File size: 1,545 Bytes
160b238
 
 
 
 
 
c1d7af5
 
 
 
 
 
 
 
 
bc7c876
 
c1d7af5
 
 
160b238
 
21e2400
160b238
21e2400
 
bc7c876
c1d7af5
bc7c876
c1d7af5
21e2400
160b238
21e2400
cf08fbc
 
 
 
21e2400
cf08fbc
160b238
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import gradio as gr
import tensorflow as tf
import librosa
import numpy as np

# Diccionario de etiquetas
labels = ['down', 'go', 'left', 'no', 'off', 'on', 'right', 'stop', 'up', 'yes']

def extract_features(file_name):
    try:
        audio, sample_rate = librosa.load(file_name, res_type='kaiser_fast') 
        mfccs = librosa.feature.mfcc(y=audio, sr=sample_rate, n_mfcc=40)
        mfccsscaled = np.mean(mfccs.T,axis=0)
        
    except Exception as e:
        print(f"Error encountered while parsing file: {file_name}")
        print(e)  # Imprime la excepción completa
        return None 
     
    return mfccsscaled

def classify_audio(audio_file):
    print(f"Tipo de audio_file: {type(audio_file)}")  # Debería imprimir <class 'str'>

    # Preprocesa el audio directamente
    features = extract_features(audio_file)

    if features is None:
        return "Error al procesar el audio" 
    
    features = features.reshape(1, -1)

    # Carga el modelo (asegúrate que 'my_model.h5' esté en el mismo directorio)
    model = tf.keras.models.load_model('my_model.h5', compile=False)

    with tf.device('/CPU:0'):
        prediction = model.predict(features)
        predicted_label_index = np.argmax(prediction)
    
    predicted_label = labels[predicted_label_index]
    return predicted_label

iface = gr.Interface(
    fn=classify_audio,
    inputs=gr.Audio(type="filepath"),
    outputs="text",
    title="Clasificación de audio simple",
    description="Sube un archivo de audio para clasificarlo."
)

iface.launch()