Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,429 Bytes
6aa4d81 651b8c4 e656061 6aa4d81 e656061 02c8fdb 0845b5a 6aa4d81 0c0098b e656061 8858e41 02c8fdb aa3232a 8858e41 aa3232a 8858e41 e656061 57ecc99 e656061 57ecc99 8858e41 57ecc99 aa3232a 8858e41 f8708de 57ecc99 aa3232a 8858e41 e656061 f8708de a7d1628 aa3232a 8858e41 f8708de 8858e41 f8708de a7d1628 aa3232a 0c0098b f8708de 0c0098b 8858e41 f8708de e656061 aa3232a 8858e41 8a4e228 f8708de 8a4e228 f8708de 651b8c4 aa3232a 8858e41 f8708de e656061 f8708de e656061 f8708de 651b8c4 f8708de 8858e41 f8708de 02c8fdb f8708de 16764be f8708de 8858e41 f8708de 5c1d384 aa3232a 8858e41 f8708de 02c8fdb f8708de 02c8fdb f8708de e656061 f8708de 16764be f8708de 16764be f8708de 5c1d384 02c8fdb f8708de 5c1d384 f8708de 0845b5a f8708de 0845b5a aa3232a 02c8fdb aa3232a 02c8fdb aa3232a 02c8fdb e656061 f8708de 0845b5a 8858e41 6aa4d81 f8708de 8858e41 f8708de 8858e41 f8708de 8858e41 f8708de 8858e41 f8708de 8858e41 f8708de 6aa4d81 f8708de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
import os
import sys
import random
import torch
from pathlib import Path
import numpy as np
import gradio as gr
from huggingface_hub import hf_hub_download
import spaces
from typing import Union, Sequence, Mapping, Any
import logging
from nodes import NODE_CLASS_MAPPINGS, init_extra_nodes, SaveImage # <-- Node SaveImage
from comfy import model_management
import folder_paths
# 1. Configurar logging para debug
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# 2. Configuração de Caminhos e Imports
current_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(current_dir)
# 3. Configuração de Diretórios
BASE_DIR = os.path.dirname(os.path.realpath(__file__))
output_dir = os.path.join(BASE_DIR, "output")
models_dir = os.path.join(BASE_DIR, "models")
os.makedirs(output_dir, exist_ok=True)
os.makedirs(models_dir, exist_ok=True)
folder_paths.set_output_directory(output_dir)
# 4. Configurar caminhos dos modelos e verificar estrutura
MODEL_FOLDERS = ["style_models", "text_encoders", "vae", "unet", "clip_vision"]
for model_folder in MODEL_FOLDERS:
folder_path = os.path.join(models_dir, model_folder)
os.makedirs(folder_path, exist_ok=True)
folder_paths.add_model_folder_path(model_folder, folder_path)
logger.info(f"Pasta de modelo configurada: {model_folder}")
# 5. Diagnóstico CUDA
logger.info(f"Python version: {sys.version}")
logger.info(f"Torch version: {torch.__version__}")
logger.info(f"CUDA disponível: {torch.cuda.is_available()}")
logger.info(f"Quantidade de GPUs: {torch.cuda.device_count()}")
if torch.cuda.is_available():
logger.info(f"GPU atual: {torch.cuda.get_device_name(0)}")
# 6. Inicialização do ComfyUI
logger.info("Inicializando ComfyUI...")
try:
init_extra_nodes()
except Exception as e:
logger.warning(f"Aviso na inicialização de nós extras: {str(e)}")
logger.info("Continuando mesmo com avisos nos nós extras...")
