;
for (int tab = 0; tab <= t; tab++) {
int tc = t - tab;
for (int ma = 0; ma <= na; ma++)
for (int mb = 0; mb <= nb; mb++) {
int xab = dab[tab][ma][mb];
if (xab == 0)
continue;
for (int mc = 0; mc <= nc; mc++) {
int xc = dc[tc][mc];
if (xc == 0)
continue;
ans = (int) ((ans + (long) xab * xc % MD * dp[ma][mb][mc]) % MD);
}
}
}
System.out.println(ans);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,644 | 3,707 |
2,166 |
import static java.lang.Integer.parseInt;
import static java.lang.Long.parseLong;
import static java.lang.Math.abs;
import static java.lang.Math.max;
import static java.lang.Math.sqrt;
import static java.lang.System.exit;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Locale;
import java.util.StringTokenizer;
public class C {
static int sqr(int x) {
return x * x;
}
static void solve() throws Exception {
int n = scanInt();
int r = scanInt();
int x[] = new int[n];
double y[] = new double[n];
for (int i = 0; i < n; i++) {
int cx = x[i] = scanInt();
double cy = r;
for (int j = 0; j < i; j++) {
if (abs(cx - x[j]) <= 2 * r) {
cy = max(cy, y[j] + sqrt(sqr(2 * r) - sqr(cx - x[j])));
}
}
y[i] = cy;
if (i > 0) {
out.print(' ');
}
out.printf(Locale.US, "%.9f", cy);
}
}
static int scanInt() throws IOException {
return parseInt(scanString());
}
static long scanLong() throws IOException {
return parseLong(scanString());
}
static String scanString() throws IOException {
while (tok == null || !tok.hasMoreTokens()) {
tok = new StringTokenizer(in.readLine());
}
return tok.nextToken();
}
static BufferedReader in;
static PrintWriter out;
static StringTokenizer tok;
public static void main(String[] args) {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
in.close();
out.close();
} catch (Throwable e) {
e.printStackTrace();
exit(1);
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import static java.lang.Integer.parseInt;
import static java.lang.Long.parseLong;
import static java.lang.Math.abs;
import static java.lang.Math.max;
import static java.lang.Math.sqrt;
import static java.lang.System.exit;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Locale;
import java.util.StringTokenizer;
public class C {
static int sqr(int x) {
return x * x;
}
static void solve() throws Exception {
int n = scanInt();
int r = scanInt();
int x[] = new int[n];
double y[] = new double[n];
for (int i = 0; i < n; i++) {
int cx = x[i] = scanInt();
double cy = r;
for (int j = 0; j < i; j++) {
if (abs(cx - x[j]) <= 2 * r) {
cy = max(cy, y[j] + sqrt(sqr(2 * r) - sqr(cx - x[j])));
}
}
y[i] = cy;
if (i > 0) {
out.print(' ');
}
out.printf(Locale.US, "%.9f", cy);
}
}
static int scanInt() throws IOException {
return parseInt(scanString());
}
static long scanLong() throws IOException {
return parseLong(scanString());
}
static String scanString() throws IOException {
while (tok == null || !tok.hasMoreTokens()) {
tok = new StringTokenizer(in.readLine());
}
return tok.nextToken();
}
static BufferedReader in;
static PrintWriter out;
static StringTokenizer tok;
public static void main(String[] args) {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
in.close();
out.close();
} catch (Throwable e) {
e.printStackTrace();
exit(1);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import static java.lang.Integer.parseInt;
import static java.lang.Long.parseLong;
import static java.lang.Math.abs;
import static java.lang.Math.max;
import static java.lang.Math.sqrt;
import static java.lang.System.exit;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Locale;
import java.util.StringTokenizer;
public class C {
static int sqr(int x) {
return x * x;
}
static void solve() throws Exception {
int n = scanInt();
int r = scanInt();
int x[] = new int[n];
double y[] = new double[n];
for (int i = 0; i < n; i++) {
int cx = x[i] = scanInt();
double cy = r;
for (int j = 0; j < i; j++) {
if (abs(cx - x[j]) <= 2 * r) {
cy = max(cy, y[j] + sqrt(sqr(2 * r) - sqr(cx - x[j])));
}
}
y[i] = cy;
if (i > 0) {
out.print(' ');
}
out.printf(Locale.US, "%.9f", cy);
}
}
static int scanInt() throws IOException {
return parseInt(scanString());
}
static long scanLong() throws IOException {
return parseLong(scanString());
}
static String scanString() throws IOException {
while (tok == null || !tok.hasMoreTokens()) {
tok = new StringTokenizer(in.readLine());
}
return tok.nextToken();
}
static BufferedReader in;
static PrintWriter out;
static StringTokenizer tok;
public static void main(String[] args) {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
in.close();
out.close();
} catch (Throwable e) {
e.printStackTrace();
exit(1);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 772 | 2,162 |
1,827 |
import java.io.*;
import java.util.*;
public class CF159DIV2 {
FastScanner in;
PrintWriter out;
void solve() {
int n = in.nextInt();
int m = in.nextInt();
int k = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = in.nextInt();
Arrays.sort(a);
for (int i = 0; i < a.length / 2; i++) {
int tmp = a[i];
a[i] = a[n - i - 1];
a[n - i - 1] = tmp;
}
int need = m;
int have = k;
int ans = 0;
int it = 0;
while (have < need) {
have += a[it++] - 1;
ans++;
if (it >= n) break;
}
if (have >= need) {
out.println(ans);
} else {
out.println(-1);
}
}
void run() {
try {
in = new FastScanner(new File("object.in"));
out = new PrintWriter(new File("object.out"));
solve();
out.close();
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
void runIO() {
in = new FastScanner(System.in);
out = new PrintWriter(System.out);
solve();
out.close();
}
class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(File f) {
try {
br = new BufferedReader(new FileReader(f));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
public FastScanner(InputStream f) {
br = new BufferedReader(new InputStreamReader(f));
}
String next() {
while (st == null || !st.hasMoreTokens()) {
String s = null;
try {
s = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
if (s == null)
return null;
st = new StringTokenizer(s);
}
return st.nextToken();
}
boolean hasMoreTokens() {
while (st == null || !st.hasMoreTokens()) {
String s = null;
try {
s = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
if (s == null)
return false;
st = new StringTokenizer(s);
}
return true;
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
public static void main(String[] args) {
new CF159DIV2().runIO();
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class CF159DIV2 {
FastScanner in;
PrintWriter out;
void solve() {
int n = in.nextInt();
int m = in.nextInt();
int k = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = in.nextInt();
Arrays.sort(a);
for (int i = 0; i < a.length / 2; i++) {
int tmp = a[i];
a[i] = a[n - i - 1];
a[n - i - 1] = tmp;
}
int need = m;
int have = k;
int ans = 0;
int it = 0;
while (have < need) {
have += a[it++] - 1;
ans++;
if (it >= n) break;
}
if (have >= need) {
out.println(ans);
} else {
out.println(-1);
}
}
void run() {
try {
in = new FastScanner(new File("object.in"));
out = new PrintWriter(new File("object.out"));
solve();
out.close();
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
void runIO() {
in = new FastScanner(System.in);
out = new PrintWriter(System.out);
solve();
out.close();
}
class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(File f) {
try {
br = new BufferedReader(new FileReader(f));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
public FastScanner(InputStream f) {
br = new BufferedReader(new InputStreamReader(f));
}
String next() {
while (st == null || !st.hasMoreTokens()) {
String s = null;
try {
s = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
if (s == null)
return null;
st = new StringTokenizer(s);
}
return st.nextToken();
}
boolean hasMoreTokens() {
while (st == null || !st.hasMoreTokens()) {
String s = null;
try {
s = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
if (s == null)
return false;
st = new StringTokenizer(s);
}
return true;
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
public static void main(String[] args) {
new CF159DIV2().runIO();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class CF159DIV2 {
FastScanner in;
PrintWriter out;
void solve() {
int n = in.nextInt();
int m = in.nextInt();
int k = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = in.nextInt();
Arrays.sort(a);
for (int i = 0; i < a.length / 2; i++) {
int tmp = a[i];
a[i] = a[n - i - 1];
a[n - i - 1] = tmp;
}
int need = m;
int have = k;
int ans = 0;
int it = 0;
while (have < need) {
have += a[it++] - 1;
ans++;
if (it >= n) break;
}
if (have >= need) {
out.println(ans);
} else {
out.println(-1);
}
}
void run() {
try {
in = new FastScanner(new File("object.in"));
out = new PrintWriter(new File("object.out"));
solve();
out.close();
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
void runIO() {
in = new FastScanner(System.in);
out = new PrintWriter(System.out);
solve();
out.close();
}
class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(File f) {
try {
br = new BufferedReader(new FileReader(f));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
public FastScanner(InputStream f) {
br = new BufferedReader(new InputStreamReader(f));
}
String next() {
while (st == null || !st.hasMoreTokens()) {
String s = null;
try {
s = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
if (s == null)
return null;
st = new StringTokenizer(s);
}
return st.nextToken();
}
boolean hasMoreTokens() {
while (st == null || !st.hasMoreTokens()) {
String s = null;
try {
s = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
if (s == null)
return false;
st = new StringTokenizer(s);
}
return true;
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
public static void main(String[] args) {
new CF159DIV2().runIO();
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 951 | 1,823 |
1,685 |
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner in =new Scanner(System.in);
int n = in.nextInt();
int k = in.nextInt();
int[] arr = new int[n];
for(int i = 0; i < n; i++)
arr[i] = in.nextInt();
for(int i = n-1; i > 0; i--)
arr[i] -= arr[i-1];
arr[0] = 0;
Arrays.sort(arr);
long sum = 0;
for(int i = n-k; i >= 0; i--)
sum += arr[i];
System.out.println(sum);
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner in =new Scanner(System.in);
int n = in.nextInt();
int k = in.nextInt();
int[] arr = new int[n];
for(int i = 0; i < n; i++)
arr[i] = in.nextInt();
for(int i = n-1; i > 0; i--)
arr[i] -= arr[i-1];
arr[0] = 0;
Arrays.sort(arr);
long sum = 0;
for(int i = n-k; i >= 0; i--)
sum += arr[i];
System.out.println(sum);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner in =new Scanner(System.in);
int n = in.nextInt();
int k = in.nextInt();
int[] arr = new int[n];
for(int i = 0; i < n; i++)
arr[i] = in.nextInt();
for(int i = n-1; i > 0; i--)
arr[i] -= arr[i-1];
arr[0] = 0;
Arrays.sort(arr);
long sum = 0;
for(int i = n-k; i >= 0; i--)
sum += arr[i];
System.out.println(sum);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 478 | 1,682 |
620 |
import java.util.*;
import org.omg.CORBA.INTERNAL;
import java.awt.List;
import java.io.*;
import java.lang.*;
import java.lang.reflect.Array;
public class code1
{
public static long[][] cnt;
public static void main(String[] args)
{
InputReader in = new InputReader(System.in);
PrintWriter pw = new PrintWriter(System.out);
//Code starts..
int n = in.nextInt();
long d = in.nextInt();
long[] a = new long[n];
for(int i=0; i<n; i++)
a[i] = in.nextLong();
int ans = 0;
//ans++;
HashSet<Long> set = new HashSet<>();
/*set.add(a[0]-d);
if(Math.abs(a[0]+d-a[1])>=d)
{
ans++;
set.add(a[0]+d);
}
*/
for(int i=1; i<n; i++)
{
//pw.println(a[i]+" "+a[i-1]);
long dis = (long) Math.abs(a[i]-a[i-1]);
//pw.println(dis);
if(dis==2*d)
ans++;
if(dis-(long)2*d>0)
ans += 2;
}
pw.println(ans+2);
//Code ends....
pw.flush();
pw.close();
}
static class InputReader
{
private final InputStream stream;
private final byte[] buf = new byte[8192];
private int curChar, snumChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream)
{
this.stream = stream;
}
public int snext()
{
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars)
{
curChar = 0;
try
{
snumChars = stream.read(buf);
}
catch (IOException e)
{
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = snext();
}
int res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = snext();
}
long res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public int[] nextIntArray(int n)
{
int a[] = new int[n];
for (int i = 0; i < n; i++)
{
a[i] = nextInt();
}
return a;
}
public String readString()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = snext();
} while (!isSpaceChar(c));
return res.toString();
}
public String nextLine()
{
int c = snext();
while (isSpaceChar(c))
c = snext();
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = snext();
} while (!isEndOfLine(c));
return res.toString();
}
public boolean isSpaceChar(int c)
{
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c)
{
return c == '\n' || c == '\r' || c == -1;
}
public interface SpaceCharFilter
{
public boolean isSpaceChar(int ch);
}
}
public static long c = 0;
public static long mod = 1000000007;
public static int d;
public static int p;
public static int q;
public static boolean flag;
public static long INF= Long.MAX_VALUE;
public static long fun(int[] a, int[] b, int m,int n) {
long result =0;
for(int i=0; i<m; i++)
for(int j=0; j<m; j++)
{
long[] fib = new long[Math.max(2, n+2)];
fib[1] = a[i];
fib[2] = b[j];
for(int k=3; k<=n; k++)
fib[k] = (fib[k-1]%mod + fib[k-2]%mod)%mod;
result = (result%mod + fib[n]%mod)%mod;
}
return result;
}
public static double slope(pair p1, pair p2)
{
double m = INF;
if((p1.x - p2.x)!=0)
m = (p1.y - p2.y)/(p1.x - p2.x);
return Math.abs(m);
}
public static int count(String[] s, int f)
{
int count = 0;
int n = s[0].length();
if(f==1)
{
for(int i = 0; i<n; i++)
{
for(int j=0; j<n; j++)
{
if(i%2==0)
{
if(j%2==0 && s[i].charAt(j)=='0')
count++;
if(j%2==1 && s[i].charAt(j)=='1')
count++;
}
if(i%2==1)
{
if(j%2==1 && s[i].charAt(j)=='0')
count++;
if(j%2==0 && s[i].charAt(j)=='1')
count++;
}
}
}
}
else
{
count = 0;
for(int i = 0; i<n; i++)
{
for(int j=0; j<n; j++)
{
if(i%2==1)
{
if(j%2==0 && s[i].charAt(j)=='0')
count++;
if(j%2==1 && s[i].charAt(j)=='1')
count++;
}
if(i%2==0)
{
if(j%2==1 && s[i].charAt(j)=='0')
count++;
if(j%2==0 && s[i].charAt(j)=='1')
count++;
}
}
}
}
return count;
}
public static int gcd(int p2, int p22)
{
if (p2 == 0)
return (int) p22;
return gcd(p22%p2, p2);
}
public static int findGCD(int arr[], int n)
{
int result = arr[0];
for (int i=1; i<n; i++)
result = gcd(arr[i], result);
return result;
}
public static void nextGreater(long[] a, int[] ans)
{
Stack<Integer> stk = new Stack<>();
stk.push(0);
for(int i=1; i<a.length; i++)
{
if(!stk.isEmpty())
{
int s = stk.pop();
while(a[s]<a[i])
{
ans[s] = i;
if(!stk.isEmpty())
s = stk.pop();
else
break;
}
if(a[s]>=a[i])
stk.push(s);
}
stk.push(i);
}
return;
}
public static void nextGreaterRev(long[] a, int[] ans)
{
int n = a.length;
int[] pans = new int[n];
Arrays.fill(pans, -1);
long[] arev = new long[n];
for(int i=0; i<n; i++)
arev[i] = a[n-1-i];
Stack<Integer> stk = new Stack<>();
stk.push(0);
for(int i=1; i<n; i++)
{
if(!stk.isEmpty())
{
int s = stk.pop();
while(arev[s]<arev[i])
{
pans[s] = n - i-1;
if(!stk.isEmpty())
s = stk.pop();
else
break;
}
if(arev[s]>=arev[i])
stk.push(s);
}
stk.push(i);
}
//for(int i=0; i<n; i++)
//System.out.print(pans[i]+" ");
for(int i=0; i<n; i++)
ans[i] = pans[n-i-1];
return;
}
public static void nextSmaller(long[] a, int[] ans)
{
Stack<Integer> stk = new Stack<>();
stk.push(0);
for(int i=1; i<a.length; i++)
{
if(!stk.isEmpty())
{
int s = stk.pop();
while(a[s]>a[i])
{
ans[s] = i;
if(!stk.isEmpty())
s = stk.pop();
else
break;
}
if(a[s]<=a[i])
stk.push(s);
}
stk.push(i);
}
return;
}
public static long lcm(int[] numbers) {
long lcm = 1;
int divisor = 2;
while (true) {
int cnt = 0;
boolean divisible = false;
for (int i = 0; i < numbers.length; i++) {
if (numbers[i] == 0) {
return 0;
} else if (numbers[i] < 0) {
numbers[i] = numbers[i] * (-1);
}
if (numbers[i] == 1) {
cnt++;
}
if (numbers[i] % divisor == 0) {
divisible = true;
numbers[i] = numbers[i] / divisor;
}
}
if (divisible) {
lcm = lcm * divisor;
} else {
divisor++;
}
if (cnt == numbers.length) {
return lcm;
}
}
}
public static long fact(long n) {
long factorial = 1;
for(int i = 1; i <= n; i++)
{
factorial *= i;
}
return factorial;
}
public static void factSieve(int[] a, int n) {
for(int i=2; i<=n; i+=2)
a[i] = 2;
for(int i=3; i<=n; i+=2)
{
if(a[i]==0)
{
a[i] = i;
for(int j=i; j*i<=n; j++)
{
a[i*j] = i;
}
}
}
int k = 1000;
while(k!=1)
{
System.out.print(a[k]+" ");
k /= a[k];
}
}
public static int lowerLimit(int[] a, int n) {
int ans = 0;
int ll = 0;
int rl = a.length-1;
// System.out.println(a[rl]+" "+n);
if(a[0]>n)
return 0;
if(a[0]==n)
return 1;
else if(a[rl]<=n)
return rl+1;
while(ll<=rl)
{
int mid = (ll+rl)/2;
if(a[mid]==n)
{
ans = mid + 1;
break;
}
else if(a[mid]>n)
{
rl = mid-1;
}
else
{
ans = mid+1;
ll = mid+1;
}
}
return ans;
}
public static long choose(long total, long choose){
if(total < choose)
return 0;
if(choose == 0 || choose == total)
return 1;
return (choose(total-1,choose-1)+choose(total-1,choose))%mod;
}
public static int[] suffle(int[] a,Random gen)
{
int n = a.length;
for(int i=0;i<n;i++)
{
int ind = gen.nextInt(n-i)+i;
int temp = a[ind];
a[ind] = a[i];
a[i] = temp;
}
return a;
}
public static long[] sort(long[] a)
{
Random gen = new Random();
int n = a.length;
for(int i=0;i<n;i++)
{
int ind = gen.nextInt(n-i)+i;
long temp = a[ind];
a[ind] = a[i];
a[i] = temp;
}
Arrays.sort(a);
return a;
}
public static pair[] sort(pair[] a)
{
Random gen = new Random();
int n = a.length;
for(int i=0;i<n;i++)
{
int ind = gen.nextInt(n-i)+i;
pair temp = a[ind];
a[ind] = a[i];
a[i] = temp;
}
Arrays.sort(a);
return a;
}
public static int[] sort(int[] a)
{
Random gen = new Random();
int n = a.length;
for(int i=0;i<n;i++)
{
int ind = gen.nextInt(n-i)+i;
int temp = a[ind];
a[ind] = a[i];
a[i] = temp;
}
Arrays.sort(a);
return a;
}
public static int floorSearch(int arr[], int low, int high, int x)
{
if (low > high)
return -1;
if (x > arr[high])
return high;
int mid = (low+high)/2;
if (mid > 0 && arr[mid-1] < x && x < arr[mid])
return mid-1;
if (x < arr[mid])
return floorSearch(arr, low, mid-1, x);
return floorSearch(arr, mid+1, high, x);
}
public static void swap(int a, int b){
int temp = a;
a = b;
b = temp;
}
public static ArrayList<Integer> primeFactorization(int n)
{
ArrayList<Integer> a =new ArrayList<Integer>();
for(int i=2;i*i<=n;i++)
{
while(n%i==0)
{
a.add(i);
n/=i;
}
}
if(n!=1)
a.add(n);
return a;
}
public static void sieve(boolean[] isPrime,int n)
{
for(int i=1;i<n;i++)
isPrime[i] = true;
isPrime[0] = false;
isPrime[1] = false;
for(int i=2;i*i<n;i++)
{
if(isPrime[i] == true)
{
for(int j=(2*i);j<n;j+=i)
isPrime[j] = false;
}
}
}
public static int lowerbound(ArrayList<Long> net, long c2) {
int i=Collections.binarySearch(net, c2);
if(i<0)
i = -(i+2);
return i;
}
public static int lowerboundArray(long[] psum, long c2) {
int i=Arrays.binarySearch(psum, c2);
if(i<0)
i = -(i+2);
return i;
}
public static int lowerboundArray(int[] psum, int c2) {
int i=Arrays.binarySearch(psum, c2);
if(i<0)
i = -(i+2);
return i;
}
public static int uperboundArray(long[] psum, long c2) {
int i=Arrays.binarySearch(psum, c2);
if(i<0)
i = -(i+1);
return i;
}
public static int uperbound(ArrayList<Long> net, long c2) {
int i=Collections.binarySearch(net, c2);
if(i<0)
i = -(i+1);
return i;
}
public static int GCD(int a,int b)
{
if(b==0)
return a;
else
return GCD(b,a%b);
}
public static long GCD(long a,long b)
{
if(b==0)
return a;
else
return GCD(b,a%b);
}
public static void extendedEuclid(int A,int B)
{
if(B==0)
{
d = A;
p = 1 ;
q = 0;
}
else
{
extendedEuclid(B, A%B);
int temp = p;
p = q;
q = temp - (A/B)*q;
}
}
public static long LCM(long a,long b)
{
return (a*b)/GCD(a,b);
}
public static int LCM(int a,int b)
{
return (a*b)/GCD(a,b);
}
public static int binaryExponentiation(int x,int n)
{
int result=1;
while(n>0)
{
if(n % 2 ==1)
result=result * x;
x=x*x;
n=n/2;
}
return result;
}
public static int[] countDer(int n)
{
int der[] = new int[n + 1];
der[0] = 1;
der[1] = 0;
der[2] = 1;
for (int i = 3; i <= n; ++i)
der[i] = (i - 1) * (der[i - 1] + der[i - 2]);
// Return result for n
return der;
}
static long binomialCoeff(int n, int k)
{
long C[][] = new long[n+1][k+1];
int i, j;
// Calculate value of Binomial Coefficient in bottom up manner
for (i = 0; i <= n; i++)
{
for (j = 0; j <= Math.min(i, k); j++)
{
// Base Cases
if (j == 0 || j == i)
C[i][j] = 1;
// Calculate value using previosly stored values
else
C[i][j] = C[i-1][j-1] + C[i-1][j];
}
}
return C[n][k];
}
public static long binaryExponentiation(long x,long n)
{
long result=1;
while(n>0)
{
if(n % 2 ==1)
result=result * x;
x=(x%mod * x%mod)%mod;
n=n/2;
}
return result;
}
public static int modularExponentiation(int x,int n,int M)
{
int result=1;
while(n>0)
{
if(n % 2 ==1)
result=(result * x)%M;
x=(x%M*x%M)%M;
n=n/2;
}
return result;
}
public static long modularExponentiation(long x,long n,long M)
{
long result=1;
while(n>0)
{
if(n % 2 ==1)
result=(result %M* x%M)%M;
x=(x*x)%M;
n=n/2;
}
return result;
}
public static int modInverse(int A,int M)
{
return modularExponentiation(A,M-2,M);
}
public static long modInverse(long A,long M)
{
return modularExponentiation(A,M-2,M);
}
public static boolean checkYear(int year)
{
if (year % 400 == 0)
return true;
if (year % 100 == 0)
return false;
if (year % 4 == 0)
return true;
return false;
}
public static boolean isPrime(int n)
{
if (n <= 1) return false;
if (n <= 3) return true;
if (n%2 == 0 || n%3 == 0)
return false;
for (int i=5; i*i<=n; i=i+6)
{
if (n%i == 0 || n%(i+2) == 0)
return false;
}
return true;
}
static class pair implements Comparable<pair>
{
Long x, y;
pair(long x, long y) {
this.x = x;
this.y = y;
}
public int compareTo(pair o) {
int result = x.compareTo(o.x);
if (result == 0)
result = y.compareTo(o.y);
return result;
}
public String toString() {
return x + " " + y;
}
public boolean equals(Object o) {
if (o instanceof pair) {
pair p = (pair) o;
if(p.x-x==0 && p.y-y==0)
return true;
else
return false;
}
return false;
}
public int hashCode() {
return new Long(x).hashCode() * 31 + new Long(y).hashCode();
}
}
static class triplet implements Comparable<triplet>
{
Integer x,y;
Long z;
triplet(Integer l,Integer m,long z)
{
this.x = l;
this.y = m;
this.z = z;
}
public int compareTo(triplet o)
{
int result = x.compareTo(o.x);
if(result==0)
result = y.compareTo(o.y);
if(result==0)
result = z.compareTo(o.z);
return result;
}
public boolean equlas(Object o)
{
if(o instanceof triplet)
{
triplet p = (triplet)o;
return x==p.x && y==p.y && z==p.z;
}
return false;
}
public String toString()
{
return x+" "+y+" "+z;
}
public int hashCode()
{
return new Long(x).hashCode()*31 + new Long(y).hashCode() + new Long(z).hashCode();
}
}
static class spair implements Comparable<spair>
{
String x;
Integer y;
spair(String x, int y) {
this.x = x;
this.y = y;
}
public int compareTo(spair o) {
String s1 = x + o.x;
String s2 = o.x + x;
long p1 = cnt[y][0] + cnt[o.y][0];
long p2 = p1;
p1 += cnt[y][1] * cnt[o.y][2];
p2 += cnt[o.y][1] * cnt[y][2];
if(p1==p2)
return 0;
if(p1>p2)
return -1;
return 1;
}
public String toString() {
return x + " " + y;
}
/*public boolean equals(Object o) {
if (o instanceof pair) {
pair p = (pair) o;
return p.x == x && p.y == y;
}
return false;
}
public int hashCode() {
return new Long(x).hashCode() * 31 + new Long(y).hashCode();
}
}
/*static class node implements Comparable<node>
{
Integer x, y, z;
node(int x,int y, int z)
{
this.x=x;
this.y=y;
this.z=z;
}
public int compareTo(pair o) {
int result = x.compareTo(o.x);
if(result==0)
result = y.compareTo(o.y);
if(result==0)
result = z.compareTo(z);
return result;
}
@Override
public int compareTo(node o) {
// TODO Auto-generated method stub
return 0;
}
}
*/
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import org.omg.CORBA.INTERNAL;
import java.awt.List;
import java.io.*;
import java.lang.*;
import java.lang.reflect.Array;
public class code1
{
public static long[][] cnt;
public static void main(String[] args)
{
InputReader in = new InputReader(System.in);
PrintWriter pw = new PrintWriter(System.out);
//Code starts..
int n = in.nextInt();
long d = in.nextInt();
long[] a = new long[n];
for(int i=0; i<n; i++)
a[i] = in.nextLong();
int ans = 0;
//ans++;
HashSet<Long> set = new HashSet<>();
/*set.add(a[0]-d);
if(Math.abs(a[0]+d-a[1])>=d)
{
ans++;
set.add(a[0]+d);
}
*/
for(int i=1; i<n; i++)
{
//pw.println(a[i]+" "+a[i-1]);
long dis = (long) Math.abs(a[i]-a[i-1]);
//pw.println(dis);
if(dis==2*d)
ans++;
if(dis-(long)2*d>0)
ans += 2;
}
pw.println(ans+2);
//Code ends....
pw.flush();
pw.close();
}
static class InputReader
{
private final InputStream stream;
private final byte[] buf = new byte[8192];
private int curChar, snumChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream)
{
this.stream = stream;
}
public int snext()
{
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars)
{
curChar = 0;
try
{
snumChars = stream.read(buf);
}
catch (IOException e)
{
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = snext();
}
int res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = snext();
}
long res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public int[] nextIntArray(int n)
{
int a[] = new int[n];
for (int i = 0; i < n; i++)
{
a[i] = nextInt();
}
return a;
}
public String readString()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = snext();
} while (!isSpaceChar(c));
return res.toString();
}
public String nextLine()
{
int c = snext();
while (isSpaceChar(c))
c = snext();
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = snext();
} while (!isEndOfLine(c));
return res.toString();
}
public boolean isSpaceChar(int c)
{
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c)
{
return c == '\n' || c == '\r' || c == -1;
}
public interface SpaceCharFilter
{
public boolean isSpaceChar(int ch);
}
}
public static long c = 0;
public static long mod = 1000000007;
public static int d;
public static int p;
public static int q;
public static boolean flag;
public static long INF= Long.MAX_VALUE;
public static long fun(int[] a, int[] b, int m,int n) {
long result =0;
for(int i=0; i<m; i++)
for(int j=0; j<m; j++)
{
long[] fib = new long[Math.max(2, n+2)];
fib[1] = a[i];
fib[2] = b[j];
for(int k=3; k<=n; k++)
fib[k] = (fib[k-1]%mod + fib[k-2]%mod)%mod;
result = (result%mod + fib[n]%mod)%mod;
}
return result;
}
public static double slope(pair p1, pair p2)
{
double m = INF;
if((p1.x - p2.x)!=0)
m = (p1.y - p2.y)/(p1.x - p2.x);
return Math.abs(m);
}
public static int count(String[] s, int f)
{
int count = 0;
int n = s[0].length();
if(f==1)
{
for(int i = 0; i<n; i++)
{
for(int j=0; j<n; j++)
{
if(i%2==0)
{
if(j%2==0 && s[i].charAt(j)=='0')
count++;
if(j%2==1 && s[i].charAt(j)=='1')
count++;
}
if(i%2==1)
{
if(j%2==1 && s[i].charAt(j)=='0')
count++;
if(j%2==0 && s[i].charAt(j)=='1')
count++;
}
}
}
}
else
{
count = 0;
for(int i = 0; i<n; i++)
{
for(int j=0; j<n; j++)
{
if(i%2==1)
{
if(j%2==0 && s[i].charAt(j)=='0')
count++;
if(j%2==1 && s[i].charAt(j)=='1')
count++;
}
if(i%2==0)
{
if(j%2==1 && s[i].charAt(j)=='0')
count++;
if(j%2==0 && s[i].charAt(j)=='1')
count++;
}
}
}
}
return count;
}
public static int gcd(int p2, int p22)
{
if (p2 == 0)
return (int) p22;
return gcd(p22%p2, p2);
}
public static int findGCD(int arr[], int n)
{
int result = arr[0];
for (int i=1; i<n; i++)
result = gcd(arr[i], result);
return result;
}
public static void nextGreater(long[] a, int[] ans)
{
Stack<Integer> stk = new Stack<>();
stk.push(0);
for(int i=1; i<a.length; i++)
{
if(!stk.isEmpty())
{
int s = stk.pop();
while(a[s]<a[i])
{
ans[s] = i;
if(!stk.isEmpty())
s = stk.pop();
else
break;
}
if(a[s]>=a[i])
stk.push(s);
}
stk.push(i);
}
return;
}
public static void nextGreaterRev(long[] a, int[] ans)
{
int n = a.length;
int[] pans = new int[n];
Arrays.fill(pans, -1);
long[] arev = new long[n];
for(int i=0; i<n; i++)
arev[i] = a[n-1-i];
Stack<Integer> stk = new Stack<>();
stk.push(0);
for(int i=1; i<n; i++)
{
if(!stk.isEmpty())
{
int s = stk.pop();
while(arev[s]<arev[i])
{
pans[s] = n - i-1;
if(!stk.isEmpty())
s = stk.pop();
else
break;
}
if(arev[s]>=arev[i])
stk.push(s);
}
stk.push(i);
}
//for(int i=0; i<n; i++)
//System.out.print(pans[i]+" ");
for(int i=0; i<n; i++)
ans[i] = pans[n-i-1];
return;
}
public static void nextSmaller(long[] a, int[] ans)
{
Stack<Integer> stk = new Stack<>();
stk.push(0);
for(int i=1; i<a.length; i++)
{
if(!stk.isEmpty())
{
int s = stk.pop();
while(a[s]>a[i])
{
ans[s] = i;
if(!stk.isEmpty())
s = stk.pop();
else
break;
}
if(a[s]<=a[i])
stk.push(s);
}
stk.push(i);
}
return;
}
public static long lcm(int[] numbers) {
long lcm = 1;
int divisor = 2;
while (true) {
int cnt = 0;
boolean divisible = false;
for (int i = 0; i < numbers.length; i++) {
if (numbers[i] == 0) {
return 0;
} else if (numbers[i] < 0) {
numbers[i] = numbers[i] * (-1);
}
if (numbers[i] == 1) {
cnt++;
}
if (numbers[i] % divisor == 0) {
divisible = true;
numbers[i] = numbers[i] / divisor;
}
}
if (divisible) {
lcm = lcm * divisor;
} else {
divisor++;
}
if (cnt == numbers.length) {
return lcm;
}
}
}
public static long fact(long n) {
long factorial = 1;
for(int i = 1; i <= n; i++)
{
factorial *= i;
}
return factorial;
}
public static void factSieve(int[] a, int n) {
for(int i=2; i<=n; i+=2)
a[i] = 2;
for(int i=3; i<=n; i+=2)
{
if(a[i]==0)
{
a[i] = i;
for(int j=i; j*i<=n; j++)
{
a[i*j] = i;
}
}
}
int k = 1000;
while(k!=1)
{
System.out.print(a[k]+" ");
k /= a[k];
}
}
public static int lowerLimit(int[] a, int n) {
int ans = 0;
int ll = 0;
int rl = a.length-1;
// System.out.println(a[rl]+" "+n);
if(a[0]>n)
return 0;
if(a[0]==n)
return 1;
else if(a[rl]<=n)
return rl+1;
while(ll<=rl)
{
int mid = (ll+rl)/2;
if(a[mid]==n)
{
ans = mid + 1;
break;
}
else if(a[mid]>n)
{
rl = mid-1;
}
else
{
ans = mid+1;
ll = mid+1;
}
}
return ans;
}
public static long choose(long total, long choose){
if(total < choose)
return 0;
if(choose == 0 || choose == total)
return 1;
return (choose(total-1,choose-1)+choose(total-1,choose))%mod;
}
public static int[] suffle(int[] a,Random gen)
{
int n = a.length;
for(int i=0;i<n;i++)
{
int ind = gen.nextInt(n-i)+i;
int temp = a[ind];
a[ind] = a[i];
a[i] = temp;
}
return a;
}
public static long[] sort(long[] a)
{
Random gen = new Random();
int n = a.length;
for(int i=0;i<n;i++)
{
int ind = gen.nextInt(n-i)+i;
long temp = a[ind];
a[ind] = a[i];
a[i] = temp;
}
Arrays.sort(a);
return a;
}
public static pair[] sort(pair[] a)
{
Random gen = new Random();
int n = a.length;
for(int i=0;i<n;i++)
{
int ind = gen.nextInt(n-i)+i;
pair temp = a[ind];
a[ind] = a[i];
a[i] = temp;
}
Arrays.sort(a);
return a;
}
public static int[] sort(int[] a)
{
Random gen = new Random();
int n = a.length;
for(int i=0;i<n;i++)
{
int ind = gen.nextInt(n-i)+i;
int temp = a[ind];
a[ind] = a[i];
a[i] = temp;
}
Arrays.sort(a);
return a;
}
public static int floorSearch(int arr[], int low, int high, int x)
{
if (low > high)
return -1;
if (x > arr[high])
return high;
int mid = (low+high)/2;
if (mid > 0 && arr[mid-1] < x && x < arr[mid])
return mid-1;
if (x < arr[mid])
return floorSearch(arr, low, mid-1, x);
return floorSearch(arr, mid+1, high, x);
}
public static void swap(int a, int b){
int temp = a;
a = b;
b = temp;
}
public static ArrayList<Integer> primeFactorization(int n)
{
ArrayList<Integer> a =new ArrayList<Integer>();
for(int i=2;i*i<=n;i++)
{
while(n%i==0)
{
a.add(i);
n/=i;
}
}
if(n!=1)
a.add(n);
return a;
}
public static void sieve(boolean[] isPrime,int n)
{
for(int i=1;i<n;i++)
isPrime[i] = true;
isPrime[0] = false;
isPrime[1] = false;
for(int i=2;i*i<n;i++)
{
if(isPrime[i] == true)
{
for(int j=(2*i);j<n;j+=i)
isPrime[j] = false;
}
}
}
public static int lowerbound(ArrayList<Long> net, long c2) {
int i=Collections.binarySearch(net, c2);
if(i<0)
i = -(i+2);
return i;
}
public static int lowerboundArray(long[] psum, long c2) {
int i=Arrays.binarySearch(psum, c2);
if(i<0)
i = -(i+2);
return i;
}
public static int lowerboundArray(int[] psum, int c2) {
int i=Arrays.binarySearch(psum, c2);
if(i<0)
i = -(i+2);
return i;
}
public static int uperboundArray(long[] psum, long c2) {
int i=Arrays.binarySearch(psum, c2);
if(i<0)
i = -(i+1);
return i;
}
public static int uperbound(ArrayList<Long> net, long c2) {
int i=Collections.binarySearch(net, c2);
if(i<0)
i = -(i+1);
return i;
}
public static int GCD(int a,int b)
{
if(b==0)
return a;
else
return GCD(b,a%b);
}
public static long GCD(long a,long b)
{
if(b==0)
return a;
else
return GCD(b,a%b);
}
public static void extendedEuclid(int A,int B)
{
if(B==0)
{
d = A;
p = 1 ;
q = 0;
}
else
{
extendedEuclid(B, A%B);
int temp = p;
p = q;
q = temp - (A/B)*q;
}
}
public static long LCM(long a,long b)
{
return (a*b)/GCD(a,b);
}
public static int LCM(int a,int b)
{
return (a*b)/GCD(a,b);
}
public static int binaryExponentiation(int x,int n)
{
int result=1;
while(n>0)
{
if(n % 2 ==1)
result=result * x;
x=x*x;
n=n/2;
}
return result;
}
public static int[] countDer(int n)
{
int der[] = new int[n + 1];
der[0] = 1;
der[1] = 0;
der[2] = 1;
for (int i = 3; i <= n; ++i)
der[i] = (i - 1) * (der[i - 1] + der[i - 2]);
// Return result for n
return der;
}
static long binomialCoeff(int n, int k)
{
long C[][] = new long[n+1][k+1];
int i, j;
// Calculate value of Binomial Coefficient in bottom up manner
for (i = 0; i <= n; i++)
{
for (j = 0; j <= Math.min(i, k); j++)
{
// Base Cases
if (j == 0 || j == i)
C[i][j] = 1;
// Calculate value using previosly stored values
else
C[i][j] = C[i-1][j-1] + C[i-1][j];
}
}
return C[n][k];
}
public static long binaryExponentiation(long x,long n)
{
long result=1;
while(n>0)
{
if(n % 2 ==1)
result=result * x;
x=(x%mod * x%mod)%mod;
n=n/2;
}
return result;
}
public static int modularExponentiation(int x,int n,int M)
{
int result=1;
while(n>0)
{
if(n % 2 ==1)
result=(result * x)%M;
x=(x%M*x%M)%M;
n=n/2;
}
return result;
}
public static long modularExponentiation(long x,long n,long M)
{
long result=1;
while(n>0)
{
if(n % 2 ==1)
result=(result %M* x%M)%M;
x=(x*x)%M;
n=n/2;
}
return result;
}
public static int modInverse(int A,int M)
{
return modularExponentiation(A,M-2,M);
}
public static long modInverse(long A,long M)
{
return modularExponentiation(A,M-2,M);
}
public static boolean checkYear(int year)
{
if (year % 400 == 0)
return true;
if (year % 100 == 0)
return false;
if (year % 4 == 0)
return true;
return false;
}
public static boolean isPrime(int n)
{
if (n <= 1) return false;
if (n <= 3) return true;
if (n%2 == 0 || n%3 == 0)
return false;
for (int i=5; i*i<=n; i=i+6)
{
if (n%i == 0 || n%(i+2) == 0)
return false;
}
return true;
}
static class pair implements Comparable<pair>
{
Long x, y;
pair(long x, long y) {
this.x = x;
this.y = y;
}
public int compareTo(pair o) {
int result = x.compareTo(o.x);
if (result == 0)
result = y.compareTo(o.y);
return result;
}
public String toString() {
return x + " " + y;
}
public boolean equals(Object o) {
if (o instanceof pair) {
pair p = (pair) o;
if(p.x-x==0 && p.y-y==0)
return true;
else
return false;
}
return false;
}
public int hashCode() {
return new Long(x).hashCode() * 31 + new Long(y).hashCode();
}
}
static class triplet implements Comparable<triplet>
{
Integer x,y;
Long z;
triplet(Integer l,Integer m,long z)
{
this.x = l;
this.y = m;
this.z = z;
}
public int compareTo(triplet o)
{
int result = x.compareTo(o.x);
if(result==0)
result = y.compareTo(o.y);
if(result==0)
result = z.compareTo(o.z);
return result;
}
public boolean equlas(Object o)
{
if(o instanceof triplet)
{
triplet p = (triplet)o;
return x==p.x && y==p.y && z==p.z;
}
return false;
}
public String toString()
{
return x+" "+y+" "+z;
}
public int hashCode()
{
return new Long(x).hashCode()*31 + new Long(y).hashCode() + new Long(z).hashCode();
}
}
static class spair implements Comparable<spair>
{
String x;
Integer y;
spair(String x, int y) {
this.x = x;
this.y = y;
}
public int compareTo(spair o) {
String s1 = x + o.x;
String s2 = o.x + x;
long p1 = cnt[y][0] + cnt[o.y][0];
long p2 = p1;
p1 += cnt[y][1] * cnt[o.y][2];
p2 += cnt[o.y][1] * cnt[y][2];
if(p1==p2)
return 0;
if(p1>p2)
return -1;
return 1;
}
public String toString() {
return x + " " + y;
}
/*public boolean equals(Object o) {
if (o instanceof pair) {
pair p = (pair) o;
return p.x == x && p.y == y;
}
return false;
}
public int hashCode() {
return new Long(x).hashCode() * 31 + new Long(y).hashCode();
}
}
/*static class node implements Comparable<node>
{
Integer x, y, z;
node(int x,int y, int z)
{
this.x=x;
this.y=y;
this.z=z;
}
public int compareTo(pair o) {
int result = x.compareTo(o.x);
if(result==0)
result = y.compareTo(o.y);
if(result==0)
result = z.compareTo(z);
return result;
}
@Override
public int compareTo(node o) {
// TODO Auto-generated method stub
return 0;
}
}
*/
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import org.omg.CORBA.INTERNAL;
import java.awt.List;
import java.io.*;
import java.lang.*;
import java.lang.reflect.Array;
public class code1
{
public static long[][] cnt;
public static void main(String[] args)
{
InputReader in = new InputReader(System.in);
PrintWriter pw = new PrintWriter(System.out);
//Code starts..
int n = in.nextInt();
long d = in.nextInt();
long[] a = new long[n];
for(int i=0; i<n; i++)
a[i] = in.nextLong();
int ans = 0;
//ans++;
HashSet<Long> set = new HashSet<>();
/*set.add(a[0]-d);
if(Math.abs(a[0]+d-a[1])>=d)
{
ans++;
set.add(a[0]+d);
}
*/
for(int i=1; i<n; i++)
{
//pw.println(a[i]+" "+a[i-1]);
long dis = (long) Math.abs(a[i]-a[i-1]);
//pw.println(dis);
if(dis==2*d)
ans++;
if(dis-(long)2*d>0)
ans += 2;
}
pw.println(ans+2);
//Code ends....
