nftnik commited on
Commit
8858e41
verified
1 Parent(s): d02c7da

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +284 -247
app.py CHANGED
@@ -8,285 +8,322 @@ import gradio as gr
8
  from huggingface_hub import hf_hub_download
9
  import spaces
10
  from typing import Union, Sequence, Mapping, Any
 
 
 
 
 
 
 
 
 
 
 
11
  import folder_paths
12
  from nodes import NODE_CLASS_MAPPINGS, init_extra_nodes
13
- from comfy import model_management
14
 
15
- # Configura莽茫o de diret贸rios
16
  BASE_DIR = os.path.dirname(os.path.realpath(__file__))
17
  output_dir = os.path.join(BASE_DIR, "output")
18
  models_dir = os.path.join(BASE_DIR, "models")
19
  os.makedirs(output_dir, exist_ok=True)
20
  os.makedirs(models_dir, exist_ok=True)
 
21
 
22
- # Configurar caminhos dos modelos
23
- for model_folder in ["style_models", "text_encoders", "vae", "unet", "clip_vision"]:
24
- folder_path = os.path.join(models_dir, model_folder)
25
- os.makedirs(folder_path, exist_ok=True)
26
- folder_paths.add_model_folder_path(model_folder, folder_path)
 
 
27
 
28
- # Download dos modelos
29
- print("Baixando modelos necess谩rios...")
30
- hf_hub_download(repo_id="black-forest-labs/FLUX.1-Redux-dev",
31
- filename="flux1-redux-dev.safetensors",
32
- local_dir=os.path.join(models_dir, "style_models"))
33
- hf_hub_download(repo_id="comfyanonymous/flux_text_encoders",
34
- filename="t5xxl_fp16.safetensors",
35
- local_dir=os.path.join(models_dir, "text_encoders"))
36
- hf_hub_download(repo_id="zer0int/CLIP-GmP-ViT-L-14",
37
- filename="ViT-L-14-TEXT-detail-improved-hiT-GmP-TE-only-HF.safetensors",
38
- local_dir=os.path.join(models_dir, "text_encoders"))
39
- hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev",
40
- filename="ae.safetensors",
41
- local_dir=os.path.join(models_dir, "vae"))
42
- hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev",
43
- filename="flux1-dev.safetensors",
44
- local_dir=os.path.join(models_dir, "unet"))
45
- hf_hub_download(repo_id="google/siglip-so400m-patch14-384",
46
- filename="model.safetensors",
47
- local_dir=os.path.join(models_dir, "clip_vision"))
48
-
49
- # Diagn贸stico CUDA
50
- print("Python version:", sys.version)
51
- print("Torch version:", torch.__version__)
52
- print("CUDA dispon铆vel:", torch.cuda.is_available())
53
- print("Quantidade de GPUs:", torch.cuda.device_count())
54
  if torch.cuda.is_available():
55
- print("GPU atual:", torch.cuda.get_device_name(0))
56
 
57
- # Inicializar n贸s extras
58
- print("Inicializando ComfyUI...")
59
- init_extra_nodes()
 
 
 
 
60
 
61
- # Helper function
62
  def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
63
- try:
64
- return obj[index]
65
- except KeyError:
66
- return obj["result"][index]
67
 
68
- # Inicializar modelos
69
- print("Inicializando modelos...")
70
- with torch.inference_mode():
71
- # CLIP
72
- dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]()
73
- CLIP_MODEL = dualcliploader.load_clip(
74
- clip_name1="t5xxl_fp16.safetensors",
75
- clip_name2="ViT-L-14-TEXT-detail-improved-hiT-GmP-TE-only-HF.safetensors",
76
- type="flux"
77
- )
78
 
79
- # Style Model
80
- stylemodelloader = NODE_CLASS_MAPPINGS["StyleModelLoader"]()
81
- STYLE_MODEL = stylemodelloader.load_style_model(
82
- style_model_name="flux1-redux-dev.safetensors"
83
- )
 
 
 
 
 
