Spaces:
Sleeping
Sleeping
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool | |
import datetime | |
import requests | |
import pytz | |
import yaml | |
from tools.final_answer import FinalAnswerTool | |
from Gradio_UI import GradioUI | |
# My first tool ! | |
def coin_predictor_tool()-> str: #it's import to specify the return type | |
#Keep this format for the description / args / args description but feel free to modify the tool | |
!pip install -q llama-index requests | |
# Step 2: Define the Agent Tool | |
from llama_index.core.tools import FunctionTool | |
import requests | |
from datetime import datetime | |
def coin_predictor_tool() -> str: | |
""" | |
Predicts Bitcoin's price for today (March 10, 2025) based on available data or trends. | |
Returns a formatted string with the predicted price and reasoning. | |
""" | |
# Simulate current date | |
today = datetime(2025, 3, 10) | |
current_date_str = today.strftime('%Y-%m-%d') | |
# Placeholder for real data (replace with API call in practice) | |
# Example: Fetch last 7 days of BTC prices from an API | |
try: | |
# Hypothetical API call (e.g., CoinGecko) | |
url = "https://api.coingecko.com/api/v3/coins/bitcoin/market_chart" | |
params = { | |
"vs_currency": "usd", | |
"days": "7", # Last 7 days | |
"interval": "daily" | |
} | |
response = requests.get(url, params=params, timeout=10) | |
response.raise_for_status() | |
data = response.json() | |
# Extract prices (simulated here; replace with real data) | |
prices = data.get("prices", []) # [[timestamp, price], ...] | |
if not prices: | |
raise ValueError("No price data available") | |
# Simple prediction: Average of last 7 days + trend adjustment | |
recent_prices = [price[1] for price in prices[-7:]] # Last 7 days' closing prices | |
avg_price = sum(recent_prices) / len(recent_prices) | |
# Assume a trend (e.g., based on last day's change) | |
last_change = recent_prices[-1] - recent_prices[-2] | |
trend_factor = 1 + (last_change / recent_prices[-2]) # % change applied | |
predicted_price = avg_price * trend_factor | |
except Exception as e: | |
# Fallback simulation if API fails or for demo purposes | |
print(f"API error: {e}. Using simulated data.") | |
# Simulated data based on recent trends (e.g., from your provided context) | |
avg_price = 91981 # From Web ID 5, March 10, 2025 price | |
trend_factor = 1.0418 # +4.18% from Web ID 7's 24h change | |
predicted_price = avg_price * trend_factor | |
# Format the output | |
output = ( | |
f"Bitcoin Price Prediction for {current_date_str}:\n" | |
f"Predicted Price: ${predicted_price:,.2f} USD\n" | |
f"Reasoning: Based on a 7-day average of ${avg_price:,.2f} with a " | |
f"{(trend_factor-1)*100:.2f}% trend adjustment from recent data." | |
) | |
return output | |
# Create the tool | |
bitcoin_price_tool = FunctionTool.from_defaults( | |
fn=coin_predictor_tool, | |
name="bitcoin_price_predictor", | |
description="Predicts Bitcoin's price for today (March 10, 2025) using recent trends or API data." | |
) | |
# Step 3: Test the tool standalone | |
print(bitcoin_price_tool()) | |
def get_current_time_in_timezone(timezone: str) -> str: | |
"""A tool that fetches the current local time in a specified timezone. | |
Args: | |
timezone: A string representing a valid timezone (e.g., 'America/New_York'). | |
""" | |
try: | |
# Create timezone object | |
tz = pytz.timezone(timezone) | |
# Get current time in that timezone | |
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S") | |
return f"The current local time in {timezone} is: {local_time}" | |
except Exception as e: | |
return f"Error fetching time for timezone '{timezone}': {str(e)}" | |
final_answer = FinalAnswerTool() | |
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder: | |
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' | |
model = HfApiModel( | |
max_tokens=2096, | |
temperature=0.5, | |
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded | |
custom_role_conversions=None, | |
) | |
# Import tool from Hub | |
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) | |
with open("prompts.yaml", 'r') as stream: | |
prompt_templates = yaml.safe_load(stream) | |
agent = CodeAgent( | |
model=model, | |
tools=[final_answer], ## add your tools here (don't remove final answer) | |
max_steps=6, | |
verbosity_level=1, | |
grammar=None, | |
planning_interval=None, | |
name=None, | |
description=None, | |
prompt_templates=prompt_templates | |
) | |
GradioUI(agent).launch() |