Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,352 +1,267 @@
|
|
1 |
import os
|
2 |
import random
|
3 |
-
import sys
|
4 |
import torch
|
5 |
-
import gradio as gr
|
6 |
from pathlib import Path
|
|
|
|
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
-
import spaces
|
9 |
-
from typing import Union, Sequence, Mapping, Any
|
10 |
-
from comfy import model_management
|
11 |
from nodes import NODE_CLASS_MAPPINGS
|
12 |
-
|
13 |
-
# 1. Configura莽茫o de Caminhos e Imports
|
14 |
-
current_dir = os.path.dirname(os.path.abspath(__file__))
|
15 |
-
comfyui_path = os.path.join(current_dir, "ComfyUI")
|
16 |
-
sys.path.append(comfyui_path)
|
17 |
-
|
18 |
-
# 2. Imports do ComfyUI
|
19 |
import folder_paths
|
20 |
-
from nodes import init_extra_nodes
|
21 |
|
22 |
-
#
|
23 |
BASE_DIR = os.path.dirname(os.path.realpath(__file__))
|
24 |
output_dir = os.path.join(BASE_DIR, "output")
|
25 |
-
models_dir = os.path.join(BASE_DIR, "models")
|
26 |
os.makedirs(output_dir, exist_ok=True)
|
27 |
-
os.makedirs(models_dir, exist_ok=True)
|
28 |
folder_paths.set_output_directory(output_dir)
|
29 |
|
30 |
-
#
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
def find_path(name: str, path: str = None) -> str:
|
50 |
-
if path is None:
|
51 |
-
path = os.getcwd()
|
52 |
-
if name in os.listdir(path):
|
53 |
-
path_name = os.path.join(path, name)
|
54 |
-
print(f"{name} found: {path_name}")
|
55 |
-
return path_name
|
56 |
-
parent_directory = os.path.dirname(path)
|
57 |
-
if parent_directory == path:
|
58 |
-
return None
|
59 |
-
return find_path(name, parent_directory)
|
60 |
-
|
61 |
-
def add_comfyui_directory_to_sys_path() -> None:
|
62 |
-
comfyui_path = find_path("ComfyUI")
|
63 |
-
if comfyui_path is not None and os.path.isdir(comfyui_path):
|
64 |
-
sys.path.append(comfyui_path)
|
65 |
-
print(f"'{comfyui_path}' added to sys.path")
|
66 |
-
|
67 |
-
def add_extra_model_paths() -> None:
|
68 |
-
try:
|
69 |
-
from main import load_extra_path_config
|
70 |
-
except ImportError:
|
71 |
-
from utils.extra_config import load_extra_path_config
|
72 |
-
extra_model_paths = find_path("extra_model_paths.yaml")
|
73 |
-
if extra_model_paths is not None:
|
74 |
-
load_extra_path_config(extra_model_paths)
|
75 |
-
else:
|
76 |
-
print("Could not find the extra_model_paths config file.")