pw.flush();
pw.close();
}
static class InputReader
{
private final InputStream stream;
private final byte[] buf = new byte[8192];
private int curChar, snumChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream)
{
this.stream = stream;
}
public int snext()
{
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars)
{
curChar = 0;
try
{
snumChars = stream.read(buf);
}
catch (IOException e)
{
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = snext();
}
int res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = snext();
}
long res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public int[] nextIntArray(int n)
{
int a[] = new int[n];
for (int i = 0; i < n; i++)
{
a[i] = nextInt();
}
return a;
}
public String readString()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = snext();
} while (!isSpaceChar(c));
return res.toString();
}
public String nextLine()
{
int c = snext();
while (isSpaceChar(c))
c = snext();
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = snext();
} while (!isEndOfLine(c));
return res.toString();
}
public boolean isSpaceChar(int c)
{
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c)
{
return c == '\n' || c == '\r' || c == -1;
}
public interface SpaceCharFilter
{
public boolean isSpaceChar(int ch);
}
}
public static long c = 0;
public static long mod = 1000000007;
public static int d;
public static int p;
public static int q;
public static boolean flag;
public static long INF= Long.MAX_VALUE;
public static long fun(int[] a, int[] b, int m,int n) {
long result =0;
for(int i=0; i<m; i++)
for(int j=0; j<m; j++)
{
long[] fib = new long[Math.max(2, n+2)];
fib[1] = a[i];
fib[2] = b[j];
for(int k=3; k<=n; k++)
fib[k] = (fib[k-1]%mod + fib[k-2]%mod)%mod;
result = (result%mod + fib[n]%mod)%mod;
}
return result;
}
public static double slope(pair p1, pair p2)
{
double m = INF;
if((p1.x - p2.x)!=0)
m = (p1.y - p2.y)/(p1.x - p2.x);
return Math.abs(m);
}
public static int count(String[] s, int f)
{
int count = 0;
int n = s[0].length();
if(f==1)
{
for(int i = 0; i<n; i++)
{
for(int j=0; j<n; j++)
{
if(i%2==0)
{
if(j%2==0 && s[i].charAt(j)=='0')
count++;
if(j%2==1 && s[i].charAt(j)=='1')
count++;
}
if(i%2==1)
{
if(j%2==1 && s[i].charAt(j)=='0')
count++;
if(j%2==0 && s[i].charAt(j)=='1')
count++;
}
}
}
}
else
{
count = 0;
for(int i = 0; i<n; i++)
{
for(int j=0; j<n; j++)
{
if(i%2==1)
{
if(j%2==0 && s[i].charAt(j)=='0')
count++;
if(j%2==1 && s[i].charAt(j)=='1')
count++;
}
if(i%2==0)
{
if(j%2==1 && s[i].charAt(j)=='0')
count++;
if(j%2==0 && s[i].charAt(j)=='1')
count++;
}
}
}
}
return count;
}
public static int gcd(int p2, int p22)
{
if (p2 == 0)
return (int) p22;
return gcd(p22%p2, p2);
}
public static int findGCD(int arr[], int n)
{
int result = arr[0];
for (int i=1; i<n; i++)
result = gcd(arr[i], result);
return result;
}
public static void nextGreater(long[] a, int[] ans)
{
Stack<Integer> stk = new Stack<>();
stk.push(0);
for(int i=1; i<a.length; i++)
{
if(!stk.isEmpty())
{
int s = stk.pop();
while(a[s]<a[i])
{
ans[s] = i;
if(!stk.isEmpty())
s = stk.pop();
else
break;
}
if(a[s]>=a[i])
stk.push(s);
}
stk.push(i);
}
return;
}
public static void nextGreaterRev(long[] a, int[] ans)
{
int n = a.length;
int[] pans = new int[n];
Arrays.fill(pans, -1);
long[] arev = new long[n];
for(int i=0; i<n; i++)
arev[i] = a[n-1-i];
Stack<Integer> stk = new Stack<>();
stk.push(0);
for(int i=1; i<n; i++)
{
if(!stk.isEmpty())
{
int s = stk.pop();
while(arev[s]<arev[i])
{
pans[s] = n - i-1;
if(!stk.isEmpty())
s = stk.pop();
else
break;
}
if(arev[s]>=arev[i])
stk.push(s);
}
stk.push(i);
}
//for(int i=0; i<n; i++)
//System.out.print(pans[i]+" ");
for(int i=0; i<n; i++)
ans[i] = pans[n-i-1];
return;
}
public static void nextSmaller(long[] a, int[] ans)
{
Stack<Integer> stk = new Stack<>();
stk.push(0);
for(int i=1; i<a.length; i++)
{
if(!stk.isEmpty())
{
int s = stk.pop();
while(a[s]>a[i])
{
ans[s] = i;
if(!stk.isEmpty())
s = stk.pop();
else
break;
}
if(a[s]<=a[i])
stk.push(s);
}
stk.push(i);
}
return;
}
public static long lcm(int[] numbers) {
long lcm = 1;
int divisor = 2;
while (true) {
int cnt = 0;
boolean divisible = false;
for (int i = 0; i < numbers.length; i++) {
if (numbers[i] == 0) {
return 0;
} else if (numbers[i] < 0) {
numbers[i] = numbers[i] * (-1);
}
if (numbers[i] == 1) {
cnt++;
}
if (numbers[i] % divisor == 0) {
divisible = true;
numbers[i] = numbers[i] / divisor;
}
}
if (divisible) {
lcm = lcm * divisor;
} else {
divisor++;
}
if (cnt == numbers.length) {
return lcm;
}
}
}
public static long fact(long n) {
long factorial = 1;
for(int i = 1; i <= n; i++)
{
factorial *= i;
}
return factorial;
}
public static void factSieve(int[] a, int n) {
for(int i=2; i<=n; i+=2)
a[i] = 2;
for(int i=3; i<=n; i+=2)
{
if(a[i]==0)
{
a[i] = i;
for(int j=i; j*i<=n; j++)
{
a[i*j] = i;
}
}
}
int k = 1000;
while(k!=1)
{
System.out.print(a[k]+" ");
k /= a[k];
}
}
public static int lowerLimit(int[] a, int n) {
int ans = 0;
int ll = 0;
int rl = a.length-1;
// System.out.println(a[rl]+" "+n);
if(a[0]>n)
return 0;
if(a[0]==n)
return 1;
else if(a[rl]<=n)
return rl+1;
while(ll<=rl)
{
int mid = (ll+rl)/2;
if(a[mid]==n)
{
ans = mid + 1;
break;
}
else if(a[mid]>n)
{
rl = mid-1;
}
else
{
ans = mid+1;
ll = mid+1;
}
}
return ans;
}
public static long choose(long total, long choose){
if(total < choose)
return 0;
if(choose == 0 || choose == total)
return 1;
return (choose(total-1,choose-1)+choose(total-1,choose))%mod;
}
public static int[] suffle(int[] a,Random gen)
{
int n = a.length;
for(int i=0;i<n;i++)
{
int ind = gen.nextInt(n-i)+i;
int temp = a[ind];
a[ind] = a[i];
a[i] = temp;
}
return a;
}
public static long[] sort(long[] a)
{
Random gen = new Random();
int n = a.length;
for(int i=0;i<n;i++)
{
int ind = gen.nextInt(n-i)+i;
long temp = a[ind];
a[ind] = a[i];
a[i] = temp;
}
Arrays.sort(a);
return a;
}
public static pair[] sort(pair[] a)
{
Random gen = new Random();
int n = a.length;
for(int i=0;i<n;i++)
{
int ind = gen.nextInt(n-i)+i;
pair temp = a[ind];
a[ind] = a[i];
a[i] = temp;
}
Arrays.sort(a);
return a;
}
public static int[] sort(int[] a)
{
Random gen = new Random();
int n = a.length;
for(int i=0;i<n;i++)
{
int ind = gen.nextInt(n-i)+i;
int temp = a[ind];
a[ind] = a[i];
a[i] = temp;
}
Arrays.sort(a);
return a;
}
public static int floorSearch(int arr[], int low, int high, int x)
{
if (low > high)
return -1;
if (x > arr[high])
return high;
int mid = (low+high)/2;
if (mid > 0 && arr[mid-1] < x && x < arr[mid])
return mid-1;
if (x < arr[mid])
return floorSearch(arr, low, mid-1, x);
return floorSearch(arr, mid+1, high, x);
}
public static void swap(int a, int b){
int temp = a;
a = b;
b = temp;
}
public static ArrayList<Integer> primeFactorization(int n)
{
ArrayList<Integer> a =new ArrayList<Integer>();
for(int i=2;i*i<=n;i++)
{
while(n%i==0)
{
a.add(i);
n/=i;
}
}
if(n!=1)
a.add(n);
return a;
}
public static void sieve(boolean[] isPrime,int n)
{
for(int i=1;i<n;i++)
isPrime[i] = true;
isPrime[0] = false;
isPrime[1] = false;
for(int i=2;i*i<n;i++)
{
if(isPrime[i] == true)
{
for(int j=(2*i);j<n;j+=i)
isPrime[j] = false;
}
}
}
public static int lowerbound(ArrayList<Long> net, long c2) {
int i=Collections.binarySearch(net, c2);
if(i<0)
i = -(i+2);
return i;
}
public static int lowerboundArray(long[] psum, long c2) {
int i=Arrays.binarySearch(psum, c2);
if(i<0)
i = -(i+2);
return i;
}
public static int lowerboundArray(int[] psum, int c2) {
int i=Arrays.binarySearch(psum, c2);
if(i<0)
i = -(i+2);
return i;
}
public static int uperboundArray(long[] psum, long c2) {
int i=Arrays.binarySearch(psum, c2);
if(i<0)
i = -(i+1);
return i;
}
public static int uperbound(ArrayList<Long> net, long c2) {
int i=Collections.binarySearch(net, c2);
if(i<0)
i = -(i+1);
return i;
}
public static int GCD(int a,int b)
{
if(b==0)
return a;
else
return GCD(b,a%b);
}
public static long GCD(long a,long b)
{
if(b==0)
return a;
else
return GCD(b,a%b);
}
public static void extendedEuclid(int A,int B)
{
if(B==0)
{
d = A;
p = 1 ;
q = 0;
}
else
{
extendedEuclid(B, A%B);
int temp = p;
p = q;
q = temp - (A/B)*q;
}
}
public static long LCM(long a,long b)
{
return (a*b)/GCD(a,b);
}
public static int LCM(int a,int b)
{
return (a*b)/GCD(a,b);
}
public static int binaryExponentiation(int x,int n)
{
int result=1;
while(n>0)
{
if(n % 2 ==1)
result=result * x;
x=x*x;
n=n/2;
}
return result;
}
public static int[] countDer(int n)
{
int der[] = new int[n + 1];
der[0] = 1;
der[1] = 0;
der[2] = 1;
for (int i = 3; i <= n; ++i)
der[i] = (i - 1) * (der[i - 1] + der[i - 2]);
// Return result for n
return der;
}
static long binomialCoeff(int n, int k)
{
long C[][] = new long[n+1][k+1];
int i, j;
// Calculate value of Binomial Coefficient in bottom up manner
for (i = 0; i <= n; i++)
{
for (j = 0; j <= Math.min(i, k); j++)
{
// Base Cases
if (j == 0 || j == i)
C[i][j] = 1;
// Calculate value using previosly stored values
else
C[i][j] = C[i-1][j-1] + C[i-1][j];
}
}
return C[n][k];
}
public static long binaryExponentiation(long x,long n)
{
long result=1;
while(n>0)
{
if(n % 2 ==1)
result=result * x;
x=(x%mod * x%mod)%mod;
n=n/2;
}
return result;
}
public static int modularExponentiation(int x,int n,int M)
{
int result=1;
while(n>0)
{
if(n % 2 ==1)
result=(result * x)%M;
x=(x%M*x%M)%M;
n=n/2;
}
return result;
}
public static long modularExponentiation(long x,long n,long M)
{
long result=1;
while(n>0)
{
if(n % 2 ==1)
result=(result %M* x%M)%M;
x=(x*x)%M;
n=n/2;
}
return result;
}
public static int modInverse(int A,int M)
{
return modularExponentiation(A,M-2,M);
}
public static long modInverse(long A,long M)
{
return modularExponentiation(A,M-2,M);
}
public static boolean checkYear(int year)
{
if (year % 400 == 0)
return true;
if (year % 100 == 0)
return false;
if (year % 4 == 0)
return true;
return false;
}
public static boolean isPrime(int n)
{
if (n <= 1) return false;
if (n <= 3) return true;
if (n%2 == 0 || n%3 == 0)
return false;
for (int i=5; i*i<=n; i=i+6)
{
if (n%i == 0 || n%(i+2) == 0)
return false;
}
return true;
}
static class pair implements Comparable<pair>
{
Long x, y;
pair(long x, long y) {
this.x = x;
this.y = y;
}
public int compareTo(pair o) {
int result = x.compareTo(o.x);
if (result == 0)
result = y.compareTo(o.y);
return result;
}
public String toString() {
return x + " " + y;
}
public boolean equals(Object o) {
if (o instanceof pair) {
pair p = (pair) o;
if(p.x-x==0 && p.y-y==0)
return true;
else
return false;
}
return false;
}
public int hashCode() {
return new Long(x).hashCode() * 31 + new Long(y).hashCode();
}
}
static class triplet implements Comparable<triplet>
{
Integer x,y;
Long z;
triplet(Integer l,Integer m,long z)
{
this.x = l;
this.y = m;
this.z = z;
}
public int compareTo(triplet o)
{
int result = x.compareTo(o.x);
if(result==0)
result = y.compareTo(o.y);
if(result==0)
result = z.compareTo(o.z);
return result;
}
public boolean equlas(Object o)
{
if(o instanceof triplet)
{
triplet p = (triplet)o;
return x==p.x && y==p.y && z==p.z;
}
return false;
}
public String toString()
{
return x+" "+y+" "+z;
}
public int hashCode()
{
return new Long(x).hashCode()*31 + new Long(y).hashCode() + new Long(z).hashCode();
}
}
static class spair implements Comparable<spair>
{
String x;
Integer y;
spair(String x, int y) {
this.x = x;
this.y = y;
}
public int compareTo(spair o) {
String s1 = x + o.x;
String s2 = o.x + x;
long p1 = cnt[y][0] + cnt[o.y][0];
long p2 = p1;
p1 += cnt[y][1] * cnt[o.y][2];
p2 += cnt[o.y][1] * cnt[y][2];
if(p1==p2)
return 0;
if(p1>p2)
return -1;
return 1;
}
public String toString() {
return x + " " + y;
}
/*public boolean equals(Object o) {
if (o instanceof pair) {
pair p = (pair) o;
return p.x == x && p.y == y;
}
return false;
}
public int hashCode() {
return new Long(x).hashCode() * 31 + new Long(y).hashCode();
}
}
/*static class node implements Comparable<node>
{
Integer x, y, z;
node(int x,int y, int z)
{
this.x=x;
this.y=y;
this.z=z;
}
public int compareTo(pair o) {
int result = x.compareTo(o.x);
if(result==0)
result = y.compareTo(o.y);
if(result==0)
result = z.compareTo(z);
return result;
}
@Override
public int compareTo(node o) {
// TODO Auto-generated method stub
return 0;
}
}
*/
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 6,324 | 619 |
1,879 |
//package educational.round34;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.util.Random;
public class D {
InputStream is;
PrintWriter out;
String INPUT = "";
void solve()
{
int n = ni();
int[] a = na(n);
int[] xs = new int[3*n];
for(int i = 0;i < n;i++){
xs[3*i] = a[i];
xs[3*i+1] = a[i]-1;
xs[3*i+2] = a[i]+1;
}
xs = shuffle(xs, new Random());
int[] imap = shrinkX(xs);
BigInteger ans = BigInteger.valueOf(0L);
{
int[] ft = new int[3*n+3];
for(int i = 0;i < n;i++){
int y = Arrays.binarySearch(imap, a[i]);
int num =
i - sumFenwick(ft, y + 1) + sumFenwick(ft, y - 2);
ans = ans.add(BigInteger.valueOf((long)a[i] * num));
addFenwick(ft, y, 1);
}
}
{
int[] ft = new int[3*n+3];
for(int i = n-1;i >= 0;i--){
int y = Arrays.binarySearch(imap, a[i]);
int num =
n-1-i - sumFenwick(ft, y + 1) + sumFenwick(ft, y - 2);
ans = ans.subtract(BigInteger.valueOf((long)a[i] * num));
addFenwick(ft, y, 1);
}
}
out.println(ans);
}
public static int sumFenwick(int[] ft, int i)
{
int sum = 0;
for(i++;i > 0;i -= i&-i)sum += ft[i];
return sum;
}
public static void addFenwick(int[] ft, int i, int v)
{
if(v == 0 || i < 0)return;
int n = ft.length;
for(i++;i < n;i += i&-i)ft[i] += v;
}
public static int[] shuffle(int[] a, Random gen){ for(int i = 0, n = a.length;i < n;i++){ int ind = gen.nextInt(n-i)+i; int d = a[i]; a[i] = a[ind]; a[ind] = d; } return a; }
public static int[] shrinkX(int[] a) {
int n = a.length;
long[] b = new long[n];
for (int i = 0; i < n; i++)
b[i] = (long) a[i] << 32 | i;
Arrays.sort(b);
int[] ret = new int[n];
int p = 0;
ret[0] = (int) (b[0] >> 32);
for (int i = 0; i < n; i++) {
if (i > 0 && (b[i] ^ b[i - 1]) >> 32 != 0) {
p++;
ret[p] = (int) (b[i] >> 32);
}
a[(int) b[i]] = p;
}
return Arrays.copyOf(ret, p + 1);
}
void run() throws Exception
{
is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception { new D().run(); }
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni()
{
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private boolean oj = System.getProperty("ONLINE_JUDGE") != null;
private void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); }
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
//package educational.round34;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.util.Random;
public class D {
InputStream is;
PrintWriter out;
String INPUT = "";
void solve()
{
int n = ni();
int[] a = na(n);
int[] xs = new int[3*n];
for(int i = 0;i < n;i++){
xs[3*i] = a[i];
xs[3*i+1] = a[i]-1;
xs[3*i+2] = a[i]+1;
}
xs = shuffle(xs, new Random());
int[] imap = shrinkX(xs);
BigInteger ans = BigInteger.valueOf(0L);
{
int[] ft = new int[3*n+3];
for(int i = 0;i < n;i++){
int y = Arrays.binarySearch(imap, a[i]);
int num =
i - sumFenwick(ft, y + 1) + sumFenwick(ft, y - 2);
ans = ans.add(BigInteger.valueOf((long)a[i] * num));
addFenwick(ft, y, 1);
}
}
{
int[] ft = new int[3*n+3];
for(int i = n-1;i >= 0;i--){
int y = Arrays.binarySearch(imap, a[i]);
int num =
n-1-i - sumFenwick(ft, y + 1) + sumFenwick(ft, y - 2);
ans = ans.subtract(BigInteger.valueOf((long)a[i] * num));
addFenwick(ft, y, 1);
}
}
out.println(ans);
}
public static int sumFenwick(int[] ft, int i)
{
int sum = 0;
for(i++;i > 0;i -= i&-i)sum += ft[i];
return sum;
}
public static void addFenwick(int[] ft, int i, int v)
{
if(v == 0 || i < 0)return;
int n = ft.length;
for(i++;i < n;i += i&-i)ft[i] += v;
}
public static int[] shuffle(int[] a, Random gen){ for(int i = 0, n = a.length;i < n;i++){ int ind = gen.nextInt(n-i)+i; int d = a[i]; a[i] = a[ind]; a[ind] = d; } return a; }
public static int[] shrinkX(int[] a) {
int n = a.length;
long[] b = new long[n];
for (int i = 0; i < n; i++)
b[i] = (long) a[i] << 32 | i;
Arrays.sort(b);
int[] ret = new int[n];
int p = 0;
ret[0] = (int) (b[0] >> 32);
for (int i = 0; i < n; i++) {
if (i > 0 && (b[i] ^ b[i - 1]) >> 32 != 0) {
p++;
ret[p] = (int) (b[i] >> 32);
}
a[(int) b[i]] = p;
}
return Arrays.copyOf(ret, p + 1);
}
void run() throws Exception
{
is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception { new D().run(); }
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni()
{
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private boolean oj = System.getProperty("ONLINE_JUDGE") != null;
private void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); }
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
//package educational.round34;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.util.Random;
public class D {
InputStream is;
PrintWriter out;
String INPUT = "";
void solve()
{
int n = ni();
int[] a = na(n);
int[] xs = new int[3*n];
for(int i = 0;i < n;i++){
xs[3*i] = a[i];
xs[3*i+1] = a[i]-1;
xs[3*i+2] = a[i]+1;
}
xs = shuffle(xs, new Random());
int[] imap = shrinkX(xs);
BigInteger ans = BigInteger.valueOf(0L);
{
int[] ft = new int[3*n+3];
for(int i = 0;i < n;i++){
int y = Arrays.binarySearch(imap, a[i]);
int num =
i - sumFenwick(ft, y + 1) + sumFenwick(ft, y - 2);
ans = ans.add(BigInteger.valueOf((long)a[i] * num));
addFenwick(ft, y, 1);
}
}
{
int[] ft = new int[3*n+3];
for(int i = n-1;i >= 0;i--){
int y = Arrays.binarySearch(imap, a[i]);
int num =
n-1-i - sumFenwick(ft, y + 1) + sumFenwick(ft, y - 2);
ans = ans.subtract(BigInteger.valueOf((long)a[i] * num));
addFenwick(ft, y, 1);
}
}
out.println(ans);
}
public static int sumFenwick(int[] ft, int i)
{
int sum = 0;
for(i++;i > 0;i -= i&-i)sum += ft[i];
return sum;
}
public static void addFenwick(int[] ft, int i, int v)
{
if(v == 0 || i < 0)return;
int n = ft.length;
for(i++;i < n;i += i&-i)ft[i] += v;
}
public static int[] shuffle(int[] a, Random gen){ for(int i = 0, n = a.length;i < n;i++){ int ind = gen.nextInt(n-i)+i; int d = a[i]; a[i] = a[ind]; a[ind] = d; } return a; }
public static int[] shrinkX(int[] a) {
int n = a.length;
long[] b = new long[n];
for (int i = 0; i < n; i++)
b[i] = (long) a[i] << 32 | i;
Arrays.sort(b);
int[] ret = new int[n];
int p = 0;
ret[0] = (int) (b[0] >> 32);
for (int i = 0; i < n; i++) {
if (i > 0 && (b[i] ^ b[i - 1]) >> 32 != 0) {
p++;
ret[p] = (int) (b[i] >> 32);
}
a[(int) b[i]] = p;
}
return Arrays.copyOf(ret, p + 1);
}
void run() throws Exception
{
is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception { new D().run(); }
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni()
{
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private boolean oj = System.getProperty("ONLINE_JUDGE") != null;
private void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); }
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,917 | 1,875 |
2,581 |
import java.util.*;
import java.io.*;
import java.math.*;
import java.awt.geom.*;
import static java.lang.Math.*;
public class Main implements Runnable
{
boolean multiiple = false;
void solve() throws Exception
{
int n = sc.nextInt();
ArrayList<Integer> list = new ArrayList<>();
for (int i = 0; i < n; i++)
list.add(sc.nextInt());
Collections.sort(list);
int ans = 0;
while (!list.isEmpty())
{
ans++;
int next = list.get(0);
for (int i = list.size() - 1; i >= 1; i--)
{
if (list.get(i) % next == 0)
list.remove(i);
}
list.remove(0);
}
System.out.println(ans);
}
@Override
public void run()
{
try
{
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
sc = new FastScanner(in);
if (multiiple)
{
int q = sc.nextInt();
for (int i = 0; i < q; i++)
solve();
}
else
solve();
}
catch (Throwable uncaught)
{
Main.uncaught = uncaught;
}
finally
{
out.close();
}
}
public static void main(String[] args) throws Throwable {
Thread thread = new Thread(null, new Main(), "", (1 << 26));
thread.start();
thread.join();
if (Main.uncaught != null) {
throw Main.uncaught;
}
}
static Throwable uncaught;
BufferedReader in;
FastScanner sc;
PrintWriter out;
}
class FastScanner
{
BufferedReader in;
StringTokenizer st;
public FastScanner(BufferedReader in)
{
this.in = in;
}
public String nextToken() throws Exception {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
public int nextInt() throws Exception {
return Integer.parseInt(nextToken());
}
public long nextLong() throws Exception {
return Long.parseLong(nextToken());
}
public double nextDouble() throws Exception {
return Double.parseDouble(nextToken());
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.math.*;
import java.awt.geom.*;
import static java.lang.Math.*;
public class Main implements Runnable
{
boolean multiiple = false;
void solve() throws Exception
{
int n = sc.nextInt();
ArrayList<Integer> list = new ArrayList<>();
for (int i = 0; i < n; i++)
list.add(sc.nextInt());
Collections.sort(list);
int ans = 0;
while (!list.isEmpty())
{
ans++;
int next = list.get(0);
for (int i = list.size() - 1; i >= 1; i--)
{
if (list.get(i) % next == 0)
list.remove(i);
}
list.remove(0);
}
System.out.println(ans);
}
@Override
public void run()
{
try
{
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
sc = new FastScanner(in);
if (multiiple)
{
int q = sc.nextInt();
for (int i = 0; i < q; i++)
solve();
}
else
solve();
}
catch (Throwable uncaught)
{
Main.uncaught = uncaught;
}
finally
{
out.close();
}
}
public static void main(String[] args) throws Throwable {
Thread thread = new Thread(null, new Main(), "", (1 << 26));
thread.start();
thread.join();
if (Main.uncaught != null) {
throw Main.uncaught;
}
}
static Throwable uncaught;
BufferedReader in;
FastScanner sc;
PrintWriter out;
}
class FastScanner
{
BufferedReader in;
StringTokenizer st;
public FastScanner(BufferedReader in)
{
this.in = in;
}
public String nextToken() throws Exception {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
public int nextInt() throws Exception {
return Integer.parseInt(nextToken());
}
public long nextLong() throws Exception {
return Long.parseLong(nextToken());
}
public double nextDouble() throws Exception {
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.math.*;
import java.awt.geom.*;
import static java.lang.Math.*;
public class Main implements Runnable
{
boolean multiiple = false;
void solve() throws Exception
{
int n = sc.nextInt();
ArrayList<Integer> list = new ArrayList<>();
for (int i = 0; i < n; i++)
list.add(sc.nextInt());
Collections.sort(list);
int ans = 0;
while (!list.isEmpty())
{
ans++;
int next = list.get(0);
for (int i = list.size() - 1; i >= 1; i--)
{
if (list.get(i) % next == 0)
list.remove(i);
}
list.remove(0);
}
System.out.println(ans);
}
@Override
public void run()
{
try
{
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
sc = new FastScanner(in);
if (multiiple)
{
int q = sc.nextInt();
for (int i = 0; i < q; i++)
solve();
}
else
solve();
}
catch (Throwable uncaught)
{
Main.uncaught = uncaught;
}
finally
{
out.close();
}
}
public static void main(String[] args) throws Throwable {
Thread thread = new Thread(null, new Main(), "", (1 << 26));
thread.start();
thread.join();
if (Main.uncaught != null) {
throw Main.uncaught;
}
}
static Throwable uncaught;
BufferedReader in;
FastScanner sc;
PrintWriter out;
}
class FastScanner
{
BufferedReader in;
StringTokenizer st;
public FastScanner(BufferedReader in)
{
this.in = in;
}
public String nextToken() throws Exception {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
public int nextInt() throws Exception {
return Integer.parseInt(nextToken());
}
public long nextLong() throws Exception {
return Long.parseLong(nextToken());
}
public double nextDouble() throws Exception {
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 826 | 2,575 |
490 |
import java.util.*;
import static java.lang.Math.*;
import static java.util.Arrays.*;
import static java.lang.Character.*;
import static java.lang.Double.*;
public class A {
Scanner scan = new Scanner(System.in);
void solve() {
int n = scan.nextInt();
String[]A = new String[n];
String[]B = new String[n];
int res =0;
for(int i=0;i<n;i++)A[i]=scan.next();
for(int i=0;i<n;i++)B[i]=scan.next();
for(int i=0;i<A.length;i++) {
boolean fnd = false;
for(int j=0;j<B.length;j++) {
if(A[i].equals(B[j])) {
fnd = true;
B[j]="";
break;
}
}
if(!fnd)res++;
}
System.out.println(res);
}
public static void main(String[] args) {
new A().solve();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import static java.lang.Math.*;
import static java.util.Arrays.*;
import static java.lang.Character.*;
import static java.lang.Double.*;
public class A {
Scanner scan = new Scanner(System.in);
void solve() {
int n = scan.nextInt();
String[]A = new String[n];
String[]B = new String[n];
int res =0;
for(int i=0;i<n;i++)A[i]=scan.next();
for(int i=0;i<n;i++)B[i]=scan.next();
for(int i=0;i<A.length;i++) {
boolean fnd = false;
for(int j=0;j<B.length;j++) {
if(A[i].equals(B[j])) {
fnd = true;
B[j]="";
break;
}
}
if(!fnd)res++;
}
System.out.println(res);
}
public static void main(String[] args) {
new A().solve();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import static java.lang.Math.*;
import static java.util.Arrays.*;
import static java.lang.Character.*;
import static java.lang.Double.*;
public class A {
Scanner scan = new Scanner(System.in);
void solve() {
int n = scan.nextInt();
String[]A = new String[n];
String[]B = new String[n];
int res =0;
for(int i=0;i<n;i++)A[i]=scan.next();
for(int i=0;i<n;i++)B[i]=scan.next();
for(int i=0;i<A.length;i++) {
boolean fnd = false;
for(int j=0;j<B.length;j++) {
if(A[i].equals(B[j])) {
fnd = true;
B[j]="";
break;
}
}
if(!fnd)res++;
}
System.out.println(res);
}
public static void main(String[] args) {
new A().solve();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 561 | 489 |
829 |
import java.util.LinkedList;
import java.util.Locale;
import java.util.Scanner;
public class A{
void exe(){
LinkedList<Integer> list=new LinkedList<Integer>();
for(int i=2;i<=1000;i++)
if(isPrime(i))
list.add(i);
Object[] primes=list.toArray();
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
int k=sc.nextInt();
int cnt=0;
for(int c=2;c<=n;c++){
if(!isPrime(c))
continue;
for(int i=0;i<primes.length-1;i++){
int p1=(Integer)primes[i];
int p2=(Integer)primes[i+1];
if(c==1+p1+p2){
// System.out.println("c="+c+", i="+p1+", j="+p2);
cnt++;
}
}
}
if(cnt>=k){
System.out.println("YES");
}else{
System.out.println("NO");
}
}
boolean isPrime(int n){
if(n<=1)return false;
if(n==2)return true;
if(n%2==0)return false;
int m=(int)Math.sqrt(n)+1;
for(int i=3;i<=m;i+=2)
if(n%i==0)
return false;
return true;
}
public static void main(String[] args){
Locale.setDefault(Locale.US);
new A().exe();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.LinkedList;
import java.util.Locale;
import java.util.Scanner;
public class A{
void exe(){
LinkedList<Integer> list=new LinkedList<Integer>();
for(int i=2;i<=1000;i++)
if(isPrime(i))
list.add(i);
Object[] primes=list.toArray();
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
int k=sc.nextInt();
int cnt=0;
for(int c=2;c<=n;c++){
if(!isPrime(c))
continue;
for(int i=0;i<primes.length-1;i++){
int p1=(Integer)primes[i];
int p2=(Integer)primes[i+1];
if(c==1+p1+p2){
// System.out.println("c="+c+", i="+p1+", j="+p2);
cnt++;
}
}
}
if(cnt>=k){
System.out.println("YES");
}else{
System.out.println("NO");
}
}
boolean isPrime(int n){
if(n<=1)return false;
if(n==2)return true;
if(n%2==0)return false;
int m=(int)Math.sqrt(n)+1;
for(int i=3;i<=m;i+=2)
if(n%i==0)
return false;
return true;
}
public static void main(String[] args){
Locale.setDefault(Locale.US);
new A().exe();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.LinkedList;
import java.util.Locale;
import java.util.Scanner;
public class A{
void exe(){
LinkedList<Integer> list=new LinkedList<Integer>();
for(int i=2;i<=1000;i++)
if(isPrime(i))
list.add(i);
Object[] primes=list.toArray();
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
int k=sc.nextInt();
int cnt=0;
for(int c=2;c<=n;c++){
if(!isPrime(c))
continue;
for(int i=0;i<primes.length-1;i++){
int p1=(Integer)primes[i];
int p2=(Integer)primes[i+1];
if(c==1+p1+p2){
// System.out.println("c="+c+", i="+p1+", j="+p2);
cnt++;
}
}
}
if(cnt>=k){
System.out.println("YES");
}else{
System.out.println("NO");
}
}
boolean isPrime(int n){
if(n<=1)return false;
if(n==2)return true;
if(n%2==0)return false;
int m=(int)Math.sqrt(n)+1;
for(int i=3;i<=m;i+=2)
if(n%i==0)
return false;
return true;
}
public static void main(String[] args){
Locale.setDefault(Locale.US);
new A().exe();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 646 | 828 |
1,725 |
import java.util.*;
public class a {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
double w = in.nextDouble();
int tot = 2;
Interval[] houses = new Interval[n];
for(int i=0; i<n; i++) {
double center = in.nextDouble();
double wid = in.nextDouble();
houses[i] = new Interval(center-wid/2,center+wid/2);
}
Arrays.sort(houses);
for(int i=1; i<n; i++) {
double dist = houses[i].s - houses[i-1].e;
if(dist+1e-6 >= w) {
tot+=2;
if(Math.abs(w-dist) < 1e-6)
tot--;
}
}
System.out.println(tot);
}
}
class Interval implements Comparable<Interval> {
double s, e;
Interval(double a, double b) {
s=a;
e=b;
}
public int compareTo(Interval i) {
return (int)Math.signum(s-i.s);
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class a {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
double w = in.nextDouble();
int tot = 2;
Interval[] houses = new Interval[n];
for(int i=0; i<n; i++) {
double center = in.nextDouble();
double wid = in.nextDouble();
houses[i] = new Interval(center-wid/2,center+wid/2);
}
Arrays.sort(houses);
for(int i=1; i<n; i++) {
double dist = houses[i].s - houses[i-1].e;
if(dist+1e-6 >= w) {
tot+=2;
if(Math.abs(w-dist) < 1e-6)
tot--;
}
}
System.out.println(tot);
}
}
class Interval implements Comparable<Interval> {
double s, e;
Interval(double a, double b) {
s=a;
e=b;
}
public int compareTo(Interval i) {
return (int)Math.signum(s-i.s);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
public class a {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
double w = in.nextDouble();
int tot = 2;
Interval[] houses = new Interval[n];
for(int i=0; i<n; i++) {
double center = in.nextDouble();
double wid = in.nextDouble();
houses[i] = new Interval(center-wid/2,center+wid/2);
}
Arrays.sort(houses);
for(int i=1; i<n; i++) {
double dist = houses[i].s - houses[i-1].e;
if(dist+1e-6 >= w) {
tot+=2;
if(Math.abs(w-dist) < 1e-6)
tot--;
}
}
System.out.println(tot);
}
}
class Interval implements Comparable<Interval> {
double s, e;
Interval(double a, double b) {
s=a;
e=b;
}
public int compareTo(Interval i) {
return (int)Math.signum(s-i.s);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 581 | 1,721 |
241 |
import java.util.*;
import java.math.*;
public class Solution{
private long [] sums;
private void solve(){
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int m = sc.nextInt();
int k = sc.nextInt();
int [] arr = new int[n];
this.sums = new long[n];
for(int i = 0; i < n; i++){
arr[i] = sc.nextInt();
sums[i] = arr[i] + (i == 0 ? 0 : sums[i - 1]);
}
long ans = 0;
for(int i = 1; i <= n && i <= m; i++){
ans = Math.max(ans, sum(0, i - 1) - k);
}
long [] dp = new long[n];
for(int i = 0; i < n; i++){
if(i + 1 >= m){
long cur = sum(i - m + 1, i) - k;
if(i - m >= 0){
cur += dp[i - m];
}
dp[i] = Math.max(dp[i], cur);
}
for(int j = 0; j <= m && i + j < n; j++){
ans = Math.max(ans, dp[i] + sum(i + 1, i + j) - k * (j > 0 ? 1 : 0));
}
}
System.out.println(ans);
}
private long sum(int l, int r){
if(l <= 0){
return sums[r];
}else{
return sums[r] - sums[l - 1];
}
}
public static void main(String [] args){
new Solution().solve();
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.math.*;
public class Solution{
private long [] sums;
private void solve(){
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int m = sc.nextInt();
int k = sc.nextInt();
int [] arr = new int[n];
this.sums = new long[n];
for(int i = 0; i < n; i++){
arr[i] = sc.nextInt();
sums[i] = arr[i] + (i == 0 ? 0 : sums[i - 1]);
}
long ans = 0;
for(int i = 1; i <= n && i <= m; i++){
ans = Math.max(ans, sum(0, i - 1) - k);
}
long [] dp = new long[n];
for(int i = 0; i < n; i++){
if(i + 1 >= m){
long cur = sum(i - m + 1, i) - k;
if(i - m >= 0){
cur += dp[i - m];
}
dp[i] = Math.max(dp[i], cur);
}
for(int j = 0; j <= m && i + j < n; j++){
ans = Math.max(ans, dp[i] + sum(i + 1, i + j) - k * (j > 0 ? 1 : 0));
}
}
System.out.println(ans);
}
private long sum(int l, int r){
if(l <= 0){
return sums[r];
}else{
return sums[r] - sums[l - 1];
}
}
public static void main(String [] args){
new Solution().solve();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.math.*;
public class Solution{
private long [] sums;
private void solve(){
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int m = sc.nextInt();
int k = sc.nextInt();
int [] arr = new int[n];
this.sums = new long[n];
for(int i = 0; i < n; i++){
arr[i] = sc.nextInt();
sums[i] = arr[i] + (i == 0 ? 0 : sums[i - 1]);
}
long ans = 0;
for(int i = 1; i <= n && i <= m; i++){
ans = Math.max(ans, sum(0, i - 1) - k);
}
long [] dp = new long[n];
for(int i = 0; i < n; i++){
if(i + 1 >= m){
long cur = sum(i - m + 1, i) - k;
if(i - m >= 0){
cur += dp[i - m];
}
dp[i] = Math.max(dp[i], cur);
}
for(int j = 0; j <= m && i + j < n; j++){
ans = Math.max(ans, dp[i] + sum(i + 1, i + j) - k * (j > 0 ? 1 : 0));
}
}
System.out.println(ans);
}
private long sum(int l, int r){
if(l <= 0){
return sums[r];
}else{
return sums[r] - sums[l - 1];
}
}
public static void main(String [] args){
new Solution().solve();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 707 | 241 |
167 |
import java.io.*;
import java.util.StringTokenizer;
/**
* CodeForces Round 5D. Follow Traffic Rules
* Created by Darren on 14-9-14.
*/
public class Main {
Reader in = new Reader(System.in);
PrintWriter out = new PrintWriter(System.out);
public static void main(String[] args) throws IOException {
new Main().run();
}
int a, v;
int l, d, w;
void run() throws IOException {
a = in.nextInt();
v = in.nextInt();
l = in.nextInt();
d = in.nextInt();
w = in.nextInt();
double totalTime = 0.0;
if (v >= w) {
if (w*w >= 2*a*d) {
double x = Math.sqrt(2*a*d);
totalTime = x / a;
if ((v*v-x*x) >= 2*a*(l-d))
totalTime += (-2*x+Math.sqrt(4*x*x+8*a*(l-d))) / (2*a);
else
totalTime += (v-x)/(1.0*a) + (l-d-(v*v-x*x)/(2.0*a))/v;
} else {
// totalTime = (-2*w+Math.sqrt(4*w*w+8*a*(l-d))) / (2*a);
if (2*v*v-w*w <= 2*a*d) {
totalTime = v / (1.0*a) + (v-w) / (1.0*a) + (d-(2*v*v-w*w)/(2.0*a)) / v;
} else {
double x = Math.sqrt((2*a*d+w*w)/2.0);
totalTime = x / a + (x-w) / a;
}
if ((v*v-w*w) >= 2*a*(l-d))
totalTime += (-2*w+Math.sqrt(4*w*w+8*a*(l-d))) / (2*a);
else
totalTime += (v-w)/(1.0*a) + (l-d-(v*v-w*w)/(2.0*a))/v;
}
} else {
if (v*v >= 2*a*l)
totalTime = Math.sqrt(l*2.0/a);
else
totalTime = v / (1.0*a) + (l-v*v/(2.0*a)) / v;
}
out.printf("%.10f", totalTime);
out.flush();
}
void solve() throws IOException {
}
static class Reader {
BufferedReader reader;
StringTokenizer tokenizer;
public Reader(InputStream input) {
reader = new BufferedReader(new InputStreamReader(input));
tokenizer = new StringTokenizer("");
}
/** get next word */
String nextToken() throws IOException {
while ( ! tokenizer.hasMoreTokens() ) {
//TODO add check for eof if necessary
tokenizer = new StringTokenizer( reader.readLine() );
}
return tokenizer.nextToken();
}
String readLine() throws IOException {
return reader.readLine();
}
char nextChar() throws IOException {
return (char)reader.read();
}
int nextInt() throws IOException {
return Integer.parseInt( nextToken() );
}
long nextLong() throws IOException {
return Long.parseLong( nextToken() );
}
double nextDouble() throws IOException {
return Double.parseDouble( nextToken() );
}
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.StringTokenizer;
/**
* CodeForces Round 5D. Follow Traffic Rules
* Created by Darren on 14-9-14.
*/
public class Main {
Reader in = new Reader(System.in);
PrintWriter out = new PrintWriter(System.out);
public static void main(String[] args) throws IOException {
new Main().run();
}
int a, v;
int l, d, w;
void run() throws IOException {
a = in.nextInt();
v = in.nextInt();
l = in.nextInt();
d = in.nextInt();
w = in.nextInt();
double totalTime = 0.0;
if (v >= w) {
if (w*w >= 2*a*d) {
double x = Math.sqrt(2*a*d);
totalTime = x / a;
if ((v*v-x*x) >= 2*a*(l-d))
totalTime += (-2*x+Math.sqrt(4*x*x+8*a*(l-d))) / (2*a);
else
totalTime += (v-x)/(1.0*a) + (l-d-(v*v-x*x)/(2.0*a))/v;
} else {
// totalTime = (-2*w+Math.sqrt(4*w*w+8*a*(l-d))) / (2*a);
if (2*v*v-w*w <= 2*a*d) {
totalTime = v / (1.0*a) + (v-w) / (1.0*a) + (d-(2*v*v-w*w)/(2.0*a)) / v;
} else {
double x = Math.sqrt((2*a*d+w*w)/2.0);
totalTime = x / a + (x-w) / a;
}
if ((v*v-w*w) >= 2*a*(l-d))
totalTime += (-2*w+Math.sqrt(4*w*w+8*a*(l-d))) / (2*a);
else
totalTime += (v-w)/(1.0*a) + (l-d-(v*v-w*w)/(2.0*a))/v;
}
} else {
if (v*v >= 2*a*l)
totalTime = Math.sqrt(l*2.0/a);
else
totalTime = v / (1.0*a) + (l-v*v/(2.0*a)) / v;
}
out.printf("%.10f", totalTime);
out.flush();
}
void solve() throws IOException {
}
static class Reader {
BufferedReader reader;
StringTokenizer tokenizer;
public Reader(InputStream input) {
reader = new BufferedReader(new InputStreamReader(input));
tokenizer = new StringTokenizer("");
}
/** get next word */
String nextToken() throws IOException {
while ( ! tokenizer.hasMoreTokens() ) {
//TODO add check for eof if necessary
tokenizer = new StringTokenizer( reader.readLine() );
}
return tokenizer.nextToken();
}
String readLine() throws IOException {
return reader.readLine();
}
char nextChar() throws IOException {
return (char)reader.read();
}
int nextInt() throws IOException {
return Integer.parseInt( nextToken() );
}
long nextLong() throws IOException {
return Long.parseLong( nextToken() );
}
double nextDouble() throws IOException {
return Double.parseDouble( nextToken() );
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.StringTokenizer;
/**
* CodeForces Round 5D. Follow Traffic Rules
* Created by Darren on 14-9-14.
