from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool import datetime import requests import pytz import yaml from tools.final_answer import FinalAnswerTool from Gradio_UI import GradioUI # My first tool ! @tool def coin_predictor_tool()-> str: #it's import to specify the return type #Keep this format for the description / args / args description but feel free to modify the tool !pip install -q llama-index requests # Step 2: Define the Agent Tool from llama_index.core.tools import FunctionTool import requests from datetime import datetime def coin_predictor_tool() -> str: """ Predicts Bitcoin's price for today (March 10, 2025) based on available data or trends. Returns a formatted string with the predicted price and reasoning. """ # Simulate current date today = datetime(2025, 3, 10) current_date_str = today.strftime('%Y-%m-%d') # Placeholder for real data (replace with API call in practice) # Example: Fetch last 7 days of BTC prices from an API try: # Hypothetical API call (e.g., CoinGecko) url = "https://api.coingecko.com/api/v3/coins/bitcoin/market_chart" params = { "vs_currency": "usd", "days": "7", # Last 7 days "interval": "daily" } response = requests.get(url, params=params, timeout=10) response.raise_for_status() data = response.json() # Extract prices (simulated here; replace with real data) prices = data.get("prices", []) # [[timestamp, price], ...] if not prices: raise ValueError("No price data available") # Simple prediction: Average of last 7 days + trend adjustment recent_prices = [price[1] for price in prices[-7:]] # Last 7 days' closing prices avg_price = sum(recent_prices) / len(recent_prices) # Assume a trend (e.g., based on last day's change) last_change = recent_prices[-1] - recent_prices[-2] trend_factor = 1 + (last_change / recent_prices[-2]) # % change applied predicted_price = avg_price * trend_factor except Exception as e: # Fallback simulation if API fails or for demo purposes print(f"API error: {e}. Using simulated data.") # Simulated data based on recent trends (e.g., from your provided context) avg_price = 91981 # From Web ID 5, March 10, 2025 price trend_factor = 1.0418 # +4.18% from Web ID 7's 24h change predicted_price = avg_price * trend_factor # Format the output output = ( f"Bitcoin Price Prediction for {current_date_str}:\n" f"Predicted Price: ${predicted_price:,.2f} USD\n" f"Reasoning: Based on a 7-day average of ${avg_price:,.2f} with a " f"{(trend_factor-1)*100:.2f}% trend adjustment from recent data." ) return output # Create the tool bitcoin_price_tool = FunctionTool.from_defaults( fn=coin_predictor_tool, name="bitcoin_price_predictor", description="Predicts Bitcoin's price for today (March 10, 2025) using recent trends or API data." ) # Step 3: Test the tool standalone print(bitcoin_price_tool()) @tool def get_current_time_in_timezone(timezone: str) -> str: """A tool that fetches the current local time in a specified timezone. Args: timezone: A string representing a valid timezone (e.g., 'America/New_York'). """ try: # Create timezone object tz = pytz.timezone(timezone) # Get current time in that timezone local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S") return f"The current local time in {timezone} is: {local_time}" except Exception as e: return f"Error fetching time for timezone '{timezone}': {str(e)}" final_answer = FinalAnswerTool() # If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder: # model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' model = HfApiModel( max_tokens=2096, temperature=0.5, model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded custom_role_conversions=None, ) # Import tool from Hub image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) with open("prompts.yaml", 'r') as stream: prompt_templates = yaml.safe_load(stream) agent = CodeAgent( model=model, tools=[final_answer], ## add your tools here (don't remove final answer) max_steps=6, verbosity_level=1, grammar=None, planning_interval=None, name=None, description=None, prompt_templates=prompt_templates ) GradioUI(agent).launch()