Model save
Browse files
README.md
CHANGED
@@ -18,8 +18,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
18 |
|
19 |
This model is a fine-tuned version of [hon9kon9ize/bert-large-cantonese](https://huggingface.co/hon9kon9ize/bert-large-cantonese) on the None dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
-
- Loss: 0.
|
22 |
-
- Accuracy: 0.
|
23 |
|
24 |
## Model description
|
25 |
|
@@ -44,44 +44,93 @@ The following hyperparameters were used during training:
|
|
44 |
- seed: 42
|
45 |
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
46 |
- lr_scheduler_type: linear
|
47 |
-
- num_epochs:
|
48 |
|
49 |
### Training results
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
|:-------------:|:------:|:----:|:---------------:|:--------:|
|
53 |
-
| 0.
|
54 |
-
| 0.
|
55 |
-
| 0.
|
56 |
-
| 0.
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
|
87 |
### Framework versions
|
|
|
18 |
|
19 |
This model is a fine-tuned version of [hon9kon9ize/bert-large-cantonese](https://huggingface.co/hon9kon9ize/bert-large-cantonese) on the None dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.2903
|
22 |
+
- Accuracy: 0.9467
|
23 |
|
24 |
## Model description
|
25 |
|
|
|
44 |
- seed: 42
|
45 |
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
46 |
- lr_scheduler_type: linear
|
47 |
+
- num_epochs: 5
|
48 |
|
49 |
### Training results
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
|:-------------:|:------:|:----:|:---------------:|:--------:|
|
53 |
+
| 0.6203 | 0.0613 | 20 | 0.4148 | 0.8267 |
|
54 |
+
| 0.3246 | 0.1227 | 40 | 0.8805 | 0.8 |
|
55 |
+
| 0.5453 | 0.1840 | 60 | 0.3735 | 0.8667 |
|
56 |
+
| 0.4513 | 0.2454 | 80 | 0.4391 | 0.8867 |
|
57 |
+
| 0.7729 | 0.3067 | 100 | 0.4407 | 0.82 |
|
58 |
+
| 0.5867 | 0.3681 | 120 | 0.4013 | 0.8467 |
|
59 |
+
| 0.4073 | 0.4294 | 140 | 0.5397 | 0.86 |
|
60 |
+
| 0.1883 | 0.4908 | 160 | 0.7620 | 0.8667 |
|
61 |
+
| 0.4166 | 0.5521 | 180 | 0.6517 | 0.8933 |
|
62 |
+
| 0.4672 | 0.6135 | 200 | 0.6163 | 0.88 |
|
63 |
+
| 0.6858 | 0.6748 | 220 | 0.3484 | 0.8667 |
|
64 |
+
| 0.335 | 0.7362 | 240 | 0.6031 | 0.8533 |
|
65 |
+
| 0.4525 | 0.7975 | 260 | 0.6941 | 0.82 |
|
66 |
+
| 0.2385 | 0.8589 | 280 | 0.5618 | 0.88 |
|
67 |
+
| 0.4256 | 0.9202 | 300 | 0.5899 | 0.88 |
|
68 |
+
| 0.4934 | 0.9816 | 320 | 0.3289 | 0.9 |
|
69 |
+
| 0.277 | 1.0429 | 340 | 0.5671 | 0.88 |
|
70 |
+
| 0.5097 | 1.1043 | 360 | 0.5247 | 0.88 |
|
71 |
+
| 0.105 | 1.1656 | 380 | 0.4810 | 0.9 |
|
72 |
+
| 0.3976 | 1.2270 | 400 | 0.4562 | 0.8933 |
|
73 |
+
| 0.3506 | 1.2883 | 420 | 0.3943 | 0.8867 |
|
74 |
+
| 0.2057 | 1.3497 | 440 | 0.4944 | 0.8933 |
|
75 |
+
| 0.2788 | 1.4110 | 460 | 0.4718 | 0.9 |
|
76 |
+
| 0.4049 | 1.4724 | 480 | 0.5067 | 0.88 |
|
77 |
+
| 0.415 | 1.5337 | 500 | 0.4395 | 0.9 |
|
78 |
+
| 0.3565 | 1.5951 | 520 | 0.3682 | 0.9 |
|
79 |
+
| 0.3111 | 1.6564 | 540 | 0.3298 | 0.9 |
|
80 |
+
