Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
import librosa
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
# Diccionario de etiquetas
|
7 |
+
labels = ['down', 'go', 'left', 'no', 'off', 'on', 'right', 'stop', 'up', 'yes']
|
8 |
+
|
9 |
+
def classify_audio(audio_file):
|
10 |
+
# Carga el modelo
|
11 |
+
model = tf.keras.models.load_model('my_model.h5')
|
12 |
+
|
13 |
+
# Preprocesa el audio
|
14 |
+
audio, sr = librosa.load(audio_file, sr=8000) # Aseg煤rate de que la frecuencia de muestreo coincide con la del entrenamiento
|
15 |
+
mfccs = librosa.feature.mfcc(y=audio, sr=sr, n_mfcc=40) # Extrae las MFCCs
|
16 |
+
mfccs_processed = np.mean(mfccs.T,axis=0) # Calcula la media de las MFCCs
|
17 |
+
mfccs_processed = mfccs_processed.reshape(1, 40) # Redimensiona para la entrada del modelo
|
18 |
+
|
19 |
+
# Realiza la predicci贸n
|
20 |
+
prediction = model.predict(mfccs_processed)
|
21 |
+
predicted_label_index = np.argmax(prediction) # Obtiene el 铆ndice de la etiqueta predicha
|
22 |
+
|
23 |
+
# Devuelve la etiqueta predicha
|
24 |
+
predicted_label = labels[predicted_label_index]
|
25 |
+
return predicted_label
|
26 |
+
|
27 |
+
iface = gr.Interface(
|
28 |
+
fn=classify_audio,
|
29 |
+
inputs=gr.Audio(type="filepath"),
|
30 |
+
outputs="text",
|
31 |
+
title="Clasificaci贸n de audio simple",
|
32 |
+
description="Sube un archivo de audio para clasificarlo."
|
33 |
+
)
|
34 |
+
|
35 |
+
iface.launch()
|