*/
public class Main {
Reader in = new Reader(System.in);
PrintWriter out = new PrintWriter(System.out);
public static void main(String[] args) throws IOException {
new Main().run();
}
int a, v;
int l, d, w;
void run() throws IOException {
a = in.nextInt();
v = in.nextInt();
l = in.nextInt();
d = in.nextInt();
w = in.nextInt();
double totalTime = 0.0;
if (v >= w) {
if (w*w >= 2*a*d) {
double x = Math.sqrt(2*a*d);
totalTime = x / a;
if ((v*v-x*x) >= 2*a*(l-d))
totalTime += (-2*x+Math.sqrt(4*x*x+8*a*(l-d))) / (2*a);
else
totalTime += (v-x)/(1.0*a) + (l-d-(v*v-x*x)/(2.0*a))/v;
} else {
// totalTime = (-2*w+Math.sqrt(4*w*w+8*a*(l-d))) / (2*a);
if (2*v*v-w*w <= 2*a*d) {
totalTime = v / (1.0*a) + (v-w) / (1.0*a) + (d-(2*v*v-w*w)/(2.0*a)) / v;
} else {
double x = Math.sqrt((2*a*d+w*w)/2.0);
totalTime = x / a + (x-w) / a;
}
if ((v*v-w*w) >= 2*a*(l-d))
totalTime += (-2*w+Math.sqrt(4*w*w+8*a*(l-d))) / (2*a);
else
totalTime += (v-w)/(1.0*a) + (l-d-(v*v-w*w)/(2.0*a))/v;
}
} else {
if (v*v >= 2*a*l)
totalTime = Math.sqrt(l*2.0/a);
else
totalTime = v / (1.0*a) + (l-v*v/(2.0*a)) / v;
}
out.printf("%.10f", totalTime);
out.flush();
}
void solve() throws IOException {
}
static class Reader {
BufferedReader reader;
StringTokenizer tokenizer;
public Reader(InputStream input) {
reader = new BufferedReader(new InputStreamReader(input));
tokenizer = new StringTokenizer("");
}
/** get next word */
String nextToken() throws IOException {
while ( ! tokenizer.hasMoreTokens() ) {
//TODO add check for eof if necessary
tokenizer = new StringTokenizer( reader.readLine() );
}
return tokenizer.nextToken();
}
String readLine() throws IOException {
return reader.readLine();
}
char nextChar() throws IOException {
return (char)reader.read();
}
int nextInt() throws IOException {
return Integer.parseInt( nextToken() );
}
long nextLong() throws IOException {
return Long.parseLong( nextToken() );
}
double nextDouble() throws IOException {
return Double.parseDouble( nextToken() );
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,065 | 167 |
2,731 |
import java.util.Scanner;
public class Main{
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
long num = input.nextLong();
if(num==0){
System.out.println(num);
}else if(num==1||num==2){
System.out.println(num);}
else if(num%2==0&&num>2&&num%3!=0){
System.out.println(num*(num-1)*(num-3));
}
else if(num%2==0&&num%3==0){
System.out.println((num-1)*(num-2)*(num-3));
}
else{
System.out.println(num*(num-1)*(num-2));}
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class Main{
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
long num = input.nextLong();
if(num==0){
System.out.println(num);
}else if(num==1||num==2){
System.out.println(num);}
else if(num%2==0&&num>2&&num%3!=0){
System.out.println(num*(num-1)*(num-3));
}
else if(num%2==0&&num%3==0){
System.out.println((num-1)*(num-2)*(num-3));
}
else{
System.out.println(num*(num-1)*(num-2));}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class Main{
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
long num = input.nextLong();
if(num==0){
System.out.println(num);
}else if(num==1||num==2){
System.out.println(num);}
else if(num%2==0&&num>2&&num%3!=0){
System.out.println(num*(num-1)*(num-3));
}
else if(num%2==0&&num%3==0){
System.out.println((num-1)*(num-2)*(num-3));
}
else{
System.out.println(num*(num-1)*(num-2));}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 508 | 2,725 |
3,557 |
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class Main {
public static void main(String[] args) throws IOException {
BufferedReader in = new BufferedReader(new FileReader(new File("input.txt")));
PrintWriter pw = new PrintWriter(new File("output.txt"));
StringTokenizer st;
st = new StringTokenizer(in.readLine());
int n = Integer.parseInt(st.nextToken()),
m = Integer.parseInt(st.nextToken()),
k = Integer.parseInt(in.readLine());
int[][] A = new int[n][m];
st = new StringTokenizer(in.readLine());
for (int i = 0 ; i < k ; i++) {
int x1 = Integer.parseInt(st.nextToken()) - 1,
y1 = Integer.parseInt(st.nextToken()) - 1;
A[x1][y1] = -10000000;
for (int j = 0 ; j < n ; j++) {
for (int g = 0 ; g < m ; g++) {
if (A[j][g] == 0 || (A[j][g] > (Math.abs(y1 - g) + Math.abs(x1 - j)))) {
A[j][g] = (Math.abs(y1 - g) + Math.abs(x1 - j));
}
}
}
}
int f = 0, h = 0;
for (int i = 0 ; i < n ; i++) {
for (int j = 0 ; j < m ; j++) {
if (A[i][j] != -10000000) {
f = i;
h = j;
}
}
}
for (int i = 0 ; i < n ; i++) {
for (int j = 0 ; j < m ; j++) {
if (A[i][j] > A[f][h] && A[i][j] != -10000000) {
f = i;
h = j;
}
}
}
// for (int i = 0 ; i < n ; i++) for (int j = 0 ; j < m ; j++) System.out.println(A[i][j]);
pw.println((f + 1) + " " + (h + 1));
pw.close();
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class Main {
public static void main(String[] args) throws IOException {
BufferedReader in = new BufferedReader(new FileReader(new File("input.txt")));
PrintWriter pw = new PrintWriter(new File("output.txt"));
StringTokenizer st;
st = new StringTokenizer(in.readLine());
int n = Integer.parseInt(st.nextToken()),
m = Integer.parseInt(st.nextToken()),
k = Integer.parseInt(in.readLine());
int[][] A = new int[n][m];
st = new StringTokenizer(in.readLine());
for (int i = 0 ; i < k ; i++) {
int x1 = Integer.parseInt(st.nextToken()) - 1,
y1 = Integer.parseInt(st.nextToken()) - 1;
A[x1][y1] = -10000000;
for (int j = 0 ; j < n ; j++) {
for (int g = 0 ; g < m ; g++) {
if (A[j][g] == 0 || (A[j][g] > (Math.abs(y1 - g) + Math.abs(x1 - j)))) {
A[j][g] = (Math.abs(y1 - g) + Math.abs(x1 - j));
}
}
}
}
int f = 0, h = 0;
for (int i = 0 ; i < n ; i++) {
for (int j = 0 ; j < m ; j++) {
if (A[i][j] != -10000000) {
f = i;
h = j;
}
}
}
for (int i = 0 ; i < n ; i++) {
for (int j = 0 ; j < m ; j++) {
if (A[i][j] > A[f][h] && A[i][j] != -10000000) {
f = i;
h = j;
}
}
}
// for (int i = 0 ; i < n ; i++) for (int j = 0 ; j < m ; j++) System.out.println(A[i][j]);
pw.println((f + 1) + " " + (h + 1));
pw.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class Main {
public static void main(String[] args) throws IOException {
BufferedReader in = new BufferedReader(new FileReader(new File("input.txt")));
PrintWriter pw = new PrintWriter(new File("output.txt"));
StringTokenizer st;
st = new StringTokenizer(in.readLine());
int n = Integer.parseInt(st.nextToken()),
m = Integer.parseInt(st.nextToken()),
k = Integer.parseInt(in.readLine());
int[][] A = new int[n][m];
st = new StringTokenizer(in.readLine());
for (int i = 0 ; i < k ; i++) {
int x1 = Integer.parseInt(st.nextToken()) - 1,
y1 = Integer.parseInt(st.nextToken()) - 1;
A[x1][y1] = -10000000;
for (int j = 0 ; j < n ; j++) {
for (int g = 0 ; g < m ; g++) {
if (A[j][g] == 0 || (A[j][g] > (Math.abs(y1 - g) + Math.abs(x1 - j)))) {
A[j][g] = (Math.abs(y1 - g) + Math.abs(x1 - j));
}
}
}
}
int f = 0, h = 0;
for (int i = 0 ; i < n ; i++) {
for (int j = 0 ; j < m ; j++) {
if (A[i][j] != -10000000) {
f = i;
h = j;
}
}
}
for (int i = 0 ; i < n ; i++) {
for (int j = 0 ; j < m ; j++) {
if (A[i][j] > A[f][h] && A[i][j] != -10000000) {
f = i;
h = j;
}
}
}
// for (int i = 0 ; i < n ; i++) for (int j = 0 ; j < m ; j++) System.out.println(A[i][j]);
pw.println((f + 1) + " " + (h + 1));
pw.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 889 | 3,550 |
3,394 |
import java.io.BufferedReader;
import java.io.IOException;
import java.util.StringTokenizer;
import java.io.InputStreamReader;
public class Main{
public static void main(String[] args)throws IOException{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
String s=br.readLine();
int max=0;
for(int i=0;i<s.length();i++){
int len=0;
int k=i;
boolean flag=false;
for(int j=i+1;j<s.length();j++){
if(s.charAt(k)==s.charAt(j)){
len++;
k++;
flag=true;
}
else if(flag==true){
j=j-len;
k=i;
if(max<len)
max=len;
len=0;
flag=false;
}
}
if(max<len)
max=len;
}
System.out.print(max);
}}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.util.StringTokenizer;
import java.io.InputStreamReader;
public class Main{
public static void main(String[] args)throws IOException{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
String s=br.readLine();
int max=0;
for(int i=0;i<s.length();i++){
int len=0;
int k=i;
boolean flag=false;
for(int j=i+1;j<s.length();j++){
if(s.charAt(k)==s.charAt(j)){
len++;
k++;
flag=true;
}
else if(flag==true){
j=j-len;
k=i;
if(max<len)
max=len;
len=0;
flag=false;
}
}
if(max<len)
max=len;
}
System.out.print(max);
}}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.util.StringTokenizer;
import java.io.InputStreamReader;
public class Main{
public static void main(String[] args)throws IOException{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
String s=br.readLine();
int max=0;
for(int i=0;i<s.length();i++){
int len=0;
int k=i;
boolean flag=false;
for(int j=i+1;j<s.length();j++){
if(s.charAt(k)==s.charAt(j)){
len++;
k++;
flag=true;
}
else if(flag==true){
j=j-len;
k=i;
if(max<len)
max=len;
len=0;
flag=false;
}
}
if(max<len)
max=len;
}
System.out.print(max);
}}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 532 | 3,388 |
486 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.OutputStream;
import java.io.Writer;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author palayutm
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
static class TaskA {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.nextInt();
String[] a = new String[n];
String[] b = new String[n];
for (int i = 0; i < n; i++) {
a[i] = in.next();
}
for (int i = 0; i < n; i++) {
b[i] = in.next();
}
int ans = 0;
for (int i = 1; i < 5; i++) {
int a1 = 0, b1 = 0, c1 = 0;
for (int j = 0; j < n; j++) {
if (a[j].length() == i) {
if (a[j].charAt(i - 1) == 'M') {
a1++;
} else if (a[j].charAt(i - 1) == 'S') {
b1++;
} else {
c1++;
}
}
}
for (int j = 0; j < n; j++) {
if (b[j].length() == i) {
if (b[j].charAt(i - 1) == 'M') {
a1--;
} else if (b[j].charAt(i - 1) == 'S') {
b1--;
} else {
c1--;
}
}
}
if (a1 > 0) ans += a1;
if (b1 > 0) ans += b1;
if (c1 > 0) ans += c1;
}
out.println(ans);
}
}
static class InputReader {
private InputStream stream;
private byte[] inbuf = new byte[1024];
private int lenbuf = 0;
private int ptrbuf = 0;
public InputReader(InputStream stream) {
this.stream = stream;
}
private int readByte() {
if (lenbuf == -1) throw new UnknownError();
if (ptrbuf >= lenbuf) {
ptrbuf = 0;
try {
lenbuf = stream.read(inbuf);
} catch (IOException e) {
throw new UnknownError();
}
if (lenbuf <= 0) return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) {
return !(c >= 33 && c <= 126);
}
private int skip() {
int b;
while ((b = readByte()) != -1 && isSpaceChar(b)) ;
return b;
}
public String next() {
int b = skip();
StringBuilder sb = new StringBuilder();
while (!(isSpaceChar(b))) { // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
public int nextInt() {
int num = 0, b;
boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ;
if (b == '-') {
minus = true;
b = readByte();
}
while (true) {
if (b >= '0' && b <= '9') {
num = num * 10 + (b - '0');
} else {
return minus ? -num : num;
}
b = readByte();
}
}
}
static class OutputWriter extends PrintWriter {
public OutputWriter(OutputStream out) {
super(out);
}
public OutputWriter(Writer out) {
super(out);
}
public void close() {
super.close();
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.OutputStream;
import java.io.Writer;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author palayutm
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
static class TaskA {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.nextInt();
String[] a = new String[n];
String[] b = new String[n];
for (int i = 0; i < n; i++) {
a[i] = in.next();
}
for (int i = 0; i < n; i++) {
b[i] = in.next();
}
int ans = 0;
for (int i = 1; i < 5; i++) {
int a1 = 0, b1 = 0, c1 = 0;
for (int j = 0; j < n; j++) {
if (a[j].length() == i) {
if (a[j].charAt(i - 1) == 'M') {
a1++;
} else if (a[j].charAt(i - 1) == 'S') {
b1++;
} else {
c1++;
}
}
}
for (int j = 0; j < n; j++) {
if (b[j].length() == i) {
if (b[j].charAt(i - 1) == 'M') {
a1--;
} else if (b[j].charAt(i - 1) == 'S') {
b1--;
} else {
c1--;
}
}
}
if (a1 > 0) ans += a1;
if (b1 > 0) ans += b1;
if (c1 > 0) ans += c1;
}
out.println(ans);
}
}
static class InputReader {
private InputStream stream;
private byte[] inbuf = new byte[1024];
private int lenbuf = 0;
private int ptrbuf = 0;
public InputReader(InputStream stream) {
this.stream = stream;
}
private int readByte() {
if (lenbuf == -1) throw new UnknownError();
if (ptrbuf >= lenbuf) {
ptrbuf = 0;
try {
lenbuf = stream.read(inbuf);
} catch (IOException e) {
throw new UnknownError();
}
if (lenbuf <= 0) return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) {
return !(c >= 33 && c <= 126);
}
private int skip() {
int b;
while ((b = readByte()) != -1 && isSpaceChar(b)) ;
return b;
}
public String next() {
int b = skip();
StringBuilder sb = new StringBuilder();
while (!(isSpaceChar(b))) { // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
public int nextInt() {
int num = 0, b;
boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ;
if (b == '-') {
minus = true;
b = readByte();
}
while (true) {
if (b >= '0' && b <= '9') {
num = num * 10 + (b - '0');
} else {
return minus ? -num : num;
}
b = readByte();
}
}
}
static class OutputWriter extends PrintWriter {
public OutputWriter(OutputStream out) {
super(out);
}
public OutputWriter(Writer out) {
super(out);
}
public void close() {
super.close();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.OutputStream;
import java.io.Writer;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author palayutm
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
static class TaskA {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.nextInt();
String[] a = new String[n];
String[] b = new String[n];
for (int i = 0; i < n; i++) {
a[i] = in.next();
}
for (int i = 0; i < n; i++) {
b[i] = in.next();
}
int ans = 0;
for (int i = 1; i < 5; i++) {
int a1 = 0, b1 = 0, c1 = 0;
for (int j = 0; j < n; j++) {
if (a[j].length() == i) {
if (a[j].charAt(i - 1) == 'M') {
a1++;
} else if (a[j].charAt(i - 1) == 'S') {
b1++;
} else {
c1++;
}
}
}
for (int j = 0; j < n; j++) {
if (b[j].length() == i) {
if (b[j].charAt(i - 1) == 'M') {
a1--;
} else if (b[j].charAt(i - 1) == 'S') {
b1--;
} else {
c1--;
}
}
}
if (a1 > 0) ans += a1;
if (b1 > 0) ans += b1;
if (c1 > 0) ans += c1;
}
out.println(ans);
}
}
static class InputReader {
private InputStream stream;
private byte[] inbuf = new byte[1024];
private int lenbuf = 0;
private int ptrbuf = 0;
public InputReader(InputStream stream) {
this.stream = stream;
}
private int readByte() {
if (lenbuf == -1) throw new UnknownError();
if (ptrbuf >= lenbuf) {
ptrbuf = 0;
try {
lenbuf = stream.read(inbuf);
} catch (IOException e) {
throw new UnknownError();
}
if (lenbuf <= 0) return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) {
return !(c >= 33 && c <= 126);
}
private int skip() {
int b;
while ((b = readByte()) != -1 && isSpaceChar(b)) ;
return b;
}
public String next() {
int b = skip();
StringBuilder sb = new StringBuilder();
while (!(isSpaceChar(b))) { // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
public int nextInt() {
int num = 0, b;
boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ;
if (b == '-') {
minus = true;
b = readByte();
}
while (true) {
if (b >= '0' && b <= '9') {
num = num * 10 + (b - '0');
} else {
return minus ? -num : num;
}
b = readByte();
}
}
}
static class OutputWriter extends PrintWriter {
public OutputWriter(OutputStream out) {
super(out);
}
public OutputWriter(Writer out) {
super(out);
}
public void close() {
super.close();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,309 | 485 |
4,494 |
import java.util.*;
import java.io.*;
public class E {
public static void main(String[] args) {
FastScanner scanner = new FastScanner();
PrintWriter out = new PrintWriter(System.out, false);
int n = scanner.nextInt();
int m = scanner.nextInt();
char[] str = scanner.next().toCharArray();
int maxMask = 1 << m;
long[] dp = new long[maxMask];
int[][] dists = new int[m][m];
for(int i = 1; i < n; i++) {
int c1 = str[i] - 'a';
int c2 = str[i-1] - 'a';
dists[c1][c2]++;
dists[c2][c1]++;
}
int[] pre = new int[maxMask];
for(int mask = 0; mask < maxMask; mask++) {
for(int i = 0; i < m; i++) {
if (((1 << i) & mask) == 0) continue;
for(int j = 0; j < m; j++) {
if (((1 << j) & mask) > 0) continue;
pre[mask] += dists[i][j];
}
}
}
Arrays.fill(dp, Long.MAX_VALUE/4);
dp[0] = 0;
for(int mask = 0; mask < maxMask; mask++) {
if (dp[mask] == Long.MAX_VALUE/4) continue;
for(int i = 0; i < m; i++) {
if (((1 << i) & mask) > 0) continue;
int nmask = mask | (1 << i);
dp[nmask] = Math.min(dp[nmask], dp[mask] + pre[nmask]);
}
}
out.println(dp[maxMask - 1]);
out.flush();
}
public static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(Reader in) {
br = new BufferedReader(in);
}
public FastScanner() {
this(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String readNextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class E {
public static void main(String[] args) {
FastScanner scanner = new FastScanner();
PrintWriter out = new PrintWriter(System.out, false);
int n = scanner.nextInt();
int m = scanner.nextInt();
char[] str = scanner.next().toCharArray();
int maxMask = 1 << m;
long[] dp = new long[maxMask];
int[][] dists = new int[m][m];
for(int i = 1; i < n; i++) {
int c1 = str[i] - 'a';
int c2 = str[i-1] - 'a';
dists[c1][c2]++;
dists[c2][c1]++;
}
int[] pre = new int[maxMask];
for(int mask = 0; mask < maxMask; mask++) {
for(int i = 0; i < m; i++) {
if (((1 << i) & mask) == 0) continue;
for(int j = 0; j < m; j++) {
if (((1 << j) & mask) > 0) continue;
pre[mask] += dists[i][j];
}
}
}
Arrays.fill(dp, Long.MAX_VALUE/4);
dp[0] = 0;
for(int mask = 0; mask < maxMask; mask++) {
if (dp[mask] == Long.MAX_VALUE/4) continue;
for(int i = 0; i < m; i++) {
if (((1 << i) & mask) > 0) continue;
int nmask = mask | (1 << i);
dp[nmask] = Math.min(dp[nmask], dp[mask] + pre[nmask]);
}
}
out.println(dp[maxMask - 1]);
out.flush();
}
public static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(Reader in) {
br = new BufferedReader(in);
}
public FastScanner() {
this(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String readNextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class E {
public static void main(String[] args) {
FastScanner scanner = new FastScanner();
PrintWriter out = new PrintWriter(System.out, false);
int n = scanner.nextInt();
int m = scanner.nextInt();
char[] str = scanner.next().toCharArray();
int maxMask = 1 << m;
long[] dp = new long[maxMask];
int[][] dists = new int[m][m];
for(int i = 1; i < n; i++) {
int c1 = str[i] - 'a';
int c2 = str[i-1] - 'a';
dists[c1][c2]++;
dists[c2][c1]++;
}
int[] pre = new int[maxMask];
for(int mask = 0; mask < maxMask; mask++) {
for(int i = 0; i < m; i++) {
if (((1 << i) & mask) == 0) continue;
for(int j = 0; j < m; j++) {
if (((1 << j) & mask) > 0) continue;
pre[mask] += dists[i][j];
}
}
}
Arrays.fill(dp, Long.MAX_VALUE/4);
dp[0] = 0;
for(int mask = 0; mask < maxMask; mask++) {
if (dp[mask] == Long.MAX_VALUE/4) continue;
for(int i = 0; i < m; i++) {
if (((1 << i) & mask) > 0) continue;
int nmask = mask | (1 << i);
dp[nmask] = Math.min(dp[nmask], dp[mask] + pre[nmask]);
}
}
out.println(dp[maxMask - 1]);
out.flush();
}
public static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(Reader in) {
br = new BufferedReader(in);
}
public FastScanner() {
this(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String readNextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 944 | 4,483 |
2,649 |
import java.util.Arrays;
import java.util.Scanner;
public class Codeforce {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] arr = new int[n];
for(int i=0; i<n; i++) {
arr[i] = sc.nextInt();
}
int color = 0;
Arrays.sort(arr);
for(int i=0; i<n; i++) {
if(arr[i]!=0) {
int col = arr[i];
color++;
for(int j=i; j<n; j++) {
if(arr[j]%col==0) arr[j]=0;
}
}
}
System.out.println(color);
sc.close();
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
public class Codeforce {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] arr = new int[n];
for(int i=0; i<n; i++) {
arr[i] = sc.nextInt();
}
int color = 0;
Arrays.sort(arr);
for(int i=0; i<n; i++) {
if(arr[i]!=0) {
int col = arr[i];
color++;
for(int j=i; j<n; j++) {
if(arr[j]%col==0) arr[j]=0;
}
}
}
System.out.println(color);
sc.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
public class Codeforce {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] arr = new int[n];
for(int i=0; i<n; i++) {
arr[i] = sc.nextInt();
}
int color = 0;
Arrays.sort(arr);
for(int i=0; i<n; i++) {
if(arr[i]!=0) {
int col = arr[i];
color++;
for(int j=i; j<n; j++) {
if(arr[j]%col==0) arr[j]=0;
}
}
}
System.out.println(color);
sc.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 495 | 2,643 |
4,228 |
import java.util.*;
import java.math.*;
// **** E1. Rotate Columns (easy version) ****
public class E1 {
static char [] in = new char [1000000];
public static void main (String [] arg) throws Throwable {
int t = nextInt();
C : for (int ii = 0; ii<t; ++ii) {
int n = nextInt();
int m = nextInt();
Pair [] P = new Pair [n*m];
int [][] g = new int [n][m];
for (int i = 0; i<n; ++i) {
for (int j = 0; j<m; ++j) {
g[i][j] = nextInt();
P[j + m*i] = new Pair (i, j, g[i][j]);
}
}
for (int i = 0; i<P.length; ++i) if (P[i] == null) continue C;
Arrays.sort(P);
HashSet<Integer> rotcols =new HashSet<Integer>();
for (int i = 0; i<n; ++i) {
//System.err.println("Adding " + P[i].j + " , " + P[i].L);
rotcols.add(P[i].j);
}
if (n <= 3 || rotcols.size() >= 3) {
//System.err.println("EASY");
int sum = 0;
for (int i = 0; i<n && i < P.length; ++i) sum += P[i].L;
System.out.println(sum);
} else {
// n == 4
if (P.length > 4) rotcols.add(P[4].j);
//Integer [] rr = rotcols.toArray(new Integer[0]);
int [] rot = new int [rotcols.size()];
int maxmax = 0;
A : while (true) {
for (int i = 0; i<rot.length; ++i) {
rot[i]++;
if (rot[i] == n) {
rot[i] = 0;
if (i == rot.length-1) break A;
} else {
break;
}
}
int [] max = new int [n];
for (int i = 0; i<n; ++i) {
int j = 0;
for (int col : rotcols) {
max[i] = Math.max(max[i], g[(i+rot[j])%n][col]);
j++;
}
}
int sum = 0;
for (int m2 : max) sum+= m2;
maxmax = Math.max(maxmax, sum);
}
System.out.println(maxmax);
}
}
}
/************** HELPER CLASSES ***************/
//static class HS extends HashSet<Integer>{public HS(){super();}public HS(int a){super(a);}};
//static class AL extends ArrayList<Integer>{public AL(){super();}public AL(int a){super (a);}};
static class Pair implements Comparable<Pair> {
int i,j;long L; public Pair(int xx, int yy, long LL){i=xx;j=yy;L=LL;}
public int compareTo(Pair p) { return (this.L > p.L) ? -1 : (this.L == p.L) ? this.i - p.i : 1;}
}
/************** FAST IO CODE FOLLOWS *****************/
public static long nextLong() throws Throwable {
long i = System.in.read();boolean neg = false;while (i < 33) i = System.in.read();if (i == 45) {neg=true;i=48;}i = i - 48;
int j = System.in.read();while (j > 32) {i*=10;i+=j-48;j = System.in.read();}return (neg) ? -i : i;
}
public static int nextInt() throws Throwable {return (int)nextLong();}
public static String next() throws Throwable {
int i = 0; while (i < 33 && i != -1) i = System.in.read(); int cptr = 0; while (i >= 33) { in[cptr++] = (char)i; i = System.in.read();}
return new String(in, 0,cptr);
}
/**** LIBRARIES ****/
public static long gcdL(long a, long b) {while (b != 0) {long tmp = b;b = (a % b);a = tmp;}return a;}
public static int gcd(int a, int b) {while (b != 0) {int tmp = b;b = (a % b);a = tmp;}return a;}
public static int[] sieve(int LIM) {
int i,count = 0;
boolean [] b = new boolean [LIM];
for (i = 2;i<LIM; ++i) if (!b[i]) {count++; for (int j = i<<1; j<LIM; j+=i) b[j] = true;}
int [] primes = new int[count];
for (i = 2,count=0;i<LIM;++i) if (!b[i]) primes[count++] = i;
return primes;
}
public static int[] numPrimeFactors(int LIM) {
int i,count = 0;
int [] b = new int [LIM];
for (i = 2;i<LIM; ++i) if (b[i] == 0) {count++; for (int j = i; j<LIM; j+=i) b[j]++;}
return b;
}
public static StringBuilder stringFromArray(int [] a) {
StringBuilder b = new StringBuilder(9*a.length);
for (int i = 0; i<a.length; ++i) {
if (i != 0) b = b.append(' ');
b = b.append(a[i]);
}
return b;
}
public static long modPow (long a, long n, long MOD) { long S = 1; for (;n > 0; n>>=1, a=(a*a)%MOD) if ((n & 1) != 0) S = (a*S) % MOD; return S;}
}
/* Full Problem Text:
This is an easier version of the next problem.
The difference is only in constraints.
You are given a rectangular n \times m matrix a.
In one move you can choose any column and cyclically shift elements in this column.
You can perform this operation as many times as you want (possibly zero).
You can perform this operation to a column multiple times.
After you are done with cyclical shifts, you compute for every row the maximal value in it.
Suppose that for i-th row it is equal r_i.
What is the maximal possible value of r_1+r_2+...+r_n?
*/
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.math.*;
// **** E1. Rotate Columns (easy version) ****
public class E1 {
static char [] in = new char [1000000];
public static void main (String [] arg) throws Throwable {
int t = nextInt();
C : for (int ii = 0; ii<t; ++ii) {
int n = nextInt();
int m = nextInt();
Pair [] P = new Pair [n*m];
int [][] g = new int [n][m];
for (int i = 0; i<n; ++i) {
for (int j = 0; j<m; ++j) {
g[i][j] = nextInt();
P[j + m*i] = new Pair (i, j, g[i][j]);
}
}
for (int i = 0; i<P.length; ++i) if (P[i] == null) continue C;
Arrays.sort(P);
HashSet<Integer> rotcols =new HashSet<Integer>();
for (int i = 0; i<n; ++i) {
//System.err.println("Adding " + P[i].j + " , " + P[i].L);
rotcols.add(P[i].j);
}
if (n <= 3 || rotcols.size() >= 3) {
//System.err.println("EASY");
int sum = 0;
for (int i = 0; i<n && i < P.length; ++i) sum += P[i].L;
System.out.println(sum);
} else {
// n == 4
if (P.length > 4) rotcols.add(P[4].j);
//Integer [] rr = rotcols.toArray(new Integer[0]);
int [] rot = new int [rotcols.size()];
int maxmax = 0;
A : while (true) {
for (int i = 0; i<rot.length; ++i) {
rot[i]++;
if (rot[i] == n) {
rot[i] = 0;
if (i == rot.length-1) break A;
} else {
break;
}
}
int [] max = new int [n];
for (int i = 0; i<n; ++i) {
int j = 0;
for (int col : rotcols) {
max[i] = Math.max(max[i], g[(i+rot[j])%n][col]);
j++;
}
}
int sum = 0;
for (int m2 : max) sum+= m2;
maxmax = Math.max(maxmax, sum);
}
System.out.println(maxmax);
}
}
}
/************** HELPER CLASSES ***************/
//static class HS extends HashSet<Integer>{public HS(){super();}public HS(int a){super(a);}};
//static class AL extends ArrayList<Integer>{public AL(){super();}public AL(int a){super (a);}};
static class Pair implements Comparable<Pair> {
int i,j;long L; public Pair(int xx, int yy, long LL){i=xx;j=yy;L=LL;}
public int compareTo(Pair p) { return (this.L > p.L) ? -1 : (this.L == p.L) ? this.i - p.i : 1;}
}
/************** FAST IO CODE FOLLOWS *****************/
public static long nextLong() throws Throwable {
long i = System.in.read();boolean neg = false;while (i < 33) i = System.in.read();if (i == 45) {neg=true;i=48;}i = i - 48;
int j = System.in.read();while (j > 32) {i*=10;i+=j-48;j = System.in.read();}return (neg) ? -i : i;
}
public static int nextInt() throws Throwable {return (int)nextLong();}
public static String next() throws Throwable {
int i = 0; while (i < 33 && i != -1) i = System.in.read(); int cptr = 0; while (i >= 33) { in[cptr++] = (char)i; i = System.in.read();}
return new String(in, 0,cptr);
}
/**** LIBRARIES ****/
public static long gcdL(long a, long b) {while (b != 0) {long tmp = b;b = (a % b);a = tmp;}return a;}
public static int gcd(int a, int b) {while (b != 0) {int tmp = b;b = (a % b);a = tmp;}return a;}
public static int[] sieve(int LIM) {
int i,count = 0;
boolean [] b = new boolean [LIM];
for (i = 2;i<LIM; ++i) if (!b[i]) {count++; for (int j = i<<1; j<LIM; j+=i) b[j] = true;}
int [] primes = new int[count];
for (i = 2,count=0;i<LIM;++i) if (!b[i]) primes[count++] = i;
return primes;
}
public static int[] numPrimeFactors(int LIM) {
int i,count = 0;
int [] b = new int [LIM];
for (i = 2;i<LIM; ++i) if (b[i] == 0) {count++; for (int j = i; j<LIM; j+=i) b[j]++;}
return b;
}
public static StringBuilder stringFromArray(int [] a) {
StringBuilder b = new StringBuilder(9*a.length);
for (int i = 0; i<a.length; ++i) {
if (i != 0) b = b.append(' ');
b = b.append(a[i]);
}
return b;
}
public static long modPow (long a, long n, long MOD) { long S = 1; for (;n > 0; n>>=1, a=(a*a)%MOD) if ((n & 1) != 0) S = (a*S) % MOD; return S;}
}
/* Full Problem Text:
This is an easier version of the next problem.
The difference is only in constraints.
You are given a rectangular n \times m matrix a.
In one move you can choose any column and cyclically shift elements in this column.
You can perform this operation as many times as you want (possibly zero).
You can perform this operation to a column multiple times.
After you are done with cyclical shifts, you compute for every row the maximal value in it.
Suppose that for i-th row it is equal r_i.
What is the maximal possible value of r_1+r_2+...+r_n?
*/
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.math.*;
// **** E1. Rotate Columns (easy version) ****
public class E1 {
static char [] in = new char [1000000];
public static void main (String [] arg) throws Throwable {
int t = nextInt();
C : for (int ii = 0; ii<t; ++ii) {
int n = nextInt();
int m = nextInt();
Pair [] P = new Pair [n*m];
int [][] g = new int [n][m];
for (int i = 0; i<n; ++i) {
for (int j = 0; j<m; ++j) {
g[i][j] = nextInt();
P[j + m*i] = new Pair (i, j, g[i][j]);
}
}
for (int i = 0; i<P.length; ++i) if (P[i] == null) continue C;
Arrays.sort(P);
HashSet<Integer> rotcols =new HashSet<Integer>();
for (int i = 0; i<n; ++i) {
//System.err.println("Adding " + P[i].j + " , " + P[i].L);
rotcols.add(P[i].j);
}
if (n <= 3 || rotcols.size() >= 3) {
//System.err.println("EASY");
int sum = 0;
for (int i = 0; i<n && i < P.length; ++i) sum += P[i].L;
System.out.println(sum);
} else {
// n == 4
if (P.length > 4) rotcols.add(P[4].j);
//Integer [] rr = rotcols.toArray(new Integer[0]);
int [] rot = new int [rotcols.size()];
int maxmax = 0;
A : while (true) {
for (int i = 0; i<rot.length; ++i) {
rot[i]++;
if (rot[i] == n) {
rot[i] = 0;
if (i == rot.length-1) break A;
} else {
break;
}
}
int [] max = new int [n];
for (int i = 0; i<n; ++i) {
int j = 0;
for (int col : rotcols) {
max[i] = Math.max(max[i], g[(i+rot[j])%n][col]);
j++;
}
}
int sum = 0;
for (int m2 : max) sum+= m2;
maxmax = Math.max(maxmax, sum);
}
System.out.println(maxmax);
}
}
}
/************** HELPER CLASSES ***************/
//static class HS extends HashSet<Integer>{public HS(){super();}public HS(int a){super(a);}};
//static class AL extends ArrayList<Integer>{public AL(){super();}public AL(int a){super (a);}};
static class Pair implements Comparable<Pair> {
int i,j;long L; public Pair(int xx, int yy, long LL){i=xx;j=yy;L=LL;}
public int compareTo(Pair p) { return (this.L > p.L) ? -1 : (this.L == p.L) ? this.i - p.i : 1;}
}
/************** FAST IO CODE FOLLOWS *****************/
public static long nextLong() throws Throwable {
long i = System.in.read();boolean neg = false;while (i < 33) i = System.in.read();if (i == 45) {neg=true;i=48;}i = i - 48;
int j = System.in.read();while (j > 32) {i*=10;i+=j-48;j = System.in.read();}return (neg) ? -i : i;
}
public static int nextInt() throws Throwable {return (int)nextLong();}
public static String next() throws Throwable {
int i = 0; while (i < 33 && i != -1) i = System.in.read(); int cptr = 0; while (i >= 33) { in[cptr++] = (char)i; i = System.in.read();}
return new String(in, 0,cptr);
}
/**** LIBRARIES ****/
public static long gcdL(long a, long b) {while (b != 0) {long tmp = b;b = (a % b);a = tmp;}return a;}
public static int gcd(int a, int b) {while (b != 0) {int tmp = b;b = (a % b);a = tmp;}return a;}
public static int[] sieve(int LIM) {
int i,count = 0;
boolean [] b = new boolean [LIM];
for (i = 2;i<LIM; ++i) if (!b[i]) {count++; for (int j = i<<1; j<LIM; j+=i) b[j] = true;}
int [] primes = new int[count];
for (i = 2,count=0;i<LIM;++i) if (!b[i]) primes[count++] = i;
return primes;
}
public static int[] numPrimeFactors(int LIM) {
int i,count = 0;
int [] b = new int [LIM];
for (i = 2;i<LIM; ++i) if (b[i] == 0) {count++; for (int j = i; j<LIM; j+=i) b[j]++;}
return b;
}
public static StringBuilder stringFromArray(int [] a) {
StringBuilder b = new StringBuilder(9*a.length);
for (int i = 0; i<a.length; ++i) {
if (i != 0) b = b.append(' ');
b = b.append(a[i]);
}
return b;
}
public static long modPow (long a, long n, long MOD) { long S = 1; for (;n > 0; n>>=1, a=(a*a)%MOD) if ((n & 1) != 0) S = (a*S) % MOD; return S;}
}
/* Full Problem Text:
This is an easier version of the next problem.
The difference is only in constraints.
You are given a rectangular n \times m matrix a.
In one move you can choose any column and cyclically shift elements in this column.
You can perform this operation as many times as you want (possibly zero).
You can perform this operation to a column multiple times.
After you are done with cyclical shifts, you compute for every row the maximal value in it.
Suppose that for i-th row it is equal r_i.
What is the maximal possible value of r_1+r_2+...+r_n?
*/
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,870 | 4,217 |
839 |
//package codeforces.br17;
import java.io.*;
import java.text.DecimalFormat;
public class ProblemA {
public void solve() {
boolean oj = true;
try {
Reader reader = oj ? new InputStreamReader(System.in) : new FileReader("A.in");
Writer writer = oj ? new OutputStreamWriter(System.out) : new FileWriter("A.out");
BufferedReader br = new BufferedReader(reader);
PrintWriter out = new PrintWriter(writer);
MyTokenizer tok = new MyTokenizer(br.readLine());
int n = (int)tok.getNum();
int k = (int)tok.getNum();
boolean[] isPrime = new boolean[n + 1];
for(int i=1;i<=n;i++)
isPrime[i] = true;
isPrime[1] = false;
isPrime[2] = true;
for(int i=2;i*i<=n;i++)
for(int j=2*i;j<=n;j+=i)
isPrime[j] = false;
int[] primes = new int[n];
int cur = 0;
for(int i=2;i<=n;i++)
if (isPrime[i]) {
primes[cur] = i;
cur++;
}
int count = 0;
for(int i=0;i<cur-1;i++) {
if (primes[i] + primes[i+1] + 1 <= n && isPrime[primes[i] + primes[i+1] + 1])
count++;
}
if (count >= k)
out.printf("YES");
else
out.printf("NO");
br.close();
out.close();
reader.close();
writer.close();
}
catch (Exception ex) {
ex.printStackTrace();
}
finally {
}
}
public static void main(String[] args) {
ProblemA f = new ProblemA();
f.solve();
}
private class MyTokenizer {
private String s;
private int cur;
public MyTokenizer(String s) {
this.s = s;
cur = 0;
}
public void skip() {
while (cur < s.length() && (s.charAt(cur) == ' ' || s.charAt(cur) == '\n')) {
cur++;
}
}
public double getNum() {
skip();
String snum = "";
while (cur < s.length() && (s.charAt(cur) >= '0' && s.charAt(cur) <= '9' || s.charAt(cur) == '.')) {
snum += s.charAt(cur);
cur++;
}
return Double.valueOf(snum);
}
public String getString() {
skip();
String s2 = "";
while (cur < s.length() && (s.charAt(cur) >= 'a' && s.charAt(cur) <= 'z')) {
s2 += s.charAt(cur);
cur++;
}
return s2;
}
public char getCurrentChar() throws Exception {
if (cur < s.length())
return s.charAt(cur);
else
throw new Exception("Current character out of string length");
}
public void moveNextChar() {
if (cur < s.length())
cur++;
}
public boolean isFinished() {
return cur >= s.length();
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
//package codeforces.br17;
import java.io.*;
import java.text.DecimalFormat;
public class ProblemA {
public void solve() {
boolean oj = true;
try {
Reader reader = oj ? new InputStreamReader(System.in) : new FileReader("A.in");
Writer writer = oj ? new OutputStreamWriter(System.out) : new FileWriter("A.out");
BufferedReader br = new BufferedReader(reader);
PrintWriter out = new PrintWriter(writer);
MyTokenizer tok = new MyTokenizer(br.readLine());
int n = (int)tok.getNum();
int k = (int)tok.getNum();
boolean[] isPrime = new boolean[n + 1];
for(int i=1;i<=n;i++)
isPrime[i] = true;
isPrime[1] = false;
isPrime[2] = true;
for(int i=2;i*i<=n;i++)
for(int j=2*i;j<=n;j+=i)
isPrime[j] = false;
int[] primes = new int[n];
int cur = 0;
for(int i=2;i<=n;i++)
if (isPrime[i]) {
primes[cur] = i;
cur++;
}
int count = 0;
for(int i=0;i<cur-1;i++) {
if (primes[i] + primes[i+1] + 1 <= n && isPrime[primes[i] + primes[i+1] + 1])
count++;
}
if (count >= k)
out.printf("YES");
else
out.printf("NO");
br.close();
out.close();
reader.close();
writer.close();
}
catch (Exception ex) {
ex.printStackTrace();
}
finally {
}
}
public static void main(String[] args) {
ProblemA f = new ProblemA();
f.solve();
}
private class MyTokenizer {
private String s;
private int cur;
public MyTokenizer(String s) {
this.s = s;
cur = 0;
}
public void skip() {
while (cur < s.length() && (s.charAt(cur) == ' ' || s.charAt(cur) == '\n')) {
cur++;
}
}
public double getNum() {
skip();
String snum = "";
while (cur < s.length() && (s.charAt(cur) >= '0' && s.charAt(cur) <= '9' || s.charAt(cur) == '.')) {
snum += s.charAt(cur);
cur++;
}
return Double.valueOf(snum);
}
public String getString() {
skip();
String s2 = "";
while (cur < s.length() && (s.charAt(cur) >= 'a' && s.charAt(cur) <= 'z')) {
s2 += s.charAt(cur);
cur++;
}
return s2;
}
public char getCurrentChar() throws Exception {
if (cur < s.length())
return s.charAt(cur);
else
throw new Exception("Current character out of string length");
}
public void moveNextChar() {
if (cur < s.length())
cur++;
}
public boolean isFinished() {
return cur >= s.length();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
//package codeforces.br17;
import java.io.*;
import java.text.DecimalFormat;
public class ProblemA {
public void solve() {
boolean oj = true;
try {
Reader reader = oj ? new InputStreamReader(System.in) : new FileReader("A.in");
Writer writer = oj ? new OutputStreamWriter(System.out) : new FileWriter("A.out");
BufferedReader br = new BufferedReader(reader);
PrintWriter out = new PrintWriter(writer);
MyTokenizer tok = new MyTokenizer(br.readLine());
int n = (int)tok.getNum();
int k = (int)tok.getNum();
boolean[] isPrime = new boolean[n + 1];
for(int i=1;i<=n;i++)
isPrime[i] = true;
isPrime[1] = false;
isPrime[2] = true;
for(int i=2;i*i<=n;i++)
for(int j=2*i;j<=n;j+=i)
isPrime[j] = false;
int[] primes = new int[n];
int cur = 0;
for(int i=2;i<=n;i++)
if (isPrime[i]) {
primes[cur] = i;
cur++;
}
int count = 0;
for(int i=0;i<cur-1;i++) {
if (primes[i] + primes[i+1] + 1 <= n && isPrime[primes[i] + primes[i+1] + 1])
count++;
}
if (count >= k)
out.printf("YES");
else
out.printf("NO");
br.close();
out.close();
reader.close();
writer.close();
}
catch (Exception ex) {
ex.printStackTrace();
}
finally {
}
}
public static void main(String[] args) {
ProblemA f = new ProblemA();
f.solve();
}
private class MyTokenizer {
private String s;
private int cur;
public MyTokenizer(String s) {
this.s = s;
cur = 0;
}
public void skip() {
while (cur < s.length() && (s.charAt(cur) == ' ' || s.charAt(cur) == '\n')) {
cur++;
}
}
public double getNum() {
skip();
String snum = "";
while (cur < s.length() && (s.charAt(cur) >= '0' && s.charAt(cur) <= '9' || s.charAt(cur) == '.')) {
snum += s.charAt(cur);
cur++;
}
return Double.valueOf(snum);
}
public String getString() {
skip();
String s2 = "";
while (cur < s.length() && (s.charAt(cur) >= 'a' && s.charAt(cur) <= 'z')) {
s2 += s.charAt(cur);
cur++;
}
return s2;
}
public char getCurrentChar() throws Exception {
if (cur < s.length())
return s.charAt(cur);
else
throw new Exception("Current character out of string length");
}
public void moveNextChar() {
if (cur < s.length())
cur++;
}
public boolean isFinished() {
return cur >= s.length();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,028 | 838 |
2,734 |
import java.io.*;
import java.util.*;
public class Main {
Scanner cin = new Scanner(new BufferedInputStream(System.in));
long n;
long maxlcm;
void run(){
n = cin.nextInt();
if(n == 1 || n ==2)
maxlcm = n;
else if(n >= 3){
if(n % 2 != 0){
maxlcm = n * (n-1) * (n - 2);
}
else if(n%3 != 0)
maxlcm = n * (n - 1) * (n - 3);
else maxlcm = (n - 1) * (n - 2) * (n - 3);
}
System.out.println(maxlcm);
}
public static void main(String[] args) {
new Main().run();
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
Scanner cin = new Scanner(new BufferedInputStream(System.in));
long n;
long maxlcm;
void run(){
n = cin.nextInt();
if(n == 1 || n ==2)
maxlcm = n;
else if(n >= 3){
if(n % 2 != 0){
maxlcm = n * (n-1) * (n - 2);
}
else if(n%3 != 0)
maxlcm = n * (n - 1) * (n - 3);
else maxlcm = (n - 1) * (n - 2) * (n - 3);
}
System.out.println(maxlcm);
}
public static void main(String[] args) {
new Main().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
Scanner cin = new Scanner(new BufferedInputStream(System.in));
long n;
long maxlcm;
void run(){
n = cin.nextInt();
if(n == 1 || n ==2)
maxlcm = n;
else if(n >= 3){
if(n % 2 != 0){
maxlcm = n * (n-1) * (n - 2);
}
else if(n%3 != 0)
maxlcm = n * (n - 1) * (n - 3);
else maxlcm = (n - 1) * (n - 2) * (n - 3);
}
System.out.println(maxlcm);
}
public static void main(String[] args) {
new Main().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 530 | 2,728 |
2,270 |
import java.io.DataInputStream;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class PythonIndentiation {
PrintWriter pw = new PrintWriter(System.out);
final static boolean debugmode = true;
public static int k = 7; // for 10^9 + k mods.
public static int STMOD = 1000000000 + k; // 10^9 + k
public static Reader sc = new Reader();
public static void main(String[] args) throws IOException {
int commands = sc.nextInt();
int[][] dp = new int[5000][5000];
int interesting = 0;
String prgm = "";
while (interesting < commands){
byte q = sc.read();
if (q == 115 ){
interesting += 1;
prgm += "s";
}
else if (q == 102){
prgm += "f";
interesting += 1;
}
}
//System.out.println("Program: "+prgm);
dp[0][0] = 1; // line, indentations
for(int line = 1;line<commands;line++){
if(prgm.charAt(line-1) == 'f'){
for(int indent = 1;indent<Math.min(2*line + 1, 5000);indent++){
dp[line][indent] = dp[line-1][indent-1];
}
}
else if(prgm.charAt(line-1) == 's'){
int w = 0;
for(int indent = Math.min(2*line + 1, 4999);indent >= 0;indent--){
w = (w + dp[line-1][indent])% STMOD;
dp[line][indent] = w ;
}
}
}
int q = 0;
for(int i = 0;i<5000;i++){
q = ( q + dp[commands-1][i] ) % STMOD;
}
System.out.println(q);
}
public static String parseIt(int commands) throws IOException{
String c = "";
System.out.println(sc.read());
return c;
}
static class Reader
{
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Reader()
{
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Reader(String file_name) throws IOException
{
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException
{
byte[] buf = new byte[64]; // line length
int cnt = 0, c;
while ((c = read()) != -1)
{
if (c == '\n')
break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException
{
int ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do
{
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long nextLong() throws IOException
{
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException
{
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (c == '.')
{
while ((c = read()) >= '0' && c <= '9')
{
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException
{
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException
{
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException
{
if (din == null)
return;
din.close();
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.DataInputStream;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class PythonIndentiation {
PrintWriter pw = new PrintWriter(System.out);
final static boolean debugmode = true;
public static int k = 7; // for 10^9 + k mods.
public static int STMOD = 1000000000 + k; // 10^9 + k
public static Reader sc = new Reader();
public static void main(String[] args) throws IOException {
int commands = sc.nextInt();
int[][] dp = new int[5000][5000];
int interesting = 0;
String prgm = "";
while (interesting < commands){
byte q = sc.read();
if (q == 115 ){
interesting += 1;
prgm += "s";
}
else if (q == 102){
prgm += "f";
interesting += 1;
}
}
//System.out.println("Program: "+prgm);
dp[0][0] = 1; // line, indentations
for(int line = 1;line<commands;line++){
if(prgm.charAt(line-1) == 'f'){
for(int indent = 1;indent<Math.min(2*line + 1, 5000);indent++){
dp[line][indent] = dp[line-1][indent-1];
}
}
else if(prgm.charAt(line-1) == 's'){
int w = 0;
for(int indent = Math.min(2*line + 1, 4999);indent >= 0;indent--){
w = (w + dp[line-1][indent])% STMOD;
dp[line][indent] = w ;
}
}
}
int q = 0;
for(int i = 0;i<5000;i++){
q = ( q + dp[commands-1][i] ) % STMOD;
}
System.out.println(q);
}
public static String parseIt(int commands) throws IOException{
String c = "";
System.out.println(sc.read());
return c;
}
static class Reader
{
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Reader()
{
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Reader(String file_name) throws IOException
{
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException
{
byte[] buf = new byte[64]; // line length
int cnt = 0, c;
while ((c = read()) != -1)
{
if (c == '\n')
break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException
{
int ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do
{
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long nextLong() throws IOException
{
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException
{
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (c == '.')
{
while ((c = read()) >= '0' && c <= '9')
{
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException
{
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException
{
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException
{
if (din == null)
return;
din.close();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.DataInputStream;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class PythonIndentiation {
PrintWriter pw = new PrintWriter(System.out);
final static boolean debugmode = true;
public static int k = 7; // for 10^9 + k mods.
public static int STMOD = 1000000000 + k; // 10^9 + k
public static Reader sc = new Reader();
public static void main(String[] args) throws IOException {
int commands = sc.nextInt();
int[][] dp = new int[5000][5000];
int interesting = 0;
String prgm = "";
while (interesting < commands){
byte q = sc.read();
if (q == 115 ){
interesting += 1;
prgm += "s";
}
else if (q == 102){
prgm += "f";
interesting += 1;
}
}
//System.out.println("Program: "+prgm);
dp[0][0] = 1; // line, indentations
for(int line = 1;line<commands;line++){
if(prgm.charAt(line-1) == 'f'){
for(int indent = 1;indent<Math.min(2*line + 1, 5000);indent++){
dp[line][indent] = dp[line-1][indent-1];
}
}
else if(prgm.charAt(line-1) == 's'){
int w = 0;
for(int indent = Math.min(2*line + 1, 4999);indent >= 0;indent--){
w = (w + dp[line-1][indent])% STMOD;
dp[line][indent] = w ;
}
}
}
int q = 0;
for(int i = 0;i<5000;i++){
q = ( q + dp[commands-1][i] ) % STMOD;
}
System.out.println(q);
}
public static String parseIt(int commands) throws IOException{
String c = "";
System.out.println(sc.read());
return c;
}
static class Reader
{
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Reader()
{
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Reader(String file_name) throws IOException
{
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException
{
byte[] buf = new byte[64]; // line length
int cnt = 0, c;
while ((c = read()) != -1)
{
if (c == '\n')
break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException
{
int ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do
{
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long nextLong() throws IOException
{
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException
{
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (c == '.')
{
while ((c = read()) >= '0' && c <= '9')
{
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException
{
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException
{
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException
{
if (din == null)
return;
din.close();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,531 | 2,265 |
531 |
import java.util.*;
public class AA{
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int t=0;
if(sc.hasNextInt()) {
t=sc.nextInt();
}
while(t>0) {
t--;
int n=sc.nextInt();
String ans="NO";
if(n%2==0) {
int p=n/2;
if(Math.ceil(Math.sqrt((double)p)) == Math.floor(Math.sqrt((double)p))){
ans="YES";
}
else {
if(n%4==0) {
p=n/4;
if(Math.ceil(Math.sqrt((double)p)) == Math.floor(Math.sqrt((double)p))){
ans="YES";
}
}
}
}
System.out.println(ans);
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
public class AA{
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int t=0;
if(sc.hasNextInt()) {
t=sc.nextInt();
}
while(t>0) {
t--;
int n=sc.nextInt();
String ans="NO";
if(n%2==0) {
int p=n/2;
if(Math.ceil(Math.sqrt((double)p)) == Math.floor(Math.sqrt((double)p))){
ans="YES";
}
else {
if(n%4==0) {
p=n/4;
if(Math.ceil(Math.sqrt((double)p)) == Math.floor(Math.sqrt((double)p))){
ans="YES";
}
}
}
}
System.out.println(ans);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class AA{
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int t=0;
if(sc.hasNextInt()) {
t=sc.nextInt();
}
while(t>0) {
t--;
int n=sc.nextInt();
String ans="NO";
if(n%2==0) {
int p=n/2;
if(Math.ceil(Math.sqrt((double)p)) == Math.floor(Math.sqrt((double)p))){
ans="YES";
}
else {
if(n%4==0) {
p=n/4;
if(Math.ceil(Math.sqrt((double)p)) == Math.floor(Math.sqrt((double)p))){
ans="YES";
}
}
}
}
System.out.println(ans);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 526 | 530 |
2,018 |
import java.io.*;
import java.util.*;
public class Main{
public static void main(String []args){
Scanner cin = new Scanner( System.in );
int n = cin.nextInt();
int [] num = new int [ n ];
for (int i=0; i<n; i++)
num[i] = cin.nextInt();
Arrays.sort( num );
int i = 0;
while ( i < n ){
if ( num[i] != num[0] ) break;
i++;
}
if ( i == n ) System.out.println("NO");
else System.out.println(num[i]);
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main{
public static void main(String []args){
Scanner cin = new Scanner( System.in );
int n = cin.nextInt();
int [] num = new int [ n ];
for (int i=0; i<n; i++)
num[i] = cin.nextInt();
Arrays.sort( num );
int i = 0;
while ( i < n ){
if ( num[i] != num[0] ) break;
i++;
}
if ( i == n ) System.out.println("NO");
else System.out.println(num[i]);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main{
public static void main(String []args){
Scanner cin = new Scanner( System.in );
int n = cin.nextInt();
int [] num = new int [ n ];
for (int i=0; i<n; i++)
num[i] = cin.nextInt();
Arrays.sort( num );
int i = 0;
while ( i < n ){
if ( num[i] != num[0] ) break;
i++;
}
if ( i == n ) System.out.println("NO");
else System.out.println(num[i]);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 489 | 2,014 |
324 |
import java.io.*;
import java.util.StringTokenizer;
/**
* Created by IntelliJ IDEA.
* User: piyushd
* Date: Dec 5, 2010
* Time: 4:09:41 PM
* To change this template use File | Settings | File Templates.
