Update app.py
Browse files
app.py
CHANGED
@@ -4,20 +4,36 @@ import librosa
|
|
4 |
import numpy as np
|
5 |
|
6 |
# Diccionario de etiquetas
|
7 |
-
labels = ['down', 'go', 'left', 'no', 'off', 'on', 'right', 'stop', 'up', 'yes']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
def classify_audio(audio_file):
|
10 |
# Carga el modelo
|
11 |
-
model = tf.keras.models.load_model('my_model.h5')
|
12 |
|
13 |
# Preprocesa el audio
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
19 |
# Realiza la predicci贸n
|
20 |
-
prediction = model.predict(
|
21 |
predicted_label_index = np.argmax(prediction)
|
22 |
|
23 |
# Devuelve la etiqueta predicha
|
|
|
4 |
import numpy as np
|
5 |
|
6 |
# Diccionario de etiquetas
|
7 |
+
labels = ['down', 'go', 'left', 'no', 'off', 'on', 'right', 'stop', 'up', 'yes']
|
8 |
+
|
9 |
+
def extract_features(file_name):
|
10 |
+
try:
|
11 |
+
audio, sample_rate = librosa.load(file_name, res_type='kaiser_fast')
|
12 |
+
mfccs = librosa.feature.mfcc(y=audio, sr=sample_rate, n_mfcc=40)
|
13 |
+
mfccsscaled = np.mean(mfccs.T,axis=0)
|
14 |
+
|
15 |
+
except Exception as e:
|
16 |
+
print("Error encountered while parsing file: ", file_name)
|
17 |
+
return None
|
18 |
+
|
19 |
+
return mfccsscaled
|
20 |
|
21 |
def classify_audio(audio_file):
|
22 |
# Carga el modelo
|
23 |
+
model = tf.keras.models.load_model('my_model.h5')
|
24 |
|
25 |
# Preprocesa el audio
|
26 |
+
features = extract_features(audio_file)
|
27 |
+
if features is None:
|
28 |
+
return "Error al procesar el audio" # Manejo de error
|
29 |
+
|
30 |
+
features = features.reshape(1, -1) # Redimensiona a (1, 40)
|
31 |
+
|
32 |
+
# Si tu modelo necesita 3 dimensiones, redimensiona a (1, 40, 1)
|
33 |
+
# features = features.reshape(1, 40, 1)
|
34 |
+
|
35 |
# Realiza la predicci贸n
|
36 |
+
prediction = model.predict(features)
|
37 |
predicted_label_index = np.argmax(prediction)
|
38 |
|
39 |
# Devuelve la etiqueta predicha
|