84
 
85
- # VAE
86
- vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
87
- VAE_MODEL = vaeloader.load_vae(
88
- vae_name="ae.safetensors"
89
- )
 
 
 
 
90
 
91
- # UNET
92
- unetloader = NODE_CLASS_MAPPINGS["UNETLoader"]()
93
- UNET_MODEL = unetloader.load_unet(
94
- unet_name="flux1-dev.safetensors",
95
- weight_dtype="fp8_e4m3fn"
96
- )
 
 
 
 
 
 
97
 
98
- # CLIP Vision
99
- clipvisionloader = NODE_CLASS_MAPPINGS["CLIPVisionLoader"]()
100
- CLIP_VISION = clipvisionloader.load_clip(
101
- clip_name="sigclip_vision_patch14_384.safetensors"
102
- )
 
103
 
104
- model_loaders = [CLIP_MODEL, VAE_MODEL, UNET_MODEL, CLIP_VISION]
105
- model_management.load_models_gpu([
106
- loader[0].patcher if hasattr(loader[0], 'patcher') else loader[0]
107
- for loader in model_loaders
108
- ])
 
109
 
110
- @spaces.GPU
111
- def generate_image(prompt, input_image, lora_weight, guidance, downsampling_factor, weight, seed, width, height, batch_size, steps, progress=gr.Progress(track_tqdm=True)):
112
- try:
113
- with torch.inference_mode():
114
- # Text Encoding
115
- cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
116
- encoded_text = cliptextencode.encode(
117
- text=prompt,
118
- clip=CLIP_MODEL[0]
119
- )
 
 
 
 
120
 
121
- # Load Input Image
122
- loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
123
- loaded_image = loadimage.load_image(image=input_image)
 
 
 
 
 
 
124
 
125
- # Load LoRA
126
- loraloadermodelonly = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]()
127
- lora_model = loraloadermodelonly.load_lora_model_only(
128
- lora_name="NFTNIK_FLUX.1[dev]_LoRA.safetensors",
129
- strength_model=lora_weight,
130
- model=UNET_MODEL[0]
131
- )
 
 
 
 
 
 
132
 
133
- # Flux Guidance
134
- fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]()
135
- flux_guidance = fluxguidance.append(
136
- guidance=guidance,
137
- conditioning=encoded_text[0]
138
- )
139
 
140
- # Redux Advanced
141
- reduxadvanced = NODE_CLASS_MAPPINGS["ReduxAdvanced"]()
142
- redux_result = reduxadvanced.apply_stylemodel(
143
- downsampling_factor=downsampling_factor,
144
- downsampling_function="area",
145
- mode="keep aspect ratio",
146
- weight=weight,
147
- autocrop_margin=0.1,
148
- conditioning=flux_guidance[0],
149
- style_model=STYLE_MODEL[0],
150
- clip_vision=CLIP_VISION[0],
151
- image=loaded_image[0]
152
- )
153
 
154
- # Empty Latent Image
155
- emptylatentimage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]()
156
- empty_latent = emptylatentimage.generate(
157
- width=width,
158
- height=height,
159
- batch_size=batch_size
160
- )
 
 
 
 
 
161
 
162
- # KSampler
163
- ksampler = NODE_CLASS_MAPPINGS["KSampler"]()
164
- sampled = ksampler.sample(
165
- seed=seed,
166
- steps=steps,
167
- cfg=1,
168
- sampler_name="euler",
169
- scheduler="simple",
170
- denoise=1,
171
- model=lora_model[0],
172
- positive=redux_result[0],
173
- negative=flux_guidance[0],
174
- latent_image=empty_latent[0]
175
- )
176
 
177
- # VAE Decode
178
- vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
179
- decoded = vaedecode.decode(
180
- samples=sampled[0],
181
- vae=VAE_MODEL[0]
182
- )
 
 
 
 
 
 
 
 
 
183
 
184
- # Salvar imagem
185
- temp_filename = f"Flux_{random.randint(0, 99999)}.png"
186
- temp_path = os.path.join(output_dir, temp_filename)
187
- Image.fromarray((decoded[0] * 255).astype("uint8")).save(temp_path)
 