# 7. Helper Functions
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
try:
return obj[index]
except KeyError:
return obj["result"][index]
def verify_file_exists(folder: str, filename: str) -> bool:
file_path = os.path.join(models_dir, folder, filename)
exists = os.path.exists(file_path)
if not exists:
logger.error(f"Arquivo não encontrado: {file_path}")
return exists
# 8. Download de Modelos
logger.info("Baixando modelos necessários...")
try:
hf_hub_download(
repo_id="black-forest-labs/FLUX.1-Redux-dev",
filename="flux1-redux-dev.safetensors",
local_dir=os.path.join(models_dir, "style_models")
)
hf_hub_download(
repo_id="comfyanonymous/flux_text_encoders",
filename="t5xxl_fp16.safetensors",
local_dir=os.path.join(models_dir, "text_encoders")
)
hf_hub_download(
repo_id="zer0int/CLIP-GmP-ViT-L-14",
filename="ViT-L-14-TEXT-detail-improved-hiT-GmP-TE-only-HF.safetensors",
local_dir=os.path.join(models_dir, "text_encoders")
)
hf_hub_download(
repo_id="black-forest-labs/FLUX.1-dev",
filename="ae.safetensors",
local_dir=os.path.join(models_dir, "vae")
)
hf_hub_download(
repo_id="black-forest-labs/FLUX.1-dev",
filename="flux1-dev.safetensors",
local_dir=os.path.join(models_dir, "unet")
)
hf_hub_download(
repo_id="Comfy-Org/sigclip_vision_384",
filename="sigclip_vision_patch14_384.safetensors",
local_dir=os.path.join(models_dir, "clip_vision")
)
except Exception as e:
logger.error(f"Erro ao baixar modelos: {str(e)}")
raise
# 9. Inicialização dos Modelos
logger.info("Inicializando modelos...")
try:
with torch.no_grad():
# CLIP
logger.info("Carregando CLIP...")
dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]()
CLIP_MODEL = dualcliploader.load_clip(
clip_name1="t5xxl_fp16.safetensors",
clip_name2="ViT-L-14-TEXT-detail-improved-hiT-GmP-TE-only-HF.safetensors",
type="flux"
)
if CLIP_MODEL is None:
raise ValueError("Falha ao carregar CLIP model")
# CLIP Vision
logger.info("Carregando CLIP Vision...")
clipvisionloader = NODE_CLASS_MAPPINGS["CLIPVisionLoader"]()
CLIP_VISION = clipvisionloader.load_clip(
clip_name="sigclip_vision_patch14_384.safetensors"
)
if CLIP_VISION is None:
raise ValueError("Falha ao carregar CLIP Vision model")
# Style Model
logger.info("Carregando Style Model...")
stylemodelloader = NODE_CLASS_MAPPINGS["StyleModelLoader"]()
STYLE_MODEL = stylemodelloader.load_style_model(
style_model_name="flux1-redux-dev.safetensors"
)
if STYLE_MODEL is None:
raise ValueError("Falha ao carregar Style Model")
# VAE
logger.info("Carregando VAE...")
vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
VAE_MODEL = vaeloader.load_vae(
vae_name="ae.safetensors"
)
if VAE_MODEL is None:
raise ValueError("Falha ao carregar VAE model")
# UNET
logger.info("Carregando UNET...")
unetloader = NODE_CLASS_MAPPINGS["UNETLoader"]()
UNET_MODEL = unetloader.load_unet(
unet_name="flux1-dev.safetensors",
weight_dtype="fp8_e4m3fn" # ajuste se preciso
)
if UNET_MODEL is None:
raise ValueError("Falha ao carregar UNET model")
logger.info("Carregando modelos na GPU...")
model_loaders = [CLIP_MODEL, VAE_MODEL, CLIP_VISION, UNET_MODEL]
model_management.load_models_gpu([
loader[0].patcher if hasattr(loader[0], 'patcher') else loader[0]
for loader in model_loaders
])
logger.info("Modelos carregados com sucesso")
except Exception as e:
logger.error(f"Erro ao inicializar modelos: {str(e)}")
raise
# 10. Função de Geração
@spaces.GPU
def generate_image(
prompt, input_image, lora_weight, guidance, downsampling_factor,
weight, seed, width, height, batch_size, steps,
progress=gr.Progress(track_tqdm=True)
):
try:
with torch.no_grad():
logger.info(f"Iniciando geração com prompt: {prompt}")
# Codificar texto
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
encoded_text = cliptextencode.encode(
text=prompt,
clip=CLIP_MODEL[0]
)
# Carregar e processar imagem
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
loaded_image = loadimage.load_image(image=input_image)
if loaded_image is None:
raise ValueError("Erro ao carregar a imagem de entrada")
logger.info("Imagem carregada com sucesso")
# Flux Guidance
fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]()
flux_guidance = fluxguidance.append(
guidance=guidance,
conditioning=encoded_text[0]
)
# Redux Advanced
reduxadvanced = NODE_CLASS_MAPPINGS["ReduxAdvanced"]()
redux_result = reduxadvanced.apply_stylemodel(
downsampling_factor=downsampling_factor,
downsampling_function="area",
mode="keep aspect ratio",
weight=weight,
conditioning=flux_guidance[0],
style_model=STYLE_MODEL[0],
clip_vision=CLIP_VISION[0],
image=loaded_image[0]
)
# Empty Latent
emptylatentimage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]()
empty_latent = emptylatentimage.generate(
width=width,
height=height,
batch_size=batch_size
)
# KSampler
logger.info("Iniciando sampling...")
ksampler = NODE_CLASS_MAPPINGS["KSampler"]()
sampled = ksampler.sample(
seed=seed,
steps=steps,
cfg=1,
sampler_name="euler",
scheduler="simple",
denoise=1,
model=UNET_MODEL[0],
positive=redux_result[0],
negative=flux_guidance[0],
latent_image=empty_latent[0]
)
# VAE Decode
logger.info("Decodificando imagem...")
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
decoded = vaedecode.decode(
samples=sampled[0],
vae=VAE_MODEL[0]
)
# Salvar Imagem
logger.info("Salvando imagem via node SaveImage...")
decoded_tensor = decoded[0]
saveimage_node = NODE_CLASS_MAPPINGS["SaveImage"]()
result_dict = saveimage_node.save_images(
filename_prefix="Flux_",
images=decoded_tensor
)
saved_path = os.path.join(output_dir, result_dict["ui"]["images"][0]["filename"])
logger.info(f"Imagem salva em: {saved_path}")
return saved_path
except Exception as e:
logger.error(f"Erro ao gerar imagem: {str(e)}")
return None
# 10. Interface Gradio
with gr.Blocks() as app:
gr.Markdown("# FLUX Redux Image Generator")
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(
label="Prompt",
placeholder="Enter your prompt here...",
lines=5
)
input_image = gr.Image(
label="Input Image",
type="filepath"
)
with gr.Row():
with gr.Column():
lora_weight = gr.Slider(
minimum=0,
maximum=2,
step=0.1,
value=0.6,
label="LoRA Weight"
)
guidance = gr.Slider(
minimum=0,
maximum=20,
step=0.1,
value=3.5,
label="Guidance"
)
downsampling_factor = gr.Slider(
minimum=1,
maximum=8,
step=1,
value=3,
label="Downsampling Factor"
)
weight = gr.Slider(
minimum=0,
maximum=2,
step=0.1,
value=1.0,
label="Model Weight"
)
with gr.Column():
seed = gr.Number(
value=random.randint(1, 2**64),
label="Seed",
precision=0
)
width = gr.Number(
value=1024,
label="Width",
precision=0
)
height = gr.Number(
value=1024,
label="Height",
precision=0
)
batch_size = gr.Number(
value=1,
label="Batch Size",
precision=0
)
steps = gr.Number(
value=20,
label="Steps",
precision=0
)
generate_btn = gr.Button("Generate Image")
with gr.Column():
output_image = gr.Image(label="Generated Image", type="filepath")
generate_btn.click(
fn=generate_image,
inputs=[
prompt_input,
input_image,
lora_weight,
guidance,
downsampling_factor,
weight,
seed,
width,
height,
batch_size,
steps
],
outputs=[output_image]
)
if __name__ == "__main__":
app.launch()
|