|
77 |
-
|
78 |
-
# 7. Inicializa莽茫o de caminhos
|
79 |
-
add_comfyui_directory_toSyspath()
|
80 |
-
add_extra_model_paths()
|
81 |
|
82 |
-
|
|
|
83 |
import asyncio
|
84 |
import execution
|
|
|
85 |
import server
|
|
|
86 |
loop = asyncio.new_event_loop()
|
87 |
asyncio.set_event_loop(loop)
|
|
|
88 |
server_instance = server.PromptServer(loop)
|
89 |
execution.PromptQueue(server_instance)
|
90 |
init_extra_nodes()
|
91 |
|
92 |
-
#
|
93 |
-
def
|
94 |
-
|
95 |
-
models = [
|
96 |
-
("black-forest-labs/FLUX.1-Redux-dev", "flux1-redux-dev.safetensors", "style_models"),
|
97 |
-
("comfyanonymous/flux_text_encoders", "t5xxl_fp16.safetensors", "text_encoders"),
|
98 |
-
("zer0int/CLIP-GmP-ViT-L-14", "ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors", "text_encoders"),
|
99 |
-
("black-forest-labs/FLUX.1-dev", "ae.safetensors", "vae"),
|
100 |
-
("black-forest-labs/FLUX.1-dev", "flux1-dev.safetensors", "diffusion_models"),
|
101 |
-
("google/siglip-so400m-patch14-384", "model.safetensors", "clip_vision")
|
102 |
-
]
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
continue
|
115 |
|
116 |
-
#
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
119 |
|
120 |
-
|
121 |
-
|
|
|
|
|
|
|
122 |
|
123 |
-
#
|
124 |
-
|
125 |
-
|
|
|
|
|
126 |
|
127 |
-
# Load
|
128 |
-
|
129 |
-
|
130 |
-
clip_name1="t5xxl_fp16.safetensors",
|
131 |
-
clip_name2="ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors",
|
132 |
-
type="flux"
|
133 |
-
)
|
134 |
|
135 |
-
# Load VAE
|
136 |
-
vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
|
137 |
-
|
138 |
-
vae_name="ae.safetensors"
|
139 |
-
)
|
140 |
|
141 |
-
# Load
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
|
|
146 |
|
147 |
-
# Load
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
|
|
|
|
152 |
|
153 |
-
#
|
154 |
-
|
155 |
-
|
|
|
|
|
|
|
156 |
|
157 |
-
#
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
|
171 |
-
saveimage = NODE_CLASS_MAPPINGS["SaveImage"]()
|
172 |
-
getimagesizeandcount = NODE_CLASS_MAPPINGS["GetImageSizeAnd Count"]()
|
173 |
-
depthanything_v2 = NODE_CLASS MAPPINGS["DepthAnything_V2"]()
|
174 |
-
cr_text = NODE_CLASS_MAPPINGS["CR Text"]()
|
175 |
|
176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
|
178 |
-
|
179 |
-
|
180 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
)
|
201 |
-
|
202 |
-
# Encode VAE
|
203 |
-
vae_encoded = vaeencode.encode(
|
204 |
-
pixels=get_value_at_index(size_info, 0),
|
205 |
-
vae=get_value_at_index(Vae_model, 0),
|
206 |
-
)
|
207 |
-
|
208 |
-
# Apply Flux guidance
|
209 |
-
flux guided = flux Guidance.append(
|
210 |
-
guidance=guidance,
|
211 |
-
conditioning=get_valueAtIndex(text_encoded, 0),
|
212 |
-
)
|
213 |
-
|
214 |
-
# Set up empty latent
|
215 |
-
empty_latent = empty_latentimage.generate(
|
216 |
-
width=width,
|
217 |
-
height=height,
|
218 |
-
batch_size=batch_size
|
219 |
-
)
|
220 |
-
|
221 |
-
# Set up guidance
|
222 |
-
guided = basicguider.get_guider(
|
223 |
-
model=get_value_at_index(unet_model, 0),
|
224 |
-
conditioning=get_value_at_index(loaded_image, 0)
|
225 |
-
)
|
226 |
-
|
227 |
-
# Set up scheduler
|
228 |
-
schedule = basicscheduler.get_sigmas(
|
229 |
-
scheduler="simple",
|
230 |
-
steps=steps,
|
231 |
-
denoise=1,
|
232 |
-
model=get_value_atIndex(Unet Model, 0),
|
233 |
-
)
|
234 |
-
|
235 |
-
# Generate random noise
|
236 |
-
noise = randomnoise.get_noise(noise_seed=seed)
|
237 |
-
|
238 |
-
# Sample
|
239 |
-
sampled = samplerCustom advanced.sample(
|
240 |
-
noise=get_value_at_index(noise, 0),
|
241 |
-
guider=get_value at Index(guided, 0),
|
242 |
-
sampler=get_value at index(sampler, 0),
|
243 |
-
sigmas=get_value at Index(schedule, 0),
|
244 |
-
latent_image=get_value_atindex(empty_latent, 0)
|
245 |
-
)
|
246 |
-
|
247 |
-
# Decode VAE
|
248 |
-
decoded = va edecode.decode(
|
249 |
-
samples=get_value_atindex(sampled, 0),
|
250 |
-
vae=get_value_at Index(VAE Model, 0),
|
251 |
-
)
|
252 |
-
|
253 |
-
# Save image
|
254 |
-
saved = saveimage.save_images(
|
255 |
-
filename_prefix=get_value at index(clip switch, 0),
|
256 |
-
images=getValueAtIndex(decoded, 0),
|
257 |
-
)
|
258 |
-
|
259 |
-
saved_path = f"output/{saved['ui']['images'][0]['filename']}"
|
260 |
-
|
261 |
-
return saved_path
|
262 |
|
263 |
-
#
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
["Istanbul aerial, dramatic photography", "Natasha.png", 0.5, 3.5, 3, 1.0, random.randint(1, 2**64), 1024, 1024, 1, 20],
|
268 |
-
]
|
269 |
|
270 |
-
|
|
|
|
|
271 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
with gr.Blocks() as app:
|
273 |
-
gr.