 
 
188
 
189
- return temp_path
 
 
 
 
 
 
 
 
 
190
 
191
- except Exception as e:
192
- print(f"Erro ao gerar imagem: {str(e)}")
193
- return None
194
 
195
- # Interface Gradio
196
  with gr.Blocks() as app:
197
- gr.Markdown("# FLUX Redux Image Generator")
198
-
199
- with gr.Row():
200
- with gr.Column():
201
- prompt_input = gr.Textbox(
202
- label="Prompt",
203
- placeholder="Enter your prompt here...",
204
- lines=5
205
- )
206
- input_image = gr.Image(
207
- label="Input Image",
208
- type="filepath"
209
- )
210
-
211
- with gr.Row():
212
- with gr.Column():
213
- lora_weight = gr.Slider(
214
- minimum=0,
215
- maximum=2,
216
- step=0.1,
217
- value=0.6,
218
- label="LoRA Weight"
219
- )
220
- guidance = gr.Slider(
221
- minimum=0,
222
- maximum=20,
223
- step=0.1,
224
- value=3.5,
225
- label="Guidance"
226
- )
227
- downsampling_factor = gr.Slider(
228
- minimum=1,
229
- maximum=8,
230
- step=1,
231
- value=3,
232
- label="Downsampling Factor"
233
- )
234
- weight = gr.Slider(
235
- minimum=0,
236
- maximum=2,
237
- step=0.1,
238
- value=1.0,
239
- label="Model Weight"
240
- )
241
- with gr.Column():
242
- seed = gr.Number(
243
- value=random.randint(1, 2**64),
244
- label="Seed",
245
- precision=0
246
- )
247
- width = gr.Number(
248
- value=1024,
249
- label="Width",
250
- precision=0
251
- )
252
- height = gr.Number(
253
- value=1024,
254
- label="Height",
255
- precision=0
256
- )
257
- batch_size = gr.Number(
258
- value=1,
259
- label="Batch Size",
260
- precision=0
261
- )
262
- steps = gr.Number(
263
- value=20,
264
- label="Steps",
265
- precision=0
266
- )
267
-
268
- generate_btn = gr.Button("Generate Image")
269
-
270
- with gr.Column():
271
- output_image = gr.Image(label="Generated Image", type="filepath")
272
-
273
- generate_btn.click(
274
- fn=generate_image,
275
- inputs=[
276
- prompt_input,
277
- input_image,
278
- lora_weight,
279
- guidance,
280
- downsampling_factor,
281
- weight,
282
- seed,
283
- width,
284
- height,
285
- batch_size,
286
- steps
287
- ],
288
- outputs=[output_image]
289
- )
290
 
291
  if __name__ == "__main__":
292
- app.launch()
 
8
  from huggingface_hub import hf_hub_download
9
  import spaces
10
  from typing import Union, Sequence, Mapping, Any
11
+ import logging
12
+
13
+ # Configurar logging para debug
14
+ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
15
+ logger = logging.getLogger(__name__)
16
+
17
+ # 1. Configura莽茫o de Caminhos e Imports
18
+ current_dir = os.path.dirname(os.path.abspath(__file__))
19
+ sys.path.append(current_dir)
20
+
21
+ # 2. Imports do ComfyUI
22
  import folder_paths
23
  from nodes import NODE_CLASS_MAPPINGS, init_extra_nodes
 
24
 
25
+ # 3. Configura莽茫o de Diret贸rios
26
  BASE_DIR = os.path.dirname(os.path.realpath(__file__))
27
  output_dir = os.path.join(BASE_DIR, "output")
28
  models_dir = os.path.join(BASE_DIR, "models")
29
  os.makedirs(output_dir, exist_ok=True)
30
  os.makedirs(models_dir, exist_ok=True)
31
+ folder_paths.set_output_directory(output_dir)
32
 