*/
public class HamstersTigers {
private BufferedReader in;
private PrintWriter out;
private StringTokenizer st;
int solve(String a, int k){
int n = a.length(), ret = 0;
int temp[] = new int[n];
for(int i = 0; i < n; i++) temp[(n + i - k) % n] = (a.charAt(i) == 'T') ? 1: 0;
int left = 0, right = n - 1;
while(left < right){
while(temp[left] == 0) left++;
while(temp[right] == 1) right--;
if(left < right){
int t = temp[left];
temp[left] = temp[right];
temp[right] = t;
ret++;
}
}
return ret;
}
void solve() throws IOException {
int n = nextInt();
String a = next();
int ans = Integer.MAX_VALUE;
for(int fix = 0; fix < n; fix++){
ans = Math.min(ans, solve(a, fix));
}
out.println(ans);
}
HamstersTigers() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
//in = new BufferedReader(new InputStreamReader(new FileInputStream(new File("C://Users/piyushd/Desktop/codeforces/sample.txt"))));
out = new PrintWriter(System.out);
eat("");
solve();
in.close();
out.close();
}
private void eat(String str) {
st = new StringTokenizer(str);
}
String next() throws IOException {
while (!st.hasMoreTokens()) {
String line = in.readLine();
if (line == null) {
return null;
}
eat(line);
}
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(next());
}
long nextLong() throws IOException {
return Long.parseLong(next());
}
double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public static void main(String[] args) throws IOException {
new HamstersTigers();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.StringTokenizer;
/**
* Created by IntelliJ IDEA.
* User: piyushd
* Date: Dec 5, 2010
* Time: 4:09:41 PM
* To change this template use File | Settings | File Templates.
*/
public class HamstersTigers {
private BufferedReader in;
private PrintWriter out;
private StringTokenizer st;
int solve(String a, int k){
int n = a.length(), ret = 0;
int temp[] = new int[n];
for(int i = 0; i < n; i++) temp[(n + i - k) % n] = (a.charAt(i) == 'T') ? 1: 0;
int left = 0, right = n - 1;
while(left < right){
while(temp[left] == 0) left++;
while(temp[right] == 1) right--;
if(left < right){
int t = temp[left];
temp[left] = temp[right];
temp[right] = t;
ret++;
}
}
return ret;
}
void solve() throws IOException {
int n = nextInt();
String a = next();
int ans = Integer.MAX_VALUE;
for(int fix = 0; fix < n; fix++){
ans = Math.min(ans, solve(a, fix));
}
out.println(ans);
}
HamstersTigers() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
//in = new BufferedReader(new InputStreamReader(new FileInputStream(new File("C://Users/piyushd/Desktop/codeforces/sample.txt"))));
out = new PrintWriter(System.out);
eat("");
solve();
in.close();
out.close();
}
private void eat(String str) {
st = new StringTokenizer(str);
}
String next() throws IOException {
while (!st.hasMoreTokens()) {
String line = in.readLine();
if (line == null) {
return null;
}
eat(line);
}
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(next());
}
long nextLong() throws IOException {
return Long.parseLong(next());
}
double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public static void main(String[] args) throws IOException {
new HamstersTigers();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.StringTokenizer;
/**
* Created by IntelliJ IDEA.
* User: piyushd
* Date: Dec 5, 2010
* Time: 4:09:41 PM
* To change this template use File | Settings | File Templates.
*/
public class HamstersTigers {
private BufferedReader in;
private PrintWriter out;
private StringTokenizer st;
int solve(String a, int k){
int n = a.length(), ret = 0;
int temp[] = new int[n];
for(int i = 0; i < n; i++) temp[(n + i - k) % n] = (a.charAt(i) == 'T') ? 1: 0;
int left = 0, right = n - 1;
while(left < right){
while(temp[left] == 0) left++;
while(temp[right] == 1) right--;
if(left < right){
int t = temp[left];
temp[left] = temp[right];
temp[right] = t;
ret++;
}
}
return ret;
}
void solve() throws IOException {
int n = nextInt();
String a = next();
int ans = Integer.MAX_VALUE;
for(int fix = 0; fix < n; fix++){
ans = Math.min(ans, solve(a, fix));
}
out.println(ans);
}
HamstersTigers() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
//in = new BufferedReader(new InputStreamReader(new FileInputStream(new File("C://Users/piyushd/Desktop/codeforces/sample.txt"))));
out = new PrintWriter(System.out);
eat("");
solve();
in.close();
out.close();
}
private void eat(String str) {
st = new StringTokenizer(str);
}
String next() throws IOException {
while (!st.hasMoreTokens()) {
String line = in.readLine();
if (line == null) {
return null;
}
eat(line);
}
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(next());
}
long nextLong() throws IOException {
return Long.parseLong(next());
}
double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public static void main(String[] args) throws IOException {
new HamstersTigers();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 843 | 324 |
1,390 |
import java.io.*;
import java.math.BigInteger;
import java.util.StringTokenizer;
public class B implements Runnable {
// leave empty to read from stdin/stdout
private static final String TASK_NAME_FOR_IO = "";
// file names
private static final String FILE_IN = TASK_NAME_FOR_IO + ".in";
private static final String FILE_OUT = TASK_NAME_FOR_IO + ".out";
BufferedReader in;
PrintWriter out;
StringTokenizer tokenizer = new StringTokenizer("");
public static void main(String[] args) {
new Thread(new B()).start();
}
private void solve() throws IOException {
long n = nextLong();
long k = nextLong();
n--;
k--;
long answer = 0;
while (n > 0 && k >= 1) {
if (k > 2000) {
long step1000 = (k + (k - 999)) * 500;
if (n - step1000 >= 0) {
n -= step1000;
answer += 1000;
k -= 1000;
continue;
}
}
if (n - k >= 0) {
n -= k;
answer++;
}
k--;
k = Math.min(n, k);
}
if (n == 0) {
out.println(answer);
} else {
out.println(-1);
}
}
public void run() {
long timeStart = System.currentTimeMillis();
boolean fileIO = TASK_NAME_FOR_IO.length() > 0;
try {
if (fileIO) {
in = new BufferedReader(new FileReader(FILE_IN));
out = new PrintWriter(new FileWriter(FILE_OUT));
} else {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(new OutputStreamWriter(System.out));
}
solve();
in.close();
out.close();
} catch (IOException e) {
throw new IllegalStateException(e);
}
long timeEnd = System.currentTimeMillis();
if (fileIO) {
System.out.println("Time spent: " + (timeEnd - timeStart) + " ms");
}
}
private String nextToken() throws IOException {
while (!tokenizer.hasMoreTokens()) {
String line = in.readLine();
if (line == null) {
return null;
}
tokenizer = new StringTokenizer(line);
}
return tokenizer.nextToken();
}
private int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
private BigInteger nextBigInt() throws IOException {
return new BigInteger(nextToken());
}
private long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
private double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.math.BigInteger;
import java.util.StringTokenizer;
public class B implements Runnable {
// leave empty to read from stdin/stdout
private static final String TASK_NAME_FOR_IO = "";
// file names
private static final String FILE_IN = TASK_NAME_FOR_IO + ".in";
private static final String FILE_OUT = TASK_NAME_FOR_IO + ".out";
BufferedReader in;
PrintWriter out;
StringTokenizer tokenizer = new StringTokenizer("");
public static void main(String[] args) {
new Thread(new B()).start();
}
private void solve() throws IOException {
long n = nextLong();
long k = nextLong();
n--;
k--;
long answer = 0;
while (n > 0 && k >= 1) {
if (k > 2000) {
long step1000 = (k + (k - 999)) * 500;
if (n - step1000 >= 0) {
n -= step1000;
answer += 1000;
k -= 1000;
continue;
}
}
if (n - k >= 0) {
n -= k;
answer++;
}
k--;
k = Math.min(n, k);
}
if (n == 0) {
out.println(answer);
} else {
out.println(-1);
}
}
public void run() {
long timeStart = System.currentTimeMillis();
boolean fileIO = TASK_NAME_FOR_IO.length() > 0;
try {
if (fileIO) {
in = new BufferedReader(new FileReader(FILE_IN));
out = new PrintWriter(new FileWriter(FILE_OUT));
} else {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(new OutputStreamWriter(System.out));
}
solve();
in.close();
out.close();
} catch (IOException e) {
throw new IllegalStateException(e);
}
long timeEnd = System.currentTimeMillis();
if (fileIO) {
System.out.println("Time spent: " + (timeEnd - timeStart) + " ms");
}
}
private String nextToken() throws IOException {
while (!tokenizer.hasMoreTokens()) {
String line = in.readLine();
if (line == null) {
return null;
}
tokenizer = new StringTokenizer(line);
}
return tokenizer.nextToken();
}
private int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
private BigInteger nextBigInt() throws IOException {
return new BigInteger(nextToken());
}
private long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
private double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.math.BigInteger;
import java.util.StringTokenizer;
public class B implements Runnable {
// leave empty to read from stdin/stdout
private static final String TASK_NAME_FOR_IO = "";
// file names
private static final String FILE_IN = TASK_NAME_FOR_IO + ".in";
private static final String FILE_OUT = TASK_NAME_FOR_IO + ".out";
BufferedReader in;
PrintWriter out;
StringTokenizer tokenizer = new StringTokenizer("");
public static void main(String[] args) {
new Thread(new B()).start();
}
private void solve() throws IOException {
long n = nextLong();
long k = nextLong();
n--;
k--;
long answer = 0;
while (n > 0 && k >= 1) {
if (k > 2000) {
long step1000 = (k + (k - 999)) * 500;
if (n - step1000 >= 0) {
n -= step1000;
answer += 1000;
k -= 1000;
continue;
}
}
if (n - k >= 0) {
n -= k;
answer++;
}
k--;
k = Math.min(n, k);
}
if (n == 0) {
out.println(answer);
} else {
out.println(-1);
}
}
public void run() {
long timeStart = System.currentTimeMillis();
boolean fileIO = TASK_NAME_FOR_IO.length() > 0;
try {
if (fileIO) {
in = new BufferedReader(new FileReader(FILE_IN));
out = new PrintWriter(new FileWriter(FILE_OUT));
} else {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(new OutputStreamWriter(System.out));
}
solve();
in.close();
out.close();
} catch (IOException e) {
throw new IllegalStateException(e);
}
long timeEnd = System.currentTimeMillis();
if (fileIO) {
System.out.println("Time spent: " + (timeEnd - timeStart) + " ms");
}
}
private String nextToken() throws IOException {
while (!tokenizer.hasMoreTokens()) {
String line = in.readLine();
if (line == null) {
return null;
}
tokenizer = new StringTokenizer(line);
}
return tokenizer.nextToken();
}
private int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
private BigInteger nextBigInt() throws IOException {
return new BigInteger(nextToken());
}
private long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
private double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 922 | 1,388 |
1,939 |
import java.util.*;
import java.io.*;
import java.lang.*;
import java.math.*;
import java.util.Map.*;
public class codeforces {
static int count =0;
static boolean f=false;
static int [] arr;
static PrintWriter pw=new PrintWriter(System.out);
static void solve(int index , int mask) {
if(index==arr.length) {
int sum1=0; int sum2=0;
for(int i=0;i<arr.length;i++) {
if((mask & 1<<i)!=0) sum1+=arr[i];
}
return;
}
solve(index+1, mask | 1<<index);
solve(index+1, mask);
}
public static void main(String [] args) throws IOException, InterruptedException {
Scanner sc=new Scanner(System.in);
int x=sc.nextInt();
int y=sc.nextInt();
pair [] arr=new pair[x];
for(int i=0;i<x;i++) arr[i]=new pair(i, sc.nextInt(),0);
for(int i=0;i<x;i++) arr[i].y=sc.nextInt();
Arrays.sort(arr);
PriorityQueue<Integer> qq=new PriorityQueue<>();
//pw.println(Arrays.toString(arr));
Long [] list=new Long [x];
long sum=0;
for(int i=0;i<x;i++) {
pair w=arr[i];
if(qq.size()<y) {
qq.add(w.y);
sum+=w.y;
list[w.i]=sum;
}else if(!qq.isEmpty()) {
sum+=w.y;
list[w.i]=sum;
int first=qq.poll();
if(w.y>first) {
sum-=first;
qq.add(w.y);
}else {
qq.add(first);
sum-=w.y;
}
} else list[w.i]=(long) w.y;
//pw.println(qq);
}
for(Long w:list) pw.print(w+" ");
pw.flush();
pw.close();
}
static class pair implements Comparable<pair>{
String name; int x,y,i ;
public pair(String name , int x) {
this.name=name; this.x=x;
}
public pair (int i,int x,int y) {
this.i=i; this.x=x; this.y=y;
}
public int compareTo(pair o) {
return x-o.x;
}
public int compareTo1(pair o) {
if(!name.equals(o.name))
return name.compareTo(o.name);
return x-o.x;
}
public String toString() {
return i+" "+x+" "+y;
}
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream system) {
br = new BufferedReader(new InputStreamReader(system));
}
public Scanner(String file) throws Exception {
br = new BufferedReader(new FileReader(file));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public String nextLine() throws IOException {
return br.readLine();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public char nextChar() throws IOException {
return next().charAt(0);
}
public Long nextLong() throws IOException {
return Long.parseLong(next());
}
public boolean ready() throws IOException {
return br.ready();
}
public void waitForInput() throws InterruptedException {
Thread.sleep(3000);
}
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.lang.*;
import java.math.*;
import java.util.Map.*;
public class codeforces {
static int count =0;
static boolean f=false;
static int [] arr;
static PrintWriter pw=new PrintWriter(System.out);
static void solve(int index , int mask) {
if(index==arr.length) {
int sum1=0; int sum2=0;
for(int i=0;i<arr.length;i++) {
if((mask & 1<<i)!=0) sum1+=arr[i];
}
return;
}
solve(index+1, mask | 1<<index);
solve(index+1, mask);
}
public static void main(String [] args) throws IOException, InterruptedException {
Scanner sc=new Scanner(System.in);
int x=sc.nextInt();
int y=sc.nextInt();
pair [] arr=new pair[x];
for(int i=0;i<x;i++) arr[i]=new pair(i, sc.nextInt(),0);
for(int i=0;i<x;i++) arr[i].y=sc.nextInt();
Arrays.sort(arr);
PriorityQueue<Integer> qq=new PriorityQueue<>();
//pw.println(Arrays.toString(arr));
Long [] list=new Long [x];
long sum=0;
for(int i=0;i<x;i++) {
pair w=arr[i];
if(qq.size()<y) {
qq.add(w.y);
sum+=w.y;
list[w.i]=sum;
}else if(!qq.isEmpty()) {
sum+=w.y;
list[w.i]=sum;
int first=qq.poll();
if(w.y>first) {
sum-=first;
qq.add(w.y);
}else {
qq.add(first);
sum-=w.y;
}
} else list[w.i]=(long) w.y;
//pw.println(qq);
}
for(Long w:list) pw.print(w+" ");
pw.flush();
pw.close();
}
static class pair implements Comparable<pair>{
String name; int x,y,i ;
public pair(String name , int x) {
this.name=name; this.x=x;
}
public pair (int i,int x,int y) {
this.i=i; this.x=x; this.y=y;
}
public int compareTo(pair o) {
return x-o.x;
}
public int compareTo1(pair o) {
if(!name.equals(o.name))
return name.compareTo(o.name);
return x-o.x;
}
public String toString() {
return i+" "+x+" "+y;
}
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream system) {
br = new BufferedReader(new InputStreamReader(system));
}
public Scanner(String file) throws Exception {
br = new BufferedReader(new FileReader(file));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public String nextLine() throws IOException {
return br.readLine();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public char nextChar() throws IOException {
return next().charAt(0);
}
public Long nextLong() throws IOException {
return Long.parseLong(next());
}
public boolean ready() throws IOException {
return br.ready();
}
public void waitForInput() throws InterruptedException {
Thread.sleep(3000);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.lang.*;
import java.math.*;
import java.util.Map.*;
public class codeforces {
static int count =0;
static boolean f=false;
static int [] arr;
static PrintWriter pw=new PrintWriter(System.out);
static void solve(int index , int mask) {
if(index==arr.length) {
int sum1=0; int sum2=0;
for(int i=0;i<arr.length;i++) {
if((mask & 1<<i)!=0) sum1+=arr[i];
}
return;
}
solve(index+1, mask | 1<<index);
solve(index+1, mask);
}
public static void main(String [] args) throws IOException, InterruptedException {
Scanner sc=new Scanner(System.in);
int x=sc.nextInt();
int y=sc.nextInt();
pair [] arr=new pair[x];
for(int i=0;i<x;i++) arr[i]=new pair(i, sc.nextInt(),0);
for(int i=0;i<x;i++) arr[i].y=sc.nextInt();
Arrays.sort(arr);
PriorityQueue<Integer> qq=new PriorityQueue<>();
//pw.println(Arrays.toString(arr));
Long [] list=new Long [x];
long sum=0;
for(int i=0;i<x;i++) {
pair w=arr[i];
if(qq.size()<y) {
qq.add(w.y);
sum+=w.y;
list[w.i]=sum;
}else if(!qq.isEmpty()) {
sum+=w.y;
list[w.i]=sum;
int first=qq.poll();
if(w.y>first) {
sum-=first;
qq.add(w.y);
}else {
qq.add(first);
sum-=w.y;
}
} else list[w.i]=(long) w.y;
//pw.println(qq);
}
for(Long w:list) pw.print(w+" ");
pw.flush();
pw.close();
}
static class pair implements Comparable<pair>{
String name; int x,y,i ;
public pair(String name , int x) {
this.name=name; this.x=x;
}
public pair (int i,int x,int y) {
this.i=i; this.x=x; this.y=y;
}
public int compareTo(pair o) {
return x-o.x;
}
public int compareTo1(pair o) {
if(!name.equals(o.name))
return name.compareTo(o.name);
return x-o.x;
}
public String toString() {
return i+" "+x+" "+y;
}
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream system) {
br = new BufferedReader(new InputStreamReader(system));
}
public Scanner(String file) throws Exception {
br = new BufferedReader(new FileReader(file));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public String nextLine() throws IOException {
return br.readLine();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public char nextChar() throws IOException {
return next().charAt(0);
}
public Long nextLong() throws IOException {
return Long.parseLong(next());
}
public boolean ready() throws IOException {
return br.ready();
}
public void waitForInput() throws InterruptedException {
Thread.sleep(3000);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,160 | 1,935 |
1,806 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
public class CFTest6 {
static BufferedReader br;
public static void main(String[] args) {
br = new BufferedReader(new InputStreamReader(System.in));
try {
int[] a1 = readIntArr();
int[] a2 = readIntArr();
br.close();
int f = a1[0];
int d = a1[1];
int s = a1[2];
Arrays.sort(a2);
if (d <= s)
System.out.println(0);
else {
int cur = d - s + 1;
int num=0;
for(int i=0;i<f;i++){
num++;
cur-=a2[f-i-1];
if(cur<=0)break;
cur++;
}
if (cur > 0)
System.out.println(-1);
else{
System.out.println(num);
}
}
} catch (IOException e) {
e.printStackTrace();
}
}
static public String readLine() throws IOException {
return br.readLine();
}
static public String readString() throws IOException {
return br.readLine();
}
static public long readlong() throws IOException {
return Long.parseLong(br.readLine());
}
static public int readInt() throws IOException {
return Integer.parseInt(br.readLine());
}
static public int[] readIntArr() throws IOException {
String[] str = br.readLine().split(" ");
int arr[] = new int[str.length];
for (int i = 0; i < arr.length; i++)
arr[i] = Integer.parseInt(str[i]);
return arr;
}
static public double[] readDoubleArr() throws IOException {
String[] str = br.readLine().split(" ");
double arr[] = new double[str.length];
for (int i = 0; i < arr.length; i++)
arr[i] = Double.parseDouble(str[i]);
return arr;
}
static public long[] readLongArr() throws IOException {
String[] str = br.readLine().split(" ");
long arr[] = new long[str.length];
for (int i = 0; i < arr.length; i++)
arr[i] = Long.parseLong(str[i]);
return arr;
}
static public double readDouble() throws IOException {
return Double.parseDouble(br.readLine());
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
public class CFTest6 {
static BufferedReader br;
public static void main(String[] args) {
br = new BufferedReader(new InputStreamReader(System.in));
try {
int[] a1 = readIntArr();
int[] a2 = readIntArr();
br.close();
int f = a1[0];
int d = a1[1];
int s = a1[2];
Arrays.sort(a2);
if (d <= s)
System.out.println(0);
else {
int cur = d - s + 1;
int num=0;
for(int i=0;i<f;i++){
num++;
cur-=a2[f-i-1];
if(cur<=0)break;
cur++;
}
if (cur > 0)
System.out.println(-1);
else{
System.out.println(num);
}
}
} catch (IOException e) {
e.printStackTrace();
}
}
static public String readLine() throws IOException {
return br.readLine();
}
static public String readString() throws IOException {
return br.readLine();
}
static public long readlong() throws IOException {
return Long.parseLong(br.readLine());
}
static public int readInt() throws IOException {
return Integer.parseInt(br.readLine());
}
static public int[] readIntArr() throws IOException {
String[] str = br.readLine().split(" ");
int arr[] = new int[str.length];
for (int i = 0; i < arr.length; i++)
arr[i] = Integer.parseInt(str[i]);
return arr;
}
static public double[] readDoubleArr() throws IOException {
String[] str = br.readLine().split(" ");
double arr[] = new double[str.length];
for (int i = 0; i < arr.length; i++)
arr[i] = Double.parseDouble(str[i]);
return arr;
}
static public long[] readLongArr() throws IOException {
String[] str = br.readLine().split(" ");
long arr[] = new long[str.length];
for (int i = 0; i < arr.length; i++)
arr[i] = Long.parseLong(str[i]);
return arr;
}
static public double readDouble() throws IOException {
return Double.parseDouble(br.readLine());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
public class CFTest6 {
static BufferedReader br;
public static void main(String[] args) {
br = new BufferedReader(new InputStreamReader(System.in));
try {
int[] a1 = readIntArr();
int[] a2 = readIntArr();
br.close();
int f = a1[0];
int d = a1[1];
int s = a1[2];
Arrays.sort(a2);
if (d <= s)
System.out.println(0);
else {
int cur = d - s + 1;
int num=0;
for(int i=0;i<f;i++){
num++;
cur-=a2[f-i-1];
if(cur<=0)break;
cur++;
}
if (cur > 0)
System.out.println(-1);
else{
System.out.println(num);
}
}
} catch (IOException e) {
e.printStackTrace();
}
}
static public String readLine() throws IOException {
return br.readLine();
}
static public String readString() throws IOException {
return br.readLine();
}
static public long readlong() throws IOException {
return Long.parseLong(br.readLine());
}
static public int readInt() throws IOException {
return Integer.parseInt(br.readLine());
}
static public int[] readIntArr() throws IOException {
String[] str = br.readLine().split(" ");
int arr[] = new int[str.length];
for (int i = 0; i < arr.length; i++)
arr[i] = Integer.parseInt(str[i]);
return arr;
}
static public double[] readDoubleArr() throws IOException {
String[] str = br.readLine().split(" ");
double arr[] = new double[str.length];
for (int i = 0; i < arr.length; i++)
arr[i] = Double.parseDouble(str[i]);
return arr;
}
static public long[] readLongArr() throws IOException {
String[] str = br.readLine().split(" ");
long arr[] = new long[str.length];
for (int i = 0; i < arr.length; i++)
arr[i] = Long.parseLong(str[i]);
return arr;
}
static public double readDouble() throws IOException {
return Double.parseDouble(br.readLine());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 843 | 1,802 |
172 |
import java.util.*;
public class Solution {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
Comp c1 = getComp(scanner);
Comp c2 = getComp(scanner);
c1.sortByPrice();
c2.sortByPrice();
int i = 0;
int j = 0;
while(i < c1.num || j < c2.num) {
Elem xi = (i < c1.num) ? c1.elems.get(i) : null;
Elem yj = (j < c2.num) ? c2.elems.get(j) : null;
if(xi != null && yj != null) {
if(xi.price >= yj.price) {
if(!c2.resultSet.contains(xi)) {
c1.resultSet.add(xi);
}
i++;
} else {
if(!c1.resultSet.contains(yj)) {
c2.resultSet.add(yj);
}
j++;
}
} else
if(xi != null) {
if(!c2.resultSet.contains(xi)) {
c1.resultSet.add(xi);
}
i++;
} else {
if(!c1.resultSet.contains(yj)) {
c2.resultSet.add(yj);
}
j++;
}
}
long result = c1.getResultPrice() + c2.getResultPrice();
System.out.println(result);
}
private static Comp getComp(Scanner scanner) {
Comp c = new Comp();
c.num = scanner.nextInt();
for(int i = 0; i < c.num; i++) {
c.addElem(scanner.nextLong(), scanner.nextLong());
}
return c;
}
}
class Comp {
int num;
List<Elem> elems = new ArrayList<>();
Set<Elem> resultSet = new HashSet<>();
void addElem(long el, long pr) {
Elem elem = new Elem(el, pr);
elems.add(elem);
}
void sortByPrice() {
Collections.sort(elems);
}
long getResultPrice() {
long sumPrice = 0;
for(Elem elem : resultSet) {
sumPrice += elem.price;
}
return sumPrice;
}
}
class Elem implements Comparable<Elem> {
long elem;
long price;
public Elem(long el, long pr) {
this.elem = el;
this.price = pr;
}
public int compareTo(Elem other) {
return (int) (other.price - price);
}
public boolean equals(Object o) {
if(!(o instanceof Elem)) {
return false;
}
Elem other = (Elem) o;
return (other.elem == elem);
}
public int hashCode() {
return (int) elem;
}
public String toString() {
return "(" + elem + ", " + price + ")";
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
public class Solution {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
Comp c1 = getComp(scanner);
Comp c2 = getComp(scanner);
c1.sortByPrice();
c2.sortByPrice();
int i = 0;
int j = 0;
while(i < c1.num || j < c2.num) {
Elem xi = (i < c1.num) ? c1.elems.get(i) : null;
Elem yj = (j < c2.num) ? c2.elems.get(j) : null;
if(xi != null && yj != null) {
if(xi.price >= yj.price) {
if(!c2.resultSet.contains(xi)) {
c1.resultSet.add(xi);
}
i++;
} else {
if(!c1.resultSet.contains(yj)) {
c2.resultSet.add(yj);
}
j++;
}
} else
if(xi != null) {
if(!c2.resultSet.contains(xi)) {
c1.resultSet.add(xi);
}
i++;
} else {
if(!c1.resultSet.contains(yj)) {
c2.resultSet.add(yj);
}
j++;
}
}
long result = c1.getResultPrice() + c2.getResultPrice();
System.out.println(result);
}
private static Comp getComp(Scanner scanner) {
Comp c = new Comp();
c.num = scanner.nextInt();
for(int i = 0; i < c.num; i++) {
c.addElem(scanner.nextLong(), scanner.nextLong());
}
return c;
}
}
class Comp {
int num;
List<Elem> elems = new ArrayList<>();
Set<Elem> resultSet = new HashSet<>();
void addElem(long el, long pr) {
Elem elem = new Elem(el, pr);
elems.add(elem);
}
void sortByPrice() {
Collections.sort(elems);
}
long getResultPrice() {
long sumPrice = 0;
for(Elem elem : resultSet) {
sumPrice += elem.price;
}
return sumPrice;
}
}
class Elem implements Comparable<Elem> {
long elem;
long price;
public Elem(long el, long pr) {
this.elem = el;
this.price = pr;
}
public int compareTo(Elem other) {
return (int) (other.price - price);
}
public boolean equals(Object o) {
if(!(o instanceof Elem)) {
return false;
}
Elem other = (Elem) o;
return (other.elem == elem);
}
public int hashCode() {
return (int) elem;
}
public String toString() {
return "(" + elem + ", " + price + ")";
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class Solution {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
Comp c1 = getComp(scanner);
Comp c2 = getComp(scanner);
c1.sortByPrice();
c2.sortByPrice();
int i = 0;
int j = 0;
while(i < c1.num || j < c2.num) {
Elem xi = (i < c1.num) ? c1.elems.get(i) : null;
Elem yj = (j < c2.num) ? c2.elems.get(j) : null;
if(xi != null && yj != null) {
if(xi.price >= yj.price) {
if(!c2.resultSet.contains(xi)) {
c1.resultSet.add(xi);
}
i++;
} else {
if(!c1.resultSet.contains(yj)) {
c2.resultSet.add(yj);
}
j++;
}
} else
if(xi != null) {
if(!c2.resultSet.contains(xi)) {
c1.resultSet.add(xi);
}
i++;
} else {
if(!c1.resultSet.contains(yj)) {
c2.resultSet.add(yj);
}
j++;
}
}
long result = c1.getResultPrice() + c2.getResultPrice();
System.out.println(result);
}
private static Comp getComp(Scanner scanner) {
Comp c = new Comp();
c.num = scanner.nextInt();
for(int i = 0; i < c.num; i++) {
c.addElem(scanner.nextLong(), scanner.nextLong());
}
return c;
}
}
class Comp {
int num;
List<Elem> elems = new ArrayList<>();
Set<Elem> resultSet = new HashSet<>();
void addElem(long el, long pr) {
Elem elem = new Elem(el, pr);
elems.add(elem);
}
void sortByPrice() {
Collections.sort(elems);
}
long getResultPrice() {
long sumPrice = 0;
for(Elem elem : resultSet) {
sumPrice += elem.price;
}
return sumPrice;
}
}
class Elem implements Comparable<Elem> {
long elem;
long price;
public Elem(long el, long pr) {
this.elem = el;
this.price = pr;
}
public int compareTo(Elem other) {
return (int) (other.price - price);
}
public boolean equals(Object o) {
if(!(o instanceof Elem)) {
return false;
}
Elem other = (Elem) o;
return (other.elem == elem);
}
public int hashCode() {
return (int) elem;
}
public String toString() {
return "(" + elem + ", " + price + ")";
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 962 | 172 |
1,865 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.*;
public class CFD {
BufferedReader br;
PrintWriter out;
StringTokenizer st;
boolean eof;
final long MOD = 1000L * 1000L * 1000L + 7;
int[] dx = {0, -1, 0, 1};
int[] dy = {1, 0, -1, 0};
void solve() throws IOException {
int n = nextInt();
long[] arr = nextLongArr(n);
long[] diff = new long[n];
long presum = 0;
for (int i = n - 1; i >= 0; i--) {
diff[i] = presum - (n - i - 1) * arr[i];
presum += arr[i];
}
BigInteger pairs = new BigInteger("0");
for (long s : diff) {
pairs = pairs.add(new BigInteger(Long.toString(s)));
}
BigInteger need = new BigInteger("0");
Map<Long, Long> hm = new HashMap<>();
for (int i = n - 1; i >= 0; i--) {
long v1 = hm.getOrDefault(arr[i] - 1, 0L) * (-1);
need = need.add(new BigInteger(Long.toString(v1)));
long v2 = hm.getOrDefault(arr[i] + 1, 0L);
need = need.add(new BigInteger(Long.toString(v2)));
hm.put(arr[i], hm.getOrDefault(arr[i], 0L) + 1);
}
BigInteger res = pairs.subtract(need);
out(res.toString());
}
void shuffle(long[] a) {
int n = a.length;
for(int i = 0; i < n; i++) {
int r = i + (int) (Math.random() * (n - i));
long tmp = a[i];
a[i] = a[r];
a[r] = tmp;
}
}
private void outln(Object o) {
out.println(o);
}
private void out(Object o) {
out.print(o);
}
public CFD() throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.close();
}
public static void main(String[] args) throws IOException {
new CFD();
}
public long[] nextLongArr(int n) throws IOException{
long[] res = new long[n];
for(int i = 0; i < n; i++)
res[i] = nextLong();
return res;
}
public int[] nextIntArr(int n) throws IOException {
int[] res = new int[n];
for(int i = 0; i < n; i++)
res[i] = nextInt();
return res;
}
public String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
eof = true;
return null;
}
}
return st.nextToken();
}
public String nextString() {
try {
return br.readLine();
} catch (IOException e) {
eof = true;
return null;
}
}
public int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
public long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
public double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.*;
public class CFD {
BufferedReader br;
PrintWriter out;
StringTokenizer st;
boolean eof;
final long MOD = 1000L * 1000L * 1000L + 7;
int[] dx = {0, -1, 0, 1};
int[] dy = {1, 0, -1, 0};
void solve() throws IOException {
int n = nextInt();
long[] arr = nextLongArr(n);
long[] diff = new long[n];
long presum = 0;
for (int i = n - 1; i >= 0; i--) {
diff[i] = presum - (n - i - 1) * arr[i];
presum += arr[i];
}
BigInteger pairs = new BigInteger("0");
for (long s : diff) {
pairs = pairs.add(new BigInteger(Long.toString(s)));
}
BigInteger need = new BigInteger("0");
Map<Long, Long> hm = new HashMap<>();
for (int i = n - 1; i >= 0; i--) {
long v1 = hm.getOrDefault(arr[i] - 1, 0L) * (-1);
need = need.add(new BigInteger(Long.toString(v1)));
long v2 = hm.getOrDefault(arr[i] + 1, 0L);
need = need.add(new BigInteger(Long.toString(v2)));
hm.put(arr[i], hm.getOrDefault(arr[i], 0L) + 1);
}
BigInteger res = pairs.subtract(need);
out(res.toString());
}
void shuffle(long[] a) {
int n = a.length;
for(int i = 0; i < n; i++) {
int r = i + (int) (Math.random() * (n - i));
long tmp = a[i];
a[i] = a[r];
a[r] = tmp;
}
}
private void outln(Object o) {
out.println(o);
}
private void out(Object o) {
out.print(o);
}
public CFD() throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.close();
}
public static void main(String[] args) throws IOException {
new CFD();
}
public long[] nextLongArr(int n) throws IOException{
long[] res = new long[n];
for(int i = 0; i < n; i++)
res[i] = nextLong();
return res;
}
public int[] nextIntArr(int n) throws IOException {
int[] res = new int[n];
for(int i = 0; i < n; i++)
res[i] = nextInt();
return res;
}
public String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
eof = true;
return null;
}
}
return st.nextToken();
}
public String nextString() {
try {
return br.readLine();
} catch (IOException e) {
eof = true;
return null;
}
}
public int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
public long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
public double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.*;
public class CFD {
BufferedReader br;
PrintWriter out;
StringTokenizer st;
boolean eof;
final long MOD = 1000L * 1000L * 1000L + 7;
int[] dx = {0, -1, 0, 1};
int[] dy = {1, 0, -1, 0};
void solve() throws IOException {
int n = nextInt();
long[] arr = nextLongArr(n);
long[] diff = new long[n];
long presum = 0;
for (int i = n - 1; i >= 0; i--) {
diff[i] = presum - (n - i - 1) * arr[i];
presum += arr[i];
}
BigInteger pairs = new BigInteger("0");
for (long s : diff) {
pairs = pairs.add(new BigInteger(Long.toString(s)));
}
BigInteger need = new BigInteger("0");
Map<Long, Long> hm = new HashMap<>();
for (int i = n - 1; i >= 0; i--) {
long v1 = hm.getOrDefault(arr[i] - 1, 0L) * (-1);
need = need.add(new BigInteger(Long.toString(v1)));
long v2 = hm.getOrDefault(arr[i] + 1, 0L);
need = need.add(new BigInteger(Long.toString(v2)));
hm.put(arr[i], hm.getOrDefault(arr[i], 0L) + 1);
}
BigInteger res = pairs.subtract(need);
out(res.toString());
}
void shuffle(long[] a) {
int n = a.length;
for(int i = 0; i < n; i++) {
int r = i + (int) (Math.random() * (n - i));
long tmp = a[i];
a[i] = a[r];
a[r] = tmp;
}
}
private void outln(Object o) {
out.println(o);
}
private void out(Object o) {
out.print(o);
}
public CFD() throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.close();
}
public static void main(String[] args) throws IOException {
new CFD();
}
public long[] nextLongArr(int n) throws IOException{
long[] res = new long[n];
for(int i = 0; i < n; i++)
res[i] = nextLong();
return res;
}
public int[] nextIntArr(int n) throws IOException {
int[] res = new int[n];
for(int i = 0; i < n; i++)
res[i] = nextInt();
return res;
}
public String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
eof = true;
return null;
}
}
return st.nextToken();
}
public String nextString() {
try {
return br.readLine();
} catch (IOException e) {
eof = true;
return null;
}
}
public int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
public long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
public double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,112 | 1,861 |
3,924 |
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStreamWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Map.Entry;
import java.util.Random;
import java.util.TreeSet;
public final class CF_599_D1_C
{
static boolean verb=true;
static void log(Object X){if (verb) System.err.println(X);}
static void log(Object[] X){if (verb) {for (Object U:X) System.err.print(U+" ");System.err.println("");}}
static void log(int[] X){if (verb) {for (int U:X) System.err.print(U+" ");System.err.println("");}}
static void log(int[] X,int L){if (verb) {for (int i=0;i<L;i++) System.err.print(X[i]+" ");System.err.println("");}}
static void log(long[] X){if (verb) {for (long U:X) System.err.print(U+" ");System.err.println("");}}
static void logWln(Object X){if (verb) System.err.print(X);}
static void info(Object o){ System.out.println(o);}
static void output(Object o){outputWln(""+o+"\n"); }
static void outputWln(Object o){try {out.write(""+ o);} catch (Exception e) {}}
static long mod=1000000007;
// Global vars
static BufferedWriter out;
static InputReader reader;
static class Composite implements Comparable<Composite>{
int idx;
int v;
public int compareTo(Composite X) {
if (v!=X.v)
return v-X.v;
return idx-X.idx;
}
public Composite(int idx, int v) {
this.idx = idx;
this.v = v;
}
}
static void test() {
log("testing");
log("done");
}
static void explore(ArrayList<Integer>[] components,ArrayList<Integer> bob,int[][] move,ArrayList<int[]>[] howto,int[][] list) {
for (int x:bob) {
if (components[x].size()==1) {
int tm[]=howto[x].get(0);
int L=howto[x].size();
howto[x].add(tm);
for (int i=0;i<L;i++) {
int[] cur=howto[x].get(i);
int[] nx=howto[x].get(i+1);
int a=cur[0];
int a2=nx[0];
int b2=nx[1];
move[a2][0]=list[a2][b2];
move[a2][1]=a;
}
} else {
explore(components,components[x],move,howto,list);
}
}
}
static void process() throws Exception {
//arrayTest();
out = new BufferedWriter(new OutputStreamWriter(System.out));
reader = new InputReader(System.in);
int k=reader.readInt();
int[][] list=new int[k][];
long[] sum=new long[k];
int[] L=new int[k];
HashMap<Integer,int[]> target=new HashMap<Integer,int[]>();
long tot=0;
for (int i=0;i<k;i++) {
L[i]=reader.readInt();
list[i]=new int[L[i]];
for (int j=0;j<L[i];j++) {
list[i][j]=reader.readInt();
sum[i]+=list[i][j];
target.put(list[i][j],new int[] {i,j});
}
tot+=sum[i];
}
int MX=1<<k;
int AX=1000000001;
ArrayList<int[]>[] howto=new ArrayList[MX];
log("ok with the data");
if (tot%k!=0) {
output("No");
} else {
tot/=k;
for (int i=0;i<k;i++) {
if (sum[i]==tot) {
//log("nothing to do for i:"+i);
// nothing to do
int mask=1<<i;
ArrayList<int[]> cand=new ArrayList<int[]>();
cand.add(new int[] {i,0});
howto[mask]=cand;
} else
for (int j=0;j<L[i];j++) {
int u=i;
int v=j;
boolean ok=true;
int src_u=u;
int src_v=v;
int mask=0;
boolean goon=true;
ArrayList<int[]> cand=new ArrayList<int[]>();
//log("start loop");
while (goon) {
cand.add(new int[] {u,v});
//log("u:"+u+" v:"+v);
ok=false;
goon=false;
long need=tot-((long)sum[u]-(long)list[u][v]);
if (Math.abs(need)<=AX) {
//log("need:"+need);
int nd=(int)need;
int[] tm=target.get(nd);
//log("tm:"+tm);
if (tm!=null) {
//log("can find successor");
int nxu=tm[0];
int nxv=tm[1];
if ((mask&(1<<nxu))==0) {
mask|=1<<nxu;
if (nxu==src_u) {
// looping back to source
if (nxv==src_v)
ok=true;
} else {
u=nxu;
v=nxv;
ok=true;
goon=true;
}
}
}
}
}
if (ok) {
if (howto[mask]==null) {
howto[mask]=cand;
}
}
}
}
log("step 1 done");
// now mask
ArrayList<Integer> msk=new ArrayList<Integer>();
ArrayList[] components=new ArrayList[MX];
for (int m=0;m<MX;m++) {
if (howto[m]!=null) {
//String s=Integer.toBinaryString(m);
//while (s.length()<k)
// s="0"+s;
//log("found mask:"+s);
components[m]=new ArrayList<Integer>();
components[m].add(m);
}
}
int[] visited=new int[MX];
for (int a=0;a<MX;a++) {
if (howto[a]!=null) {
ArrayList<Integer> add=new ArrayList<Integer>();
for (int b:msk) {
if ((b&a)==0) {
int c=b|a;
log("creating c:"+c+" ");
if (components[c]==null) {
components[c]=new ArrayList<Integer>();
components[c].add(a);
components[c].add(b);
add.add(c);
}
}
}
msk.add(a);
for (int c:add) {
msk.add(c);
}
}
}
//log("msk:"+msk);
//log(components[MX-1]);
if (components[MX-1]!=null) {
output("Yes");
int[][] move=new int[k][2];
explore(components,components[MX-1],move,howto,list);
for (int i=0;i<k;i++) {
output(move[i][0]+" "+(move[i][1]+1));
}
} else {
output("No");
}
}
try {
out.close();
} catch (Exception e) {
}
}
public static void main(String[] args) throws Exception {
process();
}
static final class InputReader {
private final InputStream stream;
private final byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
private int read() throws IOException {
if (curChar >= numChars) {
curChar = 0;
numChars = stream.read(buf);
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public final String readString() throws IOException {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
StringBuilder res = new StringBuilder();
do {
res.append((char) c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public final int readInt() throws IOException {
int c = read();
boolean neg = false;
while (isSpaceChar(c)) {
c = read();
}
char d = (char) c;
// log("d:"+d);
if (d == '-') {
neg = true;
c = read();
}
int res = 0;
do {
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
// log("res:"+res);
if (neg)
return -res;
return res;
}
public final long readLong() throws IOException {
int c = read();
boolean neg = false;
while (isSpaceChar(c)) {
c = read();
}
char d = (char) c;
// log("d:"+d);
if (d == '-') {
neg = true;
c = read();
}
long res = 0;
do {
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
// log("res:"+res);
if (neg)
return -res;
return res;
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStreamWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Map.Entry;
import java.util.Random;
import java.util.TreeSet;
public final class CF_599_D1_C
{
static boolean verb=true;
static void log(Object X){if (verb) System.err.println(X);}
static void log(Object[] X){if (verb) {for (Object U:X) System.err.print(U+" ");System.err.println("");}}
static void log(int[] X){if (verb) {for (int U:X) System.err.print(U+" ");System.err.println("");}}
static void log(int[] X,int L){if (verb) {for (int i=0;i<L;i++) System.err.print(X[i]+" ");System.err.println("");}}
static void log(long[] X){if (verb) {for (long U:X) System.err.print(U+" ");System.err.println("");}}
static void logWln(Object X){if (verb) System.err.print(X);}
static void info(Object o){ System.out.println(o);}
static void output(Object o){outputWln(""+o+"\n"); }
static void outputWln(Object o){try {out.write(""+ o);} catch (Exception e) {}}
static long mod=1000000007;
// Global vars
static BufferedWriter out;
static InputReader reader;
static class Composite implements Comparable<Composite>{
int idx;
int v;
public int compareTo(Composite X) {
if (v!=X.v)
return v-X.v;
return idx-X.idx;
}
public Composite(int idx, int v) {
this.idx = idx;
this.v = v;
}
}
static void test() {
log("testing");
log("done");
}
static void explore(ArrayList<Integer>[] components,ArrayList<Integer> bob,int[][] move,ArrayList<int[]>[] howto,int[][] list) {
for (int x:bob) {
if (components[x].size()==1) {
int tm[]=howto[x].get(0);
int L=howto[x].size();
howto[x].add(tm);
for (int i=0;i<L;i++) {
int[] cur=howto[x].get(i);
int[] nx=howto[x].get(i+1);
int a=cur[0];
int a2=nx[0];
int b2=nx[1];
move[a2][0]=list[a2][b2];
move[a2][1]=a;
}
} else {
explore(components,components[x],move,howto,list);
}
}
}
static void process() throws Exception {
//arrayTest();
out = new BufferedWriter(new OutputStreamWriter(System.out));
reader = new InputReader(System.in);
int k=reader.readInt();
int[][] list=new int[k][];
long[] sum=new long[k];
int[] L=new int[k];
HashMap<Integer,int[]> target=new HashMap<Integer,int[]>();
long tot=0;
for (int i=0;i<k;i++) {
L[i]=reader.readInt();
list[i]=new int[L[i]];
for (int j=0;j<L[i];j++) {
list[i][j]=reader.readInt();
sum[i]+=list[i][j];
target.put(list[i][j],new int[] {i,j});
}
tot+=sum[i];
}
int MX=1<<k;
int AX=1000000001;
ArrayList<int[]>[] howto=new ArrayList[MX];
log("ok with the data");
if (tot%k!=0) {
output("No");
} else {
tot/=k;
for (int i=0;i<k;i++) {
if (sum[i]==tot) {
//log("nothing to do for i:"+i);
// nothing to do
int mask=1<<i;
ArrayList<int[]> cand=new ArrayList<int[]>();
cand.add(new int[] {i,0});
howto[mask]=cand;
} else
for (int j=0;j<L[i];j++) {
int u=i;
int v=j;
boolean ok=true;
int src_u=u;
int src_v=v;
int mask=0;
boolean goon=true;
ArrayList<int[]> cand=new ArrayList<int[]>();
//log("start loop");
while (goon) {
cand.add(new int[] {u,v});
//log("u:"+u+" v:"+v);
ok=false;
goon=false;
long need=tot-((long)sum[u]-(long)list[u][v]);
if (Math.abs(need)<=AX) {
//log("need:"+need);
int nd=(int)need;
int[] tm=target.get(nd);
//log("tm:"+tm);
if (tm!=null) {
//log("can find successor");
int nxu=tm[0];
int nxv=tm[1];
if ((mask&(1<<nxu))==0) {
mask|=1<<nxu;
if (nxu==src_u) {
// looping back to source
if (nxv==src_v)
ok=true;
} else {
u=nxu;
v=nxv;
ok=true;
goon=true;
}
}
}
}
}
if (ok) {
if (howto[mask]==null) {
howto[mask]=cand;
}
}
}
}
log("step 1 done");
// now mask
ArrayList<Integer> msk=new ArrayList<Integer>();
ArrayList[] components=new ArrayList[MX];
for (int m=0;m<MX;m++) {
if (howto[m]!=null) {
//String s=Integer.toBinaryString(m);
//while (s.length()<k)
// s="0"+s;
//log("found mask:"+s);
components[m]=new ArrayList<Integer>();
components[m].add(m);
}
}
int[] visited=new int[MX];
for (int a=0;a<MX;a++) {
if (howto[a]!=null) {
ArrayList<Integer> add=new ArrayList<Integer>();
for (int b:msk) {
if ((b&a)==0) {
int c=b|a;
log("creating c:"+c+" ");
if (components[c]==null) {
components[c]=new ArrayList<Integer>();
components[c].add(a);