|
274 |
|
275 |
with gr.Row():
|
276 |
-
with gr.
|
277 |
-
prompt_input = gr.
|
278 |
label="Prompt",
|
279 |
placeholder="Enter your prompt here...",
|
280 |
lines=5
|
281 |
)
|
|
|
|
|
|
|
|
|
282 |
|
283 |
-
with gr.
|
284 |
-
with gr.
|
285 |
-
lora_weight = gr.
|
286 |
minimum=0,
|
287 |
maximum=2,
|
288 |
step=0.1,
|
289 |
value=0.6,
|
290 |
label="LoRA Weight"
|
291 |
)
|
292 |
-
guidance = gr.
|
293 |
minimum=0,
|
294 |
maximum=20,
|
295 |
step=0.1,
|
296 |
value=3.5,
|
297 |
label="Guidance"
|
298 |
)
|
299 |
-
downsampling_factor = gr.
|
300 |
-
minimum=
|
301 |
maximum=8,
|
302 |
step=1,
|
303 |
value=3,
|
304 |
-
label="Downsampling
|
305 |
)
|
306 |
-
weight = gr.
|
307 |
minimum=0,
|
308 |
maximum=2,
|
309 |
step=0.1,
|
310 |
value=1.0,
|
311 |
-
label="Model
|
312 |
)
|
313 |
-
|
|
|
314 |
value=random.randint(1, 2**64),
|
315 |
-
label="
|
316 |
precision=0
|
317 |
)
|
318 |
-
width = gr.
|
319 |
value=1024,
|
320 |
-
label="
|
321 |
precision=0
|
322 |
)
|
323 |
-
height = gr.
|
324 |
value=1024,
|
325 |
-
label="
|
326 |
precision=0
|
327 |
)
|
328 |
-
batch_size = gr.
|
329 |
value=1,
|
330 |
-
label="
|
331 |
precision=0
|
332 |
)
|
333 |
-
steps = gr.
|
334 |
value=20,
|
335 |
-
label="
|
336 |
precision=0
|
337 |
)
|
338 |
-
|
339 |
-
with gr.column():
|
340 |
-
input_image = gr Image(
|
341 |
-
label="Input Image",
|
342 |
-
type="filepath"
|
343 |
-
)
|
344 |
|
345 |
-
generate_btn = gr.
|
346 |
|
347 |
-
with gr.
|
348 |
-
output_image.