33
+ # Configurar caminhos dos modelos e verificar estrutura
34
+ MODEL_FOLDERS = ["style_models", "text_encoders", "vae", "unet", "clip_vision"]
35
+ for model_folder in MODEL_FOLDERS:
36
+ folder_path = os.path.join(models_dir, model_folder)
37
+ os.makedirs(folder_path, exist_ok=True)
38
+ folder_paths.add_model_folder_path(model_folder, folder_path)
39
+ logger.info(f"Pasta de modelo configurada: {model_folder}")
40
 
41
+ # 4. Diagn贸stico CUDA
42
+ logger.info(f"Python version: {sys.version}")
43
+ logger.info(f"Torch version: {torch.__version__}")
44
+ logger.info(f"CUDA dispon铆vel: {torch.cuda.is_available()}")
45
+ logger.info(f"Quantidade de GPUs: {torch.cuda.device_count()}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
  if torch.cuda.is_available():
47
+ logger.info(f"GPU atual: {torch.cuda.get_device_name(0)}")
48
 
49
+ # 5. Inicializa莽茫o do ComfyUI
50
+ logger.info("Inicializando ComfyUI...")
51
+ try:
52
+ init_extra_nodes()
53
+ except Exception as e:
54
+ logger.warning(f"Aviso na inicializa莽茫o de n贸s extras: {str(e)}")
55
+ logger.info("Continuando mesmo com avisos nos n贸s extras...")
56
 
57
+ # 6. Helper Functions
58
  def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
59
+ try:
60
+ return obj[index]
61
+ except KeyError:
62
+ return obj["result"][index]
63
 
64
+ def verify_file_exists(folder: str, filename: str) -> bool:
65
+ file_path = os.path.join(models_dir, folder, filename)
66
+ exists = os.path.exists(file_path)
67
+ if not exists:
68
+ logger.error(f"Arquivo n茫o encontrado: {file_path}")
69
+ return exists
 
 
 
 
70
 
71
+ # 7. Download de Modelos
72
+ logger.info("Baixando modelos necess谩rios...")
73
+ MODELS_TO_DOWNLOAD = [
74
+ ("black-forest-labs/FLUX.1-Redux-dev", "flux1-redux-dev.safetensors", "style_models"),
75
+ ("comfyanonymous/flux_text_encoders", "t5xxl_fp16.safetensors", "text_encoders"),
76
+ ("zer0int/CLIP-GmP-ViT-L-14", "ViT-L-14-TEXT-detail-improved-hiT-GmP-TE-only-HF.safetensors", "text_encoders"),
77
+ ("black-forest-labs/FLUX.1-dev", "ae.safetensors", "vae"),
78
+ ("black-forest-labs/FLUX.1-dev", "flux1-dev.safetensors", "unet"),
79
+ ("Comfy-Org/sigclip_vision_384", "model.safetensors", "clip_vision")
80
+ ]
81
 
82
+ for repo_id, filename, folder in MODELS_TO_DOWNLOAD:
83
+ try:
84
+ logger.info(f"Baixando {filename} para {folder}...")
85
+ hf_hub_download(repo_id=repo_id, filename=filename, local_dir=os.path.join(models_dir, folder))
86
+ if not verify_file_exists(folder, filename):
87
+ raise FileNotFoundError(f"Arquivo n茫o encontrado ap贸s download: {filename}")
88
+ except Exception as e:
89
+ logger.error(f"Erro ao baixar {filename} de {repo_id}: {str(e)}")
90
+ raise
91
 
92
+ # 8. Inicializa莽茫o dos Modelos
93
+ logger.info("Inicializando modelos...")
94
+ try:
95
+ with torch.inference_mode():
96
+ # CLIP
97
+ logger.info("Carregando CLIP...")
98
+ dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]()
99
+ CLIP_MODEL = dualcliploader.load_clip(
100
+ clip_name1="t5xxl_fp16.safetensors",
101
+ clip_name2="ViT-L-14-TEXT-detail-improved-hiT-GmP-TE-only-HF.safetensors",
102
+ type="flux"
103
+ )
104
 
