wt002's picture
Updated app.py
ae06c52 verified
raw
history blame
4.78 kB
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool
from Gradio_UI import GradioUI
# My first tool !
@tool
def coin_predictor_tool()-> str: #it's import to specify the return type
#Keep this format for the description / args / args description but feel free to modify the tool
!pip install -q llama-index requests
# Step 2: Define the Agent Tool
from llama_index.core.tools import FunctionTool
import requests
from datetime import datetime
def coin_predictor_tool() -> str:
"""
Predicts Bitcoin's price for today (March 10, 2025) based on available data or trends.
Returns a formatted string with the predicted price and reasoning.
"""
# Simulate current date
today = datetime(2025, 3, 10)
current_date_str = today.strftime('%Y-%m-%d')
# Placeholder for real data (replace with API call in practice)
# Example: Fetch last 7 days of BTC prices from an API
try:
# Hypothetical API call (e.g., CoinGecko)
url = "https://api.coingecko.com/api/v3/coins/bitcoin/market_chart"
params = {
"vs_currency": "usd",
"days": "7", # Last 7 days
"interval": "daily"
}
response = requests.get(url, params=params, timeout=10)
response.raise_for_status()
data = response.json()
# Extract prices (simulated here; replace with real data)
prices = data.get("prices", []) # [[timestamp, price], ...]
if not prices:
raise ValueError("No price data available")
# Simple prediction: Average of last 7 days + trend adjustment
recent_prices = [price[1] for price in prices[-7:]] # Last 7 days' closing prices
avg_price = sum(recent_prices) / len(recent_prices)
# Assume a trend (e.g., based on last day's change)
last_change = recent_prices[-1] - recent_prices[-2]
trend_factor = 1 + (last_change / recent_prices[-2]) # % change applied
predicted_price = avg_price * trend_factor
except Exception as e:
# Fallback simulation if API fails or for demo purposes
print(f"API error: {e}. Using simulated data.")
# Simulated data based on recent trends (e.g., from your provided context)
avg_price = 91981 # From Web ID 5, March 10, 2025 price
trend_factor = 1.0418 # +4.18% from Web ID 7's 24h change
predicted_price = avg_price * trend_factor
# Format the output
output = (
f"Bitcoin Price Prediction for {current_date_str}:\n"
f"Predicted Price: ${predicted_price:,.2f} USD\n"
f"Reasoning: Based on a 7-day average of ${avg_price:,.2f} with a "
f"{(trend_factor-1)*100:.2f}% trend adjustment from recent data."
)
return output
# Create the tool
bitcoin_price_tool = FunctionTool.from_defaults(
fn=coin_predictor_tool,
name="bitcoin_price_predictor",
description="Predicts Bitcoin's price for today (March 10, 2025) using recent trends or API data."
)
# Step 3: Test the tool standalone
print(bitcoin_price_tool())
@tool
def get_current_time_in_timezone(timezone: str) -> str:
"""A tool that fetches the current local time in a specified timezone.
Args:
timezone: A string representing a valid timezone (e.g., 'America/New_York').
"""
try:
# Create timezone object
tz = pytz.timezone(timezone)
# Get current time in that timezone
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
return f"The current local time in {timezone} is: {local_time}"
except Exception as e:
return f"Error fetching time for timezone '{timezone}': {str(e)}"
final_answer = FinalAnswerTool()
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
custom_role_conversions=None,
)
# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
agent = CodeAgent(
model=model,
tools=[final_answer], ## add your tools here (don't remove final answer)
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name=None,
description=None,
prompt_templates=prompt_templates
)
GradioUI(agent).launch()