| 0.4191 | 1.7178 | 560 | 0.4493 | 0.8733 |
|
81 |
+
| 0.2731 | 1.7791 | 580 | 0.3832 | 0.9067 |
|
82 |
+
| 0.1803 | 1.8405 | 600 | 0.4403 | 0.8933 |
|
83 |
+
| 0.4462 | 1.9018 | 620 | 0.3844 | 0.9067 |
|
84 |
+
| 0.0025 | 1.9632 | 640 | 0.4563 | 0.9067 |
|
85 |
+
| 0.1574 | 2.0245 | 660 | 0.5508 | 0.8933 |
|
86 |
+
| 0.0927 | 2.0859 | 680 | 0.5529 | 0.9067 |
|
87 |
+
| 0.184 | 2.1472 | 700 | 0.5161 | 0.9 |
|
88 |
+
| 0.2446 | 2.2086 | 720 | 0.5064 | 0.8933 |
|
89 |
+
| 0.2498 | 2.2699 | 740 | 0.4034 | 0.92 |
|
90 |
+
| 0.2217 | 2.3313 | 760 | 0.5095 | 0.8733 |
|
91 |
+
| 0.2938 | 2.3926 | 780 | 0.3754 | 0.9067 |
|
92 |
+
| 0.109 | 2.4540 | 800 | 0.4771 | 0.8933 |
|
93 |
+
| 0.0282 | 2.5153 | 820 | 0.5535 | 0.8933 |
|
94 |
+
| 0.2455 | 2.5767 | 840 | 0.4206 | 0.9067 |
|
95 |
+
| 0.4728 | 2.6380 | 860 | 0.3018 | 0.9067 |
|
96 |
+
| 0.1145 | 2.6994 | 880 | 0.3053 | 0.9067 |
|
97 |
+
| 0.1045 | 2.7607 | 900 | 0.3431 | 0.9067 |
|
98 |
+
| 0.2207 | 2.8221 | 920 | 0.6482 | 0.86 |
|
99 |
+
| 0.427 | 2.8834 | 940 | 0.4396 | 0.9133 |
|
100 |
+
| 0.1898 | 2.9448 | 960 | 0.3327 | 0.92 |
|
101 |
+
| 0.0019 | 3.0061 | 980 | 0.3993 | 0.92 |
|
102 |
+
| 0.0842 | 3.0675 | 1000 | 0.4166 | 0.9267 |
|
103 |
+
| 0.1619 | 3.1288 | 1020 | 0.4181 | 0.9133 |
|
104 |
+
| 0.1849 | 3.1902 | 1040 | 0.4727 | 0.92 |
|
105 |
+
| 0.1949 | 3.2515 | 1060 | 0.3346 | 0.8933 |
|
106 |
+
| 0.1796 | 3.3129 | 1080 | 0.3471 | 0.9267 |
|
107 |
+
| 0.086 | 3.3742 | 1100 | 0.4089 | 0.8867 |
|
108 |
+
| 0.0187 | 3.4356 | 1120 | 0.3868 | 0.92 |
|
109 |
+
| 0.0768 | 3.4969 | 1140 | 0.4095 | 0.9267 |
|
110 |
+
| 0.0008 | 3.5583 | 1160 | 0.3780 | 0.9067 |
|
111 |
+
| 0.183 | 3.6196 | 1180 | 0.3827 | 0.9 |
|
112 |
+
| 0.204 | 3.6810 | 1200 | 0.5133 | 0.9 |
|
113 |
+
| 0.0758 | 3.7423 | 1220 | 0.4280 | 0.9133 |
|
114 |
+
| 0.0237 | 3.8037 | 1240 | 0.3942 | 0.92 |
|
115 |
+
| 0.2143 | 3.8650 | 1260 | 0.3680 | 0.9067 |
|
116 |
+
| 0.0106 | 3.9264 | 1280 | 0.5633 | 0.8867 |
|
117 |
+
| 0.2221 | 3.9877 | 1300 | 0.3815 | 0.92 |
|
118 |
+
| 0.0212 | 4.0491 | 1320 | 0.4599 | 0.9267 |
|
119 |
+
| 0.1678 | 4.1104 | 1340 | 0.3458 | 0.92 |
|
120 |
+
| 0.1153 | 4.1718 | 1360 | 0.3261 | 0.92 |
|
121 |
+
| 0.0006 | 4.2331 | 1380 | 0.3404 | 0.9133 |
|
122 |
+
| 0.0193 | 4.2945 | 1400 | 0.3602 | 0.92 |
|
123 |
+
| 0.0994 | 4.3558 | 1420 | 0.3303 | 0.94 |
|
124 |
+
| 0.0032 | 4.4172 | 1440 | 0.2885 | 0.94 |
|
125 |
+
| 0.0008 | 4.4785 | 1460 | 0.3112 | 0.92 |
|
126 |
+
| 0.0823 | 4.5399 | 1480 | 0.3145 | 0.9267 |
|
127 |
+
| 0.0086 | 4.6012 | 1500 | 0.2954 | 0.94 |
|
128 |
+
| 0.0009 | 4.6626 | 1520 | 0.3082 | 0.94 |
|
129 |
+
| 0.1619 | 4.7239 | 1540 | 0.2928 | 0.94 |
|
130 |
+
| 0.0004 | 4.7853 | 1560 | 0.2909 | 0.9333 |
|
131 |
+
| 0.0006 | 4.8466 | 1580 | 0.2879 | 0.9467 |
|
132 |
+
| 0.0005 | 4.9080 | 1600 | 0.2894 | 0.9467 |
|
133 |
+
| 0.0559 | 4.9693 | 1620 | 0.2903 | 0.9467 |
|
134 |
|
135 |
|
136 |
### Framework versions
|