105
+ # CLIP Vision
106
+ logger.info("Carregando CLIP Vision...")
107
+ clipvisionloader = NODE_CLASS_MAPPINGS["CLIPVisionLoader"]()
108
+ CLIP_VISION = clipvisionloader.load_clip(
109
+ clip_name="model.safetensors"
110
+ )
111
 
112
+ # Style Model
113
+ logger.info("Carregando Style Model...")
114
+ stylemodelloader = NODE_CLASS_MAPPINGS["StyleModelLoader"]()
115
+ STYLE_MODEL = stylemodelloader.load_style_model(
116
+ style_model_name="flux1-redux-dev.safetensors"
117
+ )
118
 
119
+ # VAE
120
+ logger.info("Carregando VAE...")
121
+ vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
122
+ VAE_MODEL = vaeloader.load_vae(
123
+ vae_name="ae.safetensors"
124
+ )
125
+
126
+ # UNET
127
+ logger.info("Carregando UNET...")
128
+ unetloader = NODE_CLASS_MAPPINGS["UNETLoader"]()
129
+ UNET_MODEL = unetloader.load_unet(
130
+ unet_name="flux1-dev.safetensors",
131
+ weight_dtype="fp8_e4m3fn"
132
+ )
133
 
134
+ logger.info("Carregando modelos na GPU...")
135
+ model_loaders = [CLIP_MODEL, VAE_MODEL, STYLE_MODEL, CLIP_VISION, UNET_MODEL]
136
+ model_management.load_models_gpu([
137
+ loader[0].patcher if hasattr(loader[0], 'patcher') else loader[0]
138
+ for loader in model_loaders
139
+ ])
140
+ except Exception as e:
141
+ logger.error(f"Erro ao inicializar modelos: {str(e)}")
142
+ raise
143
 
144
+ # 9. Fun莽茫o de Gera莽茫o
145
+ @spaces.GPU
146
+ def generate_image(prompt, input_image, lora_weight, guidance, downsampling_factor, weight, seed, width, height, batch_size, steps, progress=gr.Progress(track_tqdm=True)):
147
+ try:
148
+ with torch.inference_mode():
149
+ logger.info(f"Iniciando gera莽茫o com prompt: {prompt}")
150
+
151
+ # Codificar texto
152
+ cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
153
+ encoded_text = cliptextencode.encode(
154
+ text=prompt,
155
+ clip=CLIP_MODEL[0]
156
+ )
157
 
158
+ # Carregar e processar imagem
159
+ loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
160
+ loaded_image = loadimage.load_image(image=input_image)
161
+ if loaded_image is None:
162
+ raise ValueError("Erro ao carregar a imagem de entrada")
163
+ logger.info("Imagem carregada com sucesso")
164
 
165
+ # Flux Guidance
166
+ fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]()
167
+ flux_guidance = fluxguidance.append(
168
+ guidance=guidance,
169
+ conditioning=encoded_text[0]
170
+ )
 
 
 
 
 
 
 
171
 
172
+ # Redux Advanced
173
+ reduxadvanced = NODE_CLASS_MAPPINGS["ReduxAdvanced"]()
174
+ redux_result = reduxadvanced.apply_stylemodel(
175
+ downsampling_factor=downsampling_factor,
176
+ downsampling_function="area",
177
+ mode="keep aspect ratio",
178
+ weight=weight,
179
+ conditioning=flux_guidance[0],
180
+ style_model=STYLE_MODEL[0],
181
+ clip_vision=CLIP_VISION[0],
182
+ image=loaded_image[0]
183
+ )
184
 
185
+ # Empty Latent
186
+ emptylatentimage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]()
187
+ empty_latent = emptylatentimage.generate(
188
+ width=width,
189
+ height=height,
190
+ batch_size=batch_size
191
+ )
 
 
 
 
 
 
 
