wcyat's picture
Model save
27e8c30 verified
|
raw
history blame
6.57 kB
metadata
library_name: transformers
license: cc-by-4.0
base_model: hon9kon9ize/bert-large-cantonese
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: bert-suicide-detection-hk-large-new
    results: []

bert-suicide-detection-hk-large-new

This model is a fine-tuned version of hon9kon9ize/bert-large-cantonese on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2903
  • Accuracy: 0.9467

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6203 0.0613 20 0.4148 0.8267
0.3246 0.1227 40 0.8805 0.8
0.5453 0.1840 60 0.3735 0.8667
0.4513 0.2454 80 0.4391 0.8867
0.7729 0.3067 100 0.4407 0.82
0.5867 0.3681 120 0.4013 0.8467
0.4073 0.4294 140 0.5397 0.86
0.1883 0.4908 160 0.7620 0.8667
0.4166 0.5521 180 0.6517 0.8933
0.4672 0.6135 200 0.6163 0.88
0.6858 0.6748 220 0.3484 0.8667
0.335 0.7362 240 0.6031 0.8533
0.4525 0.7975 260 0.6941 0.82
0.2385 0.8589 280 0.5618 0.88
0.4256 0.9202 300 0.5899 0.88
0.4934 0.9816 320 0.3289 0.9
0.277 1.0429 340 0.5671 0.88
0.5097 1.1043 360 0.5247 0.88
0.105 1.1656 380 0.4810 0.9
0.3976 1.2270 400 0.4562 0.8933
0.3506 1.2883 420 0.3943 0.8867
0.2057 1.3497 440 0.4944 0.8933
0.2788 1.4110 460 0.4718 0.9
0.4049 1.4724 480 0.5067 0.88
0.415 1.5337 500 0.4395 0.9
0.3565 1.5951 520 0.3682 0.9
0.3111 1.6564 540 0.3298 0.9
0.4191 1.7178 560 0.4493 0.8733
0.2731 1.7791 580 0.3832 0.9067
0.1803 1.8405 600 0.4403 0.8933
0.4462 1.9018 620 0.3844 0.9067
0.0025 1.9632 640 0.4563 0.9067
0.1574 2.0245 660 0.5508 0.8933
0.0927 2.0859 680 0.5529 0.9067
0.184 2.1472 700 0.5161 0.9
0.2446 2.2086 720 0.5064 0.8933
0.2498 2.2699 740 0.4034 0.92
0.2217 2.3313 760 0.5095 0.8733
0.2938 2.3926 780 0.3754 0.9067
0.109 2.4540 800 0.4771 0.8933
0.0282 2.5153 820 0.5535 0.8933
0.2455 2.5767 840 0.4206 0.9067
0.4728 2.6380 860 0.3018 0.9067
0.1145 2.6994 880 0.3053 0.9067
0.1045 2.7607 900 0.3431 0.9067
0.2207 2.8221 920 0.6482 0.86
0.427 2.8834 940 0.4396 0.9133
0.1898 2.9448 960 0.3327 0.92
0.0019 3.0061 980 0.3993 0.92
0.0842 3.0675 1000 0.4166 0.9267
0.1619 3.1288 1020 0.4181 0.9133
0.1849 3.1902 1040 0.4727 0.92
0.1949 3.2515 1060 0.3346 0.8933
0.1796 3.3129 1080 0.3471 0.9267
0.086 3.3742 1100 0.4089 0.8867
0.0187 3.4356 1120 0.3868 0.92
0.0768 3.4969 1140 0.4095 0.9267
0.0008 3.5583 1160 0.3780 0.9067
0.183 3.6196 1180 0.3827 0.9
0.204 3.6810 1200 0.5133 0.9
0.0758 3.7423 1220 0.4280 0.9133
0.0237 3.8037 1240 0.3942 0.92
0.2143 3.8650 1260 0.3680 0.9067
0.0106 3.9264 1280 0.5633 0.8867
0.2221 3.9877 1300 0.3815 0.92
0.0212 4.0491 1320 0.4599 0.9267
0.1678 4.1104 1340 0.3458 0.92
0.1153 4.1718 1360 0.3261 0.92
0.0006 4.2331 1380 0.3404 0.9133
0.0193 4.2945 1400 0.3602 0.92
0.0994 4.3558 1420 0.3303 0.94
0.0032 4.4172 1440 0.2885 0.94
0.0008 4.4785 1460 0.3112 0.92
0.0823 4.5399 1480 0.3145 0.9267
0.0086 4.6012 1500 0.2954 0.94
0.0009 4.6626 1520 0.3082 0.94
0.1619 4.7239 1540 0.2928 0.94
0.0004 4.7853 1560 0.2909 0.9333
0.0006 4.8466 1580 0.2879 0.9467
0.0005 4.9080 1600 0.2894 0.9467
0.0559 4.9693 1620 0.2903 0.9467

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0