File size: 4,775 Bytes
9b5b26a
 
 
 
c19d193
6aae614
8fe992b
9b5b26a
 
ae06c52
9b5b26a
ae06c52
9b5b26a
ae06c52
 
 
 
 
 
 
 
9b5b26a
ae06c52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b5b26a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c01ffb
 
6aae614
ae7a494
 
 
 
e121372
bf6d34c
 
29ec968
fe328e0
13d500a
8c01ffb
 
9b5b26a
 
8c01ffb
861422e
 
9b5b26a
8c01ffb
8fe992b
d2f6a24
8c01ffb
 
 
 
 
 
861422e
8fe992b
 
9b5b26a
8c01ffb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool

from Gradio_UI import GradioUI

# My first tool !
@tool
def coin_predictor_tool()-> str: #it's import to specify the return type
    #Keep this format for the description / args / args description but feel free to modify the tool
!pip install -q llama-index requests

# Step 2: Define the Agent Tool
from llama_index.core.tools import FunctionTool
import requests
from datetime import datetime

def coin_predictor_tool() -> str:
    """
    Predicts Bitcoin's price for today (March 10, 2025) based on available data or trends.
    Returns a formatted string with the predicted price and reasoning.
    """
    # Simulate current date
    today = datetime(2025, 3, 10)
    current_date_str = today.strftime('%Y-%m-%d')

    # Placeholder for real data (replace with API call in practice)
    # Example: Fetch last 7 days of BTC prices from an API
    try:
        # Hypothetical API call (e.g., CoinGecko)
        url = "https://api.coingecko.com/api/v3/coins/bitcoin/market_chart"
        params = {
            "vs_currency": "usd",
            "days": "7",  # Last 7 days
            "interval": "daily"
        }
        response = requests.get(url, params=params, timeout=10)
        response.raise_for_status()
        data = response.json()
        
        # Extract prices (simulated here; replace with real data)
        prices = data.get("prices", [])  # [[timestamp, price], ...]
        if not prices:
            raise ValueError("No price data available")
        
        # Simple prediction: Average of last 7 days + trend adjustment
        recent_prices = [price[1] for price in prices[-7:]]  # Last 7 days' closing prices
        avg_price = sum(recent_prices) / len(recent_prices)
        
        # Assume a trend (e.g., based on last day's change)
        last_change = recent_prices[-1] - recent_prices[-2]
        trend_factor = 1 + (last_change / recent_prices[-2])  # % change applied
        predicted_price = avg_price * trend_factor

    except Exception as e:
        # Fallback simulation if API fails or for demo purposes
        print(f"API error: {e}. Using simulated data.")
        # Simulated data based on recent trends (e.g., from your provided context)
        avg_price = 91981  # From Web ID 5, March 10, 2025 price
        trend_factor = 1.0418  # +4.18% from Web ID 7's 24h change
        predicted_price = avg_price * trend_factor

    # Format the output
    output = (
        f"Bitcoin Price Prediction for {current_date_str}:\n"
        f"Predicted Price: ${predicted_price:,.2f} USD\n"
        f"Reasoning: Based on a 7-day average of ${avg_price:,.2f} with a "
        f"{(trend_factor-1)*100:.2f}% trend adjustment from recent data."
    )
    return output

# Create the tool
bitcoin_price_tool = FunctionTool.from_defaults(
    fn=coin_predictor_tool,
    name="bitcoin_price_predictor",
    description="Predicts Bitcoin's price for today (March 10, 2025) using recent trends or API data."
)

# Step 3: Test the tool standalone
print(bitcoin_price_tool())


@tool
def get_current_time_in_timezone(timezone: str) -> str:
    """A tool that fetches the current local time in a specified timezone.
    Args:
        timezone: A string representing a valid timezone (e.g., 'America/New_York').
    """
    try:
        # Create timezone object
        tz = pytz.timezone(timezone)
        # Get current time in that timezone
        local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
        return f"The current local time in {timezone} is: {local_time}"
    except Exception as e:
        return f"Error fetching time for timezone '{timezone}': {str(e)}"


final_answer = FinalAnswerTool()

# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' 

model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
custom_role_conversions=None,
)


# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)

with open("prompts.yaml", 'r') as stream:
    prompt_templates = yaml.safe_load(stream)
    
agent = CodeAgent(
    model=model,
    tools=[final_answer], ## add your tools here (don't remove final answer)
    max_steps=6,
    verbosity_level=1,
    grammar=None,
    planning_interval=None,
    name=None,
    description=None,
    prompt_templates=prompt_templates
)


GradioUI(agent).launch()