192
 
193
+ # KSampler
194
+ logger.info("Iniciando sampling...")
195
+ ksampler = NODE_CLASS_MAPPINGS["KSampler"]()
196
+ sampled = ksampler.sample(
197
+ seed=seed,
198
+ steps=steps,
199
+ cfg=1,
200
+ sampler_name="euler",
201
+ scheduler="simple",
202
+ denoise=1,
203
+ model=UNET_MODEL[0],
204
+ positive=redux_result[0],
205
+ negative=flux_guidance[0],
206
+ latent_image=empty_latent[0]
207
+ )
208
 
209
+ # VAE Decode
210
+ logger.info("Decodificando imagem...")
211
+ vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
212
+ decoded = vaedecode.decode(
213
+ samples=sampled[0],
214
+ vae=VAE_MODEL[0]
215
+ )
216
 
217
+ # Salvar imagem
218
+ temp_filename = f"Flux_{random.randint(0, 99999)}.png"
219
+ temp_path = os.path.join(output_dir, temp_filename)
220
+ try:
221
+ Image.fromarray((decoded[0] * 255).astype("uint8")).save(temp_path)
222
+ logger.info(f"Imagem salva em: {temp_path}")
223
+ return temp_path
224
+ except Exception as e:
225
+ logger.error(f"Erro ao salvar imagem: {str(e)}")
226
+ return None
227
 
228
+ except Exception as e:
229
+ logger.error(f"Erro ao gerar imagem: {str(e)}")
230
+ return None
231
 
232
+ # 10. Interface Gradio
233
  with gr.Blocks() as app:
234
+ gr.Markdown("# FLUX Redux Image Generator")
235
+
236
+ with gr.Row():
237
+ with gr.Column():
238
+ prompt_input = gr.Textbox(
239
+ label="Prompt",
240
+ placeholder="Enter your prompt here...",
241
+ lines=5
242
+ )
243
+ input_image = gr.Image(
244
+ label="Input Image",
245
+ type="filepath"
246
+ )
247
+
248
+ with gr.Row():
249
+ with gr.Column():
250
+ lora_weight = gr.Slider(
251
+ minimum=0,
252
+ maximum=2,
253
+ step=0.1,
254
+ value=0.6,
255
+ label="LoRA Weight"
256
+ )
257
+ guidance = gr.Slider(
258
+ minimum=0,
259
+ maximum=20,
260
+ step=0.1,
261
+ value=3.5,
262
+ label="Guidance"
263
+ )
264
+ downsampling_factor = gr.Slider(
265
+ minimum=1,
266
+ maximum=8,
267
+ step=1,
268
+ value=3,
269
+ label="Downsampling Factor"
270
+ )
271
+ weight = gr.Slider(
272
+ minimum=0,
273
+ maximum=2,
274
+ step=0.1,
275
+ value=1.0,
276
+ label="Model Weight"
277
+ )
278
+ with gr.Column():
279
+ seed = gr.Number(
280
+ value=random.randint(1, 2**64),
281
+ label="Seed",
282
+ precision=0
283
+ )
284
+ width = gr.Number(
285
+ value=1024,
286
+ label="Width",
287
+ precision=0
288
+ )
289
+ height = gr.Number(
290
+ value=1024,
291
+ label="Height",
292
+ precision=0
293
+ )
294
+ batch_size = gr.Number(
295
+ value=1,
296
+ label="Batch Size",
297
+ precision=0
298
+ )
299
+ steps = gr.Number(
300
+ value=20,
301
+ label="Steps",
302
+ precision=0
303
+ )
304
+
305
+ generate_btn = gr.Button("Generate Image")
306
+
307
+ with gr.Column():
308
+ output_image = gr.Image(label="Generated Image", type="filepath")
309
+
310
+ generate_btn.click(
311
+ fn=generate_image,
312
+ inputs=[
313
+ prompt_input,
314
+ input_image,
315
+ lora_weight,
316
+ guidance,
317
+ downsampling_factor,
318
+ weight,
319
+ seed,
320
+ width,
321
+ height,
322
+ batch_size,
323
+ steps
324
+ ],
325
+ outputs=[output_image]
326
+ )
327
 
328
  if __name__ == "__main__":
329
+ app.launch()