components[c].add(b);
add.add(c);
}
}
}
msk.add(a);
for (int c:add) {
msk.add(c);
}
}
}
//log("msk:"+msk);
//log(components[MX-1]);
if (components[MX-1]!=null) {
output("Yes");
int[][] move=new int[k][2];
explore(components,components[MX-1],move,howto,list);
for (int i=0;i<k;i++) {
output(move[i][0]+" "+(move[i][1]+1));
}
} else {
output("No");
}
}
try {
out.close();
} catch (Exception e) {
}
}
public static void main(String[] args) throws Exception {
process();
}
static final class InputReader {
private final InputStream stream;
private final byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
private int read() throws IOException {
if (curChar >= numChars) {
curChar = 0;
numChars = stream.read(buf);
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public final String readString() throws IOException {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
StringBuilder res = new StringBuilder();
do {
res.append((char) c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public final int readInt() throws IOException {
int c = read();
boolean neg = false;
while (isSpaceChar(c)) {
c = read();
}
char d = (char) c;
// log("d:"+d);
if (d == '-') {
neg = true;
c = read();
}
int res = 0;
do {
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
// log("res:"+res);
if (neg)
return -res;
return res;
}
public final long readLong() throws IOException {
int c = read();
boolean neg = false;
while (isSpaceChar(c)) {
c = read();
}
char d = (char) c;
// log("d:"+d);
if (d == '-') {
neg = true;
c = read();
}
long res = 0;
do {
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
// log("res:"+res);
if (neg)
return -res;
return res;
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStreamWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Map.Entry;
import java.util.Random;
import java.util.TreeSet;
public final class CF_599_D1_C
{
static boolean verb=true;
static void log(Object X){if (verb) System.err.println(X);}
static void log(Object[] X){if (verb) {for (Object U:X) System.err.print(U+" ");System.err.println("");}}
static void log(int[] X){if (verb) {for (int U:X) System.err.print(U+" ");System.err.println("");}}
static void log(int[] X,int L){if (verb) {for (int i=0;i<L;i++) System.err.print(X[i]+" ");System.err.println("");}}
static void log(long[] X){if (verb) {for (long U:X) System.err.print(U+" ");System.err.println("");}}
static void logWln(Object X){if (verb) System.err.print(X);}
static void info(Object o){ System.out.println(o);}
static void output(Object o){outputWln(""+o+"\n"); }
static void outputWln(Object o){try {out.write(""+ o);} catch (Exception e) {}}
static long mod=1000000007;
// Global vars
static BufferedWriter out;
static InputReader reader;
static class Composite implements Comparable<Composite>{
int idx;
int v;
public int compareTo(Composite X) {
if (v!=X.v)
return v-X.v;
return idx-X.idx;
}
public Composite(int idx, int v) {
this.idx = idx;
this.v = v;
}
}
static void test() {
log("testing");
log("done");
}
static void explore(ArrayList<Integer>[] components,ArrayList<Integer> bob,int[][] move,ArrayList<int[]>[] howto,int[][] list) {
for (int x:bob) {
if (components[x].size()==1) {
int tm[]=howto[x].get(0);
int L=howto[x].size();
howto[x].add(tm);
for (int i=0;i<L;i++) {
int[] cur=howto[x].get(i);
int[] nx=howto[x].get(i+1);
int a=cur[0];
int a2=nx[0];
int b2=nx[1];
move[a2][0]=list[a2][b2];
move[a2][1]=a;
}
} else {
explore(components,components[x],move,howto,list);
}
}
}
static void process() throws Exception {
//arrayTest();
out = new BufferedWriter(new OutputStreamWriter(System.out));
reader = new InputReader(System.in);
int k=reader.readInt();
int[][] list=new int[k][];
long[] sum=new long[k];
int[] L=new int[k];
HashMap<Integer,int[]> target=new HashMap<Integer,int[]>();
long tot=0;
for (int i=0;i<k;i++) {
L[i]=reader.readInt();
list[i]=new int[L[i]];
for (int j=0;j<L[i];j++) {
list[i][j]=reader.readInt();
sum[i]+=list[i][j];
target.put(list[i][j],new int[] {i,j});
}
tot+=sum[i];
}
int MX=1<<k;
int AX=1000000001;
ArrayList<int[]>[] howto=new ArrayList[MX];
log("ok with the data");
if (tot%k!=0) {
output("No");
} else {
tot/=k;
for (int i=0;i<k;i++) {
if (sum[i]==tot) {
//log("nothing to do for i:"+i);
// nothing to do
int mask=1<<i;
ArrayList<int[]> cand=new ArrayList<int[]>();
cand.add(new int[] {i,0});
howto[mask]=cand;
} else
for (int j=0;j<L[i];j++) {
int u=i;
int v=j;
boolean ok=true;
int src_u=u;
int src_v=v;
int mask=0;
boolean goon=true;
ArrayList<int[]> cand=new ArrayList<int[]>();
//log("start loop");
while (goon) {
cand.add(new int[] {u,v});
//log("u:"+u+" v:"+v);
ok=false;
goon=false;
long need=tot-((long)sum[u]-(long)list[u][v]);
if (Math.abs(need)<=AX) {
//log("need:"+need);
int nd=(int)need;
int[] tm=target.get(nd);
//log("tm:"+tm);
if (tm!=null) {
//log("can find successor");
int nxu=tm[0];
int nxv=tm[1];
if ((mask&(1<<nxu))==0) {
mask|=1<<nxu;
if (nxu==src_u) {
// looping back to source
if (nxv==src_v)
ok=true;
} else {
u=nxu;
v=nxv;
ok=true;
goon=true;
}
}
}
}
}
if (ok) {
if (howto[mask]==null) {
howto[mask]=cand;
}
}
}
}
log("step 1 done");
// now mask
ArrayList<Integer> msk=new ArrayList<Integer>();
ArrayList[] components=new ArrayList[MX];
for (int m=0;m<MX;m++) {
if (howto[m]!=null) {
//String s=Integer.toBinaryString(m);
//while (s.length()<k)
// s="0"+s;
//log("found mask:"+s);
components[m]=new ArrayList<Integer>();
components[m].add(m);
}
}
int[] visited=new int[MX];
for (int a=0;a<MX;a++) {
if (howto[a]!=null) {
ArrayList<Integer> add=new ArrayList<Integer>();
for (int b:msk) {
if ((b&a)==0) {
int c=b|a;
log("creating c:"+c+" ");
if (components[c]==null) {
components[c]=new ArrayList<Integer>();
components[c].add(a);
components[c].add(b);
add.add(c);
}
}
}
msk.add(a);
for (int c:add) {
msk.add(c);
}
}
}
//log("msk:"+msk);
//log(components[MX-1]);
if (components[MX-1]!=null) {
output("Yes");
int[][] move=new int[k][2];
explore(components,components[MX-1],move,howto,list);
for (int i=0;i<k;i++) {
output(move[i][0]+" "+(move[i][1]+1));
}
} else {
output("No");
}
}
try {
out.close();
} catch (Exception e) {
}
}
public static void main(String[] args) throws Exception {
process();
}
static final class InputReader {
private final InputStream stream;
private final byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
private int read() throws IOException {
if (curChar >= numChars) {
curChar = 0;
numChars = stream.read(buf);
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public final String readString() throws IOException {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
StringBuilder res = new StringBuilder();
do {
res.append((char) c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public final int readInt() throws IOException {
int c = read();
boolean neg = false;
while (isSpaceChar(c)) {
c = read();
}
char d = (char) c;
// log("d:"+d);
if (d == '-') {
neg = true;
c = read();
}
int res = 0;
do {
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
// log("res:"+res);
if (neg)
return -res;
return res;
}
public final long readLong() throws IOException {
int c = read();
boolean neg = false;
while (isSpaceChar(c)) {
c = read();
}
char d = (char) c;
// log("d:"+d);
if (d == '-') {
neg = true;
c = read();
}
long res = 0;
do {
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
// log("res:"+res);
if (neg)
return -res;
return res;
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,572 | 3,914 |
1,061 |
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.List;
import java.util.StringTokenizer;
public class A {
void solve(){
long k = readLong();
long x = 9;
long y = 1;
while(k > x * y){
k -= x * y;
x *= 10;
y++;
}
long w = k / y + (k % y == 0 ? 0 : 1);
long e = (k % y - 1 % y + y) % y;
long num = x/9 + w - 1;
String s = Long.toString(num);
out.print(s.charAt((int) e) - '0');
}
public static void main(String[] args) {
new A().run();
}
void run(){
init();
solve();
out.close();
}
BufferedReader in;
PrintWriter out;
StringTokenizer tok = new StringTokenizer("");
void init(){
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}
String readLine(){
try{
return in.readLine();
}catch(Exception ex){
throw new RuntimeException(ex);
}
}
String readString(){
while(!tok.hasMoreTokens()){
String nextLine = readLine();
if(nextLine == null) return null;
tok = new StringTokenizer(nextLine);
}
return tok.nextToken();
}
int readInt(){
return Integer.parseInt(readString());
}
long readLong(){
return Long.parseLong(readString());
}
double readDouble(){
return Double.parseDouble(readString());
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.List;
import java.util.StringTokenizer;
public class A {
void solve(){
long k = readLong();
long x = 9;
long y = 1;
while(k > x * y){
k -= x * y;
x *= 10;
y++;
}
long w = k / y + (k % y == 0 ? 0 : 1);
long e = (k % y - 1 % y + y) % y;
long num = x/9 + w - 1;
String s = Long.toString(num);
out.print(s.charAt((int) e) - '0');
}
public static void main(String[] args) {
new A().run();
}
void run(){
init();
solve();
out.close();
}
BufferedReader in;
PrintWriter out;
StringTokenizer tok = new StringTokenizer("");
void init(){
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}
String readLine(){
try{
return in.readLine();
}catch(Exception ex){
throw new RuntimeException(ex);
}
}
String readString(){
while(!tok.hasMoreTokens()){
String nextLine = readLine();
if(nextLine == null) return null;
tok = new StringTokenizer(nextLine);
}
return tok.nextToken();
}
int readInt(){
return Integer.parseInt(readString());
}
long readLong(){
return Long.parseLong(readString());
}
double readDouble(){
return Double.parseDouble(readString());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.List;
import java.util.StringTokenizer;
public class A {
void solve(){
long k = readLong();
long x = 9;
long y = 1;
while(k > x * y){
k -= x * y;
x *= 10;
y++;
}
long w = k / y + (k % y == 0 ? 0 : 1);
long e = (k % y - 1 % y + y) % y;
long num = x/9 + w - 1;
String s = Long.toString(num);
out.print(s.charAt((int) e) - '0');
}
public static void main(String[] args) {
new A().run();
}
void run(){
init();
solve();
out.close();
}
BufferedReader in;
PrintWriter out;
StringTokenizer tok = new StringTokenizer("");
void init(){
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}
String readLine(){
try{
return in.readLine();
}catch(Exception ex){
throw new RuntimeException(ex);
}
}
String readString(){
while(!tok.hasMoreTokens()){
String nextLine = readLine();
if(nextLine == null) return null;
tok = new StringTokenizer(nextLine);
}
return tok.nextToken();
}
int readInt(){
return Integer.parseInt(readString());
}
long readLong(){
return Long.parseLong(readString());
}
double readDouble(){
return Double.parseDouble(readString());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 687 | 1,060 |
1 |
import java.util.Scanner;
public class pillar {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
int a[]=new int[200005];
for (int i=1;i<=n;i++)
a[i]=sc.nextInt();
for (int i=2;i<n;i++)
if (a[i-1]>a[i]&&a[i]<a[i+1]) {
System.out.println("NO");
return;
}
System.out.println("YES");
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class pillar {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
int a[]=new int[200005];
for (int i=1;i<=n;i++)
a[i]=sc.nextInt();
for (int i=2;i<n;i++)
if (a[i-1]>a[i]&&a[i]<a[i+1]) {
System.out.println("NO");
return;
}
System.out.println("YES");
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class pillar {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
int a[]=new int[200005];
for (int i=1;i<=n;i++)
a[i]=sc.nextInt();
for (int i=2;i<n;i++)
if (a[i-1]>a[i]&&a[i]<a[i+1]) {
System.out.println("NO");
return;
}
System.out.println("YES");
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 455 | 1 |
1,928 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
public class Solver {
StringTokenizer st;
BufferedReader in;
PrintWriter out;
public static void main(String[] args) throws NumberFormatException, IOException {
Solver solver = new Solver();
solver.open();
solver.solve();
solver.close();
}
public void open() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}
public String nextToken() throws IOException {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
public int nextInt() throws NumberFormatException, IOException {
return Integer.parseInt(nextToken());
}
public long nextLong() throws NumberFormatException, IOException {
return Long.parseLong(nextToken());
}
public double nextDouble() throws NumberFormatException, IOException {
return Double.parseDouble(nextToken());
}
public void solve() throws NumberFormatException, IOException {
int n = nextInt();
int[] ar = new int[n];
int sum = 0;
for (int i=0;i<n;i++){
ar[i]=nextInt();
sum+=ar[i];
}
Arrays.sort(ar);
int me = 0;
int k = 0;
while (me<=sum){
k++;
int coin = ar[ar.length-k];
me += coin;
sum -= coin;
}
out.println(k);
}
public void close() {
out.flush();
out.close();
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
public class Solver {
StringTokenizer st;
BufferedReader in;
PrintWriter out;
public static void main(String[] args) throws NumberFormatException, IOException {
Solver solver = new Solver();
solver.open();
solver.solve();
solver.close();
}
public void open() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}
public String nextToken() throws IOException {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
public int nextInt() throws NumberFormatException, IOException {
return Integer.parseInt(nextToken());
}
public long nextLong() throws NumberFormatException, IOException {
return Long.parseLong(nextToken());
}
public double nextDouble() throws NumberFormatException, IOException {
return Double.parseDouble(nextToken());
}
public void solve() throws NumberFormatException, IOException {
int n = nextInt();
int[] ar = new int[n];
int sum = 0;
for (int i=0;i<n;i++){
ar[i]=nextInt();
sum+=ar[i];
}
Arrays.sort(ar);
int me = 0;
int k = 0;
while (me<=sum){
k++;
int coin = ar[ar.length-k];
me += coin;
sum -= coin;
}
out.println(k);
}
public void close() {
out.flush();
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
public class Solver {
StringTokenizer st;
BufferedReader in;
PrintWriter out;
public static void main(String[] args) throws NumberFormatException, IOException {
Solver solver = new Solver();
solver.open();
solver.solve();
solver.close();
}
public void open() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}
public String nextToken() throws IOException {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
public int nextInt() throws NumberFormatException, IOException {
return Integer.parseInt(nextToken());
}
public long nextLong() throws NumberFormatException, IOException {
return Long.parseLong(nextToken());
}
public double nextDouble() throws NumberFormatException, IOException {
return Double.parseDouble(nextToken());
}
public void solve() throws NumberFormatException, IOException {
int n = nextInt();
int[] ar = new int[n];
int sum = 0;
for (int i=0;i<n;i++){
ar[i]=nextInt();
sum+=ar[i];
}
Arrays.sort(ar);
int me = 0;
int k = 0;
while (me<=sum){
k++;
int coin = ar[ar.length-k];
me += coin;
sum -= coin;
}
out.println(k);
}
public void close() {
out.flush();
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 682 | 1,924 |
3,909 |
//package Codeforces;
import java.io.*;
import java.util.*;
public class C {
static class Node{
StringBuilder sb = new StringBuilder();
Stack<Integer> stk = new Stack<>();
}
public static void main(String[] args) throws IOException {
Soumit sc = new Soumit();
int t = sc.nextInt();
StringBuilder sb = new StringBuilder();
while (t-->0){
int n = sc.nextInt();
int[] arr = sc.nextIntArray(n);
Stack<Node> mainstk = new Stack<>();
Node pnode = new Node();
pnode.stk.push(1);
pnode.sb.append("1");
mainstk.push(pnode);
sb.append(pnode.sb).append("\n");
for(int i=1;i<n;i++){
int val = arr[i];
if(val==1){
Node node = new Node();
node.stk.push(1);
node.sb.append(mainstk.peek().sb).append(".1");
mainstk.push(node);
sb.append(node.sb).append("\n");
}
else {
while (true) {
Node node = mainstk.pop();
if (node.stk.peek()==val-1) {
node.stk.push(val);
if(mainstk.isEmpty()){
node.sb = new StringBuilder();
node.sb.append(val);
sb.append(val).append("\n");
}
else{
Node peeknode = mainstk.peek();
node.sb = new StringBuilder();
node.sb.append(peeknode.sb).append(".").append(val);
sb.append(peeknode.sb).append(".").append(val).append("\n");
}
mainstk.push(node);
break;
}
}
}
}
}
System.out.println(sb);
sc.close();
}
static class Soumit {
final private int BUFFER_SIZE = 1 << 18;
final private DataInputStream din;
final private byte[] buffer;
private PrintWriter pw;
private int bufferPointer, bytesRead;
StringTokenizer st;
public Soumit() {
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Soumit(String file_name) throws IOException {
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public void streamOutput(String file) throws IOException {
FileWriter fw = new FileWriter(file);
BufferedWriter bw = new BufferedWriter(fw);
pw = new PrintWriter(bw);
}
public void println(String a) {
pw.println(a);
}
public void print(String a) {
pw.print(a);
}
public String readLine() throws IOException {
byte[] buf = new byte[3000064]; // line length
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n')
break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
public void sort(int[] arr) {
ArrayList<Integer> arlist = new ArrayList<>();
for (int i : arr)
arlist.add(i);
Collections.sort(arlist);
for (int i = 0; i < arr.length; i++)
arr[i] = arlist.get(i);
}
public void sort(long[] arr) {
ArrayList<Long> arlist = new ArrayList<>();
for (long i : arr)
arlist.add(i);
Collections.sort(arlist);
for (int i = 0; i < arr.length; i++)
arr[i] = arlist.get(i);
}
public int[] nextIntArray(int n) throws IOException {
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = nextInt();
}
return arr;
}
public long[] nextLongArray(int n) throws IOException {
long[] arr = new long[n];
for (int i = 0; i < n; i++) {
arr[i] = nextLong();
}
return arr;
}
public double[] nextDoubleArray(int n) throws IOException {
double[] arr = new double[n];
for (int i = 0; i < n; i++) {
arr[i] = nextDouble();
}
return arr;
}
public int nextInt() throws IOException {
int ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long nextLong() throws IOException {
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException {
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (c == '.') {
while ((c = read()) >= '0' && c <= '9') {
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException {
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException {
/*if (din == null)
return;*/
if (din != null) din.close();
if (pw != null) pw.close();
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
//package Codeforces;
import java.io.*;
import java.util.*;
public class C {
static class Node{
StringBuilder sb = new StringBuilder();
Stack<Integer> stk = new Stack<>();
}
public static void main(String[] args) throws IOException {
Soumit sc = new Soumit();
int t = sc.nextInt();
StringBuilder sb = new StringBuilder();
while (t-->0){
int n = sc.nextInt();
int[] arr = sc.nextIntArray(n);
Stack<Node> mainstk = new Stack<>();
Node pnode = new Node();
pnode.stk.push(1);
pnode.sb.append("1");
mainstk.push(pnode);
sb.append(pnode.sb).append("\n");
for(int i=1;i<n;i++){
int val = arr[i];
if(val==1){
Node node = new Node();
node.stk.push(1);
node.sb.append(mainstk.peek().sb).append(".1");
mainstk.push(node);
sb.append(node.sb).append("\n");
}
else {
while (true) {
Node node = mainstk.pop();
if (node.stk.peek()==val-1) {
node.stk.push(val);
if(mainstk.isEmpty()){
node.sb = new StringBuilder();
node.sb.append(val);
sb.append(val).append("\n");
}
else{
Node peeknode = mainstk.peek();
node.sb = new StringBuilder();
node.sb.append(peeknode.sb).append(".").append(val);
sb.append(peeknode.sb).append(".").append(val).append("\n");
}
mainstk.push(node);
break;
}
}
}
}
}
System.out.println(sb);
sc.close();
}
static class Soumit {
final private int BUFFER_SIZE = 1 << 18;
final private DataInputStream din;
final private byte[] buffer;
private PrintWriter pw;
private int bufferPointer, bytesRead;
StringTokenizer st;
public Soumit() {
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Soumit(String file_name) throws IOException {
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public void streamOutput(String file) throws IOException {
FileWriter fw = new FileWriter(file);
BufferedWriter bw = new BufferedWriter(fw);
pw = new PrintWriter(bw);
}
public void println(String a) {
pw.println(a);
}
public void print(String a) {
pw.print(a);
}
public String readLine() throws IOException {
byte[] buf = new byte[3000064]; // line length
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n')
break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
public void sort(int[] arr) {
ArrayList<Integer> arlist = new ArrayList<>();
for (int i : arr)
arlist.add(i);
Collections.sort(arlist);
for (int i = 0; i < arr.length; i++)
arr[i] = arlist.get(i);
}
public void sort(long[] arr) {
ArrayList<Long> arlist = new ArrayList<>();
for (long i : arr)
arlist.add(i);
Collections.sort(arlist);
for (int i = 0; i < arr.length; i++)
arr[i] = arlist.get(i);
}
public int[] nextIntArray(int n) throws IOException {
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = nextInt();
}
return arr;
}
public long[] nextLongArray(int n) throws IOException {
long[] arr = new long[n];
for (int i = 0; i < n; i++) {
arr[i] = nextLong();
}
return arr;
}
public double[] nextDoubleArray(int n) throws IOException {
double[] arr = new double[n];
for (int i = 0; i < n; i++) {
arr[i] = nextDouble();
}
return arr;
}
public int nextInt() throws IOException {
int ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long nextLong() throws IOException {
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException {
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (c == '.') {
while ((c = read()) >= '0' && c <= '9') {
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException {
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException {
/*if (din == null)
return;*/
if (din != null) din.close();
if (pw != null) pw.close();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
//package Codeforces;
import java.io.*;
import java.util.*;
public class C {
static class Node{
StringBuilder sb = new StringBuilder();
Stack<Integer> stk = new Stack<>();
}
public static void main(String[] args) throws IOException {
Soumit sc = new Soumit();
int t = sc.nextInt();
StringBuilder sb = new StringBuilder();
while (t-->0){
int n = sc.nextInt();
int[] arr = sc.nextIntArray(n);
Stack<Node> mainstk = new Stack<>();
Node pnode = new Node();
pnode.stk.push(1);
pnode.sb.append("1");
mainstk.push(pnode);
sb.append(pnode.sb).append("\n");
for(int i=1;i<n;i++){
int val = arr[i];
if(val==1){
Node node = new Node();
node.stk.push(1);
node.sb.append(mainstk.peek().sb).append(".1");
mainstk.push(node);
sb.append(node.sb).append("\n");
}
else {
while (true) {
Node node = mainstk.pop();
if (node.stk.peek()==val-1) {
node.stk.push(val);
if(mainstk.isEmpty()){
node.sb = new StringBuilder();
node.sb.append(val);
sb.append(val).append("\n");
}
else{
Node peeknode = mainstk.peek();
node.sb = new StringBuilder();
node.sb.append(peeknode.sb).append(".").append(val);
sb.append(peeknode.sb).append(".").append(val).append("\n");
}
mainstk.push(node);
break;
}
}
}
}
}
System.out.println(sb);
sc.close();
}
static class Soumit {
final private int BUFFER_SIZE = 1 << 18;
final private DataInputStream din;
final private byte[] buffer;
private PrintWriter pw;
private int bufferPointer, bytesRead;
StringTokenizer st;
public Soumit() {
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Soumit(String file_name) throws IOException {
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public void streamOutput(String file) throws IOException {
FileWriter fw = new FileWriter(file);
BufferedWriter bw = new BufferedWriter(fw);
pw = new PrintWriter(bw);
}
public void println(String a) {
pw.println(a);
}
public void print(String a) {
pw.print(a);
}
public String readLine() throws IOException {
byte[] buf = new byte[3000064]; // line length
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n')
break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
public void sort(int[] arr) {
ArrayList<Integer> arlist = new ArrayList<>();
for (int i : arr)
arlist.add(i);
Collections.sort(arlist);
for (int i = 0; i < arr.length; i++)
arr[i] = arlist.get(i);
}
public void sort(long[] arr) {
ArrayList<Long> arlist = new ArrayList<>();
for (long i : arr)
arlist.add(i);
Collections.sort(arlist);
for (int i = 0; i < arr.length; i++)
arr[i] = arlist.get(i);
}
public int[] nextIntArray(int n) throws IOException {
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = nextInt();
}
return arr;
}
public long[] nextLongArray(int n) throws IOException {
long[] arr = new long[n];
for (int i = 0; i < n; i++) {
arr[i] = nextLong();
}
return arr;
}
public double[] nextDoubleArray(int n) throws IOException {
double[] arr = new double[n];
for (int i = 0; i < n; i++) {
arr[i] = nextDouble();
}
return arr;
}
public int nextInt() throws IOException {
int ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long nextLong() throws IOException {
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException {
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (c == '.') {
while ((c = read()) >= '0' && c <= '9') {
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException {
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException {
/*if (din == null)
return;*/
if (din != null) din.close();
if (pw != null) pw.close();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,815 | 3,899 |
4,364 |
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
public class Main implements Runnable {
private int n;
private int nn;
private long[][] dp;
private boolean[][] gr;
// ////////////////////////////////////////////////////////////////////
// Solution
private void solve() throws Throwable {
n = nextInt();
nn = 1 << n;
gr = new boolean[n][n];
dp = new long[n][nn];
for (int i = 0; i < n; i++) {
Arrays.fill(dp[i], -1);
}
int m = nextInt();
for (int i = 0; i < m; i++) {
int a = nextInt() - 1, b = nextInt() - 1;
gr[a][b] = gr[b][a] = true;
}
for (int i = 0; i < n; i++) {
dp[i][0] = 0;
}
for (int mask = 1; mask < nn; mask++) {
int bCount = Integer.bitCount(mask);
if (bCount < 2) {
dp[Integer.numberOfTrailingZeros(mask)][mask] = 0;
} else if (bCount == 2) {
int msk = mask;
int one = Integer.numberOfTrailingZeros(msk);
msk ^= (1 << one);
int two = Integer.numberOfTrailingZeros(msk);
dp[two][mask] = gr[one][two] ? 1 : 0;
}
}
long count = 0;
for (int mask = 1; mask < nn; mask++) {
if (Integer.bitCount(mask) < 3) continue;
int i = Integer.numberOfTrailingZeros(mask);
for (int j = i + 1; j < n; j++) {
int jj = 1 << j;
if (gr[i][j] && ((jj & mask) != 0)) {
count += Dp(j, mask);
}
}
}
pw.println(count / 2);
}
private long Dp(int j, int mask) {
if (dp[j][mask] != -1) return dp[j][mask];
int i = Integer.numberOfTrailingZeros(mask);
assert i < j;
int m = mask ^ (1 << j);
long ans = 0;
for (int p = i + 1; p < n; p++) {
if (!gr[p][j]) continue;
if ((mask & (1 << p)) == 0) continue;
ans += Dp(p, m);
}
dp[j][mask] = ans;
return ans;
}
// ////////////////////////////////////////////////////////////////////
// Utility functions
PrintWriter pw;
BufferedReader in;
StringTokenizer st;
void initStreams() throws FileNotFoundException {
//System.setIn(new FileInputStream("2"));
in = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(System.out);
}
String nextString() throws IOException {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
int nextInt() throws NumberFormatException, IOException {
return Integer.parseInt(nextString());
}
long nextLong() throws NumberFormatException, IOException {
return Long.parseLong(nextString());
}
double nextDouble() throws NumberFormatException, IOException {
return Double.parseDouble(nextString());
}
static Throwable sError;
public static void main(String[] args) throws Throwable {
Thread t = new Thread(new Main());
t.start();
t.join();
if (sError != null) {
throw sError;
}
}
public void run() {
try {
initStreams();
solve();
} catch (Throwable e) {
sError = e;
} finally {
if (pw != null)
pw.close();
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
public class Main implements Runnable {
private int n;
private int nn;
private long[][] dp;
private boolean[][] gr;
// ////////////////////////////////////////////////////////////////////
// Solution
private void solve() throws Throwable {
n = nextInt();
nn = 1 << n;
gr = new boolean[n][n];
dp = new long[n][nn];
for (int i = 0; i < n; i++) {
Arrays.fill(dp[i], -1);
}
int m = nextInt();
for (int i = 0; i < m; i++) {
int a = nextInt() - 1, b = nextInt() - 1;
gr[a][b] = gr[b][a] = true;
}
for (int i = 0; i < n; i++) {
dp[i][0] = 0;
}
for (int mask = 1; mask < nn; mask++) {
int bCount = Integer.bitCount(mask);
if (bCount < 2) {
dp[Integer.numberOfTrailingZeros(mask)][mask] = 0;
} else if (bCount == 2) {
int msk = mask;
int one = Integer.numberOfTrailingZeros(msk);
msk ^= (1 << one);
int two = Integer.numberOfTrailingZeros(msk);
dp[two][mask] = gr[one][two] ? 1 : 0;
}
}
long count = 0;
for (int mask = 1; mask < nn; mask++) {
if (Integer.bitCount(mask) < 3) continue;
int i = Integer.numberOfTrailingZeros(mask);
for (int j = i + 1; j < n; j++) {
int jj = 1 << j;
if (gr[i][j] && ((jj & mask) != 0)) {
count += Dp(j, mask);
}
}
}
pw.println(count / 2);
}
private long Dp(int j, int mask) {
if (dp[j][mask] != -1) return dp[j][mask];
int i = Integer.numberOfTrailingZeros(mask);
assert i < j;
int m = mask ^ (1 << j);
long ans = 0;
for (int p = i + 1; p < n; p++) {
if (!gr[p][j]) continue;
if ((mask & (1 << p)) == 0) continue;
ans += Dp(p, m);
}
dp[j][mask] = ans;
return ans;
}
// ////////////////////////////////////////////////////////////////////
// Utility functions
PrintWriter pw;
BufferedReader in;
StringTokenizer st;
void initStreams() throws FileNotFoundException {
//System.setIn(new FileInputStream("2"));
in = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(System.out);
}
String nextString() throws IOException {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
int nextInt() throws NumberFormatException, IOException {
return Integer.parseInt(nextString());
}
long nextLong() throws NumberFormatException, IOException {
return Long.parseLong(nextString());
}
double nextDouble() throws NumberFormatException, IOException {
return Double.parseDouble(nextString());
}
static Throwable sError;
public static void main(String[] args) throws Throwable {
Thread t = new Thread(new Main());
t.start();
t.join();
if (sError != null) {
throw sError;
}
}
public void run() {
try {
initStreams();
solve();
} catch (Throwable e) {
sError = e;
} finally {
if (pw != null)
pw.close();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
public class Main implements Runnable {
private int n;
private int nn;
private long[][] dp;
private boolean[][] gr;
// ////////////////////////////////////////////////////////////////////
// Solution
private void solve() throws Throwable {
n = nextInt();
nn = 1 << n;
gr = new boolean[n][n];
dp = new long[n][nn];
for (int i = 0; i < n; i++) {
Arrays.fill(dp[i], -1);
}
int m = nextInt();
for (int i = 0; i < m; i++) {
int a = nextInt() - 1, b = nextInt() - 1;
gr[a][b] = gr[b][a] = true;
}
for (int i = 0; i < n; i++) {
dp[i][0] = 0;
}
for (int mask = 1; mask < nn; mask++) {
int bCount = Integer.bitCount(mask);
if (bCount < 2) {
dp[Integer.numberOfTrailingZeros(mask)][mask] = 0;
} else if (bCount == 2) {
int msk = mask;
int one = Integer.numberOfTrailingZeros(msk);
msk ^= (1 << one);
int two = Integer.numberOfTrailingZeros(msk);
dp[two][mask] = gr[one][two] ? 1 : 0;
}
}
long count = 0;
for (int mask = 1; mask < nn; mask++) {
if (Integer.bitCount(mask) < 3) continue;
int i = Integer.numberOfTrailingZeros(mask);
for (int j = i + 1; j < n; j++) {
int jj = 1 << j;
if (gr[i][j] && ((jj & mask) != 0)) {
count += Dp(j, mask);
}
}
}
pw.println(count / 2);
}
private long Dp(int j, int mask) {
if (dp[j][mask] != -1) return dp[j][mask];
int i = Integer.numberOfTrailingZeros(mask);
assert i < j;
int m = mask ^ (1 << j);
long ans = 0;
for (int p = i + 1; p < n; p++) {
if (!gr[p][j]) continue;
if ((mask & (1 << p)) == 0) continue;
ans += Dp(p, m);
}
dp[j][mask] = ans;
return ans;
}
// ////////////////////////////////////////////////////////////////////
// Utility functions
PrintWriter pw;
BufferedReader in;
StringTokenizer st;
void initStreams() throws FileNotFoundException {
//System.setIn(new FileInputStream("2"));
in = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(System.out);
}
String nextString() throws IOException {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
int nextInt() throws NumberFormatException, IOException {
return Integer.parseInt(nextString());
}
long nextLong() throws NumberFormatException, IOException {
return Long.parseLong(nextString());
}
double nextDouble() throws NumberFormatException, IOException {
return Double.parseDouble(nextString());
}
static Throwable sError;
public static void main(String[] args) throws Throwable {
Thread t = new Thread(new Main());
t.start();
t.join();
if (sError != null) {
throw sError;
}
}
public void run() {
try {
initStreams();
solve();
} catch (Throwable e) {
sError = e;
} finally {
if (pw != null)
pw.close();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,233 | 4,353 |
4,221 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.InputStreamReader;
import java.io.FileNotFoundException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastScanner in = new FastScanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskE2 solver = new TaskE2();
solver.solve(1, in, out);
out.close();
}
static class TaskE2 {
public void solve(int testNumber, FastScanner in, PrintWriter out) {
int t = in.nextInt();
while (t-- > 0) {
int n = in.nextInt(), m = in.nextInt();
int[][] a = new int[m][n];
int[] bestMask = new int[1 << n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
a[j][i] = in.nextInt();
}
}
int[] dp = new int[1 << n];
for (int i = 0; i < m; i++) {
int[] array = a[i];
for (int j = 0; j < n; j++) {
int val = array[j];
for (int mask = 0; mask < 1 << n; mask++) {
if ((mask & (1 << j)) == 0) {
dp[mask | (1 << j)] = Math.max(dp[mask | (1 << j)], dp[mask] + val);
}
}
}
for (int mask = 0; mask < 1 << n; mask++) {
int best = 0;
int cur = mask;
for (int j = 0; j < n; j++) {
best = Math.max(best, dp[cur]);
cur = (cur >> 1) | ((cur & 1) << (n - 1));
}
for (int j = 0; j < n; j++) {
dp[cur] = best;
cur = (cur >> 1) | ((cur & 1) << (n - 1));
}
}
}
out.println(dp[(1 << n) - 1]);
}
}
}
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(InputStream in) {
br = new BufferedReader(new InputStreamReader(in));
}
public FastScanner(String fileName) {
try {
br = new BufferedReader(new FileReader(fileName));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
public int nextInt() {
return Integer.parseInt(next());
}
public String next() {
while (st == null || !st.hasMoreElements()) {
String line = null;
try {
line = br.readLine();
} catch (IOException e) {
}
st = new StringTokenizer(line);
}
return st.nextToken();
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.InputStreamReader;
import java.io.FileNotFoundException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastScanner in = new FastScanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskE2 solver = new TaskE2();
solver.solve(1, in, out);
out.close();
}
static class TaskE2 {
public void solve(int testNumber, FastScanner in, PrintWriter out) {
int t = in.nextInt();
while (t-- > 0) {
int n = in.nextInt(), m = in.nextInt();
int[][] a = new int[m][n];
int[] bestMask = new int[1 << n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
a[j][i] = in.nextInt();
}
}
int[] dp = new int[1 << n];
for (int i = 0; i < m; i++) {
int[] array = a[i];
for (int j = 0; j < n; j++) {
int val = array[j];
for (int mask = 0; mask < 1 << n; mask++) {
if ((mask & (1 << j)) == 0) {
dp[mask | (1 << j)] = Math.max(dp[mask | (1 << j)], dp[mask] + val);
}
}
}
for (int mask = 0; mask < 1 << n; mask++) {
int best = 0;
int cur = mask;
for (int j = 0; j < n; j++) {
best = Math.max(best, dp[cur]);
cur = (cur >> 1) | ((cur & 1) << (n - 1));
}
for (int j = 0; j < n; j++) {
dp[cur] = best;
cur = (cur >> 1) | ((cur & 1) << (n - 1));
}
}
}
out.println(dp[(1 << n) - 1]);
}
}
}
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(InputStream in) {
br = new BufferedReader(new InputStreamReader(in));
}
public FastScanner(String fileName) {
try {
br = new BufferedReader(new FileReader(fileName));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
public int nextInt() {
return Integer.parseInt(next());
}
public String next() {
while (st == null || !st.hasMoreElements()) {
String line = null;
try {
line = br.readLine();
} catch (IOException e) {
}
st = new StringTokenizer(line);
}
return st.nextToken();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.InputStreamReader;
import java.io.FileNotFoundException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastScanner in = new FastScanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskE2 solver = new TaskE2();
solver.solve(1, in, out);
out.close();
}
static class TaskE2 {
public void solve(int testNumber, FastScanner in, PrintWriter out) {
int t = in.nextInt();
while (t-- > 0) {
int n = in.nextInt(), m = in.nextInt();
int[][] a = new int[m][n];
int[] bestMask = new int[1 << n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
a[j][i] = in.nextInt();
}
}
int[] dp = new int[1 << n];
for (int i = 0; i < m; i++) {
int[] array = a[i];
for (int j = 0; j < n; j++) {
int val = array[j];
for (int mask = 0; mask < 1 << n; mask++) {
if ((mask & (1 << j)) == 0) {
dp[mask | (1 << j)] = Math.max(dp[mask | (1 << j)], dp[mask] + val);
}
}
}
for (int mask = 0; mask < 1 << n; mask++) {
int best = 0;
int cur = mask;
for (int j = 0; j < n; j++) {
best = Math.max(best, dp[cur]);
cur = (cur >> 1) | ((cur & 1) << (n - 1));
}
for (int j = 0; j < n; j++) {
dp[cur] = best;
cur = (cur >> 1) | ((cur & 1) << (n - 1));
}
}
}
out.println(dp[(1 << n) - 1]);
}
}
}
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(InputStream in) {
br = new BufferedReader(new InputStreamReader(in));
}
public FastScanner(String fileName) {
try {
br = new BufferedReader(new FileReader(fileName));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
public int nextInt() {
return Integer.parseInt(next());
}
public String next() {
while (st == null || !st.hasMoreElements()) {
String line = null;
try {
line = br.readLine();
} catch (IOException e) {
}
st = new StringTokenizer(line);
}
return st.nextToken();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,028 | 4,210 |
922 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Vaibhav Pulastya
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
BSportMafia solver = new BSportMafia();
solver.solve(1, in, out);
out.close();
}
static class BSportMafia {
public void solve(int testNumber, InputReader in, PrintWriter out) {
long n = in.nextInt();
long k = in.nextInt();
long d = 9 + 4 * (2 * n + 2 * k);
double smh = Math.sqrt(d);
double ans = (-3 + smh) / 2;
out.println(n - (int) ans);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Vaibhav Pulastya
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
BSportMafia solver = new BSportMafia();
solver.solve(1, in, out);
out.close();
}
static class BSportMafia {
public void solve(int testNumber, InputReader in, PrintWriter out) {
long n = in.nextInt();
long k = in.nextInt();
long d = 9 + 4 * (2 * n + 2 * k);
double smh = Math.sqrt(d);
double ans = (-3 + smh) / 2;
out.println(n - (int) ans);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Vaibhav Pulastya
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
BSportMafia solver = new BSportMafia();
solver.solve(1, in, out);
out.close();
}
static class BSportMafia {
public void solve(int testNumber, InputReader in, PrintWriter out) {
long n = in.nextInt();
long k = in.nextInt();
long d = 9 + 4 * (2 * n + 2 * k);
double smh = Math.sqrt(d);
double ans = (-3 + smh) / 2;
out.println(n - (int) ans);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 880 | 921 |
16 |
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class C {
void solve(){
int n = readInt();
int q = readInt();
int max = 0;
int[] a = new int[n];
Deque<Integer> deque = new ArrayDeque<>();
for(int i = 0;i<n;i++){
a[i] = readInt();
deque.addLast(a[i]);
max = Math.max(max, a[i]);
}
List<String> ans = new ArrayList<>();
while(deque.peekFirst() != max){
int one = deque.pollFirst();
int two = deque.pollFirst();
ans.add(one + " " + two);
deque.addFirst(one > two ? one : two);
deque.addLast(one > two ? two : one);
if(one == max) break;
}
for(int i = 0;i<n;i++){
a[i] = deque.pollFirst();
}
for(int i = 0;i<q;i++){
long x = readLong();
if(x <= ans.size()){
out.println(ans.get((int)x - 1));
continue;
}
x -= ans.size();
int y =(int) (x%(n - 1) - 1%(n - 1) + (n - 1)) % (n - 1) + 1;
out.println(max + " " + a[y]);
}
}
public static void main(String[] args) {
new C().run();
}
void run(){
init();
solve();
out.close();
}
BufferedReader in;
PrintWriter out;
StringTokenizer tok = new StringTokenizer("");
void init(){
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}
String readLine(){
try{
return in.readLine();
}catch(Exception ex){
throw new RuntimeException(ex);
}
}
String readString(){
while(!tok.hasMoreTokens()){
String nextLine = readLine();
if(nextLine == null) return null;
tok = new StringTokenizer(nextLine);
}
return tok.nextToken();
}
int readInt(){
return Integer.parseInt(readString());
}
long readLong(){
return Long.parseLong(readString());
}
double readDouble(){
return Double.parseDouble(readString());
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class C {
void solve(){
int n = readInt();
int q = readInt();
int max = 0;
int[] a = new int[n];
Deque<Integer> deque = new ArrayDeque<>();
for(int i = 0;i<n;i++){
a[i] = readInt();
deque.addLast(a[i]);
max = Math.max(max, a[i]);
}
List<String> ans = new ArrayList<>();
while(deque.peekFirst() != max){
int one = deque.pollFirst();
int two = deque.pollFirst();
ans.add(one + " " + two);
deque.addFirst(one > two ? one : two);
deque.addLast(one > two ? two : one);
if(one == max) break;
}
for(int i = 0;i<n;i++){
a[i] = deque.pollFirst();
}
for(int i = 0;i<q;i++){
long x = readLong();
if(x <= ans.size()){
out.println(ans.get((int)x - 1));
continue;
}
x -= ans.size();
int y =(int) (x%(n - 1) - 1%(n - 1) + (n - 1)) % (n - 1) + 1;
out.println(max + " " + a[y]);
}
}
public static void main(String[] args) {
new C().run();
}
void run(){
init();
solve();
out.close();
}
BufferedReader in;
PrintWriter out;
StringTokenizer tok = new StringTokenizer("");
void init(){
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}
String readLine(){
try{
return in.readLine();
}catch(Exception ex){
throw new RuntimeException(ex);
}
}
String readString(){
while(!tok.hasMoreTokens()){
String nextLine = readLine();
if(nextLine == null) return null;
tok = new StringTokenizer(nextLine);
}
return tok.nextToken();
}
int readInt(){
return Integer.parseInt(readString());
}
long readLong(){
return Long.parseLong(readString());
}
double readDouble(){
return Double.parseDouble(readString());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class C {
void solve(){
int n = readInt();
int q = readInt();
int max = 0;
int[] a = new int[n];
Deque<Integer> deque = new ArrayDeque<>();
for(int i = 0;i<n;i++){
a[i] = readInt();
deque.addLast(a[i]);
max = Math.max(max, a[i]);
}
List<String> ans = new ArrayList<>();
while(deque.peekFirst() != max){
int one = deque.pollFirst();
int two = deque.pollFirst();
ans.add(one + " " + two);
deque.addFirst(one > two ? one : two);
deque.addLast(one > two ? two : one);
if(one == max) break;
}
for(int i = 0;i<n;i++){
a[i] = deque.pollFirst();
}
for(int i = 0;i<q;i++){
long x = readLong();
if(x <= ans.size()){
out.println(ans.get((int)x - 1));
continue;
}
x -= ans.size();
int y =(int) (x%(n - 1) - 1%(n - 1) + (n - 1)) % (n - 1) + 1;
out.println(max + " " + a[y]);
}
}
public static void main(String[] args) {
new C().run();
}
void run(){
init();
solve();
out.close();
}
BufferedReader in;
PrintWriter out;
StringTokenizer tok = new StringTokenizer("");
void init(){
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}
String readLine(){
try{
return in.readLine();
}catch(Exception ex){
throw new RuntimeException(ex);
}
}
String readString(){
while(!tok.hasMoreTokens()){
