Voila-demo / audio_transformer.py
Mark Shi
upload code
c0a944c
import math
from typing import Optional
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch import Tensor
from torch.nn import functional as F
from einops import rearrange
@dataclass
class LocalArgs:
codebook_size: int = 2048
num_codebooks: int = 4
# Modified from https://github.com/fishaudio/fish-speech/blob/main/fish_speech/models/text2semantic/llama.py#L105
class KVCache(nn.Module):
def __init__(
self, n_layer, batch_size, max_seq_len, n_heads, head_dim, dtype, device
):
super().__init__()
cache_shape = (n_layer, batch_size, n_heads, max_seq_len, head_dim)
self.register_buffer("k_cache", torch.zeros(cache_shape, dtype=dtype, device=device))
self.register_buffer("v_cache", torch.zeros(cache_shape, dtype=dtype, device=device))
def update(self, layer_idx, input_pos, k_val, v_val):
# k_val: [B, H, S, D]
k_out = self.k_cache
v_out = self.v_cache
k_out[layer_idx, :, :, input_pos:input_pos+1] = k_val
v_out[layer_idx, :, :, input_pos:input_pos+1] = v_val
return k_out[layer_idx], v_out[layer_idx]
# Modified from https://github.com/fishaudio/fish-speech/blob/main/fish_speech/models/text2semantic/llama.py#L756
def precompute_freqs_cis(seq_len: int, n_elem: int, base: int = 10000) -> Tensor:
freqs = 1.0 / (
base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem)
)
t = torch.arange(seq_len, device=freqs.device)
freqs = torch.outer(t, freqs)
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1)
return cache
# Copied from https://github.com/fishaudio/fish-speech/blob/main/fish_speech/models/text2semantic/llama.py#L767
def apply_rotary_emb(x: Tensor, freqs_cis: Tensor) -> Tensor:
xshaped = x.float().reshape(*x.shape[:-1], -1, 2)
freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2)
x_out2 = torch.stack(
[
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1],
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1],
],
-1,
)
x_out2 = x_out2.flatten(3)
return x_out2.type_as(x)
# Copied from https://github.com/fishaudio/fish-speech/blob/main/fish_speech/models/text2semantic/llama.py#L742
class RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-5):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)
def forward(self, x: Tensor) -> Tensor:
output = self._norm(x.float()).type_as(x)
return output * self.weight
# Copied from https://github.com/fishaudio/fish-speech/blob/main/fish_speech/models/text2semantic/llama.py#L731
class FeedForward(nn.Module):
def __init__(self, config: LocalArgs) -> None:
super().__init__()
self.w1 = nn.Linear(config.dim, config.intermediate_size, bias=False)
self.w3 = nn.Linear(config.dim, config.intermediate_size, bias=False)
self.w2 = nn.Linear(config.intermediate_size, config.dim, bias=False)
def forward(self, x: Tensor) -> Tensor:
return self.w2(F.silu(self.w1(x)) * self.w3(x))
# Modified from https://github.com/fishaudio/fish-speech/blob/main/fish_speech/models/text2semantic/llama.py#L615
class Attention(nn.Module):
def __init__(self, config: LocalArgs, layer_idx: int, use_sdpa: bool = True):
super().__init__()
assert config.dim % config.n_head == 0
self.layer_idx = layer_idx
total_head_dim = (config.n_head + 2 * config.n_local_heads) * config.head_dim
# key, query, value projections for all heads, but in a batch
self.wqkv = nn.Linear(
config.dim, total_head_dim, bias=config.attention_qkv_bias
)
self.wo = nn.Linear(config.dim, config.dim, bias=False)
self.dropout = config.dropout
self.n_head = config.n_head
self.head_dim = config.head_dim
self.n_local_heads = config.n_local_heads
self.dim = config.dim
self.use_sdpa = use_sdpa
self._register_load_state_dict_pre_hook(self.load_hook)
def load_hook(self, state_dict, prefix, *args):
if prefix + "wq.weight" in state_dict:
wq = state_dict.pop(prefix + "wq.weight")
