wt002 commited on
Commit
ae06c52
·
verified ·
1 Parent(s): ae7a494

Updated app.py

Browse files
Files changed (1) hide show
  1. app.py +72 -7
app.py CHANGED
@@ -7,16 +7,81 @@ from tools.final_answer import FinalAnswerTool
7
 
8
  from Gradio_UI import GradioUI
9
 
10
- # Below is an example of a tool that does nothing. Amaze us with your creativity !
11
  @tool
12
- def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type
13
  #Keep this format for the description / args / args description but feel free to modify the tool
14
- """A tool that does nothing yet
15
- Args:
16
- arg1: the first argument
17
- arg2: the second argument
 
 
 
 
18
  """
19
- return "What magic will you build ?"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
  @tool
22
  def get_current_time_in_timezone(timezone: str) -> str:
 
7
 
8
  from Gradio_UI import GradioUI
9
 
10
+ # My first tool !
11
  @tool
12
+ def coin_predictor_tool()-> str: #it's import to specify the return type
13
  #Keep this format for the description / args / args description but feel free to modify the tool
14
+ !pip install -q llama-index requests
15
+
16
+ # Step 2: Define the Agent Tool
17
+ from llama_index.core.tools import FunctionTool
18
+ import requests
19
+ from datetime import datetime
20
+
21
+ def coin_predictor_tool() -> str:
22
  """
23
+ Predicts Bitcoin's price for today (March 10, 2025) based on available data or trends.
24
+ Returns a formatted string with the predicted price and reasoning.
25
+ """
26
+ # Simulate current date
27
+ today = datetime(2025, 3, 10)
28
+ current_date_str = today.strftime('%Y-%m-%d')
29
+
30
+ # Placeholder for real data (replace with API call in practice)
31
+ # Example: Fetch last 7 days of BTC prices from an API
32
+ try:
33
+ # Hypothetical API call (e.g., CoinGecko)
34
+ url = "https://api.coingecko.com/api/v3/coins/bitcoin/market_chart"
35
+ params = {
36
+ "vs_currency": "usd",
37
+ "days": "7", # Last 7 days
38
+ "interval": "daily"
39
+ }
40
+ response = requests.get(url, params=params, timeout=10)
41
+ response.raise_for_status()
42
+ data = response.json()
43
+
44
+ # Extract prices (simulated here; replace with real data)
45
+ prices = data.get("prices", []) # [[timestamp, price], ...]
46
+ if not prices:
47
+ raise ValueError("No price data available")
48
+
49
+ # Simple prediction: Average of last 7 days + trend adjustment
50
+ recent_prices = [price[1] for price in prices[-7:]] # Last 7 days' closing prices
51
+ avg_price = sum(recent_prices) / len(recent_prices)
52
+
53
+ # Assume a trend (e.g., based on last day's change)
54
+ last_change = recent_prices[-1] - recent_prices[-2]
55
+ trend_factor = 1 + (last_change / recent_prices[-2]) # % change applied
56
+ predicted_price = avg_price * trend_factor
57
+
58
+ except Exception as e:
59
+ # Fallback simulation if API fails or for demo purposes
60
+ print(f"API error: {e}. Using simulated data.")
61
+ # Simulated data based on recent trends (e.g., from your provided context)
62
+ avg_price = 91981 # From Web ID 5, March 10, 2025 price
63
+ trend_factor = 1.0418 # +4.18% from Web ID 7's 24h change
64
+ predicted_price = avg_price * trend_factor
65
+
66
+ # Format the output
67
+ output = (
68
+ f"Bitcoin Price Prediction for {current_date_str}:\n"
69
+ f"Predicted Price: ${predicted_price:,.2f} USD\n"
70
+ f"Reasoning: Based on a 7-day average of ${avg_price:,.2f} with a "
71
+ f"{(trend_factor-1)*100:.2f}% trend adjustment from recent data."
72
+ )
73
+ return output
74
+
75
+ # Create the tool
76
+ bitcoin_price_tool = FunctionTool.from_defaults(
77
+ fn=coin_predictor_tool,
78
+ name="bitcoin_price_predictor",
79
+ description="Predicts Bitcoin's price for today (March 10, 2025) using recent trends or API data."
80
+ )
81
+
82
+ # Step 3: Test the tool standalone
83
+ print(bitcoin_price_tool())
84
+
85
 
86
  @tool
87
  def get_current_time_in_timezone(timezone: str) -> str: