Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,109 +1,107 @@
|
|
1 |
import os
|
2 |
-
import random
|
3 |
import sys
|
4 |
-
|
5 |
import torch
|
|
|
|
|
6 |
import gradio as gr
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
import spaces
|
9 |
-
from
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
#
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
-
|
20 |
|
21 |
-
# Helper function
|
22 |
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
|
23 |
try:
|
24 |
return obj[index]
|
25 |
except KeyError:
|
26 |
return obj["result"][index]
|
27 |
|
28 |
-
#
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
# Configura莽茫o de Diret贸rios
|
51 |
-
BASE_DIR = os.path.dirname(os.path.realpath(__file__))
|
52 |
-
output_dir = os.path.join(BASE_DIR, "output")
|
53 |
-
models_dir = os.path.join(BASE_DIR, "models")
|
54 |
-
os.makedirs(output_dir, exist_ok=True)
|
55 |
-
os.makedirs(models_dir, exist_ok=True)
|
56 |
-
folder_paths.set_output_directory(output_dir)
|
57 |
|
58 |
-
#
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
stylemodelloader_441 = stylemodelloader.load_style_model(
|
75 |
-
style_model_name="flux1-redux-dev.safetensors"
|
76 |
-
)
|
77 |
-
vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
|
78 |
-
vaeloader_359 = vaeloader.load_vae(
|
79 |
-
vae_name="ae.safetensors"
|
80 |
-
)
|
81 |
-
|
82 |
-
# Pre-load models
|
83 |
-
model_loaders = [dualcliploader_357, vaeloader_359, clip_vision, stylemodelloader_441]
|
84 |
-
valid_models = [
|
85 |
-
getattr(loader[0], 'patcher', loader[0])
|
86 |
for loader in model_loaders
|
87 |
-
|
88 |
-
]
|
89 |
-
model_management.load_models_gpu(valid_models)
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
def generate_image(prompt, input_image, lora_weight, guidance, downsampling_factor, weight, seed, width, height, batch_size, steps):
|
94 |
try:
|
95 |
with torch.inference_mode():
|
96 |
-
#
|
97 |
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
|
98 |
encoded_text = cliptextencode.encode(
|
99 |
text=prompt,
|
100 |
-
clip=
|
101 |
)
|
102 |
|
103 |
-
#
|
104 |
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
|
105 |
loaded_image = loadimage.load_image(image=input_image)
|
106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
# Flux Guidance
|
108 |
fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]()
|
109 |
flux_guidance = fluxguidance.append(
|
@@ -118,13 +116,14 @@ def generate_image(prompt, input_image, lora_weight, guidance, downsampling_fact
|
|
118 |
downsampling_function="area",
|
119 |
mode="keep aspect ratio",
|
120 |
weight=weight,
|
|
|
121 |
conditioning=flux_guidance[0],
|
122 |
-
style_model=
|
123 |
-
clip_vision=
|
124 |
image=loaded_image[0]
|
125 |
)
|
126 |
|
127 |
-
# Empty Latent
|
128 |
emptylatentimage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]()
|
129 |
empty_latent = emptylatentimage.generate(
|
130 |
width=width,
|
@@ -141,17 +140,17 @@ def generate_image(prompt, input_image, lora_weight, guidance, downsampling_fact
|
|
141 |
sampler_name="euler",
|
142 |
scheduler="simple",
|
143 |
denoise=1,
|
144 |
-
model=
|
145 |
positive=redux_result[0],
|
146 |
negative=flux_guidance[0],
|
147 |
latent_image=empty_latent[0]
|
148 |
)
|
149 |
|
150 |
-
#
|
151 |
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
|
152 |
decoded = vaedecode.decode(
|
153 |
samples=sampled[0],
|
154 |
-
vae=
|
155 |
)
|
156 |
|
157 |
# Salvar imagem
|
@@ -160,11 +159,12 @@ def generate_image(prompt, input_image, lora_weight, guidance, downsampling_fact
|
|
160 |
Image.fromarray((decoded[0] * 255).astype("uint8")).save(temp_path)
|
161 |
|
162 |
return temp_path
|
|
|
163 |
except Exception as e:
|
164 |
print(f"Erro ao gerar imagem: {str(e)}")
|
165 |
return None
|
166 |
|
167 |
-
# Gradio
|
168 |
with gr.Blocks() as app:
|
169 |
gr.Markdown("# FLUX Redux Image Generator")
|
170 |
|
@@ -244,7 +244,19 @@ with gr.Blocks() as app:
|
|
244 |
|
245 |
generate_btn.click(
|
246 |
fn=generate_image,
|
247 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
248 |
outputs=[output_image]
|
249 |
)
|
250 |
|
|
|
1 |
import os
|
|
|
2 |
import sys
|
3 |
+
import random
|
4 |
import torch
|
5 |
+
from pathlib import Path
|
6 |
+
from PIL import Image
|
7 |
import gradio as gr
|
8 |
from huggingface_hub import hf_hub_download
|
9 |
import spaces
|
10 |
+
from typing import Union, Sequence, Mapping, Any
|
11 |
+
import folder_paths
|
12 |
+
from nodes import NODE_CLASS_MAPPINGS, init_extra_nodes
|
13 |
+
from comfy import model_management
|
14 |
+
|
15 |
+
# Configura莽茫o de diret贸rios
|
16 |
+
BASE_DIR = os.path.dirname(os.path.realpath(__file__))
|
17 |
+
output_dir = os.path.join(BASE_DIR, "output")
|
18 |
+
os.makedirs(output_dir, exist_ok=True)
|
19 |
+
folder_paths.set_output_directory(output_dir)
|
20 |
|
21 |
+
# Diagn贸stico CUDA
|
22 |
+
print("Python version:", sys.version)
|
23 |
+
print("Torch version:", torch.__version__)
|
24 |
+
print("CUDA dispon铆vel:", torch.cuda.is_available())
|
25 |
+
print("Quantidade de GPUs:", torch.cuda.device_count())
|
26 |
+
if torch.cuda.is_available():
|
27 |
+
print("GPU atual:", torch.cuda.get_device_name(0))
|
28 |
|
29 |
+
# Inicializar n贸s extras
|
30 |
+
print("Inicializando ComfyUI...")
|
31 |
+
init_extra_nodes()
|
32 |
|
33 |
+
# Helper function
|
34 |
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
|
35 |
try:
|
36 |
return obj[index]
|
37 |
except KeyError:
|
38 |
return obj["result"][index]
|
39 |
|
40 |
+
# Inicializar modelos
|
41 |
+
print("Inicializando modelos...")
|
42 |
+
with torch.inference_mode():
|
43 |
+
# CLIP
|
44 |
+
dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]()
|
45 |
+
CLIP_MODEL = dualcliploader.load_clip(
|
46 |
+
clip_name1="t5xxl_fp16.safetensors",
|
47 |
+
clip_name2="ViT-L-14-TEXT-detail-improved-hiT-GmP-TE-only-HF.safetensors",
|
48 |
+
type="flux"
|
49 |
+
)
|
50 |
+
|
51 |
+
# Style Model
|
52 |
+
stylemodelloader = NODE_CLASS_MAPPINGS["StyleModelLoader"]()
|
53 |
+
STYLE_MODEL = stylemodelloader.load_style_model(
|
54 |
+
style_model_name="flux1-redux-dev.safetensors"
|
55 |
+
)
|
56 |
+
|
57 |
+
# VAE
|
58 |
+
vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
|
59 |
+
VAE_MODEL = vaeloader.load_vae(
|
60 |
+
vae_name="ae.safetensors"
|
61 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
# UNET
|
64 |
+
unetloader = NODE_CLASS_MAPPINGS["UNETLoader"]()
|
65 |
+
UNET_MODEL = unetloader.load_unet(
|
66 |
+
unet_name="flux1-dev.sft",
|
67 |
+
weight_dtype="fp8_e4m3fn"
|
68 |
+