wk = state_dict.pop(prefix + "wk.weight")
wv = state_dict.pop(prefix + "wv.weight")
state_dict[prefix + "wqkv.weight"] = torch.cat([wq, wk, wv])
def forward(
self,
x: Tensor,
freqs_cis: Tensor,
mask: Tensor,
input_pos: Optional[int] = None,
kv_cache: Optional[KVCache] = None,
) -> Tensor:
bsz, seqlen, _ = x.shape
kv_size = self.n_local_heads * self.head_dim
q, k, v = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1)
q = q.view(bsz, seqlen, self.n_head, self.head_dim)
k = k.view(bsz, seqlen, self.n_local_heads, self.head_dim)
v = v.view(bsz, seqlen, self.n_local_heads, self.head_dim)
q = apply_rotary_emb(q, freqs_cis)
k = apply_rotary_emb(k, freqs_cis)
q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v))
if kv_cache is not None:
k, v = kv_cache.update(self.layer_idx, input_pos, k, v)
k = k.repeat_interleave(self.n_head // self.n_local_heads, dim=1)
v = v.repeat_interleave(self.n_head // self.n_local_heads, dim=1)
if self.use_sdpa:
if mask is None:
with sdpa_kernel(SDPBackend.FLASH_ATTENTION):
y = F.scaled_dot_product_attention(
q,
k,
v,
dropout_p=self.dropout if self.training else 0.0,
is_causal=True,
# No third party attn_mask here to use flash_attention
)
else:
y = F.scaled_dot_product_attention(
q,
k,
v,
attn_mask=mask,
dropout_p=self.dropout if self.training else 0.0,
)
else:
y = self.eq_scaled_dot_product_attention(
q,
k,
v,
attn_mask=mask,
dropout_p=self.dropout if self.training else 0.0,
)
y = y.transpose(1, 2).contiguous().view(bsz, seqlen, self.dim)
return self.wo(y)
def eq_scaled_dot_product_attention(
self,
query,
key,
value,
attn_mask=None,
dropout_p=0.0,
) -> torch.Tensor:
# This is a standard scaled dot product attention
# It's low efficient, but it doesn't raise cuda error
L, S = query.size(-2), key.size(-2)
scale_factor = 1 / math.sqrt(query.size(-1))
attn_bias = torch.zeros(1, 1, L, S, dtype=query.dtype, device=query.device)
if attn_mask is not None:
if attn_mask.dtype == torch.bool:
attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
else:
attn_bias += attn_mask
attn_weight = query @ key.transpose(-2, -1) * scale_factor
attn_weight += attn_bias
attn_weight = torch.softmax(attn_weight, dim=-1)
attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
return attn_weight @ value
# Copied from https://github.com/fishaudio/fish-speech/blob/main/fish_speech/models/text2semantic/llama.py#L599
class TransformerBlock(nn.Module):
def __init__(self, config: LocalArgs, layer_idx: int, use_sdpa: bool = True) -> None:
super().__init__()
self.attention = Attention(config, layer_idx, use_sdpa=use_sdpa)
self.feed_forward = FeedForward(config)
self.ffn_norm = RMSNorm(config.dim, config.norm_eps)
self.attention_norm = RMSNorm(config.dim, config.norm_eps)
def forward(
self, x: Tensor, freqs_cis: Tensor, mask: Tensor, input_pos: int = None, kv_cache: KVCache = None
) -> Tensor:
h = x + self.attention(self.attention_norm(x), freqs_cis, mask, input_pos, kv_cache)
out = h + self.feed_forward(self.ffn_norm(h))
return out
# Modified from https://github.com/fishaudio/fish-speech/blob/main/fish_speech/models/text2semantic/llama.py#L470
class AudioTransformer(nn.Module):
def __init__(self, config, use_sdpa: bool = False):
super().__init__()
self.config = LocalArgs()
self.config.codebook_size = config.codebook_size
self.config.num_codebooks = config.num_codebooks
if hasattr(config, "min_audio_token_id"):
self.config.min_audio_token_id = config.min_audio_token_id
self.config.max_audio_token_id = config.max_audio_token_id
self.config.n_layer = 4
self.config.dim = 1024
self.config.n_head = 32
self.config.n_local_heads = 32
self.config.intermediate_size = 2816
self.config.head_dim = self.config.dim // self.config.n_head
self.config.norm_eps = 1e-5
self.config.attention_qkv_bias = False