String nextLine = readLine();
if(nextLine == null) return null;
tok = new StringTokenizer(nextLine);
}
return tok.nextToken();
}
int readInt(){
return Integer.parseInt(readString());
}
long readLong(){
return Long.parseLong(readString());
}
double readDouble(){
return Double.parseDouble(readString());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 837 | 16 |
4,128 |
import java.util.*;
import java.lang.Math.*;
public class Main {
static Scanner in = new Scanner(System.in);
static Coor[] p;
static Coor ori;
static int n;
static int dp[];
static Coor pre[];
public static void main(String[] args) {
ori = new Coor(in.nextInt(),in.nextInt());
n = in.nextInt();
p = new Coor[n];
dp = new int[1<<n];
pre = new Coor[1<<n];
for (int i = 0;i < n;i++) {
p[i] = new Coor(in.nextInt(),in.nextInt());
}
Arrays.fill(dp,-1);
dp[0] = 0;
System.out.println( getdp((1<<n)-1));
//System.out.printf("%d",0);
System.out.printf("%d",0);
trace((1<<n)-1);
System.out.println();
}
static void trace(int mask) {
if (mask == 0) return;
if (pre[mask].y == -1) {
System.out.printf(" %d %d",pre[mask].x+1,0);
trace( mask - ( 1<< pre[mask].x ) );
} else {
System.out.printf(" %d %d %d",pre[mask].x+1,pre[mask].y+1,0);
trace( mask - ( 1<< pre[mask].x ) - (1<<pre[mask].y));
}
}
static int getdp(int mask) {
if (dp[mask] != -1)
return dp[mask];
int fr = 0;
for (int i = 0;i < n;i++)
if ( (mask & (1 << i)) != 0 ) {
fr = i;
break;
}
dp[mask] = getdp( mask - (1 << fr) ) + 2 * p[fr].dist(ori);
pre[mask] = new Coor(fr,-1);
for (int i = fr+1;i < n;i++) {
int to = i;
if ( (mask & (1 << i)) != 0) {
int tmp = getdp( mask - (1<<fr) - (1<<i) ) + p[fr].dist(ori) + p[to].dist(ori) + p[fr].dist(p[to]);
if (tmp < dp[mask]) {
dp[mask] = tmp;
pre[mask].y = i;
}
}
}
return dp[mask];
}
}
class Coor {
int x,y;
Coor(int _x,int _y) {
x = _x;y = _y;
}
int dist(Coor o) {
return ( (x-o.x) * (x-o.x) + (y-o.y) * (y-o.y) );
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.lang.Math.*;
public class Main {
static Scanner in = new Scanner(System.in);
static Coor[] p;
static Coor ori;
static int n;
static int dp[];
static Coor pre[];
public static void main(String[] args) {
ori = new Coor(in.nextInt(),in.nextInt());
n = in.nextInt();
p = new Coor[n];
dp = new int[1<<n];
pre = new Coor[1<<n];
for (int i = 0;i < n;i++) {
p[i] = new Coor(in.nextInt(),in.nextInt());
}
Arrays.fill(dp,-1);
dp[0] = 0;
System.out.println( getdp((1<<n)-1));
//System.out.printf("%d",0);
System.out.printf("%d",0);
trace((1<<n)-1);
System.out.println();
}
static void trace(int mask) {
if (mask == 0) return;
if (pre[mask].y == -1) {
System.out.printf(" %d %d",pre[mask].x+1,0);
trace( mask - ( 1<< pre[mask].x ) );
} else {
System.out.printf(" %d %d %d",pre[mask].x+1,pre[mask].y+1,0);
trace( mask - ( 1<< pre[mask].x ) - (1<<pre[mask].y));
}
}
static int getdp(int mask) {
if (dp[mask] != -1)
return dp[mask];
int fr = 0;
for (int i = 0;i < n;i++)
if ( (mask & (1 << i)) != 0 ) {
fr = i;
break;
}
dp[mask] = getdp( mask - (1 << fr) ) + 2 * p[fr].dist(ori);
pre[mask] = new Coor(fr,-1);
for (int i = fr+1;i < n;i++) {
int to = i;
if ( (mask & (1 << i)) != 0) {
int tmp = getdp( mask - (1<<fr) - (1<<i) ) + p[fr].dist(ori) + p[to].dist(ori) + p[fr].dist(p[to]);
if (tmp < dp[mask]) {
dp[mask] = tmp;
pre[mask].y = i;
}
}
}
return dp[mask];
}
}
class Coor {
int x,y;
Coor(int _x,int _y) {
x = _x;y = _y;
}
int dist(Coor o) {
return ( (x-o.x) * (x-o.x) + (y-o.y) * (y-o.y) );
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.lang.Math.*;
public class Main {
static Scanner in = new Scanner(System.in);
static Coor[] p;
static Coor ori;
static int n;
static int dp[];
static Coor pre[];
public static void main(String[] args) {
ori = new Coor(in.nextInt(),in.nextInt());
n = in.nextInt();
p = new Coor[n];
dp = new int[1<<n];
pre = new Coor[1<<n];
for (int i = 0;i < n;i++) {
p[i] = new Coor(in.nextInt(),in.nextInt());
}
Arrays.fill(dp,-1);
dp[0] = 0;
System.out.println( getdp((1<<n)-1));
//System.out.printf("%d",0);
System.out.printf("%d",0);
trace((1<<n)-1);
System.out.println();
}
static void trace(int mask) {
if (mask == 0) return;
if (pre[mask].y == -1) {
System.out.printf(" %d %d",pre[mask].x+1,0);
trace( mask - ( 1<< pre[mask].x ) );
} else {
System.out.printf(" %d %d %d",pre[mask].x+1,pre[mask].y+1,0);
trace( mask - ( 1<< pre[mask].x ) - (1<<pre[mask].y));
}
}
static int getdp(int mask) {
if (dp[mask] != -1)
return dp[mask];
int fr = 0;
for (int i = 0;i < n;i++)
if ( (mask & (1 << i)) != 0 ) {
fr = i;
break;
}
dp[mask] = getdp( mask - (1 << fr) ) + 2 * p[fr].dist(ori);
pre[mask] = new Coor(fr,-1);
for (int i = fr+1;i < n;i++) {
int to = i;
if ( (mask & (1 << i)) != 0) {
int tmp = getdp( mask - (1<<fr) - (1<<i) ) + p[fr].dist(ori) + p[to].dist(ori) + p[fr].dist(p[to]);
if (tmp < dp[mask]) {
dp[mask] = tmp;
pre[mask].y = i;
}
}
}
return dp[mask];
}
}
class Coor {
int x,y;
Coor(int _x,int _y) {
x = _x;y = _y;
}
int dist(Coor o) {
return ( (x-o.x) * (x-o.x) + (y-o.y) * (y-o.y) );
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 958 | 4,117 |
2,508 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.InputMismatchException;
import java.util.HashMap;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.io.InputStream;
/**
* Built using CHelper plug-in Actual solution is at the top
*
* @author MaxHeap
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
F1SameSumBlocksEasy solver = new F1SameSumBlocksEasy();
solver.solve(1, in, out);
out.close();
}
static class F1SameSumBlocksEasy {
Map<Long, List<IntPair>> sums = new HashMap<>();
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
long[] arr = in.nextLongArray(n);
long[] pref = ArrayUtils.prefixSum(arr);
for (int i = 0; i < n; ++i) {
for (int j = i; j >= 0; --j) {
long sum = pref[i + 1] - pref[j];
if (sums.containsKey(sum)) {
sums.get(sum).add(Factories.makeIntPair(j, i));
} else {
List<IntPair> pairs = new ArrayList<>();
pairs.add(Factories.makeIntPair(j, i));
sums.put(sum, pairs);
}
}
}
int best = 0;
List<IntPair> res = new ArrayList<>();
for (long sum : sums.keySet()) {
List<IntPair> pairs = sums.get(sum);
List<IntPair> temp = new ArrayList<>();
int last = -1;
for (IntPair cur : pairs) {
if (cur.first > last) {
last = cur.second;
temp.add(cur);
}
}
if (temp.size() > best) {
best = temp.size();
res = temp;
}
}
out.println(best);
for (IntPair pair : res) {
out.println((pair.first + 1) + " " + (pair.second + 1));
}
}
}
static class ArrayUtils {
public static long[] prefixSum(long[] arr) {
long[] acc = new long[arr.length + 1];
for (int i = 1; i <= arr.length; ++i) {
acc[i] = acc[i - 1] + arr[i - 1];
}
return acc;
}
}
static interface FastIO {
}
static final class Factories {
private Factories() {
}
public static IntPair makeIntPair(int first, int second) {
return new IntPair(first, second);
}
}
static class IntPair implements Comparable<IntPair> {
public int first;
public int second;
public IntPair() {
first = second = 0;
}
public IntPair(int first, int second) {
this.first = first;
this.second = second;
}
public int compareTo(IntPair a) {
if (first == a.first) {
return Integer.compare(second, a.second);
}
return Integer.compare(first, a.first);
}
public String toString() {
return "<" + first + ", " + second + ">";
}
public boolean equals(Object o) {
if (this == o) {
return true;
}
if (o == null || getClass() != o.getClass()) {
return false;
}
IntPair a = (IntPair) o;
if (first != a.first) {
return false;
}
return second == a.second;
}
public int hashCode() {
int result = first;
result = 31 * result + second;
return result;
}
}
static class InputReader implements FastIO {
private InputStream stream;
private static final int DEFAULT_BUFFER_SIZE = 1 << 16;
private static final int EOF = -1;
private byte[] buf = new byte[DEFAULT_BUFFER_SIZE];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (this.numChars == EOF) {
throw new UnknownError();
} else {
if (this.curChar >= this.numChars) {
this.curChar = 0;
try {
this.numChars = this.stream.read(this.buf);
} catch (IOException ex) {
throw new InputMismatchException();
}
if (this.numChars <= 0) {
return EOF;
}
}
return this.buf[this.curChar++];
}
}
public int nextInt() {
int c;
for (c = this.read(); isSpaceChar(c); c = this.read()) {
}
byte sgn = 1;
if (c == 45) {
sgn = -1;
c = this.read();
}
int res = 0;
while (c >= 48 && c <= 57) {
res *= 10;
res += c - 48;
c = this.read();
if (isSpaceChar(c)) {
return res * sgn;
}
}
throw new InputMismatchException();
}
public long nextLong() {
int c;
for (c = this.read(); isSpaceChar(c); c = this.read()) {
}
byte sgn = 1;
if (c == 45) {
sgn = -1;
c = this.read();
}
long res = 0;
while (c >= 48 && c <= 57) {
res *= 10L;
res += c - 48;
c = this.read();
if (isSpaceChar(c)) {
return res * sgn;
}
}
throw new InputMismatchException();
}
public static boolean isSpaceChar(int c) {
return c == 32 || c == 10 || c == 13 || c == 9 || c == EOF;
}
public long[] nextLongArray(int n) {
long[] arr = new long[n];
for (int i = 0; i < n; i++) {
arr[i] = nextLong();
}
return arr;
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.InputMismatchException;
import java.util.HashMap;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.io.InputStream;
/**
* Built using CHelper plug-in Actual solution is at the top
*
* @author MaxHeap
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
F1SameSumBlocksEasy solver = new F1SameSumBlocksEasy();
solver.solve(1, in, out);
out.close();
}
static class F1SameSumBlocksEasy {
Map<Long, List<IntPair>> sums = new HashMap<>();
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
long[] arr = in.nextLongArray(n);
long[] pref = ArrayUtils.prefixSum(arr);
for (int i = 0; i < n; ++i) {
for (int j = i; j >= 0; --j) {
long sum = pref[i + 1] - pref[j];
if (sums.containsKey(sum)) {
sums.get(sum).add(Factories.makeIntPair(j, i));
} else {
List<IntPair> pairs = new ArrayList<>();
pairs.add(Factories.makeIntPair(j, i));
sums.put(sum, pairs);
}
}
}
int best = 0;
List<IntPair> res = new ArrayList<>();
for (long sum : sums.keySet()) {
List<IntPair> pairs = sums.get(sum);
List<IntPair> temp = new ArrayList<>();
int last = -1;
for (IntPair cur : pairs) {
if (cur.first > last) {
last = cur.second;
temp.add(cur);
}
}
if (temp.size() > best) {
best = temp.size();
res = temp;
}
}
out.println(best);
for (IntPair pair : res) {
out.println((pair.first + 1) + " " + (pair.second + 1));
}
}
}
static class ArrayUtils {
public static long[] prefixSum(long[] arr) {
long[] acc = new long[arr.length + 1];
for (int i = 1; i <= arr.length; ++i) {
acc[i] = acc[i - 1] + arr[i - 1];
}
return acc;
}
}
static interface FastIO {
}
static final class Factories {
private Factories() {
}
public static IntPair makeIntPair(int first, int second) {
return new IntPair(first, second);
}
}
static class IntPair implements Comparable<IntPair> {
public int first;
public int second;
public IntPair() {
first = second = 0;
}
public IntPair(int first, int second) {
this.first = first;
this.second = second;
}
public int compareTo(IntPair a) {
if (first == a.first) {
return Integer.compare(second, a.second);
}
return Integer.compare(first, a.first);
}
public String toString() {
return "<" + first + ", " + second + ">";
}
public boolean equals(Object o) {
if (this == o) {
return true;
}
if (o == null || getClass() != o.getClass()) {
return false;
}
IntPair a = (IntPair) o;
if (first != a.first) {
return false;
}
return second == a.second;
}
public int hashCode() {
int result = first;
result = 31 * result + second;
return result;
}
}
static class InputReader implements FastIO {
private InputStream stream;
private static final int DEFAULT_BUFFER_SIZE = 1 << 16;
private static final int EOF = -1;
private byte[] buf = new byte[DEFAULT_BUFFER_SIZE];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (this.numChars == EOF) {
throw new UnknownError();
} else {
if (this.curChar >= this.numChars) {
this.curChar = 0;
try {
this.numChars = this.stream.read(this.buf);
} catch (IOException ex) {
throw new InputMismatchException();
}
if (this.numChars <= 0) {
return EOF;
}
}
return this.buf[this.curChar++];
}
}
public int nextInt() {
int c;
for (c = this.read(); isSpaceChar(c); c = this.read()) {
}
byte sgn = 1;
if (c == 45) {
sgn = -1;
c = this.read();
}
int res = 0;
while (c >= 48 && c <= 57) {
res *= 10;
res += c - 48;
c = this.read();
if (isSpaceChar(c)) {
return res * sgn;
}
}
throw new InputMismatchException();
}
public long nextLong() {
int c;
for (c = this.read(); isSpaceChar(c); c = this.read()) {
}
byte sgn = 1;
if (c == 45) {
sgn = -1;
c = this.read();
}
long res = 0;
while (c >= 48 && c <= 57) {
res *= 10L;
res += c - 48;
c = this.read();
if (isSpaceChar(c)) {
return res * sgn;
}
}
throw new InputMismatchException();
}
public static boolean isSpaceChar(int c) {
return c == 32 || c == 10 || c == 13 || c == 9 || c == EOF;
}
public long[] nextLongArray(int n) {
long[] arr = new long[n];
for (int i = 0; i < n; i++) {
arr[i] = nextLong();
}
return arr;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.InputMismatchException;
import java.util.HashMap;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.io.InputStream;
/**
* Built using CHelper plug-in Actual solution is at the top
*
* @author MaxHeap
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
F1SameSumBlocksEasy solver = new F1SameSumBlocksEasy();
solver.solve(1, in, out);
out.close();
}
static class F1SameSumBlocksEasy {
Map<Long, List<IntPair>> sums = new HashMap<>();
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
long[] arr = in.nextLongArray(n);
long[] pref = ArrayUtils.prefixSum(arr);
for (int i = 0; i < n; ++i) {
for (int j = i; j >= 0; --j) {
long sum = pref[i + 1] - pref[j];
if (sums.containsKey(sum)) {
sums.get(sum).add(Factories.makeIntPair(j, i));
} else {
List<IntPair> pairs = new ArrayList<>();
pairs.add(Factories.makeIntPair(j, i));
sums.put(sum, pairs);
}
}
}
int best = 0;
List<IntPair> res = new ArrayList<>();
for (long sum : sums.keySet()) {
List<IntPair> pairs = sums.get(sum);
List<IntPair> temp = new ArrayList<>();
int last = -1;
for (IntPair cur : pairs) {
if (cur.first > last) {
last = cur.second;
temp.add(cur);
}
}
if (temp.size() > best) {
best = temp.size();
res = temp;
}
}
out.println(best);
for (IntPair pair : res) {
out.println((pair.first + 1) + " " + (pair.second + 1));
}
}
}
static class ArrayUtils {
public static long[] prefixSum(long[] arr) {
long[] acc = new long[arr.length + 1];
for (int i = 1; i <= arr.length; ++i) {
acc[i] = acc[i - 1] + arr[i - 1];
}
return acc;
}
}
static interface FastIO {
}
static final class Factories {
private Factories() {
}
public static IntPair makeIntPair(int first, int second) {
return new IntPair(first, second);
}
}
static class IntPair implements Comparable<IntPair> {
public int first;
public int second;
public IntPair() {
first = second = 0;
}
public IntPair(int first, int second) {
this.first = first;
this.second = second;
}
public int compareTo(IntPair a) {
if (first == a.first) {
return Integer.compare(second, a.second);
}
return Integer.compare(first, a.first);
}
public String toString() {
return "<" + first + ", " + second + ">";
}
public boolean equals(Object o) {
if (this == o) {
return true;
}
if (o == null || getClass() != o.getClass()) {
return false;
}
IntPair a = (IntPair) o;
if (first != a.first) {
return false;
}
return second == a.second;
}
public int hashCode() {
int result = first;
result = 31 * result + second;
return result;
}
}
static class InputReader implements FastIO {
private InputStream stream;
private static final int DEFAULT_BUFFER_SIZE = 1 << 16;
private static final int EOF = -1;
private byte[] buf = new byte[DEFAULT_BUFFER_SIZE];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (this.numChars == EOF) {
throw new UnknownError();
} else {
if (this.curChar >= this.numChars) {
this.curChar = 0;
try {
this.numChars = this.stream.read(this.buf);
} catch (IOException ex) {
throw new InputMismatchException();
}
if (this.numChars <= 0) {
return EOF;
}
}
return this.buf[this.curChar++];
}
}
public int nextInt() {
int c;
for (c = this.read(); isSpaceChar(c); c = this.read()) {
}
byte sgn = 1;
if (c == 45) {
sgn = -1;
c = this.read();
}
int res = 0;
while (c >= 48 && c <= 57) {
res *= 10;
res += c - 48;
c = this.read();
if (isSpaceChar(c)) {
return res * sgn;
}
}
throw new InputMismatchException();
}
public long nextLong() {
int c;
for (c = this.read(); isSpaceChar(c); c = this.read()) {
}
byte sgn = 1;
if (c == 45) {
sgn = -1;
c = this.read();
}
long res = 0;
while (c >= 48 && c <= 57) {
res *= 10L;
res += c - 48;
c = this.read();
if (isSpaceChar(c)) {
return res * sgn;
}
}
throw new InputMismatchException();
}
public static boolean isSpaceChar(int c) {
return c == 32 || c == 10 || c == 13 || c == 9 || c == EOF;
}
public long[] nextLongArray(int n) {
long[] arr = new long[n];
for (int i = 0; i < n; i++) {
arr[i] = nextLong();
}
return arr;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,749 | 2,502 |
4,298 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class BNew {
double gAns = 0;
public static void main(String[] args) throws IOException {
new BNew().solve();
}
private void solve() throws IOException {
MyScanner in = new MyScanner(new BufferedReader(new InputStreamReader(System.in)));
int n = in.nextInt();
int k = in.nextInt();
int A = in.nextInt();
List<Senator> allSenators = new ArrayList<Senator>();
for (int i = 0; i < n; i++) {
int level = in.nextInt();
int loyalty = in.nextInt();
allSenators.add(new Senator(level, loyalty));
}
allSenators = Collections.unmodifiableList(allSenators);
int npow2 = 1 << n;
rec(allSenators, 0, k, A);
for (int okSenatorMask = 0; okSenatorMask < npow2; okSenatorMask++) {
List<Senator> okSenators = copy(getSenatorsByMask(okSenatorMask, allSenators));
liftLeastSenators(okSenators, k);
List<Senator> updatedSenators = new ArrayList<Senator>(okSenators);
List<Senator> otherSenators = getSenatorsByMask(npow2 - 1 - okSenatorMask, allSenators);
updatedSenators.addAll(otherSenators);
check(updatedSenators, A);
}
in.close();
PrintWriter pw = new PrintWriter(System.out);
System.out.printf("%.6f\n", gAns);
pw.close();
}
private void rec(List<Senator> senators, int senatorId, int k, int A) {
if (senatorId == senators.size()) {
check(senators, A);
return;
}
Senator senator = senators.get(senatorId);
int up = Math.min(k, (100 - senator.loyalty) / 10);
final int old = senator.loyalty;
for (int i = 0; i <= up; i++) {
senator.loyalty = old + i * 10;
rec(senators, senatorId + 1, k - i, A);
}
senator.loyalty = old;
}
private void check(List<Senator> senators, double A) {
double winProp = 0.0;
for (int mask = 0; mask < 1 << senators.size(); mask++) {
double caseP = 1.0;
int okCnt = 0;
int notOkLevelSum = 0;
for (int i = 0; i < senators.size(); i++) {
Senator senator = senators.get(i);
double senatorLoyalty = senator.loyalty / 100.0;
boolean ok = (mask & (1 << i)) != 0;
if (ok) {
caseP *= senatorLoyalty;
okCnt++;
} else {
caseP *= (1 - senatorLoyalty);
notOkLevelSum += senator.level;
}
}
if (okCnt * 2 > senators.size()) {
winProp += caseP;
} else {
double killProp = A / (A + notOkLevelSum);
winProp += caseP * killProp;
}
}
gAns = Math.max(gAns, winProp);
}
List<Senator> copy(List<Senator> senators) {
List<Senator> copied = new ArrayList<Senator>();
for (Senator senator : senators) {
copied.add(new Senator(senator.level, senator.loyalty));
}
return copied;
}
void liftLeastSenators(List<Senator> senators, int k) {
if (senators.isEmpty()) {
return;
}
for (int i = 0; i < k; i++) {
Senator least = senators.get(0);
for (Senator senator : senators) {
if (senator.loyalty < least.loyalty) {
least = senator;
}
}
if (least.loyalty < 100) {
least.loyalty += 10;
}
}
}
List<Senator> getSenatorsByMask(int mask, List<Senator> allSenators) {
List<Senator> list = new ArrayList<Senator>();
for (int i = 0; i < allSenators.size(); i++) {
if ((mask & (1 << i)) != 0) {
list.add(allSenators.get(i));
}
}
return list;
}
static class Senator {
final int level;
int loyalty;
Senator(int level, int loyalty) {
this.level = level;
this.loyalty = loyalty;
}
@Override
public String toString() {
return "{" +
"level=" + level +
", loyalty=" + loyalty +
'}';
}
}
static class MyScanner {
final BufferedReader myBr;
StringTokenizer st = new StringTokenizer("");
MyScanner(BufferedReader br) {
myBr = br;
}
String nextToken() throws IOException {
while (!st.hasMoreTokens()) {
st = new StringTokenizer(myBr.readLine());
}
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
void close() throws IOException {
myBr.close();
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class BNew {
double gAns = 0;
public static void main(String[] args) throws IOException {
new BNew().solve();
}
private void solve() throws IOException {
MyScanner in = new MyScanner(new BufferedReader(new InputStreamReader(System.in)));
int n = in.nextInt();
int k = in.nextInt();
int A = in.nextInt();
List<Senator> allSenators = new ArrayList<Senator>();
for (int i = 0; i < n; i++) {
int level = in.nextInt();
int loyalty = in.nextInt();
allSenators.add(new Senator(level, loyalty));
}
allSenators = Collections.unmodifiableList(allSenators);
int npow2 = 1 << n;
rec(allSenators, 0, k, A);
for (int okSenatorMask = 0; okSenatorMask < npow2; okSenatorMask++) {
List<Senator> okSenators = copy(getSenatorsByMask(okSenatorMask, allSenators));
liftLeastSenators(okSenators, k);
List<Senator> updatedSenators = new ArrayList<Senator>(okSenators);
List<Senator> otherSenators = getSenatorsByMask(npow2 - 1 - okSenatorMask, allSenators);
updatedSenators.addAll(otherSenators);
check(updatedSenators, A);
}
in.close();
PrintWriter pw = new PrintWriter(System.out);
System.out.printf("%.6f\n", gAns);
pw.close();
}
private void rec(List<Senator> senators, int senatorId, int k, int A) {
if (senatorId == senators.size()) {
check(senators, A);
return;
}
Senator senator = senators.get(senatorId);
int up = Math.min(k, (100 - senator.loyalty) / 10);
final int old = senator.loyalty;
for (int i = 0; i <= up; i++) {
senator.loyalty = old + i * 10;
rec(senators, senatorId + 1, k - i, A);
}
senator.loyalty = old;
}
private void check(List<Senator> senators, double A) {
double winProp = 0.0;
for (int mask = 0; mask < 1 << senators.size(); mask++) {
double caseP = 1.0;
int okCnt = 0;
int notOkLevelSum = 0;
for (int i = 0; i < senators.size(); i++) {
Senator senator = senators.get(i);
double senatorLoyalty = senator.loyalty / 100.0;
boolean ok = (mask & (1 << i)) != 0;
if (ok) {
caseP *= senatorLoyalty;
okCnt++;
} else {
caseP *= (1 - senatorLoyalty);
notOkLevelSum += senator.level;
}
}
if (okCnt * 2 > senators.size()) {
winProp += caseP;
} else {
double killProp = A / (A + notOkLevelSum);
winProp += caseP * killProp;
}
}
gAns = Math.max(gAns, winProp);
}
List<Senator> copy(List<Senator> senators) {
List<Senator> copied = new ArrayList<Senator>();
for (Senator senator : senators) {
copied.add(new Senator(senator.level, senator.loyalty));
}
return copied;
}
void liftLeastSenators(List<Senator> senators, int k) {
if (senators.isEmpty()) {
return;
}
for (int i = 0; i < k; i++) {
Senator least = senators.get(0);
for (Senator senator : senators) {
if (senator.loyalty < least.loyalty) {
least = senator;
}
}
if (least.loyalty < 100) {
least.loyalty += 10;
}
}
}
List<Senator> getSenatorsByMask(int mask, List<Senator> allSenators) {
List<Senator> list = new ArrayList<Senator>();
for (int i = 0; i < allSenators.size(); i++) {
if ((mask & (1 << i)) != 0) {
list.add(allSenators.get(i));
}
}
return list;
}
static class Senator {
final int level;
int loyalty;
Senator(int level, int loyalty) {
this.level = level;
this.loyalty = loyalty;
}
@Override
public String toString() {
return "{" +
"level=" + level +
", loyalty=" + loyalty +
'}';
}
}
static class MyScanner {
final BufferedReader myBr;
StringTokenizer st = new StringTokenizer("");
MyScanner(BufferedReader br) {
myBr = br;
}
String nextToken() throws IOException {
while (!st.hasMoreTokens()) {
st = new StringTokenizer(myBr.readLine());
}
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
void close() throws IOException {
myBr.close();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class BNew {
double gAns = 0;
public static void main(String[] args) throws IOException {
new BNew().solve();
}
private void solve() throws IOException {
MyScanner in = new MyScanner(new BufferedReader(new InputStreamReader(System.in)));
int n = in.nextInt();
int k = in.nextInt();
int A = in.nextInt();
List<Senator> allSenators = new ArrayList<Senator>();
for (int i = 0; i < n; i++) {
int level = in.nextInt();
int loyalty = in.nextInt();
allSenators.add(new Senator(level, loyalty));
}
allSenators = Collections.unmodifiableList(allSenators);
int npow2 = 1 << n;
rec(allSenators, 0, k, A);
for (int okSenatorMask = 0; okSenatorMask < npow2; okSenatorMask++) {
List<Senator> okSenators = copy(getSenatorsByMask(okSenatorMask, allSenators));
liftLeastSenators(okSenators, k);
List<Senator> updatedSenators = new ArrayList<Senator>(okSenators);
List<Senator> otherSenators = getSenatorsByMask(npow2 - 1 - okSenatorMask, allSenators);
updatedSenators.addAll(otherSenators);
check(updatedSenators, A);
}
in.close();
PrintWriter pw = new PrintWriter(System.out);
System.out.printf("%.6f\n", gAns);
pw.close();
}
private void rec(List<Senator> senators, int senatorId, int k, int A) {
if (senatorId == senators.size()) {
check(senators, A);
return;
}
Senator senator = senators.get(senatorId);
int up = Math.min(k, (100 - senator.loyalty) / 10);
final int old = senator.loyalty;
for (int i = 0; i <= up; i++) {
senator.loyalty = old + i * 10;
rec(senators, senatorId + 1, k - i, A);
}
senator.loyalty = old;
}
private void check(List<Senator> senators, double A) {
double winProp = 0.0;
for (int mask = 0; mask < 1 << senators.size(); mask++) {
double caseP = 1.0;
int okCnt = 0;
int notOkLevelSum = 0;
for (int i = 0; i < senators.size(); i++) {
Senator senator = senators.get(i);
double senatorLoyalty = senator.loyalty / 100.0;
boolean ok = (mask & (1 << i)) != 0;
if (ok) {
caseP *= senatorLoyalty;
okCnt++;
} else {
caseP *= (1 - senatorLoyalty);
notOkLevelSum += senator.level;
}
}
if (okCnt * 2 > senators.size()) {
winProp += caseP;
} else {
double killProp = A / (A + notOkLevelSum);
winProp += caseP * killProp;
}
}
gAns = Math.max(gAns, winProp);
}
List<Senator> copy(List<Senator> senators) {
List<Senator> copied = new ArrayList<Senator>();
for (Senator senator : senators) {
copied.add(new Senator(senator.level, senator.loyalty));
}
return copied;
}
void liftLeastSenators(List<Senator> senators, int k) {
if (senators.isEmpty()) {
return;
}
for (int i = 0; i < k; i++) {
Senator least = senators.get(0);
for (Senator senator : senators) {
if (senator.loyalty < least.loyalty) {
least = senator;
}
}
if (least.loyalty < 100) {
least.loyalty += 10;
}
}
}
List<Senator> getSenatorsByMask(int mask, List<Senator> allSenators) {
List<Senator> list = new ArrayList<Senator>();
for (int i = 0; i < allSenators.size(); i++) {
if ((mask & (1 << i)) != 0) {
list.add(allSenators.get(i));
}
}
return list;
}
static class Senator {
final int level;
int loyalty;
Senator(int level, int loyalty) {
this.level = level;
this.loyalty = loyalty;
}
@Override
public String toString() {
return "{" +
"level=" + level +
", loyalty=" + loyalty +
'}';
}
}
static class MyScanner {
final BufferedReader myBr;
StringTokenizer st = new StringTokenizer("");
MyScanner(BufferedReader br) {
myBr = br;
}
String nextToken() throws IOException {
while (!st.hasMoreTokens()) {
st = new StringTokenizer(myBr.readLine());
}
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
void close() throws IOException {
myBr.close();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,530 | 4,287 |
3,404 |
import java.io.*;
import java.math.*;
import java.util.*;
public class StringRepeat
{
static Scanner in = new Scanner( new BufferedReader( new InputStreamReader( System.in ) ) );
public static void main( String[] args )
{
String s = in.next();
int n = s.length(), ans = 0;
for( int i = 0; i < n; i++ ) for( int j = i+1; j < n; j++ )
{
int l = 0;
while( j+l<n && s.charAt(i+l)==s.charAt(j+l) ) l++;
ans = Math.max( ans, l );
}
System.out.println( ans );
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.math.*;
import java.util.*;
public class StringRepeat
{
static Scanner in = new Scanner( new BufferedReader( new InputStreamReader( System.in ) ) );
public static void main( String[] args )
{
String s = in.next();
int n = s.length(), ans = 0;
for( int i = 0; i < n; i++ ) for( int j = i+1; j < n; j++ )
{
int l = 0;
while( j+l<n && s.charAt(i+l)==s.charAt(j+l) ) l++;
ans = Math.max( ans, l );
}
System.out.println( ans );
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.math.*;
import java.util.*;
public class StringRepeat
{
static Scanner in = new Scanner( new BufferedReader( new InputStreamReader( System.in ) ) );
public static void main( String[] args )
{
String s = in.next();
int n = s.length(), ans = 0;
for( int i = 0; i < n; i++ ) for( int j = i+1; j < n; j++ )
{
int l = 0;
while( j+l<n && s.charAt(i+l)==s.charAt(j+l) ) l++;
ans = Math.max( ans, l );
}
System.out.println( ans );
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 502 | 3,398 |
1,547 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Set;
public class ProblemA {
public static void main(String[] args) throws IOException {
BufferedReader s = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out);
String[] data = s.readLine().split(" ");
int n = Integer.valueOf(data[0]);
int k = Integer.valueOf(data[1]);
long[] a = new long[n];
String[] ai = s.readLine().split(" ");
for (int i = 0 ; i < n ; i++) {
a[i] = Integer.valueOf(ai[i]);
}
for (int i = 0 ; i < n ; i++) {
int tm = (int)(Math.random() * n);
long tmp = a[tm];
a[tm] = a[i];
a[i] = tmp;
}
Arrays.sort(a);
Set<Long> invalid = new HashSet<Long>();
int cnt = 0;
for (int i = 0 ; i < n ; i++) {
if (!invalid.contains(a[i])) {
cnt++;
invalid.add(a[i] * k);
}
}
out.println(cnt);
out.flush();
}
public static void debug(Object... os){
System.err.println(Arrays.deepToString(os));
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Set;
public class ProblemA {
public static void main(String[] args) throws IOException {
BufferedReader s = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out);
String[] data = s.readLine().split(" ");
int n = Integer.valueOf(data[0]);
int k = Integer.valueOf(data[1]);
long[] a = new long[n];
String[] ai = s.readLine().split(" ");
for (int i = 0 ; i < n ; i++) {
a[i] = Integer.valueOf(ai[i]);
}
for (int i = 0 ; i < n ; i++) {
int tm = (int)(Math.random() * n);
long tmp = a[tm];
a[tm] = a[i];
a[i] = tmp;
}
Arrays.sort(a);
Set<Long> invalid = new HashSet<Long>();
int cnt = 0;
for (int i = 0 ; i < n ; i++) {
if (!invalid.contains(a[i])) {
cnt++;
invalid.add(a[i] * k);
}
}
out.println(cnt);
out.flush();
}
public static void debug(Object... os){
System.err.println(Arrays.deepToString(os));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Set;
public class ProblemA {
public static void main(String[] args) throws IOException {
BufferedReader s = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out);
String[] data = s.readLine().split(" ");
int n = Integer.valueOf(data[0]);
int k = Integer.valueOf(data[1]);
long[] a = new long[n];
String[] ai = s.readLine().split(" ");
for (int i = 0 ; i < n ; i++) {
a[i] = Integer.valueOf(ai[i]);
}
for (int i = 0 ; i < n ; i++) {
int tm = (int)(Math.random() * n);
long tmp = a[tm];
a[tm] = a[i];
a[i] = tmp;
}
Arrays.sort(a);
Set<Long> invalid = new HashSet<Long>();
int cnt = 0;
for (int i = 0 ; i < n ; i++) {
if (!invalid.contains(a[i])) {
cnt++;
invalid.add(a[i] * k);
}
}
out.println(cnt);
out.flush();
}
public static void debug(Object... os){
System.err.println(Arrays.deepToString(os));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 638 | 1,545 |
1,537 |
import java.io.*;
import java.util.Arrays;
import java.util.StringTokenizer;
import java.util.TreeSet;
public class A {
final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null;
BufferedReader in;
PrintWriter out;
StringTokenizer tok = new StringTokenizer("");
void solve() throws IOException {
int n = readInt();
long k = readInt();
Long[] a = new Long[n];
for(int i = 0; i < n; i++){
a[i] = readLong();
}
Arrays.sort(a);
TreeSet<Long> set = new TreeSet<Long>();
for(int i = 0; i < n; i++){
set.add(a[i]);
}
if(k == 1) {
out.println(n);
return;
}
int res = 0;
TreeSet<Long> used = new TreeSet<Long>();
for(Long cur: set){
if(!used.contains(cur)){
int num = 1;
used.add(cur);
Long temp = cur * 1;
while(true){
if(set.contains(k*temp)){
num++;
used.add(k*temp);
temp *= k;
}
else{
res += (num+1)/2;
break;
}
}
}
}
out.println(res);
}
void init() throws FileNotFoundException {
if (ONLINE_JUDGE) {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
} else {
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
}
}
String readString() throws IOException {
while (!tok.hasMoreTokens()) {
tok = new StringTokenizer(in.readLine());
}
return tok.nextToken();
}
int readInt() throws IOException {
return Integer.parseInt(readString());
}
long readLong() throws IOException {
return Long.parseLong(readString());
}
double readDouble() throws IOException {
return Double.parseDouble(readString());
}
int[] readArr(int n) throws IOException {
int[] res = new int[n];
for (int i = 0; i < n; i++) {
res[i] = readInt();
}
return res;
}
long[] readArrL(int n) throws IOException {
long[] res = new long[n];
for (int i = 0; i < n; i++) {
res[i] = readLong();
}
return res;
}
public static void main(String[] args) {
new A().run();
}
public void run() {
try {
long t1 = System.currentTimeMillis();
init();
solve();
out.close();
long t2 = System.currentTimeMillis();
System.err.println("Time = " + (t2 - t1));
} catch (Exception e) {
e.printStackTrace(System.err);
System.exit(-1);
}
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.Arrays;
import java.util.StringTokenizer;
import java.util.TreeSet;
public class A {
final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null;
BufferedReader in;
PrintWriter out;
StringTokenizer tok = new StringTokenizer("");
void solve() throws IOException {
int n = readInt();
long k = readInt();
Long[] a = new Long[n];
for(int i = 0; i < n; i++){
a[i] = readLong();
}
Arrays.sort(a);
TreeSet<Long> set = new TreeSet<Long>();
for(int i = 0; i < n; i++){
set.add(a[i]);
}
if(k == 1) {
out.println(n);
return;
}
int res = 0;
TreeSet<Long> used = new TreeSet<Long>();
for(Long cur: set){
if(!used.contains(cur)){
int num = 1;
used.add(cur);
Long temp = cur * 1;
while(true){
if(set.contains(k*temp)){
num++;
used.add(k*temp);
temp *= k;
}
else{
res += (num+1)/2;
break;
}
}
}
}
out.println(res);
}
void init() throws FileNotFoundException {
if (ONLINE_JUDGE) {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
} else {
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
}
}
String readString() throws IOException {
while (!tok.hasMoreTokens()) {
tok = new StringTokenizer(in.readLine());
}
return tok.nextToken();
}
int readInt() throws IOException {
return Integer.parseInt(readString());
}
long readLong() throws IOException {
return Long.parseLong(readString());
}
double readDouble() throws IOException {
return Double.parseDouble(readString());
}
int[] readArr(int n) throws IOException {
int[] res = new int[n];
for (int i = 0; i < n; i++) {
res[i] = readInt();
}
return res;
}
long[] readArrL(int n) throws IOException {
long[] res = new long[n];
for (int i = 0; i < n; i++) {
res[i] = readLong();
}
return res;
}
public static void main(String[] args) {
new A().run();
}
public void run() {
try {
long t1 = System.currentTimeMillis();
init();
solve();
out.close();
long t2 = System.currentTimeMillis();
System.err.println("Time = " + (t2 - t1));
} catch (Exception e) {
e.printStackTrace(System.err);
System.exit(-1);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.Arrays;
import java.util.StringTokenizer;
import java.util.TreeSet;
public class A {
final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null;
BufferedReader in;
PrintWriter out;
StringTokenizer tok = new StringTokenizer("");
void solve() throws IOException {
int n = readInt();
long k = readInt();
Long[] a = new Long[n];
for(int i = 0; i < n; i++){
a[i] = readLong();
}
Arrays.sort(a);
TreeSet<Long> set = new TreeSet<Long>();
for(int i = 0; i < n; i++){
set.add(a[i]);
}
if(k == 1) {
out.println(n);
return;
}
int res = 0;
TreeSet<Long> used = new TreeSet<Long>();
for(Long cur: set){
if(!used.contains(cur)){
int num = 1;
used.add(cur);
Long temp = cur * 1;
while(true){
if(set.contains(k*temp)){
num++;
used.add(k*temp);
temp *= k;
}
else{
res += (num+1)/2;
break;
}
}
}
}
out.println(res);
}
void init() throws FileNotFoundException {
if (ONLINE_JUDGE) {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
} else {
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
}
}
String readString() throws IOException {
while (!tok.hasMoreTokens()) {
tok = new StringTokenizer(in.readLine());
}
return tok.nextToken();
}
int readInt() throws IOException {
return Integer.parseInt(readString());
}
long readLong() throws IOException {
return Long.parseLong(readString());
}
double readDouble() throws IOException {
return Double.parseDouble(readString());
}
int[] readArr(int n) throws IOException {
int[] res = new int[n];
for (int i = 0; i < n; i++) {
res[i] = readInt();
}
return res;
}
long[] readArrL(int n) throws IOException {
long[] res = new long[n];
for (int i = 0; i < n; i++) {
res[i] = readLong();
}
return res;
}
public static void main(String[] args) {
new A().run();
}
public void run() {
try {
long t1 = System.currentTimeMillis();
init();
solve();
out.close();
long t2 = System.currentTimeMillis();
System.err.println("Time = " + (t2 - t1));
} catch (Exception e) {
e.printStackTrace(System.err);
System.exit(-1);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 991 | 1,535 |
2,941 |
import java.io.*;
import java.math.*;
import java.util.*;
public class Main {
long solve(long a, long b) {
return b == 0 ? 0 : a / b + solve(b, a % b);
}
public void run() {
try {
long a = reader.nextLong();
long b = reader.nextLong();
writer.println(solve(a, b));
} catch (IOException ex) {
}
writer.close();
}
InputReader reader;
PrintWriter writer;
Main() {
reader = new InputReader();
writer = new PrintWriter(System.out);
}
public static void main(String[] args) {
new Main().run();
}
}
class InputReader {
BufferedReader reader;
StringTokenizer tokenizer;
InputReader() {
reader = new BufferedReader(new InputStreamReader(System.in));
tokenizer = new StringTokenizer("");
}
String next() throws IOException {
while (!tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(reader.readLine());
}
return tokenizer.nextToken();
}
Integer nextInt() throws IOException {
return Integer.parseInt(next());
}
Long nextLong() throws IOException {
return Long.parseLong(next());
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.math.*;
import java.util.*;
public class Main {
long solve(long a, long b) {
return b == 0 ? 0 : a / b + solve(b, a % b);
}
public void run() {
try {
long a = reader.nextLong();
long b = reader.nextLong();
writer.println(solve(a, b));
} catch (IOException ex) {
}
writer.close();
}
InputReader reader;
PrintWriter writer;
Main() {
reader = new InputReader();
writer = new PrintWriter(System.out);
}
public static void main(String[] args) {
new Main().run();
}
}
class InputReader {
BufferedReader reader;
StringTokenizer tokenizer;
InputReader() {
reader = new BufferedReader(new InputStreamReader(System.in));
tokenizer = new StringTokenizer("");
}
String next() throws IOException {
while (!tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(reader.readLine());
}
return tokenizer.nextToken();
}
Integer nextInt() throws IOException {
return Integer.parseInt(next());
}
Long nextLong() throws IOException {
return Long.parseLong(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.math.*;
import java.util.*;
public class Main {
long solve(long a, long b) {
return b == 0 ? 0 : a / b + solve(b, a % b);
}
public void run() {
try {
long a = reader.nextLong();
long b = reader.nextLong();
writer.println(solve(a, b));
} catch (IOException ex) {
}
writer.close();
}
InputReader reader;
PrintWriter writer;
Main() {
reader = new InputReader();
writer = new PrintWriter(System.out);
}
public static void main(String[] args) {
new Main().run();
}
}
class InputReader {
BufferedReader reader;
StringTokenizer tokenizer;
InputReader() {
reader = new BufferedReader(new InputStreamReader(System.in));
tokenizer = new StringTokenizer("");
}
String next() throws IOException {
while (!tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(reader.readLine());
}
return tokenizer.nextToken();
}
Integer nextInt() throws IOException {
return Integer.parseInt(next());
}
Long nextLong() throws IOException {
return Long.parseLong(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 580 | 2,935 |
3,596 |
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.LinkedList;
import java.util.Queue;
import java.util.StringTokenizer;
public class A {
static final int[] dx = {0, 0, -1, 1};
static final int[] dy = {-1, 1, 0, 0};
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner("input.txt");
PrintWriter out = new PrintWriter(new FileWriter("output.txt"));
// Scanner sc = new Scanner(System.in);
// PrintWriter out = new PrintWriter(System.out);
int N = sc.nextInt(), M = sc.nextInt();
int[][] dist = new int[N][M];
Queue<Integer> q = new LinkedList<>();
int K = sc.nextInt();
while(K-->0)
{
int x = sc.nextInt() - 1, y = sc.nextInt() - 1;
q.add(x * M + y);
dist[x][y] = 1;
}
int max = 0, ansX = -1, ansY = -1;
while(!q.isEmpty())
{
int u = q.remove(), x = u / M, y = u % M;
if(dist[x][y] > max)
max = dist[ansX = x][ansY = y];
for(int k = 0; k < 4; ++k)
{
int nx = x + dx[k], ny = y + dy[k];
if(nx >= 0 && ny >= 0 && nx < N && ny < M && dist[nx][ny] == 0)
{
dist[nx][ny] = dist[x][y] + 1;
q.add(nx * M + ny);
}
}
}
out.printf("%d %d\n", ansX + 1, ansY + 1);
out.close();
}
static class Scanner
{
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s){ br = new BufferedReader(new InputStreamReader(s));}
public Scanner(String s) throws FileNotFoundException{ br = new BufferedReader(new FileReader(s));}
public String next() throws IOException
{
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {return Integer.parseInt(next());}
public long nextLong() throws IOException {return Long.parseLong(next());}
public String nextLine() throws IOException {return br.readLine();}
public double nextDouble() throws IOException { return Double.parseDouble(next()); }
public boolean ready() throws IOException {return br.ready();}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.LinkedList;
import java.util.Queue;
import java.util.StringTokenizer;
public class A {
static final int[] dx = {0, 0, -1, 1};
static final int[] dy = {-1, 1, 0, 0};
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner("input.txt");
PrintWriter out = new PrintWriter(new FileWriter("output.txt"));
// Scanner sc = new Scanner(System.in);
// PrintWriter out = new PrintWriter(System.out);
int N = sc.nextInt(), M = sc.nextInt();
int[][] dist = new int[N][M];
Queue<Integer> q = new LinkedList<>();
int K = sc.nextInt();
while(K-->0)
{
int x = sc.nextInt() - 1, y = sc.nextInt() - 1;
q.add(x * M + y);
dist[x][y] = 1;
}
int max = 0, ansX = -1, ansY = -1;
while(!q.isEmpty())
{
int u = q.remove(), x = u / M, y = u % M;
if(dist[x][y] > max)
max = dist[ansX = x][ansY = y];
for(int k = 0; k < 4; ++k)
{
int nx = x + dx[k], ny = y + dy[k];
if(nx >= 0 && ny >= 0 && nx < N && ny < M && dist[nx][ny] == 0)
{
dist[nx][ny] = dist[x][y] + 1;
q.add(nx * M + ny);
}
}
}
out.printf("%d %d\n", ansX + 1, ansY + 1);
out.close();
}
static class Scanner
{
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s){ br = new BufferedReader(new InputStreamReader(s));}
public Scanner(String s) throws FileNotFoundException{ br = new BufferedReader(new FileReader(s));}
public String next() throws IOException
{
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {return Integer.parseInt(next());}
public long nextLong() throws IOException {return Long.parseLong(next());}
public String nextLine() throws IOException {return br.readLine();}
public double nextDouble() throws IOException { return Double.parseDouble(next()); }
public boolean ready() throws IOException {return br.ready();}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.LinkedList;
import java.util.Queue;
import java.util.StringTokenizer;
public class A {
static final int[] dx = {0, 0, -1, 1};
static final int[] dy = {-1, 1, 0, 0};
