--- base_model: demdecuong/vihealthbert-base-word tags: - generated_from_trainer datasets: - tmnam20/ViNLI metrics: - accuracy model-index: - name: vihealthbert-w_dual-ViNLI results: - task: name: Masked Language Modeling type: fill-mask dataset: name: tmnam20/ViNLI type: tmnam20/ViNLI metrics: - name: Accuracy type: accuracy value: 0.5919165580182529 --- # vihealthbert-w_dual-ViNLI This model is a fine-tuned version of [demdecuong/vihealthbert-base-word](https://huggingface.co/demdecuong/vihealthbert-base-word) on the tmnam20/ViNLI dataset. It achieves the following results on the evaluation set: - Loss: 2.6042 - Accuracy: 0.5919 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 30000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:-----:|:---------------:|:--------:| | 5.8126 | 15.625 | 1000 | 3.5461 | 0.4450 | | 2.605 | 31.25 | 2000 | 2.7789 | 0.5404 | | 1.5924 | 46.875 | 3000 | 2.5432 | 0.5809 | | 1.2233 | 62.5 | 4000 | 2.6662 | 0.5567 | | 0.9236 | 78.125 | 5000 | 2.4691 | 0.5927 | | 0.7193 | 93.75 | 6000 | 2.4053 | 0.6027 | | 0.6259 | 109.375 | 7000 | 2.5938 | 0.5782 | | 0.5082 | 125.0 | 8000 | 2.4809 | 0.6137 | | 0.4438 | 140.625 | 9000 | 2.7056 | 0.5819 | | 0.4075 | 156.25 | 10000 | 2.6501 | 0.5946 | | 0.3571 | 171.875 | 11000 | 2.5337 | 0.6082 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.0.1+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1