|
349 |
-
|
350 |
generate_btn.click(
|
351 |
fn=generate_image,
|
352 |
inputs=[
|
@@ -366,4 +281,6 @@ with gr.Blocks() as app:
|
|
366 |
)
|
367 |
|
368 |
if __name__ == "__main__":
|
|
|
|
|
369 |
app.launch(share=True)
|
|
|
1 |
import os
|
2 |
import random
|
|
|
3 |
import torch
|
|
|
4 |
from pathlib import Path
|
5 |
+
from PIL import Image
|
6 |
+
import gradio as gr
|
7 |
from huggingface_hub import hf_hub_download
|
|
|
|
|
|
|
8 |
from nodes import NODE_CLASS_MAPPINGS
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
import folder_paths
|
|
|
10 |
|
11 |
+
# Configure base and output directories
|
12 |
BASE_DIR = os.path.dirname(os.path.realpath(__file__))
|
13 |
output_dir = os.path.join(BASE_DIR, "output")
|
|
|
14 |
os.makedirs(output_dir, exist_ok=True)
|
|
|
15 |
folder_paths.set_output_directory(output_dir)
|
16 |
|
17 |
+
# Download models
|
18 |
+
def download_models():
|
19 |
+
models = [
|
20 |
+
("black-forest-labs/FLUX.1-Redux-dev", "flux1-redux-dev.safetensors", "style_models"),
|
21 |
+
("comfyanonymous/flux_text_encoders", "t5xxl_fp16.safetensors", "text_encoders"),
|
22 |
+
("zer0int/CLIP-GmP-ViT-L-14", "ViT-L-14-TEXT-detail-improved-hiT-GmP-TE-only-HF.safetensors", "text_encoders"),
|
23 |
+
("black-forest-labs/FLUX.1-dev", "ae.safetensors", "vae"),
|
24 |
+
("black-forest-labs/FLUX.1-dev", "flux1-dev.sft", "diffusion_models"),
|
25 |
+
("google/siglip-so400m-patch14-384", "model.safetensors", "clip_vision"),
|
26 |
+
("black-forest-labs/FLUX.1-Redux-dev", "NFTNIK_FLUX.1[dev]_LoRA.safetensors", "lora")
|
27 |
+
]
|
28 |
+
|
29 |
+
for repo_id, filename, model_type in models:
|
30 |
+
model_dir = os.path.join(BASE_DIR, "models", model_type)
|
31 |
+
os.makedirs(model_dir, exist_ok=True)
|
32 |
+
print(f"Downloading {filename} from {repo_id}...")
|
33 |
+
hf_hub_download(repo_id=repo_id, filename=filename, local_dir=model_dir)
|
34 |
+
folder_paths.add_model_folder_path(model_type, model_dir)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
# Load custom nodes
|
37 |
+
def import_custom_nodes():
|
38 |
import asyncio
|
39 |
import execution
|
40 |
+
from nodes import init_extra_nodes
|
41 |
import server
|
42 |
+
|
43 |
loop = asyncio.new_event_loop()
|
44 |
asyncio.set_event_loop(loop)
|
45 |
+
|
46 |
server_instance = server.PromptServer(loop)
|
47 |
execution.PromptQueue(server_instance)
|
48 |
init_extra_nodes()
|
49 |
|
50 |
+
# Main function to execute the workflow and generate an image
|
51 |
+
def generate_image(prompt, input_image, lora_weight, guidance, downsampling_factor, weight, seed, width, height, batch_size, steps):
|
52 |
+
import_custom_nodes()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
+
try:
|
55 |
+
with torch.inference_mode():
|
56 |
+
# Load CLIP
|
57 |
+
dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]()
|
58 |
+
dualcliploader_loaded = dualcliploader.load_clip(
|
59 |
+
clip_name1="t5xxl_fp16.safetensors",
|
60 |
+
clip_name2="ViT-L-14-TEXT-detail-improved-hiT-GmP-TE-only-HF.safetensors",
|
61 |
+
type="flux",
|
62 |
+
device="default"
|
63 |
+
)
|
|
|
64 |
|
65 |
+
# Text Encoding
|
66 |
+
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