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner("input.txt");
PrintWriter out = new PrintWriter(new FileWriter("output.txt"));
// Scanner sc = new Scanner(System.in);
// PrintWriter out = new PrintWriter(System.out);
int N = sc.nextInt(), M = sc.nextInt();
int[][] dist = new int[N][M];
Queue<Integer> q = new LinkedList<>();
int K = sc.nextInt();
while(K-->0)
{
int x = sc.nextInt() - 1, y = sc.nextInt() - 1;
q.add(x * M + y);
dist[x][y] = 1;
}
int max = 0, ansX = -1, ansY = -1;
while(!q.isEmpty())
{
int u = q.remove(), x = u / M, y = u % M;
if(dist[x][y] > max)
max = dist[ansX = x][ansY = y];
for(int k = 0; k < 4; ++k)
{
int nx = x + dx[k], ny = y + dy[k];
if(nx >= 0 && ny >= 0 && nx < N && ny < M && dist[nx][ny] == 0)
{
dist[nx][ny] = dist[x][y] + 1;
q.add(nx * M + ny);
}
}
}
out.printf("%d %d\n", ansX + 1, ansY + 1);
out.close();
}
static class Scanner
{
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s){ br = new BufferedReader(new InputStreamReader(s));}
public Scanner(String s) throws FileNotFoundException{ br = new BufferedReader(new FileReader(s));}
public String next() throws IOException
{
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {return Integer.parseInt(next());}
public long nextLong() throws IOException {return Long.parseLong(next());}
public String nextLine() throws IOException {return br.readLine();}
public double nextDouble() throws IOException { return Double.parseDouble(next()); }
public boolean ready() throws IOException {return br.ready();}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 943 | 3,588 |
948 |
import java.util.*;
import java.io.*;
import java.text.*;
import java.math.*;
import static java.lang.Integer.*;
import static java.lang.Double.*;
import java.lang.Math.*;
public class B {
public static void main(String[] args) throws Exception {
new B().run();
}
public void run() throws Exception {
FastIO file = new FastIO();
long n = file.nextLong();
long k = file.nextLong();
long lo = 1;
long hi = n;
long ans = 0;
while (lo <= hi) {
long mi = lo + (hi - lo) / 2;
long q = mi * (mi + 1) / 2 - (n - mi);
if (q == k) {
ans = (n - mi);
break;
}
else if (q < k) {
lo = mi + 1;
}
else {
hi = mi - 1;
}
}
System.out.println(ans);
}
public static class FastIO {
BufferedReader br;
StringTokenizer st;
public FastIO() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static long pow(long n, long p, long mod) {
if (p == 0)
return 1;
if (p == 1)
return n % mod;
if (p % 2 == 0) {
long temp = pow(n, p / 2, mod);
return (temp * temp) % mod;
} else {
long temp = pow(n, p / 2, mod);
temp = (temp * temp) % mod;
return (temp * n) % mod;
}
}
public static long pow(long n, long p) {
if (p == 0)
return 1;
if (p == 1)
return n;
if (p % 2 == 0) {
long temp = pow(n, p / 2);
return (temp * temp);
} else {
long temp = pow(n, p / 2);
temp = (temp * temp);
return (temp * n);
}
}
public static long gcd(long x, long y) {
if (x == 0)
return y;
else
return gcd(y % x, x);
}
public static boolean isPrime(int n) {
if (n <= 1)
return false;
if (n <= 3)
return true;
if (n % 2 == 0 || n % 3 == 0)
return false;
for (int i = 5; i * i <= n; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0)
return false;
return true;
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.text.*;
import java.math.*;
import static java.lang.Integer.*;
import static java.lang.Double.*;
import java.lang.Math.*;
public class B {
public static void main(String[] args) throws Exception {
new B().run();
}
public void run() throws Exception {
FastIO file = new FastIO();
long n = file.nextLong();
long k = file.nextLong();
long lo = 1;
long hi = n;
long ans = 0;
while (lo <= hi) {
long mi = lo + (hi - lo) / 2;
long q = mi * (mi + 1) / 2 - (n - mi);
if (q == k) {
ans = (n - mi);
break;
}
else if (q < k) {
lo = mi + 1;
}
else {
hi = mi - 1;
}
}
System.out.println(ans);
}
public static class FastIO {
BufferedReader br;
StringTokenizer st;
public FastIO() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static long pow(long n, long p, long mod) {
if (p == 0)
return 1;
if (p == 1)
return n % mod;
if (p % 2 == 0) {
long temp = pow(n, p / 2, mod);
return (temp * temp) % mod;
} else {
long temp = pow(n, p / 2, mod);
temp = (temp * temp) % mod;
return (temp * n) % mod;
}
}
public static long pow(long n, long p) {
if (p == 0)
return 1;
if (p == 1)
return n;
if (p % 2 == 0) {
long temp = pow(n, p / 2);
return (temp * temp);
} else {
long temp = pow(n, p / 2);
temp = (temp * temp);
return (temp * n);
}
}
public static long gcd(long x, long y) {
if (x == 0)
return y;
else
return gcd(y % x, x);
}
public static boolean isPrime(int n) {
if (n <= 1)
return false;
if (n <= 3)
return true;
if (n % 2 == 0 || n % 3 == 0)
return false;
for (int i = 5; i * i <= n; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0)
return false;
return true;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.text.*;
import java.math.*;
import static java.lang.Integer.*;
import static java.lang.Double.*;
import java.lang.Math.*;
public class B {
public static void main(String[] args) throws Exception {
new B().run();
}
public void run() throws Exception {
FastIO file = new FastIO();
long n = file.nextLong();
long k = file.nextLong();
long lo = 1;
long hi = n;
long ans = 0;
while (lo <= hi) {
long mi = lo + (hi - lo) / 2;
long q = mi * (mi + 1) / 2 - (n - mi);
if (q == k) {
ans = (n - mi);
break;
}
else if (q < k) {
lo = mi + 1;
}
else {
hi = mi - 1;
}
}
System.out.println(ans);
}
public static class FastIO {
BufferedReader br;
StringTokenizer st;
public FastIO() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static long pow(long n, long p, long mod) {
if (p == 0)
return 1;
if (p == 1)
return n % mod;
if (p % 2 == 0) {
long temp = pow(n, p / 2, mod);
return (temp * temp) % mod;
} else {
long temp = pow(n, p / 2, mod);
temp = (temp * temp) % mod;
return (temp * n) % mod;
}
}
public static long pow(long n, long p) {
if (p == 0)
return 1;
if (p == 1)
return n;
if (p % 2 == 0) {
long temp = pow(n, p / 2);
return (temp * temp);
} else {
long temp = pow(n, p / 2);
temp = (temp * temp);
return (temp * n);
}
}
public static long gcd(long x, long y) {
if (x == 0)
return y;
else
return gcd(y % x, x);
}
public static boolean isPrime(int n) {
if (n <= 1)
return false;
if (n <= 3)
return true;
if (n % 2 == 0 || n % 3 == 0)
return false;
for (int i = 5; i * i <= n; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0)
return false;
return true;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,127 | 947 |
3,429 |
import java.util.Scanner;
public class A_YoureGivenAString {
//1:11
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
String str = s.nextLine();
for (int l = str.length()-1; l >= 1; l--) {
for (int i = 0; i < str.length()-l+1; i++) {
String subs = str.substring(i, i+l);
if(str.lastIndexOf(subs) != i){
System.out.println(l);
return;
}
}
}
System.out.println(0);
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class A_YoureGivenAString {
//1:11
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
String str = s.nextLine();
for (int l = str.length()-1; l >= 1; l--) {
for (int i = 0; i < str.length()-l+1; i++) {
String subs = str.substring(i, i+l);
if(str.lastIndexOf(subs) != i){
System.out.println(l);
return;
}
}
}
System.out.println(0);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class A_YoureGivenAString {
//1:11
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
String str = s.nextLine();
for (int l = str.length()-1; l >= 1; l--) {
for (int i = 0; i < str.length()-l+1; i++) {
String subs = str.substring(i, i+l);
if(str.lastIndexOf(subs) != i){
System.out.println(l);
return;
}
}
}
System.out.println(0);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 467 | 3,423 |
263 |
import java.io.BufferedReader;
import java.io.PrintWriter;
import java.io.InputStreamReader;
import java.io.IOException;
import java.util.StringTokenizer;
import java.util.Arrays;
public class Main {
static Scanner in = new Scanner();
static PrintWriter out = new PrintWriter(System.out);
public static void main(String[] args) throws IOException {
long n = in.nextLong(), m = in.nextLong();
out.print(m / n + (m % n == 0 ? 0 : 1));
out.close();
}
static class Scanner {
BufferedReader br;
StringTokenizer st;
public Scanner() {
br = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer("");
}
public String next() throws IOException {
if(!st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.PrintWriter;
import java.io.InputStreamReader;
import java.io.IOException;
import java.util.StringTokenizer;
import java.util.Arrays;
public class Main {
static Scanner in = new Scanner();
static PrintWriter out = new PrintWriter(System.out);
public static void main(String[] args) throws IOException {
long n = in.nextLong(), m = in.nextLong();
out.print(m / n + (m % n == 0 ? 0 : 1));
out.close();
}
static class Scanner {
BufferedReader br;
StringTokenizer st;
public Scanner() {
br = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer("");
}
public String next() throws IOException {
if(!st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.PrintWriter;
import java.io.InputStreamReader;
import java.io.IOException;
import java.util.StringTokenizer;
import java.util.Arrays;
public class Main {
static Scanner in = new Scanner();
static PrintWriter out = new PrintWriter(System.out);
public static void main(String[] args) throws IOException {
long n = in.nextLong(), m = in.nextLong();
out.print(m / n + (m % n == 0 ? 0 : 1));
out.close();
}
static class Scanner {
BufferedReader br;
StringTokenizer st;
public Scanner() {
br = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer("");
}
public String next() throws IOException {
if(!st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 567 | 263 |
2,191 |
import java.io.*;
import java.util.StringTokenizer;
public class NewYearCurling908C {
public static void main(String[] args) throws IOException {
FastScanner in = new FastScanner();
int n = in.nextInt();
double r = (double) in.nextInt();
double[] answers = new double[n];
double[] xCoords = new double[n];
for (int i = 0; i < n; i++) xCoords[i] = (double) in.nextInt();
answers[0] = r;
for (int i = 1; i < n; i++) {
double bound = r;
for (int j = 0; j < i; j++) {
double xDif = xCoords[i] - xCoords[j];
double y = answers[j];
double yNew = y + Math.sqrt(4 * r * r - xDif * xDif);
if (yNew > bound) bound = yNew;
}
answers[i] = bound;
}
for (int i = 0; i < n; i++) System.out.print(answers[i] + " ");
System.out.println();
}
public static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(String s) {
try {
br = new BufferedReader(new FileReader(s));
} catch (FileNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
public FastScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String nextToken() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
return st.nextToken();
}
String nextLine() {
st = null;
try {
return br.readLine();
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
return null;
}
int nextInt() {
return Integer.parseInt(nextToken());
}
long nextLong() {
return Long.parseLong(nextToken());
}
double nextDouble() {
return Double.parseDouble(nextToken());
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.StringTokenizer;
public class NewYearCurling908C {
public static void main(String[] args) throws IOException {
FastScanner in = new FastScanner();
int n = in.nextInt();
double r = (double) in.nextInt();
double[] answers = new double[n];
double[] xCoords = new double[n];
for (int i = 0; i < n; i++) xCoords[i] = (double) in.nextInt();
answers[0] = r;
for (int i = 1; i < n; i++) {
double bound = r;
for (int j = 0; j < i; j++) {
double xDif = xCoords[i] - xCoords[j];
double y = answers[j];
double yNew = y + Math.sqrt(4 * r * r - xDif * xDif);
if (yNew > bound) bound = yNew;
}
answers[i] = bound;
}
for (int i = 0; i < n; i++) System.out.print(answers[i] + " ");
System.out.println();
}
public static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(String s) {
try {
br = new BufferedReader(new FileReader(s));
} catch (FileNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
public FastScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String nextToken() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
return st.nextToken();
}
String nextLine() {
st = null;
try {
return br.readLine();
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
return null;
}
int nextInt() {
return Integer.parseInt(nextToken());
}
long nextLong() {
return Long.parseLong(nextToken());
}
double nextDouble() {
return Double.parseDouble(nextToken());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.StringTokenizer;
public class NewYearCurling908C {
public static void main(String[] args) throws IOException {
FastScanner in = new FastScanner();
int n = in.nextInt();
double r = (double) in.nextInt();
double[] answers = new double[n];
double[] xCoords = new double[n];
for (int i = 0; i < n; i++) xCoords[i] = (double) in.nextInt();
answers[0] = r;
for (int i = 1; i < n; i++) {
double bound = r;
for (int j = 0; j < i; j++) {
double xDif = xCoords[i] - xCoords[j];
double y = answers[j];
double yNew = y + Math.sqrt(4 * r * r - xDif * xDif);
if (yNew > bound) bound = yNew;
}
answers[i] = bound;
}
for (int i = 0; i < n; i++) System.out.print(answers[i] + " ");
System.out.println();
}
public static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(String s) {
try {
br = new BufferedReader(new FileReader(s));
} catch (FileNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
public FastScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String nextToken() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
return st.nextToken();
}
String nextLine() {
st = null;
try {
return br.readLine();
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
return null;
}
int nextInt() {
return Integer.parseInt(nextToken());
}
long nextLong() {
return Long.parseLong(nextToken());
}
double nextDouble() {
return Double.parseDouble(nextToken());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 839 | 2,187 |
2,788 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class Subtraction {
static long c=0;
public static void main(String[] args) throws IOException {
BufferedReader reader=new BufferedReader(new InputStreamReader(System.in));
int n=Integer.parseInt(reader.readLine());
while (n-->0){
String l=reader.readLine();
String[] a=l.split(" ");
long A=Long.parseLong(a[0]);
long B=Long.parseLong(a[1]);
c=0;
gcd(A,B);
System.out.println(c);
}
}
private static void gcd(long a, long b) {
if (b==0)
return ;
c=c+a/b;
gcd(b,a%b);
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class Subtraction {
static long c=0;
public static void main(String[] args) throws IOException {
BufferedReader reader=new BufferedReader(new InputStreamReader(System.in));
int n=Integer.parseInt(reader.readLine());
while (n-->0){
String l=reader.readLine();
String[] a=l.split(" ");
long A=Long.parseLong(a[0]);
long B=Long.parseLong(a[1]);
c=0;
gcd(A,B);
System.out.println(c);
}
}
private static void gcd(long a, long b) {
if (b==0)
return ;
c=c+a/b;
gcd(b,a%b);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class Subtraction {
static long c=0;
public static void main(String[] args) throws IOException {
BufferedReader reader=new BufferedReader(new InputStreamReader(System.in));
int n=Integer.parseInt(reader.readLine());
while (n-->0){
String l=reader.readLine();
String[] a=l.split(" ");
long A=Long.parseLong(a[0]);
long B=Long.parseLong(a[1]);
c=0;
gcd(A,B);
System.out.println(c);
}
}
private static void gcd(long a, long b) {
if (b==0)
return ;
c=c+a/b;
gcd(b,a%b);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 508 | 2,782 |
2,190 |
import java.util.Scanner;
/**
*
* @author msagimbekov
*/
public class Codeforces908C {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int r = sc.nextInt();
int[] x = new int[n];
double[] res = new double[n];
for (int i = 0; i < n; i++) {
x[i] = sc.nextInt();
res[i] = (double)r;
for (int j = i - 1; j >= 0; j--) {
int diff = x[j] - x[i];
if (Math.abs(x[j] - x[i]) <= 2 * r) {
res[i] = Math.max(res[i], res[j] + Math.sqrt(4 * r * r - diff * diff));
}
}
}
for (int i = 0; i < n; i++) {
System.out.print(res[i] + " ");
}
System.out.println("");
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
/**
*
* @author msagimbekov
*/
public class Codeforces908C {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int r = sc.nextInt();
int[] x = new int[n];
double[] res = new double[n];
for (int i = 0; i < n; i++) {
x[i] = sc.nextInt();
res[i] = (double)r;
for (int j = i - 1; j >= 0; j--) {
int diff = x[j] - x[i];
if (Math.abs(x[j] - x[i]) <= 2 * r) {
res[i] = Math.max(res[i], res[j] + Math.sqrt(4 * r * r - diff * diff));
}
}
}
for (int i = 0; i < n; i++) {
System.out.print(res[i] + " ");
}
System.out.println("");
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
/**
*
* @author msagimbekov
*/
public class Codeforces908C {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int r = sc.nextInt();
int[] x = new int[n];
double[] res = new double[n];
for (int i = 0; i < n; i++) {
x[i] = sc.nextInt();
res[i] = (double)r;
for (int j = i - 1; j >= 0; j--) {
int diff = x[j] - x[i];
if (Math.abs(x[j] - x[i]) <= 2 * r) {
res[i] = Math.max(res[i], res[j] + Math.sqrt(4 * r * r - diff * diff));
}
}
}
for (int i = 0; i < n; i++) {
System.out.print(res[i] + " ");
}
System.out.println("");
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 561 | 2,186 |
3,199 |
import java.io.File;
import java.io.FileNotFoundException;
import java.util.Scanner;
public class Round313A {
private static final int LOCAL_ENV = 0;
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
try {
if (LOCAL_ENV == 1) {
in = new Scanner(new File("input.txt"));
}
} catch (FileNotFoundException e) {
in = new Scanner(System.in);
}
long n = in.nextLong();
if (n >= -9) {
System.out.println(n);
} else {
long absN = Math.abs(n);
long m1 = -(absN / 10);
long last = absN % 10;
long m2 = -((absN / 100) * 10 + last);
System.out.println(Math.max(m1, m2));
}
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.File;
import java.io.FileNotFoundException;
import java.util.Scanner;
public class Round313A {
private static final int LOCAL_ENV = 0;
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
try {
if (LOCAL_ENV == 1) {
in = new Scanner(new File("input.txt"));
}
} catch (FileNotFoundException e) {
in = new Scanner(System.in);
}
long n = in.nextLong();
if (n >= -9) {
System.out.println(n);
} else {
long absN = Math.abs(n);
long m1 = -(absN / 10);
long last = absN % 10;
long m2 = -((absN / 100) * 10 + last);
System.out.println(Math.max(m1, m2));
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.File;
import java.io.FileNotFoundException;
import java.util.Scanner;
public class Round313A {
private static final int LOCAL_ENV = 0;
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
try {
if (LOCAL_ENV == 1) {
in = new Scanner(new File("input.txt"));
}
} catch (FileNotFoundException e) {
in = new Scanner(System.in);
}
long n = in.nextLong();
if (n >= -9) {
System.out.println(n);
} else {
long absN = Math.abs(n);
long m1 = -(absN / 10);
long last = absN % 10;
long m2 = -((absN / 100) * 10 + last);
System.out.println(Math.max(m1, m2));
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 528 | 3,193 |
1,351 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.PrintStream;
import java.io.BufferedWriter;
import java.util.Random;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Jialin Ouyang ([email protected])
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
QuickScanner in = new QuickScanner(inputStream);
QuickWriter out = new QuickWriter(outputStream);
TaskB solver = new TaskB();
solver.solve(1, in, out);
out.close();
}
static class TaskB {
static boolean LOCAL = false;
static int TEST_CASE = 10000;
QuickScanner in;
QuickWriter out;
int n;
Server server;
public void solve(int testNumber, QuickScanner in, QuickWriter out) {
this.in = in;
this.out = out;
n = LOCAL ? 1 << 16 : in.nextInt();
server = new Server();
for (int remCases = LOCAL ? TEST_CASE : 1; remCases > 0; --remCases) {
server.init(n);
Rect[] rects = split(0);
if (rects == null) {
rects = split(1);
}
rects[0] = shrink(rects[0]);
rects[1] = shrink(rects[1]);
server.answer(rects[0], rects[1]);
}
}
Rect[] split(int dim) {
int lower = 1, upper = n - 1, res = 0;
Rect fullRect = new Rect(1, 1, n, n);
while (lower <= upper) {
int medium = (lower + upper) >> 1;
if (server.ask(fullRect.update(1, dim, medium)) == 0) {
res = medium;
lower = medium + 1;
} else {
upper = medium - 1;
}
}
Rect[] rects = new Rect[]{
fullRect.update(1, dim, res + 1),
fullRect.update(0, dim, res + 2)};
return server.ask(rects[0]) == 1
&& server.ask(rects[1]) == 1
? rects : null;
}
Rect shrink(Rect rect) {
rect = shrink(rect, 0);
rect = shrink(rect, 1);
return rect;
}
Rect shrink(Rect rect, int dim) {
int lower, upper, res;
// lower
lower = rect.getValue(0, dim) + 1;
upper = rect.getValue(1, dim);
res = lower - 1;
while (lower <= upper) {
int medium = (lower + upper) >> 1;
if (server.ask(rect.update(0, dim, medium)) == 1) {
res = medium;
lower = medium + 1;
} else {
upper = medium - 1;
}
}
rect = rect.update(0, dim, res);
// upper
lower = rect.getValue(0, dim);
upper = rect.getValue(1, dim) - 1;
res = upper + 1;
while (lower <= upper) {
int medium = (lower + upper) >> 1;
if (server.ask(rect.update(1, dim, medium)) == 1) {
res = medium;
upper = medium - 1;
} else {
lower = medium + 1;
}
}
return rect.update(1, dim, res);
}
class Server {
Rect rect1;
Rect rect2;
Server() {
rect1 = new Rect();
rect2 = new Rect();
}
void init(int n) {
if (LOCAL) {
do {
rect1.initRandom(n);
rect2.initRandom(n);
} while (!rect1.valid(rect2));
//rect1 = new Rect(2, 2, 2, 2);
//rect2 = new Rect(3, 4, 3, 5);
}
}
int ask(Rect rect) {
out.print("? ");
rect.print();
out.println();
out.flush();
if (LOCAL) {
return (rect1.in(rect) ? 1 : 0)
+ (rect2.in(rect) ? 1 : 0);
} else {
return in.nextInt();
}
}
void answer(Rect rect1, Rect rect2) {
out.print("! ");
rect1.print();
out.print(' ');
rect2.print();
out.println();
out.flush();
if (LOCAL) {
if ((rect1.equals(this.rect1) && rect2.equals(this.rect2))
|| (rect2.equals(this.rect1) && rect1.equals(this.rect2))) {
System.out.println("AC!");
} else {
System.out.println("WA!");
throw new IllegalArgumentException();
}
}
}
}
class Rect {
final Random random = new Random();
int x1;
int y1;
int x2;
int y2;
Rect() {
}
Rect(int x1, int y1, int x2, int y2) {
this.x1 = x1;
this.y1 = y1;
this.x2 = x2;
this.y2 = y2;
}
void initRandom(int n) {
x1 = random.nextInt(n);
x2 = random.nextInt(n - x1) + x1 + 1;
++x1;
y1 = random.nextInt(n);
y2 = random.nextInt(n - y1) + y1 + 1;
++y1;
}
int getValue(int idx1, int idx2) {
switch ((idx1 << 1) | idx2) {
case 0:
return x1;
case 1:
return y1;
case 2:
return x2;
case 3:
return y2;
}
throw new IllegalArgumentException();
}
Rect update(int idx1, int idx2, int value) {
switch ((idx1 << 1) | idx2) {
case 0:
return new Rect(value, y1, x2, y2);
case 1:
return new Rect(x1, value, x2, y2);
case 2:
return new Rect(x1, y1, value, y2);
case 3:
return new Rect(x1, y1, x2, value);
}
return null;
}
boolean valid(Rect o) {
if (x2 < o.x1) return true;
if (y2 < o.y1) return true;
if (o.x2 < x1) return true;
if (o.y2 < y1) return true;
return false;
}
boolean in(Rect o) {
return o.x1 <= x1 && x2 <= o.x2
&& o.y1 <= y1 && y2 <= o.y2;
}
boolean equals(Rect o) {
return x1 == o.x1 && y1 == o.y1
&& x2 == o.x2 && y2 == o.y2;
}
void print() {
out.printf("%d %d %d %d", x1, y1, x2, y2);
}
}
}
static class QuickScanner {
private static final int BUFFER_SIZE = 1024;
private InputStream stream;
private byte[] buffer;
private int currentPostion;
private int numberOfChars;
public QuickScanner(InputStream stream) {
this.stream = stream;
this.buffer = new byte[BUFFER_SIZE];
this.currentPostion = 0;
this.numberOfChars = 0;
}
public int nextInt() {
int c = nextNonSpaceChar();
boolean positive = true;
if (c == '-') {
positive = false;
c = nextChar();
}
int res = 0;
do {
if (c < '0' || '9' < c) throw new RuntimeException();
res = res * 10 + c - '0';
c = nextChar();
} while (!isSpaceChar(c));
return positive ? res : -res;
}
public int nextNonSpaceChar() {
int res = nextChar();
for (; isSpaceChar(res) || res < 0; res = nextChar()) ;
return res;
}
public int nextChar() {
if (numberOfChars == -1) {
throw new RuntimeException();
}
if (currentPostion >= numberOfChars) {
currentPostion = 0;
try {
numberOfChars = stream.read(buffer);
} catch (Exception e) {
throw new RuntimeException(e);
}
if (numberOfChars <= 0) {
return -1;
}
}
return buffer[currentPostion++];
}
public boolean isSpaceChar(int c) {
return c == ' '
|| c == '\n'
|| c == '\r'
|| c == '\t'
|| c < 0;
}
}
static class QuickWriter {
private final PrintWriter writer;
public QuickWriter(OutputStream outputStream) {
this.writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public QuickWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; ++i) {
if (i > 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
}
public void println(Object... objects) {
print(objects);
writer.print('\n');
}
public void printf(String format, Object... objects) {
writer.printf(format, objects);
}
public void close() {
writer.close();
}
public void flush() {
writer.flush();
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.PrintStream;
import java.io.BufferedWriter;
import java.util.Random;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Jialin Ouyang ([email protected])
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
QuickScanner in = new QuickScanner(inputStream);
QuickWriter out = new QuickWriter(outputStream);
TaskB solver = new TaskB();
solver.solve(1, in, out);
out.close();
}
static class TaskB {
static boolean LOCAL = false;
static int TEST_CASE = 10000;
QuickScanner in;
QuickWriter out;
int n;
Server server;
public void solve(int testNumber, QuickScanner in, QuickWriter out) {
this.in = in;
this.out = out;
n = LOCAL ? 1 << 16 : in.nextInt();
server = new Server();
for (int remCases = LOCAL ? TEST_CASE : 1; remCases > 0; --remCases) {
server.init(n);
Rect[] rects = split(0);
if (rects == null) {
rects = split(1);
}
rects[0] = shrink(rects[0]);
rects[1] = shrink(rects[1]);
server.answer(rects[0], rects[1]);
}
}
Rect[] split(int dim) {
int lower = 1, upper = n - 1, res = 0;
Rect fullRect = new Rect(1, 1, n, n);
while (lower <= upper) {
int medium = (lower + upper) >> 1;
if (server.ask(fullRect.update(1, dim, medium)) == 0) {
res = medium;
lower = medium + 1;
} else {
upper = medium - 1;
}
}
Rect[] rects = new Rect[]{
fullRect.update(1, dim, res + 1),
fullRect.update(0, dim, res + 2)};
return server.ask(rects[0]) == 1
&& server.ask(rects[1]) == 1
? rects : null;
}
Rect shrink(Rect rect) {
rect = shrink(rect, 0);
rect = shrink(rect, 1);
return rect;
}
Rect shrink(Rect rect, int dim) {
int lower, upper, res;
// lower
lower = rect.getValue(0, dim) + 1;
upper = rect.getValue(1, dim);
res = lower - 1;
while (lower <= upper) {
int medium = (lower + upper) >> 1;
if (server.ask(rect.update(0, dim, medium)) == 1) {
res = medium;
lower = medium + 1;
} else {
upper = medium - 1;
}
}
rect = rect.update(0, dim, res);
// upper
lower = rect.getValue(0, dim);
upper = rect.getValue(1, dim) - 1;
res = upper + 1;
while (lower <= upper) {
int medium = (lower + upper) >> 1;
if (server.ask(rect.update(1, dim, medium)) == 1) {
res = medium;
upper = medium - 1;
} else {
lower = medium + 1;
}
}
return rect.update(1, dim, res);
}
class Server {
Rect rect1;
Rect rect2;
Server() {
rect1 = new Rect();
rect2 = new Rect();
}
void init(int n) {
if (LOCAL) {
do {
rect1.initRandom(n);
rect2.initRandom(n);
} while (!rect1.valid(rect2));
//rect1 = new Rect(2, 2, 2, 2);
//rect2 = new Rect(3, 4, 3, 5);
}
}
int ask(Rect rect) {
out.print("? ");
rect.print();
out.println();
out.flush();
if (LOCAL) {
return (rect1.in(rect) ? 1 : 0)
+ (rect2.in(rect) ? 1 : 0);
} else {
return in.nextInt();
}
}
void answer(Rect rect1, Rect rect2) {
out.print("! ");
rect1.print();
out.print(' ');
rect2.print();
out.println();
out.flush();
if (LOCAL) {
if ((rect1.equals(this.rect1) && rect2.equals(this.rect2))
|| (rect2.equals(this.rect1) && rect1.equals(this.rect2))) {
System.out.println("AC!");
} else {
System.out.println("WA!");
throw new IllegalArgumentException();
}
}
}
}
class Rect {
final Random random = new Random();
int x1;
int y1;
int x2;
int y2;
Rect() {
}
Rect(int x1, int y1, int x2, int y2) {
this.x1 = x1;
this.y1 = y1;
this.x2 = x2;
this.y2 = y2;
}
void initRandom(int n) {
x1 = random.nextInt(n);
x2 = random.nextInt(n - x1) + x1 + 1;
++x1;
y1 = random.nextInt(n);
y2 = random.nextInt(n - y1) + y1 + 1;
++y1;
}
int getValue(int idx1, int idx2) {
switch ((idx1 << 1) | idx2) {
case 0:
return x1;
case 1:
return y1;
case 2:
return x2;
case 3:
return y2;
}
throw new IllegalArgumentException();
}
Rect update(int idx1, int idx2, int value) {
switch ((idx1 << 1) | idx2) {
case 0:
return new Rect(value, y1, x2, y2);
case 1:
return new Rect(x1, value, x2, y2);
case 2:
return new Rect(x1, y1, value, y2);
case 3:
return new Rect(x1, y1, x2, value);
}
return null;
}
boolean valid(Rect o) {
if (x2 < o.x1) return true;
if (y2 < o.y1) return true;
if (o.x2 < x1) return true;
if (o.y2 < y1) return true;
return false;
}
boolean in(Rect o) {
return o.x1 <= x1 && x2 <= o.x2
&& o.y1 <= y1 && y2 <= o.y2;
}
boolean equals(Rect o) {
return x1 == o.x1 && y1 == o.y1
&& x2 == o.x2 && y2 == o.y2;
}
void print() {
out.printf("%d %d %d %d", x1, y1, x2, y2);
}
}
}
static class QuickScanner {
private static final int BUFFER_SIZE = 1024;
private InputStream stream;
private byte[] buffer;
private int currentPostion;
private int numberOfChars;
public QuickScanner(InputStream stream) {
this.stream = stream;
this.buffer = new byte[BUFFER_SIZE];
this.currentPostion = 0;
this.numberOfChars = 0;
}
public int nextInt() {
int c = nextNonSpaceChar();
boolean positive = true;
if (c == '-') {
positive = false;
c = nextChar();
}
int res = 0;
do {
if (c < '0' || '9' < c) throw new RuntimeException();
res = res * 10 + c - '0';
c = nextChar();
} while (!isSpaceChar(c));
return positive ? res : -res;
}
public int nextNonSpaceChar() {
int res = nextChar();
for (; isSpaceChar(res) || res < 0; res = nextChar()) ;
return res;
}
public int nextChar() {
if (numberOfChars == -1) {
throw new RuntimeException();
}
if (currentPostion >= numberOfChars) {
currentPostion = 0;
try {
numberOfChars = stream.read(buffer);
} catch (Exception e) {
throw new RuntimeException(e);
}
if (numberOfChars <= 0) {
return -1;
}
}
return buffer[currentPostion++];
}
public boolean isSpaceChar(int c) {
return c == ' '
|| c == '\n'
|| c == '\r'
|| c == '\t'
|| c < 0;
}
}
static class QuickWriter {
private final PrintWriter writer;
public QuickWriter(OutputStream outputStream) {
this.writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public QuickWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; ++i) {
if (i > 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
}
public void println(Object... objects) {
print(objects);
writer.print('\n');
}
public void printf(String format, Object... objects) {
writer.printf(format, objects);
}
public void close() {
writer.close();
}
public void flush() {
writer.flush();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.PrintStream;
import java.io.BufferedWriter;
import java.util.Random;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Jialin Ouyang ([email protected])
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
QuickScanner in = new QuickScanner(inputStream);
QuickWriter out = new QuickWriter(outputStream);
TaskB solver = new TaskB();
solver.solve(1, in, out);
out.close();
}
static class TaskB {
static boolean LOCAL = false;
static int TEST_CASE = 10000;
QuickScanner in;
QuickWriter out;
int n;
Server server;
public void solve(int testNumber, QuickScanner in, QuickWriter out) {
this.in = in;
this.out = out;
n = LOCAL ? 1 << 16 : in.nextInt();
server = new Server();
for (int remCases = LOCAL ? TEST_CASE : 1; remCases > 0; --remCases) {
server.init(n);
Rect[] rects = split(0);
if (rects == null) {
rects = split(1);
}
rects[0] = shrink(rects[0]);
rects[1] = shrink(rects[1]);
server.answer(rects[0], rects[1]);
}
}
Rect[] split(int dim) {
int lower = 1, upper = n - 1, res = 0;
Rect fullRect = new Rect(1, 1, n, n);
while (lower <= upper) {
int medium = (lower + upper) >> 1;
if (server.ask(fullRect.update(1, dim, medium)) == 0) {
res = medium;
lower = medium + 1;
} else {
upper = medium - 1;
}
}
Rect[] rects = new Rect[]{
fullRect.update(1, dim, res + 1),
fullRect.update(0, dim, res + 2)};
return server.ask(rects[0]) == 1
&& server.ask(rects[1]) == 1
? rects : null;
}
Rect shrink(Rect rect) {
rect = shrink(rect, 0);
rect = shrink(rect, 1);
return rect;
}
Rect shrink(Rect rect, int dim) {
int lower, upper, res;
// lower
lower = rect.getValue(0, dim) + 1;
upper = rect.getValue(1, dim);
res = lower - 1;
while (lower <= upper) {
int medium = (lower + upper) >> 1;
if (server.ask(rect.update(0, dim, medium)) == 1) {
res = medium;
lower = medium + 1;
} else {
upper = medium - 1;
}
}
rect = rect.update(0, dim, res);
// upper
lower = rect.getValue(0, dim);
upper = rect.getValue(1, dim) - 1;
res = upper + 1;
while (lower <= upper) {
int medium = (lower + upper) >> 1;
if (server.ask(rect.update(1, dim, medium)) == 1) {
res = medium;
upper = medium - 1;
} else {
lower = medium + 1;
}
}
return rect.update(1, dim, res);
}
class Server {
Rect rect1;
Rect rect2;
Server() {
rect1 = new Rect();
rect2 = new Rect();
}
void init(int n) {
if (LOCAL) {
do {
rect1.initRandom(n);
rect2.initRandom(n);
} while (!rect1.valid(rect2));
//rect1 = new Rect(2, 2, 2, 2);
//rect2 = new Rect(3, 4, 3, 5);
}
}
int ask(Rect rect) {
out.print("? ");
rect.print();
out.println();
out.flush();
if (LOCAL) {
return (rect1.in(rect) ? 1 : 0)
+ (rect2.in(rect) ? 1 : 0);
} else {
return in.nextInt();
}
}
void answer(Rect rect1, Rect rect2) {
out.print("! ");
rect1.print();
out.print(' ');
rect2.print();
out.println();
out.flush();
if (LOCAL) {
if ((rect1.equals(this.rect1) && rect2.equals(this.rect2))
|| (rect2.equals(this.rect1) && rect1.equals(this.rect2))) {
System.out.println("AC!");
} else {
System.out.println("WA!");
throw new IllegalArgumentException();
}
}
}
}
class Rect {
final Random random = new Random();
int x1;
int y1;
int x2;
int y2;
Rect() {
}
Rect(int x1, int y1, int x2, int y2) {
this.x1 = x1;
this.y1 = y1;
this.x2 = x2;
this.y2 = y2;
}
void initRandom(int n) {
x1 = random.nextInt(n);
x2 = random.nextInt(n - x1) + x1 + 1;
++x1;
y1 = random.nextInt(n);
y2 = random.nextInt(n - y1) + y1 + 1;
++y1;
}
int getValue(int idx1, int idx2) {
switch ((idx1 << 1) | idx2) {
case 0:
return x1;
case 1:
return y1;
case 2:
return x2;
case 3:
return y2;
}
throw new IllegalArgumentException();
}
Rect update(int idx1, int idx2, int value) {
switch ((idx1 << 1) | idx2) {
case 0:
return new Rect(value, y1, x2, y2);
case 1:
return new Rect(x1, value, x2, y2);
case 2:
return new Rect(x1, y1, value, y2);
case 3:
return new Rect(x1, y1, x2, value);
}
return null;
}
boolean valid(Rect o) {
if (x2 < o.x1) return true;
if (y2 < o.y1) return true;
if (o.x2 < x1) return true;
if (o.y2 < y1) return true;
return false;
}
boolean in(Rect o) {
return o.x1 <= x1 && x2 <= o.x2
&& o.y1 <= y1 && y2 <= o.y2;
}
boolean equals(Rect o) {
return x1 == o.x1 && y1 == o.y1
&& x2 == o.x2 && y2 == o.y2;
}
void print() {
out.printf("%d %d %d %d", x1, y1, x2, y2);
}
}
}
static class QuickScanner {
private static final int BUFFER_SIZE = 1024;
private InputStream stream;
private byte[] buffer;
private int currentPostion;
private int numberOfChars;
public QuickScanner(InputStream stream) {
this.stream = stream;
this.buffer = new byte[BUFFER_SIZE];
this.currentPostion = 0;
this.numberOfChars = 0;
}
public int nextInt() {
int c = nextNonSpaceChar();
boolean positive = true;
if (c == '-') {
positive = false;
c = nextChar();
}
int res = 0;
do {
if (c < '0' || '9' < c) throw new RuntimeException();
res = res * 10 + c - '0';
c = nextChar();
} while (!isSpaceChar(c));
return positive ? res : -res;
}
public int nextNonSpaceChar() {
int res = nextChar();
for (; isSpaceChar(res) || res < 0; res = nextChar()) ;
return res;
}
public int nextChar() {
if (numberOfChars == -1) {
throw new RuntimeException();
}
if (currentPostion >= numberOfChars) {
currentPostion = 0;
try {
numberOfChars = stream.read(buffer);
} catch (Exception e) {
throw new RuntimeException(e);
}
if (numberOfChars <= 0) {
return -1;
}
}
return buffer[currentPostion++];
}
public boolean isSpaceChar(int c) {
return c == ' '
|| c == '\n'
|| c == '\r'
|| c == '\t'
|| c < 0;
}
}
static class QuickWriter {
private final PrintWriter writer;
public QuickWriter(OutputStream outputStream) {
this.writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public QuickWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; ++i) {
if (i > 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
}
public void println(Object... objects) {
print(objects);
writer.print('\n');
}
public void printf(String format, Object... objects) {
writer.printf(format, objects);
}
public void close() {
writer.close();
}
public void flush() {
writer.flush();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,585 | 1,349 |
3,755 |
//package round429;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
public class C2 {
InputStream is;
PrintWriter out;
String INPUT = "";
void solve()
{
int n = ni();
int[] a = na(n);
for(int i = 0;i < n;i++){
int v = a[i];
for(int j = 2;j*j <= v;j++){
while(v % (j*j) == 0){
v /= j*j;
}
}
a[i] = v;
}
Arrays.sort(a);
int[] f = new int[n];
int p = 0;
for(int i= 0;i < n;i++){
if(i > 0 && a[i] != a[i-1]){
p++;
}
f[p]++;
}
f = Arrays.copyOf(f, p+1);
int mod = 1000000007;
int[][] fif = enumFIF(1000, mod);
long[] res = countSameNeighborsSequence(f, fif, mod);
long ans = res[0];
for(int v : f){
ans = ans * fif[0][v] % mod;
}
out.println(ans);
}
public static int[][] enumFIF(int n, int mod) {
int[] f = new int[n + 1];
int[] invf = new int[n + 1];
f[0] = 1;
for (int i = 1; i <= n; i++) {
f[i] = (int) ((long) f[i - 1] * i % mod);
}
long a = f[n];
long b = mod;
long p = 1, q = 0;
while (b > 0) {
long c = a / b;
long d;
d = a;
a = b;
b = d % b;
d = p;
p = q;
q = d - c * q;
}
invf[n] = (int) (p < 0 ? p + mod : p);
for (int i = n - 1; i >= 0; i--) {
invf[i] = (int) ((long) invf[i + 1] * (i + 1) % mod);
}
return new int[][] { f, invf };
}
public static long[] countSameNeighborsSequence(int[] a, int[][] fif, int mod)
{
int n = a.length;
int bef = a[0];
int aft = a[0];
long[] dp = new long[bef];
dp[bef-1] = 1;
for(int u = 1;u < n;u++){
int v = a[u];
aft += v;
long[][] ldp = new long[bef][aft];
for(int i = 0;i < dp.length;i++){
ldp[i][0] = dp[i];
}
for(int i = 0;i < v;i++){
long[][] ndp = new long[bef][aft];
for(int j = 0;j < bef;j++){
for(int k = 0;j+k < aft;k++){
if(ldp[j][k] == 0)continue;
// XX -> XCX
if(j > 0){
ndp[j-1][k] += ldp[j][k] * j;
ndp[j-1][k] %= mod;
}
// CC -> CCC
// XC -> XCC
// #XC = 2*(i-k)
ndp[j][k+1] += ldp[j][k] * (2*i-k);
ndp[j][k+1] %= mod;
// XY -> XCY
// #XY = bef+i+1-#XC-#CC-#XX
ndp[j][k] += ldp[j][k] * (bef+i+1-j-k-2*(i-k));
ndp[j][k] %= mod;
}
}
ldp = ndp;
}
dp = new long[aft];
for(int j = 0;j < bef;j++){
for(int k = 0;j+k < aft;k++){
dp[j+k] += ldp[j][k];
}
}
for(int j = 0;j < aft;j++)dp[j] = dp[j] % mod * fif[1][v] % mod;
bef = aft;
}
return dp;
}
void run() throws Exception
{
is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception { new C2().run(); }
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni()
{
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private boolean oj = System.getProperty("ONLINE_JUDGE") != null;
private void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); }
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
//package round429;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
public class C2 {
InputStream is;
PrintWriter out;
String INPUT = "";
void solve()
{
int n = ni();
int[] a = na(n);
for(int i = 0;i < n;i++){
int v = a[i];
for(int j = 2;j*j <= v;j++){
while(v % (j*j) == 0){
v /= j*j;
}
}
a[i] = v;
}
Arrays.sort(a);
int[] f = new int[n];
int p = 0;
for(int i= 0;i < n;i++){
if(i > 0 && a[i] != a[i-1]){
p++;
}
f[p]++;
}
f = Arrays.copyOf(f, p+1);
int mod = 1000000007;
int[][] fif = enumFIF(1000, mod);
long[] res = countSameNeighborsSequence(f, fif, mod);
long ans = res[0];
for(int v : f){
ans = ans * fif[0][v] % mod;
}
out.println(ans);
}
public static int[][] enumFIF(int n, int mod) {
int[] f = new int[n + 1];
int[] invf = new int[n + 1];
f[0] = 1;
for (int i = 1; i <= n; i++) {
f[i] = (int) ((long) f[i - 1] * i % mod);
}
long a = f[n];
long b = mod;
long p = 1, q = 0;
while (b > 0) {
long c = a / b;
long d;
d = a;
a = b;
b = d % b;
d = p;
p = q;
q = d - c * q;
}
invf[n] = (int) (p < 0 ? p + mod : p);
for (int i = n - 1; i >= 0; i--) {
invf[i] = (int) ((long) invf[i + 1] * (i + 1) % mod);
}
return new int[][] { f, invf };
}
public static long[] countSameNeighborsSequence(int[] a, int[][] fif, int mod)
{
int n = a.length;
int bef = a[0];
int aft = a[0];
long[] dp = new long[bef];
dp[bef-1] = 1;
for(int u = 1;u < n;u++){
int v = a[u];
aft += v;
long[][] ldp = new long[bef][aft];
for(int i = 0;i < dp.length;i++){
ldp[i][0] = dp[i];
}
for(int i = 0;i < v;i++){
long[][] ndp = new long[bef][aft];
for(int j = 0;j < bef;j++){
for(int k = 0;j+k < aft;k++){
if(ldp[j][k] == 0)continue;
// XX -> XCX
if(j > 0){
ndp[j-1][k] += ldp[j][k] * j;
ndp[j-1][k] %= mod;
}
// CC -> CCC
// XC -> XCC
// #XC = 2*(i-k)
ndp[j][k+1] += ldp[j][k] * (2*i-k);
ndp[j][k+1] %= mod;
// XY -> XCY
// #XY = bef+i+1-#XC-#CC-#XX
ndp[j][k] += ldp[j][k] * (bef+i+1-j-k-2*(i-k));
ndp[j][k] %= mod;
}
}
ldp = ndp;
}
dp = new long[aft];
for(int j = 0;j < bef;j++){
for(int k = 0;j+k < aft;k++){
dp[j+k] += ldp[j][k];
}
}
for(int j = 0;j < aft;j++)dp[j] = dp[j] % mod * fif[1][v] % mod;
bef = aft;
}
return dp;
}
void run() throws Exception
{
is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception { new C2().run(); }
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni()
{
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private boolean oj = System.getProperty("ONLINE_JUDGE") != null;
private void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); }
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
//package round429;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
public class C2 {
InputStream is;
PrintWriter out;
String INPUT = "";
void solve()
{
int n = ni();
int[] a = na(n);
for(int i = 0;i < n;i++){
int v = a[i];
for(int j = 2;j*j <= v;j++){
while(v % (j*j) == 0){
v /= j*j;
}
}
a[i] = v;
}
Arrays.sort(a);
int[] f = new int[n];
int p = 0;
for(int i= 0;i < n;i++){
if(i > 0 && a[i] != a[i-1]){
p++;
}
f[p]++;
}
f = Arrays.copyOf(f, p+1);
int mod = 1000000007;
int[][] fif = enumFIF(1000, mod);
long[] res = countSameNeighborsSequence(f, fif, mod);
long ans = res[0];
for(int v : f){
ans = ans * fif[0][v] % mod;
}
out.println(ans);
}
public static int[][] enumFIF(int n, int mod) {
int[] f = new int[n + 1];
int[] invf = new int[n + 1];
f[0] = 1;
for (int i = 1; i <= n; i++) {
f[i] = (int) ((long) f[i - 1] * i % mod);
}
long a = f[n];
long b = mod;
long p = 1, q = 0;
while (b > 0) {
long c = a / b;
long d;
d = a;
a = b;
b = d % b;
d = p;
p = q;
q = d - c * q;
}
invf[n] = (int) (p < 0 ? p + mod : p);
for (int i = n - 1; i >= 0; i--) {
invf[i] = (int) ((long) invf[i + 1] * (i + 1) % mod);
}
return new int[][] { f, invf };
}
public static long[] countSameNeighborsSequence(int[] a, int[][] fif, int mod)
{
int n = a.length;
int bef = a[0];
int aft = a[0];
long[] dp = new long[bef];
dp[bef-1] = 1;
for(int u = 1;u < n;u++){
int v = a[u];
aft += v;
long[][] ldp = new long[bef][aft];
for(int i = 0;i < dp.length;i++){
ldp[i][0] = dp[i];
}
for(int i = 0;i < v;i++){
long[][] ndp = new long[bef][aft];
for(int j = 0;j < bef;j++){
for(int k = 0;j+k < aft;k++){
if(ldp[j][k] == 0)continue;
// XX -> XCX
if(j > 0){
ndp[j-1][k] += ldp[j][k] * j;
ndp[j-1][k] %= mod;
}
// CC -> CCC
// XC -> XCC
// #XC = 2*(i-k)
ndp[j][k+1] += ldp[j][k] * (2*i-k);
ndp[j][k+1] %= mod;
// XY -> XCY
// #XY = bef+i+1-#XC-#CC-#XX
ndp[j][k] += ldp[j][k] * (bef+i+1-j-k-2*(i-k));
ndp[j][k] %= mod;
}
}
ldp = ndp;
}
dp = new long[aft];
for(int j = 0;j < bef;j++){
for(int k = 0;j+k < aft;k++){
dp[j+k] += ldp[j][k];
}
}
for(int j = 0;j < aft;j++)dp[j] = dp[j] % mod * fif[1][v] % mod;
bef = aft;
}
return dp;
}
void run() throws Exception
{
is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception { new C2().run(); }
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni()
{
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private boolean oj = System.getProperty("ONLINE_JUDGE") != null;