self.config.dropout = 0.0
self.embeddings = nn.Embedding(self.config.codebook_size, self.config.dim)
if self.config.dim != config.hidden_size:
self.input_proj = nn.Linear(config.hidden_size, self.config.dim, bias=False)
else:
self.input_proj = nn.Identity()
self.layers = nn.ModuleList(
TransformerBlock(self.config, layer_idx, use_sdpa=use_sdpa) for layer_idx in range(self.config.n_layer)
)
self.norm = RMSNorm(self.config.dim, eps=self.config.norm_eps)
self.token_head = nn.Linear(self.config.dim, self.config.codebook_size, bias=False)
self.gradient_checkpointing = False
self.register_buffer(
"freqs_cis",
precompute_freqs_cis(self.config.num_codebooks, self.config.dim // self.config.n_head, 10000),
persistent=False,
)
self.register_buffer(
"attention_mask",
torch.tril(torch.ones(self.config.num_codebooks, self.config.num_codebooks, dtype=torch.bool)),
persistent=False,
)
def run_model(self, hidden_states, freqs_cis, attention_mask, input_pos: int = None, kv_cache: KVCache = None):
for layer in self.layers:
# TODO: gradient_checkpointing is disabled because of bug
if False: # self.gradient_checkpointing and self.training:
hidden_states = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
freqs_cis,
attention_mask,
use_reentrant=True,
)
else:
hidden_states = layer(hidden_states, freqs_cis, attention_mask, input_pos, kv_cache)
hidden_states = self.norm(hidden_states)
logits = self.token_head(hidden_states)
return logits.float()
# inp: [bs, hidden_size]
# labels: [bs, num_codebooks]
# logits: [bs, num_codebooks, codebook_size]
def forward(self, inp, labels):
bs = inp.shape[0]
hidden_states = self.input_proj(inp)
if self.freqs_cis.dtype != hidden_states.dtype:
self.freqs_cis = self.freqs_cis.to(dtype=hidden_states.dtype)
if labels is not None:
# Training mode
# Get embedding
assert bs == labels.shape[0] and labels.shape[1] == self.config.num_codebooks, f"Labels shape error: {labels.shape}"
hidden_states = [hidden_states[:, None, :], self.embeddings(labels[..., :-1]).to(hidden_states.dtype)]
hidden_states = torch.cat(hidden_states, dim=1) # [bs, num_codebooks, hidden_size]
# Run attention layers
logits = self.run_model(hidden_states, self.freqs_cis, self.attention_mask)
else:
# Inference mode
raise RuntimeError(f"Please call function \"inference\" in inference mode")
return logits
# inp: [bs, seq_len, hidden_size]
# out_tokens: [bs, 1, num_codebooks]
@torch.inference_mode()
def inference(self, inp, temperature=0, top_k=0):
# Only use the last hidden states for token computation
inp = inp[:, -1:, :]
bs = inp.shape[0]
if self.freqs_cis.dtype != inp.dtype:
self.freqs_cis = self.freqs_cis.to(dtype=inp.dtype)
inp = self.input_proj(inp)
# Inference mode
kv_cache = KVCache(
self.config.n_layer,
bs,
self.config.num_codebooks,
self.config.n_head,
self.config.head_dim,
dtype=inp.dtype,
device=inp.device,
)
# Generate one token per step
out_tokens = []
for input_pos in range(self.config.num_codebooks):
inp = inp.reshape(bs, 1, self.config.dim)
local_freqs_cis = self.freqs_cis[input_pos]
local_mask = self.attention_mask[None, None, input_pos, :self.config.num_codebooks]
logits = self.run_model(inp, local_freqs_cis, local_mask, input_pos, kv_cache)
logits = logits.squeeze(dim=1)
# Apply temperature and top-k
if temperature > 0:
logits = logits / temperature
if top_k > 0:
top_k = min(top_k, logits.size(-1)) # Safety check
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits = logits.masked_fill(indices_to_remove, -float("Inf"))
# Do sample
probs = nn.functional.softmax(logits, dim=-1)
next_tokens = torch.multinomial(probs, num_samples=1)
next_tokens = next_tokens.reshape(bs, 1, 1)
inp = self.embeddings(next_tokens)
out_tokens.append(next_tokens)
return torch.cat(out_tokens, dim=-1)