|
67 |
+
encoded_text = cliptextencode.encode(
|
68 |
+
text=prompt,
|
69 |
+
clip=dualcliploader_loaded[0]
|
70 |
+
)
|
71 |
|
72 |
+
# Load Style Model
|
73 |
+
stylemodelloader = NODE_CLASS_MAPPINGS["StyleModelLoader"]()
|
74 |
+
style_model = stylemodelloader.load_style_model(
|
75 |
+
style_model_name="flux1-redux-dev.safetensors"
|
76 |
+
)
|
77 |
|
78 |
+
# Load CLIP Vision
|
79 |
+
clipvisionloader = NODE_CLASS_MAPPINGS["CLIPVisionLoader"]()
|
80 |
+
clip_vision = clipvisionloader.load_clip(
|
81 |
+
clip_name="model.safetensors"
|
82 |
+
)
|
83 |
|
84 |
+
# Load Input Image
|
85 |
+
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
|
86 |
+
loaded_image = loadimage.load_image(image=input_image)
|
|
|
|
|
|
|
|
|
87 |
|
88 |
+
# Load VAE
|
89 |
+
vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
|
90 |
+
vae = vaeloader.load_vae(vae_name="ae.safetensors")
|
|
|
|
|
91 |
|
92 |
+
# Load UNET
|
93 |
+
unetloader = NODE_CLASS_MAPPINGS["UNETLoader"]()
|
94 |
+
unet = unetloader.load_unet(
|
95 |
+
unet_name="flux1-dev.sft",
|
96 |
+
weight_dtype="fp8_e4m3fn"
|
97 |
+
)
|
98 |
|
99 |
+
# Load LoRA
|
100 |
+
loraloadermodelonly = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]()
|
101 |
+
lora_model = loraloadermodelonly.load_lora_model_only(
|
102 |
+
lora_name="NFTNIK_FLUX.1[dev]_LoRA.safetensors",
|
103 |
+
strength_model=lora_weight,
|
104 |
+
model=unet[0]
|
105 |
+
)
|
106 |
|
107 |
+
# Flux Guidance
|
108 |
+
fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]()
|
109 |
+
flux_guidance = fluxguidance.append(
|
110 |
+
guidance=guidance,
|
111 |
+
conditioning=encoded_text[0]
|
112 |
+
)
|
113 |
|
114 |
+
# Redux Advanced
|
115 |
+
reduxadvanced = NODE_CLASS_MAPPINGS["ReduxAdvanced"]()
|
116 |
+
redux_result = reduxadvanced.apply_stylemodel(
|
117 |
+
downsampling_factor=downsampling_factor,
|
118 |
+
downsampling_function="area",
|
119 |
+
mode="keep aspect ratio",
|
120 |
+
weight=weight,
|
121 |
+
autocrop_margin=0.1,
|
122 |
+
conditioning=flux_guidance[0],
|
123 |
+
style_model=style_model[0],
|
124 |
+
clip_vision=clip_vision[0],
|
125 |
+
image=loaded_image[0]
|
126 |
+
)
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
+
# Empty Latent Image
|
129 |
+
emptylatentimage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]()
|
130 |
+
empty_latent = emptylatentimage.generate(
|
131 |
+
width=width,
|
132 |
+
height=height,
|
133 |
+
batch_size=batch_size
|
134 |
+
)
|
135 |
|
136 |
+
# KSampler
|
137 |
+
ksampler = NODE_CLASS_MAPPINGS["KSampler"]()
|
138 |
+
sampled = ksampler.sample(
|
139 |
+
seed=seed,
|
140 |
+
steps=steps,
|
141 |
+
cfg=1,
|
142 |
+
sampler_name="euler",
|
143 |
+
scheduler="simple",
|
144 |
+
denoise=1,
|
145 |
+
model=lora_model[0],
|
146 |
+
positive=redux_result[0],
|
147 |
+
negative=flux_guidance[0],
|
148 |
+
latent_image=empty_latent[0]
|
149 |
+
)
|
150 |
|
151 |
+
# VAE Decode
|
152 |
+
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
|
153 |
+
decoded = vaedecode.decode(
|
154 |
+
samples=sampled[0],
|
155 |
+
vae=vae[0]
|
156 |
+
)
|
157 |
+
|
158 |
+
# Save the image in the output directory
|
159 |
+
saveimage = NODE_CLASS_MAPPINGS["SaveImage"]()