private void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); }
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,212 | 3,747 |
4,287 |
import java.io.*;
import java.util.*;
public class B2 {
String s = null;
String[] ss = null;
int[][] sn = null;
int n = 0;
double ans = 1;
int A = 0;
public void run() throws Exception{
BufferedReader br = null;
File file = new File("input.txt");
if(file.exists()){
br = new BufferedReader(new FileReader("input.txt"));
}
else{
br = new BufferedReader(new InputStreamReader(System.in));
}
s = br.readLine();
ss = s.split(" ");
n = Integer.parseInt(ss[0]);
int k = Integer.parseInt(ss[1]);
A = Integer.parseInt(ss[2]);
sn = new int[n][2];
for(int i = 0; i < n; i++){
s = br.readLine();
ss = s.split(" ");
sn[i][0] = Integer.parseInt(ss[0]);
sn[i][1] = Integer.parseInt(ss[1]);
}
int num = 0;
for(int i = 0; i < n; i++){
num += (100 - sn[i][1]) / 10;
}
if(k >= num){
System.out.println("1.0");
return;
}
check(0, k, sn);
ans = 1 - ans;
System.out.println(ans);
}
void check(int i, int k, int[][] sn){
if(i == n && k == 0){
check2(sn);
return;
}
else if(i == n && k > 0){
return;
}
else if(k == 0){
check(i+1, k, sn);
}
else{
for(int j = 0; j <= k; j++){
if(sn[i][1] + j * 10 <= 100){
int[][] nsn = copy(sn);
nsn[i][1] += j * 10;
check(i+1, k - j, nsn);
}
}
}
}
void check2(int[][] sn){
List<Integer> target = new ArrayList<Integer>();
int h = 0;
for(int i = 0; i < sn.length; i++){
if(sn[i][1] != 100){
target.add(i);
}
else{
h++;
}
}
if(h > n / 2){
System.out.println("1.0");
System.exit(0);
}
int makemax = n - h;
int makemin = (n+1)/2;
double ma = 0;
for(int i = makemax; i >= makemin; i--){
Combination c = new Combination(makemax, i);
Iterator<int[]> ite = c.iterator();
while(ite.hasNext()){
int[] ret = ite.next();
Set<Integer> make = new HashSet<Integer>();
for(int j = 0; j < ret.length; j++){
if(ret[j] > 0){
make.add(target.get(j));
}
}
double makeK = 1;
int B = 0;
for(int j = 0; j < n; j++){
int perc = 0;
if(make.contains(j)){
perc = 100 - sn[j][1];
B += sn[j][0];
}
else{
perc = sn[j][1];
}
makeK *= ((double)perc / 100);
}
ma += makeK * (1 - (double)A/(A+B));
}
}
ans = Math.min(ans, ma);
}
int[][] copy(int[][] sn){
int[][] csn = new int[sn.length][2];
for(int i = 0; i < sn.length; i++){
csn[i][0] = sn[i][0];
csn[i][1] = sn[i][1];
}
return csn;
}
/**
* @param args
*/
public static void main(String[] args) throws Exception{
B2 t = new B2();
t.run();
}
public class Combination implements Iterable<int[]> {
private final int max;
private final int select;
public Combination(int max, int select) {
if (max < 1 || 62 < max) {
throw new IllegalArgumentException();
}
this.max = max;
this.select = select;
}
public Iterator<int[]> iterator() {
return new CombinationIterator(max, select);
}
private class CombinationIterator implements Iterator<int[]> {
private long value;
private final long max;
private final int size;
private int[] ret = null;
public CombinationIterator(int max, int select) {
this.value = (1L << select) - 1L;
this.size = max;
this.max = 1L << max;
this.ret = new int[size];
}
public boolean hasNext() {
return value < max;
}
public int[] next() {
long stock = value;
value = next(value);
for(int i = 0; i < size; i++){
long tmp = stock >> i;
tmp = tmp & 1;
ret[i] = (int)tmp;
}
return ret;
}
public void remove() {
throw new UnsupportedOperationException();
}
private long next(long source) {
long param1 = smallestBitOf(source);
long param2 = param1 + source;
long param3 = smallestBitOf(param2);
long param5 = (param3 / param1) >>> 1;
return param5 - 1 + param2;
}
private long smallestBitOf(long source) {
long result = 1L;
while (source % 2 == 0) {
source >>>= 1;
result <<= 1;
}
return result;
}
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class B2 {
String s = null;
String[] ss = null;
int[][] sn = null;
int n = 0;
double ans = 1;
int A = 0;
public void run() throws Exception{
BufferedReader br = null;
File file = new File("input.txt");
if(file.exists()){
br = new BufferedReader(new FileReader("input.txt"));
}
else{
br = new BufferedReader(new InputStreamReader(System.in));
}
s = br.readLine();
ss = s.split(" ");
n = Integer.parseInt(ss[0]);
int k = Integer.parseInt(ss[1]);
A = Integer.parseInt(ss[2]);
sn = new int[n][2];
for(int i = 0; i < n; i++){
s = br.readLine();
ss = s.split(" ");
sn[i][0] = Integer.parseInt(ss[0]);
sn[i][1] = Integer.parseInt(ss[1]);
}
int num = 0;
for(int i = 0; i < n; i++){
num += (100 - sn[i][1]) / 10;
}
if(k >= num){
System.out.println("1.0");
return;
}
check(0, k, sn);
ans = 1 - ans;
System.out.println(ans);
}
void check(int i, int k, int[][] sn){
if(i == n && k == 0){
check2(sn);
return;
}
else if(i == n && k > 0){
return;
}
else if(k == 0){
check(i+1, k, sn);
}
else{
for(int j = 0; j <= k; j++){
if(sn[i][1] + j * 10 <= 100){
int[][] nsn = copy(sn);
nsn[i][1] += j * 10;
check(i+1, k - j, nsn);
}
}
}
}
void check2(int[][] sn){
List<Integer> target = new ArrayList<Integer>();
int h = 0;
for(int i = 0; i < sn.length; i++){
if(sn[i][1] != 100){
target.add(i);
}
else{
h++;
}
}
if(h > n / 2){
System.out.println("1.0");
System.exit(0);
}
int makemax = n - h;
int makemin = (n+1)/2;
double ma = 0;
for(int i = makemax; i >= makemin; i--){
Combination c = new Combination(makemax, i);
Iterator<int[]> ite = c.iterator();
while(ite.hasNext()){
int[] ret = ite.next();
Set<Integer> make = new HashSet<Integer>();
for(int j = 0; j < ret.length; j++){
if(ret[j] > 0){
make.add(target.get(j));
}
}
double makeK = 1;
int B = 0;
for(int j = 0; j < n; j++){
int perc = 0;
if(make.contains(j)){
perc = 100 - sn[j][1];
B += sn[j][0];
}
else{
perc = sn[j][1];
}
makeK *= ((double)perc / 100);
}
ma += makeK * (1 - (double)A/(A+B));
}
}
ans = Math.min(ans, ma);
}
int[][] copy(int[][] sn){
int[][] csn = new int[sn.length][2];
for(int i = 0; i < sn.length; i++){
csn[i][0] = sn[i][0];
csn[i][1] = sn[i][1];
}
return csn;
}
/**
* @param args
*/
public static void main(String[] args) throws Exception{
B2 t = new B2();
t.run();
}
public class Combination implements Iterable<int[]> {
private final int max;
private final int select;
public Combination(int max, int select) {
if (max < 1 || 62 < max) {
throw new IllegalArgumentException();
}
this.max = max;
this.select = select;
}
public Iterator<int[]> iterator() {
return new CombinationIterator(max, select);
}
private class CombinationIterator implements Iterator<int[]> {
private long value;
private final long max;
private final int size;
private int[] ret = null;
public CombinationIterator(int max, int select) {
this.value = (1L << select) - 1L;
this.size = max;
this.max = 1L << max;
this.ret = new int[size];
}
public boolean hasNext() {
return value < max;
}
public int[] next() {
long stock = value;
value = next(value);
for(int i = 0; i < size; i++){
long tmp = stock >> i;
tmp = tmp & 1;
ret[i] = (int)tmp;
}
return ret;
}
public void remove() {
throw new UnsupportedOperationException();
}
private long next(long source) {
long param1 = smallestBitOf(source);
long param2 = param1 + source;
long param3 = smallestBitOf(param2);
long param5 = (param3 / param1) >>> 1;
return param5 - 1 + param2;
}
private long smallestBitOf(long source) {
long result = 1L;
while (source % 2 == 0) {
source >>>= 1;
result <<= 1;
}
return result;
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class B2 {
String s = null;
String[] ss = null;
int[][] sn = null;
int n = 0;
double ans = 1;
int A = 0;
public void run() throws Exception{
BufferedReader br = null;
File file = new File("input.txt");
if(file.exists()){
br = new BufferedReader(new FileReader("input.txt"));
}
else{
br = new BufferedReader(new InputStreamReader(System.in));
}
s = br.readLine();
ss = s.split(" ");
n = Integer.parseInt(ss[0]);
int k = Integer.parseInt(ss[1]);
A = Integer.parseInt(ss[2]);
sn = new int[n][2];
for(int i = 0; i < n; i++){
s = br.readLine();
ss = s.split(" ");
sn[i][0] = Integer.parseInt(ss[0]);
sn[i][1] = Integer.parseInt(ss[1]);
}
int num = 0;
for(int i = 0; i < n; i++){
num += (100 - sn[i][1]) / 10;
}
if(k >= num){
System.out.println("1.0");
return;
}
check(0, k, sn);
ans = 1 - ans;
System.out.println(ans);
}
void check(int i, int k, int[][] sn){
if(i == n && k == 0){
check2(sn);
return;
}
else if(i == n && k > 0){
return;
}
else if(k == 0){
check(i+1, k, sn);
}
else{
for(int j = 0; j <= k; j++){
if(sn[i][1] + j * 10 <= 100){
int[][] nsn = copy(sn);
nsn[i][1] += j * 10;
check(i+1, k - j, nsn);
}
}
}
}
void check2(int[][] sn){
List<Integer> target = new ArrayList<Integer>();
int h = 0;
for(int i = 0; i < sn.length; i++){
if(sn[i][1] != 100){
target.add(i);
}
else{
h++;
}
}
if(h > n / 2){
System.out.println("1.0");
System.exit(0);
}
int makemax = n - h;
int makemin = (n+1)/2;
double ma = 0;
for(int i = makemax; i >= makemin; i--){
Combination c = new Combination(makemax, i);
Iterator<int[]> ite = c.iterator();
while(ite.hasNext()){
int[] ret = ite.next();
Set<Integer> make = new HashSet<Integer>();
for(int j = 0; j < ret.length; j++){
if(ret[j] > 0){
make.add(target.get(j));
}
}
double makeK = 1;
int B = 0;
for(int j = 0; j < n; j++){
int perc = 0;
if(make.contains(j)){
perc = 100 - sn[j][1];
B += sn[j][0];
}
else{
perc = sn[j][1];
}
makeK *= ((double)perc / 100);
}
ma += makeK * (1 - (double)A/(A+B));
}
}
ans = Math.min(ans, ma);
}
int[][] copy(int[][] sn){
int[][] csn = new int[sn.length][2];
for(int i = 0; i < sn.length; i++){
csn[i][0] = sn[i][0];
csn[i][1] = sn[i][1];
}
return csn;
}
/**
* @param args
*/
public static void main(String[] args) throws Exception{
B2 t = new B2();
t.run();
}
public class Combination implements Iterable<int[]> {
private final int max;
private final int select;
public Combination(int max, int select) {
if (max < 1 || 62 < max) {
throw new IllegalArgumentException();
}
this.max = max;
this.select = select;
}
public Iterator<int[]> iterator() {
return new CombinationIterator(max, select);
}
private class CombinationIterator implements Iterator<int[]> {
private long value;
private final long max;
private final int size;
private int[] ret = null;
public CombinationIterator(int max, int select) {
this.value = (1L << select) - 1L;
this.size = max;
this.max = 1L << max;
this.ret = new int[size];
}
public boolean hasNext() {
return value < max;
}
public int[] next() {
long stock = value;
value = next(value);
for(int i = 0; i < size; i++){
long tmp = stock >> i;
tmp = tmp & 1;
ret[i] = (int)tmp;
}
return ret;
}
public void remove() {
throw new UnsupportedOperationException();
}
private long next(long source) {
long param1 = smallestBitOf(source);
long param2 = param1 + source;
long param3 = smallestBitOf(param2);
long param5 = (param3 / param1) >>> 1;
return param5 - 1 + param2;
}
private long smallestBitOf(long source) {
long result = 1L;
while (source % 2 == 0) {
source >>>= 1;
result <<= 1;
}
return result;
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,704 | 4,276 |
2,127 |
import java.util.*;
import java.io.*;
import java.lang.reflect.Array;
public class C {
FastScanner in;
PrintWriter out;
boolean systemIO = true;
public static class Pair {
int x;
int y;
public Pair(int x, int y) {
this.x = x;
this.y = y;
}
}
public void solve() {
int n = in.nextInt();
int r = 2 * in.nextInt();
int[] x = new int[n];
for (int i = 0; i < x.length; i++) {
x[i] = in.nextInt();
}
double[] y = new double[n];
for (int i = 0; i < y.length; i++) {
y[i] = r / 2;
}
for (int i = 0; i < y.length; i++) {
for (int j = 0; j < i; j++) {
if (Math.abs(x[i] - x[j]) == r) {
y[i] = Math.max(y[i], y[j]);
} else if (Math.abs(x[i] - x[j]) < r) {
y[i] = Math.max(y[i], y[j] + Math.sqrt(r * r - (x[j] - x[i]) * (x[j] - x[i])));
}
}
}
for (int i = 0; i < y.length; i++) {
out.print(y[i] + " ");
}
}
public void run() {
try {
if (systemIO) {
in = new FastScanner(System.in);
out = new PrintWriter(System.out);
} else {
in = new FastScanner(new File("segments.in"));
out = new PrintWriter(new File("segments.out"));
}
solve();
out.close();
} catch (IOException e) {
e.printStackTrace();
}
}
class FastScanner {
BufferedReader br;
StringTokenizer st;
FastScanner(File f) {
try {
br = new BufferedReader(new FileReader(f));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
FastScanner(InputStream f) {
br = new BufferedReader(new InputStreamReader(f));
}
String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
return null;
}
}
String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
// AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
public static void main(String[] arg) {
new C().run();
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.lang.reflect.Array;
public class C {
FastScanner in;
PrintWriter out;
boolean systemIO = true;
public static class Pair {
int x;
int y;
public Pair(int x, int y) {
this.x = x;
this.y = y;
}
}
public void solve() {
int n = in.nextInt();
int r = 2 * in.nextInt();
int[] x = new int[n];
for (int i = 0; i < x.length; i++) {
x[i] = in.nextInt();
}
double[] y = new double[n];
for (int i = 0; i < y.length; i++) {
y[i] = r / 2;
}
for (int i = 0; i < y.length; i++) {
for (int j = 0; j < i; j++) {
if (Math.abs(x[i] - x[j]) == r) {
y[i] = Math.max(y[i], y[j]);
} else if (Math.abs(x[i] - x[j]) < r) {
y[i] = Math.max(y[i], y[j] + Math.sqrt(r * r - (x[j] - x[i]) * (x[j] - x[i])));
}
}
}
for (int i = 0; i < y.length; i++) {
out.print(y[i] + " ");
}
}
public void run() {
try {
if (systemIO) {
in = new FastScanner(System.in);
out = new PrintWriter(System.out);
} else {
in = new FastScanner(new File("segments.in"));
out = new PrintWriter(new File("segments.out"));
}
solve();
out.close();
} catch (IOException e) {
e.printStackTrace();
}
}
class FastScanner {
BufferedReader br;
StringTokenizer st;
FastScanner(File f) {
try {
br = new BufferedReader(new FileReader(f));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
FastScanner(InputStream f) {
br = new BufferedReader(new InputStreamReader(f));
}
String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
return null;
}
}
String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
// AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
public static void main(String[] arg) {
new C().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.lang.reflect.Array;
public class C {
FastScanner in;
PrintWriter out;
boolean systemIO = true;
public static class Pair {
int x;
int y;
public Pair(int x, int y) {
this.x = x;
this.y = y;
}
}
public void solve() {
int n = in.nextInt();
int r = 2 * in.nextInt();
int[] x = new int[n];
for (int i = 0; i < x.length; i++) {
x[i] = in.nextInt();
}
double[] y = new double[n];
for (int i = 0; i < y.length; i++) {
y[i] = r / 2;
}
for (int i = 0; i < y.length; i++) {
for (int j = 0; j < i; j++) {
if (Math.abs(x[i] - x[j]) == r) {
y[i] = Math.max(y[i], y[j]);
} else if (Math.abs(x[i] - x[j]) < r) {
y[i] = Math.max(y[i], y[j] + Math.sqrt(r * r - (x[j] - x[i]) * (x[j] - x[i])));
}
}
}
for (int i = 0; i < y.length; i++) {
out.print(y[i] + " ");
}
}
public void run() {
try {
if (systemIO) {
in = new FastScanner(System.in);
out = new PrintWriter(System.out);
} else {
in = new FastScanner(new File("segments.in"));
out = new PrintWriter(new File("segments.out"));
}
solve();
out.close();
} catch (IOException e) {
e.printStackTrace();
}
}
class FastScanner {
BufferedReader br;
StringTokenizer st;
FastScanner(File f) {
try {
br = new BufferedReader(new FileReader(f));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
FastScanner(InputStream f) {
br = new BufferedReader(new InputStreamReader(f));
}
String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
return null;
}
}
String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
// AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
public static void main(String[] arg) {
new C().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,103 | 2,123 |
957 |
import java.io.*;
import java.lang.reflect.Array;
import java.math.BigInteger;
import java.util.*;
public class q5 {
public static void main(String[] args) throws IOException {
Reader.init(System.in);
PrintWriter out=new PrintWriter(System.out);
long n=Reader.nextInt();
long k=Reader.nextLong();
long v=8*n+8*k+4;
long v2=(long) Math.sqrt(v);
long v3=2*n+2;
//long v4=(v3+v2)/2;
long v5=(v3-v2)/2;
out.println(v5);
out.flush();
}
}
class Reader {
static BufferedReader reader;
static StringTokenizer tokenizer;
/** call this method to initialize reader for InputStream */
static void init() throws IOException {
reader = new BufferedReader(
new FileReader("detect.in"));
tokenizer = new StringTokenizer("");
}
static void init(InputStream input) {
reader = new BufferedReader(
new InputStreamReader(input) );
tokenizer = new StringTokenizer("");
}
/** get next word */
static String nextLine() throws IOException{
return reader.readLine();
}
static String next() throws IOException {
while ( ! tokenizer.hasMoreTokens() ) {
//TODO add check for eof if necessary
tokenizer = new StringTokenizer(
reader.readLine() );
}
return tokenizer.nextToken();
}
static int nextInt() throws IOException {
return Integer.parseInt( next() );
}
static long nextLong() throws IOException {
return Long.parseLong( next() );
}
static double nextDouble() throws IOException {
return Double.parseDouble( next() );
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.lang.reflect.Array;
import java.math.BigInteger;
import java.util.*;
public class q5 {
public static void main(String[] args) throws IOException {
Reader.init(System.in);
PrintWriter out=new PrintWriter(System.out);
long n=Reader.nextInt();
long k=Reader.nextLong();
long v=8*n+8*k+4;
long v2=(long) Math.sqrt(v);
long v3=2*n+2;
//long v4=(v3+v2)/2;
long v5=(v3-v2)/2;
out.println(v5);
out.flush();
}
}
class Reader {
static BufferedReader reader;
static StringTokenizer tokenizer;
/** call this method to initialize reader for InputStream */
static void init() throws IOException {
reader = new BufferedReader(
new FileReader("detect.in"));
tokenizer = new StringTokenizer("");
}
static void init(InputStream input) {
reader = new BufferedReader(
new InputStreamReader(input) );
tokenizer = new StringTokenizer("");
}
/** get next word */
static String nextLine() throws IOException{
return reader.readLine();
}
static String next() throws IOException {
while ( ! tokenizer.hasMoreTokens() ) {
//TODO add check for eof if necessary
tokenizer = new StringTokenizer(
reader.readLine() );
}
return tokenizer.nextToken();
}
static int nextInt() throws IOException {
return Integer.parseInt( next() );
}
static long nextLong() throws IOException {
return Long.parseLong( next() );
}
static double nextDouble() throws IOException {
return Double.parseDouble( next() );
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.lang.reflect.Array;
import java.math.BigInteger;
import java.util.*;
public class q5 {
public static void main(String[] args) throws IOException {
Reader.init(System.in);
PrintWriter out=new PrintWriter(System.out);
long n=Reader.nextInt();
long k=Reader.nextLong();
long v=8*n+8*k+4;
long v2=(long) Math.sqrt(v);
long v3=2*n+2;
//long v4=(v3+v2)/2;
long v5=(v3-v2)/2;
out.println(v5);
out.flush();
}
}
class Reader {
static BufferedReader reader;
static StringTokenizer tokenizer;
/** call this method to initialize reader for InputStream */
static void init() throws IOException {
reader = new BufferedReader(
new FileReader("detect.in"));
tokenizer = new StringTokenizer("");
}
static void init(InputStream input) {
reader = new BufferedReader(
new InputStreamReader(input) );
tokenizer = new StringTokenizer("");
}
/** get next word */
static String nextLine() throws IOException{
return reader.readLine();
}
static String next() throws IOException {
while ( ! tokenizer.hasMoreTokens() ) {
//TODO add check for eof if necessary
tokenizer = new StringTokenizer(
reader.readLine() );
}
return tokenizer.nextToken();
}
static int nextInt() throws IOException {
return Integer.parseInt( next() );
}
static long nextLong() throws IOException {
return Long.parseLong( next() );
}
static double nextDouble() throws IOException {
return Double.parseDouble( next() );
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 698 | 956 |
3,650 |
import javax.annotation.processing.SupportedSourceVersion;
import java.io.*;
import java.util.*;
import java.util.regex.Matcher;
public class Main {
public static void main(String[] args) throws IOException {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(new FileReader("input.txt")); // new InputReader(inputStream);
PrintWriter out = new PrintWriter("output.txt"); //new PrintWriter(outputStream);
TaskB solver = new TaskB();
solver.solve(in, out);
out.close();
}
private static class TaskB {
static final long max = 1000000000000000000L;
static final double eps = 0.0000001;
static final long mod = 1000000007;
static int N, M, K;
static long X, Y;
static boolean F[][][];
static int D[][];
void solve(InputReader in, PrintWriter out) throws IOException {
N = in.nextInt();
M = in.nextInt();
K = in.nextInt();
F = new boolean[K][N][M];
D = new int[N][M];
for (int i = 0; i < N; i++)
for (int j = 0; j < M; j++)
D[i][j] = Integer.MAX_VALUE;
List<Pair> list = new ArrayList<>();
for (int i = 0; i < K; i++) {
list.add(new Pair(in.nextInt() - 1, in.nextInt() - 1));
}
for (int i = 0; i < N; i++)
for (int j = 0; j < M; j++)
for (int k = 0; k < K; k++)
D[i][j] = Math.min(D[i][j], Math.abs(list.get(k).X - i) + Math.abs(list.get(k).Y - j));
int res = Integer.MIN_VALUE;
for (int j = 0; j < N; j++)
for (int k = 0; k < M; k++)
if (D[j][k] > res) {
X = j + 1;
Y = k + 1;
res = D[j][k];
}
out.println(X + " " + Y);
}
void bfs(int K, Pair P) {
Queue<Pair> Q = new LinkedList<>();
F[K][P.X][P.Y] = true;
D[P.X][P.Y] = 0;
Q.add(P);
while (!Q.isEmpty()) {
P = Q.poll();
int X = P.X;
int Y = P.Y;
if (check(X - 1, Y) && !F[K][X - 1][Y]) {
F[K][X - 1][Y] = true;
if (D[X - 1][Y] > D[X][Y] + 1) {
D[X - 1][Y] = D[X][Y] + 1;
Q.add(new Pair(X - 1, Y));
}
}
if (check(X + 1, Y) && !F[K][X + 1][Y]) {
F[K][X + 1][Y] = true;
if (D[X + 1][Y] > D[X][Y] + 1) {
D[X + 1][Y] = D[X][Y] + 1;
Q.add(new Pair(X + 1, Y));
}
}
if (check(X, Y - 1) && !F[K][X][Y - 1]) {
F[K][X][Y - 1] = true;
if (D[X][Y - 1] > D[X][Y] + 1) {
D[X][Y - 1] = D[X][Y] + 1;
Q.add(new Pair(X, Y - 1));
}
}
if (check(X, Y + 1) && !F[K][X][Y + 1]) {
F[K][X][Y + 1] = true;
if (D[X][Y + 1] > D[X][Y] + 1) {
D[X][Y + 1] = D[X][Y] + 1;
Q.add(new Pair(X, Y + 1));
}
}
}
}
boolean check(int X, int Y) {
return !(X < 0 || X >= N || Y < 0 || Y >= M);
}
class Pair {
int X, Y;
Pair(int X, int Y) {
this.X = X;
this.Y = Y;
}
}
long gcd(long A, long B) {
if (B == 0) return A;
return gcd(B, A % B);
}
boolean isPrime(long n) {
if (n <= 1 || n > 3 && (n % 2 == 0 || n % 3 == 0))
return false;
for (long i = 5, j = 2; i * i <= n; i += j, j = 6 - j)
if (n % i == 0)
return false;
return true;
}
boolean isEqual(double A, double B) {
return Math.abs(A - B) < eps;
}
double dist(double X1, double Y1, double X2, double Y2) {
return Math.sqrt((X1 - X2) * (X1 - X2) + (Y1 - Y2) * (Y1 - Y2));
}
boolean nextPer(int[] data) {
int i = data.length - 1;
while (i > 0 && data[i] < data[i - 1]) {
i--;
}
if (i == 0) {
return false;
}
int j = data.length - 1;
while (data[j] < data[i - 1]) {
j--;
}
int temp = data[i - 1];
data[i - 1] = data[j];
data[j] = temp;
Arrays.sort(data, i, data.length);
return true;
}
long pow(long A, long B, long MOD) {
if (B == 0) {
return 1;
}
if (B == 1) {
return A;
}
long val = pow(A, B / 2, MOD);
if (B % 2 == 0) {
return val * val % MOD;
} else {
return val * (val * A % MOD) % MOD;
}
}
}
private static class InputReader {
StringTokenizer st;
BufferedReader br;
public InputReader(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public InputReader(FileReader s) throws FileNotFoundException {
br = new BufferedReader(s);
}
public String next() {
while (st == null || !st.hasMoreTokens())
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
public double nextDouble() {
return Double.parseDouble(next());
}
public boolean ready() {
try {
return br.ready();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import javax.annotation.processing.SupportedSourceVersion;
import java.io.*;
import java.util.*;
import java.util.regex.Matcher;
public class Main {
public static void main(String[] args) throws IOException {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(new FileReader("input.txt")); // new InputReader(inputStream);
PrintWriter out = new PrintWriter("output.txt"); //new PrintWriter(outputStream);
TaskB solver = new TaskB();
solver.solve(in, out);
out.close();
}
private static class TaskB {
static final long max = 1000000000000000000L;
static final double eps = 0.0000001;
static final long mod = 1000000007;
static int N, M, K;
static long X, Y;
static boolean F[][][];
static int D[][];
void solve(InputReader in, PrintWriter out) throws IOException {
N = in.nextInt();
M = in.nextInt();
K = in.nextInt();
F = new boolean[K][N][M];
D = new int[N][M];
for (int i = 0; i < N; i++)
for (int j = 0; j < M; j++)
D[i][j] = Integer.MAX_VALUE;
List<Pair> list = new ArrayList<>();
for (int i = 0; i < K; i++) {
list.add(new Pair(in.nextInt() - 1, in.nextInt() - 1));
}
for (int i = 0; i < N; i++)
for (int j = 0; j < M; j++)
for (int k = 0; k < K; k++)
D[i][j] = Math.min(D[i][j], Math.abs(list.get(k).X - i) + Math.abs(list.get(k).Y - j));
int res = Integer.MIN_VALUE;
for (int j = 0; j < N; j++)
for (int k = 0; k < M; k++)
if (D[j][k] > res) {
X = j + 1;
Y = k + 1;
res = D[j][k];
}
out.println(X + " " + Y);
}
void bfs(int K, Pair P) {
Queue<Pair> Q = new LinkedList<>();
F[K][P.X][P.Y] = true;
D[P.X][P.Y] = 0;
Q.add(P);
while (!Q.isEmpty()) {
P = Q.poll();
int X = P.X;
int Y = P.Y;
if (check(X - 1, Y) && !F[K][X - 1][Y]) {
F[K][X - 1][Y] = true;
if (D[X - 1][Y] > D[X][Y] + 1) {
D[X - 1][Y] = D[X][Y] + 1;
Q.add(new Pair(X - 1, Y));
}
}
if (check(X + 1, Y) && !F[K][X + 1][Y]) {
F[K][X + 1][Y] = true;
if (D[X + 1][Y] > D[X][Y] + 1) {
D[X + 1][Y] = D[X][Y] + 1;
Q.add(new Pair(X + 1, Y));
}
}
if (check(X, Y - 1) && !F[K][X][Y - 1]) {
F[K][X][Y - 1] = true;
if (D[X][Y - 1] > D[X][Y] + 1) {
D[X][Y - 1] = D[X][Y] + 1;
Q.add(new Pair(X, Y - 1));
}
}
if (check(X, Y + 1) && !F[K][X][Y + 1]) {
F[K][X][Y + 1] = true;
if (D[X][Y + 1] > D[X][Y] + 1) {
D[X][Y + 1] = D[X][Y] + 1;
Q.add(new Pair(X, Y + 1));
}
}
}
}
boolean check(int X, int Y) {
return !(X < 0 || X >= N || Y < 0 || Y >= M);
}
class Pair {
int X, Y;
Pair(int X, int Y) {
this.X = X;
this.Y = Y;
}
}
long gcd(long A, long B) {
if (B == 0) return A;
return gcd(B, A % B);
}
boolean isPrime(long n) {
if (n <= 1 || n > 3 && (n % 2 == 0 || n % 3 == 0))
return false;
for (long i = 5, j = 2; i * i <= n; i += j, j = 6 - j)
if (n % i == 0)
return false;
return true;
}
boolean isEqual(double A, double B) {
return Math.abs(A - B) < eps;
}
double dist(double X1, double Y1, double X2, double Y2) {
return Math.sqrt((X1 - X2) * (X1 - X2) + (Y1 - Y2) * (Y1 - Y2));
}
boolean nextPer(int[] data) {
int i = data.length - 1;
while (i > 0 && data[i] < data[i - 1]) {
i--;
}
if (i == 0) {
return false;
}
int j = data.length - 1;
while (data[j] < data[i - 1]) {
j--;
}
int temp = data[i - 1];
data[i - 1] = data[j];
data[j] = temp;
Arrays.sort(data, i, data.length);
return true;
}
long pow(long A, long B, long MOD) {
if (B == 0) {
return 1;
}
if (B == 1) {
return A;
}
long val = pow(A, B / 2, MOD);
if (B % 2 == 0) {
return val * val % MOD;
} else {
return val * (val * A % MOD) % MOD;
}
}
}
private static class InputReader {
StringTokenizer st;
BufferedReader br;
public InputReader(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public InputReader(FileReader s) throws FileNotFoundException {
br = new BufferedReader(s);
}
public String next() {
while (st == null || !st.hasMoreTokens())
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
public double nextDouble() {
return Double.parseDouble(next());
}
public boolean ready() {
try {
return br.ready();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import javax.annotation.processing.SupportedSourceVersion;
import java.io.*;
import java.util.*;
import java.util.regex.Matcher;
public class Main {
public static void main(String[] args) throws IOException {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(new FileReader("input.txt")); // new InputReader(inputStream);
PrintWriter out = new PrintWriter("output.txt"); //new PrintWriter(outputStream);
TaskB solver = new TaskB();
solver.solve(in, out);
out.close();
}
private static class TaskB {
static final long max = 1000000000000000000L;
static final double eps = 0.0000001;
static final long mod = 1000000007;
static int N, M, K;
static long X, Y;
static boolean F[][][];
static int D[][];
void solve(InputReader in, PrintWriter out) throws IOException {
N = in.nextInt();
M = in.nextInt();
K = in.nextInt();
F = new boolean[K][N][M];
D = new int[N][M];
for (int i = 0; i < N; i++)
for (int j = 0; j < M; j++)
D[i][j] = Integer.MAX_VALUE;
List<Pair> list = new ArrayList<>();
for (int i = 0; i < K; i++) {
list.add(new Pair(in.nextInt() - 1, in.nextInt() - 1));
}
for (int i = 0; i < N; i++)
for (int j = 0; j < M; j++)
for (int k = 0; k < K; k++)
D[i][j] = Math.min(D[i][j], Math.abs(list.get(k).X - i) + Math.abs(list.get(k).Y - j));
int res = Integer.MIN_VALUE;
for (int j = 0; j < N; j++)
for (int k = 0; k < M; k++)
if (D[j][k] > res) {
X = j + 1;
Y = k + 1;
res = D[j][k];
}
out.println(X + " " + Y);
}
void bfs(int K, Pair P) {
Queue<Pair> Q = new LinkedList<>();
F[K][P.X][P.Y] = true;
D[P.X][P.Y] = 0;
Q.add(P);
while (!Q.isEmpty()) {
P = Q.poll();
int X = P.X;
int Y = P.Y;
if (check(X - 1, Y) && !F[K][X - 1][Y]) {
F[K][X - 1][Y] = true;
if (D[X - 1][Y] > D[X][Y] + 1) {
D[X - 1][Y] = D[X][Y] + 1;
Q.add(new Pair(X - 1, Y));
}
}
if (check(X + 1, Y) && !F[K][X + 1][Y]) {
F[K][X + 1][Y] = true;
if (D[X + 1][Y] > D[X][Y] + 1) {
D[X + 1][Y] = D[X][Y] + 1;
Q.add(new Pair(X + 1, Y));
}
}
if (check(X, Y - 1) && !F[K][X][Y - 1]) {
F[K][X][Y - 1] = true;
if (D[X][Y - 1] > D[X][Y] + 1) {
D[X][Y - 1] = D[X][Y] + 1;
Q.add(new Pair(X, Y - 1));
}
}
if (check(X, Y + 1) && !F[K][X][Y + 1]) {
F[K][X][Y + 1] = true;
if (D[X][Y + 1] > D[X][Y] + 1) {
D[X][Y + 1] = D[X][Y] + 1;
Q.add(new Pair(X, Y + 1));
}
}
}
}
boolean check(int X, int Y) {
return !(X < 0 || X >= N || Y < 0 || Y >= M);
}
class Pair {
int X, Y;
Pair(int X, int Y) {
this.X = X;
this.Y = Y;
}
}
long gcd(long A, long B) {
if (B == 0) return A;
return gcd(B, A % B);
}
boolean isPrime(long n) {
if (n <= 1 || n > 3 && (n % 2 == 0 || n % 3 == 0))
return false;
for (long i = 5, j = 2; i * i <= n; i += j, j = 6 - j)
if (n % i == 0)
return false;
return true;
}
boolean isEqual(double A, double B) {
return Math.abs(A - B) < eps;
}
double dist(double X1, double Y1, double X2, double Y2) {
return Math.sqrt((X1 - X2) * (X1 - X2) + (Y1 - Y2) * (Y1 - Y2));
}
boolean nextPer(int[] data) {
int i = data.length - 1;
while (i > 0 && data[i] < data[i - 1]) {
i--;
}
if (i == 0) {
return false;
}
int j = data.length - 1;
while (data[j] < data[i - 1]) {
j--;
}
int temp = data[i - 1];
data[i - 1] = data[j];
data[j] = temp;
Arrays.sort(data, i, data.length);
return true;
}
long pow(long A, long B, long MOD) {
if (B == 0) {
return 1;
}
if (B == 1) {
return A;
}
long val = pow(A, B / 2, MOD);
if (B % 2 == 0) {
return val * val % MOD;
} else {
return val * (val * A % MOD) % MOD;
}
}
}
private static class InputReader {
StringTokenizer st;
BufferedReader br;
public InputReader(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public InputReader(FileReader s) throws FileNotFoundException {
br = new BufferedReader(s);
}
public String next() {
while (st == null || !st.hasMoreTokens())
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
public double nextDouble() {
return Double.parseDouble(next());
}
public boolean ready() {
try {
return br.ready();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,030 | 3,642 |
866 |
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.HashSet;
import java.util.StringTokenizer;
public class Array {
void run() {
try {
BufferedReader bfd = new BufferedReader(new InputStreamReader(
System.in));
StringTokenizer tk = new StringTokenizer(bfd.readLine());
int n = Integer.parseInt(tk.nextToken());
int k = Integer.parseInt(tk.nextToken()), i;
int arr[] = new int[n];
tk = new StringTokenizer(bfd.readLine());
for(i=0;i<n;++i)
arr[i] = Integer.parseInt(tk.nextToken());
int dist=0,l=0,r=0;
HashSet<Integer> hs = new HashSet<Integer>();
for(i=0; i<n; ++i) {
if(!hs.contains(arr[i])){
hs.add(arr[i]);
dist++;
}
if(dist==k) break;
r++;
}
int freq[] = new int[100010];
if(hs.size()<k) System.out.println("-1 -1");
else {
while(l<arr.length-1 && l<r && arr[l]==arr[l+1])
++l;
while(r>=1 && r>l && arr[r]==arr[r-1])
--r;
for(i=l;i<=r;++i)
freq[arr[i]]++;
while(freq[arr[l]]>1){
freq[arr[l]]--;
l++;
}
while(freq[arr[r]]>1){
freq[arr[r]]--;
r--;
}
System.out.println((l+1)+" " +(r+1));
}
} catch (Exception e) {
}
}
public static void main(String[] args) {
new Array().run();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.HashSet;
import java.util.StringTokenizer;
public class Array {
void run() {
try {
BufferedReader bfd = new BufferedReader(new InputStreamReader(
System.in));
StringTokenizer tk = new StringTokenizer(bfd.readLine());
int n = Integer.parseInt(tk.nextToken());
int k = Integer.parseInt(tk.nextToken()), i;
int arr[] = new int[n];
tk = new StringTokenizer(bfd.readLine());
for(i=0;i<n;++i)
arr[i] = Integer.parseInt(tk.nextToken());
int dist=0,l=0,r=0;
HashSet<Integer> hs = new HashSet<Integer>();
for(i=0; i<n; ++i) {
if(!hs.contains(arr[i])){
hs.add(arr[i]);
dist++;
}
if(dist==k) break;
r++;
}
int freq[] = new int[100010];
if(hs.size()<k) System.out.println("-1 -1");
else {
while(l<arr.length-1 && l<r && arr[l]==arr[l+1])
++l;
while(r>=1 && r>l && arr[r]==arr[r-1])
--r;
for(i=l;i<=r;++i)
freq[arr[i]]++;
while(freq[arr[l]]>1){
freq[arr[l]]--;
l++;
}
while(freq[arr[r]]>1){
freq[arr[r]]--;
r--;
}
System.out.println((l+1)+" " +(r+1));
}
} catch (Exception e) {
}
}
public static void main(String[] args) {
new Array().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.HashSet;
import java.util.StringTokenizer;
public class Array {
void run() {
try {
BufferedReader bfd = new BufferedReader(new InputStreamReader(
System.in));
StringTokenizer tk = new StringTokenizer(bfd.readLine());
int n = Integer.parseInt(tk.nextToken());
int k = Integer.parseInt(tk.nextToken()), i;
int arr[] = new int[n];
tk = new StringTokenizer(bfd.readLine());
for(i=0;i<n;++i)
arr[i] = Integer.parseInt(tk.nextToken());
int dist=0,l=0,r=0;
HashSet<Integer> hs = new HashSet<Integer>();
for(i=0; i<n; ++i) {
if(!hs.contains(arr[i])){
hs.add(arr[i]);
dist++;
}
if(dist==k) break;
r++;
}
int freq[] = new int[100010];
if(hs.size()<k) System.out.println("-1 -1");
else {
while(l<arr.length-1 && l<r && arr[l]==arr[l+1])
++l;
while(r>=1 && r>l && arr[r]==arr[r-1])
--r;
for(i=l;i<=r;++i)
freq[arr[i]]++;
while(freq[arr[l]]>1){
freq[arr[l]]--;
l++;
}
while(freq[arr[r]]>1){
freq[arr[r]]--;
r--;
}
System.out.println((l+1)+" " +(r+1));
}
} catch (Exception e) {
}
}
public static void main(String[] args) {
new Array().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 694 | 865 |
339 |
import java.io.*;
import java.util.*;
public class C {
MyScanner in;
PrintWriter out;
public static void main(String[] args) throws Exception {
new C().run();
}
public void run() throws Exception {
in = new MyScanner();
out = new PrintWriter(System.out);
solve();
out.close();
}
public void solve() throws Exception {
int n = in.nextInt();
char[] a = in.next().toCharArray();
int h = 0;
for (int i = 0; i < a.length; i++) {
if (a[i] == 'H') h++;
}
char[] b = new char[2 * a.length - 1];
for (int i = 0; i < b.length; i++) {
b[i] = a[i % a.length];
}
int maxh = 0;
int hh = 0;
for (int i = 0; i < b.length - h; i++) {
hh = 0;
for (int j = 0; j < h; j++) {
if (b[i + j] == 'H') hh++;
}
maxh = Math.max(maxh, hh);
}
/*for (int i = 0; i < b.length; i++) {
out.print(b[i]);
}
out.println();*/
//out.println(h + " " + maxh);
out.println(h - maxh);
}
class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() throws Exception {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() throws Exception {
if ((st == null) || (!st.hasMoreTokens())) {
st = new StringTokenizer(br.readLine());
}
return st.nextToken();
}
int nextInt() throws Exception {
return Integer.parseInt(next());
}
double nextDouble() throws Exception {
return Double.parseDouble(next());
}
boolean nextBoolean() throws Exception {
return Boolean.parseBoolean(next());
}
long nextLong() throws Exception {
return Long.parseLong(next());
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class C {
MyScanner in;
PrintWriter out;
public static void main(String[] args) throws Exception {
new C().run();
}
public void run() throws Exception {
in = new MyScanner();
out = new PrintWriter(System.out);
solve();
out.close();
}
public void solve() throws Exception {
int n = in.nextInt();
char[] a = in.next().toCharArray();
int h = 0;
for (int i = 0; i < a.length; i++) {
if (a[i] == 'H') h++;
}
char[] b = new char[2 * a.length - 1];
for (int i = 0; i < b.length; i++) {
b[i] = a[i % a.length];
}
int maxh = 0;
int hh = 0;
for (int i = 0; i < b.length - h; i++) {
hh = 0;
for (int j = 0; j < h; j++) {
if (b[i + j] == 'H') hh++;
}
maxh = Math.max(maxh, hh);
}
/*for (int i = 0; i < b.length; i++) {
out.print(b[i]);
}
out.println();*/
//out.println(h + " " + maxh);
out.println(h - maxh);
}
class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() throws Exception {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() throws Exception {
if ((st == null) || (!st.hasMoreTokens())) {
st = new StringTokenizer(br.readLine());
}
return st.nextToken();
}
int nextInt() throws Exception {
return Integer.parseInt(next());
}
double nextDouble() throws Exception {
return Double.parseDouble(next());
}
boolean nextBoolean() throws Exception {
return Boolean.parseBoolean(next());
}
long nextLong() throws Exception {
return Long.parseLong(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class C {
MyScanner in;
PrintWriter out;
public static void main(String[] args) throws Exception {
new C().run();
}
public void run() throws Exception {
in = new MyScanner();
out = new PrintWriter(System.out);
solve();
out.close();
}
public void solve() throws Exception {
int n = in.nextInt();
char[] a = in.next().toCharArray();
int h = 0;
for (int i = 0; i < a.length; i++) {
if (a[i] == 'H') h++;
}
char[] b = new char[2 * a.length - 1];
for (int i = 0; i < b.length; i++) {
b[i] = a[i % a.length];
}
int maxh = 0;
int hh = 0;
for (int i = 0; i < b.length - h; i++) {
hh = 0;
for (int j = 0; j < h; j++) {
if (b[i + j] == 'H') hh++;
}
maxh = Math.max(maxh, hh);
}
/*for (int i = 0; i < b.length; i++) {
out.print(b[i]);
}
out.println();*/
//out.println(h + " " + maxh);
out.println(h - maxh);
}
class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() throws Exception {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() throws Exception {
if ((st == null) || (!st.hasMoreTokens())) {
st = new StringTokenizer(br.readLine());
}
return st.nextToken();
}
int nextInt() throws Exception {
return Integer.parseInt(next());
}
double nextDouble() throws Exception {
return Double.parseDouble(next());
}
boolean nextBoolean() throws Exception {
return Boolean.parseBoolean(next());
}
long nextLong() throws Exception {
return Long.parseLong(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 789 | 338 |
1,764 |
import java.io.*;
import java.util.*;
public class CottageVillage
{
Scanner in;
PrintWriter out;
CottageVillage()
{
in = new Scanner(System.in);
out = new PrintWriter(System.out);
}
public void finalize()
{
out.flush();
in.close();
out.close();
}
int ans(House a, House b, int t)
{
int diff = b.cordl - a.cordr;
if(diff < t) return 0;
if(diff == t) return 1;
return 2;
}
void solve()
{
int
n = in.nextInt(),
t = in.nextInt() * 2;
House[] hs = new House[n];
for(int i = 0; i < n; ++i)
{
int
c = in.nextInt(),
l = in.nextInt();
hs[i] = new House(2 * c - l, 2 * c + l);
}
Arrays.sort(hs);
//atleast 2 possible configs
int co = 2;
for(int i = 0; i < n - 1; ++i)
co += ans(hs[i], hs[i + 1], t);
out.println(co);
}
public static void main(String[] args) throws FileNotFoundException
{
CottageVillage t = new CottageVillage();
t.solve();
t.finalize();
}
}
class House implements Comparable<House>
{
public int cordl, cordr;
public House(int c, int l)
{
cordl = c;
cordr = l;
}
@Override
public int compareTo(House h)
{
return cordl - h.cordl;
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class CottageVillage
{
Scanner in;
PrintWriter out;
CottageVillage()
{
in = new Scanner(System.in);
out = new PrintWriter(System.out);
}
public void finalize()
{
out.flush();
in.close();
out.close();
}
int ans(House a, House b, int t)
{
int diff = b.cordl - a.cordr;
if(diff < t) return 0;
if(diff == t) return 1;
return 2;
}
void solve()
{
int
n = in.nextInt(),
t = in.nextInt() * 2;
House[] hs = new House[n];
for(int i = 0; i < n; ++i)
{
int
c = in.nextInt(),
l = in.nextInt();
hs[i] = new House(2 * c - l, 2 * c + l);
}
Arrays.sort(hs);
//atleast 2 possible configs
int co = 2;
for(int i = 0; i < n - 1; ++i)
co += ans(hs[i], hs[i + 1], t);
out.println(co);
}
public static void main(String[] args) throws FileNotFoundException
{
CottageVillage t = new CottageVillage();
t.solve();
t.finalize();
}
}
class House implements Comparable<House>
{
public int cordl, cordr;
public House(int c, int l)
{
cordl = c;
cordr = l;
}
@Override
public int compareTo(House h)
{
return cordl - h.cordl;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class CottageVillage
{
Scanner in;
PrintWriter out;
CottageVillage()
{
in = new Scanner(System.in);
out = new PrintWriter(System.out);
}
public void finalize()
{
out.flush();
in.close();
out.close();
}
int ans(House a, House b, int t)
{
int diff = b.cordl - a.cordr;
if(diff < t) return 0;
if(diff == t) return 1;
return 2;
}
void solve()
{
int
n = in.nextInt(),
t = in.nextInt() * 2;
House[] hs = new House[n];
for(int i = 0; i < n; ++i)
{
int
c = in.nextInt(),
l = in.nextInt();
hs[i] = new House(2 * c - l, 2 * c + l);
}
Arrays.sort(hs);
//atleast 2 possible configs
int co = 2;
for(int i = 0; i < n - 1; ++i)
co += ans(hs[i], hs[i + 1], t);
out.println(co);
}
public static void main(String[] args) throws FileNotFoundException
{
CottageVillage t = new CottageVillage();
t.solve();
t.finalize();
}
}
class House implements Comparable<House>
{
public int cordl, cordr;
public House(int c, int l)
{
cordl = c;
cordr = l;
}
@Override
public int compareTo(House h)
{
return cordl - h.cordl;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 728 | 1,760 |
2,065 |
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.StringTokenizer;
public class A135 {
public static void main(String[] args) throws Exception {
BufferedReader r = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(r.readLine());
int[] ar = new int[n];
StringTokenizer st = new StringTokenizer(r.readLine());
for (int x = 0; x < n; x++) {
ar[x] = Integer.parseInt(st.nextToken());
}
Arrays.sort(ar);
if (n == 1) {
System.out.println(ar[0]==1?"2":"1");
return;
}
if (ar[n - 1] == 1) {
ar[n - 2] = 2;
}
System.out.print("1");
for (int x = 0; x < n - 1; x++) {
System.out.print(" " + ar[x]);
}
System.out.println();
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.StringTokenizer;
public class A135 {
public static void main(String[] args) throws Exception {
BufferedReader r = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(r.readLine());
int[] ar = new int[n];
StringTokenizer st = new StringTokenizer(r.readLine());
for (int x = 0; x < n; x++) {
ar[x] = Integer.parseInt(st.nextToken());
}
Arrays.sort(ar);
if (n == 1) {
System.out.println(ar[0]==1?"2":"1");
return;
}
if (ar[n - 1] == 1) {
ar[n - 2] = 2;
}
System.out.print("1");
for (int x = 0; x < n - 1; x++) {
System.out.print(" " + ar[x]);
}
System.out.println();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.StringTokenizer;
public class A135 {
public static void main(String[] args) throws Exception {
BufferedReader r = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(r.readLine());
int[] ar = new int[n];
StringTokenizer st = new StringTokenizer(r.readLine());
for (int x = 0; x < n; x++) {
ar[x] = Integer.parseInt(st.nextToken());
}
Arrays.sort(ar);
if (n == 1) {
System.out.println(ar[0]==1?"2":"1");
return;
}
if (ar[n - 1] == 1) {
ar[n - 2] = 2;
}
System.out.print("1");
for (int x = 0; x < n - 1; x++) {
System.out.print(" " + ar[x]);
}
System.out.println();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 568 | 2,061 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.