bert-suicide-detection-hk-large-new

This model is a fine-tuned version of hon9kon9ize/bert-large-cantonese on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4945
  • Accuracy: 0.9085

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5426 0.0604 20 0.7869 0.7451
0.5984 0.1208 40 0.3943 0.7908
0.4864 0.1813 60 0.9365 0.7843
0.6039 0.2417 80 0.6580 0.7712
0.5741 0.3021 100 0.3454 0.8235
0.4276 0.3625 120 0.5421 0.8170
0.4342 0.4230 140 0.4258 0.8562
0.4915 0.4834 160 0.5961 0.8301
0.4127 0.5438 180 0.2987 0.8693
0.3166 0.6042 200 0.3308 0.8693
0.4018 0.6647 220 0.5286 0.8039
0.3007 0.7251 240 0.5845 0.8627
0.4893 0.7855 260 0.3662 0.8627
0.274 0.8459 280 0.3483 0.8693
0.5741 0.9063 300 0.3280 0.8824
0.3752 0.9668 320 0.5251 0.8889
0.2711 1.0272 340 0.6097 0.8562
0.2369 1.0876 360 0.5457 0.8693
0.3756 1.1480 380 0.6890 0.8758
0.6575 1.2085 400 0.4709 0.8693
0.3268 1.2689 420 0.5219 0.8497
0.3994 1.3293 440 0.4282 0.8693
0.0879 1.3897 460 0.6294 0.8758
0.2566 1.4502 480 0.7143 0.8627
0.2897 1.5106 500 0.6120 0.8693
0.321 1.5710 520 0.4749 0.8758
0.1871 1.6314 540 0.4392 0.9085
0.1654 1.6918 560 0.4663 0.9085
0.3166 1.7523 580 0.5048 0.8889
0.222 1.8127 600 0.4550 0.9085
0.4299 1.8731 620 0.3445 0.9085
0.0942 1.9335 640 0.3735 0.9281
0.3991 1.9940 660 0.3646 0.9085
0.0581 2.0544 680 0.3527 0.9085
0.2712 2.1148 700 0.4270 0.9020
0.0443 2.1752 720 0.5462 0.8954
0.3831 2.2356 740 0.3419 0.9216
0.2267 2.2961 760 0.4925 0.8889
0.1821 2.3565 780 0.3625 0.9216
0.2926 2.4169 800 0.3671 0.9020
0.2507 2.4773 820 0.3853 0.9020
0.2446 2.5378 840 0.4571 0.8954
0.1926 2.5982 860 0.5436 0.8497
0.1725 2.6586 880 0.6576 0.8497
0.2033 2.7190 900 0.4772 0.9020
0.0095 2.7795 920 0.4103 0.9150
0.2896 2.8399 940 0.4333 0.9085
0.2661 2.9003 960 0.5793 0.8889
0.1338 2.9607 980 0.4543 0.8954
0.0751 3.0211 1000 0.5029 0.8954
0.2093 3.0816 1020 0.4631 0.9020
0.2436 3.1420 1040 0.5888 0.8693
0.1375 3.2024 1060 0.6457 0.8889
0.0049 3.2628 1080 0.6601 0.8889
0.0089 3.3233 1100 0.6462 0.8824
0.0616 3.3837 1120 0.6607 0.8889
0.006 3.4441 1140 0.6243 0.9020
0.1769 3.5045 1160 0.5257 0.9020
0.0044 3.5650 1180 0.5508 0.9085
0.2295 3.6254 1200 0.4846 0.9150
0.1175 3.6858 1220 0.4764 0.9020
0.0746 3.7462 1240 0.4761 0.9020
0.0222 3.8066 1260 0.4836 0.9020
0.0012 3.8671 1280 0.4775 0.9216
0.2131 3.9275 1300 0.4607 0.9020
0.0006 3.9879 1320 0.4935 0.9085
0.0758 4.0483 1340 0.4592 0.9020
0.1466 4.1088 1360 0.4464 0.9085
0.0488 4.1692 1380 0.4816 0.9085
0.0014 4.2296 1400 0.4570 0.9150
0.082 4.2900 1420 0.4545 0.9216
0.0009 4.3505 1440 0.4721 0.9150
0.0008 4.4109 1460 0.4874 0.9216
0.0014 4.4713 1480 0.5003 0.9150
0.1612 4.5317 1500 0.5064 0.9150
0.2079 4.5921 1520 0.4994 0.9150
0.1423 4.6526 1540 0.4835 0.9150
0.0009 4.7130 1560 0.4825 0.9085
0.0017 4.7734 1580 0.4918 0.9085
0.0648 4.8338 1600 0.4917 0.9150
0.0531 4.8943 1620 0.4919 0.9085
0.0008 4.9547 1640 0.4945 0.9085

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
27
Safetensors
Model size
326M params
Tensor type
F32
ยท
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for wcyat/bert-suicide-detection-hk-large-new

Finetuned
(2)
this model

Space using wcyat/bert-suicide-detection-hk-large-new 1