tmnam20's picture
End of training
0742a59 verified
metadata
base_model: demdecuong/vihealthbert-base-word
tags:
  - generated_from_trainer
datasets:
  - tmnam20/ViNLI
metrics:
  - accuracy
model-index:
  - name: vihealthbert-w_dual-ViNLI
    results:
      - task:
          name: Masked Language Modeling
          type: fill-mask
        dataset:
          name: tmnam20/ViNLI
          type: tmnam20/ViNLI
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5919165580182529

vihealthbert-w_dual-ViNLI

This model is a fine-tuned version of demdecuong/vihealthbert-base-word on the tmnam20/ViNLI dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6042
  • Accuracy: 0.5919

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 30000

Training results

Training Loss Epoch Step Validation Loss Accuracy
5.8126 15.625 1000 3.5461 0.4450
2.605 31.25 2000 2.7789 0.5404
1.5924 46.875 3000 2.5432 0.5809
1.2233 62.5 4000 2.6662 0.5567
0.9236 78.125 5000 2.4691 0.5927
0.7193 93.75 6000 2.4053 0.6027
0.6259 109.375 7000 2.5938 0.5782
0.5082 125.0 8000 2.4809 0.6137
0.4438 140.625 9000 2.7056 0.5819
0.4075 156.25 10000 2.6501 0.5946
0.3571 171.875 11000 2.5337 0.6082

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1