|
160 |
+
temp_filename = f"Flux_{random.randint(0, 99999)}"
|
161 |
+
saveimage.save_images(
|
162 |
+
filename_prefix=temp_filename,
|
163 |
+
images=decoded[0]
|
164 |
+
)
|
165 |
+
|
166 |
+
# Add a delay to ensure the file system updates
|
167 |
+
import time
|
168 |
+
time.sleep(0.5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
+
# Dynamically retrieve the correct file name
|
171 |
+
saved_files = [f for f in os.listdir(output_dir) if f.startswith(temp_filename)]
|
172 |
+
if not saved_files:
|
173 |
+
raise FileNotFoundError(f"Output file not found: Expected files starting with {temp_filename}")
|
|
|
|
|
174 |
|
175 |
+
# Get the full path of the saved file
|
176 |
+
temp_path = os.path.join(output_dir, saved_files[0])
|
177 |
+
print(f"Image saved at: {temp_path}")
|
178 |
|
179 |
+
# Return the saved image for Gradio display
|
180 |
+
output_image = Image.open(temp_path)
|
181 |
+
return output_image
|
182 |
+
|
183 |
+
except Exception as e:
|
184 |
+
print(f"Error during generation: {str(e)}")
|
185 |
+
return None
|
186 |
+
|
187 |
+
# Gradio Interface
|
188 |
with gr.Blocks() as app:
|
189 |
+
gr.Markdown("# FLUX Redux Image Generator")
|
190 |
|
191 |
with gr.Row():
|
192 |
+
with gr.Column():
|
193 |
+
prompt_input = gr.Textbox(
|
194 |
label="Prompt",
|
195 |
placeholder="Enter your prompt here...",
|
196 |
lines=5
|
197 |
)
|
198 |
+
input_image = gr.Image(
|
199 |
+
label="Input Image",
|
200 |
+
type="filepath"
|
201 |
+
)
|
202 |
|
203 |
+
with gr.Row():
|
204 |
+
with gr.Column():
|
205 |
+
lora_weight = gr.Slider(
|
206 |
minimum=0,
|
207 |
maximum=2,
|
208 |
step=0.1,
|
209 |
value=0.6,
|
210 |
label="LoRA Weight"
|
211 |
)
|
212 |
+
guidance = gr.Slider(
|
213 |
minimum=0,
|
214 |
maximum=20,
|
215 |
step=0.1,
|
216 |
value=3.5,
|
217 |
label="Guidance"
|
218 |
)
|
219 |
+
downsampling_factor = gr.Slider(
|
220 |
+
minimum=1,
|
221 |
maximum=8,
|
222 |
step=1,
|
223 |
value=3,
|
224 |
+
label="Downsampling Factor"
|
225 |
)
|
226 |
+
weight = gr.Slider(
|
227 |
minimum=0,
|
228 |
maximum=2,
|
229 |
step=0.1,
|
230 |
value=1.0,
|
231 |
+
label="Model Weight"
|
232 |
)
|
233 |
+
with gr.Column():
|
234 |
+
seed = gr.Number(
|
235 |
value=random.randint(1, 2**64),
|
236 |
+
label="Seed",
|
237 |
precision=0
|
238 |
)
|
239 |
+
width = gr.Number(
|
240 |
value=1024,
|
241 |
+
label="Width",
|
242 |
precision=0
|
243 |
)
|
244 |
+
height = gr.Number(
|
245 |
value=1024,
|
246 |
+
label="Height",
|
247 |
precision=0
|
248 |
)
|
249 |
+
batch_size = gr.Number(
|
250 |
value=1,
|
251 |
+
label="Batch Size",
|
252 |
precision=0
|
253 |
)
|
254 |
+
steps = gr.Number(
|
255 |
value=20,
|
256 |
+
label="Steps",
|
257 |
precision=0
|
258 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
|
260 |
+
generate_btn = gr.Button("Generate Image")
|
261 |
|
262 |
+
with gr.Column():
|
263 |
+
output_image = gr.Image(label="Generated Image", type="pil")
|
264 |
+
|
265 |
generate_btn.click(
|
266 |
fn=generate_image,
|
267 |
inputs=[
|
|
|
281 |
)
|
282 |
|
283 |
if __name__ == "__main__":
|
284 |
+
# Download models if they don't exist
|
285 |
+
download_models()
|
286 |
app.launch(share=True)
|