|
--- |
|
base_model: demdecuong/vihealthbert-base-word |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- tmnam20/ViNLI |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: vihealthbert-w_dual-ViNLI |
|
results: |
|
- task: |
|
name: Masked Language Modeling |
|
type: fill-mask |
|
dataset: |
|
name: tmnam20/ViNLI |
|
type: tmnam20/ViNLI |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.5919165580182529 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# vihealthbert-w_dual-ViNLI |
|
|
|
This model is a fine-tuned version of [demdecuong/vihealthbert-base-word](https://huggingface.co/demdecuong/vihealthbert-base-word) on the tmnam20/ViNLI dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.6042 |
|
- Accuracy: 0.5919 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- training_steps: 30000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-------:|:-----:|:---------------:|:--------:| |
|
| 5.8126 | 15.625 | 1000 | 3.5461 | 0.4450 | |
|
| 2.605 | 31.25 | 2000 | 2.7789 | 0.5404 | |
|
| 1.5924 | 46.875 | 3000 | 2.5432 | 0.5809 | |
|
| 1.2233 | 62.5 | 4000 | 2.6662 | 0.5567 | |
|
| 0.9236 | 78.125 | 5000 | 2.4691 | 0.5927 | |
|
| 0.7193 | 93.75 | 6000 | 2.4053 | 0.6027 | |
|
| 0.6259 | 109.375 | 7000 | 2.5938 | 0.5782 | |
|
| 0.5082 | 125.0 | 8000 | 2.4809 | 0.6137 | |
|
| 0.4438 | 140.625 | 9000 | 2.7056 | 0.5819 | |
|
| 0.4075 | 156.25 | 10000 | 2.6501 | 0.5946 | |
|
| 0.3571 | 171.875 | 11000 | 2.5337 | 0.6082 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|