)
|
69 |
+
|
70 |
+
# CLIP Vision
|
71 |
+
clipvisionloader = NODE_CLASS_MAPPINGS["CLIPVisionLoader"]()
|
72 |
+
CLIP_VISION = clipvisionloader.load_clip(
|
73 |
+
clip_name="sigclip_vision_patch14_384.safetensors"
|
74 |
+
)
|
75 |
+
|
76 |
+
model_loaders = [CLIP_MODEL, VAE_MODEL, UNET_MODEL, CLIP_VISION]
|
77 |
+
model_management.load_models_gpu([
|
78 |
+
loader[0].patcher if hasattr(loader[0], 'patcher') else loader[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
for loader in model_loaders
|
80 |
+
])
|
|
|
|
|
81 |
|
82 |
+
@spaces.GPU
|
83 |
+
def generate_image(prompt, input_image, lora_weight, guidance, downsampling_factor, weight, seed, width, height, batch_size, steps, progress=gr.Progress(track_tqdm=True)):
|
|
|
84 |
try:
|
85 |
with torch.inference_mode():
|
86 |
+
# Text Encoding
|
87 |
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
|
88 |
encoded_text = cliptextencode.encode(
|
89 |
text=prompt,
|
90 |
+
clip=CLIP_MODEL[0]
|
91 |
)
|
92 |
|
93 |
+
# Load Input Image
|
94 |
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
|
95 |
loaded_image = loadimage.load_image(image=input_image)
|
96 |
|
97 |
+
# Load LoRA
|
98 |
+
loraloadermodelonly = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]()
|
99 |
+
lora_model = loraloadermodelonly.load_lora_model_only(
|
100 |
+
lora_name="NFTNIK_FLUX.1[dev]_LoRA.safetensors",
|
101 |
+
strength_model=lora_weight,
|
102 |
+
model=UNET_MODEL[0]
|
103 |
+
)
|
104 |
+
|
105 |
# Flux Guidance
|
106 |
fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]()
|
107 |
flux_guidance = fluxguidance.append(
|
|
|
116 |
downsampling_function="area",
|
117 |
mode="keep aspect ratio",
|
118 |
weight=weight,
|
119 |
+
autocrop_margin=0.1,
|
120 |
conditioning=flux_guidance[0],
|
121 |
+
style_model=STYLE_MODEL[0],
|
122 |
+
clip_vision=CLIP_VISION[0],
|
123 |
image=loaded_image[0]
|
124 |
)
|
125 |
|
126 |
+
# Empty Latent Image
|
127 |
emptylatentimage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]()
|
128 |
empty_latent = emptylatentimage.generate(
|
129 |
width=width,
|
|
|
140 |
sampler_name="euler",
|
141 |
scheduler="simple",
|
142 |
denoise=1,
|
143 |
+
model=lora_model[0],
|
144 |
positive=redux_result[0],
|
145 |
negative=flux_guidance[0],
|
146 |
latent_image=empty_latent[0]
|
147 |
)
|
148 |
|
149 |
+
# VAE Decode
|
150 |
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
|
151 |
decoded = vaedecode.decode(
|
152 |
samples=sampled[0],
|
153 |
+
vae=VAE_MODEL[0]
|
154 |
)
|
155 |
|
156 |
# Salvar imagem
|
|
|
159 |
Image.fromarray((decoded[0] * 255).astype("uint8")).save(temp_path)
|
160 |
|
161 |
return temp_path
|
162 |
+
|
163 |
except Exception as e:
|
164 |
print(f"Erro ao gerar imagem: {str(e)}")
|
165 |
return None
|
166 |
|
167 |
+
# Interface Gradio
|
168 |
with gr.Blocks() as app:
|
169 |
gr.Markdown("# FLUX Redux Image Generator")
|
170 |
|
|
|
244 |
|
245 |
generate_btn.click(
|
246 |
fn=generate_image,
|
247 |
+
inputs=[
|
248 |
+
prompt_input,
|
249 |
+
input_image,
|
250 |
+
lora_weight,
|
251 |
+
guidance,
|
252 |
+
downsampling_factor,
|
253 |
+
weight,
|
254 |
+
seed,
|
255 |
+
width,
|
256 |
+
height,
|
257 |
+
batch_size,
|
258 |
+
steps
|
259 |
+
],
|
260 |
outputs=[output_image]
|
261 |
)
|
262 |
|