Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,6 @@ import gradio as gr
|
|
2 |
import tensorflow as tf
|
3 |
import librosa
|
4 |
import numpy as np
|
5 |
-
import tempfile
|
6 |
|
7 |
# Diccionario de etiquetas
|
8 |
labels = ['down', 'go', 'left', 'no', 'off', 'on', 'right', 'stop', 'up', 'yes']
|
@@ -21,33 +20,23 @@ def extract_features(file_name):
|
|
21 |
return mfccsscaled
|
22 |
|
23 |
def classify_audio(audio_file):
|
24 |
-
print(f"Tipo de audio_file: {type(audio_file)}")
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
tmp_file_path = tmp_file.name
|
29 |
|
30 |
-
# Preprocesa el audio (con extract_features())
|
31 |
-
features = extract_features(tmp_file_path)
|
32 |
-
|
33 |
-
# Si features es None, hubo un error en extract_features
|
34 |
if features is None:
|
35 |
return "Error al procesar el audio"
|
36 |
|
37 |
-
features = features.reshape(1, -1)
|
38 |
-
|
39 |
-
# Si tu modelo necesita 3 dimensiones, redimensiona a (1, 40, 1)
|
40 |
-
# features = features.reshape(1, 40, 1)
|
41 |
|
42 |
-
# Carga
|
43 |
model = tf.keras.models.load_model('my_model.h5', compile=False)
|
44 |
|
45 |
-
# Realiza la predicci贸n en la CPU
|
46 |
with tf.device('/CPU:0'):
|
47 |
prediction = model.predict(features)
|
48 |
-
predicted_label_index = np.argmax(prediction)
|
49 |
|
50 |
-
# Devuelve la etiqueta predicha
|
51 |
predicted_label = labels[predicted_label_index]
|
52 |
return predicted_label
|
53 |
|
|
|
2 |
import tensorflow as tf
|
3 |
import librosa
|
4 |
import numpy as np
|
|
|
5 |
|
6 |
# Diccionario de etiquetas
|
7 |
labels = ['down', 'go', 'left', 'no', 'off', 'on', 'right', 'stop', 'up', 'yes']
|
|
|
20 |
return mfccsscaled
|
21 |
|
22 |
def classify_audio(audio_file):
|
23 |
+
print(f"Tipo de audio_file: {type(audio_file)}") # Deber铆a imprimir <class 'str'>
|
24 |
|
25 |
+
# Preprocesa el audio directamente
|
26 |
+
features = extract_features(audio_file)
|
|
|
27 |
|
|
|
|
|
|
|
|
|
28 |
if features is None:
|
29 |
return "Error al procesar el audio"
|
30 |
|
31 |
+
features = features.reshape(1, -1)
|
|
|
|
|
|
|
32 |
|
33 |
+
# Carga el modelo (aseg煤rate que 'my_model.h5' est茅 en el mismo directorio)
|
34 |
model = tf.keras.models.load_model('my_model.h5', compile=False)
|
35 |
|
|
|
36 |
with tf.device('/CPU:0'):
|
37 |
prediction = model.predict(features)
|
38 |
+
predicted_label_index = np.argmax(prediction)
|
39 |
|
|
|
40 |
predicted_label = labels[predicted_label_index]
|
41 |
return predicted_label
|
42 |
|